NASA Astrophysics Data System (ADS)
Hidayat, Husnul; Cahyono, A. B.
2016-11-01
Singosaritemple is one of cultural heritage building in East Java, Indonesia which was built in 1300s and restorated in 1934-1937. Because of its history and importance, complete documentation of this temple is required. Nowadays with the advent of low cost UAVs combining aerial photography with terrestrial photogrammetry gives more complete data for 3D documentation. This research aims to make complete 3D model of this landmark from aerial and terrestrial photographs with Structure from Motion algorithm. To establish correct scale, position, and orientation, the final 3D model was georeferenced with Ground Control Points in UTM 49S coordinate system. The result shows that all facades, floor, and upper structures can be modeled completely in 3D. In terms of 3D coordinate accuracy, the Root Mean Square Errors (RMSEs) are RMSEx=0,041 m; RMSEy=0,031 m; RMSEz=0,049 m which represent 0.071 m displacement in 3D space. In addition the mean difference of lenght measurements of the object is 0,057 m. With this accuracy, this method can be used to map the site up to 1:237 scale. Although the accuracy level is still in centimeters, the combined aerial and terrestrial photographs with Structure from Motion algorithm can provide complete and visually interesting 3D model.
Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang
2017-02-01
Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.
A novel technique for reference point generation to aid in intraoral scan alignment.
Renne, Walter G; Evans, Zachary P; Mennito, Anthony; Ludlow, Mark
2017-11-12
When using a completely digital workflow on larger prosthetic cases it is often difficult to communicate to the laboratory or chairside Computer Aided Design and Computer Aided Manufacturing system the provisional prosthetic information. The problem arises when common hard tissue data points are limited or non-existent such as in complete arch cases in which the 3D model of the complete arch provisional restorations must be aligned perfectly with the 3D model of the complete arch preparations. In these instances, soft tissue is not enough to ensure an accurate automatic or manual alignment due to a lack of well-defined reference points. A new technique is proposed for the proper digital alignment of the 3D virtual model of the provisional prosthetic to the 3D virtual model of the prepared teeth in cases where common and coincident hard tissue data points are limited. Clinical considerations: A technique is described in which fiducial composite resin dots are temporarily placed on the intraoral keratinized tissue in strategic locations prior to final impressions. These fiducial dots provide coincident and clear 3D data points that when scanned into a digital impression allow superimposition of the 3D models. Composite resin dots on keratinized tissue were successful at allowing accurate merging of provisional restoration and post-preparation 3D models for the purpose of using the provisional restorations as a guide for final CLINICAL SIGNIFICANCE: Composite resin dots placed temporarily on attached tissue were successful at allowing accurate merging of the provisional restoration 3D models to the preparation 3D models for the purposes of using the provisional restorations as a guide for final restoration design and manufacturing. In this case, they allowed precise superimposition of the 3D models made in the absence of any other hard tissue reference points, resulting in the fabrication of ideal final restorations. © 2017 Wiley Periodicals, Inc.
Metric Evaluation Pipeline for 3d Modeling of Urban Scenes
NASA Astrophysics Data System (ADS)
Bosch, M.; Leichtman, A.; Chilcott, D.; Goldberg, H.; Brown, M.
2017-05-01
Publicly available benchmark data and metric evaluation approaches have been instrumental in enabling research to advance state of the art methods for remote sensing applications in urban 3D modeling. Most publicly available benchmark datasets have consisted of high resolution airborne imagery and lidar suitable for 3D modeling on a relatively modest scale. To enable research in larger scale 3D mapping, we have recently released a public benchmark dataset with multi-view commercial satellite imagery and metrics to compare 3D point clouds with lidar ground truth. We now define a more complete metric evaluation pipeline developed as publicly available open source software to assess semantically labeled 3D models of complex urban scenes derived from multi-view commercial satellite imagery. Evaluation metrics in our pipeline include horizontal and vertical accuracy and completeness, volumetric completeness and correctness, perceptual quality, and model simplicity. Sources of ground truth include airborne lidar and overhead imagery, and we demonstrate a semi-automated process for producing accurate ground truth shape files to characterize building footprints. We validate our current metric evaluation pipeline using 3D models produced using open source multi-view stereo methods. Data and software is made publicly available to enable further research and planned benchmarking activities.
Knoedler, Margaret; Feibus, Allison H; Lange, Andrew; Maddox, Michael M; Ledet, Elisa; Thomas, Raju; Silberstein, Jonathan L
2015-06-01
To evaluate the effect of 3-dimensionally (3D) printed physical renal models with enhancing masses on medical trainee characterization, localization, and understanding of renal malignancy. Proprietary software was used to import standard computed tomography (CT) cross-sectional imaging into 3D printers to create physical models of renal units with enhancing renal lesions in situ. Six different models were printed from a transparent plastic resin; the normal parenchyma was printed in a clear, translucent plastic, with a red hue delineating the suspicious renal lesion. Medical students, who had completed their first year of training, were given an overview and tasked with completion of RENAL nephrometry scores, separately using CT imaging and 3D models. Trainees were also asked to complete a questionnaire about their experience. Variability between trainees was assessed by intraclass correlation coefficients (ICCs), and kappa statistics were used to compare the trainee to experts. Overall trainee nephrometry score accuracy was significantly improved with the 3D model vs CT scan (P <.01). Furthermore, 3 of the 4 components of the nephrometry score (radius, nearness to collecting system, and location) showed significant improvement (P <.001) using the models. There was also more consistent agreement among trainees when using the 3D models compared with CT scans to assess the nephrometry score (intraclass correlation coefficient, 0.28 for CT scan vs 0.72 for 3D models). Qualitative evaluation with questionnaires filled out by the trainees further confirmed that the 3D models improved their ability to understand and conceptualize the renal mass. Physical 3D models using readily available printing techniques improve trainees' understanding and characterization of individual patients' enhancing renal lesions. Published by Elsevier Inc.
Sim, Ji-Young; Jang, Yeon; Kim, Woong-Chul; Kim, Hae-Young; Lee, Dong-Hwan; Kim, Ji-Hwan
2018-03-31
This study aimed to evaluate and compare the accuracy. A reference model was prepared with three prepared teeth for three types of restorations: single crown, 3-unit bridge, and inlay. Stone models were fabricated from conventional impressions. Digital impressions of the reference model were created using an intraoral scanner (digital models). Physical models were fabricated using a three-dimensional (3D) printer. Reference, stone, and 3D printed models were subsequently scanned using an industrial optical scanner; files were exported in a stereolithography file format. All datasets were superimposed using 3D analysis software to evaluate the accuracy of the complete arch and trueness of the preparations. One-way and two-way analyses of variance (ANOVA) were performed to compare the accuracy among the three model groups and evaluate the trueness among the three types of preparation. For the complete arch, significant intergroup differences in precision were observed for the three groups (p<.001). However, no significant difference in trueness was found between the stone and digital models (p>.05). 3D printed models had the poorest accuracy. A two-way ANOVA revealed significant differences in trueness among the model groups (p<.001) and types of preparation (p<.001). Digital models had smaller root mean square values of trueness of the complete arch and preparations than stone models. However, the accuracy of the complete arch and trueness of the preparations of 3D printed models were inferior to those of the other groups. Copyright © 2018 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Nowinski, Wieslaw L; Thaung, Thant Shoon Let; Chua, Beng Choon; Yi, Su Hnin Wut; Ngai, Vincent; Yang, Yili; Chrzan, Robert; Urbanik, Andrzej
2015-05-15
Although the adult human skull is a complex and multifunctional structure, its 3D, complete, realistic, and stereotactic atlas has not yet been created. This work addresses the construction of a 3D interactive atlas of the adult human skull spatially correlated with the brain, cranial nerves, and intracranial vasculature. The process of atlas construction included computed tomography (CT) high-resolution scan acquisition, skull extraction, skull parcellation, 3D disarticulated bone surface modeling, 3D model simplification, brain-skull registration, 3D surface editing, 3D surface naming and color-coding, integration of the CT-derived 3D bony models with the existing brain atlas, and validation. The virtual skull model created is complete with all 29 bones, including the auditory ossicles (being among the smallest bones). It contains all typical bony features and landmarks. The created skull model is superior to the existing skull models in terms of completeness, realism, and integration with the brain along with blood vessels and cranial nerves. This skull atlas is valuable for medical students and residents to easily get familiarized with the skull and surrounding anatomy with a few clicks. The atlas is also useful for educators to prepare teaching materials. It may potentially serve as a reference aid in the reading and operating rooms. Copyright © 2015 Elsevier B.V. All rights reserved.
FaceTOON: a unified platform for feature-based cartoon expression generation
NASA Astrophysics Data System (ADS)
Zaharia, Titus; Marre, Olivier; Prêteux, Françoise; Monjaux, Perrine
2008-02-01
This paper presents the FaceTOON system, a semi-automatic platform dedicated to the creation of verbal and emotional facial expressions, within the applicative framework of 2D cartoon production. The proposed FaceTOON platform makes it possible to rapidly create 3D facial animations with a minimum amount of user interaction. In contrast with existing commercial 3D modeling softwares, which usually require from the users advanced 3D graphics skills and competences, the FaceTOON system is based exclusively on 2D interaction mechanisms, the 3D modeling stage being completely transparent for the user. The system takes as input a neutral 3D face model, free of any facial feature, and a set of 2D drawings, representing the desired facial features. A 2D/3D virtual mapping procedure makes it possible to obtain a ready-for-animation model which can be directly manipulated and deformed for generating expressions. The platform includes a complete set of dedicated tools for 2D/3D interactive deformation, pose management, key-frame interpolation and MPEG-4 compliant animation and rendering. The proposed FaceTOON system is currently considered for industrial evaluation and commercialization by the Quadraxis company.
Teo, B G; Sarinder, K K S; Lim, L H S
2010-08-01
Three-dimensional (3D) models of the marginal hooks, dorsal and ventral anchors, bars and haptoral reservoirs of a parasite, Sundatrema langkawiense Lim & Gibson, 2009 (Monogenea) were developed using the polygonal modelling method in Autodesk 3ds Max (Version 9) based on two-dimensional (2D) illustrations. Maxscripts were written to rotate the modelled 3D structures. Appropriately orientated 3D haptoral hard-parts were then selected and positioned within the transparent 3D outline of the haptor and grouped together to form a complete 3D haptoral entity. This technique is an inexpensive tool for constructing 3D models from 2D illustrations for 3D visualisation of the spatial relationships between the different structural parts within organisms.
Development of 3D browsing and interactive web system
NASA Astrophysics Data System (ADS)
Shi, Xiaonan; Fu, Jian; Jin, Chaolin
2017-09-01
In the current market, users need to download specific software or plug-ins to browse the 3D model, and browsing the system may be unstable, and it cannot be 3D model interaction issues In order to solve this problem, this paper presents a solution to the interactive browsing of the model in the server-side parsing model, and when the system is applied, the user only needs to input the system URL and upload the 3D model file to operate the browsing The server real-time parsing 3D model, the interactive response speed, these completely follows the user to walk the minimalist idea, and solves the current market block 3D content development question.
a Proposal for Generalization of 3d Models
NASA Astrophysics Data System (ADS)
Uyar, A.; Ulugtekin, N. N.
2017-11-01
In recent years, 3D models have been created of many cities around the world. Most of the 3D city models have been introduced as completely graphic or geometric models, and the semantic and topographic aspects of the models have been neglected. In order to use 3D city models beyond the task, a generalization is necessary. CityGML is an open data model and XML-based format for the storage and exchange of virtual 3D city models. Level of Details (LoD) which is an important concept for 3D modelling, can be defined as outlined degree or prior representation of real-world objects. The paper aim is first describes some requirements of 3D model generalization, then presents problems and approaches that have been developed in recent years. In conclude the paper will be a summary and outlook on problems and future work.
Citygml Modelling for Singapore 3d National Mapping
NASA Astrophysics Data System (ADS)
Soon, K. H.; Khoo, V. H. S.
2017-10-01
Since 2014, the Land Survey Division of Singapore Land Authority (SLA) has spearheaded a Whole-of-Government (WOG) 3D mapping project to create and maintain a 3D national map for Singapore. The implementation of the project is divided into two phases. The first phase of the project, which was based on airborne data collection, has produced 3D models for Relief, Building, Vegetation and Waterbody. This part of the work was completed in 2016. To complement the first phase, the second phase used mobile imaging and scanning technique. This phase is targeted to be completed by the mid of 2017 and is creating 3D models for Transportation, CityFurniture, Bridge and Tunnel. The project has extensively adopted the Open Geospatial Consortium (OGC)'s CityGML standard. Out of 10 currently supported thematic modules in CityGML 2.0, the project has implemented 8. The paper describes the adoption of CityGML in the project, and discusses challenges, data validations and management of the models.
Three-dimensional simulation, surgical navigation and thoracoscopic lung resection
Kanzaki, Masato; Kikkawa, Takuma; Sakamoto, Kei; Maeda, Hideyuki; Wachi, Naoko; Komine, Hiroshi; Oyama, Kunihiro; Murasugi, Masahide; Onuki, Takamasa
2013-01-01
This report describes a 3-dimensional (3-D) video-assisted thoracoscopic lung resection guided by a 3-D video navigation system having a patient-specific 3-D reconstructed pulmonary model obtained by preoperative simulation. A 78-year-old man was found to have a small solitary pulmonary nodule in the left upper lobe in chest computed tomography. By a virtual 3-D pulmonary model the tumor was found to be involved in two subsegments (S1 + 2c and S3a). Complete video-assisted thoracoscopic surgery bi-subsegmentectomy was selected in simulation and was performed with lymph node dissection. A 3-D digital vision system was used for 3-D thoracoscopic performance. Wearing 3-D glasses, the patient's actual reconstructed 3-D model on 3-D liquid-crystal displays was observed, and the 3-D intraoperative field and the picture of 3-D reconstructed pulmonary model were compared. PMID:24964426
Design and fabrication of complete dentures using CAD/CAM technology
Han, Weili; Li, Yanfeng; Zhang, Yue; lv, Yuan; Zhang, Ying; Hu, Ping; Liu, Huanyue; Ma, Zheng; Shen, Yi
2017-01-01
Abstract The aim of the study was to test the feasibility of using commercially available computer-aided design and computer-aided manufacturing (CAD/CAM) technology including 3Shape Dental System 2013 trial version, WIELAND V2.0.049 and WIELAND ZENOTEC T1 milling machine to design and fabricate complete dentures. The modeling process of full denture available in the trial version of 3Shape Dental System 2013 was used to design virtual complete dentures on the basis of 3-dimensional (3D) digital edentulous models generated from the physical models. The virtual complete dentures designed were exported to CAM software of WIELAND V2.0.049. A WIELAND ZENOTEC T1 milling machine controlled by the CAM software was used to fabricate physical dentitions and baseplates by milling acrylic resin composite plates. The physical dentitions were bonded to the corresponding baseplates to form the maxillary and mandibular complete dentures. Virtual complete dentures were successfully designed using the software through several steps including generation of 3D digital edentulous models, model analysis, arrangement of artificial teeth, trimming relief area, and occlusal adjustment. Physical dentitions and baseplates were successfully fabricated according to the designed virtual complete dentures using milling machine controlled by a CAM software. Bonding physical dentitions to the corresponding baseplates generated the final physical complete dentures. Our study demonstrated that complete dentures could be successfully designed and fabricated by using CAD/CAM. PMID:28072686
Interior Reconstruction Using the 3d Hough Transform
NASA Astrophysics Data System (ADS)
Dumitru, R.-C.; Borrmann, D.; Nüchter, A.
2013-02-01
Laser scanners are often used to create accurate 3D models of buildings for civil engineering purposes, but the process of manually vectorizing a 3D point cloud is time consuming and error-prone (Adan and Huber, 2011). Therefore, the need to characterize and quantify complex environments in an automatic fashion arises, posing challenges for data analysis. This paper presents a system for 3D modeling by detecting planes in 3D point clouds, based on which the scene is reconstructed at a high architectural level through removing automatically clutter and foreground data. The implemented software detects openings, such as windows and doors and completes the 3D model by inpainting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.« less
A new approach towards image based virtual 3D city modeling by using close range photogrammetry
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2014-05-01
3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country and high resolution satellite images are costly. In this study, proposed method is based on only simple video recording of area. Thus this proposed method is suitable for 3D city modeling. Photo-realistic, scalable, geo-referenced virtual 3D city model is useful for various kinds of applications such as for planning in navigation, tourism, disasters management, transportations, municipality, urban and environmental managements, real-estate industry. Thus this study will provide a good roadmap for geomatics community to create photo-realistic virtual 3D city model by using close range photogrammetry.
Wood, Bradley M; Jia, Guang; Carmichael, Owen; McKlveen, Kevin; Homberger, Dominique G
2018-05-12
3D imaging techniques enable the non-destructive analysis and modeling of complex structures. Among these, MRI exhibits good soft tissue contrast, but is currently less commonly used for non-clinical research than x-ray CT, even though the latter requires contrast-staining that shrinks and distorts soft tissues. When the objective is the creation of a realistic and complete 3D model of soft tissue structures, MRI data are more demanding to acquire and visualize and require extensive post-processing because they comprise non-cubic voxels with dimensions that represent a trade-off between tissue contrast and image resolution. Therefore, thin soft tissue structures with complex spatial configurations are not always visible in a single MRI dataset, so that standard segmentation techniques are not sufficient for their complete visualization. By using the example of the thin and spatially complex connective tissue myosepta in lampreys, we developed a workflow protocol for the selection of the appropriate parameters for the acquisition of MRI data and for the visualization and 3D modeling of soft tissue structures. This protocol includes a novel recursive segmentation technique for supplementing missing data in one dataset with data from another dataset to produce realistic and complete 3D models. Such 3D models are needed for the modeling of dynamic processes, such as the biomechanics of fish locomotion. However, our methodology is applicable to the visualization of any thin soft tissue structures with complex spatial configurations, such as fasciae, aponeuroses, and small blood vessels and nerves, for clinical research and the further exploration of tensegrity. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.
A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples.
Abudayyeh, Islam; Gordon, Brent; Ansari, Mohammad M; Jutzy, Kenneth; Stoletniy, Liset; Hilliard, Anthony
2018-06-01
The advent of more advanced 3D image processing, reconstruction, and a variety of three-dimensional (3D) printing technologies using different materials has made rapid and fairly affordable anatomically accurate models much more achievable. These models show great promise in facilitating procedural and surgical planning for complex congenital and structural heart disease. Refinements in 3D printing technology lend itself to advanced applications in the fields of bio-printing, hemodynamic modeling, and implantable devices. As a novel technology with a large variability in software, processing tools and printing techniques, there is not a standardized method by which a clinician can go from an imaging data-set to a complete model. Furthermore, anatomy of interest and how the model is used can determine the most appropriate technology. In this over-view we discuss, from the standpoint of a clinical professional, image acquisition, processing, and segmentation by which a printable file is created. We then review the various printing technologies, advantages and disadvantages when printing the completed model file, and describe clinical scenarios where 3D printing can be utilized to address therapeutic challenges. © 2017, Wiley Periodicals, Inc.
Anatomic modeling using 3D printing: quality assurance and optimization.
Leng, Shuai; McGee, Kiaran; Morris, Jonathan; Alexander, Amy; Kuhlmann, Joel; Vrieze, Thomas; McCollough, Cynthia H; Matsumoto, Jane
2017-01-01
The purpose of this study is to provide a framework for the development of a quality assurance (QA) program for use in medical 3D printing applications. An interdisciplinary QA team was built with expertise from all aspects of 3D printing. A systematic QA approach was established to assess the accuracy and precision of each step during the 3D printing process, including: image data acquisition, segmentation and processing, and 3D printing and cleaning. Validation of printed models was performed by qualitative inspection and quantitative measurement. The latter was achieved by scanning the printed model with a high resolution CT scanner to obtain images of the printed model, which were registered to the original patient images and the distance between them was calculated on a point-by-point basis. A phantom-based QA process, with two QA phantoms, was also developed. The phantoms went through the same 3D printing process as that of the patient models to generate printed QA models. Physical measurement, fit tests, and image based measurements were performed to compare the printed 3D model to the original QA phantom, with its known size and shape, providing an end-to-end assessment of errors involved in the complete 3D printing process. Measured differences between the printed model and the original QA phantom ranged from -0.32 mm to 0.13 mm for the line pair pattern. For a radial-ulna patient model, the mean distance between the original data set and the scanned printed model was -0.12 mm (ranging from -0.57 to 0.34 mm), with a standard deviation of 0.17 mm. A comprehensive QA process from image acquisition to completed model has been developed. Such a program is essential to ensure the required accuracy of 3D printed models for medical applications.
Application of 3D Laser Scanning Technology in Complex Rock Foundation Design
NASA Astrophysics Data System (ADS)
Junjie, Ma; Dan, Lu; Zhilong, Liu
2017-12-01
Taking the complex landform of Tanxi Mountain Landscape Bridge as an example, the application of 3D laser scanning technology in the mapping of complex rock foundations is studied in this paper. A set of 3D laser scanning technologies are formed and several key engineering problems are solved. The first is 3D laser scanning technology of complex landforms. 3D laser scanning technology is used to obtain a complete 3D point cloud data model of the complex landform. The detailed and accurate results of the surveying and mapping decrease the measuring time and supplementary measuring times. The second is 3D collaborative modeling of the complex landform. A 3D model of the complex landform is established based on the 3D point cloud data model. The super-structural foundation model is introduced for 3D collaborative design. The optimal design plan is selected and the construction progress is accelerated. And the last is finite-element analysis technology of the complex landform foundation. A 3D model of the complex landform is introduced into ANSYS for building a finite element model to calculate anti-slide stability of the rock, and provides a basis for the landform foundation design and construction.
Application research of 3D additive manufacturing technology in the nail shell
NASA Astrophysics Data System (ADS)
Xiao, Shanhua; Yan, Ruiqiang; Song, Ning
2018-04-01
Based on the analysis of hierarchical slicing algorithm, 3D scanning of enterprise product nailing handle case file is carried out, point cloud data processing is performed on the source file, and the surface modeling and innovative design of nail handling handle case are completed. Using MakerBot Replicator2X-based 3D printer for layered 3D print samples, for the new nail product development to provide reverse modeling and rapid prototyping technical support.
Perica, Elizabeth; Sun, Zhonghua
2017-12-01
Recently, three-dimensional (3D) printing has shown great interest in medicine, and 3D printed models may be rendered as part of the pre-surgical planning process in order to better understand the complexities of an individual's anatomy. The aim of this study is to investigate the feasibility of utilising 3D printed liver models as clinical tools in pre-operative planning for resectable hepatocellular carcinoma (HCC) lesions. High-resolution contrast-enhanced computed tomography (CT) images were acquired and utilized to generate a patient-specific 3D printed liver model. Hepatic structures were segmented and edited to produce a printable model delineating intrahepatic anatomy and a resectable HCC lesion. Quantitative assessment of 3D model accuracy compared measurements of critical anatomical landmarks acquired from the original CT images, standard tessellation language (STL) files, and the 3D printed liver model. Comparative analysis of surveys completed by two radiologists investigated the clinical value of 3D printed liver models in radiology. The application of utilizing 3D printed liver models as tools in surgical planning for resectable HCC lesions was evaluated through kappa analysis of questionnaires completed by two abdominal surgeons. A scaled down multi-material 3D liver model delineating patient-specific hepatic anatomy and pathology was produced, requiring a total production time of 25.25 hours and costing a total of AUD $1,250. A discrepancy was found in the total mean of measurements at each stage of production, with a total mean of 18.28±9.31 mm for measurements acquired from the original CT data, 15.63±8.06 mm for the STL files, and 14.47±7.71 mm for the 3D printed liver model. The 3D liver model did not enhance the radiologists' perception of patient-specific anatomy or pathology. Kappa analysis of the surgeon's responses to survey questions yielded a percentage agreement of 80%, and a κ value of 0.38 (P=0.24) indicating fair agreement. Study outcomes indicate that there is minimal value in utilizing the 3D printed models in diagnostic radiology. The potential usefulness of utilizing patient-specific 3D printed liver models as tools in surgical planning and intraoperative guidance for HCC treatment is verified. However, the feasibility of this application is currently challenged by identified limitations in 3D model production, including the cost and time required for model production, and inaccuracies potentially introduced at each stage of model fabrication.
[Preliminary use of HoloLens glasses in surgery of liver cancer].
Shi, Lei; Luo, Tao; Zhang, Li; Kang, Zhongcheng; Chen, Jie; Wu, Feiyue; Luo, Jia
2018-05-28
To establish the preoperative three dimensional (3D) model of liver cancer, and to precisely match the preoperative planning with the target organs during the operation. Methods: The 3D model reconstruction based on magnetic resonance data, which was combined with virtual reality technology via HoloLens glasses, was applied in the operation of liver cancer to achieve preoperative 3D modeling and surgical planning, and to directly match it with the operative target organs during operation. Results: The 3D model reconstruction of liver cancer based on magnetic resonance data was completed. The exact match with the target organ was performed during the operation via HoloLens glasses leaded by the 3D model. Conclusion: Magnetic resonance data can be used for the 3D model reconstruction to improve preoperative assessment and accurate match during the operation.
Gagnier, Kristin Michod; Shipley, Thomas F
2016-01-01
Accurately inferring three-dimensional (3D) structure from only a cross-section through that structure is not possible. However, many observers seem to be unaware of this fact. We present evidence for a 3D amodal completion process that may explain this phenomenon and provide new insights into how the perceptual system processes 3D structures. Across four experiments, observers viewed cross-sections of common objects and reported whether regions visible on the surface extended into the object. If they reported that the region extended, they were asked to indicate the orientation of extension or that the 3D shape was unknowable from the cross-section. Across Experiments 1, 2, and 3, participants frequently inferred 3D forms from surface views, showing a specific prior to report that regions in the cross-section extend straight back into the object, with little variance in orientation. In Experiment 3, we examined whether 3D visual inferences made from cross-sections are similar to other cases of amodal completion by examining how the inferences were influenced by observers' knowledge of the objects. Finally, in Experiment 4, we demonstrate that these systematic visual inferences are unlikely to result from demand characteristics or response biases. We argue that these 3D visual inferences have been largely unrecognized by the perception community, and have implications for models of 3D visual completion and science education.
Enhanced LOD Concepts for Virtual 3d City Models
NASA Astrophysics Data System (ADS)
Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.
2013-09-01
Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.
Automatic Texture Mapping of Architectural and Archaeological 3d Models
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Stallmann, D.
2012-07-01
Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.
Optimization of 3D Print Material for the Recreation of Patient-Specific Temporal Bone Models.
Haffner, Max; Quinn, Austin; Hsieh, Tsung-Yen; Strong, E Bradley; Steele, Toby
2018-05-01
Identify the 3D printed material that most accurately recreates the visual, tactile, and kinesthetic properties of human temporal bone Subjects and Methods: Fifteen study participants with an average of 3.6 years of postgraduate training and 56.5 temporal bone (TB) procedures participated. Each participant performed a mastoidectomy on human cadaveric TB and five 3D printed TBs of different materials. After drilling each unique material, participants completed surveys to assess each model's appearance and physical likeness on a Likert scale from 0 to 10 (0 = poorly representative, 10 = completely life-like). The 3D models were acquired by computed tomography (CT) imaging and segmented using 3D Slicer software. Polyethylene terephthalate (PETG) had the highest average survey response for haptic feedback (HF) and appearance, scoring 8.3 (SD = 1.7) and 7.6 (SD = 1.5), respectively. The remaining plastics scored as follows for HF and appearance: polylactic acid (PLA) averaged 7.4 and 7.6, acrylonitrile butadiene styrene (ABS) 7.1 and 7.2, polycarbonate (PC) 7.4 and 3.9, and nylon 5.6 and 6.7. A PETG 3D printed temporal bone models performed the best for realistic appearance and HF as compared with PLA, ABS, PC, and nylon. The PLA and ABS were reliable alternatives that also performed well with both measures.
Barone, Sandro; Paoli, Alessandro; Razionale, Armando Viviano
2015-07-01
In the field of orthodontic planning, the creation of a complete digital dental model to simulate and predict treatments is of utmost importance. Nowadays, orthodontists use panoramic radiographs (PAN) and dental crown representations obtained by optical scanning. However, these data do not contain any 3D information regarding tooth root geometries. A reliable orthodontic treatment should instead take into account entire geometrical models of dental shapes in order to better predict tooth movements. This paper presents a methodology to create complete 3D patient dental anatomies by combining digital mouth models and panoramic radiographs. The modeling process is based on using crown surfaces, reconstructed by optical scanning, and root geometries, obtained by adapting anatomical CAD templates over patient specific information extracted from radiographic data. The radiographic process is virtually replicated on crown digital geometries through the Discrete Radon Transform (DRT). The resulting virtual PAN image is used to integrate the actual radiographic data and the digital mouth model. This procedure provides the root references on the 3D digital crown models, which guide a shape adjustment of the dental CAD templates. The entire geometrical models are finally created by merging dental crowns, captured by optical scanning, and root geometries, obtained from the CAD templates. Copyright © 2015 Elsevier Ltd. All rights reserved.
D Modelling and Visualization Based on the Unity Game Engine - Advantages and Challenges
NASA Astrophysics Data System (ADS)
Buyuksalih, I.; Bayburt, S.; Buyuksalih, G.; Baskaraca, A. P.; Karim, H.; Rahman, A. A.
2017-11-01
3D City modelling is increasingly popular and becoming valuable tools in managing big cities. Urban and energy planning, landscape, noise-sewage modelling, underground mapping and navigation are among the applications/fields which really depend on 3D modelling for their effectiveness operations. Several research areas and implementation projects had been carried out to provide the most reliable 3D data format for sharing and functionalities as well as visualization platform and analysis. For instance, BIMTAS company has recently completed a project to estimate potential solar energy on 3D buildings for the whole Istanbul and now focussing on 3D utility underground mapping for a pilot case study. The research and implementation standard on 3D City Model domain (3D data sharing and visualization schema) is based on CityGML schema version 2.0. However, there are some limitations and issues in implementation phase for large dataset. Most of the limitations were due to the visualization, database integration and analysis platform (Unity3D game engine) as highlighted in this paper.
3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles
NASA Astrophysics Data System (ADS)
Doerschuk, Peter C.; Johnson, John E.
2000-11-01
A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.
NASA Astrophysics Data System (ADS)
Wahbeh, W.; Nebiker, S.
2017-08-01
In our paper, we document experiments and results of image-based 3d reconstructions of famous heritage monuments which were recently damaged or completely destroyed by the so-called Islamic state in Syria and Iraq. The specific focus of our research is on the combined use of professional photogrammetric imagery and of publicly available imagery from the web for optimally 3d reconstructing those monuments. The investigated photogrammetric reconstruction techniques include automated bundle adjustment and dense multi-view 3d reconstruction using public domain and professional imagery on the one hand and an interactive polygonal modelling based on projected panoramas on the other. Our investigations show that the combination of these two image-based modelling techniques delivers better results in terms of model completeness, level of detail and appearance.
2011-08-01
generated using the Zygote Human Anatomy 3-D model (3). Use of a reference anatomy independent of personal identification, such as Zygote, allows Visual...Zygote Human Anatomy 3D Model, 2010. http://www.zygote.com/ (accessed July 26, 2011). 4. Khronos Group Web site. Khronos to Create New Open Standard for...understanding of the information at hand. In order to fulfill the medical illustration track, I completed a concentration in science, focusing on human
CaveCAD: a tool for architectural design in immersive virtual environments
NASA Astrophysics Data System (ADS)
Schulze, Jürgen P.; Hughes, Cathleen E.; Zhang, Lelin; Edelstein, Eve; Macagno, Eduardo
2014-02-01
Existing 3D modeling tools were designed to run on desktop computers with monitor, keyboard and mouse. To make 3D modeling possible with mouse and keyboard, many 3D interactions, such as point placement or translations of geometry, had to be mapped to the 2D parameter space of the mouse, possibly supported by mouse buttons or keyboard keys. We hypothesize that had the designers of these existing systems had been able to assume immersive virtual reality systems as their target platforms, they would have been able to design 3D interactions much more intuitively. In collaboration with professional architects, we created a simple, but complete 3D modeling tool for virtual environments from the ground up and use direct 3D interaction wherever possible and adequate. In this publication, we present our approaches for interactions for typical 3D modeling functions, such as geometry creation, modification of existing geometry, and assignment of surface materials. We also discuss preliminary user experiences with this system.
Biglino, Giovanni; Koniordou, Despina; Gasparini, Marisa; Capelli, Claudio; Leaver, Lindsay-Kay; Khambadkone, Sachin; Schievano, Silvia; Taylor, Andrew M; Wray, Jo
2017-04-01
This pilot study aimed to assess the impact of using patient-specific three-dimensional (3D) models of congenital heart disease (CHD) during consultations with adolescent patients. Adolescent CHD patients (n = 20, age 15-18 years, 15 male) were asked to complete two questionnaires during a cardiology transition clinic at a specialist centre. The first questionnaire was completed just before routine consultation with the cardiologist, the second just after the consultation. During the consultation, each patient was presented with a 3D full heart model realised from their medical imaging data. The model was used by the cardiologist to point to main features of the CHD. Outcome measures included rating of health status, confidence in explaining their condition to others, name and features of their CHD (as a surrogate for CHD knowledge), impact of CHD on their lifestyle, satisfaction with previous/current visits, positive/negative features of the 3D model, and open-ended feedback. Significant improvements were registered in confidence in explaining their condition to others (p = 0.008), knowledge of CHD (p < 0.001) and patients' satisfaction (p = 0.005). Descriptions of CHD and impact on lifestyle were more eloquent after seeing a 3D model. The majority of participants reported that models helped their understanding and improved their visit, with a non-negligible 30% of participants indicating that the model made them feel more anxious about their condition. Content analysis of open-ended feedback revealed an overall positive attitude of the participants toward 3D models. Clinical translation of 3D models of CHD for communication purposes warrants further exploration in larger studies.
Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force
NASA Astrophysics Data System (ADS)
Tort, Marine; Dubos, Thomas; Bouchut, François; Zeitlin, Vladimir
2014-05-01
Dynamically Consistent Shallow-Atmosphere Equations with a Complete Coriolis force Marine Tort1, Thomas Dubos1, François Bouchut2 & Vladimir Zeitlin1,3 1 Laboratoire of Dynamical Meteorology, Univ. P. and M. Curie, Ecole Normale Supérieure, and Ecole Polytechnique, FRANCE 2 Université Paris-Est, Laboratoire d'Analyse et de Mathématiques Appliquées, FRANCE 3 Institut Universitaire de France Atmospheric and oceanic motion are usually modeled within the shallow-fluid approximation, which simplifies the 3D spherical geometry. For dynamical consistency, i.e. to ensure conservation laws for potential vorticity, energy and angular momentum, the horizontal component of the Coriolis force is neglected. Here new equation sets combining consistently a simplified shallow-fluid geometry with a complete Coriolis force is presented. The derivation invokes Hamilton's principle of least action with an approximate Lagrangian capturing the small increase with height of the solid-body entrainment velocity due to planetary rotation. A three-dimensional compressible model and a one-layer shallow-water model are obtained. The latter extends previous work done on the f-plane and β-plane. Preliminary numerical results confirm the accuracy of the 3D model within the range of parameters for which the equations are relevant. These new models could be useful to incorporate a full Coriolis force into existing numerical models and to disentangle the effects of the shallow-atmosphere approximation from those of the traditional approximation. Related papers: Tort M., Dubos T., Bouchut F. and Zeitlin V. Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography. J. Fluid Mech. (under revisions) Tort M. and Dubos T. Dynamically consistent shallow-atmosphere equations with a complete Coriolis force. Q.J.R. Meteorol. Soc. (DOI: 10.1002/qj.2274)
D Building Reconstruction by Multiview Images and the Integrated Application with Augmented Reality
NASA Astrophysics Data System (ADS)
Hwang, Jin-Tsong; Chu, Ting-Chen
2016-10-01
This study presents an approach wherein photographs with a high degree of overlap are clicked using a digital camera and used to generate three-dimensional (3D) point clouds via feature point extraction and matching. To reconstruct a building model, an unmanned aerial vehicle (UAV) is used to click photographs from vertical shooting angles above the building. Multiview images are taken from the ground to eliminate the shielding effect on UAV images caused by trees. Point clouds from the UAV and multiview images are generated via Pix4Dmapper. By merging two sets of point clouds via tie points, the complete building model is reconstructed. The 3D models are reconstructed using AutoCAD 2016 to generate vectors from the point clouds; SketchUp Make 2016 is used to rebuild a complete building model with textures. To apply 3D building models in urban planning and design, a modern approach is to rebuild the digital models; however, replacing the landscape design and building distribution in real time is difficult as the frequency of building replacement increases. One potential solution to these problems is augmented reality (AR). Using Unity3D and Vuforia to design and implement the smartphone application service, a markerless AR of the building model can be built. This study is aimed at providing technical and design skills related to urban planning, urban designing, and building information retrieval using AR.
Geometric and Colour Data Fusion for Outdoor 3D Models
Merchán, Pilar; Adán, Antonio; Salamanca, Santiago; Domínguez, Vicente; Chacón, Ricardo
2012-01-01
This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera) and environmental (rain, dampness, changing illumination) conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture), we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields. PMID:22969327
3D heart motion from single-plane angiography of the coronary vasculature: a model-based approach
NASA Astrophysics Data System (ADS)
Sherknies, Denis; Meunier, Jean; Tardif, Jean-Claude
2004-05-01
In order to complete a thorough examination of a patient heart muscle, physicians practice two common invasive procedures: the ventriculography, which allows the determination of the ejection fraction, and the coronarography, giving among other things, information on stenosis of arteries. We propose a method that allows the determination of a contraction index similar to ejection fraction, using only single-plane coronarography. Our method first reconstructs in 3D, selected points on the angiogram, using a 3D model devised from data published by Dodge ea. ['88, '92]. We then follow the point displacements through a complete heart contraction cycle. The objective function, minimizing the RMS distances between the angiogram and the model, relies on affine transformations, i.e. translation, rotation and isotropic scaling. We validate our method on simulated projections using cases from Dodge data. In order to avoid any bias, a leave-one-out strategy was used, which excludes the reference case when constructing the 3D coronary heart model. The simulated projections are created by transforming the reference case, with scaling, translation and rotation transformations, and by adding random 3D noise for each frame in the contraction cycle. Comparing the true scaling parameters to the reconstructed sequence, our method is quite robust (R2=96.6%, P<1%), even when noise error level is as high as 1 cm. Using 10 clinical cases we then proceeded to reconstruct the contraction sequence for a complete cardiac cycle starting at end-diastole. A simple heart contraction mathematical model permitted us to link the measured ejection fraction of the different cases to the maximum heart contraction amplitude (R2=57%, P<1%) determined by our method.
Research and implementation on 3D modeling of geological body
NASA Astrophysics Data System (ADS)
Niu, Lijuan; Li, Ligong; Zhu, Renyi; Huang, Man
2017-10-01
This study based on GIS thinking explores the combination of the mixed spatial data model and GIS model to build three-dimensional(3d) model of geological bodies in the Arc Engine platform, describes the interface and method used in the construction of 3d geological body in Arc Engine component platform in detail, and puts forward an indirect method which constructs a set of geological grid layers through Rigging interpolation by the borehole data and then converts it into the geological layers of TIN, which improves the defect in building the geological layers of TIN directly and makes it better to complete the simulation of the real geological layer. This study makes a useful attempt to build 3d model of the geological body based on the GIS, and provides a certain reference value for simulating geological bodies in 3d and constructing the digital system of underground space.
Photogrammetry for rapid prototyping: development of noncontact 3D reconstruction technologies
NASA Astrophysics Data System (ADS)
Knyaz, Vladimir A.
2002-04-01
An important stage of rapid prototyping technology is generating computer 3D model of an object to be reproduced. Wide variety of techniques for 3D model generation exists beginning with manual 3D models generation and finishing with full-automated reverse engineering system. The progress in CCD sensors and computers provides the background for integration of photogrammetry as an accurate 3D data source with CAD/CAM. The paper presents the results of developing photogrammetric methods for non-contact spatial coordinates measurements and generation of computer 3D model of real objects. The technology is based on object convergent images processing for calculating its 3D coordinates and surface reconstruction. The hardware used for spatial coordinates measurements is based on PC as central processing unit and video camera as image acquisition device. The original software for Windows 9X realizes the complete technology of 3D reconstruction for rapid input of geometry data in CAD/CAM systems. Technical characteristics of developed systems are given along with the results of applying for various tasks of 3D reconstruction. The paper describes the techniques used for non-contact measurements and the methods providing metric characteristics of reconstructed 3D model. Also the results of system application for 3D reconstruction of complex industrial objects are presented.
3D spherical-cap fitting procedure for (truncated) sessile nano- and micro-droplets & -bubbles.
Tan, Huanshu; Peng, Shuhua; Sun, Chao; Zhang, Xuehua; Lohse, Detlef
2016-11-01
In the study of nanobubbles, nanodroplets or nanolenses immobilised on a substrate, a cross-section of a spherical cap is widely applied to extract geometrical information from atomic force microscopy (AFM) topographic images. In this paper, we have developed a comprehensive 3D spherical-cap fitting procedure (3D-SCFP) to extract morphologic characteristics of complete or truncated spherical caps from AFM images. Our procedure integrates several advanced digital image analysis techniques to construct a 3D spherical-cap model, from which the geometrical parameters of the nanostructures are extracted automatically by a simple algorithm. The procedure takes into account all valid data points in the construction of the 3D spherical-cap model to achieve high fidelity in morphology analysis. We compare our 3D fitting procedure with the commonly used 2D cross-sectional profile fitting method to determine the contact angle of a complete spherical cap and a truncated spherical cap. The results from 3D-SCFP are consistent and accurate, while 2D fitting is unavoidably arbitrary in the selection of the cross-section and has a much lower number of data points on which the fitting can be based, which in addition is biased to the top of the spherical cap. We expect that the developed 3D spherical-cap fitting procedure will find many applications in imaging analysis.
The magnetisation distribution of the Ising model - a new approach
NASA Astrophysics Data System (ADS)
Hakan Lundow, Per; Rosengren, Anders
2010-03-01
A completely new approach to the Ising model in 1 to 5 dimensions is developed. We employ a generalisation of the binomial coefficients to describe the magnetisation distributions of the Ising model. For the complete graph this distribution is exact. For simple lattices of dimensions d=1 and d=5 the magnetisation distributions are remarkably well-fitted by the generalized binomial distributions. For d=4 we are only slightly less successful, while for d=2,3 we see some deviations (with exceptions!) between the generalized binomial and the Ising distribution. The results speak in favour of the generalized binomial distribution's correctness regarding their general behaviour in comparison to the Ising model. A theoretical analysis of the distribution's moments also lends support their being correct asymptotically, including the logarithmic corrections in d=4. The full extent to which they correctly model the Ising distribution, and for which graph families, is not settled though.
Mapping the Habitable Zone of Exoplanets with a 2D Energy Balance Model
NASA Astrophysics Data System (ADS)
Moon, Nicole Taylor; Dr. Lisa Kaltenegger, Dr. Ramses Ramirez
2018-01-01
Traditionally, the habitable zone has been defined as the distance at which liquid water could exist on the surface of a rocky planet. However, different complexity models (simplified and fast:1D, and complex and time-intense:3D) models derive different boundaries for the habitable zone. The goal of this project was to test a new intermediate complexity 2D Energy Balance model, add a new ice albedo feedback mechanism, and derive the habitable zone boundaries. After completing this first project, we also studied how other feedback mechanisms, such as the presence of clouds and the carbonate-silicate cycle, effected the location of the habitable zone boundaries using this 2D model. This project was completed as part of a 2017 summer REU program hosted by Cornell's Center for Astrophysics and Plantary Sciecne and in partnership with the Carl Sagan Institute.
Supersymmetric Gauge Theories with Decoupled Operators and Chiral Ring Stability
NASA Astrophysics Data System (ADS)
Benvenuti, Sergio; Giacomelli, Simone
2017-12-01
We propose a general way to complete supersymmetric theories with operators below the unitarity bound, adding gauge-singlet fields that enforce the decoupling of such operators. This makes it possible to perform all usual computations, and to compactify on a circle. We concentrate on a duality between an N =1 SU(2) gauge theory and the N =2 A3 Argyres-Douglas theory, mapping the moduli space and chiral ring of the completed N =1 theory to those of the A3 model. We reduce the completed gauge theory to 3D, finding a 3D duality with N =4 supersymmetric QED (SQED) with two flavors. The naive dimensional reduction is instead N =2 SQED. Crucial is a concept of chiral ring stability, which modifies the superpotential and allows for a 3D emergent global symmetry.
Galantucci, Luigi Maria; Percoco, Gianluca; Lavecchia, Fulvio; Di Gioia, Eliana
2013-05-01
The article describes a new methodology to scan and integrate facial soft tissue surface with dental hard tissue models in a three-dimensional (3D) virtual environment, for a novel diagnostic approach.The facial and the dental scans can be acquired using any optical scanning systems: the models are then aligned and integrated to obtain a full virtual navigable representation of the head of the patient. In this article, we report in detail and further implemented a method for integrating 3D digital cast models into a 3D facial image, to visualize the anatomic position of the dentition. This system uses several 3D technologies to scan and digitize, integrating them with traditional dentistry records. The acquisitions were mainly performed using photogrammetric scanners, suitable for clinics or hospitals, able to obtain high mesh resolution and optimal surface texture for the photorealistic rendering of the face. To increase the quality and the resolution of the photogrammetric scanning of the dental elements, the authors propose a new technique to enhance the texture of the dental surface. Three examples of the application of the proposed procedure are reported in this article, using first laser scanning and photogrammetry and then only photogrammetry. Using cheek retractors, it is possible to scan directly a great number of dental elements. The final results are good navigable 3D models that integrate facial soft tissue and dental hard tissues. The method is characterized by the complete absence of ionizing radiation, portability and simplicity, fast acquisition, easy alignment of the 3D models, and wide angle of view of the scanner. This method is completely noninvasive and can be repeated any time the physician needs new clinical records. The 3D virtual model is a precise representation both of the soft and the hard tissue scanned, and it is possible to make any dimensional measure directly in the virtual space, for a full integrated 3D anthropometry and cephalometry. Moreover, the authors propose a method completely based on close-range photogrammetric scanning, able to detect facial and dental surfaces, and reducing the time, the complexity, and the cost of the scanning operations and the numerical elaboration.
Mobile 3D laser scanning technology application in the surveying of urban underground rail transit
NASA Astrophysics Data System (ADS)
Han, Youmei; Yang, Bogang; Zhen, Yinan
2016-11-01
Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.
Dong, Mengqi; Chen, Guangzhong; Qin, Kun; Ding, Xiaowen; Zhou, Dong; Peng, Chao; Zeng, Shaojian; Deng, Xianming
2018-01-15
Rapid prototyping technology is used to fabricate three-dimensional (3D) brain arteriovenous malformation (AVM) models and facilitate presurgical patient communication and medical education for young surgeons. Two intracranial AVM cases were selected for this study. Using 3D CT angiography or 3D rotational angiography images, the brain AVM models were reconstructed on personal computer and the rapid prototyping process was completed using a 3D printer. The size and morphology of the models were compared to brain digital subtraction arteriography of the same patients. 3D brain AVM models were used for preoperative patient communication and young neurosurgeon education. Two brain AVM models were successfully produced. By neurosurgeons' evaluation, the printed models have high fidelity with the actual brain AVM structures of the patients. The patient responded positively toward the brain AVM model specific to himself. Twenty surgical residents from residency programs tested the brain AVM models and provided positive feedback on their usefulness as educational tool and resemblance to real brain AVM structures. Patient-specific 3D printed models of brain AVM can be constructed with high fidelity. 3D printed brain AVM models are proved to be helpful in preoperative patient consultation, surgical planning and resident training.
Ma, X J; Tao, L; Chen, X; Li, W; Peng, Z Y; Chen, Y; Jin, J; Zhang, X L; Xiong, Q F; Zhong, Z L; Chen, X F
2015-02-13
Three-dimensional (3D) reconstruction and rapid prototyping technology (RPT) of multislice spiral computed tomography angiography (CTA) was applied to prepare physical models of the heart and ventricular septal defects of tetralogy of Fallot (ToF) patients in order to explore their applications in the diagnosis and treatment of this complex heart disease. CTA data of 35 ToF patients were collected to prepare l:l 3D solid models using digital 3D reconstruction and RPT, and the resultant models were used intraoperatively as reference. The operations of all 35 patients were completed under the guidance of the 3D solid model, without difficulty. Intraoperative findings of the patients were consistent with the morphological and size changes of the 3D solid model, and no significant differences were found between the patches obtained from the 3D solid model and the actual intraoperative measurements (t = 0.83, P = 0.412). 3D reconstruction and RPT of multislice spiral CTA can accurately and intuitively reflect the anatomy of ventricular septal defects in ToF patients, providing the foundation for a solid model of the complex congenital heart.
Evaluation of a low-cost, 3D-printed model for bronchoscopy training.
Parotto, Matteo; Jiansen, Joshua Qua; AboTaiban, Ahmed; Ioukhova, Svetlana; Agzamov, Alisher; Cooper, Richard; O'Leary, Gerald; Meineri, Massimiliano
2017-01-01
Flexible bronchoscopy is a fundamental procedure in anaesthesia and critical care medicine. Although learning this procedure is a complex task, the use of simulation-based training provides significant advantages, such as enhanced patient safety. Access to bronchoscopy simulators may be limited in low-resource settings. We have developed a low-cost 3D-printed bronchoscopy training model. A parametric airway model was obtained from an online medical model repository and fabricated using a low-cost 3D printer. The participating physicians had no prior bronchoscopy experience. Participants received a 30-minute lecture on flexible bronchoscopy and were administered a 15-item pre-test questionnaire on bronchoscopy. Afterwards, participants were instructed to perform a series of predetermined bronchoscopy tasks on the 3D printed simulator on 4 consecutive occasions. The time needed to perform the tasks and the quality of task performance (identification of bronchial anatomy, technique, dexterity, lack of trauma) were recorded. Upon completion of the simulator tests, participants were administered the 15-item questionnaire (post-test) once again. Participant satisfaction data on the perceived usefulness and accuracy of the 3D model were collected. A statistical analysis was performed using the t-test. Data are reported as mean values (± standard deviation). The time needed to complete all tasks was 152.9 ± 71.5 sec on the 1st attempt vs. 98.7 ± 40.3 sec on the 4th attempt (P = 0.03). Likewise, the quality of performance score improved from 8.3 ± 6.7 to 18.2 ± 2.5 (P < 0.0001). The average number of correct answers in the questionnaire was 6.8 ± 1.9 pre-test and 13.3 ± 3.1 post-test (P < 0.0001). Participants reported a high level of satisfaction with the perceived usefulness and accuracy of the model. We developed a 3D-printed model for bronchoscopy training. This model improved trainee performance and may represent a valid, low-cost bronchoscopy training tool.
NASA Astrophysics Data System (ADS)
Ibrahim, Ahmad; Steffler, Peter; She, Yuntong
2018-02-01
The interaction between surface water and groundwater through the hyporheic zone is recognized to be important as it impacts the water quantity and quality in both flow systems. Three-dimensional (3D) modeling is the most complete representation of a real-world hyporheic zone. However, 3D modeling requires extreme computational power and efforts; the sophistication is often significantly compromised by not being able to obtain the required input data accurately. Simplifications are therefore often needed. The objective of this study was to assess the accuracy of the vertically-averaged approximation compared to a more complete vertically-resolved model of the hyporheic zone. The groundwater flow was modeled by either a simple one-dimensional (1D) Dupuit approach or a two-dimensional (2D) horizontal/vertical model in boundary fitted coordinates, with the latter considered as a reference model. Both groundwater models were coupled with a 1D surface water model via the surface water depth. Applying the two models to an idealized pool-riffle sequence showed that the 1D Dupuit approximation gave comparable results in determining the characteristics of the hyporheic zone to the reference model when the stratum thickness is not very large compared to the surface water depth. Conditions under which the 1D model can provide reliable estimate of the seepage discharge, upwelling/downwelling discharges and locations, the hyporheic flow, and the residence time were determined.
3D photomechanical model of tooth enamel ablation by Er-laser radiation
NASA Astrophysics Data System (ADS)
Belikov, Andrey V.; Shatilova, Ksenia V.; Skrypnik, Alexei V.
2014-02-01
The three-dimensional (3D) photomechanical model of human tooth enamel ablation is described. It takes into account: the structural peculiarities of enamel, Er-laser beam energy spatial distribution and laser radiation attenuation in the tissue. Dynamics change of enamel coefficient of absorption during ablation is also discussed. We consider the 3D photomechanical model of incomplete removal (modification) of the enamel rods by the pressure of water contained in the enamel pores and heated by laser radiation, and complete removal (ablation) of the enamel rods as result of hydroxyapatite heated by laser radiation and evaporation. Modeling results are in close agreement with the experimental results.
High-Quality 3d Models and Their Use in a Cultural Heritage Conservation Project
NASA Astrophysics Data System (ADS)
Tucci, G.; Bonora, V.; Conti, A.; Fiorini, L.
2017-08-01
Cultural heritage digitization and 3D modelling processes are mainly based on laser scanning and digital photogrammetry techniques to produce complete, detailed and photorealistic three-dimensional surveys: geometric as well as chromatic aspects, in turn testimony of materials, work techniques, state of preservation, etc., are documented using digitization processes. The paper explores the topic of 3D documentation for conservation purposes; it analyses how geomatics contributes in different steps of a restoration process and it presents an overview of different uses of 3D models for the conservation and enhancement of the cultural heritage. The paper reports on the project to digitize the earthenware frieze of the Ospedale del Ceppo in Pistoia (Italy) for 3D documentation, restoration work support, and digital and physical reconstruction and integration purposes. The intent to design an exhibition area suggests new ways to take advantage of 3D data originally acquired for documentation and scientific purposes.
A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction.
Yan, Yiming; Gao, Fengjiao; Deng, Shupei; Su, Nan
2017-01-24
In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM), which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed 'occlusions of random textures model' are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images.
NASA Astrophysics Data System (ADS)
Jefferson, M.; Curran, B.; Routhier, M.; Mulukutla, G. K.; Hall, C. L.
2011-12-01
The study of climate change is now starting to be widely researched around the world. One prominent exception to this fact is within the discipline of Historic Preservation. With the likelihood of climate change causing sea levels to rise over decades to come, historical preservationists are now looking for data and information which can help them mitigate potential threats to our cultural heritage along our sea coasts. Some such information that can be helpful in understanding these threats includes geographic information such as the locations of artifacts, fossils, and historic structures as well as their vertical elevation above mean sea level. In an effort to build a set of protocols to help preservations study these threats, our work is currently focusing on a historic living history museum site known as Strawbery Banke in Portsmouth, New Hampshire. This poster features a subset of this work that was completed through undergraduate student internships funded by the Joan and James Leitzel Center at the University of New Hampshire. This subset of work focused on the creation a 3D model of the study site. Two aspects of the creation of this model involved the completion of a topographic ground survey and the 3D digital mapping of the site itself. The ground survey was completed with the use of standard surveying techniques and tools and the 3D digital mapping was completed with the use of ArcScene, a software which is part of the ArcGIS suite. This work was completed in conjunction with a larger study funded by the National Geographic Society to better understand how sea level rise and the effects of storm surges are putting the historic structures at Strawbery Banke at risk.
[Non-biological 3D printed simulator for training in percutaneous nephro- lithotripsy].
Alyaev, Yu G; Sirota, E S; Bezrukov, E A; Ali, S Kh; Bukatov, M D; Letunovskiy, A V; Byadretdinov, I Sh
2018-03-01
To develop a non-biological 3D printed simulator for training and preoperative planning in percutaneous nephrolithotripsy (PCNL), which allows doctors to master and perform all stages of the operation under ultrasound and fluoroscopy guidance. The 3D model was constructed using multislice spiral computed tomography (MSCT) images of a patient with staghorn urolithiasis. The MSCT data were processed and used to print the model. The simulator consisted of two parts: a non-biological 3D printed soft model of a kidney with reproduced intra-renal vascular and collecting systems and a printed 3D model of a human body. Using this 3D printed simulator, PCNL was performed in the interventional radiology operating room under ultrasound and fluoroscopy guidance. The designed 3D printed model of the kidney completely reproduces the individual features of the intra-renal structures of the particular patient. During the training, all the main stages of PCNL were performed successfully: the puncture, dilation of the nephrostomy tract, endoscopic examination, intra-renal lithotripsy. Our proprietary 3D-printed simulator is a promising development in the field of endourologic training and preoperative planning in the treatment of complicated forms of urolithiasis.
Dynamic three-dimensional model of the coronary circulation
NASA Astrophysics Data System (ADS)
Lehmann, Glen; Gobbi, David G.; Dick, Alexander J.; Starreveld, Yves P.; Quantz, M.; Holdsworth, David W.; Drangova, Maria
2001-05-01
A realistic numerical three-dimensional (3D) model of the dynamics of human coronary arteries has been developed. High- resolution 3D images of the coronary arteries of an excised human heart were obtained using a C-arm based computed tomography (CT) system. Cine bi-plane coronary angiograms were then acquired from a patient with similar coronary anatomy. These angiograms were used to determine the vessel motion, which was applied to the static 3D coronary tree. Corresponding arterial bifurcations were identified in the 3D CT image and in the 2D angiograms. The 3D positions of the angiographic landmarks, which were known throughout the cardiac cycle, were used to warp the 3D image via a non-linear thin-plate spline algorithm. The result was a set or 30 dynamic volumetric images sampling a complete cardiac cycle. To the best of our knowledge, the model presented here is the first dynamic 3D model that provides a true representation of both the geometry and motion of a human coronary artery tree. In the future, similar models can be generated to represent different coronary anatomy and motion. Such models are expected to become an invaluable tool during the development of dynamic imaging techniques such as MRI, multi-slice CT and 3D angiography.
NASA Astrophysics Data System (ADS)
Lachat, E.; Landes, T.; Grussenmeyer, P.
2017-08-01
Handheld 3D scanners can be used to complete large scale models with the acquisition of occluded areas or small artefacts. This may be of interest for digitization projects in the field of Cultural Heritage, where detailed areas may require a specific treatment. Such sensors present the advantage of being easily portable in the field, and easily usable even without particular knowledge. In this paper, the Freestyle3D handheld scanner launched on the market in 2015 by FARO is investigated. Different experiments are described, covering various topics such as the influence of range or color on the measurements, but also the precision achieved for geometrical primitive digitization. These laboratory experiments are completed by acquisitions performed on engraved and sculpted stone blocks. This practical case study is useful to investigate which acquisition protocol seems to be the more adapted and leads to precise results. The produced point clouds will be compared to photogrammetric surveys for the purpose of their accuracy assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini
The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization andmore » modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.« less
NASA Astrophysics Data System (ADS)
Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe
2016-04-01
The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out on the Puy de Dôme volcano resulting in 12 ERT profiles with approximatively 800 electrodes. We performed two processing stages by inverting independently each profiles in 2D (RES2DINV software) and the complete data set in 3D (EResI). The comparison of the 3D inversion results with those obtained through a conventional 2D inversion process underlined that EResI allows to accurately take into account the random electrodes positioning and reduce out-line artefacts into the inversion models due to positioning errors out of the profile axis. This comparison also highlighted the advantages to integrate several ERT lines to compute the 3D models of complex volcanic structures. Finally, the resulting 3D model allows a better interpretation of the Puy de Dome Volcano.
Biology Students’ Initial Mental Model about Microorganism
NASA Astrophysics Data System (ADS)
Hamdiyati, Y.; Sudargo, F.; Redjeki, S.; Fitriani, A.
2017-02-01
The purpose of this study was to identify biology students’ initial mental model about microorganism. This research used descriptive method with 32 sixth semester biology students at Biology Education Departement-Universitas Pendidikan Indonesia as its respondents. Data was taken at the beginning of the 6th semester before respondents endure microbiology course. Instrument used to assess mental model was drawing-writing test in which it contains concepts such as structure of bacteria, archaea, virus, and fungi. Students were asked to describe their imagination about the structure of microorganisms and subsequently asked to explain the structure of microorganisms in writing through open-ended questions. Students’ response was then compared to scientists or experts’ mental models as the targeted mental model. Student mental models were categorized into five levels (levels 1-5), namely “there is no drawing/writing,” “wrong or irrelevant drawing/writing of question,” “partially correct drawing/writing,” “the drawing/writing that has some deficiencies,” and “completely correct and complete drawing/writing.” Results showed that the level of mental models through drawing or writing about the four concepts were varied. The highest level of mental models through drawing (D5) was found in the concept of bacteria, while the highest level of mental models through writing (W3) was found in the concept of bacteria, virus, and fungi. Mental model levels most commonly found in each concept through drawing-writing tests (D/W) were bacteria (D2/W2), Archaea (D1/W1 and D2/W2), virus (D3/W3), and fungi (D2/W1). From these results it is advisable to improve lectures and assessment strategy to enhance or complement students’ mental models about microorganisms.
Evaluation of Model Recognition for Grammar-Based Automatic 3d Building Model Reconstruction
NASA Astrophysics Data System (ADS)
Yu, Qian; Helmholz, Petra; Belton, David
2016-06-01
In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.
NASA Astrophysics Data System (ADS)
Rasztovits, S.; Dorninger, P.
2013-07-01
Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.
Abdoli-Eramaki, Mohammad; Stevenson, Joan M; Agnew, Michael J; Kamalzadeh, Amin
2009-04-01
The purpose of this study was to validate a 3D dynamic virtual model for lifting tasks against a validated link segment model (LSM). A face validation study was conducted by collecting x, y, z coordinate data and using them in both virtual and LSM models. An upper body virtual model was needed to calculate the 3D torques about human joints for use in simulated lifting styles and to estimate the effect of external mechanical devices on human body. Firstly, the model had to be validated to be sure it provided accurate estimates of 3D moments in comparison to a previously validated LSM. Three synchronised Fastrak units with nine sensors were used to record data from one male subject who completed dynamic box lifting under 27 different load conditions (box weights (3), lifting techniques (3) and rotations (3)). The external moments about three axes of L4/L5 were compared for both models. A pressure switch on the box was used to denote the start and end of the lift. An excellent agreement [image omitted] was found between the two models for dynamic lifting tasks, especially for larger moments in flexion and extension. This virtual model was considered valid for use in a complete simulation of the upper body skeletal system. This biomechanical virtual model of the musculoskeletal system can be used by researchers and practitioners to give a better tool to study the causes of LBP and the effect of intervention strategies, by permitting the researcher to see and control a virtual subject's motions.
A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction
Yan, Yiming; Gao, Fengjiao; Deng, Shupei; Su, Nan
2017-01-01
In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM), which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images. PMID:28125018
A 3D Bioprinted Model for the Study of Premalignant Breast Disease
2017-05-01
these glands and performed proof-of-principle 3D printing . We have printed simple ductal structures (tubes) and seeded breast epithelial cells. The...performed proof-of-principle 3D printing . We have printed simple ductal structures (tubes) and seeded breast epithelial cells. The next year we will...All of the PN17 reconstruction data from the 5 completed strains has also been sent to the University of Pittsburg for 3D printing . A summary of the
Analysis of 3d Building Models Accuracy Based on the Airborne Laser Scanning Point Clouds
NASA Astrophysics Data System (ADS)
Ostrowski, W.; Pilarska, M.; Charyton, J.; Bakuła, K.
2018-05-01
Creating 3D building models in large scale is becoming more popular and finds many applications. Nowadays, a wide term "3D building models" can be applied to several types of products: well-known CityGML solid models (available on few Levels of Detail), which are mainly generated from Airborne Laser Scanning (ALS) data, as well as 3D mesh models that can be created from both nadir and oblique aerial images. City authorities and national mapping agencies are interested in obtaining the 3D building models. Apart from the completeness of the models, the accuracy aspect is also important. Final accuracy of a building model depends on various factors (accuracy of the source data, complexity of the roof shapes, etc.). In this paper the methodology of inspection of dataset containing 3D models is presented. The proposed approach check all building in dataset with comparison to ALS point clouds testing both: accuracy and level of details. Using analysis of statistical parameters for normal heights for reference point cloud and tested planes and segmentation of point cloud provides the tool that can indicate which building and which roof plane in do not fulfill requirement of model accuracy and detail correctness. Proposed method was tested on two datasets: solid and mesh model.
Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J; Adams, Justin W; McMenamin, Paul G
2016-05-06
Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized controlled trial was undertaken on undergraduate medical students without prior formal cardiac anatomy teaching. Following a pre-test examining baseline external cardiac anatomy knowledge, participants were randomly assigned to three groups who underwent self-directed learning sessions using either cadaveric materials, 3D prints, or a combination of cadaveric materials/3D prints (combined materials). Participants were then subjected to a post-test written by a third party. Fifty-two participants completed the trial; 18 using cadaveric materials, 16 using 3D models, and 18 using combined materials. Age and time since completion of high school were equally distributed between groups. Pre-test scores were not significantly different (P = 0.231), however, post-test scores were significantly higher for 3D prints group compared to the cadaveric materials or combined materials groups (mean of 60.83% vs. 44.81% and 44.62%, P = 0.010, adjusted P = 0.012). A significant improvement in test scores was detected for the 3D prints group (P = 0.003) but not for the other two groups. The finding of this pilot study suggests that use of 3D prints do not disadvantage students relative to cadaveric materials; maximally, results suggest that 3D may confer certain benefits to anatomy learning and supports their use and ongoing evaluation as supplements to cadaver-based curriculums. Anat Sci Educ 9: 213-221. © 2015 American Association of Anatomists. © 2015 American Association of Anatomists.
Crump, R Trafford; Lai, Ernest; Liu, Guiping; Janjua, Arif; Sutherland, Jason M
2017-05-01
Chronic rhinosinusitis (CRS) is a common condition for which there are numerous medical and surgical treatments. The 22-item Sino-Nasal Outcome Test (SNOT-22) is a patient-reported outcome measure often used with patients diagnosed with CRS. However, there are no utility values associated with the SNOT-22, limiting its use in comparative effectiveness research. The purpose of this study was to establish utilities for the SNOT-22 by mapping responses to utility values associated with the EuroQol-5-dimensional questionnaire-3-level version (EQ-5D-3L). This study used data collected from patients diagnosed with CRS awaiting bilateral endoscopic sinus surgery in Vancouver, Canada. Study participants completed both the SNOT-22 and the EQ-5D-3L. Ordinary least squares was used for 3 models that estimated the EQ-5D-3L utility values as a function of the SNOT-22 items. A total of 232 participants completed both the SNOT-22 and the EQ-5D-3L. As expected, there was a negative relationship between the SNOT-22 global scores and EQ-5D-3L utility values. Adjusted R 2 for the 3 models ranged from 0.28 to 0.33, and root mean squared errors between 0.23 and 0.24. A nonparametric bootstrap analysis demonstrated robustness of the findings. This study successfully developed a mapping model to associate utility values with responses to the SNOT-22. This model could be used to conduct comparative effectiveness research in CRS to evaluate the various interventions available for treating this condition. © 2017 ARS-AAOA, LLC.
Pumping Optimization Model for Pump and Treat Systems - 15091
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, S.; Ivarson, Kristine A.; Karanovic, M.
2015-01-15
Pump and Treat systems are being utilized to remediate contaminated groundwater in the Hanford 100 Areas adjacent to the Columbia River in Eastern Washington. Design of the systems was supported by a three-dimensional (3D) fate and transport model. This model provided sophisticated simulation capabilities but requires many hours to calculate results for each simulation considered. Many simulations are required to optimize system performance, so a two-dimensional (2D) model was created to reduce run time. The 2D model was developed as a equivalent-property version of the 3D model that derives boundary conditions and aquifer properties from the 3D model. It producesmore » predictions that are very close to the 3D model predictions, allowing it to be used for comparative remedy analyses. Any potential system modifications identified by using the 2D version are verified for use by running the 3D model to confirm performance. The 2D model was incorporated into a comprehensive analysis system (the Pumping Optimization Model, POM) to simplify analysis of multiple simulations. It allows rapid turnaround by utilizing a graphical user interface that: 1 allows operators to create hypothetical scenarios for system operation, 2 feeds the input to the 2D fate and transport model, and 3 displays the scenario results to evaluate performance improvement. All of the above is accomplished within the user interface. Complex analyses can be completed within a few hours and multiple simulations can be compared side-by-side. The POM utilizes standard office computing equipment and established groundwater modeling software.« less
Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion
Lindsey, Nathaniel J.; Kaven, Joern; Davatzes, Nicholas C.; Newman, Gregory A.
2017-01-01
Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2–5 Ohm m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60†) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone.
Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion
NASA Astrophysics Data System (ADS)
Lindsey, Nathaniel J.; Kaven, Joern Ole; Davatzes, Nicholas; Newman, Gregory A.
2017-02-01
Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2-5 Ohm m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60†) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone.
Use of a life-size three-dimensional-printed spine model for pedicle screw instrumentation training.
Park, Hyun Jin; Wang, Chenyu; Choi, Kyung Ho; Kim, Hyong Nyun
2018-04-16
Training beginners of the pedicle screw instrumentation technique in the operating room is limited because of issues related to patient safety and surgical efficiency. Three-dimensional (3D) printing enables training or simulation surgery on a real-size replica of deformed spine, which is difficult to perform in the usual cadaver or surrogate plastic models. The purpose of this study was to evaluate the educational effect of using a real-size 3D-printed spine model for training beginners of the free-hand pedicle screw instrumentation technique. We asked whether the use of a 3D spine model can improve (1) screw instrumentation accuracy and (2) length of procedure. Twenty life-size 3D-printed lumbar spine models were made from 10 volunteers (two models for each volunteer). Two novice surgeons who had no experience of free-hand pedicle screw instrumentation technique were instructed by an experienced surgeon, and each surgeon inserted 10 pedicle screws for each lumbar spine model. Computed tomography scans of the spine models were obtained to evaluate screw instrumentation accuracy. The length of time in completing the procedure was recorded. The results of the latter 10 spine models were compared with those of the former 10 models to evaluate learning effect. A total of 37/200 screws (18.5%) perforated the pedicle cortex with a mean of 1.7 mm (range, 1.2-3.3 mm). However, the latter half of the models had significantly less violation than the former half (10/100 vs. 27/100, p < 0.001). The mean length of time to complete 10 pedicle screw instrumentations in a spine model was 42.8 ± 5.3 min for the former 10 spine models and 35.6 ± 2.9 min for the latter 10 spine models. The latter 10 spine models had significantly less time than the former 10 models (p < 0.001). A life-size 3D-printed spine model can be an excellent tool for training beginners of the free-hand pedicle screw instrumentation.
Toroidal Ampere-Faraday Equations Solved Consistently with the CQL3D Fokker-Planck Time-Evolution
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Petrov, Yu. V.
2013-10-01
A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). In the present CQL3D finite-difference model, the electric field E(rho,t) is either prescribed, or iteratively adjusted to obtain prescribed toroidal or parallel currents. We discuss first results of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to the runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we will examine modifications due to the more complete Ampere-Faraday solution. Work supported by US DOE under DE-FG02-ER54744.
FEMFLOW3D; a finite-element program for the simulation of three-dimensional aquifers; version 1.0
Durbin, Timothy J.; Bond, Linda D.
1998-01-01
This document also includes model validation, source code, and example input and output files. Model validation was performed using four test problems. For each test problem, the results of a model simulation with FEMFLOW3D were compared with either an analytic solution or the results of an independent numerical approach. The source code, written in the ANSI x3.9-1978 FORTRAN standard, and the complete input and output of an example problem are listed in the appendixes.
The Combination of Spherical Photogrammetry and UAV for 3D Modeling
NASA Astrophysics Data System (ADS)
Ihsanudin, T.; Affriani, A. R.
2017-12-01
The complete of 3D models required the object that was recorded from both side and top. If the object recorded from above, then the object from the side can not be covered, and if the objects recorded from the side, it can not be covered from the top. Recording of objects from the side using spherical photogrammetry method and from the top using UAV method. The merge of both models using a conform transformation, by bringing the spherical photogrammetry coordinates system to the UAV model. The object of this research is Ratu Boko temple, Sleman, Yogyakarta. The spherical photogrammetry recording was performed by rotating the camera in 360° angle on the entire area of the temple. The area consists of 12 stations. The UAV method uses a drone with flight attitude of 20 meters. The merge of the both models produced the completeness of the temple model from the top and side.
Topology reconstruction for B-Rep modeling from 3D mesh in reverse engineering applications
NASA Astrophysics Data System (ADS)
Bénière, Roseline; Subsol, Gérard; Gesquière, Gilles; Le Breton, François; Puech, William
2012-03-01
Nowadays, most of the manufactured objects are designed using CAD (Computer-Aided Design) software. Nevertheless, for visualization, data exchange or manufacturing applications, the geometric model has to be discretized into a 3D mesh composed of a finite number of vertices and edges. But, in some cases, the initial model may be lost or unavailable. In other cases, the 3D discrete representation may be modified, for example after a numerical simulation, and does not correspond anymore to the initial model. A reverse engineering method is then required to reconstruct a 3D continuous representation from the discrete one. In previous work, we have presented a new approach for 3D geometric primitive extraction. In this paper, to complete our automatic and comprehensive reverse engineering process, we propose a method to construct the topology of the retrieved object. To reconstruct a B-Rep model, a new formalism is now introduced to define the adjacency relations. Then a new process is used to construct the boundaries of the object. The whole process is tested on 3D industrial meshes and bring a solution to recover B-Rep models.
Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae
2012-01-01
Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454
Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae
2012-12-12
Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.
Three-dimensional brain arteriovenous malformation models for clinical use and resident training.
Dong, Mengqi; Chen, Guangzhong; Li, Jianyi; Qin, Kun; Ding, Xiaowen; Peng, Chao; Zhou, Dong; Lin, Xiaofeng
2018-01-01
To fabricate three-dimensional (3D) models of brain arteriovenous malformation (bAVM) and report our experience with customized 3D printed models of patients with bAVM as an educational and clinical tool for patients, doctors, and surgical residents. Using computerized tomography angiography (CTA) or digital subtraction angiography (DSA) images, the rapid prototyping process was completed with specialized software and "in-house" 3D printing service. Intraoperative validation of model fidelity was performed by comparing to DSA images of the same patient during the endovascular treatment process. 3D bAVM models were used for preoperative patient education and consultation, surgical planning, and resident training. 3D printed bAVM models were successful made. By neurosurgeons' evaluation, the printed models precisely replicated the actual bAVM structure of the same patients (n = 7, 97% concordance, range 95%-99% with average of < 2 mm variation). The use of 3D models was associated shorter time for preoperative patient education and consultation, higher acceptable of the procedure for patients and relatives, shorter time between obtaining intraoperative DSA data and the start of endovascular treatment. Thirty surgical residents from residency programs tested the bAVM models and provided feedback on their resemblance to real bAVM structures and the usefulness of printed solid model as an educational tool. Patient-specific 3D printed models of bAVM can be constructed with high fidelity. 3D printed bAVM models were proven to be helpful in preoperative patient consultation, surgical planning, and resident training. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
A Theory of Cramer-Rao Bounds for Constrained Parametric Models
2010-01-01
reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of...overly optimistic. This occurs frequently in communications when the signal- to-noise ratio (SNR) or data transmission size decreases. 43 3.1, then U ?(φ...space of UTHT , the LSE is BLUE and is given by dT θ̂CLS(x) = d Tθ1 + d TU ( UTQU )† UTHTC−1 ( x−Hθ1 ) (3.28) similar to (3.27) with variance dTU
Subscale Fast Cookoff Testing and Modeling for the Hazard Assessment of Large Rocket Motors
2001-03-01
41 LIST OF TABLES Table 1 Heats of Vaporization Parameter for Two-liner Phase Transformation - Complete Liner Sublimation and/or Combined Liner...One-dimensional 2-D Two-dimensional ALE3D Arbitrary-Lagrange-Eulerian (3-D) Computer Code ALEGRA 3-D Arbitrary-Lagrange-Eulerian Computer Code for...case-liner bond areas and in the grain inner bore to explore the pre-ignition and ignition phases , as well as burning evolution in rocket motor fast
Gregersen, Colin S; Hull, M L
2003-06-01
Assessing the importance of non-driving intersegmental knee moments (i.e. varus/valgus and internal/external axial moments) on over-use knee injuries in cycling requires the use of a three-dimensional (3-D) model to compute these loads. The objectives of this study were: (1) to develop a complete, 3-D model of the lower limb to calculate the 3-D knee loads during pedaling for a sample of the competitive cycling population, and (2) to examine the effects of simplifying assumptions on the calculations of the non-driving knee moments. The non-driving knee moments were computed using a complete 3-D model that allowed three rotational degrees of freedom at the knee joint, included the 3-D inertial loads of the shank/foot, and computed knee loads in a shank-fixed coordinate system. All input data, which included the 3-D segment kinematics and the six pedal load components, were collected from the right limb of 15 competitive cyclists while pedaling at 225 W and 90 rpm. On average, the peak varus and internal axial moments of 7.8 and 1.5 N m respectively occurred during the power stroke whereas the peak valgus and external axial moments of 8.1 and 2.5 N m respectively occurred during the recovery stroke. However, the non-driving knee moments were highly variable between subjects; the coefficients of variability in the peak values ranged from 38.7% to 72.6%. When it was assumed that the inertial loads of the shank/foot for motion out of the sagittal plane were zero, the root-mean-squared difference (RMSD) in the non-driving knee moments relative to those for the complete model was 12% of the peak varus/valgus moment and 25% of the peak axial moment. When it was also assumed that the knee joint was revolute with the flexion/extension axis perpendicular to the sagittal plane, the RMSD increased to 24% of the peak varus/valgus moment and 204% of the peak axial moment. Thus, the 3-D orientation of the shank segment has a major affect on the computation of the non-driving knee moments, while the inertial contributions to these loads for motions out of the sagittal plane are less important.
Evaluating the morphological completeness of a training image.
Gao, Mingliang; Teng, Qizhi; He, Xiaohai; Feng, Junxi; Han, Xue
2017-05-01
Understanding the three-dimensional (3D) stochastic structure of a porous medium is helpful for studying its physical properties. A 3D stochastic structure can be reconstructed from a two-dimensional (2D) training image (TI) using mathematical modeling. In order to predict what specific morphology belonging to a TI can be reconstructed at the 3D orthogonal slices by the method of 3D reconstruction, this paper begins by introducing the concept of orthogonal chords. After analyzing the relationship among TI morphology, orthogonal chords, and the 3D morphology of orthogonal slices, a theory for evaluating the morphological completeness of a TI is proposed for the cases of three orthogonal slices and of two orthogonal slices. The proposed theory is evaluated using four TIs of porous media that represent typical but distinct morphological types. The significance of this theoretical evaluation lies in two aspects: It allows special morphologies, for which the attributes of a TI can be reconstructed at a special orthogonal slice of a 3D structure, to be located and quantified, and it can guide the selection of an appropriate reconstruction method for a special TI.
A Clinically Realistic Large Animal Model of Intra-Articular Fracture
2013-10-01
Model of Intra-Articular Fracture PRINCIPAL INVESTIGATOR: Jessica E. Goetz, Ph D CONTRACTING ORGANIZATION: The University of Iowa...5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jessica E. Goetz, Ph D 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail...short-term survival study investigating the effects of therapeutic treatment which was initiated during PY3 will be completed. 15. SUBJECT TERMS post
Representation and Reconconstruction of Triangular Irregular Networks with Vertical Walls
NASA Astrophysics Data System (ADS)
Gorte, B.; Lesparre, J.
2012-06-01
Point clouds obtained by aerial laser scanning are a convenient input source for high resolution 2.5d elevation models, such as the Dutch AHN-2. More challenging is the fully automatic reconstruction of 3d city models. An actual demand for a combined 2.5d terrain and 3d city model for an urban hydrology application led to the design of an extension to the well-known Delaunay triangulated irregular networks (TINs) as to accommodate vertical walls. In addition we introduce methods to generate and refine models adhering to our data structure. These are based on combining two approaches: a representation of the TIN using stars of vertices and triangles, together with segmenting the TIN on the basis of coplanarity of adjacent triangles. The approach is supposed to deliver the complete model including walls at the correct locations, without relying on additional map data, as these often lack completeness, actuality and accuracy, and moreover most of the time do not account for parts facades not going down to street level. However, automatic detection of height discontinuities to obtain the exact location of the walls is currently still under implementation.
NASA Astrophysics Data System (ADS)
Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.
2011-12-01
A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.
Zopf, David A.; Flanagan, Colleen L.; Wheeler, Matthew; Hollister, Scott J.; Green, Glenn E.
2015-01-01
Importance The study demonstrates an application for 3-dimensional (3D) printing that may serve as an effective intervention for severe tracheobronchomalacia. Objective A novel 3D printed, bioresorbable airway splint is tested for efficacy in extending survival in an animal model of severe, life-threatening tracheobronchomalacia. Participants Evaluation of an external airway splint for severe, life-threatening tracheobronchomalacia in a porcine animal model. Setting Multi-institutional and multidisciplinary collaboration between biomedical engineering laboratories and an academic animal surgery center. Interventions Experimental analysis of a 3D printed, bioresorbable airway splint is assessed in a porcine animal model of life-threatening tracheobronchomalacia. The open-cylindrical, bellow shaped porous polycaprolactone splint is placed externally and designed to suspend the underlying collapsed airway. Control animals (n=3) undergoing tracheal cartilage division and inner tracheal lumen dissociation and experimental animals (n=3) receiving the same model with overlying placement of the newly developed airway splint were evaluated. Main Outcomes and Measures An animal model for severe, life-threatening tracheobronchomalacia is proposed. Complete or near complete tracheal lumen collapse was observed in each animal with resolution of symptoms in all of the experimental animals after splint placement. Using our severe tracheobronchomalacia animal model, survival was significantly longer in duration in the experimental group receiving the airway splint after model creation when compared to model creation alone (p = 0.0495). Mortality in the experimental group was related to infection. Conclusions A multidisciplinary effort producing a CAD/CAM, bioresorbable tracheobronchial splint was tested in a porcine model of severe tracheomalacia and was found to extend survival. PMID:24232078
Population Estimation Using a 3D City Model: A Multi-Scale Country-Wide Study in the Netherlands
Arroyo Ohori, Ken; Ledoux, Hugo; Peters, Ravi; Stoter, Jantien
2016-01-01
The remote estimation of a region’s population has for decades been a key application of geographic information science in demography. Most studies have used 2D data (maps, satellite imagery) to estimate population avoiding field surveys and questionnaires. As the availability of semantic 3D city models is constantly increasing, we investigate to what extent they can be used for the same purpose. Based on the assumption that housing space is a proxy for the number of its residents, we use two methods to estimate the population with 3D city models in two directions: (1) disaggregation (areal interpolation) to estimate the population of small administrative entities (e.g. neighbourhoods) from that of larger ones (e.g. municipalities); and (2) a statistical modelling approach to estimate the population of large entities from a sample composed of their smaller ones (e.g. one acquired by a government register). Starting from a complete Dutch census dataset at the neighbourhood level and a 3D model of all 9.9 million buildings in the Netherlands, we compare the population estimates obtained by both methods with the actual population as reported in the census, and use it to evaluate the quality that can be achieved by estimations at different administrative levels. We also analyse how the volume-based estimation enabled by 3D city models fares in comparison to 2D methods using building footprints and floor areas, as well as how it is affected by different levels of semantic detail in a 3D city model. We conclude that 3D city models are useful for estimations of large areas (e.g. for a country), and that the 3D approach has clear advantages over the 2D approach. PMID:27254151
The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors
NASA Astrophysics Data System (ADS)
Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.
2015-12-01
Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and the most popular ones in each category were selected (Arc 3D, Visual SfM, Sure, Agisoft). Also four small objects with distinct geometric properties and especial complexities were chosen and their accurate models as reliable true data was created using ATOS Compact Scan 2M 3D scanner. Images were taken using Fujifilm Real 3D stereo camera, Apple iPhone 5 and Nikon D3200 professional camera and three dimensional models of the objects were obtained using each of the software. Finally, a comprehensive comparison between the detailed reviews of the results on the data set showed that the best combination of software and sensors for generating three-dimensional models is directly related to the object shape as well as the expected accuracy of the final model. Generally better quantitative and qualitative results were obtained by using the Nikon D3200 professional camera, while Fujifilm Real 3D stereo camera and Apple iPhone 5 were the second and third respectively in this comparison. On the other hand, three software of Visual SfM, Sure and Agisoft had a hard competition to achieve the most accurate and complete model of the objects and the best software was different according to the geometric properties of the object.
Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers
NASA Astrophysics Data System (ADS)
Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.
2017-12-01
Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In addition to the VE-3D model, we explore simplifications of the rock matrix domain by using sugar-cube and matchstick conceptualizations and develop VE-dual porosity and VE-matchstick models. These vertically-integrated dual-permeability and dual-porosity models provide a range of computationally efficient tools to model CO2 storage in fractured saline aquifers.
3D Visualization of Urban Area Using Lidar Technology and CityGML
NASA Astrophysics Data System (ADS)
Popovic, Dragana; Govedarica, Miro; Jovanovic, Dusan; Radulovic, Aleksandra; Simeunovic, Vlado
2017-12-01
3D models of urban areas have found use in modern world such as navigation, cartography, urban planning visualization, construction, tourism and even in new applications of mobile navigations. With the advancement of technology there are much better solutions for mapping earth’s surface and spatial objects. 3D city model enables exploration, analysis, management tasks and presentation of a city. Urban areas consist of terrain surfaces, buildings, vegetation and other parts of city infrastructure such as city furniture. Nowadays there are a lot of different methods for collecting, processing and publishing 3D models of area of interest. LIDAR technology is one of the most effective methods for collecting data due the large amount data that can be obtained with high density and geometrical accuracy. CityGML is open standard data model for storing alphanumeric and geometry attributes of city. There are 5 levels of display (LoD0, LoD1, LoD2, LoD3, LoD4). In this study, main aim is to represent part of urban area of Novi Sad using LIDAR technology, for data collecting, and different methods for extraction of information’s using CityGML as a standard for 3D representation. By using series of programs, it is possible to process collected data, transform it to CityGML and store it in spatial database. Final product is CityGML 3D model which can display textures and colours in order to give a better insight of the cities. This paper shows results of the first three levels of display. They consist of digital terrain model and buildings with differentiated rooftops and differentiated boundary surfaces. Complete model gives us a realistic view of 3D objects.
Szałaj, Przemysław; Tang, Zhonghui; Michalski, Paul; Pietal, Michal J; Luo, Oscar J; Sadowski, Michał; Li, Xingwang; Radew, Kamen; Ruan, Yijun; Plewczynski, Dariusz
2016-12-01
ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures. © 2016 Szałaj et al.; Published by Cold Spring Harbor Laboratory Press.
Renne, Walter; Ludlow, Mark; Fryml, John; Schurch, Zach; Mennito, Anthony; Kessler, Ray; Lauer, Abigail
2017-07-01
As digital impressions become more common and more digital impression systems are released onto the market, it is essential to systematically and objectively evaluate their accuracy. The purpose of this in vitro study was to evaluate and compare the trueness and precision of 6 intraoral scanners and 1 laboratory scanner in both sextant and complete-arch scenarios. Furthermore, time of scanning was evaluated and correlated with trueness and precision. A custom complete-arch model was fabricated with a refractive index similar to that of tooth structure. Seven digital impression systems were used to scan the custom model for both posterior sextant and complete arch scenarios. Analysis was performed using 3-dimensional metrology software to measure discrepancies between the master model and experimental casts. Of the intraoral scanners, the Planscan was found to have the best trueness and precision while the 3Shape Trios was found to have the poorest for sextant scanning (P<.001). The order of trueness for complete arch scanning was as follows: 3Shape D800 >iTero >3Shape TRIOS 3 >Carestream 3500 >Planscan >CEREC Omnicam >CEREC Bluecam. The order of precision for complete-arch scanning was as follows: CS3500 >iTero >3Shape D800 >3Shape TRIOS 3 >CEREC Omnicam >Planscan >CEREC Bluecam. For the secondary outcome evaluating the effect time has on trueness and precision, the complete- arch scan time was highly correlated with both trueness (r=0.771) and precision (r=0.771). For sextant scanning, the Planscan was found to be the most precise and true scanner. For complete-arch scanning, the 3Shape Trios was found to have the best balance of speed and accuracy. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
3D printing of versatile reactionware for chemical synthesis.
Kitson, Philip J; Glatzel, Stefan; Chen, Wei; Lin, Chang-Gen; Song, Yu-Fei; Cronin, Leroy
2016-05-01
In recent decades, 3D printing (also known as additive manufacturing) techniques have moved beyond their traditional applications in the fields of industrial manufacturing and prototyping to increasingly find roles in scientific research contexts, such as synthetic chemistry. We present a general approach for the production of bespoke chemical reactors, termed reactionware, using two different approaches to extrusion-based 3D printing. This protocol describes the printing of an inert polypropylene (PP) architecture with the concurrent printing of soft material catalyst composites, using two different 3D printer setups. The steps of the PROCEDURE describe the design and preparation of a 3D digital model of the desired reactionware device and the preparation of this model for use with fused deposition modeling (FDM) type 3D printers. The protocol then further describes the preparation of composite catalyst-silicone materials for incorporation into the 3D-printed device and the steps required to fabricate a reactionware device. This combined approach allows versatility in the design and use of reactionware based on the specific needs of the experimental user. To illustrate this, we present a detailed procedure for the production of one such reactionware device that will result in the production of a sealed reactor capable of effecting a multistep organic synthesis. Depending on the design time of the 3D model, and including time for curing and drying of materials, this procedure can be completed in ∼3 d.
3D printing: making things at the library.
Hoy, Matthew B
2013-01-01
3D printers are a new technology that creates physical objects from digital files. Uses for these printers include printing models, parts, and toys. 3D printers are also being developed for medical applications, including printed bone, skin, and even complete organs. Although medical printing lags behind other uses for 3D printing, it has the potential to radically change the practice of medicine over the next decade. Falling costs for hardware have made 3D printers an inexpensive technology that libraries can offer their patrons. Medical librarians will want to be familiar with this technology, as it is sure to have wide-reaching effects on the practice of medicine.
PHISICS/RELAP5-3D Adaptive Time-Step Method Demonstrated for the HTTR LOFC#1 Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Robin Ivey; Balestra, Paolo; Strydom, Gerhard
A collaborative effort between Japan Atomic Energy Agency (JAEA) and Idaho National Laboratory (INL) as part of the Civil Nuclear Energy Working Group is underway to model the high temperature engineering test reactor (HTTR) loss of forced cooling (LOFC) transient that was performed in December 2010. The coupled version of RELAP5-3D, a thermal fluids code, and PHISICS, a neutronics code, were used to model the transient. The focus of this report is to summarize the changes made to the PHISICS-RELAP5-3D code for implementing an adaptive time step methodology into the code for the first time, and to test it usingmore » the full HTTR PHISICS/RELAP5-3D model developed by JAEA and INL and the LOFC simulation. Various adaptive schemes are available based on flux or power convergence criteria that allow significantly larger time steps to be taken by the neutronics module. The report includes a description of the HTTR and the associated PHISICS/RELAP5-3D model test results as well as the University of Rome sub-contractor report documenting the adaptive time step theory and methodology implemented in PHISICS/RELAP5-3D. Two versions of the HTTR model were tested using 8 and 26 energy groups. It was found that most of the new adaptive methods lead to significant improvements in the LOFC simulation time required without significant accuracy penalties in the prediction of the fission power and the fuel temperature. In the best performing 8 group model scenarios, a LOFC simulation of 20 hours could be completed in real-time, or even less than real-time, compared with the previous version of the code that completed the same transient 3-8 times slower than real-time. A few of the user choice combinations between the methodologies available and the tolerance settings did however result in unacceptably high errors or insignificant gains in simulation time. The study is concluded with recommendations on which methods to use for this HTTR model. An important caveat is that these findings are very model-specific and cannot be generalized to other PHISICS/RELAP5-3D models.« less
NASA Astrophysics Data System (ADS)
Tietze, Kristina; Ritter, Oliver
2013-10-01
3-D inversion techniques have become a widely used tool in magnetotelluric (MT) data interpretation. However, with real data sets, many of the controlling factors for the outcome of 3-D inversion are little explored, such as alignment of the coordinate system, handling and influence of data errors and model regularization. Here we present 3-D inversion results of 169 MT sites from the central San Andreas Fault in California. Previous extensive 2-D inversion and 3-D forward modelling of the data set revealed significant along-strike variation of the electrical conductivity structure. 3-D inversion can recover these features but only if the inversion parameters are tuned in accordance with the particularities of the data set. Based on synthetic 3-D data we explore the model space and test the impacts of a wide range of inversion settings. The tests showed that the recovery of a pronounced regional 2-D structure in inversion of the complete impedance tensor depends on the coordinate system. As interdependencies between data components are not considered in standard 3-D MT inversion codes, 2-D subsurface structures can vanish if data are not aligned with the regional strike direction. A priori models and data weighting, that is, how strongly individual components of the impedance tensor and/or vertical magnetic field transfer functions dominate the solution, are crucial controls for the outcome of 3-D inversion. If deviations from a prior model are heavily penalized, regularization is prone to result in erroneous and misleading 3-D inversion models, particularly in the presence of strong conductivity contrasts. A `good' overall rms misfit is often meaningless or misleading as a huge range of 3-D inversion results exist, all with similarly `acceptable' misfits but producing significantly differing images of the conductivity structures. Reliable and meaningful 3-D inversion models can only be recovered if data misfit is assessed systematically in the frequency-space domain.
3D Printed Models of Cleft Palate Pathology for Surgical Education.
Lioufas, Peter A; Quayle, Michelle R; Leong, James C; McMenamin, Paul G
2016-09-01
To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education. Magnetic resonance imaging data of 2 children (8 and 14 months) were segmented, colored, and anonymized, and stereolothographic files were prepared for 3D printing on either multicolor plastic or powder 3D printers and multimaterial 3D printers. Two models were deemed of sufficient quality and anatomical accuracy to print unamended. One data set was further manipulated digitally to artificially extend the length of the cleft. Thus, 3 models were printed: 1 incomplete soft-palate deformity, 1 incomplete anterior palate deformity, and 1 complete cleft palate. All had cleft lip deformity. The single-material 3D prints are of sufficient quality to accurately identify the nature and extent of the deformities. Multimaterial prints were subsequently created, which could be valuable in surgical training. Improvements in the quality and resolution of radiographic imaging combined with the advent of multicolor multiproperty printer technology will make it feasible in the near future to print 3D replicas in materials that mimic the mechanical properties and color of live human tissue making them potentially suitable for surgical training.
Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling
Bates, Karl T.; Manning, Phillip L.; Hodgetts, David; Sellers, William I.
2009-01-01
Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models. PMID:19225569
Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.
Bates, Karl T; Manning, Phillip L; Hodgetts, David; Sellers, William I
2009-01-01
Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future biomechanical assessments of extinct taxa should be preceded by a detailed investigation of the plausible range of mass properties, in which sensitivity analyses are used to identify a suite of possible values to be tested as inputs in analytical models.
A survey among Brazilian thoracic surgeons about the use of preoperative 2D and 3D images
Cipriano, Federico Enrique Garcia; Arcêncio, Livia; Dessotte, Lycio Umeda; Rodrigues, Alfredo José; Vicente, Walter Villela de Andrade
2016-01-01
Background Describe the characteristics of how the thoracic surgeon uses the 2D/3D medical imaging to perform surgical planning, clinical practice and teaching in thoracic surgery and check the initial choice and the final choice of the Brazilian Thoracic surgeon as the 2D and 3D models pictures before and after acquiring theoretical knowledge on the generation, manipulation and interactive 3D views. Methods A descriptive research type Survey cross to data provided by the Brazilian Thoracic Surgeons (members of the Brazilian Society of Thoracic Surgery) who responded to the online questionnaire via the internet on their computers or personal devices. Results Of the 395 invitations visualized distributed by email, 107 surgeons completed the survey. There was no statically difference when comparing the 2D vs. 3D models pictures for the following purposes: diagnosis, assessment of the extent of disease, preoperative surgical planning, and communication among physicians, resident training, and undergraduate medical education. Regarding the type of tomographic image display routinely used in clinical practice (2D or 3D or 2D–3D model image) and the one preferred by the surgeon at the end of the questionnaire. Answers surgeons for exclusive use of 2D images: initial choice =50.47% and preferably end =14.02%. Responses surgeons to use 3D models in combination with 2D images: initial choice =48.60% and preferably end =85.05%. There was a significant change in the final selection of 3D models used together with the 2D images (P<0.0001). Conclusions There is a lack of knowledge of the 3D imaging, as well as the use and interactive manipulation in dedicated 3D applications, with consequent lack of uniformity in the surgical planning based on CT images. These findings certainly confirm in changing the preference of thoracic surgeons of 2D views of technologies for 3D images. PMID:27621874
Impact of the 3-D model strategy on science learning of the solar system
NASA Astrophysics Data System (ADS)
Alharbi, Mohammed
The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.
Okonogi, Shinichi; Kondo, Kosuke; Harada, Naoyuki; Masuda, Hiroyuki; Nemoto, Masaaki; Sugo, Nobuo
2017-09-01
As the anatomical three-dimensional (3D) positional relationship around the anterior clinoid process (ACP) is complex, experience of many surgeries is necessary to understand anterior clinoidectomy (AC). We prepared a 3D synthetic image from computed tomographic angiography (CTA) and magnetic resonance imaging (MRI) data and a rapid prototyping (RP) model from the imaging data using a 3D printer. The objective of this study was to evaluate anatomical reproduction of the 3D synthetic image and intraosseous region after AC in the RP model. In addition, the usefulness of the RP model for operative simulation was investigated. The subjects were 51 patients who were examined by CTA and MRI before surgery. The size of the ACP, thickness and length of the optic nerve and artery, and intraosseous length after AC were measured in the 3D synthetic image and RP model, and reproducibility in the RP model was evaluated. In addition, 10 neurosurgeons performed AC in the completed RP models to investigate their usefulness for operative simulation. The RP model reproduced the region in the vicinity of the ACP in the 3D synthetic image, including the intraosseous region, at a high accuracy. In addition, drilling of the RP model was a useful operative simulation method of AC. The RP model of the vicinity of ACP, prepared using a 3D printer, showed favorable anatomical reproducibility, including reproduction of the intraosseous region. In addition, it was concluded that this RP model is useful as a surgical education tool for drilling.
From GCode to STL: Reconstruct Models from 3D Printing as a Service
NASA Astrophysics Data System (ADS)
Baumann, Felix W.; Schuermann, Martin; Odefey, Ulrich; Pfeil, Markus
2017-12-01
The authors present a method to reverse engineer 3D printer specific machine instructions (GCode) to a point cloud representation and then a STL (Stereolithography) file format. GCode is a machine code that is used for 3D printing among other applications, such as CNC routers. Such code files contain instructions for the 3D printer to move and control its actuator, in case of Fused Deposition Modeling (FDM), the printhead that extrudes semi-molten plastics. The reverse engineering method presented here is based on the digital simulation of the extrusion process of FDM type 3D printing. The reconstructed models and pointclouds do not accommodate for hollow structures, such as holes or cavities. The implementation is performed in Python and relies on open source software and libraries, such as Matplotlib and OpenCV. The reconstruction is performed on the model’s extrusion boundary and considers mechanical imprecision. The complete reconstruction mechanism is available as a RESTful (Representational State Transfer) Web service.
3D-Printed Models of Cleft Lip and Palate for Surgical Training and Patient Education.
Chou, Pang-Yun; Hallac, Rami R; Shih, Ellen; Trieu, Jenny; Penumatcha, Anjani; Das, Priyanka; Meyer, Clark A; Seaward, James R; Kane, Alex A
2018-03-01
Sculpted physical models and castings of the anatomy of cleft lip and palate are used for parent, patient, and trainee education of cleft lip and palate conditions. In this study, we designed a suite of digital 3-dimensional (3D) models of cleft lip and palate anatomy with additive manufacturing techniques for patient education. CT scans of subjects with isolated cleft palate, unilateral and bilateral cleft lip and palate, and a control were obtained. Soft tissue and bony structures were segmented and reconstructed into digital 3D models. The oral soft tissues overlying the cleft palate were manually molded with silicone putty and scanned using CT to create digital 3D models. These were then combined with the original model to integrate with segmentable soft tissues. Bone and soft tissues were 3D printed in different materials to mimic the rigidity/softness of the relevant anatomy. These models were presented to the parents/patients at our craniofacial clinic. Visual analog scale (VAS) surveys were obtained pertaining to the particular use of the models, to ascertain their value in parental education. A total of 30 parents of children with cleft conditions completed VAS evaluations. The models provided the parents with a better understanding of their child's condition with an overall evaluation score of 9.35 ± 0.5. We introduce a suite of 3D-printed models of cleft conditions that has a useful role in patient, parental, and allied health education with highly positive feedback.
Guo, Hong-Chang; Wang, Yang; Dai, Jiang; Ren, Chang-Wei; Li, Jin-Hua; Lai, Yong-Qiang
2018-02-01
The aim of this study was to evaluate the effect of 3-dimensional (3D) printing in treatment of hypertrophic obstructive cardiomyopathy (HOCM) and its roles in doctor-patient communication. 3D-printed models were constructed preoperatively and postoperatively in seven HOCM patients received surgical treatment. Based on multi-slice computed tomography (CT) images, regions of disorder were segmented using the Mimics 19.0 software (Materialise, Leuven, Belgium). After generating an STL-file (StereoLithography file) with patients' data, the 3D printer (Objet350 Connex3, Stratasys Ltd., USA) created a 3D model. The pre- and post-operative 3D-printed models were used to make the surgical plan preoperatively and evaluate the outcome postoperatively. Meanwhile, a questionnaire was designed for patients and their relatives to learn the effectiveness of the 3D-printed prototypes in the preoperative conversations. The heart anatomies were accurately printed with 3D technology. The 3D-printed prototypes were useful for preoperative evaluation, surgical planning, and practice. Preoperative and postoperative echocardiographic evaluation showed left ventricular outflow tract (LVOT) obstruction was adequately relieved (82.71±31.63 to 14.91±6.89 mmHg, P<0.001), the septal thickness was reduced from 21.57±4.65 to 17.42±5.88 mm (P<0.001), and the SAM disappeared completely after the operation. Patients highly appreciated the role of 3D model in preoperative conversations and the communication score was 9.11±0.38 points. A 3D-printed model is a useful tool in individualized planning for myectomies and represent a useful tool for physician-patient communication.
3D Surveying, Modeling and Geo-Information System of the New Campus of ITB-Indonesia
NASA Astrophysics Data System (ADS)
Suwardhi, D.; Trisyanti, S. W.; Ainiyah, N.; Fajri, M. N.; Hanan, H.; Virtriana, R.; Edmarani, A. A.
2016-10-01
The new campus of ITB-Indonesia, which is located at Jatinangor, requires good facilities and infrastructures to supporting all of campus activities. Those can not be separated from procurement and maintenance activities. Technology for procurement and maintenance of facilities and infrastructures -based computer (information system)- has been known as Building Information Modeling (BIM). Nowadays, that technology is more affordable with some of free software that easy to use and tailored to user needs. BIM has some disadvantages and it requires other technologies to complete it, namely Geographic Information System (GIS). BIM and GIS require surveying data to visualized landscape and buildings on Jatinangor ITB campus. This paper presents the on-going of an internal service program conducted by the researcher, academic staff and students for the university. The program including 3D surveying to support the data requirements for 3D modeling of buildings in CityGML and Industry Foundation Classes (IFC) data model. The entire 3D surveying will produce point clouds that can be used to make 3D model. The 3D modeling is divided into low and high levels of detail modeling. The low levels model is stored in 3D CityGML database, and the high levels model including interiors is stored in BIM Server. 3D model can be used to visualized the building and site of Jatinangor ITB campus. For facility management of campus, an geo-information system is developed that can be used for planning, constructing, and maintaining Jatinangor ITB's facilities and infrastructures. The system uses openMAINT, an open source solution for the Property & Facility Management.
Simplicity constraints: A 3D toy model for loop quantum gravity
NASA Astrophysics Data System (ADS)
Charles, Christoph
2018-05-01
In loop quantum gravity, tremendous progress has been made using the Ashtekar-Barbero variables. These variables, defined in a gauge fixing of the theory, correspond to a parametrization of the solutions of the so-called simplicity constraints. Their geometrical interpretation is however unsatisfactory as they do not constitute a space-time connection. It would be possible to resolve this point by using a full Lorentz connection or, equivalently, by using the self-dual Ashtekar variables. This leads however to simplicity constraints or reality conditions which are notoriously difficult to implement in the quantum theory. We explore in this paper the possibility of using completely degenerate actions to impose such constraints at the quantum level in the context of canonical quantization. To do so, we define a simpler model, in 3D, with similar constraints by extending the phase space to include an independent vielbein. We define the classical model and show that a precise quantum theory by gauge unfixing can be defined out of it, completely equivalent to the standard 3D Euclidean quantum gravity. We discuss possible future explorations around this model as it could help as a stepping stone to define full-fledged covariant loop quantum gravity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechtel Nevada
2005-09-01
A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.
Al-Meraikhi, Hadi; Yilmaz, Burak; McGlumphy, Edwin; Brantley, William A; Johnston, William M
2018-01-01
Computer-aided design and computer-aided manufacturing (CAD-CAM)-fabricated titanium and zirconia implant-supported fixed dental prostheses have become increasingly popular for restoring patients with complete edentulism. However, the distortion level of these frameworks is not well known. The purpose of this in vitro study was to compare the 3-dimensional (3D) distortion of CAD-CAM zirconia and titanium implant-fixed screw-retained complete dental prostheses. A master edentulous model with 4 implants at the positions of the maxillary first molars and canines was used. Multiunit abutments (Nobel Biocare) secured to the model were digitally scanned using scan bodies and a laboratory scanner (S600 ARTI; Zirkonzahn). Titanium (n=5) and zirconia (n=5) frameworks were milled using a CAD-CAM system (Zirkonzahn M1; Zirkonzahn). All frameworks were scanned using an industrial computed tomography (CT) scanner (Nikon/X-Tek XT H 225kV MCT Micro-Focus). The direct CT scans were reconstructed to generate standard tessellation language (STL) files. To calculate the 3D distortion of the frameworks, STL files of the CT scans were aligned to the CAD model using a sum of the least squares best-fit algorithm. Surface comparison points were placed on the CAD model on the midfacial aspect of all teeth. The 3D distortion of each direct scan to the CAD model was calculated. In addition, color maps of the scan-to-CAD comparison were constructed using a ±0.500 mm color scale range. Both materials exhibited distortion; however, no significant difference was found in the amount of distortion from the CAD model between the materials (P=.747). Absolute values of deviations from the CAD model were evident in the x and y plane and less so in the z direction. Zirconia and titanium frameworks showed similar 3D distortion compared with the CAD model for the tested CAD-CAM and implant systems. The distortion was more pronounced in the horizontal and sagittal plane than in the vertical plane. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging.
Keegan, Jennifer; Gatehouse, Peter D; Yang, Guang-Zhong; Firmin, David N
2007-09-01
To demonstrate the feasibility of retrospective beat-to-beat correction of respiratory motion, without the need for a respiratory motion model. A high-resolution three-dimensional (3D) spiral black-blood scan of the right coronary artery (RCA) of six healthy volunteers was acquired over 160 cardiac cycles without respiratory gating. One spiral interleaf was acquired per cardiac cycle, prior to each of which a complete low-resolution fat-selective 3D spiral dataset was acquired. The respiratory motion (3D translation) on each cardiac cycle was determined by cross-correlating a region of interest (ROI) in the fat around the artery in the low-resolution datasets with that on a reference end-expiratory dataset. The measured translations were used to correct the raw data of the high-resolution spiral interleaves. Beat-to-beat correction provided consistently good results, with the image quality being better than that obtained with a fixed superior-inferior tracking factor of 0.6 and better than (N = 5) or equal to (N = 1) that achieved using a subject-specific retrospective 3D translation motion model. Non-model-based correction of respiratory motion using 3D spiral fat-selective imaging is feasible, and in this small group of volunteers produced better-quality images than a subject-specific retrospective 3D translation motion model. (c) 2007 Wiley-Liss, Inc.
Neuronize: a tool for building realistic neuronal cell morphologies
Brito, Juan P.; Mata, Susana; Bayona, Sofia; Pastor, Luis; DeFelipe, Javier; Benavides-Piccione, Ruth
2013-01-01
This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments. PMID:23761740
Neuronize: a tool for building realistic neuronal cell morphologies.
Brito, Juan P; Mata, Susana; Bayona, Sofia; Pastor, Luis; Defelipe, Javier; Benavides-Piccione, Ruth
2013-01-01
This study presents a tool, Neuronize, for building realistic three-dimensional models of neuronal cells from the morphological information extracted through computer-aided tracing applications. Neuronize consists of a set of methods designed to build 3D neural meshes that approximate the cell membrane at different resolution levels, allowing a balance to be reached between the complexity and the quality of the final model. The main contribution of the present study is the proposal of a novel approach to build a realistic and accurate 3D shape of the soma from the incomplete information stored in the digitally traced neuron, which usually consists of a 2D cell body contour. This technique is based on the deformation of an initial shape driven by the position and thickness of the first order dendrites. The addition of a set of spines along the dendrites completes the model, building a final 3D neuronal cell suitable for its visualization in a wide range of 3D environments.
Chapman, Tara; Semal, Patrick; Moiseev, Fedor; Louryan, Stéphane; Rooze, Marcel; Van Sint Jan, Serge
2013-01-01
LhpFusionBox is a program originally designed for biomechanical and clinical studies relating to the musculoskeletal system of anatomically modern humans (AMH). The program has recently been adapted for paleontological purposes and used to reconstruct and biomechanically analyse a fossil hominid. There is no complete Neandertal skeleton in the fossil record. The aim of the study was to reconstruct a complete three-dimensional (3D) model of a Neandertal using the relatively complete Spy II Neandertal and to conduct biomechanical feasibility studies on the knee and hamstring moment arms of the skeleton. Different Neandertal specimens were scaled to the size of Spy II to replace incomplete or missing bones. Biomechanical feasibility studies performed on the knee seem to show that Neandertal and AMHh gait is similar and Neandertals were shown to have larger moment arms in the hamstring muscles, which would have given them a mechanical advantage. The complete Neandertal was printed in 3D and used as the base to create the artistic model of "Spyrou" housed at l'Espace de l'Homme de Spy (EHoS) museum. © 2013 médecine/sciences – Inserm.
Development of a 3D FEM model for concrete tie and fastening systems.
DOT National Transportation Integrated Search
2015-01-31
This project conducted detailed finite element (FE) modeling of the concrete crosstie and fastening system to better understand the mechanisms through which loads transfer within various track components in the lateral direction. This was completed b...
3D Printout Models vs. 3D-Rendered Images: Which Is Better for Preoperative Planning?
Zheng, Yi-xiong; Yu, Di-fei; Zhao, Jian-gang; Wu, Yu-lian; Zheng, Bin
2016-01-01
Correct interpretation of a patient's anatomy and changes that occurs secondary to a disease process are crucial in the preoperative process to ensure optimal surgical treatment. In this study, we presented 3 different pancreatic cancer cases to surgical residents in the form of 3D-rendered images and 3D-printed models to investigate which modality resulted in the most appropriate preoperative plan. We selected 3 cases that would require significantly different preoperative plans based on key features identifiable in the preoperative computed tomography imaging. 3D volume rendering and 3D printing were performed respectively to create 2 different training ways. A total of 30, year 1 surgical residents were randomly divided into 2 groups. Besides traditional 2D computed tomography images, residents in group A (n = 15) reviewed 3D computer models, whereas in group B, residents (n = 15) reviewed 3D-printed models. Both groups subsequently completed an examination, designed in-house, to assess the appropriateness of their preoperative plan and provide a numerical score of the quality of the surgical plan. Residents in group B showed significantly higher quality of the surgical plan scores compared with residents in group A (76.4 ± 10.5 vs. 66.5 ± 11.2, p = 0.018). This difference was due in large part to a significant difference in knowledge of key surgical steps (22.1 ± 2.9 vs. 17.4 ± 4.2, p = 0.004) between each group. All participants reported a high level of satisfaction with the exercise. Results from this study support our hypothesis that 3D-printed models improve the quality of surgical trainee's preoperative plans. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Ganry, L; Quilichini, J; Bandini, C M; Leyder, P; Hersant, B; Meningaud, J P
2017-08-01
Very few surgical teams currently use totally independent and free solutions to perform three-dimensional (3D) surgical modelling for osseous free flaps in reconstructive surgery. This study assessed the precision and technical reproducibility of a 3D surgical modelling protocol using free open-source software in mandibular reconstruction with fibula free flaps and surgical guides. Precision was assessed through comparisons of the 3D surgical guide to the sterilized 3D-printed guide, determining accuracy to the millimetre level. Reproducibility was assessed in three surgical cases by volumetric comparison to the millimetre level. For the 3D surgical modelling, a difference of less than 0.1mm was observed. Almost no deformations (<0.2mm) were observed post-autoclave sterilization of the 3D-printed surgical guides. In the three surgical cases, the average precision of fibula free flap modelling was between 0.1mm and 0.4mm, and the average precision of the complete reconstructed mandible was less than 1mm. The open-source software protocol demonstrated high accuracy without complications. However, the precision of the surgical case depends on the surgeon's 3D surgical modelling. Therefore, surgeons need training on the use of this protocol before applying it to surgical cases; this constitutes a limitation. Further studies should address the transfer of expertise. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
3D Printed Models of Cleft Palate Pathology for Surgical Education
Lioufas, Peter A.; Quayle, Michelle R.; Leong, James C.
2016-01-01
Objective: To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. Background: The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education. Methods: Magnetic resonance imaging data of 2 children (8 and 14 months) were segmented, colored, and anonymized, and stereolothographic files were prepared for 3D printing on either multicolor plastic or powder 3D printers and multimaterial 3D printers. Results: Two models were deemed of sufficient quality and anatomical accuracy to print unamended. One data set was further manipulated digitally to artificially extend the length of the cleft. Thus, 3 models were printed: 1 incomplete soft-palate deformity, 1 incomplete anterior palate deformity, and 1 complete cleft palate. All had cleft lip deformity. The single-material 3D prints are of sufficient quality to accurately identify the nature and extent of the deformities. Multimaterial prints were subsequently created, which could be valuable in surgical training. Conclusion: Improvements in the quality and resolution of radiographic imaging combined with the advent of multicolor multiproperty printer technology will make it feasible in the near future to print 3D replicas in materials that mimic the mechanical properties and color of live human tissue making them potentially suitable for surgical training. PMID:27757345
NASA Astrophysics Data System (ADS)
Sharif, Harlina Md; Hazumi, Hazman; Hafizuddin Meli, Rafiq
2018-01-01
3D imaging technologies have undergone massive revolution in recent years. Despite this rapid development, documentation of 3D cultural assets in Malaysia is still very much reliant upon conventional techniques such as measured drawings and manual photogrammetry. There is very little progress towards exploring new methods or advanced technologies to convert 3D cultural assets into 3D visual representation and visualization models that are easily accessible for information sharing. In recent years, however, the advent of computer vision (CV) algorithms make it possible to reconstruct 3D geometry of objects by using image sequences from digital cameras, which are then processed by web services and freeware applications. This paper presents a completed stage of an exploratory study that investigates the potentials of using CV automated image-based open-source software and web services to reconstruct and replicate cultural assets. By selecting an intricate wooden boat, Petalaindera, this study attempts to evaluate the efficiency of CV systems and compare it with the application of 3D laser scanning, which is known for its accuracy, efficiency and high cost. The final aim of this study is to compare the visual accuracy of 3D models generated by CV system, and 3D models produced by 3D scanning and manual photogrammetry for an intricate subject such as the Petalaindera. The final objective is to explore cost-effective methods that could provide fundamental guidelines on the best practice approach for digital heritage in Malaysia.
3D-Printed specimens as a valuable tool in anatomy education: A pilot study.
Garas, Monique; Vaccarezza, Mauro; Newland, George; McVay-Doornbusch, Kylie; Hasani, Jamila
2018-06-06
Three-dimensional (3D) printing is a modern technique of creating 3D-printed models that allows reproduction of human structures from MRI and CT scans via fusion of multiple layers of resin materials. To assess feasibility of this innovative resource as anatomy educational tool, we conducted a preliminary study on Curtin University undergraduate students to investigate the use of 3D models for anatomy learning as a main goal, to assess the effectiveness of different specimen types during the sessions and personally preferred anatomy learning tools among students as secondary aim. The study consisted of a pre-test, exposure to test (anatomical test) and post-test survey. During pre-test, all participants (both without prior experience and experienced groups) were given a brief introduction on laboratory safety and study procedure thus participants were exposed to 3D, wet and plastinated specimens of the heart, shoulder and thigh to identify the pinned structures (anatomical test). Then, participants were provided a post-test survey containing five questions. In total, 23 participants completed the anatomical test and post-test survey. A larger number of participants (85%) achieved right answers for 3D models compared to wet and plastinated materials, 74% of population selected 3D models as the most usable tool for identification of pinned structures and 45% chose 3D models as their preferred method of anatomy learning. This preliminary small-size study affirms the feasibility of 3D-printed models as a valuable asset in anatomy learning and shows their capability to be used adjacent to cadaveric materials and other widely used tools in anatomy education. Copyright © 2018 Elsevier GmbH. All rights reserved.
Thermal-depth matching in dynamic scene based on affine projection and feature registration
NASA Astrophysics Data System (ADS)
Wang, Hongyu; Jia, Tong; Wu, Chengdong; Li, Yongqiang
2018-03-01
This paper aims to study the construction of 3D temperature distribution reconstruction system based on depth and thermal infrared information. Initially, a traditional calibration method cannot be directly used, because the depth and thermal infrared camera is not sensitive to the color calibration board. Therefore, this paper aims to design a depth and thermal infrared camera calibration board to complete the calibration of the depth and thermal infrared camera. Meanwhile a local feature descriptors in thermal and depth images is proposed. The belief propagation matching algorithm is also investigated based on the space affine transformation matching and local feature matching. The 3D temperature distribution model is built based on the matching of 3D point cloud and 2D thermal infrared information. Experimental results show that the method can accurately construct the 3D temperature distribution model, and has strong robustness.
Prevention of Bronchial Hyperplasia by EGFR Pathway Inhibitors in an Organotypic Culture Model
Lee, Jangsoon; Ryu, Seung-Hee; Kang, Shin Myung; Chung, Wen-Cheng; Gold, Kathryn Ann; Kim, Edward S.; Hittelman, Walter N.; Hong, Waun Ki; Koo, Ja Seok
2011-01-01
Lung cancer is the leading cause of cancer-related mortality worldwide. Early detection or prevention strategies are urgently needed to increase survival. Hyperplasia is the first morphologic change that occurs in the bronchial epithelium during lung cancer development, followed by squamous metaplasia, dysplasia, carcinoma in situ, and invasive tumor. The current study was designed to determine the molecular mechanisms that control bronchial epithelium hyperplasia. Using primary normal human tracheobronchial epithelial (NHTBE) cells cultured using the 3-dimensional organotypic method, we found that the epidermal growth factor receptor (EGFR) ligands EGF, transforming growth factor-alpha, and amphiregulin induced hyperplasia, as determined by cell proliferation and multilayered epithelium formation. We also found that EGF induced increased cyclin D1 expression, which plays a critical role in bronchial hyperplasia; this overexpression was mediated by activating the mitogen-activated protein kinase pathway but not the phosphoinositide 3-kinase/Akt signaling pathway. Erlotinib, an EGFR tyrosine kinase inhibitor, and U0126, a MEK inhibitor, completely inhibited EGF-induced hyperplasia. Furthermore, a promoter analysis revealed that the activator protein-1 transcription factor regulates EGF-induced cyclin D1 overexpression. Activator protein-1 depletion using siRNA targeting its c-Jun component completely abrogated EGF-induced cyclin D1 expression. In conclusion, we demonstrated that bronchial hyperplasia can be modeled in vitro using primary NHTBE cells maintained in a 3-dimensional (3-D) organotypic culture. EGFR and MEK inhibitors completely blocked EGF-induced bronchial hyperplasia, suggesting that they have a chemopreventive role. PMID:21505178
3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.
Wong, Julielynn Y; Pfahnl, Andreas C
2016-09-01
The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.
The technique for 3D printing patient-specific models for auricular reconstruction.
Flores, Roberto L; Liss, Hannah; Raffaelli, Samuel; Humayun, Aiza; Khouri, Kimberly S; Coelho, Paulo G; Witek, Lukasz
2017-06-01
Currently, surgeons approach autogenous microtia repair by creating a two-dimensional (2D) tracing of the unaffected ear to approximate a three-dimensional (3D) construct, a difficult process. To address these shortcomings, this study introduces the fabrication of patient-specific, sterilizable 3D printed auricular model for autogenous auricular reconstruction. A high-resolution 3D digital photograph was captured of the patient's unaffected ear and surrounding anatomic structures. The photographs were exported and uploaded into Amira, for transformation into a digital (.stl) model, which was imported into Blender, an open source software platform for digital modification of data. The unaffected auricle as digitally isolated and inverted to render a model for the contralateral side. The depths of the scapha, triangular fossa, and cymba were deepened to accentuate their contours. Extra relief was added to the helical root to further distinguish this structure. The ear was then digitally deconstructed and separated into its individual auricular components for reconstruction. The completed ear and its individual components were 3D printed using polylactic acid filament and sterilized following manufacturer specifications. The sterilized models were brought to the operating room to be utilized by the surgeon. The models allowed for more accurate anatomic measurements compared to 2D tracings, which reduced the degree of estimation required by surgeons. Approximately 20 g of the PLA filament were utilized for the construction of these models, yielding a total material cost of approximately $1. Using the methodology detailed in this report, as well as departmentally available resources (3D digital photography and 3D printing), a sterilizable, patient-specific, and inexpensive 3D auricular model was fabricated to be used intraoperatively. This technique of printing customized-to-patient models for surgeons to use as 'guides' shows great promise. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Parallel 3D-TLM algorithm for simulation of the Earth-ionosphere cavity
NASA Astrophysics Data System (ADS)
Toledo-Redondo, Sergio; Salinas, Alfonso; Morente-Molinera, Juan Antonio; Méndez, Antonio; Fornieles, Jesús; Portí, Jorge; Morente, Juan Antonio
2013-03-01
A parallel 3D algorithm for solving time-domain electromagnetic problems with arbitrary geometries is presented. The technique employed is the Transmission Line Modeling (TLM) method implemented in Shared Memory (SM) environments. The benchmarking performed reveals that the maximum speedup depends on the memory size of the problem as well as multiple hardware factors, like the disposition of CPUs, cache, or memory. A maximum speedup of 15 has been measured for the largest problem. In certain circumstances of low memory requirements, superlinear speedup is achieved using our algorithm. The model is employed to model the Earth-ionosphere cavity, thus enabling a study of the natural electromagnetic phenomena that occur in it. The algorithm allows complete 3D simulations of the cavity with a resolution of 10 km, within a reasonable timescale.
NASA Astrophysics Data System (ADS)
Rodríguez-Ruiz, Alejandro; Agasthya, Greeshma A.; Sechopoulos, Ioannis
2017-09-01
To characterize and develop a patient-based 3D model of the compressed breast undergoing mammography and breast tomosynthesis. During this IRB-approved, HIPAA-compliant study, 50 women were recruited to undergo 3D breast surface imaging with structured light (SL) during breast compression, along with simultaneous acquisition of a tomosynthesis image. A pair of SL systems were used to acquire 3D surface images by projecting 24 different patterns onto the compressed breast and capturing their reflection off the breast surface in approximately 12-16 s. The 3D surface was characterized and modeled via principal component analysis. The resulting surface model was combined with a previously developed 2D model of projected compressed breast shapes to generate a full 3D model. Data from ten patients were discarded due to technical problems during image acquisition. The maximum breast thickness (found at the chest-wall) had an average value of 56 mm, and decreased 13% towards the nipple (breast tilt angle of 5.2°). The portion of the breast not in contact with the compression paddle or the support table extended on average 17 mm, 18% of the chest-wall to nipple distance. The outermost point along the breast surface lies below the midline of the total thickness. A complete 3D model of compressed breast shapes was created and implemented as a software application available for download, capable of generating new random realistic 3D shapes of breasts undergoing compression. Accurate characterization and modeling of the breast curvature and shape was achieved and will be used for various image processing and clinical tasks.
Yeo, Caitlin T; MacDonald, Andrew; Ungi, Tamas; Lasso, Andras; Jalink, Diederick; Zevin, Boris; Fichtinger, Gabor; Nanji, Sulaiman
A fundamental aspect of surgical planning in liver resections is the identification of key vessel tributaries to preserve healthy liver tissue while fully resecting the tumor(s). Current surgical planning relies primarily on the surgeon's ability to mentally reconstruct 2D computed tomography/magnetic resonance (CT/MR) images into 3D and plan resection margins. This creates significant cognitive load, especially for trainees, as it relies on image interpretation, anatomical and surgical knowledge, experience, and spatial sense. The purpose of this study is to determine if 3D reconstruction of preoperative CT/MR images will assist resident-level trainees in making appropriate operative plans for liver resection surgery. Ten preoperative patient CT/MR images were selected. Images were case-matched, 5 to 2D planning and 5 to 3D planning. Images from the 3D group were segmented to create interactive digital models that the resident can manipulate to view the tumor(s) in relation to landmark hepatic structures. Residents were asked to evaluate the images and devise a surgical resection plan for each image. The resident alternated between 2D and 3D planning, in a randomly generated order. The primary outcome was the accuracy of resident's plan compared to expert opinion. Time to devise each surgical plan was the secondary outcome. Residents completed a prestudy and poststudy questionnaire regarding their experience with liver surgery and the 3D planning software. Senior level surgical residents from the Queen's University General Surgery residency program were recruited to participate. A total of 14 residents participated in the study. The median correct response rate was 2 of 5 (40%; range: 0-4) for the 2D group, and 3 of 5 (60%; range: 1-5) for the 3D group (p < 0.01). The average time to complete each plan was 156 ± 107 seconds for the 2D group, and 84 ± 73 seconds for the 3D group (p < 0.01). A total 13 of 14 residents found the 3D model easier to use than the 2D. Most residents noticed a difference between the 2 modalities and found that the 3D model improved their confidence with the surgical plan proposed. The results of this study show that 3D reconstruction for liver surgery planning increases accuracy of resident surgical planning and decreases amount of time required. 3D reconstruction would be a useful model for improving trainee understanding of liver anatomy and surgical resection, and would serve as an adjunct to current 2D planning methods. This has the potential to be developed into a module for teaching liver surgery in a competency-based medical curriculum. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Design and modelling of a 3D compliant leg for Bioloid
NASA Astrophysics Data System (ADS)
Couto, Mafalda; Santos, Cristina; Machado, José
2012-09-01
In the growing field of rehabilitation robotics, the modelling of a real robot is a complex and passionate challenge. On the crossing point of mechanics, physics and computer-science, the development of a complete 3D model involves the knowledge of the different physic properties, for an accurate simulation. In this paper, it is proposed the design of an efficient three-dimensional model of the quadruped Bioloid robot setting segmented pantographic legs, in order to actively retract the quadruped legs during locomotion and minimizing large forces due to shocks, such that the robot is able to safely and dynamically interact with the user or the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyung-Doo; Jeong, Jae-Jun; Lee, Seung-Wook
The Nuclear Steam Supply System (NSSS) thermal-hydraulic model adopted in the Korea Nuclear Plant Education Center (KNPEC)-2 simulator was provided in the early 1980s. The reference plant for KNPEC-2 is the Yong Gwang Nuclear Unit 1, which is a Westinghouse-type 3-loop, 950 MW(electric) pressurized water reactor. Because of the limited computational capability at that time, it uses overly simplified physical models and assumptions for a real-time simulation of NSSS thermal-hydraulic transients. This may entail inaccurate results and thus, the possibility of so-called ''negative training,'' especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developedmore » a realistic NSSS thermal-hydraulic program (named ARTS code) based on the best-estimate code RETRAN-3D. The systematic assessment of ARTS has been conducted by both a stand-alone test and an integrated test in the simulator environment. The non-integrated stand-alone test (NIST) results were reasonable in terms of accuracy, real-time simulation capability, and robustness. After successful completion of the NIST, ARTS was integrated with a 3-D reactor kinetics model and other system models. The site acceptance test (SAT) has been completed successively and confirmed to comply with the ANSI/ANS-3.5-1998 simulator software performance criteria. This paper presents our efforts for the ARTS development and some test results of the NIST and SAT.« less
A microscale three-dimensional urban energy balance model for studying surface temperatures
NASA Astrophysics Data System (ADS)
Krayenhoff, E. Scott; Voogt, James A.
2007-06-01
A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).
Computer Modeling of Complete IC Fabrication Process.
1984-01-01
Venson Shaw 10. C. S. Chang 11. Elizabeth Batson 12. Richard Pinto 13. Jacques Beauduoin SPEAKERS: 1. Tayo Akinwande 2. Dimitri Antoniadis 3. Walter...Numerical Model of Polysilicon Emitter Contacts in Bipolar Transistors,’ To be published IEEE Trans. Electron Devices. [34] M. R. Pinto , R. W. Dutton...Received PhD, Spring 1082) Balaji Swaminathan (Received PhD, Spring 1983) Len Mei Research Associate Michael Kump Research Assistant Mark Pinto Research
Static Aeroelastic Analysis with an Inviscid Cartesian Method
NASA Technical Reports Server (NTRS)
Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian; Smith, Stephen C.
2014-01-01
An embedded-boundary Cartesian-mesh flow solver is coupled with a three degree-offreedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves the complete system of aero-structural equations using a modular, loosely-coupled strategy which allows the lower-fidelity structural model to deform the highfidelity CFD model. The approach uses an open-source, 3-D discrete-geometry engine to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. This extended abstract includes a brief description of the architecture, along with some preliminary validation of underlying assumptions and early results on a generic 3D transport model. The final paper will present more concrete cases and validation of the approach. Preliminary results demonstrate convergence of the complete aero-structural system and investigate the accuracy of the approximations used in the formulation of the structural model.
Deep water tsunami simulation at global scale using an elastoacoustic approach
NASA Astrophysics Data System (ADS)
Salazar Monroy, E. F.; Ramirez-Guzman, L.; Bielak, J.; Sanchez-Sesma, F. J.
2017-12-01
In this work, we present the results for the first stage of a tsunami global simulation project using an elastoacoustic approach. The solid-fluid interaction, which is only valid on a global scale and far distances from the coast, is modelled using a finite element scheme for a 2D geometry. Comparing analytic and numerical solutions, we observe a good fit for a homogeneous domain - with an extension of 20 km - using 15 points per wavelength. Subsequently, we performed 2D realizations taking a section from a global 3D model and projecting the Tohoku-Oki source obtained by the USGS. The 3D Global model uses the ETOPO1 and the Preliminary Reference Earth Model (Dziewonski and Anderson, 1981). We analysed 3 cross sections, defined using DART buoys as a reference for each section (i.e., initial and final profile point). Surface water elevation obtained with this coupling strategy is constrained at low frequencies (0.2 Hz). We expect that this coupling strategy could approximate the model to high frequencies and realistic scenarios considering other geometries (i.e., 3D) and a complete domain (i.e., surface and deep).
3D reconstruction of SEM images by use of optical photogrammetry software.
Eulitz, Mona; Reiss, Gebhard
2015-08-01
Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching. Copyright © 2015 Elsevier Inc. All rights reserved.
Yilmaz, Burak; Alshahrani, Faris A; Kale, Ediz; Johnston, William M
2018-02-06
Veneering with porcelain may adversely affect the marginal fit of long-span computer-aided design and computer-aided manufacturing (CAD-CAM) implant-supported fixed prostheses. Moreover, data regarding the precision of fit of CAD-CAM-fabricated implant-supported complete zirconia fixed dental prostheses (FDPs) before and after porcelain layering are limited. The purpose of this in vitro study was to evaluate the effect of porcelain layering on the marginal fit of CAD-CAM-fabricated complete-arch implant-supported, screw-retained FDPs with presintered zirconia frameworks compared with titanium. An autopolymerizing acrylic resin-fixed complete denture framework prototype was fabricated on an edentulous typodont master model (all-on-4 concept; Nobel Biocare) with 2 straight in the anterior and 2 distally tilted internal-hexagon dental implants in the posterior with multiunit abutments bilaterally in canine and first molar locations. A 3-dimensional (3D) laser scanner (S600 ARTI; Zirkonzahn) was used to digitize the prototype and the master model by using scan bodies to generate a virtual 3D CAD framework. Five presintered zirconia (ICE Zirkon Translucent - 95H16; Zirkonzahn) and 5 titanium (Titan 5 - 95H14; Zirkonzahn) frameworks were fabricated using the CAM milling unit (M1 Wet Heavy Metal Milling Unit; Zirkonzahn).The 1-screw test was applied by fixing the frameworks at the location of the maxillary left first molar abutment, and an industrial computed tomography (CT) scanner (XT H 225 - Basic Configuration; Nikon) was used to scan the framework-model complex to evaluate the passive fit of the frameworks on the master model. The scanned data were transported in standard tessellation language (STL) from Volume Graphics analysis software to PolyWorks analysis software by using the maximum-fit algorithm to fit scanned planes in order to mimic the mating surfaces in the best way. 3D virtual assessment of the marginal fit was performed at the abutment-framework interface at the maxillary right canine (gap 3) and right first molar (gap 4) abutments without prosthetic screws. The facial or buccal aspects of the teeth on frameworks were layered with corresponding porcelain (Initial Dental Ceramic System; GC) and CT-scanned again using the same protocol. Marginal fit measurements were made for 4 groups: titanium (Ti) (control), porcelain-layered titanium (Ti-P) (control), zirconia (Zr), and porcelain-layered zirconia (Zr-P). 3D discrepancy mean values were computed and calculated, and the results were analyzed with a repeated measures 3-way ANOVA using the maximum likelihood estimation method and Bonferroni adjustments for selected pairwise comparison t-tests (α=.05). The 3D fit was measured at gap 3 and gap 4. Statistically significant differences in mean 3D discrepancies were observed between Zr-P (175 μm) and Zr (89 μm) and between Zr-P and Ti-P (71 μm) (P<.001). Porcelain layering had a significant effect on the marginal fit of CAD-CAM-fabricated complete-arch implant-supported, screw-retained FDPs with partially sintered zirconia frameworks. 3D marginal discrepancy mean values for all groups were within clinically acceptable limits (<120 μm), except for the layered zirconia framework. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Minimal camera networks for 3D image based modeling of cultural heritage objects.
Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma
2014-03-25
3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.
Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects
Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma
2014-01-01
3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm. PMID:24670718
Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui
2013-01-01
Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes, and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographical image of food contained in a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc.) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image. PMID:24223474
NASA Astrophysics Data System (ADS)
Chen, Hsin-Chen; Jia, Wenyan; Yue, Yaofeng; Li, Zhaoxin; Sun, Yung-Nien; Fernstrom, John D.; Sun, Mingui
2013-10-01
Dietary assessment is important in health maintenance and intervention in many chronic conditions, such as obesity, diabetes and cardiovascular disease. However, there is currently a lack of convenient methods for measuring the volume of food (portion size) in real-life settings. We present a computational method to estimate food volume from a single photographic image of food contained on a typical dining plate. First, we calculate the food location with respect to a 3D camera coordinate system using the plate as a scale reference. Then, the food is segmented automatically from the background in the image. Adaptive thresholding and snake modeling are implemented based on several image features, such as color contrast, regional color homogeneity and curve bending degree. Next, a 3D model representing the general shape of the food (e.g., a cylinder, a sphere, etc) is selected from a pre-constructed shape model library. The position, orientation and scale of the selected shape model are determined by registering the projected 3D model and the food contour in the image, where the properties of the reference are used as constraints. Experimental results using various realistically shaped foods with known volumes demonstrated satisfactory performance of our image-based food volume measurement method even if the 3D geometric surface of the food is not completely represented in the input image.
NASA Astrophysics Data System (ADS)
Brown, R.; Pasternack, G. B.
2011-12-01
The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D treatments.
TOMS and SBUV Data: Comparison to 3D Chemical-Transport Model Results
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.; Douglass, Anne R.; Steenrod, Steve; Frith, Stacey
2003-01-01
We have updated our merged ozone data (MOD) set using the TOMS data from the new version 8 algorithm. We then analyzed these data for contributions from solar cycle, volcanoes, QBO, and halogens using a standard statistical time series model. We have recently completed a hindcast run of our 3D chemical-transport model for the same years. This model uses off-line winds from the finite-volume GCM, a full stratospheric photochemistry package, and time-varying forcing due to halogens, solar uv, and volcanic aerosols. We will report on a parallel analysis of these model results using the same statistical time series technique as used for the MOD data.
Detection and 3d Modelling of Vehicles from Terrestrial Stereo Image Pairs
NASA Astrophysics Data System (ADS)
Coenen, M.; Rottensteiner, F.; Heipke, C.
2017-05-01
The detection and pose estimation of vehicles plays an important role for automated and autonomous moving objects e.g. in autonomous driving environments. We tackle that problem on the basis of street level stereo images, obtained from a moving vehicle. Processing every stereo pair individually, our approach is divided into two subsequent steps: the vehicle detection and the modelling step. For the detection, we make use of the 3D stereo information and incorporate geometric assumptions on vehicle inherent properties in a firstly applied generic 3D object detection. By combining our generic detection approach with a state of the art vehicle detector, we are able to achieve satisfying detection results with values for completeness and correctness up to more than 86%. By fitting an object specific vehicle model into the vehicle detections, we are able to reconstruct the vehicles in 3D and to derive pose estimations as well as shape parameters for each vehicle. To deal with the intra-class variability of vehicles, we make use of a deformable 3D active shape model learned from 3D CAD vehicle data in our model fitting approach. While we achieve encouraging values up to 67.2% for correct position estimations, we are facing larger problems concerning the orientation estimation. The evaluation is done by using the object detection and orientation estimation benchmark of the KITTI dataset (Geiger et al., 2012).
NASA Astrophysics Data System (ADS)
Antari, A. El; Zahir, H.; Hasnaoui, A.; Hachem, N.; Alrajhi, A.; Madani, M.; Bouziani, M. El
2018-04-01
Using the renormalization group approximation, specifically the Migdal-Kadanoff technique, we investigate the Blume-Capel model with mixed spins S = 1/2 and S = 5/2 on d-dimensional hypercubic lattice. The flow in the parameter space of the Hamiltonian and the thermodynamic functions are determined. The phase diagram of this model is plotted in the (anisotropy, temperature) plane for both cases d = 2 and d = 3 in which the system exhibits the first and second order phase transitions and critical end-points. The associated fixed points are drawn up in a table, and by linearizing the transformation at the vicinity of these points, we determine the critical exponents for d = 2 and d = 3. We have also presented a variation of the free energy derivative at the vicinity of the first and second order transitions. Finally, this work is completed by a discussion and comparison with other approximation.
NASA Astrophysics Data System (ADS)
Crosta, G.; Imposimato, S.; Roddeman, D.; Frattini, P.
2012-04-01
Fast moving landslides can be originated along slopes in mountainous terrains with natural and artificial lakes, or fjords at the slope foot. This landslides can reach extremely high speed and the impact with the immobile reservoir water can be influenced by the local topography and the landslide mass profile. The impact can generate large impulse waves and landslide tsunami. Initiation, propagation and runup are the three phases that need to be considered. The landslide evolution and the consequent wave can be controlled by the initial mass position (subaerial, partially or completely submerged), the landslide speed, the type of material, the subaerial and subaqueous slope geometry, the landslide depth and length at the impact, and the water depth. Extreme events have been caused by subaerial landslides: the 1963 Vajont rockslide (Italy), the 1958 Lituya Bay event (Alaska), the Tafjord and the Loen multiple events event (Norway), also from volcanic collapses (Hawaii and Canary islands). Various researchers completed a systematic experimental work on 2D and 3D wave generation and propagation (Kamphuis and Bowering, 1970; Huber, 1980; Müller, 1995; Huber and Hager, 1997; Fritz, 2002; Zweifel, 2004; Panizzo et al., 2005; Heller, 2007; Heller and Kinnear, 2010; Sælevik et al., 2009), using both rigid blocks and deformable granular" masses. Model data and results have been used to calibrate and validate numerical modelling tools (Harbitz, 1992; Jiang and LeBlond, 1993; Grilli et al., 2002; Grilli and Watts, 2005; Lynett and Liu, 2005; Tinti et al., 2006; Abadie et al., 2010) generally considering simplified rheologies (e.g. viscous rheologies) for subaerial subaqueous spreading. We use a FEM code (Roddeman, 2011; Crosta et al., 2006, 2009, 2010, 2011) adopting an Eulerian-Lagrangian approach to give accurate results for large deformations. We model both 2D and fully 3D events considering different settings. The material is considered as a fully deformable elasto-plastic continuum and water as nearly incompressible. In particular we modeled the Vajont rockslide both in 2D and 3D considering the landslide water interaction. More simulations have been performed to validate the model against 2D and 3D tank experiments considering different slope geometries and water depth.
Brancato, Virginia; Gioiella, Filomena; Imparato, Giorgia; Guarnieri, Daniela; Urciuolo, Francesco; Netti, Paolo A
2018-06-01
The use of 3D cancer models will have both ethical and economic impact in drug screening and development, to promote the reduction of the animals employed in preclinical studies. Nevertheless, to be effective, such cancer surrogates must preserve the physiological relevance of the in vivo models in order to provide realistic information on drugs' efficacy. To figure out the role of the architecture and composition of 3D cancer models on their tumor-mimicking capability, here we studied the efficacy of doxorubicin (DOX), a well-known anticancer molecule in two different 3D cancer models: our 3D breast cancer microtissue (3D-μTP) versus the golden standard represented by spheroid model (sph). Both models were obtained by using cancer associated fibroblast (CAF) and breast cancer cells (MCF-7) as cellular component. Unlike spheroid model, 3D-μTP was engineered in order to induce the production of endogenous extracellular matrix by CAF. 3D-μTP have been compared to spheroid in mono- (MCF-7 alone) and co-culture (MCF-7/CAF), after the treatment with DOX in order to study cytotoxicity effect, diffusional transport and expression of proteins related to cancer progression. Compared to the spheroid model, 3D-μTP showed higher diffusion coefficient of DOX and lower cell viability. Also, the expression of some tumoral biomarkers related to cell junctions were different in the two models. Cancer biology has made progress in unraveling the mechanism of cancer progression, anyway the most of the results are still obtained by 2D cell cultures or animal models, that do not faithfully copycat the tumor microenvironment. The lack of correlation between preclinical models and in vivo organisms negatively influences the clinical efficacy of chemotherapeutic drugs. Consequently, even if a huge amount of new drugs has been developed in the last decades, still people are dying because of cancer. Pharmaceutical companies are interested in 3D tumor model as valid alternative in drug screening in preclinical studies. However, a 3D tumor model that completely mimics tumor heterogeneity is still far to achieve. In our work we compare 3D human breast cancer microtissues and spheroids in terms of response to doxorubicin and drug diffusion. We believe that our results are interesting because they highlight the potential role of the proposed tumor model in the attempts to improve efficacy tests. Copyright © 2018. Published by Elsevier Ltd.
Lee, Jiyeon; Kim, Hye-Jin; Roh, Jooho; Seo, Youngsil; Kim, Minjae; Jun, Hye-Ryeong; Pham, Chuong D.; Kwon, Myung-Hee
2013-01-01
Many murine monoclonal anti-DNA antibodies (Abs) derived from mice models for systemic lupus erythematosus have additional cell-penetration and/or nucleic acid-hydrolysis properties. Here, we examined the influence of deactivating each complementarity-determining region (CDR) within a multifunctional anti-nucleic acid antibody (Ab) that possesses these activities, the catalytic 3D8 single chain variable fragment (scFv). CDR-deactivated 3D8 scFv variants were generated by replacing all of the amino acids within each CDR with Gly/Ser residues. The structure of 3D8 scFv accommodated single complete CDR deactivations. Different functional activities of 3D8 scFv were affected differently depending on which CDR was deactivated. The only exception was CDR1, located within the light chain (LCDR1); deactivation of LCDR1 abolished all of the functional activities of 3D8 scFv. A hybrid Ab, HW6/3D8L1, in which the LCDR1 from an unrelated Ab (HW6) was replaced with the LCDR1 from 3D8, acquired all activities associated with the 3D8 scFv. These results suggest that the activity of a multifunctional 3D8 scFv Ab can be modulated by single complete CDR deactivation and that the LCDR1 plays a crucial role in maintaining Ab properties. This study presents a new approach for determining the role of individual CDRs in multifunctional Abs with important implications for the future of Ab engineering. PMID:24155236
Craft, Daniel F; Howell, Rebecca M
2017-09-01
Patient-specific 3D-printed phantoms have many potential applications, both research and clinical. However, they have been limited in size and complexity because of the small size of most commercially available 3D printers as well as material warping concerns. We aimed to overcome these limitations by developing and testing an effective 3D printing workflow to fabricate a large patient-specific radiotherapy phantom with minimal warping errors. In doing so, we produced a full-scale phantom of a real postmastectomy patient. We converted a patient's clinical CT DICOM data into a 3D model and then sliced the model into eleven 2.5-cm-thick sagittal slices. The slices were printed with a readily available thermoplastic material representing all body tissues at 100% infill, but with air cavities left open. Each slice was printed on an inexpensive and commercially available 3D printer. Once the printing was completed, the slices were placed together for imaging and verification. The original patient CT scan and the assembled phantom CT scan were registered together to assess overall accuracy. The materials for the completed phantom cost $524. The printed phantom agreed well with both its design and the actual patient. Individual slices differed from their designs by approximately 2%. Registered CT images of the assembled phantom and original patient showed excellent agreement. Three-dimensional printing the patient-specific phantom in sagittal slices allowed a large phantom to be fabricated with high accuracy. Our results demonstrate that our 3D printing workflow can be used to make large, accurate, patient-specific phantoms at 100% infill with minimal material warping error. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Using 3D modeling techniques to enhance teaching of difficult anatomical concepts
Pujol, Sonia; Baldwin, Michael; Nassiri, Joshua; Kikinis, Ron; Shaffer, Kitt
2016-01-01
Rationale and Objectives Anatomy is an essential component of medical education as it is critical for the accurate diagnosis in organs and human systems. The mental representation of the shape and organization of different anatomical structures is a crucial step in the learning process. The purpose of this pilot study is to demonstrate the feasibility and benefits of developing innovative teaching modules for anatomy education of first-year medical students based on 3D reconstructions from actual patient data. Materials and Methods A total of 196 models of anatomical structures from 16 anonymized CT datasets were generated using the 3D Slicer open-source software platform. The models focused on three anatomical areas: the mediastinum, the upper abdomen and the pelvis. Online optional quizzes were offered to first-year medical students to assess their comprehension in the areas of interest. Specific tasks were designed for students to complete using the 3D models. Results Scores of the quizzes confirmed a lack of understanding of 3D spatial relationships of anatomical structures despite standard instruction including dissection. Written task material and qualitative review by students suggested that interaction with 3D models led to a better understanding of the shape and spatial relationships among structures, and helped illustrate anatomical variations from one body to another. Conclusion The study demonstrates the feasibility of one possible approach to the generation of 3D models of the anatomy from actual patient data. The educational materials developed have the potential to supplement the teaching of complex anatomical regions and help demonstrate the anatomic variation among patients. PMID:26897601
Chen, Yuanbo; Li, Hulin; Wu, Dingtao; Bi, Keming; Liu, Chunxiao
2014-12-01
Construction of three-dimensional (3D) model of renal tumor facilitated surgical planning and imaging guidance of manual image fusion in laparoscopic partial nephrectomy (LPN) for intrarenal tumors. Fifteen patients with intrarenal tumors underwent LPN between January and December 2012. Computed tomography-based reconstruction of the 3D models of renal tumors was performed using Mimics 12.1 software. Surgical planning was performed through morphometry and multi-angle visual views of the tumor model. Two-step manual image fusion superimposed 3D model images onto 2D laparoscopic images. The image fusion was verified by intraoperative ultrasound. Imaging-guided laparoscopic hilar clamping and tumor excision was performed. Manual fusion time, patient demographics, surgical details, and postoperative treatment parameters were analyzed. The reconstructed 3D tumor models accurately represented the patient's physiological anatomical landmarks. The surgical planning markers were marked successfully. Manual image fusion was flexible and feasible with fusion time of 6 min (5-7 min). All surgeries were completed laparoscopically. The median tumor excision time was 5.4 min (3.5-10 min), whereas the median warm ischemia time was 25.5 min (16-32 min). Twelve patients (80 %) demonstrated renal cell carcinoma on final pathology, and all surgical margins were negative. No tumor recurrence was detected after a media follow-up of 1 year (3-15 months). The surgical planning and two-step manual image fusion based on 3D model of renal tumor facilitated visible-imaging-guided tumor resection with negative margin in LPN for intrarenal tumor. It is promising and moves us one step closer to imaging-guided surgery.
3D acquisition and modeling for flint artefacts analysis
NASA Astrophysics Data System (ADS)
Loriot, B.; Fougerolle, Y.; Sestier, C.; Seulin, R.
2007-07-01
In this paper, we are interested in accurate acquisition and modeling of flint artefacts. Archaeologists needs accurate geometry measurements to refine their understanding of the flint artefacts manufacturing process. Current techniques require several operations. First, a copy of a flint artefact is reproduced. The copy is then sliced. A picture is taken for each slice. Eventually, geometric information is manually determined from the pictures. Such a technique is very time consuming, and the processing applied to the original, as well as the reproduced object, induces several measurement errors (prototyping approximations, slicing, image acquisition, and measurement). By using 3D scanners, we significantly reduce the number of operations related to data acquisition and completely suppress the prototyping step to obtain an accurate 3D model. The 3D models are segmented into sliced parts that are then analyzed. Each slice is then automatically fitted by mathematical representation. Such a representation offers several interesting properties: geometric features can be characterized (e.g. shapes, curvature, sharp edges, etc), and a shape of the original piece of stone can be extrapolated. The contributions of this paper are an acquisition technique using 3D scanners that strongly reduces human intervention, acquisition time and measurement errors, and the representation of flint artefacts as mathematical 2D sections that enable accurate analysis.
Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy
NASA Astrophysics Data System (ADS)
Naaz, Farah
Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups:
Global embeddings for branes at toric singularities
NASA Astrophysics Data System (ADS)
Balasubramanian, Vijay; Berglund, Per; Braun, Volker; García-Etxebarria, Iñaki
2012-10-01
We describe how local toric singularities, including the Toric Lego construction, can be embedded in compact Calabi-Yau manifolds. We study in detail the addition of D-branes, including non-compact flavor branes as typically used in semi-realistic model building. The global geometry provides constraints on allowable local models. As an illustration of our discussion we focus on D3 and D7-branes on (the partially resolved) ( dP 0)3 singularity, its embedding in a specific Calabi-Yau manifold as a hypersurface in a toric variety, the related type IIB orientifold compactification, as well as the corresponding F-theory uplift. Our techniques generalize naturally to complete intersections, and to a large class of F-theory backgrounds with singularities.
3D digital headform models of Australian cyclists.
Ellena, Thierry; Skals, Sebastian; Subic, Aleksandar; Mustafa, Helmy; Pang, Toh Yen
2017-03-01
Traditional 1D anthropometric data have been the primary source of information used by ergonomists for the dimensioning of head and facial gear. Although these data are simple to use and understand, they only provide univariate measures of key dimensions. 3D anthropometric data, however, describe the complete shape characteristics of the head surface, but are complicated to interpret due to the abundance of information they contain. Consequently, current headform standards based on 1D measurements may not adequately represent the actual head shape variations of the intended user groups. The purpose of this study was to introduce a set of new digital headform models representative of the adult cyclists' community in Australia. Four models were generated based on an Australian 3D anthropometric database of head shapes and a modified hierarchical clustering algorithm. Considerable shape differences were identified between our models and the current headforms from the Australian standard. We conclude that the design of head and facial gear based on current standards might not be favorable for optimal fitting results. Copyright © 2016 Elsevier Ltd. All rights reserved.
The potential of 3D techniques for cultural heritage object documentation
NASA Astrophysics Data System (ADS)
Bitelli, Gabriele; Girelli, Valentina A.; Remondino, Fabio; Vittuari, Luca
2007-01-01
The generation of 3D models of objects has become an important research point in many fields of application like industrial inspection, robotics, navigation and body scanning. Recently the techniques for generating photo-textured 3D digital models have interested also the field of Cultural Heritage, due to their capability to combine high precision metrical information with a qualitative and photographic description of the objects. In fact this kind of product is a fundamental support for documentation, studying and restoration of works of art, until a production of replicas by fast prototyping techniques. Close-range photogrammetric techniques are nowadays more and more frequently used for the generation of precise 3D models. With the advent of automated procedures and fully digital products in the 1990s, it has become easier to use and cheaper, and nowadays a wide range of commercial software is available to calibrate, orient and reconstruct objects from images. This paper presents the complete process for the derivation of a photorealistic 3D model of an important basalt stela (about 70 x 60 x 25 cm) discovered in the archaeological site of Tilmen Höyük, in Turkey, dating back to 2nd mill. BC. We will report the modeling performed using passive and active sensors and the comparison of the achieved results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMechan et al.
2001-08-31
Existing reservoir models are based on 2-D outcrop;3-D aspects are inferred from correlation between wells,and so are inadequately constrained for reservoir simulations. To overcome these deficiencies, we initiated a multidimensional characterization of reservoir analogs in the Cretaceous Ferron Sandstone in Utah.The study was conducted at two sites(Corbula Gulch Coyote Basin); results from both sites are contained in this report. Detailed sedimentary facies maps of cliff faces define the geometry and distribution of potential reservoir flow units, barriers and baffles at the outcrop. High resolution 2-D and 3-D ground penetrating radar(GPR) images extend these reservoir characteristics into 3-D to allow developmentmore » of realistic 3-D reservoir models. Models use geometric information from the mapping and the GPR data, petrophysical data from surface and cliff-face outcrops, lab analyses of outcrop and core samples, and petrography. The measurements are all integrated into a single coordinate system using GPS and laser mapping of the main sedimentologic features and boundaries. The final step is analysis of results of 3-D fluid flow modeling to demonstrate applicability of our reservoir analog studies to well siting and reservoir engineering for maximization of hydrocarbon production. The main goals of this project are achieved. These are the construction of a deterministic 3-D reservoir analog model from a variety of geophysical and geologic measurements at the field sites, integrating these into comprehensive petrophysical models, and flow simulation through these models. This unique approach represents a significant advance in characterization and use of reservoir analogs. To data,the team has presented five papers at GSA and AAPG meetings produced a technical manual, and completed 15 technical papers. The latter are the main content of this final report. In addition,the project became part of 5 PhD dissertations, 3 MS theses,and two senior undergraduate research projects.« less
a Line-Based 3d Roof Model Reconstruction Algorithm: Tin-Merging and Reshaping (tmr)
NASA Astrophysics Data System (ADS)
Rau, J.-Y.
2012-07-01
Three-dimensional building model is one of the major components of a cyber-city and is vital for the realization of 3D GIS applications. In the last decade, the airborne laser scanning (ALS) data is widely used for 3D building model reconstruction and object extraction. Instead, based on 3D roof structural lines, this paper presents a novel algorithm for automatic roof models reconstruction. A line-based roof model reconstruction algorithm, called TIN-Merging and Reshaping (TMR), is proposed. The roof structural line, such as edges, eaves and ridges, can be measured manually from aerial stereo-pair, derived by feature line matching or inferred from ALS data. The originality of the TMR algorithm for 3D roof modelling is to perform geometric analysis and topology reconstruction among those unstructured lines and then reshapes the roof-type using elevation information from the 3D structural lines. For topology reconstruction, a line constrained Delaunay Triangulation algorithm is adopted where the input structural lines act as constraint and their vertex act as input points. Thus, the constructed TINs will not across the structural lines. Later at the stage of Merging, the shared edge between two TINs will be check if the original structural line exists. If not, those two TINs will be merged into a polygon. Iterative checking and merging of any two neighboured TINs/Polygons will result in roof polygons on the horizontal plane. Finally, at the Reshaping stage any two structural lines with fixed height will be used to adjust a planar function for the whole roof polygon. In case ALS data exist, the Reshaping stage can be simplified by adjusting the point cloud within the roof polygon. The proposed scheme reduces the complexity of 3D roof modelling and makes the modelling process easier. Five test datasets provided by ISPRS WG III/4 located at downtown Toronto, Canada and Vaihingen, Germany are used for experiment. The test sites cover high rise buildings and residential area with diverse roof type. For performance evaluation, the adopted roof structural lines are manually measured from the provided stereo-pair. Experimental results indicate a nearly 100% success rate for topology reconstruction was achieved provided that the 3D structural lines can be enclosed as polygons. On the other hand, the success rate at the Reshaping stage is dependent on the complexity of the rooftop structure. Thus, a visual inspection and semi-automatic adjustment of roof-type is suggested and implemented to complete the roof modelling. The results demonstrate that the proposed scheme is robust and reliable with a high degree of completeness, correctness, and quality, even when a group of connected buildings with multiple layers and mixed roof types is processed.
NASA Astrophysics Data System (ADS)
Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G.
2015-02-01
Today the use of spaceborne Very High Resolution (VHR) optical sensors for automatic 3D information extraction is increasing in the scientific and civil communities. The 3D Optical Metrology (3DOM) unit of the Bruno Kessler Foundation (FBK) in Trento (Italy) has collected VHR satellite imagery, as well as aerial and terrestrial data over Trento for creating a complete testfield for investigations on image radiometry, geometric accuracy, automatic digital surface model (DSM) generation, 2D/3D feature extraction, city modelling and data fusion. This paper addresses the radiometric and the geometric aspects of the VHR spaceborne imagery included in the Trento testfield and their potential for 3D information extraction. The dataset consist of two stereo-pairs acquired by WorldView-2 and by GeoEye-1 in panchromatic and multispectral mode, and a triplet from Pléiades-1A. For reference and validation, a DSM from airborne LiDAR acquisition is used. The paper gives details on the project, dataset characteristics and achieved results.
Marginal discrepancy of CAD-CAM complete-arch fixed implant-supported frameworks.
Yilmaz, Burak; Kale, Ediz; Johnston, William M
2018-02-21
Computer-aided design and computer-aided manufacturing (CAD-CAM) high-density polymers (HDPs) have recently been marketed for the fabrication of long-term interim implant-supported fixed prostheses. However, information regarding the precision of fit of CAD-CAM HDP implant-supported complete-arch screw-retained prostheses is scarce. The purpose of this in vitro study was to evaluate the marginal discrepancy of CAD-CAM HDP complete-arch implant-supported screw-retained fixed prosthesis frameworks and compare them with conventional titanium (Ti) and zirconia (Zir) frameworks. A screw-retained complete-arch acrylic resin prototype with multiunit abutments was fabricated on a typodont model with 2 straight implants in the anterior region and 2 implants with a 30-degree distal tilt in the posterior region. A 3-dimensional (3D) laboratory laser scanner was used to digitize the typodont model with scan bodies and the resin prototype to generate a virtual 3D CAD framework. A CAM milling unit was used to fabricate 5 frameworks from HDP, Ti, and Zir blocks. The 1-screw test was performed by tightening the prosthetic screw in the maxillary left first molar abutment (terminal location) when the frameworks were on the typodont model, and the marginal discrepancy of frameworks was evaluated using an industrial computed tomographic scanner and a 3D volumetric software. The 3D marginal discrepancy at the abutment-framework interface of the maxillary left canine (L1), right canine (L2), and right first molar (L3) sites was measured. The mean values for 3D marginal discrepancy were calculated for each location in a group with 95% confidence limits. The results were analyzed by repeated-measures 2-way ANOVA using the restricted maximum likelihood estimation and the Satterthwaite degrees of freedom methods, which do not require normality and homoscedasticity in the data. The between-subjects factor was material, the within-subjects factor was location, and the interaction was included in the model. Tukey tests were applied to resolve any statistically significant source of variation (overall α=.05). The 3D marginal discrepancy measurement was possible only for L2 and L3 because the L1 values were too small to detect. The mean discrepancy values at L2 were 60 μm for HDP, 74 μm for Ti, and 84 μm for Zir. At the L3 location, the mean discrepancy values were 55 μm for HDP, 102 μm for Ti, and 94 μm for Zir. The ANOVA did not find a statistically significant overall effect for implant location (P=.072) or a statistically significant interaction of location and material (P=.078), but it did find a statistically significant overall effect of material (P=.019). Statistical differences were found overall between HDP and the other 2 materials (P≤.037). When the tested materials were used with the CAD-CAM system, the 3D marginal discrepancy of CAD-CAM HDP frameworks was smaller than that of titanium or zirconia frameworks. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Brane Inflation, Solitons and Cosmological Solutions: I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, P.
2005-01-25
In this paper we study various cosmological solutions for a D3/D7 system directly from M-theory with fluxes and M2-branes. In M-theory, these solutions exist only if we incorporate higher derivative corrections from the curvatures as well as G-fluxes. We take these corrections into account and study a number of toy cosmologies, including one with a novel background for the D3/D7 system whose supergravity solution can be completely determined. Our new background preserves all the good properties of the original model and opens up avenues to investigate cosmological effects from wrapped branes and brane-antibrane annihilation, to name a few. We alsomore » discuss in some detail semilocal defects with higher global symmetries, for example exceptional ones, that occur in a slightly different regime of our D3/D7 model. We show that the D3/D7 system does have the required ingredients to realize these configurations as non-topological solitons of the theory. These constructions also allow us to give a physical meaning to the existence of certain underlying homogeneous quaternionic Kahler manifolds.« less
3D Product Development for Loose-Fitting Garments Based on Parametric Human Models
NASA Astrophysics Data System (ADS)
Krzywinski, S.; Siegmund, J.
2017-10-01
Researchers and commercial suppliers worldwide pursue the objective of achieving a more transparent garment construction process that is computationally linked to a virtual body, in order to save development costs over the long term. The current aim is not to transfer the complete pattern making step to a 3D design environment but to work out basic constructions in 3D that provide excellent fit due to their accurate construction and morphological pattern grading (automatic change of sizes in 3D) in respect of sizes and body types. After a computer-aided derivation of 2D pattern parts, these can be made available to the industry as a basis on which to create more fashionable variations.
Dixon, Benjamin J; Chan, Harley; Daly, Michael J; Qiu, Jimmy; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C
2016-07-01
Providing image guidance in a 3-dimensional (3D) format, visually more in keeping with the operative field, could potentially reduce workload and lead to faster and more accurate navigation. We wished to assess a 3D virtual-view surgical navigation prototype in comparison to a traditional 2D system. Thirty-seven otolaryngology surgeons and trainees completed a randomized crossover navigation exercise on a cadaver model. Each subject identified three sinonasal landmarks with 3D virtual (3DV) image guidance and three landmarks with conventional cross-sectional computed tomography (CT) image guidance. Subjects were randomized with regard to which side and display type was tested initially. Accuracy, task completion time, and task workload were recorded. Display type did not influence accuracy (P > 0.2) or efficiency (P > 0.3) for any of the six landmarks investigated. Pooled landmark data revealed a trend of improved accuracy in the 3DV group by 0.44 millimeters (95% confidence interval [0.00-0.88]). High-volume surgeons were significantly faster (P < 0.01) and had reduced workload scores in all domains (P < 0.01), but they were no more accurate (P > 0.28). Real-time 3D image guidance did not influence accuracy, efficiency, or task workload when compared to conventional triplanar image guidance. The subtle pooled accuracy advantage for the 3DV view is unlikely to be of clinical significance. Experience level was strongly correlated to task completion time and workload but did not influence accuracy. N/A. Laryngoscope, 126:1510-1515, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Verhey, Janko F; Nathan, Nadia S
2004-01-01
Background Finite element method (FEM) analysis for intraoperative modeling of the left ventricle (LV) is presently not possible. Since 3D structural data of the LV is now obtainable using standard transesophageal echocardiography (TEE) devices intraoperatively, the present study describes a method to transfer this data into a commercially available FEM analysis system: ABAQUS©. Methods In this prospective study TomTec LV Analysis TEE© Software was used for semi-automatic endocardial border detection, reconstruction, and volume-rendering of the clinical 3D echocardiographic data. A newly developed software program MVCP FemCoGen©, written in Delphi, reformats the TomTec file structures in five patients for use in ABAQUS and allows visualization of regional deformation of the LV. Results This study demonstrates that a fully automated importation of 3D TEE data into FEM modeling is feasible and can be efficiently accomplished in the operating room. Conclusion For complete intraoperative 3D LV finite element analysis, three input elements are necessary: 1. time-gaited, reality-based structural information, 2. continuous LV pressure and 3. instantaneous tissue elastance. The first of these elements is now available using the methods presented herein. PMID:15473901
Byun, Chanhee; Kim, Changhwan; Cho, Seungryong; Baek, Seung Hoon; Kim, Gyutae; Kim, Sahng G; Kim, Sun-Young
2015-06-01
Endodontic treatment of tooth formation anomalies is a challenge to clinicians and as such requires a complete understanding of the aberrant root canal anatomy followed by careful root canal disinfection and obturation. Here, we report the use of a 3-dimensional (3D) printed physical tooth model including internal root canal structures for the endodontic treatment of a challenging tooth anomaly. A 12-year-old boy was referred for endodontic treatment of tooth #8. The tooth showed class II mobility with swelling and a sinus tract in the buccal mucosa and periapical radiolucency. The tooth presented a very narrow structure between the crown and root by distal concavity and a severely dilacerated root. Moreover, a perforation site with bleeding and another ditching site were identified around the cervical area in the access cavity. A translucent physical tooth model carrying the information on internal root canal structures was built through a 3-step process: data acquisition by cone-beam computed tomographic scanning, virtual modeling by image processing, and manufacturing by 3D printing. A custom-made guide jig was then fabricated to achieve a safe and precise working path to the root canal. Endodontic procedures including access cavity preparation were performed using the physical tooth model and the guide jig. At the 7-month follow-up, the endodontically treated tooth showed complete periapical healing with no clinical signs and symptoms. This case report describes a novel method of endodontic treatment of an anomalous maxillary central incisor with the aid of a physical tooth model and a custom-made guide jig via 3D printing technique. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Lu, Biao; Miao, Yong; Vigneron, Pascale; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Pezron, Isabelle; Egles, Christophe; Vayssade, Muriel
2017-04-01
Sugar-based surfactants present surface-active properties and relatively low cytotoxicity. They are often considered as safe alternatives to currently used surfactants in cosmetic industries. In this study, four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or a maltose headgroup through an amide linkage, were synthesized and compared to two standard surfactants. The cytotoxic and irritant effects of surfactants were evaluated using two biologically relevant models: 3D dermal model (mouse fibroblasts embedded in collagen gel) and reconstituted human epidermis (RHE, multi-layered human keratinocytes). Results show that three synthesized surfactants possess lower cytotoxicity compared to standard surfactants as demonstrated in the 3D dermal model. Moreover, the IC50s of surfactants against the 3D dermal model are higher than IC50s obtained with the 2D dermal model (monolayer mouse fibroblasts). Both synthesized and standard surfactants show no irritant effects after 48h of topical application on RHE. Throughout the study, we demonstrate the difficulty to link the physico-chemical properties of surfactants and their cytotoxicity in complex models. More importantly, our data suggest that, prior to in vivo tests, a complete understanding of surfactant cytotoxicity or irritancy potential requires a combination of cellular and tissue models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Shi; Pan, Zhouxian; Wu, Yanyan; Gu, Zhaoqi; Li, Man; Liang, Ze; Zhu, Huijuan; Yao, Yong; Shui, Wuyang; Shen, Zhen; Zhao, Jun; Pan, Hui
2017-04-03
Three-dimensional (3D) printed models represent educational tools of high quality compared with traditional teaching aids. Colored skull models were produced by 3D printing technology. A randomized controlled trial (RCT) was conducted to compare the learning efficiency of 3D printed skulls with that of cadaveric skulls and atlas. Seventy-nine medical students, who never studied anatomy, were randomized into three groups by drawing lots, using 3D printed skulls, cadaveric skulls, and atlas, respectively, to study the anatomical structures in skull through an introductory lecture and small group discussions. All students completed identical tests, which composed of a theory test and a lab test, before and after a lecture. Pre-test scores showed no differences between the three groups. In post-test, the 3D group was better than the other two groups in total score (cadaver: 29.5 [IQR: 25-33], 3D: 31.5 [IQR: 29-36], atlas: 27.75 [IQR: 24.125-32]; p = 0.044) and scores of lab test (cadaver: 14 [IQR: 10.5-18], 3D: 16.5 [IQR: 14.375-21.625], atlas: 14.5 [IQR: 10-18.125]; p = 0.049). Scores involving theory test, however, showed no difference between the three groups. In this RCT, an inexpensive, precise and rapidly-produced skull model had advantages in assisting anatomy study, especially in structure recognition, compared with traditional education materials.
Limitations of the hCMEC/D3 cell line as a model for Aβ clearance by the human blood-brain barrier.
Biemans, Elisanne A L M; Jäkel, Lieke; de Waal, Robert M W; Kuiperij, H Bea; Verbeek, Marcel M
2017-07-01
Alzheimer's disease and cerebral amyloid angiopathy are characterized by accumulation of amyloid-β (Aβ) at the cerebrovasculature due to decreased clearance at the blood-brain barrier (BBB). However, the exact mechanism of Aβ clearance across this barrier has not been fully elucidated. The hCMEC/D3 cell line has been characterized as a valid model for the BBB. In this study we evaluated the use of this model to study Aβ clearance across the BBB, with an emphasis on brain-to-blood directional permeability. Barrier integrity of hCMEC/D3 monolayers was confirmed for large molecules in both the apical to basolateral and the reverse direction. However, permeability for smaller molecules was substantially higher, especially in basolateral to apical direction, and barrier formation for Aβ was completely absent in this direction. In addition, hCMEC/D3 cells failed to develop a high TEER, possibly caused by incomplete formation of tight junctions. We conclude that the hCMEC/D3 model has several limitations to study the cerebral clearance of Aβ. Therefore, the model needs further characterization before this cell system can be generally applied as a model to study cerebral Aβ clearance. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc. © 2016 The Authors Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments
Albritton, Jacob L.
2017-01-01
ABSTRACT Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo. Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies. PMID:28067628
3D bioprinting: improving in vitro models of metastasis with heterogeneous tumor microenvironments.
Albritton, Jacob L; Miller, Jordan S
2017-01-01
Even with many advances in treatment over the past decades, cancer still remains a leading cause of death worldwide. Despite the recognized relationship between metastasis and increased mortality rate, surprisingly little is known about the exact mechanism of metastatic progression. Currently available in vitro models cannot replicate the three-dimensionality and heterogeneity of the tumor microenvironment sufficiently to recapitulate many of the known characteristics of tumors in vivo Our understanding of metastatic progression would thus be boosted by the development of in vitro models that could more completely capture the salient features of cancer biology. Bioengineering groups have been working for over two decades to create in vitro microenvironments for application in regenerative medicine and tissue engineering. Over this time, advances in 3D printing technology and biomaterials research have jointly led to the creation of 3D bioprinting, which has improved our ability to develop in vitro models with complexity approaching that of the in vivo tumor microenvironment. In this Review, we give an overview of 3D bioprinting methods developed for tissue engineering, which can be directly applied to constructing in vitro models of heterogeneous tumor microenvironments. We discuss considerations and limitations associated with 3D printing and highlight how these advances could be harnessed to better model metastasis and potentially guide the development of anti-cancer strategies. © 2017. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele
2017-09-01
The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.
The WEBD project: a research of new methodologies for a distant-learning 3D system prototype.
Cemenasco, A F; Bianchi, C C; Tornincasa, S; Bianchi, S D
2004-11-01
To create and to spread a new interactive multimedia instrument, based upon virtual reality technologies, that allows both the running simulation of machines and equipment and the reproduction via Web of complex three-dimensional (3D) anatomical models such as the skull. There were two main aspects of the project, one of design engineering and the other biomedical engineering, for the creation of "artificial" and anatomical objects. The former were made with 3D Studio Max R4 by Autodesk, San Rafael, CA, while the latter were created starting from real bones scanned with a CT system or a surface scanner and elaborated with different programs (3D Studio Max R4, Scenebuilder by Viewpoint, New York, NY and Spinfire by Actify, San Francisco, CA). The 3D models were to be integrated into web modules and had to respect file limits while preserving a sufficient definition. Two systems of evaluation were used, a questionnaire on a selected sample and an external evaluation by a different university. The Viewpoint format offers the best interactivity and size reduction (up to 96% from the original 3D model). The created modules included production of radiological images, rapid prototyping, and anatomy. The complete "3D Distant Learning Prototype" is available at www.webd.etsii.upm.es. The software currently available permits the construction of interactive modules. The verification on the selected sample and the evaluation by the University of Naples show that the structure is well organized and that the integration of the 3D models meets the requirements.
Geospatial Data Processing for 3d City Model Generation, Management and Visualization
NASA Astrophysics Data System (ADS)
Toschi, I.; Nocerino, E.; Remondino, F.; Revolti, A.; Soria, G.; Piffer, S.
2017-05-01
Recent developments of 3D technologies and tools have increased availability and relevance of 3D data (from 3D points to complete city models) in the geospatial and geo-information domains. Nevertheless, the potential of 3D data is still underexploited and mainly confined to visualization purposes. Therefore, the major challenge today is to create automatic procedures that make best use of available technologies and data for the benefits and needs of public administrations (PA) and national mapping agencies (NMA) involved in "smart city" applications. The paper aims to demonstrate a step forward in this process by presenting the results of the SENECA project (Smart and SustaiNablE City from Above - http://seneca.fbk.eu). State-of-the-art processing solutions are investigated in order to (i) efficiently exploit the photogrammetric workflow (aerial triangulation and dense image matching), (ii) derive topologically and geometrically accurate 3D geo-objects (i.e. building models) at various levels of detail and (iii) link geometries with non-spatial information within a 3D geo-database management system accessible via web-based client. The developed methodology is tested on two case studies, i.e. the cities of Trento (Italy) and Graz (Austria). Both spatial (i.e. nadir and oblique imagery) and non-spatial (i.e. cadastral information and building energy consumptions) data are collected and used as input for the project workflow, starting from 3D geometry capture and modelling in urban scenarios to geometry enrichment and management within a dedicated webGIS platform.
Automatic pole-like object modeling via 3D part-based analysis of point cloud
NASA Astrophysics Data System (ADS)
He, Liu; Yang, Haoxiang; Huang, Yuchun
2016-10-01
Pole-like objects, including trees, lampposts and traffic signs, are indispensable part of urban infrastructure. With the advance of vehicle-based laser scanning (VLS), massive point cloud of roadside urban areas becomes applied in 3D digital city modeling. Based on the property that different pole-like objects have various canopy parts and similar trunk parts, this paper proposed the 3D part-based shape analysis to robustly extract, identify and model the pole-like objects. The proposed method includes: 3D clustering and recognition of trunks, voxel growing and part-based 3D modeling. After preprocessing, the trunk center is identified as the point that has local density peak and the largest minimum inter-cluster distance. Starting from the trunk centers, the remaining points are iteratively clustered to the same centers of their nearest point with higher density. To eliminate the noisy points, cluster border is refined by trimming boundary outliers. Then, candidate trunks are extracted based on the clustering results in three orthogonal planes by shape analysis. Voxel growing obtains the completed pole-like objects regardless of overlaying. Finally, entire trunk, branch and crown part are analyzed to obtain seven feature parameters. These parameters are utilized to model three parts respectively and get signal part-assembled 3D model. The proposed method is tested using the VLS-based point cloud of Wuhan University, China. The point cloud includes many kinds of trees, lampposts and other pole-like posters under different occlusions and overlaying. Experimental results show that the proposed method can extract the exact attributes and model the roadside pole-like objects efficiently.
A method for brain 3D surface reconstruction from MR images
NASA Astrophysics Data System (ADS)
Zhao, De-xin
2014-09-01
Due to the encephalic tissues are highly irregular, three-dimensional (3D) modeling of brain always leads to complicated computing. In this paper, we explore an efficient method for brain surface reconstruction from magnetic resonance (MR) images of head, which is helpful to surgery planning and tumor localization. A heuristic algorithm is proposed for surface triangle mesh generation with preserved features, and the diagonal length is regarded as the heuristic information to optimize the shape of triangle. The experimental results show that our approach not only reduces the computational complexity, but also completes 3D visualization with good quality.
Development of Three-Dimensional Completion of Complex Objects
ERIC Educational Resources Information Center
Soska, Kasey C.; Johnson, Scott P.
2013-01-01
Three-dimensional (3D) object completion, the ability to perceive the backs of objects seen from a single viewpoint, emerges at around 6 months of age. Yet, only relatively simple 3D objects have been used in assessing its development. This study examined infants' 3D object completion when presented with more complex stimuli. Infants…
Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran
2015-02-06
Gaining access to sequence and structure information of telomere binding proteins helps in understanding the essential biological processes involve in conserved sequence specific interaction between DNA and the proteins. Rice telomere binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix turn helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain but till now there is very less communication on the in silico studies of these complete proteins.Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK web server.Digging up all the facts about the proteins it was reveled that around 120 amino acids in the tail part was showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicates the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and Energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.
Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran
2015-09-01
Gaining access to sequence and structure information of telomere-binding proteins helps in understanding the essential biological processes involve in conserved sequence-specific interaction between DNA and the proteins. Rice telomere-binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix-turn-helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain, but till now there is very less communication on the in silico studies of these complete proteins. Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK Web server. By digging up all the facts about the proteins, it was revealed that around 120 amino acids in the tail part were showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicate the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA-binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.
Computer-aided design of tooth preparations for automated development of fixed prosthodontics.
Yuan, Fusong; Sun, Yuchun; Wang, Yong; Lv, Peijun
2014-01-01
This paper introduces a method to digitally design a virtual model of a tooth preparation of the mandibular first molar, by using the commercial three-dimensional (3D) computer-aided design software packages Geomagic and Imageware, and using the model as an input to automatic tooth preparing system. The procedure included acquisition of 3D data from dentate casts and digital modeling of the shape of the tooth preparation components, such as the margin, occlusal surface, and axial surface. The completed model data were stored as stereolithography (STL) files, which were used in a tooth preparation system to help to plan the trajectory. Meanwhile, the required mathematical models in the design process were introduced. The method was used to make an individualized tooth preparation of the mandibular first molar. The entire process took 15min. Using the method presented, a straightforward 3D shape of a full crown can be obtained to meet clinical needs prior to tooth preparation. © 2013 Published by Elsevier Ltd.
Ladm and Interlis as a Perfect Match for 3d Cadastre
NASA Astrophysics Data System (ADS)
Kalogianni, E.; Dimopoulou, E.; Quak, W.; Van Oosterom, P.
2017-10-01
Standardization in land administration domain has been expanded to 3D and even 4D representations, adopting a multipurpose character, in order to become the foundation of a sustainable and smart economic development. At the moment, although the potential benefits of 3D Cadastre is argued to be enormous and there are plenty of standards related to 3D Cadastre while others enhancing the role of 3D Cities, there is no complete solution for 3D Cadastre. That being so, the last years, there has been a rapid increase in the integration, harmonization and implementation support of such standards. In this context, the integration of 3D legal spaces with 3D physical objects is gaining ground, as the (invisible) legal boundaries do not always match with the physical counterparts, leading to obscure situations. LADM, the International Standard for land administration, was proved to be one of the best candidates to unambiguously represent 3D Rights, Restrictions and Responsibilities. On the other side, spatial data models and virtual city models manage 3D urban structures without focusing on legal aspects. Many researchers have explored integrations between those aspects giving promising results. In this direction, apart from international standards, also national standards have been developed to enable the communication between land information systems. One of the most representatives is INTERLIS, a Swiss standard, a precise, standardized Object Relational modelling language on the conceptual level, which allows for automated quality control. Thus, in this paper the focus is given on how INTERLIS and LADM complement each other in the actual implementation of land administration systems. Main challenges among others in the context of this research include: 1. extensible hierarchical and versioned code lists in INTERLIS models, 2. formally define LADM constraints in INTERLIS, 3. discuss 3D geometry types and 4. introduce a holistic LADM/INTERLIS approach for country profiles.
a Method of 3d Measurement and Reconstruction for Cultural Relics in Museums
NASA Astrophysics Data System (ADS)
Zheng, S.; Zhou, Y.; Huang, R.; Zhou, L.; Xu, X.; Wang, C.
2012-07-01
Three-dimensional measurement and reconstruction during conservation and restoration of cultural relics have become an essential part of a modem museum regular work. Although many kinds of methods including laser scanning, computer vision and close-range photogrammetry have been put forward, but problems still exist, such as contradiction between cost and good result, time and fine effect. Aimed at these problems, this paper proposed a structure-light based method for 3D measurement and reconstruction of cultural relics in museums. Firstly, based on structure-light principle, digitalization hardware has been built and with its help, dense point cloud of cultural relics' surface can be easily acquired. To produce accurate 3D geometry model from point cloud data, multi processing algorithms have been developed and corresponding software has been implemented whose functions include blunder detection and removal, point cloud alignment and merge, 3D mesh construction and simplification. Finally, high-resolution images are captured and the alignment of these images and 3D geometry model is conducted and realistic, accurate 3D model is constructed. Based on such method, a complete system including hardware and software are built. Multi-kinds of cultural relics have been used to test this method and results prove its own feature such as high efficiency, high accuracy, easy operation and so on.
2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall
NASA Technical Reports Server (NTRS)
Piziali, R. A.
1994-01-01
A comprehensive experimental investigation of the pressure distribution over a semispan wing undergoing pitching motions representative of a helicopter rotor blade was conducted. Testing the wing in the nonrotating condition isolates the three-dimensional (3-D) blade aerodynamic and dynamic stall characteristics from the complications of the rotor blade environment. The test has generated a very complete, detailed, and accurate body of data. These data include static and dynamic pressure distributions, surface flow visualizations, two-dimensional (2-D) airfoil data from the same model and installation, and important supporting blockage and wall pressure distributions. This body of data is sufficiently comprehensive and accurate that it can be used for the validation of rotor blade aerodynamic models over a broad range of the important parameters including 3-D dynamic stall. This data report presents all the cycle-averaged lift, drag, and pitching moment coefficient data versus angle of attack obtained from the instantaneous pressure data for the 3-D wing and the 2-D airfoil. Also presented are examples of the following: cycle-to-cycle variations occurring for incipient or lightly stalled conditions; 3-D surface flow visualizations; supporting blockage and wall pressure distributions; and underlying detailed pressure results.
Magunia, Harry; Schmid, Eckhard; Hilberath, Jan N; Häberle, Leo; Grasshoff, Christian; Schlensak, Christian; Rosenberger, Peter; Nowak-Machen, Martina
2017-04-01
The early diagnosis and treatment of right ventricular (RV) dysfunction are of critical importance in cardiac surgery patients and impact clinical outcome. Two-dimensional (2D) transesophageal echocardiography (TEE) can be used to evaluate RV function using surrogate parameters due to complex RV geometry. The aim of this study was to evaluate whether the commonly used visual evaluation of RV function and size using 2D TEE correlated with the calculated three-dimensional (3D) volumetric models of RV function. Retrospective study, single center, University Hospital. Seventy complete datasets were studied consisting of 2D 4-chamber view loops (2-3 beats) and the corresponding 4-chamber view 3D full-volume loop of the right ventricle. RV function and RV size of the 2D loops then were assessed retrospectively purely qualitatively individually by 4 clinician echocardiographers certified in perioperative TEE. Corresponding 3D volumetric models calculating RV ejection fraction and RV end-diastolic volumes then were established and compared with the 2D assessments. 2D assessment of RV function correlated with 3D volumetric calculations (Spearman's rho -0.5; p<0.0001). No correlation could be established between 2D estimates of RV size and actual 3D volumetric end-diastolic volumes (Spearman's rho 0.15; p = 0.25). The 2D assessment of right ventricular function based on visual estimation as frequently used in clinical practice appeared to be a reliable method of RV functional evaluation. However, 2D assessment of RV size seemed unreliable and should be used with caution. Copyright © 2017 Elsevier Inc. All rights reserved.
Oblique Photogrammetry Supporting 3d Urban Reconstruction of Complex Scenarios
NASA Astrophysics Data System (ADS)
Toschi, I.; Ramos, M. M.; Nocerino, E.; Menna, F.; Remondino, F.; Moe, K.; Poli, D.; Legat, K.; Fassi, F.
2017-05-01
Accurate 3D city models represent an important source of geospatial information to support various "smart city" applications, such as space management, energy assessment, 3D cartography, noise and pollution mapping as well as disaster management. Even though remarkable progress has been made in recent years, there are still many open issues, especially when it comes to the 3D modelling of complex urban scenarios like historical and densely-built city centres featuring narrow streets and non-conventional building shapes. Most approaches introduce strong building priors/constraints on symmetry and roof typology that penalize urban environments having high variations of roof shapes. Furthermore, although oblique photogrammetry is rapidly maturing, the use of slanted views for façade reconstruction is not completely included in the reconstruction pipeline of state-of-the-art software. This paper aims to investigate state-of-the-art methods for 3D building modelling in complex urban scenarios with the support of oblique airborne images. A reconstruction approach based on roof primitives fitting is tested. Oblique imagery is then exploited to support the manual editing of the generated building models. At the same time, mobile mapping data are collected at cm resolution and then integrated with the aerial ones. All approaches are tested on the historical city centre of Bergamo (Italy).
ERIC Educational Resources Information Center
Spronken-Smith, Rachel; Cameron, Claire; Quigg, Robin
2018-01-01
This exploratory study determined PhD completions at a research-intensive university in New Zealand and considered factors affecting PhD completions. Completion data were calculated for PhD cohorts at the University of Otago from 2000 to 2012 (n = 2770) and survival models determined whether gender, enrolment status, age at admission, citizenship,…
Developing of operational hydro-meteorological simulating and displaying system
NASA Astrophysics Data System (ADS)
Wang, Y.; Shih, D.; Chen, C.
2010-12-01
Hydrological hazards, which often occur in conjunction with extreme precipitation events, are the most frequent type of natural disaster in Taiwan. Hence, the researchers at the Taiwan Typhoon and Flood Research Institute (TTFRI) are devoted to analyzing and gaining a better understanding of the causes and effects of natural disasters, and in particular, typhoons and floods. The long-term goal of the TTFRI is to develop a unified weather-hydrological-oceanic model suitable for simulations with local parameterizations in Taiwan. The development of a fully coupled weather-hydrology interaction model is not yet completed but some operational hydro-meteorological simulations are presented as a step in the direction of completing a full model. The predicted rainfall data from Weather Research Forecasting (WRF) are used as our meteorological forcing on watershed modeling. The hydrology and hydraulic modeling are conducted by WASH123D numerical model. And the WRF/WASH123D coupled system is applied to simulate floods during the typhoon landfall periods. The daily operational runs start at 04UTC, 10UTC, 16UTC and 22UTC, about 4 hours after data downloaded from NCEP GFS. This system will execute 72-hr weather forecasts. The simulation of WASH123D will sequentially trigger after receiving WRF rainfall data. This study presents the preliminary framework of establishing this system, and our goal is to build this earlier warning system to alert the public form dangerous. The simulation results are further display by a 3D GIS web service system. This system is established following the Open Geospatial Consortium (OGC) standardization process for GIS web service, such as Web Map Service (WMS) and Web Feature Service (WFS). The traditional 2D GIS data, such as high resolution aerial photomaps and satellite images are integrated into 3D landscape model. The simulated flooding and inundation area can be dynamically mapped on Wed 3D world. The final goal of this system is to real-time forecast flood and the results can be visually displayed on the virtual catchment. The policymaker can easily and real-time gain visual information for decision making at any site through internet.
New 3D model for dynamics modeling
NASA Astrophysics Data System (ADS)
Perez, Alain
1994-05-01
The wrist articulation represents one of the most complex mechanical systems of the human body. It is composed of eight bones rolling and sliding along their surface and along the faces of the five metacarpals of the hand and the two bones of the arm. The wrist dynamics are however fundamental for the hand movement, but it is so complex that it still remains incompletely explored. This work is a part of a new concept of computer-assisted surgery, which consists in developing computer models to perfect surgery acts by predicting their consequences. The modeling of the wrist dynamics are based first on the static model of its bones in three dimensions. This 3D model must optimise the collision detection procedure which is the necessary step to estimate the physical contact constraints. As many other possible computer vision models do not fit with enough precision to this problem, a new 3D model has been developed thanks to the median axis of the digital distance map of the bones reconstructed volume. The collision detection procedure is then simplified for contacts are detected between spheres. The experiment of this original 3D dynamic model products realistic computer animation images of solids in contact. It is now necessary to detect ligaments on digital medical images and to model them in order to complete a wrist model.
Exploration of N-arylpiperazine Binding Sites of D2 Dopaminergic Receptor.
Soskic, Vukic; Sukalovic, Vladimir; Kostic-Rajacic, Sladjana
2015-01-01
The crystal structures of the D3 dopamine receptor and several other G-protein coupled receptors (GPCRs) were published in recent times. Those 3D structures are used by us and other scientists as a template for the homology modeling and ligand docking analysis of related GPCRs. Our main scientific interest lies in the field of pharmacologically active N-arylpiperazines that exhibit antipsychotic and/or antidepressant properties, and as such are dopaminergic and serotonergic receptor ligands. In this short review article we are presenting synthesis and biological data on the new N-arylpipereazine as well our results on molecular modeling of the interactions of those N-arylpiperazines with the model of D2 dopamine receptors. To obtain that model the crystal structure of the D3 dopamine receptor was used. Our results show that the N-arylpiperazines binding site consists of two pockets: one is the orthosteric binding site where the N-arylpiperazine part of the ligand is docked and the second is a non-canonical accessory binding site for N-arylpipereazine that is formed by a second extracellular loop (ecl2) of the receptor. Until now, the structure of this receptor region was unresolved in crystal structure analyses of the D3 dopamine receptor. To get a more complete picture of the ligand - receptor interaction, DFT quantum mechanical calculations on N-arylpiperazine were performed and the obtained models were used to examine those interactions.
3D Airborne Electromagnetic Inversion: A case study from the Musgrave Region, South Australia
NASA Astrophysics Data System (ADS)
Cox, L. H.; Wilson, G. A.; Zhdanov, M. S.; Sunwall, D. A.
2012-12-01
Geophysicists know and accept that geology is inherently 3D, and is resultant from complex, overlapping processes related to genesis, metamorphism, deformation, alteration, weathering, and/or hydrogeology. Yet, the geophysics community has long relied on qualitative analysis, conductivity depth imaging (CDIs), 1D inversion, and/or plate modeling. There are many reasons for this deficiency, not the least of which has been the lack of capacity for historic 3D AEM inversion algorithms to invert entire surveys so as to practically affect exploration decisions. Our recent introduction of a moving sensitivity domain (footprint) methodology has been a paradigm shift in AEM interpretation. The basis of this method is that one needs only to calculate the responses and sensitivities for that part of the 3D earth model that is within the AEM system's sensitivity domain (footprint), and then superimpose all sensitivity domains into a single, sparse sensitivity matrix for the entire 3D earth model which is then updated in a regularized inversion scheme. This has made it practical to rigorously invert entire surveys with thousands of line kilometers of AEM data to mega-cell 3D models in hours using multi-processor workstations. Since 2010, over eighty individual projects have been completed for Aerodat, AEROTEM, DIGHEM, GEOTEM, HELITEM, HoisTEM, MEGATEM, RepTEM, RESOLVE, SkyTEM, SPECTREM, TEMPEST, and VTEM data from Australia, Brazil, Canada, Finland, Ghana, Peru, Tanzania, the US, and Zambia. Examples of 3D AEM inversion have been published for a variety of applications, including mineral exploration, oil sands exploration, salinity, permafrost, and bathymetry mapping. In this paper, we present a comparison of 3D inversions for SkyTEM, SPECTREM, TEMPET and VTEM data acquired over the same area in the Musgrave region of South Australia for exploration under cover.
Longati, Paola; Jia, Xiaohui; Eimer, Johannes; Wagman, Annika; Witt, Michael-Robin; Rehnmark, Stefan; Verbeke, Caroline; Toftgård, Rune; Löhr, Matthias; Heuchel, Rainer L
2013-02-27
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer related death. It is lethal in nearly all patients, due to an almost complete chemoresistance. Most if not all drugs that pass preclinical tests successfully, fail miserably in the patient. This raises the question whether traditional 2D cell culture is the correct tool for drug screening. The objective of this study is to develop a simple, high-throughput 3D model of human PDAC cell lines, and to explore mechanisms underlying the transition from 2D to 3D that might be responsible for chemoresistance. Several established human PDAC and a KPC mouse cell lines were tested, whereby Panc-1 was studied in more detail. 3D spheroid formation was facilitated with methylcellulose. Spheroids were studied morphologically, electron microscopically and by qRT-PCR for selected matrix genes, related factors and miRNA. Metabolic studies were performed, and a panel of novel drugs was tested against gemcitabine. Comparing 3D to 2D cell culture, matrix proteins were significantly increased as were lumican, SNED1, DARP32, and miR-146a. Cell metabolism in 3D was shifted towards glycolysis. All drugs tested were less effective in 3D, except for allicin, MT100 and AX, which demonstrated effect. We developed a high-throughput 3D cell culture drug screening system for pancreatic cancer, which displays a strongly increased chemoresistance. Features associated to the 3D cell model are increased expression of matrix proteins and miRNA as well as stromal markers such as PPP1R1B and SNED1. This is supporting the concept of cell adhesion mediated drug resistance.
2013-01-01
Background Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer related death. It is lethal in nearly all patients, due to an almost complete chemoresistance. Most if not all drugs that pass preclinical tests successfully, fail miserably in the patient. This raises the question whether traditional 2D cell culture is the correct tool for drug screening. The objective of this study is to develop a simple, high-throughput 3D model of human PDAC cell lines, and to explore mechanisms underlying the transition from 2D to 3D that might be responsible for chemoresistance. Methods Several established human PDAC and a KPC mouse cell lines were tested, whereby Panc-1 was studied in more detail. 3D spheroid formation was facilitated with methylcellulose. Spheroids were studied morphologically, electron microscopically and by qRT-PCR for selected matrix genes, related factors and miRNA. Metabolic studies were performed, and a panel of novel drugs was tested against gemcitabine. Results Comparing 3D to 2D cell culture, matrix proteins were significantly increased as were lumican, SNED1, DARP32, and miR-146a. Cell metabolism in 3D was shifted towards glycolysis. All drugs tested were less effective in 3D, except for allicin, MT100 and AX, which demonstrated effect. Conclusions We developed a high-throughput 3D cell culture drug screening system for pancreatic cancer, which displays a strongly increased chemoresistance. Features associated to the 3D cell model are increased expression of matrix proteins and miRNA as well as stromal markers such as PPP1R1B and SNED1. This is supporting the concept of cell adhesion mediated drug resistance. PMID:23446043
Lounnas, Valère; Wedler, Henry B; Newman, Timothy; Schaftenaar, Gijs; Harrison, Jason G; Nepomuceno, Gabriella; Pemberton, Ryan; Tantillo, Dean J; Vriend, Gert
2014-11-01
In molecular sciences, articles tend to revolve around 2D representations of 3D molecules, and sighted scientists often resort to 3D virtual reality software to study these molecules in detail. Blind and visually impaired (BVI) molecular scientists have access to a series of audio devices that can help them read the text in articles and work with computers. Reading articles published in this journal, though, is nearly impossible for them because they need to generate mental 3D images of molecules, but the article-reading software cannot do that for them. We have previously designed AsteriX, a web server that fully automatically decomposes articles, detects 2D plots of low molecular weight molecules, removes meta data and annotations from these plots, and converts them into 3D atomic coordinates. AsteriX-BVI goes one step further and converts the 3D representation into a 3D printable, haptic-enhanced format that includes Braille annotations. These Braille-annotated physical 3D models allow BVI scientists to generate a complete mental model of the molecule. AsteriX-BVI uses Molden to convert the meta data of quantum chemistry experiments into BVI friendly formats so that the entire line of scientific information that sighted people take for granted-from published articles, via printed results of computational chemistry experiments, to 3D models-is now available to BVI scientists too. The possibilities offered by AsteriX-BVI are illustrated by a project on the isomerization of a sterol, executed by the blind co-author of this article (HBW).
3-D vision and figure-ground separation by visual cortex.
Grossberg, S
1994-01-01
A neural network theory of three-dimensional (3-D) vision, called FACADE theory, is described. The theory proposes a solution of the classical figure-ground problem for biological vision. It does so by suggesting how boundary representations and surface representations are formed within a boundary contour system (BCS) and a feature contour system (FCS). The BCS and FCS interact reciprocally to form 3-D boundary and surface representations that are mutually consistent. Their interactions generate 3-D percepts wherein occluding and occluded object parts are separated, completed, and grouped. The theory clarifies how preattentive processes of 3-D perception and figure-ground separation interact reciprocally with attentive processes of spatial localization, object recognition, and visual search. A new theory of stereopsis is proposed that predicts how cells sensitive to multiple spatial frequencies, disparities, and orientations are combined by context-sensitive filtering, competition, and cooperation to form coherent BCS boundary segmentations. Several factors contribute to figure-ground pop-out, including: boundary contrast between spatially contiguous boundaries, whether due to scenic differences in luminance, color, spatial frequency, or disparity; partially ordered interactions from larger spatial scales and disparities to smaller scales and disparities; and surface filling-in restricted to regions surrounded by a connected boundary. Phenomena such as 3-D pop-out from a 2-D picture, Da Vinci stereopsis, 3-D neon color spreading, completion of partially occluded objects, and figure-ground reversals are analyzed. The BCS and FCS subsystems model aspects of how the two parvocellular cortical processing streams that join the lateral geniculate nucleus to prestriate cortical area V4 interact to generate a multiplexed representation of Form-And-Color-And-DEpth, or FACADE, within area V4. Area V4 is suggested to support figure-ground separation and to interact with cortical mechanisms of spatial attention, attentive object learning, and visual search. Adaptive resonance theory (ART) mechanisms model aspects of how prestriate visual cortex interacts reciprocally with a visual object recognition system in inferotemporal (IT) cortex for purposes of attentive object learning and categorization. Object attention mechanisms of the What cortical processing stream through IT cortex are distinguished from spatial attention mechanisms of the Where cortical processing stream through parietal cortex. Parvocellular BCS and FCS signals interact with the model What stream. Parvocellular FCS and magnocellular motion BCS signals interact with the model Where stream.(ABSTRACT TRUNCATED AT 400 WORDS)
3D model generation using an airborne swarm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, R. A.; Punzo, G.; Macdonald, M.
2015-03-31
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing throughmore » photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.« less
3D model generation using an airborne swarm
NASA Astrophysics Data System (ADS)
Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.
2015-03-01
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
NASA Astrophysics Data System (ADS)
Cheng, Meng; Tantivasadakarn, Nathanan; Wang, Chenjie
2018-01-01
We study Abelian braiding statistics of loop excitations in three-dimensional gauge theories with fermionic particles and the closely related problem of classifying 3D fermionic symmetry-protected topological (FSPT) phases with unitary symmetries. It is known that the two problems are related by turning FSPT phases into gauge theories through gauging the global symmetry of the former. We show that there exist certain types of Abelian loop braiding statistics that are allowed only in the presence of fermionic particles, which correspond to 3D "intrinsic" FSPT phases, i.e., those that do not stem from bosonic SPT phases. While such intrinsic FSPT phases are ubiquitous in 2D systems and in 3D systems with antiunitary symmetries, their existence in 3D systems with unitary symmetries was not confirmed previously due to the fact that strong interaction is necessary to realize them. We show that the simplest unitary symmetry to support 3D intrinsic FSPT phases is Z2×Z4. To establish the results, we first derive a complete set of physical constraints on Abelian loop braiding statistics. Solving the constraints, we obtain all possible Abelian loop braiding statistics in 3D gauge theories, including those that correspond to intrinsic FSPT phases. Then, we construct exactly soluble state-sum models to realize the loop braiding statistics. These state-sum models generalize the well-known Crane-Yetter and Dijkgraaf-Witten models.
The dynamics of the HSCT environment. [air pollution from High Speed Civil Transport Aircraft
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Rood, Richard B.
1991-01-01
Assessments of the impact of aircraft engine exhausts on stratospheric ozone levels are currently limited to 2D zonally-averaged models which, while completely representing chemistry, involve high parameterization of transport processes. Prospective 3D models under development by NASA-Goddard will use winds from a data-assimilation procedure; the upper troposphere/lower stratosphere behavior of one such model has been verified by direct comparison of model simulations with satellite, balloon, and sonde measurements. Attention is presently given to the stratosphere/troposphere exchange and nonzonal distribution of aircraft engine exhaust.
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1993-01-01
A computer program, surf3d, that uses the 3D finite-element method to calculate the stress-intensity factors for surface, corner, and embedded cracks in finite-thickness plates with and without circular holes, was developed. The cracks are assumed to be either elliptic or part eliptic in shape. The computer program uses eight-noded hexahedral elements to model the solid. The program uses a skyline storage and solver. The stress-intensity factors are evaluated using the force method, the crack-opening displacement method, and the 3-D virtual crack closure methods. In the manual the input to and the output of the surf3d program are described. This manual also demonstrates the use of the program and describes the calculation of the stress-intensity factors. Several examples with sample data files are included with the manual. To facilitate modeling of the user's crack configuration and loading, a companion program (a preprocessor program) that generates the data for the surf3d called gensurf was also developed. The gensurf program is a three dimensional mesh generator program that requires minimal input and that builds a complete data file for surf3d. The program surf3d is operational on Unix machines such as CRAY Y-MP, CRAY-2, and Convex C-220.
Liu, Xin; Zeng, Can-Jun; Lu, Jian-Sen; Lin, Xu-Chen; Huang, Hua-Jun; Tan, Xin-Yu; Cai, Dao-Zhang
2017-03-20
To evaluate the feasibility and effectiveness of using 3D printing and computer-assisted surgical simulation in preoperative planning for acetabular fractures. A retrospective analysis was performed in 53 patients with pelvic fracture, who underwent surgical treatment between September, 2013 and December, 2015 with complete follow-up data. Among them, 19 patients were treated with CT three-dimensional reconstruction, computer-assisted virtual reset internal fixation, 3D model printing, and personalized surgery simulation before surgery (3D group), and 34 patients underwent routine preoperative examination (conventional group). The intraoperative blood loss, transfusion volume, times of intraoperative X-ray, operation time, Matta score and Merle D' Aubigne & Postel score were recorded in the 2 groups. Preoperative planning and postoperative outcomes in the two groups were compared. All the operations were completed successfully. In 3D group, significantly less intraoperative blood loss, transfusion volume, fewer times of X-ray, and shortened operation time were recorded compared with those in the conventional group (P<0.05). According to the Matta scores, excellent or good fracture reduction was achieved in 94.7% (18/19) of the patients in 3D group and in 82.4% (28/34) of the patients in conventional group; the rates of excellent and good hip function at the final follow-up were 89.5% (17/19) in the 3D group and 85.3% (29/34) in the conventional group (P>0.05). In the 3D group, the actual internal fixation well matched the preoperative design. 3D printing and computer-assisted surgical simulation for preoperative planning is feasible and accurate for management of acetabular fracture and can effectively improve the operation efficiency.
Generation, recognition, and consistent fusion of partial boundary representations from range images
NASA Astrophysics Data System (ADS)
Kohlhepp, Peter; Hanczak, Andrzej M.; Li, Gang
1994-10-01
This paper presents SOMBRERO, a new system for recognizing and locating 3D, rigid, non- moving objects from range data. The objects may be polyhedral or curved, partially occluding, touching or lying flush with each other. For data collection, we employ 2D time- of-flight laser scanners mounted to a moving gantry robot. By combining sensor and robot coordinates, we obtain 3D cartesian coordinates. Boundary representations (Brep's) provide view independent geometry models that are both efficiently recognizable and derivable automatically from sensor data. SOMBRERO's methods for generating, matching and fusing Brep's are highly synergetic. A split-and-merge segmentation algorithm with dynamic triangular builds a partial (21/2D) Brep from scattered data. The recognition module matches this scene description with a model database and outputs recognized objects, their positions and orientations, and possibly surfaces corresponding to unknown objects. We present preliminary results in scene segmentation and recognition. Partial Brep's corresponding to different range sensors or viewpoints can be merged into a consistent, complete and irredundant 3D object or scene model. This fusion algorithm itself uses the recognition and segmentation methods.
Zhao, Y J; Wang, S W; Liu, Y; Wang, Y
2017-02-18
To explore a new method for rapid extracting and rebuilding three-dimensional (3D) digital root model of vivo tooth from cone beam computed tomography (CBCT) data based on the anatomical characteristics of periodontal ligament, and to evaluate the extraction accuracy of the method. In the study, 15 extracted teeth (11 with single root, 4 with double roots) were collected from oral clinic and 3D digital root models of each tooth were obtained by 3D dental scanner with a high accuracy 0.02 mm in STL format. CBCT data for each patient were acquired before tooth extraction, DICOM data with a voxel size 0.3 mm were input to Mimics 18.0 software. Segmentation, Morphology operations, Boolean operations and Smart expanded function in Mimics software were used to edit teeth, bone and periodontal ligament threshold mask, and root threshold mask were automatically acquired after a series of mask operations. 3D digital root models were extracted in STL format finally. 3D morphology deviation between the extracted root models and corresponding vivo root models were compared in Geomagic Studio 2012 software. The 3D size errors in long axis, bucco-lingual direction and mesio-distal direction were also calculated. The average value of the 3D morphology deviation for 15 roots by calculating Root Mean Square (RMS) value was 0.22 mm, the average size errors in the mesio-distal direction, the bucco-lingual direction and the long axis were 0.46 mm, 0.36 mm and -0.68 mm separately. The average time of this new method for extracting single root was about 2-3 min. It could meet the accuracy requirement of the root 3D reconstruction fororal clinical use. This study established a new method for rapid extracting 3D root model of vivo tooth from CBCT data. It could simplify the traditional manual operation and improve the efficiency and automation of single root extraction. The strategy of this method for complete dentition extraction needs further research.
He, Weiqi; Kuang, Yongqin; Xing, Xuemin; Simpson, Richard J; Huang, Haidong; Yang, Tao; Chen, Jingmin; Yang, Libin; Liu, Enyu; He, Weifeng; Gu, Jianwen
2014-05-02
Three-dimensional cell culture techniques can better reflect the in vivo characteristics of tumor cells compared with traditional monolayer cultures. Compared with their 2D counterparts, 3D-cultured tumor cells showed enhanced resistance to the cytotoxic T cell-mediated immune response. However, it remains unclear whether 3D-cultured tumor cells have an enhanced resistance to NK cell cytotoxicity. In this study, a total of 363 differentially expressed proteins were identified between the 2D- and 3D-cultured U251 cells by comparative proteomics, and an immune-associated protein-protein interaction (PPI) network based on these differential proteins was constructed by bioinformatics. Within the network, HLA-E, as a molecule for inhibiting NK cell activation, was significantly up-regulated in the 3D-cultured tumor cells. Then, we found that the 3D-cultured U251 cells exhibited potent resistance to NK cell cytotoxicity in vitro and were prone to tumor formation in vivo. The resistance of the 3D-cultured tumor cells to NK cell lysis was mediated by the HLA-E/NKG2A interaction because the administration of antibodies that block either HLA-E or NKG2A completely eliminated this resistance and significantly decreased tumor formation. Taken together, our findings indicate that HLA-E up-regulation in 3D-cultured cells may result in enhanced tumor resistance to NK cell-mediated immune response.
3D RISM theory with fast reciprocal-space electrostatics.
Heil, Jochen; Kast, Stefan M
2015-03-21
The calculation of electrostatic solute-solvent interactions in 3D RISM ("three-dimensional reference interaction site model") integral equation theory is recast in a form that allows for a computational treatment analogous to the "particle-mesh Ewald" formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.
Clay Modeling versus Written Modules as Effective Interventions in Understanding Human Anatomy
ERIC Educational Resources Information Center
Bareither, Mary Lou; Arbel, Vered; Growe, Meghan; Muszczynski, Emily; Rudd, Adam; Marone, Jane R.
2013-01-01
The effectiveness of clay modeling to written modules is examined to determine the degree of improvement in learning and retention of anatomical 3D relationships among students with different learning preferences. Thirty-nine undergraduate students enrolled in a cadaver dissection course completed a pre-assessment examination and the VARK…
NASA Astrophysics Data System (ADS)
Wagner, Bianca; Leiss, Bernd; Stöpler, Ralf; Zahnow, Fabian
2017-04-01
Folded paleozoic sedimentary rocks of Upper Devonian to Lower Carboniferous age are very well exposed in the abandoned chert quarry of Lautenthal in the western Harz Mountains. The outcrop represents typical structures of the Rhenohercynian thrust and fold belt of the Variscan orogen and therefore allows quantitative studies for the understanding of e.g. fold mechanisms and the amount of shortening. The sequence is composed of alternating beds of cherts, shales and tuffites, which show varying thicknesses, undulating and thinning out of certain layers. Irregularly occurring lenses of greywackes are interpreted as sedimentary intrusions. The compressive deformation style is expressed by different similar and parallel fold structures at varying scales as well as small-scale reverse faults and triangle structures. An accurate mapping of the outcrop in the classical way is very challenging due to distant and unconnected outcrop parts with differing elevations and orientations. Furthermore, the visibility is limited because of nearby trees, diffuse vegetation cover and no available total view. Therefore, we used a FARO 120 3D laserscanner and Trimble GNSS device to generate a referenced and drawn to scale point cloud of the complete quarry. Based on the point cloud a geometric 3D model of prominent horizons and structural features of various sizes was constructed. Thereafter, we analyzed the structures in matters of orientation and deformation mechanisms. Finally, we applied a retrodeformation algorithm on the model to restore the original sedimentary sequence and to calculate shortening including the amount of pressure solution. Only digital mapping allows such a time-saving, accurate and especially complete 3D survey of this excellent study object. We demonstrated that such 3D-models enable spatial correlations with other complex structures cropping out in the area. Moreover, we confirmed that a structural upscaling to the 100 to 1000 m scale is much easier and much more instructive than it could have been done in the classical way.
Crossing the Virtual World Barrier with OpenAvatar
NASA Technical Reports Server (NTRS)
Joy, Bruce; Kavle, Lori; Tan, Ian
2012-01-01
There are multiple standards and formats for 3D models in virtual environments. The problem is that there is no open source platform for generating models out of discrete parts; this results in the process of having to "reinvent the wheel" when new games, virtual worlds and simulations want to enable their users to create their own avatars or easily customize in-world objects. OpenAvatar is designed to provide a framework to allow artists and programmers to create reusable assets which can be used by end users to generate vast numbers of complete models that are unique and functional. OpenAvatar serves as a framework which facilitates the modularization of 3D models allowing parts to be interchanged within a set of logical constraints.
NASA Astrophysics Data System (ADS)
Hunter, Kendall; Zhang, Yanhang; Lanning, Craig
2005-11-01
Insight into the progression of pulmonary hypertension may be obtained from thorough study of vascular flow during reactivity testing, an invasive diagnostic procedure which can dramatically alter vascular hemodynamics. Diagnostic imaging methods, however, are limited in their ability to provide extensive data. Here we present detailed flow and wall deformation results from simulations of pulmonary arteries undergoing this procedure. Patient-specific 3-D geometric reconstructions of the first four branches of the pulmonary vasculature were obtained clinically and meshed for use with computational software. Transient simulations in normal and reactive states were obtained from four such models were completed with patient-specific velocity inlet conditions and flow impedance exit conditions. A microstructurally based orthotropic hyperelastic model that simulates pulmonary artery mechanics under normotensive and hypoxic hypertensive conditions treated wall constitutive changes due to pressure reactivity and arterial remodeling. Pressure gradients, velocity fields, arterial deformation, and complete topography of shear stress were obtained. These models provide richer detail of hemodynamics than can be obtained from current imaging techniques, and should allow maximum characterization of vascular function in the clinical situation.
Footprint Map Partitioning Using Airborne Laser Scanning Data
NASA Astrophysics Data System (ADS)
Xiong, B.; Oude Elberink, S.; Vosselman, G.
2016-06-01
Nowadays many cities and countries are creating their 3D building models for a better daily management and smarter decision making. The newly created 3D models are required to be consistent with existing 2D footprint maps. Thereby the 2D maps are usually combined with height data for the task of 3D reconstruction. Many buildings are often composed by parts that are discontinuous over height. Building parts can be reconstructed independently and combined into a complete building. Therefore, most of the state-of-the-art work on 3D building reconstruction first decomposes a footprint map into parts. However, those works usually change the footprint maps for easier partitioning and cannot detect building parts that are fully inside the footprint polygon. In order to solve those problems, we introduce two methodologies, one more dependent on height data, and the other one more dependent on footprints. We also experimentally evaluate the two methodologies and compare their advantages and disadvantages. The experiments use Airborne Laser Scanning (ALS) data and two vector maps, one with 1:10,000 scale and another one with 1:500 scale.
Wang, Huixiang; Wang, Fang; Newman, Simon; Lin, Yanping; Chen, Xiaojun; Xu, Lu; Wang, Qiugen
2016-08-01
Acetabular fracture surgery is amongst the most challenging tasks in the field of trauma surgery and careful preoperative planning is crucial for success. The aim of this paper is to describe the preliminary outcome of the utilization of an innovative computerized virtual planning system for acetabular fractures. 3D models of acetabular fractures and surrounding soft tissues from six patients were constructed from preoperative CT scans. A novel highly-automatic segmentation technique was performed on the 3D model to separate each fracture fragment, then 3D virtual reduction was performed. Additionally, the models were used to assess potential surgical approaches with reference to both the fracture and the surrounding soft tissues. The time required for virtual planning was recorded. After surgery, the virtual plan was compared to the real surgery with respect to surgical approach and reduction sequence. A Likert scale questionnaire was completed by the surgeons to evaluate their satisfaction with the system. Virtual planning was successfully completed in all cases. The planned surgical approach was followed in all cases with the planned reduction sequence followed completely in five cases and partially in one. The mean time required for virtual planning was 38.7min (range 21-57, SD=15.5). The mean time required for planning of B-type fractures was 25.0min (range 21-30, SD=4.6), of C-type fracture 52.3min (range 49-57, SD=4.2). The results of the questionnaire demonstrated a high level of satisfaction with the planning system. This study demonstrates that the virtual planning system is feasible in clinical settings with high satisfaction and acceptability from the surgeons. It provides a viable option for the planning of acetabular fracture surgery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lichtenberger, John P; Tatum, Peter S; Gada, Satyen; Wyn, Mark; Ho, Vincent B; Liacouras, Peter
2018-03-01
This work describes customized, task-specific simulation models derived from 3D printing in clinical settings and medical professional training programs. Simulation models/task trainers have an array of purposes and desired achievements for the trainee, defining that these are the first step in the production process. After this purpose is defined, computer-aided design and 3D printing (additive manufacturing) are used to create a customized anatomical model. Simulation models then undergo initial in-house testing by medical specialists followed by a larger scale beta testing. Feedback is acquired, via surveys, to validate effectiveness and to guide or determine if any future modifications and/or improvements are necessary. Numerous custom simulation models have been successfully completed with resulting task trainers designed for procedures, including removal of ocular foreign bodies, ultrasound-guided joint injections, nerve block injections, and various suturing and reconstruction procedures. These task trainers have been frequently utilized in the delivery of simulation-based training with increasing demand. 3D printing has been integral to the production of limited-quantity, low-cost simulation models across a variety of medical specialties. In general, production cost is a small fraction of a commercial, generic simulation model, if available. These simulation and training models are customized to the educational need and serve an integral role in the education of our military health professionals.
NASA Astrophysics Data System (ADS)
Wang, Yaoping; Chui, Cheekong K.; Cai, Yiyu; Mak, KoonHou
1998-06-01
This study presents an approach to build a 3D vascular system of coronary for the development of a virtual cardiology simulator. The 3D model of the coronary arterial tree is reconstructed from the geometric information segmented from the Visible Human data set for physical analysis of catheterization. The process of segmentation is guided by a 3D topologic hierarchy structure of coronary vessels which is obtained from a mechanical model by using Coordinate Measuring Machine (CMM) probing. This mechanical professional model includes all major coronary arterials ranging from right coronary artery to atrioventricular branch and from left main trunk to left anterior descending branch. All those branches are considered as the main operating sites for cardiology catheterization. Along with the primary arterial vasculature and accompanying secondary and tertiary networks obtained from a previous work, a more complete vascular structure can then be built for the simulation of catheterization. A novel method has been developed for real time Finite Element Analysis of catheter navigation based on this featured vasculature of vessels.
Fasel, Jean H D; Aguiar, Diego; Kiss-Bodolay, Daniel; Montet, Xavier; Kalangos, Afksendiyos; Stimec, Bojan V; Ratib, Osman
2016-04-01
Many regions worldwide report difficulties in recruiting applicants to surgery. One strategy proposed to reverse this trend consists of early exposure of medical students to the field. Against this backdrop, the present study presents an innovative approach for anatomy teaching, integrating a surgically relevant trend: 3D printing. Whole-body computed tomography (CT) was made of two cadavers. Twelve students performed measurements and 3D reconstructions of selected anatomical structures (Osirix, Mimics). 3D printed (3DP) models were obtained (ZPrinter 310 Plus), and the students completed the analogous measurements on these replicas. Finally, classical anatomical dissection was performed and the same parameters were measured. The differences between the values obtained by the three modalities were submitted to standard statistical analysis (Wilcoxon two-tail paired test). Qualitative comparison of the digital 3D reconstructions based on the students' manual CT segmentation and the anatomical reality showed excellent correlation. Quantitatively, the values measured on the CT images and the physical models created by 3D printing differed from those measured on the cadavers by less than 2 mm. Students were highly appreciative of the approach (CT, 3DP, cadaver). Their average satisfaction score was 5.8 on a 1-6 scale. This study shows that the approach proposed can be achieved. The results obtained also show that CT-based 3D printed models are close to the authentic anatomic reality. The program allows early and interactive exposure of medical students to a surgically relevant trend-in this case 3D printing.
Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging.
Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P
2016-09-09
The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics.
Varol, Altan; Basa, Selçuk
2009-06-01
Maxillary distraction osteogenesis is a challenging procedure when it is performed with internal submerged distractors due to obligation of setting accurate distraction vectors. Five patients with severe maxillary retrognathy were planned with Mimics 10.01 CMF and Simplant 10.01 software. Distraction vectors and rods of distractors were arranged in 3D environment and on STL models. All patients were operated under general anaesthesia and complete Le Fort I downfracture was performed. All distractions were performed according to orientated vectors. All patients achieved stable occlusion and satisfactory aesthetic outcome at the end of the treatment period. Preoperative bending of internal maxillary distractors prevents significant loss of operation time. 3D computer-aided surgical simulation and model surgery provide accurate orientation of distraction vectors for premaxillary and internal trans-sinusoidal maxillary distraction. Combination of virtual surgical simulation and stereolithographic models surgery can be validated as an effective method of preoperative planning for complicated maxillofacial surgery cases.
Best practices for the 3D documentation of the Grotta dei Cervi of Porto Badisco, Italy
NASA Astrophysics Data System (ADS)
Beraldin, J. A.; Picard, M.; Bandiera, A.; Valzano, V.; Negro, F.
2011-03-01
The Grotta dei Cervi is a Neolithic cave where human presence has left many unique pictographs on the walls of many of its chambers. It was closed for conservation reasons soon after its discovery in 1970. It is for these reasons that a 3D documentation was started. Two sets of high resolution and detailed three-dimensional (3D) acquisitions were captured in 2005 and 2009 respectively, along with two-dimensional (2D) images. From this information a textured 3D model was produced for most of the 300-m long central corridor. Carbon dating of the guano used for the pictographs and environmental monitoring (Temperature, Relative humidity, and Radon) completed the project. This paper presents this project, some results obtained up to now, the best practice that has emerged from this work and a description of the processing pipeline that deals with more than 27 billion 3D coordinates.
Le Moal, Julien; Peillon, Christophe; Dacher, Jean-Nicolas
2018-01-01
Background The objective of our pilot study was to assess if three-dimensional (3D) reconstruction performed by Visible Patient™ could be helpful for the operative planning, efficiency and safety of robot-assisted segmentectomy. Methods Between 2014 and 2015, 3D reconstructions were provided by the Visible Patient™ online service and used for the operative planning of robotic segmentectomy. To obtain 3D reconstruction, the surgeon uploaded the anonymized computed tomography (CT) image of the patient to the secured Visible Patient™ server and then downloaded the model after completion. Results Nine segmentectomies were performed between 2014 and 2015 using a pre-operative 3D model. All 3D reconstructions met our expectations: anatomical accuracy (bronchi, arteries, veins, tumor, and the thoracic wall with intercostal spaces), accurate delimitation of each segment in the lobe of interest, margin resection, free space rotation, portability (smartphone, tablet) and time saving technique. Conclusions We have shown that operative planning by 3D CT using Visible Patient™ reconstruction is useful in our practice of robot-assisted segmentectomy. The main disadvantage is the high cost. Its impact on reducing complications and improving surgical efficiency is the object of an ongoing study. PMID:29600049
Le Moal, Julien; Peillon, Christophe; Dacher, Jean-Nicolas; Baste, Jean-Marc
2018-01-01
The objective of our pilot study was to assess if three-dimensional (3D) reconstruction performed by Visible Patient™ could be helpful for the operative planning, efficiency and safety of robot-assisted segmentectomy. Between 2014 and 2015, 3D reconstructions were provided by the Visible Patient™ online service and used for the operative planning of robotic segmentectomy. To obtain 3D reconstruction, the surgeon uploaded the anonymized computed tomography (CT) image of the patient to the secured Visible Patient™ server and then downloaded the model after completion. Nine segmentectomies were performed between 2014 and 2015 using a pre-operative 3D model. All 3D reconstructions met our expectations: anatomical accuracy (bronchi, arteries, veins, tumor, and the thoracic wall with intercostal spaces), accurate delimitation of each segment in the lobe of interest, margin resection, free space rotation, portability (smartphone, tablet) and time saving technique. We have shown that operative planning by 3D CT using Visible Patient™ reconstruction is useful in our practice of robot-assisted segmentectomy. The main disadvantage is the high cost. Its impact on reducing complications and improving surgical efficiency is the object of an ongoing study.
D Model of AL Zubarah Fortress in Qatar - Terrestrial Laser Scanning VS. Dense Image Matching
NASA Astrophysics Data System (ADS)
Kersten, T.; Mechelke, K.; Maziull, L.
2015-02-01
In September 2011 the fortress Al Zubarah, built in 1938 as a typical Arabic fortress and restored in 1987 as a museum, was recorded by the HafenCity University Hamburg using terrestrial laser scanning with the IMAGER 5006h and digital photogrammetry for the Qatar Museum Authority within the framework of the Qatar Islamic Archaeology and Heritage Project. One goal of the object recording was to provide detailed 2D/3D documentation of the fortress. This was used to complete specific detailed restoration work in the recent years. From the registered laser scanning point clouds several cuttings and 2D plans were generated as well as a 3D surface model by triangle meshing. Additionally, point clouds and surface models were automatically generated from digital imagery from a Nikon D70 using the open-source software Bundler/PMVS2, free software VisualSFM, Autodesk Web Service 123D Catch beta, and low-cost software Agisoft PhotoScan. These outputs were compared with the results from terrestrial laser scanning. The point clouds and surface models derived from imagery could not achieve the same quality of geometrical accuracy as laser scanning (i.e. 1-2 cm).
Development of a new software for analyzing 3-D fracture network
NASA Astrophysics Data System (ADS)
Um, Jeong-Gi; Noh, Young-Hwan; Choi, Yosoon
2014-05-01
A new software is presented to analyze fracture network in 3-D. Recently, we completed the software package based on information given in EGU2013. The software consists of several modules that play roles in management of borehole data, stochastic modelling of fracture network, construction of analysis domain, visualization of fracture geometry in 3-D, calculation of equivalent pipes and production of cross-section diagrams. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. A case study was performed to analyze 3-D fracture network system at the Upper Devonian Grosmont Formation in Alberta, Canada. The results have suggested that the developed software is effective in modelling and visualizing 3-D fracture network system, and can provide useful information to tackle the geomechanical problems related to strength, deformability and hydraulic behaviours of the fractured rock masses. This presentation describes the concept and details of the development and implementation of the software.
Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system.
Lee, Wan-Sun; Lee, Du-Hyeong; Lee, Kyu-Bok
2017-08-01
This study is to evaluate the internal fit of the crown manufactured by CAD/CAM milling method and 3D printing method. The master model was fabricated with stainless steel by using CNC machine and the work model was created from the vinyl-polysiloxane impression. After scanning the working model, the design software is used to design the crown. The saved STL file is used on the CAD/CAM milling method and two types of 3D printing method to produce 10 interim crowns per group. Internal discrepancy measurement uses the silicon replica method and the measured data are analyzed with One-way ANOVA to verify the statistic significance. The discrepancy means (standard deviation) of the 3 groups are 171.6 (97.4) µm for the crown manufactured by the milling system and 149.1 (65.9) and 91.1 (36.4) µm, respectively, for the crowns manufactured with the two types of 3D printing system. There was a statistically significant difference and the 3D printing system group showed more outstanding value than the milling system group. The marginal and internal fit of the interim restoration has more outstanding 3D printing method than the CAD/CAM milling method. Therefore, the 3D printing method is considered as applicable for not only the interim restoration production, but also in the dental prosthesis production with a higher level of completion.
Complete-block scheduling for advanced pharmacy practice experiences.
Hatton, Randy C; Weitzel, Kristin W
2013-12-01
An innovative approach to meeting increased student demand for advanced pharmacy practice experiences (APPEs) is described, including lessons learned during a two-year pilot project. To achieve more efficient allocation of preceptor resources, the University of Florida College of Pharmacy (UFCOP) adopted a new APPE rotation model in which 20 pharmacy students per year complete all required and elective APPEs at one practice site, an affiliated academic medical center. Relative to the prevailing model of experiential training for Pharm.D. students, the "complete-block scheduling" model offers a number of potential benefits to students, preceptors, and the pharmacy school. In addition to potentially reduced student housing expenses and associated conveniences, complete-block scheduling may enable (1) more efficient use of teaching resources, (2) increased collaboration among preceptors, (3) greater continuity and standardization of educational experiences, and (4) enhanced opportunities for students to engage in longer and more complex research projects. The single-site APPE rotation model also can provide value to the training site by enabling the extension of clinical pharmacy services; for example, UFCOP students perform anticoagulation monitoring and discharge medication counseling at the host institution. Despite logistical and other challenges encountered during pilot testing of the new scheduling model, the program has been well received by students and preceptors alike. Complete-block APPE scheduling is a viable model for some health systems to consider as a means of streamlining experiential education practices and helping to ensure high-quality clinical rotations for Pharm.D. students.
Computed 3D visualisation of an extinct cephalopod using computer tomographs.
Lukeneder, Alexander
2012-08-01
The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites . Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.
Computed 3D visualisation of an extinct cephalopod using computer tomographs
NASA Astrophysics Data System (ADS)
Lukeneder, Alexander
2012-08-01
The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.
Computed 3D visualisation of an extinct cephalopod using computer tomographs
Lukeneder, Alexander
2012-01-01
The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal. PMID:24850976
The research of laryngeal joints to reconstruction and modeling.
Zhang, Yi; Shi, Tingchun
2014-01-01
Larynx has a complex structure with joints and multiple functions. In order to study the artificial larynx and artificial auricle scaffold, a three-dimensional digital model of laryngeal joint is established in this paper using MIMICS with its biomechanical properties analyzed and calculated by using the finite element method. This model is based on the CT scanned images of 281 layers with an interlamellar spacing of 1.25 mm. The obtained data are denoised, segmented and smoothed before being loaded into MIMICS. By further optimizations, an accurate and complete 3D model can be obtained. Subsequently, a 3D FEM of the normal larynx joint is performed which allows observations from any dimensions and angles. Compared with natural laryngeal joint, this model has good geometric similarity and mechanically similar throat voicing functions.
A geographic data model for representing ground water systems.
Strassberg, Gil; Maidment, David R; Jones, Norm L
2007-01-01
The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.
Simulation of Asymmetric Destabilization of Mine-void Rock Masses Using a Large 3D Physical Model
NASA Astrophysics Data System (ADS)
Lai, X. P.; Shan, P. F.; Cao, J. T.; Cui, F.; Sun, H.
2016-02-01
When mechanized sub-horizontal section top coal caving (SSTCC) is used as an underground mining method for exploiting extremely steep and thick coal seams (ESTCS), a large-scale surrounding rock caving may be violently created and have the potential to induce asymmetric destabilization from mine voids. In this study, a methodology for assessing the destabilization was developed to simulate the Weihuliang coal mine in the Urumchi coal field, China. Coal-rock mass and geological structure characterization were integrated with rock mechanics testing for assessment of the methodology and factors influencing asymmetric destabilization. The porous rock-like composite material ensured accuracy for building a 3D geological physical model of mechanized SSTCC by combining multi-mean timely track monitoring including acoustic emission, crack optical acquirement, roof separation observation, and close-field photogrammetry. An asymmetric 3D modeling analysis for destabilization characteristics was completed. Data from the simulated hydraulic support and buried pressure sensor provided effective information that was linked with stress-strain relationship of the working face in ESTCS. The results of the 3D physical model experiments combined with hybrid statistical methods were effective for predicting dynamic hazards in ESTCS.
Simple Models of the Spatial Distribution of Cloud Radiative Properties for Remote Sensing Studies
NASA Technical Reports Server (NTRS)
2004-01-01
This project aimed to assess the degree to which estimates of three-dimensional cloud structure can be inferred from a time series of profiles obtained at a point. The work was motivated by the desire to understand the extent to which high-frequency profiles of the atmosphere (e.g. ARM data streams) can be used to assess the magnitude of non-plane parallel transfer of radiation in thc atmosphere. We accomplished this by performing an observing system simulation using a large-eddy simulation and a Monte Carlo radiative transfer model. We define the 3D effect as the part of the radiative transfer that isn't captured by one-dimensional radiative transfer calculations. We assess the magnitude of the 3D effect in small cumulus clouds by using a fine-scale cloud model to simulate many hours of cloudiness over a continental site. We then use a Monte Carlo radiative transfer model to compute the broadband shortwave fluxes at the surface twice, once using the complete three-dimensional radiative transfer F(sup 3D), and once using the ICA F (sup ICA); the difference between them is the 3D effect given.
Toroidal Ampere-Faraday Equations Solved Simultaneously with CQL3D Fokker-Planck Time-Evolution
NASA Astrophysics Data System (ADS)
Harvey, R. W. (Bob); Petrov, Yu. V. (Yuri); Forest, C. B.; La Haye, R. J.
2017-10-01
A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). We discuss benchmarking and first applications of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to (1) resistive turn on of applied electron cyclotron current in the DIII-D tokamak giving initial back current adjacent to the direct CD region and having possible NTM stabilization implications, and (2) runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in pellet injection, massive gas injection, or a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we perform full-radius modeling and examine modifications due to the more complete Ampere-Faraday solution. Presently, the implementation relies on a fixed shape eqdsk, and this limitation will be addressed in future work. Research supported by USDOE FES award ER54744.
Virtual Reality Simulation of the Effects of Microgravity in Gastrointestinal Physiology
NASA Technical Reports Server (NTRS)
Compadre, Cesar M.
1998-01-01
The ultimate goal of this research is to create an anatomically accurate three-dimensional (3D) simulation model of the effects of microgravity in gastrointestinal physiology and to explore the role that such changes may have in the pharmacokinetics of drugs given to the space crews for prevention or therapy. To accomplish this goal the specific aims of this research are: 1) To generate a complete 3-D reconstructions of the human GastroIntestinal (GI) tract of the male and female Visible Humans. 2) To develop and implement time-dependent computer algorithms to simulate the GI motility using the above 3-D reconstruction.
a Low-Cost and Portable System for 3d Reconstruction of Texture-Less Objects
NASA Astrophysics Data System (ADS)
Hosseininaveh, A.; Yazdan, R.; Karami, A.; Moradi, M.; Ghorbani, F.
2015-12-01
The optical methods for 3D modelling of objects can be classified into two categories including image-based and range-based methods. Structure from Motion is one of the image-based methods implemented in commercial software. In this paper, a low-cost and portable system for 3D modelling of texture-less objects is proposed. This system includes a rotating table designed and developed by using a stepper motor and a very light rotation plate. The system also has eight laser light sources with very dense and strong beams which provide a relatively appropriate pattern on texture-less objects. In this system, regarding to the step of stepper motor, images are semi automatically taken by a camera. The images can be used in structure from motion procedures implemented in Agisoft software.To evaluate the performance of the system, two dark objects were used. The point clouds of these objects were obtained by spraying a light powders on the objects and exploiting a GOM laser scanner. Then these objects were placed on the proposed turntable. Several convergent images were taken from each object while the laser light sources were projecting the pattern on the objects. Afterward, the images were imported in VisualSFM as a fully automatic software package for generating an accurate and complete point cloud. Finally, the obtained point clouds were compared to the point clouds generated by the GOM laser scanner. The results showed the ability of the proposed system to produce a complete 3D model from texture-less objects.
Korez, Robert; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž
2014-10-01
Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. Although conservative treatment for low back pain may provide relief to most individuals, surgical intervention may be required for individuals with significant continuing symptoms, which is usually performed by replacing the degenerated intervertebral disc with an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study, we propose a method for parametric modeling of the intervertebral disc space in three dimensions (3D) and show its application to computed tomography (CT) images of the lumbar spine. The initial 3D model of the intervertebral disc space is generated according to the superquadric approach and therefore represented by a truncated elliptical cone, which is initialized by parameters obtained from 3D models of adjacent vertebral bodies. In an optimization procedure, the 3D model of the intervertebral disc space is incrementally deformed by adding parameters that provide a more detailed morphometric description of the observed shape, and aligned to the observed intervertebral disc space in the 3D image. By applying the proposed method to CT images of 20 lumbar spines, the shape and pose of each of the 100 intervertebral disc spaces were represented by a 3D parametric model. The resulting mean (±standard deviation) accuracy of modeling was 1.06±0.98mm in terms of radial Euclidean distance against manually defined ground truth points, with the corresponding success rate of 93% (i.e. 93 out of 100 intervertebral disc spaces were modeled successfully). As the resulting 3D models provide a description of the shape of intervertebral disc spaces in a complete parametric form, morphometric analysis was straightforwardly enabled and allowed the computation of the corresponding heights, widths and volumes, as well as of other geometric features that in detail describe the shape of intervertebral disc spaces. Copyright © 2014 Elsevier Ltd. All rights reserved.
Three Dimentional Reconstruction of Large Cultural Heritage Objects Based on Uav Video and Tls Data
NASA Astrophysics Data System (ADS)
Xu, Z.; Wu, T. H.; Shen, Y.; Wu, L.
2016-06-01
This paper investigates the synergetic use of unmanned aerial vehicle (UAV) and terrestrial laser scanner (TLS) in 3D reconstruction of cultural heritage objects. Rather than capturing still images, the UAV that equips a consumer digital camera is used to collect dynamic videos to overcome its limited endurance capacity. Then, a set of 3D point-cloud is generated from video image sequences using the automated structure-from-motion (SfM) and patch-based multi-view stereo (PMVS) methods. The TLS is used to collect the information that beyond the reachability of UAV imaging e.g., partial building facades. A coarse to fine method is introduced to integrate the two sets of point clouds UAV image-reconstruction and TLS scanning for completed 3D reconstruction. For increased reliability, a variant of ICP algorithm is introduced using local terrain invariant regions in the combined designation. The experimental study is conducted in the Tulou culture heritage building in Fujian province, China, which is focused on one of the TuLou clusters built several hundred years ago. Results show a digital 3D model of the Tulou cluster with complete coverage and textural information. This paper demonstrates the usability of the proposed method for efficient 3D reconstruction of heritage object based on UAV video and TLS data.
Cone beam computed tomography of plastinated hearts for instruction of radiological anatomy.
Chang, Chih-Wei; Atkinson, Gregory; Gandhi, Niket; Farrell, Michael L; Labrash, Steven; Smith, Alice B; Norton, Neil S; Matsui, Takashi; Lozanoff, Scott
2016-09-01
Radiological anatomy education is an important aspect of the medical curriculum. The purpose of this study was to establish and demonstrate the use of plastinated anatomical specimens, specifically human hearts, for use in radiological anatomy education. Four human hearts were processed with routine plastination procedures at room temperature. Specimens were subjected to cone beam computed tomography and a graphics program (ER3D) was applied to generate 3D cardiac models. A comparison was conducted between plastinated hearts and their corresponding computer models based on a list of morphological cardiac features commonly studied in the gross anatomy laboratory. Results showed significant correspondence between plastinations and CBCT-generated 3D models (98 %; p < .01) for external structures and 100 % for internal cardiac features, while 85 % correspondence was achieved between plastinations and 2D CBCT slices. Complete correspondence (100 %) was achieved between key observations on the plastinations and internal radiological findings typically required of medical student. All pathologic features seen on the plastinated hearts were also visualized internally with the CBCT-generated models and 2D slices. These results suggest that CBCT-derived slices and models can be successfully generated from plastinated material and provide accurate representations for radiological anatomy education.
Use of 3D models of vascular rings and slings to improve resident education.
Jones, Trahern W; Seckeler, Michael D
2017-09-01
Three-dimensional (3D) printing is a manufacturing method by which an object is created in an additive process, and can be used with medical imaging data to generate accurate physical reproductions of organs and tissues for a variety of applications. We hypothesized that using 3D printed models of congenital cardiovascular lesions to supplement an educational lecture would improve learners' scores on a board-style examination. Patients with normal and abnormal aortic arches were selected and anonymized to generate 3D printed models. A cohort of pediatric and combined pediatric/emergency medicine residents were then randomized to intervention and control groups. Each participant was given a subjective survey and an objective board-style pretest. Each group received the same 20-minutes lecture on vascular rings and slings. During the intervention group's lecture, 3D printed physical models of each lesion were distributed for inspection. After each lecture, both groups completed the same subjective survey and objective board-style test to assess their comfort with and postlecture knowledge of vascular rings. There were no differences in the basic demographics of the two groups. After the lectures, both groups' subjective comfort levels increased. Both groups' scores on the objective test improved, but the intervention group scored higher on the posttest. This study demonstrated a measurable gain in knowledge about vascular rings and pulmonary artery slings with the addition of 3D printed models of the defects. Future applications of this teaching modality could extend to other congenital cardiac lesions and different learners. © 2017 Wiley Periodicals, Inc.
Kraniak, Janice M; Chalasani, Anita; Wallace, Margaret R; Mattingly, Raymond R
2018-01-01
Plexiform neurofibromas (PNs), which may be present at birth in up to half of children with type 1 neurofibromatosis (NF1), can cause serious loss of function, such as quadriparesis, and can undergo malignant transformation. Surgery is the first line treatment although the invasive nature of these tumors often prevents complete resection. Recent clinical trials have shown promising success for some drugs, notably selumetinib, an inhibitor of MAP kinase kinase (MEK). We have developed three-dimensional (3D) cell culture models of immortalized cells from NF1 PNs and of control Schwann cells (SCs) that we believe mimic more closely the in vivo condition than conventional two-dimensional (2D) cell culture. Our goal is to facilitate pre-clinical identification of potential targeted therapeutics for these tumors. Three drugs, selumetinib (a MEK inhibitor), picropodophyllin (an IGF-1R inhibitor) and LDN-193189 (a BMP2 inhibitor) were tested with dose-response design in both 2D and 3D cultures for their abilities to block net cell growth. Cell lines grown in 3D conditions showed varying degrees of resistance to the inhibitory actions of all three drugs. For example, control SCs became resistant to growth inhibition by selumetinib in 3D culture. LDN-193189 was the most effective drug in 3D cultures, with only slightly reduced potency compared to the 2D cultures. Characterization of these models also demonstrated increased proteolysis of collagen IV in the matrix by the PN driver cells as compared to wild-type SCs. The proteolytic capacity of the PN cells in the model may be a clinically significant property that can be used for testing the ability of drugs to inhibit their invasive phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.
Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision.
Ender, Andreas; Mehl, Albert
2013-02-01
A new approach to both 3-dimensional (3D) trueness and precision is necessary to assess the accuracy of intraoral digital impressions and compare them to conventionally acquired impressions. The purpose of this in vitro study was to evaluate whether a new reference scanner is capable of measuring conventional and digital intraoral complete-arch impressions for 3D accuracy. A steel reference dentate model was fabricated and measured with a reference scanner (digital reference model). Conventional impressions were made from the reference model, poured with Type IV dental stone, scanned with the reference scanner, and exported as digital models. Additionally, digital impressions of the reference model were made and the digital models were exported. Precision was measured by superimposing the digital models within each group. Superimposing the digital models on the digital reference model assessed the trueness of each impression method. Statistical significance was assessed with an independent sample t test (α=.05). The reference scanner delivered high accuracy over the entire dental arch with a precision of 1.6 ±0.6 µm and a trueness of 5.3 ±1.1 µm. Conventional impressions showed significantly higher precision (12.5 ±2.5 µm) and trueness values (20.4 ±2.2 µm) with small deviations in the second molar region (P<.001). Digital impressions were significantly less accurate with a precision of 32.4 ±9.6 µm and a trueness of 58.6 ±15.8µm (P<.001). More systematic deviations of the digital models were visible across the entire dental arch. The new reference scanner is capable of measuring the precision and trueness of both digital and conventional complete-arch impressions. The digital impression is less accurate and shows a different pattern of deviation than the conventional impression. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
Three-dimensional magnetotelluric axial anisotropic forward modeling and inversion
NASA Astrophysics Data System (ADS)
Cao, Hui; Wang, Kunpeng; Wang, Tao; Hua, Boguang
2018-06-01
Magnetotelluric (MT) data has been widely used to image underground electrical structural. However, when the significant axial resistivity anisotropy presents, how this influences three-dimensional MT data has not been resolved clearly yet. We here propose a scheme for three-dimensional modeling of MT data in presence of axial anisotropic resistivity, where the electromagnetic fields are decomposed into primary and secondary components. A 3D staggered-grid finite difference method is then used to resolve the resulting 3D governing equations. Numerical tests have completed to validate the correctness and accuracy of the present algorithm. A limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize the 3D MT axial anisotropic inversion. The testing results show that, compared to the results of isotropic resistivity inversion, taking account the axial anisotropy can much improve the inverted results.
Vertebral derotation in adolescent idiopathic scoliosis causes hypokyphosis of the thoracic spine
2012-01-01
Background The purpose of this study was to test the hypothesis that direct vertebral derotation by pedicle screws (PS) causes hypokyphosis of the thoracic spine in adolescent idiopathic scoliosis (AIS) patients, using computer simulation. Methods Twenty AIS patients with Lenke type 1 or 2 who underwent posterior correction surgeries using PS were included in this study. Simulated corrections of each patient’s scoliosis, as determined by the preoperative CT scan data, were performed on segmented 3D models of the whole spine. Two types of simulated extreme correction were performed: 1) complete coronal correction only (C method) and 2) complete coronal correction with complete derotation of vertebral bodies (C + D method). The kyphosis angle (T5-T12) and vertebral rotation angle at the apex were measured before and after the simulated corrections. Results The mean kyphosis angle after the C + D method was significantly smaller than that after the C method (2.7 ± 10.0° vs. 15.0 ± 7.1°, p < 0.01). The mean preoperative apical rotation angle of 15.2 ± 5.5° was completely corrected after the C + D method (0°) and was unchanged after the C method (17.6 ± 4.2°). Conclusions In the 3D simulation study, kyphosis was reduced after complete correction of the coronal and rotational deformity, but it was maintained after the coronal-only correction. These results proved the hypothesis that the vertebral derotation obtained by PS causes hypokyphosis of the thoracic spine. PMID:22691717
The GPRIME approach to finite element modeling
NASA Technical Reports Server (NTRS)
Wallace, D. R.; Mckee, J. H.; Hurwitz, M. M.
1983-01-01
GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data.
Development of the mouse cochlea database (MCD).
Santi, Peter A; Rapson, Ian; Voie, Arne
2008-09-01
The mouse cochlea database (MCD) provides an interactive, image database of the mouse cochlea for learning its anatomy and data mining of its resources. The MCD website is hosted on a centrally maintained, high-speed server at the following URL: (http://mousecochlea.umn.edu). The MCD contains two types of image resources, serial 2D image stacks and 3D reconstructions of cochlear structures. Complete image stacks of the cochlea from two different mouse strains were obtained using orthogonal plane fluorescence optical microscopy (OPFOS). 2D images of the cochlea are presented on the MCD website as: viewable images within a stack, 2D atlas of the cochlea, orthogonal sections, and direct volume renderings combined with isosurface reconstructions. In order to assess cochlear structures quantitatively, "true" cross-sections of the scala media along the length of the basilar membrane were generated by virtual resectioning of a cochlea orthogonal to a cochlear structure, such as the centroid of the basilar membrane or the scala media. 3D images are presented on the MCD website as: direct volume renderings, movies, interactive QuickTime VRs, flythrough, and isosurface 3D reconstructions of different cochlear structures. 3D computer models can also be used for solid model fabrication by rapid prototyping and models from different cochleas can be combined to produce an average 3D model. The MCD is the first comprehensive image resource on the mouse cochlea and is a new paradigm for understanding the anatomy of the cochlea, and establishing morphometric parameters of cochlear structures in normal and mutant mice.
D Building FAÇADE Reconstruction Using Handheld Laser Scanning Data
NASA Astrophysics Data System (ADS)
Sadeghi, F.; Arefi, H.; Fallah, A.; Hahn, M.
2015-12-01
3D The three dimensional building modelling has been an interesting topic of research for decades and it seems that photogrammetry methods provide the only economic means to acquire truly 3D city data. According to the enormous developments of 3D building reconstruction with several applications such as navigation system, location based services and urban planning, the need to consider the semantic features (such as windows and doors) becomes more essential than ever, and therefore, a 3D model of buildings as block is not any more sufficient. To reconstruct the façade elements completely, we employed the high density point cloud data that obtained from the handheld laser scanner. The advantage of the handheld laser scanner with capability of direct acquisition of very dense 3D point clouds is that there is no need to derive three dimensional data from multi images using structure from motion techniques. This paper presents a grammar-based algorithm for façade reconstruction using handheld laser scanner data. The proposed method is a combination of bottom-up (data driven) and top-down (model driven) methods in which, at first the façade basic elements are extracted in a bottom-up way and then they are served as pre-knowledge for further processing to complete models especially in occluded and incomplete areas. The first step of data driven modelling is using the conditional RANSAC (RANdom SAmple Consensus) algorithm to detect façade plane in point cloud data and remove noisy objects like trees, pedestrians, traffic signs and poles. Then, the façade planes are divided into three depth layers to detect protrusion, indentation and wall points using density histogram. Due to an inappropriate reflection of laser beams from glasses, the windows appear like holes in point cloud data and therefore, can be distinguished and extracted easily from point cloud comparing to the other façade elements. Next step, is rasterizing the indentation layer that holds the windows and doors information. After rasterization process, the morphological operators are applied in order to remove small irrelevant objects. Next, the horizontal splitting lines are employed to determine floors and vertical splitting lines are employed to detect walls, windows, and doors. The windows, doors and walls elements which are named as terminals are clustered during classification process. Each terminal contains a special property as width. Among terminals, windows and doors are named the geometry tiles in definition of the vocabularies of grammar rules. Higher order structures that inferred by grouping the tiles resulted in the production rules. The rules with three dimensional modelled façade elements constitute formal grammar that is named façade grammar. This grammar holds all the information that is necessary to reconstruct façades in the style of the given building. Thus, it can be used to improve and complete façade reconstruction in areas with no or limited sensor data. Finally, a 3D reconstructed façade model is generated that the accuracy of its geometry size and geometry position depends on the density of the raw point cloud.
Wanderer, Stefan; Mrosek, Jan; Gessler, Florian; Seifert, Volker; Konczalla, Juergen
2018-02-01
Cerebral vasospasm following subarachnoid haemorrhage (SAH) remains one of the major factors contributing to poor overall patient outcome. Prostaglandin F2-alpha (PGF2a) induces vasoconstriction. After SAH, PGF2a leads to cerebral inflammation and enhanced vasoconstriction, resulting in cerebral vasospasm. Losartan is already known to have beneficial effects in stroke models and also on several cerebral inflammatory processes. Therefore, the aim of the study was to analyse the effect of losartan on PGF2a-enhanced vasoconstriction after SAH. To investigate the effect of losartan on PGF2a-enhanced vasoconstriction after SAH, cerebral vasospasm was induced by a double-haemorrhage model. Rats were killed on day 3 and 5 after SAH followed by measurement of the isometric force of basilar artery ring segments in an organ bath. PGF2a induced a dose-dependent contraction. After pre-incubation with losartan, the maximum contraction (E max ) for sham-operated animals was significantly lowered [E max 6% in losartan 3 × 10 -4 molar (M) vs. 56% without losartan]. Also, after induced SAH, PGF2a induced no vasoconstriction in pre-incubated vessels with losartan 3 × 10 -4 M on day 3 (d3) as well as on day 5 (d5). For the vasorelaxative investigations, vessel segments were pre-incubated with PFG2a. Cumulative application of losartan completely resolved the pre-contraction in sham-operated animals (non SAH: 95% relaxation). After SAH, losartan not only resolved the pre-contraction (d5: 103%), but also exceeded the pre-contraction (d3: 119%). Therefore, a statistically significantly increased and earlier relaxation was calculated for all losartan concentrations [E max (d3/d5) and pD 2 (d3/d5)] compared with the solvent control group. In a physiological and pathophysiological setup, losartan reduces a PGF2-induced vasoconstriction and reverses a PGF2a-precontraction completely. This fact can be integrated in pushing forward further concepts trying to antagonise/prevent cerebral vasospasm after SAH.
Garcia, Justine; Yang, ZhiLin; Mongrain, Rosaire; Leask, Richard L; Lachapelle, Kevin
2018-01-01
3D printing is a new technology in constant evolution. It has rapidly expanded and is now being used in health education. Patient-specific models with anatomical fidelity created from imaging dataset have the potential to significantly improve the knowledge and skills of a new generation of surgeons. This review outlines five technical steps required to complete a printed model: They include (1) selecting the anatomical area of interest, (2) the creation of the 3D geometry, (3) the optimisation of the file for the printing and the appropriate selection of (4) the 3D printer and (5) materials. All of these steps require time, expertise and money. A thorough understanding of educational needs is therefore essential in order to optimise educational value. At present, most of the available printing materials are rigid and therefore not optimum for flexibility and elasticity unlike biological tissue. We believe that the manipuation and tuning of material properties through the creation of composites and/or blending materials will eventually allow for the creation of patient-specific models which have both anatomical and tissue fidelity. PMID:29354281
Garcia, Justine; Yang, ZhiLin; Mongrain, Rosaire; Leask, Richard L; Lachapelle, Kevin
2018-01-01
3D printing is a new technology in constant evolution. It has rapidly expanded and is now being used in health education. Patient-specific models with anatomical fidelity created from imaging dataset have the potential to significantly improve the knowledge and skills of a new generation of surgeons. This review outlines five technical steps required to complete a printed model: They include (1) selecting the anatomical area of interest, (2) the creation of the 3D geometry, (3) the optimisation of the file for the printing and the appropriate selection of (4) the 3D printer and (5) materials. All of these steps require time, expertise and money. A thorough understanding of educational needs is therefore essential in order to optimise educational value. At present, most of the available printing materials are rigid and therefore not optimum for flexibility and elasticity unlike biological tissue. We believe that the manipuation and tuning of material properties through the creation of composites and/or blending materials will eventually allow for the creation of patient-specific models which have both anatomical and tissue fidelity.
3D modeling of a dolerite intrusion from the photogrammetric and geophysical data integration.
NASA Astrophysics Data System (ADS)
Duarte, João; Machadinho, Ana; Figueiredo, Fernando; Mira, Maria
2015-04-01
The aims of this study is create a methodology based on the integration of data obtained from various available technologies, which allow a credible and complete evaluation of rock masses. In this particular case of a dolerite intrusion, which deployed an exploration of aggregates and belongs to the Jobasaltos - Extracção e Britagem. S.A.. Dolerite intrusion is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones. The integration of the surface and subsurface mapping, obtained by technology UAVs (Drone) and geophysical surveys (Electromagnetic Method - TEM 48 FAST), allows the construction of 2D and 3D models of the study local. The combination of the 3D point clouds produced from two distinct processes, modeling of photogrammetric and geophysical data, will be the basis for the construction of a single model of set. The rock masses in an integral perspective being visible their development above the surface and subsurface. The presentation of 2D and 3D models will give a perspective of structures, fracturation, lithology and their spatial correlations contributing to a better local knowledge, as well as its potential for the intended purpose. From these local models it will be possible to characterize and quantify the geological structures. These models will have its importance as a tool to assist in the analysis and drafting of regional models. The qualitative improvement in geological/structural modeling, seeks to reduce the value of characterization/cost ratio, in phase of prospecting, improving the investment/benefit ratio. This methodology helps to assess more accurately the economic viability of the projects.
Tactical 3D model generation using structure-from-motion on video from unmanned systems
NASA Astrophysics Data System (ADS)
Harguess, Josh; Bilinski, Mark; Nguyen, Kim B.; Powell, Darren
2015-05-01
Unmanned systems have been cited as one of the future enablers of all the services to assist the warfighter in dominating the battlespace. The potential benefits of unmanned systems are being closely investigated -- from providing increased and potentially stealthy surveillance, removing the warfighter from harms way, to reducing the manpower required to complete a specific job. In many instances, data obtained from an unmanned system is used sparingly, being applied only to the mission at hand. Other potential benefits to be gained from the data are overlooked and, after completion of the mission, the data is often discarded or lost. However, this data can be further exploited to offer tremendous tactical, operational, and strategic value. To show the potential value of this otherwise lost data, we designed a system that persistently stores the data in its original format from the unmanned vehicle and then generates a new, innovative data medium for further analysis. The system streams imagery and video from an unmanned system (original data format) and then constructs a 3D model (new data medium) using structure-from-motion. The 3D generated model provides warfighters additional situational awareness, tactical and strategic advantages that the original video stream lacks. We present our results using simulated unmanned vehicle data with Google Earth™providing the imagery as well as real-world data, including data captured from an unmanned aerial vehicle flight.
3D Hall MHD-EPIC Simulations of Ganymede's Magnetosphere
NASA Astrophysics Data System (ADS)
Zhou, H.; Toth, G.; Jia, X.
2017-12-01
Fully kinetic modeling of a complete 3D magnetosphere is still computationally expensive and not feasible on current computers. While magnetohydrodynamic (MHD) models have been successfully applied to a wide range of plasma simulation, they cannot capture some important kinetic effects. We have recently developed a new modeling tool to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) magnetohydrodynamic model. This results in a kinetic model of the regions where kinetic effects are important. In addition to the MHD-EPIC modeling of the magnetosphere, the improved model presented here is now able to represent the moon as a resistive body. We use a stretched spherical grid with adaptive mesh refinement (AMR) to capture the resistive body and its boundary. A semi-implicit scheme is employed for solving the magnetic induction equation to allow time steps that are not limited by the resistivity. We have applied the model to Ganymede, the only moon in the solar system known to possess a strong intrinsic magnetic field, and included finite resistivity beneath the moon`s surface to model the electrical properties of the interior in a self-consistent manner. The kinetic effects of electrons and ions on the dayside magnetopause and tail current sheet are captured with iPIC3D. Magnetic reconnections under different upstream background conditions of several Galileo flybys are simulated to study the global reconnection rate and the magnetospheric dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, D. S.; Marinak, M. M.; Weber, C. R.
2015-02-15
The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies andmore » that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.« less
NASA Technical Reports Server (NTRS)
Veres, Joseph
2001-01-01
This report outlines the detailed simulation of Aircraft Turbofan Engine. The objectives were to develop a detailed flow model of a full turbofan engine that runs on parallel workstation clusters overnight and to develop an integrated system of codes for combustor design and analysis to enable significant reduction in design time and cost. The model will initially simulate the 3-D flow in the primary flow path including the flow and chemistry in the combustor, and ultimately result in a multidisciplinary model of the engine. The overnight 3-D simulation capability of the primary flow path in a complete engine will enable significant reduction in the design and development time of gas turbine engines. In addition, the NPSS (Numerical Propulsion System Simulation) multidisciplinary integration and analysis are discussed.
NASA Astrophysics Data System (ADS)
Blaser, S.; Nebiker, S.; Cavegn, S.
2017-05-01
Image-based mobile mapping systems enable the efficient acquisition of georeferenced image sequences, which can later be exploited in cloud-based 3D geoinformation services. In order to provide a 360° coverage with accurate 3D measuring capabilities, we present a novel 360° stereo panoramic camera configuration. By using two 360° panorama cameras tilted forward and backward in combination with conventional forward and backward looking stereo camera systems, we achieve a full 360° multi-stereo coverage. We furthermore developed a fully operational new mobile mapping system based on our proposed approach, which fulfils our high accuracy requirements. We successfully implemented a rigorous sensor and system calibration procedure, which allows calibrating all stereo systems with a superior accuracy compared to that of previous work. Our study delivered absolute 3D point accuracies in the range of 4 to 6 cm and relative accuracies of 3D distances in the range of 1 to 3 cm. These results were achieved in a challenging urban area. Furthermore, we automatically reconstructed a 3D city model of our study area by employing all captured and georeferenced mobile mapping imagery. The result is a very high detailed and almost complete 3D city model of the street environment.
Grammar-Supported 3d Indoor Reconstruction from Point Clouds for As-Built Bim
NASA Astrophysics Data System (ADS)
Becker, S.; Peter, M.; Fritsch, D.
2015-03-01
The paper presents a grammar-based approach for the robust automatic reconstruction of 3D interiors from raw point clouds. The core of the approach is a 3D indoor grammar which is an extension of our previously published grammar concept for the modeling of 2D floor plans. The grammar allows for the modeling of buildings whose horizontal, continuous floors are traversed by hallways providing access to the rooms as it is the case for most office buildings or public buildings like schools, hospitals or hotels. The grammar is designed in such way that it can be embedded in an iterative automatic learning process providing a seamless transition from LOD3 to LOD4 building models. Starting from an initial low-level grammar, automatically derived from the window representations of an available LOD3 building model, hypotheses about indoor geometries can be generated. The hypothesized indoor geometries are checked against observation data - here 3D point clouds - collected in the interior of the building. The verified and accepted geometries form the basis for an automatic update of the initial grammar. By this, the knowledge content of the initial grammar is enriched, leading to a grammar with increased quality. This higher-level grammar can then be applied to predict realistic geometries to building parts where only sparse observation data are available. Thus, our approach allows for the robust generation of complete 3D indoor models whose quality can be improved continuously as soon as new observation data are fed into the grammar-based reconstruction process. The feasibility of our approach is demonstrated based on a real-world example.
Case report of asthma associated with 3D printing.
House, R; Rajaram, N; Tarlo, S M
2017-12-02
Three-dimensional (3D) printing is being increasingly used in manufacturing and by small business entrepreneurs and home hobbyists. Exposure to airborne emissions during 3D printing raises the issue of whether there may be adverse health effects associated with these emissions. We present a case of a worker who developed asthma while using 3D printers, which illustrates that respiratory problems may be associated with 3D printer emissions. The patient was a 28-year-old self-employed businessman with a past history of asthma in childhood, which had resolved completely by the age of eight. He started using 10 fused deposition modelling 3D printers with acrylonitrile-butadiene-styrene filaments in a small work area of approximately 3000 cubic feet. Ten days later, he began to experience recurrent chest tightness, shortness of breath and coughing at work. After 3 months, his work environment was modified by reducing the number of printers, changing to polylactic acid filaments and using an air purifier with an high-efficiency particulate air filter and organic cartridge. His symptoms improved gradually, although he still needed periodic treatment with a salbutamol inhaler. While still symptomatic, a methacholine challenge indicated a provocation concentration causing a 20% fall in FEV1 (PC20) of 4 mg/ml, consistent with mild asthma. Eventually, his symptoms resolved completely and a second methacholine challenge after symptom resolution was normal (PC20 > 16 mg/ml). This case indicates that workers may develop respiratory problems, including asthma when using 3D printers. Further investigation of the specific airborne emissions and health problems from 3D printing is warranted. © The Author 2017. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com
TLS and photogrammetry for the modeling of a historic wooden framework
NASA Astrophysics Data System (ADS)
Koehl, M.; Viale, M.
2012-04-01
The building which is the object of the study is located in the center of Andlau, France. This mansion that was built in 1582 was the residence of the Lords of Andlau from the XVIth century until the French Revolution. Its architecture represents the Renaissance style of the XVIth century in particular by its volutes and its spiral staircase inside the polygonal turret. In January 2005, the municipality of Andlau became the owner of this Seigneury which is intended to welcome the future Heritage Interpretation Center (HIC), a museum is also going to be created there. Three levels of attic of this building are going to be restored and isolated, the historic framework will that way be masked and the last three levels will not be accessible any more. In this context, our lab was asked to model the framework to allow to make diagnoses there, to learn to know and to consolidate the knowledge on this type of historic framework. Finally, next to a virtual visualization, we provided other applications in particular the creation of an accurate 3D model of the framework for animations, as well as for foundation of an historical information system and for supplying the future museum and HIC with digital data. The project contains different phases: the data acquisition, the model creation and data structuring, the creation of an interactive model and the integration in a historic information system. All levels of the attic were acquired: a 3D Trimble GX scanner and partially a Trimble CX scanner were used in particular for the acquisition of data in the highest part of the framework. The various scans were directly georeferenced in the field thanks to control points, then merged together in an unique point cloud covering the whole structure. Several panoramic photos were also realized to create a virtual tour of the framework and the surroundings of the Seigneury. The purpose of the project was to supply a 3D model allowing the creation of scenographies and interactive contents which will be integrated into an informative device. That way, the public can easily visualize the framework, manipulate the 3D model, discover the construction and the various parts of the historical wooden structure. The raw point cloud cannot be used for this kind of applications. It is thus necessary, from the data which it supplies, to create an exploitable model. Several parameters are to be taken into account: the level of detail of the 3D model, the necessary time to model all the beams, the weight of the final files and finally the type of applied texture. The idea was to implement a workflow to reconcile these various criteria, several methods were tested. This project allowed to create a range of solutions (3D models of the complete framework, virtual tour, interactive 3D models, video animations) to allow an uninitiated public to take advantage of 3D material and software often reserved for the professionals. The work was completed by the comparison between a theoretical model of the framework and a more detailed model of the current state, which allowed to make diagnoses and to study the movements of the structure in the time and to supply important data for rehabilitation and renovation operations.
Application of Out-of-Plane Warping to Control Rotor Blade Twist
NASA Technical Reports Server (NTRS)
VanWeddingen, Yannick; Bauchau, Olivier; Kottapalli, Sesi; Ozbay, Serkan; Mehrotra, Yogesh
2012-01-01
The goal of this ongoing study is to develop and demonstrate the feasibility of a blade actuation system to dynamically change the twist, and/or the camber, of an airfoil section and, consequently, alter the in-flight aerodynamic loading on the blade for efficient flight control. The required analytical and finite element tools are under development to enable an accurate and comprehensive aeroelastic assessment of the current Full-Blade Warping and 3D Warping Actuated Trailing Edge Flap concepts. The feasibility of the current concepts for swashplateless rotors and higher harmonic blade control is also being investigated. In particular, the aim is to complete the following objectives, some of which have been completed (as noted below) and others that are currently ongoing: i) Develop a Vlasov finite element model and validate against the ABAQUS shell models (completed). ii) Implement the 3D warping actuation concept within the comprehensive analysis code DYMORE. iii) Perform preliminary aeroelastic simulations of blades using DYMORE with 3D warping actuation: a) Investigate the blade behavior under 1 per/rev actuation. Determine whether sufficient twist can be generated and sustained to achieve primary blade control. b) Investigate the behavior of a trailing edge flap configuration under higher harmonic excitations. Determine how much twist can be obtained at the harmonics 2-5 per/rev. iv) Determine actuator specifications such as the power required, load and displacements, and identify the stress and strain distributions in the actuated blades. In general, the completion of Item ii) above will give an additional research capability in rotorcraft dynamics analyses, i.e., the capability to calculate the rotor blade twist due to warping, something that is not currently available in any of the existing comprehensive rotorcraft analyses.
Lee, Junkyo; Lee, Min Woo; Choi, Dongil; Cha, Dong Ik; Lee, Sunyoung; Kang, Tae Wook; Yang, Jehoon; Jo, Jaemoon; Bang, Won-Chul; Kim, Jongsik; Shin, Dongkuk
2017-12-21
The purpose of this study was to evaluate the accuracy of an active contour model for estimating the posterior ablative margin in images obtained by the fusion of real-time ultrasonography (US) and 3-dimensional (3D) US or magnetic resonance (MR) images of an experimental tumor model for radiofrequency ablation. Chickpeas (n=12) and bovine rump meat (n=12) were used as an experimental tumor model. Grayscale 3D US and T1-weighted MR images were pre-acquired for use as reference datasets. US and MR/3D US fusion was performed for one group (n=4), and US and 3D US fusion only (n=8) was performed for the other group. Half of the models in each group were completely ablated, while the other half were incompletely ablated. Hyperechoic ablation areas were extracted using an active contour model from real-time US images, and the posterior margin of the ablation zone was estimated from the anterior margin. After the experiments, the ablated pieces of bovine rump meat were cut along the electrode path and the cut planes were photographed. The US images with the estimated posterior margin were compared with the photographs and post-ablation MR images. The extracted contours of the ablation zones from 12 US fusion videos and post-ablation MR images were also matched. In the four models fused under real-time US with MR/3D US, compression from the transducer and the insertion of an electrode resulted in misregistration between the real-time US and MR images, making the estimation of the ablation zones less accurate than was achieved through fusion between real-time US and 3D US. Eight of the 12 post-ablation 3D US images were graded as good when compared with the sectioned specimens, and 10 of the 12 were graded as good in a comparison with nicotinamide adenine dinucleotide staining and histopathologic results. Estimating the posterior ablative margin using an active contour model is a feasible way of predicting the ablation area, and US/3D US fusion was more accurate than US/MR fusion.
Measurement of the Three-Dimensional Vibration Motion of the Ossicular Chain in the Living Gerbil
NASA Astrophysics Data System (ADS)
Decraemer, Willem F.; de La Rochefoucauld, Ombeline; Olson, Elizabeth S.
2011-11-01
In previous studies 3D motion of the middle-ear ossicles in cat and human temporal bone were explored but models for hearing research has shifted in the last decades to smaller mammals and gerbil in particular has become a hearing model of first choice. In the present study we have measured with an optical interferometer the 3D motion of the malleus and incus in anesthetized gerbil for sound of moderate intensity (90 dB SPL) in a broad frequency range. To access the malleus and incus the pars flaccida was completely removed exposing the neck and head of the malleus and the incus from the malleus-incus joint to the long process of the incus and the plate of the lenticular process. In a previous study an approach through a hole in the bullar wall was used to study the stapes motion so that we now have a complete picture of the middle ear motion. In both approaches vibration measurements were done at 6 to 7 points per ossicle while the angle of observation was varied over approximately 30 degrees to enable calculation of the 3D velocity components. Knowledge of middle ear motion is of great importance in understanding how the middle ear transforms the acoustical input from the ear canal to the cochlea.
Al-Nakeeb, Zaid; Petraitis, Vidmantas; Goodwin, Joanne; Petraitiene, Ruta; Walsh, Thomas J.
2015-01-01
Amphotericin B is a first-line agent for the treatment of invasive aspergillosis. However, relatively little is known about the pharmacodynamics of amphotericin B for invasive pulmonary aspergillosis. We studied the pharmacokinetics (PK) and pharmacodynamics (PD) of amphotericin B deoxycholate (DAMB), amphotericin B lipid complex (ABLC), and liposomal amphotericin B (LAMB) by using a neutropenic-rabbit model of invasive pulmonary aspergillosis. The study endpoints were lung weight, infarct score, and levels of circulating galactomannan and (1→3)-β-d-glucan. Mathematical models were used to describe PK-PD relationships. The experimental findings were bridged to humans by Monte Carlo simulation. Each amphotericin B formulation induced a dose-dependent decline in study endpoints. Near-maximal antifungal activity was evident with DAMB at 1 mg/kg/day and ABLC and LAMB at 5 mg/kg/day. The bridging study suggested that the “average” patient receiving LAMB at 3 mg/kg/day was predicted to have complete suppression of galactomannan and (1→3)-β-d-glucan levels, but 20 to 30% of the patients still had a galactomannan index of >1 and (1→3)-β-d-glucan levels of >60 pg/ml. All formulations of amphotericin B induce a dose-dependent reduction in markers of lung injury and circulating fungus-related biomarkers. A clinical dosage of liposomal amphotericin B of 3 mg/kg/day is predicted to cause complete suppression of galactomannan and (1→3)-β-d-glucan levels in the majority of patients. PMID:25712363
Hsieh, Paul A.; Winston, Richard B.
2002-01-01
Model Viewer is a computer program that displays the results of three-dimensional groundwater models. Scalar data (such as hydraulic head or solute concentration) may be displayed as a solid or a set of isosurfaces, using a red-to-blue color spectrum to represent a range of scalar values. Vector data (such as velocity or specific discharge) are represented by lines oriented to the vector direction and scaled to the vector magnitude. Model Viewer can also display pathlines, cells or nodes that represent model features such as streams and wells, and auxiliary graphic objects such as grid lines and coordinate axes. Users may crop the model grid in different orientations to examine the interior structure of the data. For transient simulations, Model Viewer can animate the time evolution of the simulated quantities. The current version (1.0) of Model Viewer runs on Microsoft Windows 95, 98, NT and 2000 operating systems, and supports the following models: MODFLOW-2000, MODFLOW-2000 with the Ground-Water Transport Process, MODFLOW-96, MOC3D (Version 3.5), MODPATH, MT3DMS, and SUTRA (Version 2D3D.1). Model Viewer is designed to directly read input and output files from these models, thus minimizing the need for additional postprocessing. This report provides an overview of Model Viewer. Complete instructions on how to use the software are provided in the on-line help pages.
On the p, q-binomial distribution and the Ising model
NASA Astrophysics Data System (ADS)
Lundow, P. H.; Rosengren, A.
2010-08-01
We employ p, q-binomial coefficients, a generalisation of the binomial coefficients, to describe the magnetisation distributions of the Ising model. For the complete graph this distribution corresponds exactly to the limit case p = q. We apply our investigation to the simple d-dimensional lattices for d = 1, 2, 3, 4, 5 and fit p, q-binomial distributions to our data, some of which are exact but most are sampled. For d = 1 and d = 5, the magnetisation distributions are remarkably well-fitted by p,q-binomial distributions. For d = 4 we are only slightly less successful, while for d = 2, 3 we see some deviations (with exceptions!) between the p, q-binomial and the Ising distribution. However, at certain temperatures near T c the statistical moments of the fitted distribution agree with the moments of the sampled data within the precision of sampling. We begin the paper by giving results of the behaviour of the p, q-distribution and its moment growth exponents given a certain parameterisation of p, q. Since the moment exponents are known for the Ising model (or at least approximately for d = 3) we can predict how p, q should behave and compare this to our measured p, q. The results speak in favour of the p, q-binomial distribution's correctness regarding its general behaviour in comparison to the Ising model. The full extent to which they correctly model the Ising distribution, however, is not settled.
Atmospheric chemistry and transport modeling in the outer solar system
NASA Astrophysics Data System (ADS)
Lee, Yuan-Tai (Anthony)
2001-11-01
This thesis consists of 1-D and 2-D photochemical- dynamical modeling in the upper atmospheres of outer planets. For 1-D modeling, a unified hydrocarbon photochemical model has been studied in Jupiter, Saturn, Uranus, Neptune, and Titan, by comparing with the Voyager observations, and the recent measurements of methyl radicals by ISO in Saturn and Neptune. The CH3 observation implies a kinetically sensitive test to the measured and estimated hydrocarbon rate constants at low temperatures. We identify the key reactions that control the concentrations of CH3 in the model, such as the three-body recombination reaction, CH3 + CH3 + M --> C 2H6 + M, and the recycling reaction H + CH3 + M --> CH4 + M. The results show reasonable agreement with ISO values. In Chapter 4, the detection of PH3 in the lower stratosphere and upper troposphere of Jupiter has provided a photochemical- dynamical coupling model to derive the eddy diffusion coefficient in the upper troposphere of Jupiter. Using a two-layers photochemical model with updated photodissociation cross-sections and chemical rate constants for NH3 and PH 3, we find that the upper tropospheric eddy diffusion coefficient <10 5 cm2 sec-1, and the deeper tropospheric value >106 cm2 sec-1, are required to match the derived PH3 vertical profile by the observation. The best-fit functional form derivation of eddy diffusion coefficient in the upper troposphere of Jupiter above 400 mbar is K = 2.0 × 104 (n/2.2 × 1019)-0.5 cm 2 sec-1. On the other hand, Chapter 5 demonstrates a dynamical-only 2-D model of C2H6 providing a complete test for the current 2-D transport models in Jovian lower stratosphere and upper troposphere (270 to 0.1 mbar pressure levels). Different combinations of residual advection, horizontal eddy dispersion, and vertical eddy mixing are examined at different latitudes.
TeCo3D: a 3D telecooperation application based on VRML and Java
NASA Astrophysics Data System (ADS)
Mauve, Martin
1998-12-01
In this paper we present a method for sharing collaboration- unaware VRML content, e.g. 3D models which were not specifically developed for use in a distributed environment. This functionality is an essential requirement for the inclusion of arbitrary VRML content, as generated by standard CAD or animation software, into teleconferencing sessions. We have developed a 3D TeleCooperation (TeCo3D) prototype to demonstrate the feasibility of our approach. The basic services provided by the prototype are the distribution of cooperation unaware VRML content, the sharing of user interactions, and the joint viewing of the content. In order to achieve maximum portability, the prototype was developed completely in Java. This paper presents general aspects of sharing VRML content as well as the concepts, the architecture and the services of the TeCo3D prototype. Our approach relies on existing VRML browsers as the VRML presentation and execution engines while reliable multicast is used as the means of communication to provide for scalability.
Dashti-Naserabadi, H; Najafi, M N
2017-10-01
We present extensive numerical simulations of Bak-Tang-Wiesenfeld (BTW) sandpile model on the hypercubic lattice in the upper critical dimension D_{u}=4. After re-extracting the critical exponents of avalanches, we concentrate on the three- and two-dimensional (2D) cross sections seeking for the induced criticality which are reflected in the geometrical and local exponents. Various features of finite-size scaling (FSS) theory have been tested and confirmed for all dimensions. The hyperscaling relations between the exponents of the distribution functions and the fractal dimensions are shown to be valid for all dimensions. We found that the exponent of the distribution function of avalanche mass is the same for the d-dimensional cross sections and the d-dimensional BTW model for d=2 and 3. The geometrical quantities, however, have completely different behaviors with respect to the same-dimensional BTW model. By analyzing the FSS theory for the geometrical exponents of the two-dimensional cross sections, we propose that the 2D induced models have degrees of similarity with the Gaussian free field (GFF). Although some local exponents are slightly different, this similarity is excellent for the fractal dimensions. The most important one showing this feature is the fractal dimension of loops d_{f}, which is found to be 1.50±0.02≈3/2=d_{f}^{GFF}.
Strydom, G.; Epiney, A. S.; Alfonsi, Andrea; ...
2015-12-02
The PHISICS code system has been under development at INL since 2010. It consists of several modules providing improved coupled core simulation capability: INSTANT (3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and modules performing criticality searches, fuel shuffling and generalized perturbation. Coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D was finalized in 2013, and as part of the verification and validation effort the first phase of the OECD/NEA MHTGR-350 Benchmark has now been completed. The theoretical basis and latest development status of the coupled PHISICS/RELAP5-3D tool are described in more detailmore » in a concurrent paper. This paper provides an overview of the OECD/NEA MHTGR-350 Benchmark and presents the results of Exercises 2 and 3 defined for Phase I. Exercise 2 required the modelling of a stand-alone thermal fluids solution at End of Equilibrium Cycle for the Modular High Temperature Reactor (MHTGR). The RELAP5-3D results of four sub-cases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 required a coupled neutronics and thermal fluids solution, and the PHISICS/RELAP5-3D code suite was used to calculate the results of two sub-cases. The main focus of the paper is a comparison of results obtained with the traditional RELAP5-3D “ring” model approach against a much more detailed model that include kinetics feedback on individual block level and thermal feedbacks on a triangular sub-mesh. The higher fidelity that can be obtained by this “block” model is illustrated with comparison results on the temperature, power density and flux distributions. Furthermore, it is shown that the ring model leads to significantly lower fuel temperatures (up to 10%) when compared with the higher fidelity block model, and that the additional model development and run-time efforts are worth the gains obtained in the improved spatial temperature and flux distributions.« less
NASA Technical Reports Server (NTRS)
Evertt, Shonn F.; Collins, Michael; Hahn, William
2008-01-01
The International Space Station (ISS) Configuration Analysis Modeling and Mass Properties (CAMMP) Team is presenting a demo of certain CAMMP capabilities at a Booz Allen Hamilton conference in San Antonio. The team will be showing pictures of low fidelity, simplified ISS models, but no dimensions or technical data. The presentation will include a brief description of the contract and task, description and picture of the Topology, description of Generic Ground Rules and Constraints (GGR&C), description of Stage Analysis with constraints applied, and wrap up with description of other tasks such as Special Studies, Cable Routing, etc. The models include conceptual Crew Exploration Vehicle (CEV) and Lunar Lander images and animations created for promotional purposes, which are based entirely on public domain conceptual images from public NASA web sites and publicly available magazine articles and are not based on any actual designs, measurements, or 3D models. Conceptual Mars rover and lander are completely conceptual and are not based on any NASA designs or data. The demonstration includes High Fidelity Computer Aided Design (CAD) models of ISS provided by the ISS 3D CAD Team which will be used in a visual display to demonstrate the capabilities of the Teamcenter Visualization software. The demonstration will include 3D views of the CAD models including random measurements that will be taken to demonstrate the measurement tool. A 3D PDF file will be demonstrated of the Blue Book fidelity assembly complete model with no vehicles attached. The 3D zoom and rotation will be displayed as well as random measurements from the measurement tool. The External Configuration Analysis and Tracking Tool (ExCATT) Microsoft Access Database will be demonstrated to show its capabilities to organize and track hardware on ISS. The data included will be part numbers, serial numbers, historical, current, and future locations, of external hardware components on station. It includes dates of all external ISS events and flights and the associated hardware changes for each event. The hardware location information does not always reveal the exact location of the hardware, only the general location. In some cases the location is a module or carrier, in other cases it is a WIF socket, handrail, or attach point. Only small portions of the data will be displayed for demonstration purposes.
Metric Calibration of a Focused Plenoptic Camera Based on a 3d Calibration Target
NASA Astrophysics Data System (ADS)
Zeller, N.; Noury, C. A.; Quint, F.; Teulière, C.; Stilla, U.; Dhome, M.
2016-06-01
In this paper we present a new calibration approach for focused plenoptic cameras. We derive a new mathematical projection model of a focused plenoptic camera which considers lateral as well as depth distortion. Therefore, we derive a new depth distortion model directly from the theory of depth estimation in a focused plenoptic camera. In total the model consists of five intrinsic parameters, the parameters for radial and tangential distortion in the image plane and two new depth distortion parameters. In the proposed calibration we perform a complete bundle adjustment based on a 3D calibration target. The residual of our optimization approach is three dimensional, where the depth residual is defined by a scaled version of the inverse virtual depth difference and thus conforms well to the measured data. Our method is evaluated based on different camera setups and shows good accuracy. For a better characterization of our approach we evaluate the accuracy of virtual image points projected back to 3D space.
Nanoengineering Testbed for Nanosolar Cell and Piezoelectric Compounds
2012-02-29
element mesh. The third model was a 3D finite element mesh that included complete geometric representation of Berkovich tip. This model allows for a...height of the specimen. These simulations suggest the proper specimen size to approximate a body of semi-infinite extent for a given indentation depth...tip nanoindentation model was the third and final finite element mesh created for analysis and comparison. The material model and the finite element
Härmä, Ville; Virtanen, Johannes; Mäkelä, Rami; Happonen, Antti; Mpindi, John-Patrick; Knuuttila, Matias; Kohonen, Pekka; Lötjönen, Jyrki; Kallioniemi, Olli; Nees, Matthias
2010-01-01
Prostate epithelial cells from both normal and cancer tissues, grown in three-dimensional (3D) culture as spheroids, represent promising in vitro models for the study of normal and cancer-relevant patterns of epithelial differentiation. We have developed the most comprehensive panel of miniaturized prostate cell culture models in 3D to date (n = 29), including many non-transformed and most currently available classic prostate cancer (PrCa) cell lines. The purpose of this study was to analyze morphogenetic properties of PrCa models in 3D, to compare phenotypes, gene expression and metabolism between 2D and 3D cultures, and to evaluate their relevance for pre-clinical drug discovery, disease modeling and basic research. Primary and non-transformed prostate epithelial cells, but also several PrCa lines, formed well-differentiated round spheroids. These showed strong cell-cell contacts, epithelial polarization, a hollow lumen and were covered by a complete basal lamina (BL). Most PrCa lines, however, formed large, poorly differentiated spheroids, or aggressively invading structures. In PC-3 and PC-3M cells, well-differentiated spheroids formed, which were then spontaneously transformed into highly invasive cells. These cell lines may have previously undergone an epithelial-to-mesenchymal transition (EMT), which is temporarily suppressed in favor of epithelial maturation by signals from the extracellular matrix (ECM). The induction of lipid and steroid metabolism, epigenetic reprogramming, and ECM remodeling represents a general adaptation to 3D culture, regardless of transformation and phenotype. In contrast, PI3-Kinase, AKT, STAT/interferon and integrin signaling pathways were particularly activated in invasive cells. Specific small molecule inhibitors targeted against PI3-Kinase blocked invasive cell growth more effectively in 3D than in 2D monolayer culture, or the growth of normal cells. Our panel of cell models, spanning a wide spectrum of phenotypic plasticity, supports the investigation of different modes of cell migration and tumor morphologies, and will be useful for predictive testing of anti-cancer and anti-metastatic compounds. PMID:20454659
3D printing of surgical instruments for long-duration space missions.
Wong, Julielynn Y; Pfahnl, Andreas C
2014-07-01
The first off-Earth fused deposition modeling (FDM) 3D printer will explore thermoplastic manufacturing capabilities in microgravity. This study evaluated the feasibility of FDM 3D printing 10 acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments on Earth. Three-point bending tests compared stiffness and yield strength between FDM 3D printed and conventionally manufactured ABS thermoplastic. To evaluate the relative speed of using four printed instruments compared to conventional instruments, 13 surgeons completed simulated prepping, draping, incising, and suturing tasks. Each surgeon ranked the performance of six printed instruments using a 5-point Likert scale. At a thickness of 5.75 mm or more, the FDM printing process had a less than 10% detrimental effect on the tested yield strength and stiffness of horizontally printed ABS thermoplastic relative to conventional ABS thermoplastic. Significant weakness was observed when a bending load was applied transversely to a 3D printed layer. All timed tasks were successfully performed using a printed sponge stick, towel clamp, scalpel handle, and toothed forceps. There was no substantial difference in time to completion of simulated surgical tasks with control vs. 3D printed instruments. Of the surgeons, 100%, 92%, 85%, 77%, 77%, and 69% agreed that the printed smooth and tissue forceps, curved and straight hemostats, tissue and right angle clamps, respectively, would perform adequately. It is feasible to 3D print ABS thermoplastic surgical instruments on Earth. Loadbearing structures were designed to be thicker, when possible. Printing orientations were selected so that the printing layering direction of critical structures would not be transverse to bending loads.
Development and Testing of the Rigidizable Inflatable Get-Away-Special Experiment
2007-06-01
assigned three different drawing numbers: RIGEX- WAVE1-D, RIGEX- WAVE2 -D, and RIGEX-WAVE3-D. The end of wave #3 leaves 20 RIGEX with all structural...intact RIGEX- WAVE2 -P Wave 2 Assembly Complete, main structure and various subassemblies RIGEX-WAVE3-P Wave 3 Assembly Complete RIGEX-HAN2007-P Wave
Baez, E; Huber, A; Vetter, M; Hackelöer, B-J
2003-03-01
The aim of this study was to evaluate the use of three-dimensional (3D) ultrasonography in the complete excision of benign breast tumors using ultrasound-guided vacuum-assisted core-needle biopsy (Mammotome). A protocol for the management of benign breast tumors is proposed. Twenty consecutive patients with sonographically benign breast lesions underwent 3D ultrasound-guided mammotome biopsy under local anesthesia. The indication for surgical biopsy was a solid lesion with benign characteristics on both two-dimensional (2D) and 3D ultrasound imaging, increasing in size over time or causing pain or irritation. Preoperatively, the size of the lesion was assessed using 2D and 3D volumetry. During vacuum biopsy the needle was visualized sonographically in all three dimensions, including the coronal plane. Excisional biopsy was considered complete when no residual tumor tissue could be seen sonographically. Ultrasonographic follow-up examinations were performed on the following day and 3-6 months later to assess residual tissue and scarring. All lesions were histologically benign. Follow-up examinations revealed complete excision of all lesions of < 1.5 mL in volume as assessed by 3D volumetry. 3D ultrasonographic volume assessment was more accurate than 2D using the ellipsoid formula or assessment of the maximum diameter for the prediction of complete excision of the tumor. No bleeding or infections occurred postoperatively and no scarring was seen ultrasonographically on follow-up examinations. Ultrasound-guided vacuum-assisted biopsy allows complete excision of benign breast lesions that are =1.5 mL in volume (calculated by 3D volumetry), and thus avoids open surgery and postoperative scarring. Under local anesthesia it is a safe procedure with optimal compliance. 3D ultrasound offers the advantage of better preoperative demonstration of the lesions' margins, resulting in better assessment of volumetry, improved intraoperative needle location and perioperative identification of residual tumor tissue. 3D sonographically guided biopsy should be integrated into breast cancer screening programs as a safe therapeutic option for breast lesions presumed to be benign. Copyright 2003 ISUOG. Published by John Wiley & Sons, Ltd.
Three-dimensional electrical resistivity model of a nuclear waste disposal site
NASA Astrophysics Data System (ADS)
Rucker, Dale F.; Levitt, Marc T.; Greenwood, William J.
2009-12-01
A three-dimensional (3D) modeling study was completed on a very large electrical resistivity survey conducted at a nuclear waste site in eastern Washington. The acquisition included 47 pole-pole two-dimensional (2D) resistivity profiles collected along parallel and orthogonal lines over an area of 850 m × 570 m. The data were geo-referenced and inverted using EarthImager3D (EI3D). EI3D runs on a Microsoft 32-bit operating system (e.g. WIN-2K, XP) with a maximum usable memory of 2 GB. The memory limits the size of the domain for the inversion model to 200 m × 200 m, based on the survey electrode density. Therefore, a series of increasing overlapping models were run to evaluate the effectiveness of dividing the survey area into smaller subdomains. The results of the smaller subdomains were compared to the inversion results of a single domain over a larger area using an upgraded form of EI3D that incorporates multi-processing capabilities and 32 GB of RAM memory. The contours from the smaller subdomains showed discontinuity at the boundaries between the adjacent models, which do not match the hydrogeologic expectations given the nature of disposal at the site. At several boundaries, the contours of the low resistivity areas close, leaving the appearance of disconnected plumes or open contours at boundaries are not met with a continuance of the low resistivity plume into the adjacent subdomain. The model results of the single large domain show a continuous monolithic plume within the central and western portion of the site, directly beneath the elongated trenches. It is recommended that where possible, the domain not be subdivided, but instead include as much of the domain as possible given the memory of available computing resources.
Army Logistician. Volume 38, Issue 1, January-February 2006
2006-02-01
BRENT D. CORYELL Legend: ABN = Airborne ACR = Armored Cavalry Regiment AD = Armor Division BCT = Brigade Combat Team CAV = Cavalry Division ID = Infantry...Division MTN = Mountain Division USAREUR = U.S. Army Europe 3d ID 2,039 pieces Complete 101st ABN 1,170 pieces Complete 1st AD , 3d BCT 326 pieces...Corps 138 pieces Complete 1st AD 155 pieces Complete 1st ID, 1st BCT 247 pieces Complete 25th ID 273 pieces 71% 1st CAV 760 pieces 66% 1st ID USAREUR
NASA Astrophysics Data System (ADS)
Tsilimantou, Elisavet; Delegou, Ekaterini; Ioannidis, Charalabos; Moropoulou, Antonia
2016-08-01
In this paper, the documentation of an historic building registered as Cultural Heritage asset is presented. The aim of the survey is to create a 3D geometric representation of a historic building and in accordance with multidisciplinary study extract useful information regarding the extent of degradation, constructions' durability etc. For the implementation of the survey, a combination of different types of acquisition technologies is used. The project focuses on the study of Villa Klonaridi, in Athens, Greece. For the complete documentation of the building, conventional topography, photogrammetric and laser scanning techniques is combined. Close range photogrammetric techniques are used for the acquisition of the façades and architectural details. One of the main objectives is the development of an accurate 3D model, where the photorealistic representation of the building is achieved, along with the decay pathology, historical phases and architectural components. In order to achieve a suitable graphical representation for the study of the material and decay patterns beyond the 2D representation, 3D modelling and additional information modelling is performed for comparative analysis. The study provides various conclusions regarding the scale of deterioration obtained by the 2D and 3D analysis respectively. Considering the variation in material and decay patterns, comparative results are obtained regarding the degradation of the building. Overall, the paper describes a process performed on a Historic Building, where the 3D digital acquisition of the monuments' structure is realized with the combination of close range surveying and laser scanning methods.
Three-dimensional GIS approach for management of assets
NASA Astrophysics Data System (ADS)
Lee, S. Y.; Yee, S. X.; Majid, Z.; Setan, H.
2014-02-01
Assets play an important role in human life, especially to an organization. Organizations strive and put more effort to improve its operation and assets management. The development of GIS technology has become a powerful tool in management as it is able to provide a complete inventory for managing assets with location-based information. Spatial information is one of the requirements in decision making in various areas, including asset management in the buildings. This paper describes a 3D GIS approach for management of assets. An asset management system was developed by integrating GIS concept and 3D model assets. The purposes of 3D visualization to manage assets are to facilitate the analysis and understanding in the complex environment. Behind the 3D model of assets is a database to store the asset information. A user-friendly interface was also designed for more easier to operate the application. In the application developed, location of each individual asset can be easily tracked according to the referring spatial information and 3D viewing. The 3D GIS approach described in this paper is certainly would be useful in asset management. Systematic management of assets can be carried out and this will lead to less-time consuming and cost-effective. The results in this paper will show a new approach to improve asset management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez Gonzalez, R.; Petruzzi, A.; D'Auria, F.
2012-07-01
Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and (e.g., oblique Control Rods, Positive Void coefficient) required a developed and validated complex three dimensional (3D) neutron kinetics (NK) coupled thermal hydraulic (TH) model. Reactor shut-down is obtained by oblique CRs and, during accidental conditions, by an emergency shut-down system (JDJ) injecting a highly concentrated boron solution (boron clouds) in the moderator tank, the boron clouds reconstruction is obtained using a CFD (CFX) code calculation. A complete LBLOCA calculation implies the application of the RELAP5-3D{sup C} system code. Within the framework of themore » third Agreement 'NA-SA - Univ. of Pisa' a new RELAP5-3D control system for the boron injection system was developed and implemented in the validated coupled RELAP5-3D/NESTLE model of the Atucha 2 NPP. The aim of this activity is to find out the limiting case (maximum break area size) for the Peak Cladding Temperature for LOCAs under fixed boundary conditions. (authors)« less
Developing a 3D Road Cadastral System: Comparing Legal Requirements and User Needs
NASA Astrophysics Data System (ADS)
Gristina, S.; Ellul, C.; Scianna, A.
2016-10-01
Road transport has always played an important role in a country's growth and, in order to manage road networks and ensure a high standard of road performance (e.g. durability, efficiency and safety), both public and private road inventories have been implemented using databases and Geographical Information Systems. They enable registering and managing significant amounts of different road information, but to date do not focus on 3D road information, data integration and interoperability. In an increasingly complex 3D urban environment, and in the age of smart cities, however, applications including intelligent transport systems, mobility and traffic management, road maintenance and safety require digital data infrastructures to manage road data: thus new inventories based on integrated 3D road models (queryable, updateable and shareable on line) are required. This paper outlines the first step towards the implementation of 3D GIS-based road inventories. Focusing on the case study of the "Road Cadastre" (the Italian road inventory as established by law), it investigates current limitations and required improvements, and also compares the required data structure imposed by cadastral legislation with real road users' needs. The study aims to: a) determine whether 3D GIS would improve road cadastre (for better management of data through the complete life-cycle infrastructure projects); b) define a conceptual model for a 3D road cadastre for Italy (whose general principles may be extended also to other countries).
Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures.
Grossberg, S
1997-07-01
This article develops the FACADE theory of 3-dimensional (3-D) vision and figure-ground separation to explain data concerning how 2-dimensional pictures give rise to 3-D percepts of occluding and occluded objects. The model describes how geometrical and contrastive properties of a picture can either cooperate or compete when forming the boundaries and surface representation that subserve conscious percepts. Spatially long-range cooperation and spatially short-range competition work together to separate the boundaries of occluding figures from their occluded neighbors. This boundary ownership process is sensitive to image T junctions at which occluded figures contact occluding figures. These boundaries control the filling-in of color within multiple depth-sensitive surface representations. Feedback between surface and boundary representations strengthens consistent boundaries while inhibiting inconsistent ones. Both the boundary and the surface representations of occluded objects may be amodally completed, while the surface representations of unoccluded objects become visible through modal completion. Functional roles for conscious modal and amodal representations in object recognition, spatial attention, and reaching behaviors are discussed. Model interactions are interpreted in terms of visual, temporal, and parietal cortices.
Structured Light-Based 3D Reconstruction System for Plants.
Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima
2015-07-29
Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.
NASA Astrophysics Data System (ADS)
To, T.; Nguyen, D.; Tran, G.
2015-04-01
Heritage system of Vietnam has decline because of poor-conventional condition. For sustainable development, it is required a firmly control, space planning organization, and reasonable investment. Moreover, in the field of Cultural Heritage, the use of automated photogrammetric systems, based on Structure from Motion techniques (SfM), is widely used. With the potential of high-resolution, low-cost, large field of view, easiness, rapidity and completeness, the derivation of 3D metric information from Structure-and- Motion images is receiving great attention. In addition, heritage objects in form of 3D physical models are recorded not only for documentation issues, but also for historical interpretation, restoration, cultural and educational purposes. The study suggests the archaeological documentation of the "One Pilla" pagoda placed in Hanoi capital, Vietnam. The data acquired through digital camera Cannon EOS 550D, CMOS APS-C sensor 22.3 x 14.9 mm. Camera calibration and orientation were carried out by VisualSFM, CMPMVS (Multi-View Reconstruction) and SURE (Photogrammetric Surface Reconstruction from Imagery) software. The final result represents a scaled 3D model of the One Pilla Pagoda and displayed different views in MeshLab software.
Generation of the 30 M-Mesh Global Digital Surface Model by Alos Prism
NASA Astrophysics Data System (ADS)
Tadono, T.; Nagai, H.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H.
2016-06-01
Topographical information is fundamental to many geo-spatial related information and applications on Earth. Remote sensing satellites have the advantage in such fields because they are capable of global observation and repeatedly. Several satellite-based digital elevation datasets were provided to examine global terrains with medium resolutions e.g. the Shuttle Radar Topography Mission (SRTM), the global digital elevation model by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER GDEM). A new global digital surface model (DSM) dataset using the archived data of the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi") has been completed on March 2016 by Japan Aerospace Exploration Agency (JAXA) collaborating with NTT DATA Corp. and Remote Sensing Technology Center, Japan. This project is called "ALOS World 3D" (AW3D), and its dataset consists of the global DSM dataset with 0.15 arcsec. pixel spacing (approx. 5 m mesh) and ortho-rectified PRISM image with 2.5 m resolution. JAXA is also processing the global DSM with 1 arcsec. spacing (approx. 30 m mesh) based on the AW3D DSM dataset, and partially releasing it free of charge, which calls "ALOS World 3D 30 m mesh" (AW3D30). The global AW3D30 dataset will be released on May 2016. This paper describes the processing status, a preliminary validation result of the AW3D30 DSM dataset, and its public release status. As a summary of the preliminary validation of AW3D30 DSM, 4.40 m (RMSE) of the height accuracy of the dataset was confirmed using 5,121 independent check points distributed in the world.
NASA Astrophysics Data System (ADS)
Dutton, Andrew William
1993-12-01
A combined numerical and experimental system for tissue heat transfer analysis was developed. The goal was to develop an integrated set of tools for studying the problem of providing accurate temperature estimation for use in hyperthermia treatment planning in a clinical environment. The completed system combines (1) Magnetic Resonance Angiography (MRA) to non-destructively measure the velocity field in situ, (2) the Streamwise Upwind Petrov-Galerkin finite element solution to the 3D steady state convective energy equation (CEE), (3) a medical image based automatic 3D mesh generator, and (4) a Gaussian type estimator to determine unknown thermal model parameters such as thermal conductivity, blood perfusion, and blood velocities from measured temperature data. The system was capable of using any combination of three thermal models (1) the Convective Energy Equation (CEE), (2) the Bioheat Transfer Equation (BHTE), and (3) the Effective Thermal Conductivity Equation (ETCE) Incorporation of the theoretically correct CEE was a significant theoretical advance over approximate models made possible by the use of MRA to directly measure the 3D velocity field in situ. Experiments were carried out in a perfused alcohol fixed canine liver with hyperthermia induced through scanned focused ultrasound Velocity fields were measured using Phase Contrast Angiography. The complete system was then used to (1) develop a 3D finite element model based upon user traced outlines over a series of MR images of the liver and (2) simulate temperatures at steady state using the CEE, BHTE, and ETCE thermal models in conjunction with the gauss estimator. Results of using the system on an in vitro liver preparation indicate the need for improved accuracy in the MRA scans and accurate spatial registration between the thermocouple junctions, the measured velocity field, and the scanned ultrasound power No individual thermal model was able to meet the desired accuracy of 0.5 deg C, the resolution desired for prognostic evaluation of a treatment However the CEE model did produce the expected asymmetric results while the BHTE and ETCE, used in their simplest forms of homogeneous properties, produced symmetric results. Experimental measurements tended to show marked asymmetries which suggests further development of the CEE thermal model to be the most promising.
Solid images for geostructural mapping and key block modeling of rock discontinuities
NASA Astrophysics Data System (ADS)
Assali, Pierre; Grussenmeyer, Pierre; Villemin, Thierry; Pollet, Nicolas; Viguier, Flavien
2016-04-01
Rock mass characterization is obviously a key element in rock fall hazard analysis. Managing risk and determining the most adapted reinforcement method require a proper understanding of the considered rock mass. Description of discontinuity sets is therefore a crucial first step in the reinforcement work design process. The on-field survey is then followed by a structural modeling in order to extrapolate the data collected at the rock surface to the inner part of the massif. Traditional compass survey and manual observations can be undoubtedly surpassed by dense 3D data such as LiDAR or photogrammetric point clouds. However, although the acquisition phase is quite fast and highly automated, managing, handling and exploiting such great amount of collected data is an arduous task and especially for non specialist users. In this study, we propose a combined approached using both 3D point clouds (from LiDAR or image matching) and 2D digital images, gathered into the concept of ''solid image''. This product is the connection between the advantages of classical true colors 2D digital images, accessibility and interpretability, and the particular strengths of dense 3D point clouds, i.e. geometrical completeness and accuracy. The solid image can be considered as the information support for carrying-out a digital survey at the surface of the outcrop without being affected by traditional deficiencies (lack of data and sampling difficulties due to inaccessible areas, safety risk in steep sectors, etc.). Computational tools presented in this paper have been implemented into one standalone software through a graphical user interface helping operators with the completion of a digital geostructural survey and analysis. 3D coordinates extraction, 3D distances and area measurement, planar best-fit for discontinuity orientation, directional roughness profiles, block size estimation, and other tools have been experimented on a calcareous quarry in the French Alps.
Uchida, Masafumi
2014-04-01
A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Zheng, Wenhao; Chen, Chunhui; Zhang, Chuanxu; Tao, Zhenyu; Cai, Leyi
2018-01-01
The aim of this study was to assess the feasibility and effectiveness of the three-dimensional (3D) printing technology in the treatment of Pilon fractures. 100 patients with Pilon fractures from March 2013 to December 2016 were enrolled in our study. They were divided randomly into 3D printing group ( n = 50) and conventional group ( n = 50). The 3D models were used to simulate the surgery and carry out the surgery according to plan in 3D printing group. Operation time, blood loss, fluoroscopy times, fracture union time, and fracture reduction as well as functional outcomes including VAS and AOFAS score and complications were recorded. To examine the feasibility of this approach, we invited surgeons and patients to complete questionnaires. 3D printing group showed significantly shorter operation time, less blood loss volume and fluoroscopy times, higher rate of anatomic reduction and rate of excellent and good outcome than conventional group ( P < 0.001, P < 0.001, P < 0.001, P = 0.040, and P = 0.029, resp.). However, no significant difference was observed in complications between the two groups ( P = 0.510). Furthermore, the questionnaire suggested that both surgeons and patients got high scores of overall satisfaction with the use of 3D printing models. Our study indicated that the use of 3D printing technology to treat Pilon fractures in clinical practice is feasible.
Zheng, Wenhao; Chen, Chunhui; Zhang, Chuanxu; Tao, Zhenyu
2018-01-01
Purpose The aim of this study was to assess the feasibility and effectiveness of the three-dimensional (3D) printing technology in the treatment of Pilon fractures. Methods 100 patients with Pilon fractures from March 2013 to December 2016 were enrolled in our study. They were divided randomly into 3D printing group (n = 50) and conventional group (n = 50). The 3D models were used to simulate the surgery and carry out the surgery according to plan in 3D printing group. Operation time, blood loss, fluoroscopy times, fracture union time, and fracture reduction as well as functional outcomes including VAS and AOFAS score and complications were recorded. To examine the feasibility of this approach, we invited surgeons and patients to complete questionnaires. Results 3D printing group showed significantly shorter operation time, less blood loss volume and fluoroscopy times, higher rate of anatomic reduction and rate of excellent and good outcome than conventional group (P < 0.001, P < 0.001, P < 0.001, P = 0.040, and P = 0.029, resp.). However, no significant difference was observed in complications between the two groups (P = 0.510). Furthermore, the questionnaire suggested that both surgeons and patients got high scores of overall satisfaction with the use of 3D printing models. Conclusion Our study indicated that the use of 3D printing technology to treat Pilon fractures in clinical practice is feasible. PMID:29581985
The effect of dropout on the efficiency of D-optimal designs of linear mixed models.
Ortega-Azurduy, S A; Tan, F E S; Berger, M P F
2008-06-30
Dropout is often encountered in longitudinal data. Optimal designs will usually not remain optimal in the presence of dropout. In this paper, we study D-optimal designs for linear mixed models where dropout is encountered. Moreover, we estimate the efficiency loss in cases where a D-optimal design for complete data is chosen instead of that for data with dropout. Two types of monotonically decreasing response probability functions are investigated to describe dropout. Our results show that the location of D-optimal design points for the dropout case will shift with respect to that for the complete and uncorrelated data case. Owing to this shift, the information collected at the D-optimal design points for the complete data case does not correspond to the smallest variance. We show that the size of the displacement of the time points depends on the linear mixed model and that the efficiency loss is moderate.
Surface registration technique for close-range mapping applications
NASA Astrophysics Data System (ADS)
Habib, Ayman F.; Cheng, Rita W. T.
2006-08-01
Close-range mapping applications such as cultural heritage restoration, virtual reality modeling for the entertainment industry, and anatomical feature recognition for medical activities require 3D data that is usually acquired by high resolution close-range laser scanners. Since these datasets are typically captured from different viewpoints and/or at different times, accurate registration is a crucial procedure for 3D modeling of mapped objects. Several registration techniques are available that work directly with the raw laser points or with extracted features from the point cloud. Some examples include the commonly known Iterative Closest Point (ICP) algorithm and a recently proposed technique based on matching spin-images. This research focuses on developing a surface matching algorithm that is based on the Modified Iterated Hough Transform (MIHT) and ICP to register 3D data. The proposed algorithm works directly with the raw 3D laser points and does not assume point-to-point correspondence between two laser scans. The algorithm can simultaneously establish correspondence between two surfaces and estimates the transformation parameters relating them. Experiment with two partially overlapping laser scans of a small object is performed with the proposed algorithm and shows successful registration. A high quality of fit between the two scans is achieved and improvement is found when compared to the results obtained using the spin-image technique. The results demonstrate the feasibility of the proposed algorithm for registering 3D laser scanning data in close-range mapping applications to help with the generation of complete 3D models.
The 3D geological model of the 1963 Vajont rockslide, reconstructed with implicit surface methods
NASA Astrophysics Data System (ADS)
Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Taller, Claudio
2015-04-01
The Vajont rockslide has been the object of several studies because of its catastrophic consequences and of its particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all the relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along a thin, continuous and weak cataclastic horizon. Finally, the chosen modelling strategy, based on both traditional "explicit" and implicit techniques, was found to be very effective for reconstructing complex folded and faulted geological structures, and could be applied also to other geological environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom
2014-04-01
The INL PHISICS code system consists of three modules providing improved core simulation capability: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. Coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been finalized, and as part of the code verification and validation program the exercises defined for Phase I of the OECD/NEA MHTGR 350 MW Benchmark were completed. This paper provides an overview of the MHTGR Benchmark, and presents selected results of the three steady state exercises 1-3 defined for Phase I. For Exercise 1,more » a stand-alone steady-state neutronics solution for an End of Equilibrium Cycle Modular High Temperature Reactor (MHTGR) was calculated with INSTANT, using the provided geometry, material descriptions, and detailed cross-section libraries. Exercise 2 required the modeling of a stand-alone thermal fluids solution. The RELAP5-3D results of four sub-cases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 combined the first two exercises in a coupled neutronics and thermal fluids solution, and the coupled code suite PHISICS/RELAP5-3D was used to calculate the results of two sub-cases. The main focus of the paper is a comparison of the traditional RELAP5-3D “ring” model approach vs. a much more detailed model that include kinetics feedback on individual block level and thermal feedbacks on a triangular sub-mesh. The higher fidelity of the block model is illustrated with comparison results on the temperature, power density and flux distributions, and the typical under-predictions produced by the ring model approach are highlighted.« less
NASA Astrophysics Data System (ADS)
Moreno-Casas, P. A.; Bombardelli, F. A.
2015-12-01
A 3D Lagrangian particle tracking model is coupled to a 3D channel velocity field to simulate the saltation motion of a single sediment particle moving in saltation mode. The turbulent field is a high-resolution three dimensional velocity field that reproduces a by-pass transition to turbulence on a flat plate due to free-stream turbulence passing above de plate. In order to reduce computational costs, a decoupled approached is used, i.e., the turbulent flow is simulated independently from the tracking model, and then used to feed the 3D Lagrangian particle model. The simulations are carried using the point-particle approach. The particle tracking model contains three sub-models, namely, particle free-flight, a post-collision velocity and bed representation sub-models. The free-flight sub-model considers the action of the following forces: submerged weight, non-linear drag, lift, virtual mass, Magnus and Basset forces. The model also includes the effect of particle angular velocity. The post-collision velocities are obtained by applying conservation of angular and linear momentum. The complete model was validated with experimental results from literature within the sand range. Results for particle velocity time series and distribution of particle turbulent intensities are presented.
Voronoi Cell Patterns: theoretical model and application to submonolayer growth
NASA Astrophysics Data System (ADS)
González, Diego Luis; Einstein, T. L.
2012-02-01
We use a simple fragmentation model to describe the statistical behavior of the Voronoi cell patterns generated by a homogeneous and isotropic set of points in 1D and in 2D. In particular, we are interested in the distribution of sizes of these Voronoi cells. Our model is completely defined by two probability distributions in 1D and again in 2D, the probability to add a new point inside an existing cell and the probability that this new point is at a particular position relative to the preexisting point inside this cell. In 1D the first distribution depends on a single parameter while the second distribution is defined through a fragmentation kernel; in 2D both distributions depend on a single parameter. The fragmentation kernel and the control parameters are closely related to the physical properties of the specific system under study. We apply our model to describe the Voronoi cell patterns of island nucleation for critical island sizes i=0,1,2,3. Experimental results for the Voronoi cells of InAs/GaAs quantum dots are also described by our model.
Complete set of invariants of a 4th order tensor: the 12 tasks of HARDI from ternary quartics.
Papadopoulo, Théo; Ghosh, Aurobrata; Deriche, Rachid
2014-01-01
Invariants play a crucial role in Diffusion MRI. In DTI (2nd order tensors), invariant scalars (FA, MD) have been successfully used in clinical applications. But DTI has limitations and HARDI models (e.g. 4th order tensors) have been proposed instead. These, however, lack invariant features and computing them systematically is challenging. We present a simple and systematic method to compute a functionally complete set of invariants of a non-negative 3D 4th order tensor with respect to SO3. Intuitively, this transforms the tensor's non-unique ternary quartic (TQ) decomposition (from Hilbert's theorem) to a unique canonical representation independent of orientation - the invariants. The method consists of two steps. In the first, we reduce the 18 degrees-of-freedom (DOF) of a TQ representation by 3-DOFs via an orthogonal transformation. This transformation is designed to enhance a rotation-invariant property of choice of the 3D 4th order tensor. In the second, we further reduce 3-DOFs via a 3D rotation transformation of coordinates to arrive at a canonical set of invariants to SO3 of the tensor. The resulting invariants are, by construction, (i) functionally complete, (ii) functionally irreducible (if desired), (iii) computationally efficient and (iv) reversible (mappable to the TQ coefficients or shape); which is the novelty of our contribution in comparison to prior work. Results from synthetic and real data experiments validate the method and indicate its importance.
NASA Astrophysics Data System (ADS)
Lounnas, Valère; Wedler, Henry B.; Newman, Timothy; Schaftenaar, Gijs; Harrison, Jason G.; Nepomuceno, Gabriella; Pemberton, Ryan; Tantillo, Dean J.; Vriend, Gert
2014-11-01
In molecular sciences, articles tend to revolve around 2D representations of 3D molecules, and sighted scientists often resort to 3D virtual reality software to study these molecules in detail. Blind and visually impaired (BVI) molecular scientists have access to a series of audio devices that can help them read the text in articles and work with computers. Reading articles published in this journal, though, is nearly impossible for them because they need to generate mental 3D images of molecules, but the article-reading software cannot do that for them. We have previously designed AsteriX, a web server that fully automatically decomposes articles, detects 2D plots of low molecular weight molecules, removes meta data and annotations from these plots, and converts them into 3D atomic coordinates. AsteriX-BVI goes one step further and converts the 3D representation into a 3D printable, haptic-enhanced format that includes Braille annotations. These Braille-annotated physical 3D models allow BVI scientists to generate a complete mental model of the molecule. AsteriX-BVI uses Molden to convert the meta data of quantum chemistry experiments into BVI friendly formats so that the entire line of scientific information that sighted people take for granted—from published articles, via printed results of computational chemistry experiments, to 3D models—is now available to BVI scientists too. The possibilities offered by AsteriX-BVI are illustrated by a project on the isomerization of a sterol, executed by the blind co-author of this article (HBW).
a Web-Based Interactive Tool for Multi-Resolution 3d Models of a Maya Archaeological Site
NASA Astrophysics Data System (ADS)
Agugiaro, G.; Remondino, F.; Girardi, G.; von Schwerin, J.; Richards-Rissetto, H.; De Amicis, R.
2011-09-01
Continuous technological advances in surveying, computing and digital-content delivery are strongly contributing to a change in the way Cultural Heritage is "perceived": new tools and methodologies for documentation, reconstruction and research are being created to assist not only scholars, but also to reach more potential users (e.g. students and tourists) willing to access more detailed information about art history and archaeology. 3D computer-simulated models, sometimes set in virtual landscapes, offer for example the chance to explore possible hypothetical reconstructions, while on-line GIS resources can help interactive analyses of relationships and change over space and time. While for some research purposes a traditional 2D approach may suffice, this is not the case for more complex analyses concerning spatial and temporal features of architecture, like for example the relationship of architecture and landscape, visibility studies etc. The project aims therefore at creating a tool, called "QueryArch3D" tool, which enables the web-based visualisation and queries of an interactive, multi-resolution 3D model in the framework of Cultural Heritage. More specifically, a complete Maya archaeological site, located in Copan (Honduras), has been chosen as case study to test and demonstrate the platform's capabilities. Much of the site has been surveyed and modelled at different levels of detail (LoD) and the geometric model has been semantically segmented and integrated with attribute data gathered from several external data sources. The paper describes the characteristics of the research work, along with its implementation issues and the initial results of the developed prototype.
Vashghani Farahani, Mohammad Mahdi; Ahadi, Reza; Abdollahifar, Mohammadamin
2017-01-01
Previous studies report positive effects of pentoxifylline (PTX) alone or in combination with other drugs on some pathologic bone diseases as well as an ability to accelerate osteogensis and fracture healing in both animal models and human patients. The aim of this present study was to evaluate the effects of PTX administration on Hounsfield unit and bone strength at catabolic response (bone resorbing) of a fracture in an experimental rat model of ovariectomy induced osteoporosis (OVX-D). Thirty adult female rats were divided into groups as follows: 1 (OVX, control, no treatment); 2 (OVX, sham: daily distilled water); 3 (OVX, daily alendronate: 3 mg/kg); 4 (OVX, twice daily 100 mg/kg PTX) and 5 (OVX, PTX+alenderonate). OVX was induced by bilateral ovariectomy in all rats. A complete standardized osteotomy of the right femur was made after 3.5 months. PTX and alendronate treatments were performed for eight weeks. Then, rats were euthanized and had its right femur subjected to computerized tomography scanning for measuring Hounsfield unit; eventually, the samples were sent for a three point bending test for evaluation of the bone strength. Administration of PTX with 200 mg/kg and alendronate alone and in combination showed no significant alteration in Hounsfield unit and biomechanical properties of repairing callus of the complete osteotomy compared with the control group. Results showed increased bending stiffness and stress high load mean values of repairing complete osteotomy in PTX-treated rats compared to the control OVX-D. PMID:28400835
Fiducial-based fusion of 3D dental models with magnetic resonance imaging.
Abdi, Amir H; Hannam, Alan G; Fels, Sidney
2018-04-16
Magnetic resonance imaging (MRI) is widely used in study of maxillofacial structures. While MRI is the modality of choice for soft tissues, it fails to capture hard tissues such as bone and teeth. Virtual dental models, acquired by optical 3D scanners, are becoming more accessible for dental practice and are starting to replace the conventional dental impressions. The goal of this research is to fuse the high-resolution 3D dental models with MRI to enhance the value of imaging for applications where detailed analysis of maxillofacial structures are needed such as patient examination, surgical planning, and modeling. A subject-specific dental attachment was digitally designed and 3D printed based on the subject's face width and dental anatomy. The attachment contained 19 semi-ellipsoidal concavities in predetermined positions where oil-based ellipsoidal fiducial markers were later placed. The MRI was acquired while the subject bit on the dental attachment. The spatial position of the center of mass of each fiducial in the resultant MR Image was calculated by averaging its voxels' spatial coordinates. The rigid transformation to fuse dental models to MRI was calculated based on the least squares mapping of corresponding fiducials and solved via singular-value decomposition. The target registration error (TRE) of the proposed fusion process, calculated in a leave-one-fiducial-out fashion, was estimated at 0.49 mm. The results suggest that 6-9 fiducials suffice to achieve a TRE of equal to half the MRI voxel size. Ellipsoidal oil-based fiducials produce distinguishable intensities in MRI and can be used as registration fiducials. The achieved accuracy of the proposed approach is sufficient to leverage the merged 3D dental models with the MRI data for a finer analysis of the maxillofacial structures where complete geometry models are needed.
Finding Furfural Hydrogenation Catalysts via Predictive Modelling
Strassberger, Zea; Mooijman, Maurice; Ruijter, Eelco; Alberts, Albert H; Maldonado, Ana G; Orru, Romano V A; Rothenberg, Gadi
2010-01-01
Abstract We combine multicomponent reactions, catalytic performance studies and predictive modelling to find transfer hydrogenation catalysts. An initial set of 18 ruthenium-carbene complexes were synthesized and screened in the transfer hydrogenation of furfural to furfurol with isopropyl alcohol complexes gave varied yields, from 62% up to >99.9%, with no obvious structure/activity correlations. Control experiments proved that the carbene ligand remains coordinated to the ruthenium centre throughout the reaction. Deuterium-labelling studies showed a secondary isotope effect (kH:kD=1.5). Further mechanistic studies showed that this transfer hydrogenation follows the so-called monohydride pathway. Using these data, we built a predictive model for 13 of the catalysts, based on 2D and 3D molecular descriptors. We tested and validated the model using the remaining five catalysts (cross-validation, R2=0.913). Then, with this model, the conversion and selectivity were predicted for four completely new ruthenium-carbene complexes. These four catalysts were then synthesized and tested. The results were within 3% of the model’s predictions, demonstrating the validity and value of predictive modelling in catalyst optimization. PMID:23193388
Particle tracking velocimetry in three-dimensional flows
NASA Astrophysics Data System (ADS)
Maas, H. G.; Gruen, A.; Papantoniou, D.
1993-07-01
Particle Tracking Velocimetry (PTV) is a well-known technique for the determination of velocity vectors within an observation volume. However, for a long time it has rarely been applied because of the intensive effort necessary to measure coordinates of a large number of flow marker particles in many images. With today's imaging hardware in combination with the methods of digital image processing and digital photogrammetry, however, new possibilities have arisen for the design of completely automatic PTV systems. A powerful 3 D PTV has been developed in a cooperation of the Institute of Geodesy and Photogrammetry with the Institute of Hydromechanics and Water Resources Management at the Swiss Federal Institute of Technology. In this paper hardware components for 3 D PTV systems wil be discussed, and a strict mathematical model of photogrammetric 3 D coordinate determination, taking into account the different refractive indices in the optical path, will be presented. The system described is capable of determining coordinate sets of some 1000 particles in a flow field at a time resolution of 25 datasets per second and almost arbitrary sequence length completely automatically after an initialization by an operator. The strict mathematical modelling of the measurement geometry, together with a thorough calibration of the system provide for a coordinate accuracy of typically 0.06 mm in X, Y and 0.18 mm in Z (depth coordinate) in a volume of 200 × 160 × 50 mm3.
Nicholson, Daren T; Chalk, Colin; Funnell, W Robert J; Daniel, Sam J
2006-11-01
The use of computer-generated 3-dimensional (3-D) anatomical models to teach anatomy has proliferated. However, there is little evidence that these models are educationally effective. The purpose of this study was to test the educational effectiveness of a computer-generated 3-D model of the middle and inner ear. We reconstructed a fully interactive model of the middle and inner ear from a magnetic resonance imaging scan of a human cadaver ear. To test the model's educational usefulness, we conducted a randomised controlled study in which 28 medical students completed a Web-based tutorial on ear anatomy that included the interactive model, while a control group of 29 students took the tutorial without exposure to the model. At the end of the tutorials, both groups were asked a series of 15 quiz questions to evaluate their knowledge of 3-D relationships within the ear. The intervention group's mean score on the quiz was 83%, while that of the control group was 65%. This difference in means was highly significant (P < 0.001). Our findings stand in contrast to the handful of previous randomised controlled trials that evaluated the effects of computer-generated 3-D anatomical models on learning. The equivocal and negative results of these previous studies may be due to the limitations of these studies (such as small sample size) as well as the limitations of the models that were studied (such as a lack of full interactivity). Given our positive results, we believe that further research is warranted concerning the educational effectiveness of computer-generated anatomical models.
Impact analysis of natural fiber and synthetic fiber reinforced polymer composite
NASA Astrophysics Data System (ADS)
Sangamesh, Ravishankar, K. S.; Kulkarni, S. M.
2018-05-01
Impact analysis of the composite structure is essential for many fields like automotive, aerospace and naval structure which practically difficult to characterize. In the present study impact analysis of carbon-epoxy (CE) and jute-epoxy (JE) laminates were studied for three different thicknesses. The 3D finite element model was adopted to study the impact forces experienced, energy absorption and fracture behavior of the laminated composites. These laminated composites modeled as a 3D deformable solid element and an impactor at a constant velocity were modeled as a discrete rigid element. The energy absorption and fracture behaviors for various material combinations and thickness were studied. The fracture behavior of these composite showed progressive damage with matrix failure at the initial stage followed by complete fiber breakage.
NASA Astrophysics Data System (ADS)
Fassi, F.; Achille, C.; Mandelli, A.; Rechichi, F.; Parri, S.
2015-02-01
The work is the final part of a multi-year research project on the Milan Cathedral, which focused on the complete survey and threedimensional modeling of the Great Spire (Fassi et al., 2011) and the two altars in the transept. The main purpose of the job was to prepare support data for the maintenance operations involving the cathedral since 2009 and still in progress. The research job had begun addressing our efforts to identify which methods would allow an expeditious but comprehensive measure of complex architectural structure as a whole. (Achille et al., 2012) The following research works were focused mainly to find an efficient method to visualize, use and share the realized 3D model.
Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites
Fambri, Luca
2018-01-01
Composite acrylonitrile–butadiene–styrene (ABS)/carbon nanotubes (CNT) filaments at 1, 2, 4, 6 and 8 wt %, suitable for fused deposition modelling (FDM) were obtained by using a completely solvent-free process based on direct melt compounding and extrusion. The optimal CNT content in the filaments for FDM was found to be 6 wt %; for this composite, a detailed investigation of the thermal, mechanical and electrical properties was performed. Presence of CNT in ABS filaments and 3D-printed parts resulted in a significant enhancement of the tensile modulus and strength, accompanied by a reduction of the elongation at break. As documented by dynamic mechanical thermal analysis, the stiffening effect of CNTs in ABS is particularly pronounced at high temperatures. Besides, the presence of CNT in 3D-printed parts accounts for better creep and thermal dimensional stabilities of 3D-printed parts, accompanied by a reduction of the coefficient of thermal expansion). 3D-printed nanocomposite samples with 6 wt % of CNT exhibited a good electrical conductivity, even if lower than pristine composite filaments. PMID:29346291
Adaptive 3D Face Reconstruction from Unconstrained Photo Collections.
Roth, Joseph; Tong, Yiying; Liu, Xiaoming
2016-12-07
Given a photo collection of "unconstrained" face images of one individual captured under a variety of unknown pose, expression, and illumination conditions, this paper presents a method for reconstructing a 3D face surface model of the individual along with albedo information. Unlike prior work on face reconstruction that requires large photo collections, we formulate an approach to adapt to photo collections with a high diversity in both the number of images and the image quality. To achieve this, we incorporate prior knowledge about face shape by fitting a 3D morphable model to form a personalized template, following by using a novel photometric stereo formulation to complete the fine details, under a coarse-to-fine scheme. Our scheme incorporates a structural similarity-based local selection step to help identify a common expression for reconstruction while discarding occluded portions of faces. The evaluation of reconstruction performance is through a novel quality measure, in the absence of ground truth 3D scans. Superior large-scale experimental results are reported on synthetic, Internet, and personal photo collections.
Filaments Production and Fused Deposition Modelling of ABS/Carbon Nanotubes Composites.
Dul, Sithiprumnea; Fambri, Luca; Pegoretti, Alessandro
2018-01-18
Composite acrylonitrile-butadiene-styrene (ABS)/carbon nanotubes (CNT) filaments at 1, 2, 4, 6 and 8 wt %, suitable for fused deposition modelling (FDM) were obtained by using a completely solvent-free process based on direct melt compounding and extrusion. The optimal CNT content in the filaments for FDM was found to be 6 wt %; for this composite, a detailed investigation of the thermal, mechanical and electrical properties was performed. Presence of CNT in ABS filaments and 3D-printed parts resulted in a significant enhancement of the tensile modulus and strength, accompanied by a reduction of the elongation at break. As documented by dynamic mechanical thermal analysis, the stiffening effect of CNTs in ABS is particularly pronounced at high temperatures. Besides, the presence of CNT in 3D-printed parts accounts for better creep and thermal dimensional stabilities of 3D-printed parts, accompanied by a reduction of the coefficient of thermal expansion). 3D-printed nanocomposite samples with 6 wt % of CNT exhibited a good electrical conductivity, even if lower than pristine composite filaments.
Klapan, Ivica; Vranjes, Zeljko; Prgomet, Drago; Lukinović, Juraj
2008-03-01
The real-time requirement means that the simulation should be able to follow the actions of the user that may be moving in the virtual environment. The computer system should also store in its memory a three-dimensional (3D) model of the virtual environment. In that case a real-time virtual reality system will update the 3D graphic visualization as the user moves, so that up-to-date visualization is always shown on the computer screen. Upon completion of the tele-operation, the surgeon compares the preoperative and postoperative images and models of the operative field, and studies video records of the procedure itself Using intraoperative records, animated images of the real tele-procedure performed can be designed. Virtual surgery offers the possibility of preoperative planning in rhinology. The intraoperative use of computer in real time requires development of appropriate hardware and software to connect medical instrumentarium with the computer and to operate the computer by thus connected instrumentarium and sophisticated multimedia interfaces.
Low-cost surveys of the Domus of Stallius Eros in Pompeii
NASA Astrophysics Data System (ADS)
Bosco, A.; Barbarino, M.; Valentini, R.; D'Andrea, A.
2015-02-01
In the framework of the Project 3D-ICONS (www.3dicons-project.eu), different large archaeological models were acquired in Pompeii. In particular, the 3D Model of the House of Stallius Eros (Regio I, Insula VI, 13 - 14) was realized. This house conserves a rich vertical stratigraphy covering a large chronological period and offers interesting information about the development of this side of the ancient city. To implement a detailed survey of the house and to reconstruct the original structure of the domus, different types of survey were carried out, in order to provide a complete 3D model of the house. Three data-acquisition methodologies were used and their final results were compared in order to measure their accuracy, efficacy and velocity. At first, the domus was surveyed by an electronical total station, then two different interventions with un-calibrated photogrammetry were planned. The paper presents some preliminary results obtained by the three methodologies and the integration of the three models. The computational environments reproducing the ancient Domus of Stallius Eros allows to propose new archaeological interpretations and hypothesis about the reconstruction of the ancient House.
Sakata, S; Grove, P M; Hill, A; Watson, M O; Stevenson, A R L
2017-07-01
This study compared precision of depth judgements, technical performance and workload using two-dimensional (2D) and three-dimensional (3D) laparoscopic displays across different viewing distances. It also compared the accuracy of 3D displays with natural viewing, along with the relationship between stereoacuity and 3D laparoscopic performance. A counterbalanced within-subjects design with random assignment to testing sequences was used. The system could display 2D or 3D images with the same set-up. A Howard-Dolman apparatus assessed precision of depth judgements, and three laparoscopic tasks (peg transfer, navigation in space and suturing) assessed performance (time to completion). Participants completed tasks in all combinations of two viewing modes (2D, 3D) and two viewing distances (1 m, 3 m). Other measures administered included the National Aeronautics and Space Administration Task Load Index (perceived workload) and the Randot ® Stereotest (stereoacuity). Depth judgements were 6·2 times as precise at 1 m and 3·0 times as precise at 3 m using 3D versus 2D displays (P < 0·001). Participants performed all laparoscopic tasks faster in 3D at both 1 and 3 m (P < 0.001), with mean completion times up to 64 per cent shorter for 3D versus 2D displays. Workload was lower for 3D displays (up to 34 per cent) than for 2D displays at both viewing distances (P < 0·001). Greater viewing distance inhibited performance for two laparoscopic tasks, and increased perceived workload for all three (P < 0·001). Higher stereoacuity was associated with shorter completion times for the navigating in space task performed in 3D at 1 m (r = - 0·40, P = 0·001). 3D displays offer large improvements over 2D displays in precision of depth judgements, technical performance and perceived workload. © 2017 The Authors. BJS published by John Wiley & Sons Ltd on behalf of BJS Society Ltd.
Mechanisms of DNA Damage Response to Targeted Irradiation in Organotypic 3D Skin Cultures
Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M.; Schettino, Giuseppe
2014-01-01
DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255
Hypertext: Improved Capability for Shipboard Naval Messages
1989-09-01
message handling system; a complete working model of the system has not been developed . 3 D. ORGANIZATION OF STUDY 1. The "Paperless" Ship Initiative...work in tandem to improve afloat message handling procedures. The objective of the PCMT project is to develop a system that could be installed on...working group has identified a list of requirements to guide the DoD’s progress towards improving its message communication system. These
da Silveira, Karine Lanes; da Silveira, Leonardo Lanes; Thorstenberg, Maria Luiza Prates; Cabral, Fernanda Licker; Castilhos, Livia Gelain; Rezer, João Felipe Peres; de Andrade, Diego Fontana; Beck, Ruy Carlos Ruver; Einloft Palma, Heloísa; de Andrade, Cinthia Melazzo; Pereira, Renata da Silva; Martins, Nara Maria Beck; Bertonchel Dos Santos, Claudia de Mello; Leal, Daniela Bitencourt Rosa
2016-06-01
The effect of vitamin D3 in oral solution (VD3 ) and vitamin D3 -loaded nanocapsules (NC-VD3 ) was analysed in animals with complete Freund's adjuvant (CFA) induced arthritis (AR). For this purpose, we evaluated scores for arthritis, thermal hyperalgesia and paw oedema, as well as histological analyses and measurements of the activity of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ecto-adenosine deaminase (E-ADA) enzymes in rat lymphocytes. Haematological and biochemical parameters were also determined. The doses administered were 120 UI/day of VD3 and 15.84 UI/day of NC-VD3 . Fifteen days after the induction of AR, the groups were treated for 15 days with vitamin D3 . The results demonstrated that VD3 was able to reduce arthritis scores, thermal hyperalgesia and paw oedema in rats with CFA-induced arthritis. However, treatment with NC-VD3 did not reduce arthritis scores. The histological analyses showed that both formulations were able to reduce the inflammatory changes induced by CFA. The activity of E-NTPDase in rat lymphocytes was higher in the AR compared with the control group, while the activity of E-ADA was lower. This effect was reversed after the 15-day treatment. Data from this study indicates that both forms of vitamin D3 seem to contribute to decreasing the inflammatory process induced by CFA, possibly altering the activities of ectoenzymes. Copyright © 2016 John Wiley & Sons, Ltd. The effects promoted by both formulations of vitamin D3 , either in oral solution or nanoencapsulated form, strongly suggests the softening of the inflammatory process induced by complete Freund's adjuvant (CFA), possibly altering the E-NTPDase and E-ADA activities. However, it is known that vitamin D has a beneficial effect on the modulation of the immune system components responsible for the inflammatory process. Moreover, the establishment of responses to treatment with vitamin D3 may provide an alternative for inhibiting the proinflammatory response, assisting in our understanding of the immunopathology of this disease and possibly improving the signs and symptoms that hinder the quality of life of patients with rheumatoid arthritis. Evaluation of the effects on the E-NTPDase and E-ADA activities in an animal model of induced arthritis. Two formulations of vitamin D3 were used: form oral solution and nanoencapsulated. Vitamin D3 seems to contribute to the inflammatory process induced by CFA. Vitamin D3 possibly alters the E-NTPDase and E-ADA activities. Vitamin D3 may be an alternative supplementary treatment for chronic arthritis. Copyright © 2016 John Wiley & Sons, Ltd.
Chumney, Elinor C.G.; Jones, Kathy J.
2008-01-01
Objective To evaluate the academic experience and satisfaction of students who completed a dual PharmD/MBA degree program and the program's long-term impact on the students' career choice and earning potential. Methods GPAs, job placement, and starting job salaries were compared between graduates who completed the dual PharmD/MBA program and those who completed only the PharmD program. A satisfaction survey instrument was administered to 17 students who completed the dual PharmD/MBA degree program in May 2007. Data from a standardized job placement and starting salary survey instrument completed by all PharmD graduates were also obtained, as well as all students' final grade point averages (GPAs). GPAs, job placement, and starting job salaries were compared between graduates who had completed the dual PharmD/MBA program and those who had completed only the PharmD program. Results The graduating GPAs of dual-degree students were higher than those of both pharmacy (3.52 vs 3.41, p > 0.10) and business (3.82 vs. 3.68, p = 0.018) students not enrolled in the dual-degree program. Dual-degree students were slightly less likely to enter a residency (17% vs. 27%, p = 0.44) than other pharmacy graduates. Among those who elected not to pursue a residency, both mean starting salaries ($111,090 vs. $101,965) and mean total first-year compensation ($127,290 vs. $110,388) were significantly higher for dual-degree graduates compared to the PharmD graduates. Conclusions Students enrolled in the dual-degree program did slightly better academically than students who completed only the MBA or PharmD programs and indicated a high level of satisfaction with the program. Dual-degree graduates reported increased career opportunities and were slated to earn significantly more during their first year in the workforce. These results affirm continuation of our program and make the case for support of similar programs across the nation. PMID:18483594
Essayed, Walid I; Unadkat, Prashin; Hosny, Ahmed; Frisken, Sarah; Rassi, Marcio S; Mukundan, Srinivasan; Weaver, James C; Al-Mefty, Ossama; Golby, Alexandra J; Dunn, Ian F
2018-03-02
OBJECTIVE Endoscopic endonasal approaches are increasingly performed for the surgical treatment of multiple skull base pathologies. Preventing postoperative CSF leaks remains a major challenge, particularly in extended approaches. In this study, the authors assessed the potential use of modern multimaterial 3D printing and neuronavigation to help model these extended defects and develop specifically tailored prostheses for reconstructive purposes. METHODS Extended endoscopic endonasal skull base approaches were performed on 3 human cadaveric heads. Preprocedure and intraprocedure CT scans were completed and were used to segment and design extended and tailored skull base models. Multimaterial models with different core/edge interfaces were 3D printed for implantation trials. A novel application of the intraoperative landmark acquisition method was used to transfer the navigation, helping to tailor the extended models. RESULTS Prostheses were created based on preoperative and intraoperative CT scans. The navigation transfer offered sufficiently accurate data to tailor the preprinted extended skull base defect prostheses. Successful implantation of the skull base prostheses was achieved in all specimens. The progressive flexibility gradient of the models' edges offered the best compromise for easy intranasal maneuverability, anchoring, and structural stability. Prostheses printed based on intraprocedure CT scans were accurate in shape but slightly undersized. CONCLUSIONS Preoperative 3D printing of patient-specific skull base models is achievable for extended endoscopic endonasal surgery. The careful spatial modeling and the use of a flexibility gradient in the design helped achieve the most stable reconstruction. Neuronavigation can help tailor preprinted prostheses.
NASA Astrophysics Data System (ADS)
Hannachi, Ammar; Kohler, Sophie; Lallement, Alex; Hirsch, Ernest
2015-04-01
3D modeling of scene contents takes an increasing importance for many computer vision based applications. In particular, industrial applications of computer vision require efficient tools for the computation of this 3D information. Routinely, stereo-vision is a powerful technique to obtain the 3D outline of imaged objects from the corresponding 2D images. As a consequence, this approach provides only a poor and partial description of the scene contents. On another hand, for structured light based reconstruction techniques, 3D surfaces of imaged objects can often be computed with high accuracy. However, the resulting active range data in this case lacks to provide data enabling to characterize the object edges. Thus, in order to benefit from the positive points of various acquisition techniques, we introduce in this paper promising approaches, enabling to compute complete 3D reconstruction based on the cooperation of two complementary acquisition and processing techniques, in our case stereoscopic and structured light based methods, providing two 3D data sets describing respectively the outlines and surfaces of the imaged objects. We present, accordingly, the principles of three fusion techniques and their comparison based on evaluation criterions related to the nature of the workpiece and also the type of the tackled application. The proposed fusion methods are relying on geometric characteristics of the workpiece, which favour the quality of the registration. Further, the results obtained demonstrate that the developed approaches are well adapted for 3D modeling of manufactured parts including free-form surfaces and, consequently quality control applications using these 3D reconstructions.
NASA Astrophysics Data System (ADS)
Woloszyn, Iwona; Merkel, Broder; Stanek, Klaus
2017-07-01
The management of natural resources has to follow the principles of sustainable development. Therefore, before starting new mining activities, it should be checked, whether existing deposits have been completely exploited. In this study, a three-dimensional (3D) cross-border geologic model was created to generalize the existing data of the Neogene Berzdorf-Radomierzyce basin, located in Upper Lusatia on the Polish-German border south of the city of Görlitz-Zgorzelec. The model based on boreholes and cross sections of abandoned and planned lignite fields was extended to the Bernstadt and Neisse-Ręczyn Graben, an important tectonic structure at the southern rim of the basin. The partly detailed stratigraphy of Neogene sequences was combined to five stratigraphic units, considering the lithological variations and the main tectonic structures. The model was used to check the ability of a further utilization of the Bernstadt and Neisse-Ręczyn Graben, containing lignite deposits. Moreover, it will serve as a basis for the construction of a 3D cross-border groundwater model, to investigate the groundwater flow and transport in the Miocene and Quaternary aquifer systems. The large amount of data and compatibility with other software favored the application of the 3D geo-modeling software Paradigm GOCAD. The results demonstrate a very good fit between model and real geological boundaries. This is particularly evident by matching the modeled surfaces to the implemented geological cross sections. The created model can be used for planning of full-scale mining operations in the eastern part of the basin (Radomierzyce).
Conformal Field Theories in the Epsilon and 1/N Expansions
NASA Astrophysics Data System (ADS)
Fei, Lin
In this thesis, we study various conformal field theories in two different approximation schemes - the epsilon-expansion in dimensional continuation, and the large N expansion. We first propose a cubic theory in d = 6 - epsilon as the UV completion of the quartic scalar O(N) theory in d > 4. We study this theory to three-loop order and show that various operator dimensions are consistent with large-N results. This theory possesses an IR stable fixed point at real couplings for N > 1038, suggesting the existence of a perturbatively unitary interacting O(N) symmetric CFT in d = 5. Extending this model to Sp(N) symmetric theories, we find an interacting non-unitary CFT in d = 5. For the special case of Sp(2), the IR fixed point possesses an enhanced symmetry given by the supergroup OSp(1|2). We also observe that various operator dimensions of the Sp(2) theory match those from the 0-state Potts model. We provide a graph theoretic proof showing that the zero, two, and three-point functions in the Sp(2) model and the 0-state Potts model indeed match to all orders in perturbation theory, strongly suggesting their equivalence. We then study two fermionic theories in d = 2 + epsilon - the Gross-Neveu model and the Nambu-Jona-Lasinio model, together with their UV completions in d = 4 - epsilon given by the Gross-Neveu-Yukawa and the Nambu-Jona-Lasinio-Yukawa theories. We compute their sphere free energy and certain operator dimensions, passing all checks against large- N results. We use two sided Pade approximations with our epsilon-expansion results to obtain estimates of various quantities in the physical dimension d = 3. Finally, we provide evidence that the N=1 Gross-Neveu-Yukawa model which contains a 2-component Majorana fermion, and the N= 2 Nambu-Jona-Lasinion-Yukawa model which contains a 2-component Dirac fermion, both have emergent supersymmetry.
Usta, Taner A; Ozkaynak, Aysel; Kovalak, Ebru; Ergul, Erdinc; Naki, M Murat; Kaya, Erdal
2015-08-01
Two-dimensional (2D) view is known to cause practical difficulties for surgeons in conventional laparoscopy. Our goal was to evaluate whether the new-generation, Three-Dimensional Laparoscopic Vision System (3D LVS) provides greater benefit in terms of execution time and error number during the performance of surgical tasks. This study tests the hypothesis that the use of the new generation 3D LVS can significantly improve technical ability on complex laparoscopic tasks in an experimental model. Twenty-four participants (8 experienced, 8 minimally experienced, and 8 inexperienced) were evaluated for 10 different tasks in terms of total execution time and error number. The 4-point lickert scale was used for subjective assessment of the two imaging modalities. All tasks were completed by all participants. Statistically significant difference was determined between 3D and 2D systems in the tasks of bead transfer and drop, suturing, and pick-and-place in the inexperienced group; in the task of passing through two circles with the needle in the minimally experienced group; and in the tasks of bead transfer and drop, suturing and passing through two circles with the needle in the experienced group. Three-dimensional imaging was preferred over 2D in 6 of the 10 subjective criteria questions on 4-point lickert scale. The majority of the tasks were completed in a shorter time using 3D LVS compared to 2D LVS. The subjective Likert-scale ratings from each group also demonstrated a clear preference for 3D LVS. New 3D LVS has the potential to improve the learning curve, and reduce the operating time and error rate during the performances of laparoscopic surgeons. Our results suggest that the new-generation 3D HD LVS will be helpful for surgeons in laparoscopy (Clinical Trial ID: NCT01799577, Protocol ID: BEHGynobs-4).
Buzayan, Muaiyed; Baig, Mirza Rustum; Yunus, Norsiah
2013-01-01
This in vitro study evaluated the accuracy of multiple-unit dental implant casts obtained from splinted or nonsplinted direct impression techniques using various splinting materials by comparing the casts to the reference models. The effect of two different impression materials on the accuracy of the implant casts was also evaluated for abutment-level impressions. A reference model with six internal-connection implant replicas placed in the completely edentulous mandibular arch and connected to multi-base abutments was fabricated from heat-curing acrylic resin. Forty impressions of the reference model were made, 20 each with polyether (PE) and polyvinylsiloxane (PVS) impression materials using the open tray technique. The PE and PVS groups were further subdivided into four subgroups of five each on the bases of splinting type: no splinting, bite registration PE, bite registration addition silicone, or autopolymerizing acrylic resin. The positional accuracy of the implant replica heads was measured on the poured casts using a coordinate measuring machine to assess linear differences in interimplant distances in all three axes. The collected data (linear and three-dimensional [3D] displacement values) were compared with the measurements calculated on the reference resin model and analyzed with nonparametric tests (Kruskal-Wallis and Mann-Whitney). No significant differences were found between the various splinting groups for both PE and PVS impression materials in terms of linear and 3D distortions. However, small but significant differences were found between the two impression materials (PVS, 91 μm; PE, 103 μm) in terms of 3D discrepancies, irrespective of the splinting technique employed. Casts obtained from both impression materials exhibited differences from the reference model. The impression material influenced impression inaccuracy more than the splinting material for multiple-unit abutment-level impressions.
Monsivais, Pablo; Rehm, Colin D
2012-05-01
To estimate the nutritional and economic effects of substituting whole fruit for juice in the diets of children in the United States. Secondary analyses using the 2001-2004 National Health and Nutrition Examination Survey and a national food prices database. Energy intakes, nutrient intakes, and diet costs were estimated before and after fruit juices were completely replaced with fruit in 3 models that emphasized fruits that were fresh, inexpensive, and widely consumed and in a fourth model that partially replaced juice with fruit, capping juice at recommended levels. A nationwide, representative sample of children in the United States. A total of 7023 children aged 3 to 18 years. Systematic complete or partial replacement of juice with fruit. Difference in energy intakes, nutrient intakes, and diet costs between observed and modeled diets. For children who consumed juice, replacement of all juice servings with fresh, whole fruit led to a projected reduction in dietary energy of 233 kJ/d (-2.6% difference [95% CI, -5.1% to -0.1%]), an increase in fiber of 4.3 g/d (31.1% difference [95% CI, 26.4%-35.9%]), and an increase in diet cost of $0.54/d (13.3% difference [95% CI, 8.8%-17.8%]). Substitution of juice with fresh fruit has the potential to reduce energy intake and improve the adequacy of fiber intake in children's diets. This would likely increase costs for schools, childcare providers, and families. These cost effects could be minimized by selecting processed fruits, but fewer nutritional gains would be achieved.
Muratov, Eugene; Lewis, Margaret; Fourches, Denis; Tropsha, Alexander; Cox, Wendy C
2017-04-01
Objective. To develop predictive computational models forecasting the academic performance of students in the didactic-rich portion of a doctor of pharmacy (PharmD) curriculum as admission-assisting tools. Methods. All PharmD candidates over three admission cycles were divided into two groups: those who completed the PharmD program with a GPA ≥ 3; and the remaining candidates. Random Forest machine learning technique was used to develop a binary classification model based on 11 pre-admission parameters. Results. Robust and externally predictive models were developed that had particularly high overall accuracy of 77% for candidates with high or low academic performance. These multivariate models were highly accurate in predicting these groups to those obtained using undergraduate GPA and composite PCAT scores only. Conclusion. The models developed in this study can be used to improve the admission process as preliminary filters and thus quickly identify candidates who are likely to be successful in the PharmD curriculum.
Realistic micromechanical modeling and simulation of two-phase heterogeneous materials
NASA Astrophysics Data System (ADS)
Sreeranganathan, Arun
This dissertation research focuses on micromechanical modeling and simulations of two-phase heterogeneous materials exhibiting anisotropic and non-uniform microstructures with long-range spatial correlations. Completed work involves development of methodologies for realistic micromechanical analyses of materials using a combination of stereological techniques, two- and three-dimensional digital image processing, and finite element based modeling tools. The methodologies are developed via its applications to two technologically important material systems, namely, discontinuously reinforced aluminum composites containing silicon carbide particles as reinforcement, and boron modified titanium alloys containing in situ formed titanium boride whiskers. Microstructural attributes such as the shape, size, volume fraction, and spatial distribution of the reinforcement phase in these materials were incorporated in the models without any simplifying assumptions. Instrumented indentation was used to determine the constitutive properties of individual microstructural phases. Micromechanical analyses were performed using realistic 2D and 3D models and the results were compared with experimental data. Results indicated that 2D models fail to capture the deformation behavior of these materials and 3D analyses are required for realistic simulations. The effect of clustering of silicon carbide particles and associated porosity on the mechanical response of discontinuously reinforced aluminum composites was investigated using 3D models. Parametric studies were carried out using computer simulated microstructures incorporating realistic microstructural attributes. The intrinsic merit of this research is the development and integration of the required enabling techniques and methodologies for representation, modeling, and simulations of complex geometry of microstructures in two- and three-dimensional space facilitating better understanding of the effects of microstructural geometry on the mechanical behavior of materials.
A Semi-Automatic Image-Based Close Range 3D Modeling Pipeline Using a Multi-Camera Configuration
Rau, Jiann-Yeou; Yeh, Po-Chia
2012-01-01
The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum. PMID:23112656
A semi-automatic image-based close range 3D modeling pipeline using a multi-camera configuration.
Rau, Jiann-Yeou; Yeh, Po-Chia
2012-01-01
The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.
2015-10-01
Breeding of LSL K-RasG12D transgenic mice (Projective: months 5-8; Actual: 100% completion) 2b. Nasal instillation of adenoviral particles carrying...1a. Regulatory review and approval of animal protocol (Projective: Months 1-2; Actual: 100% completion). 1b. Mice acquisition and breeding of...S1P3-/-:LSL-K-RasG12D and S1P3+/+:LSL-K-RasG12D bi- transgenic mice (Projective: Months 3-4; Actual: 100% completion). 1c. Nasal instillation of
Nguyen-Thi, Lam-Huyen; Nguyen, Sinh Truong; Tran, Thao Phuong; Phan-Lu, Chinh-Nhan; The Van, Trung; Van Pham, Phuc
2018-04-24
Cancer is one of the leading causes of death in the world. A great deal of effort has been made to discover new agents for cancer treatment. Xao tam phan (Paramignya trimera) is a traditional medicine of Vietnam used in cancer treatment for a long time, yet there is not much scientific evidence proving its anticancer potency. The study aimed to evaluate the toxicity of Paramignya trimera extract (PTE) on multicellular tumor spheres (MCTS) of MCF-7 cells using hanging drop technique. Firstly, MCF-7 cells were seeded on hanging drop plates, spheroid size was tracked, and growth curve was measured by MTT assay and AlamarBlue ® assay. The necrotic core of MCTS was evaluated by propidium iodide (PI) staining. Toxicity of doxorubicin (DOX) and tirapazamine (TPZ) was then tested on 3D model compared to 2D culture condition. The results showed that the IC50 of DOX on 3D MCF-7 cells was nearly 50 times greater than monolayer MCF-7 cells. In contrast, TPZ (an agent which is specifically toxic under hypoxic conditions) had significantly lower IC50 in 3D condition than in 2D. The toxicity tests for PTE showed that PTE strongly inhibited MCF-7 cells in both 2D and 3D conditions. Interestingly, the IC50 of PTE in 3D model was remarkably lower than in 2D (IC50 value was 168.9 ± 11.65 μg/ml compared to 260.8 ± 16.54 μg/ml, respectively). The invasion assay showed that PTE completely inhibited invasion of MCF-7 cells at 250 μg/mL concentration. Also, flow cytometry results indicated that PTE effectively induced apoptosis in MCF-7 spheroids in 3D condition at 250 μg/mL concentration. The results from this study emphasize the promise of PTE in cancer therapy.
The impact of crosstalk on three-dimensional laparoscopic performance and workload.
Sakata, Shinichiro; Grove, Philip M; Watson, Marcus O; Stevenson, Andrew R L
2017-10-01
This is the first study to explore the effects of crosstalk from 3D laparoscopic displays on technical performance and workload. We studied crosstalk at magnitudes that may have been tolerated during laparoscopic surgery. Participants were 36 voluntary doctors. To minimize floor effects, participants completed their surgery rotations, and a laparoscopic suturing course for surgical trainees. We used a counterbalanced, within-subjects design in which participants were randomly assigned to complete laparoscopic tasks in one of six unique testing sequences. In a simulation laboratory, participants were randomly assigned to complete laparoscopic 'navigation in space' and suturing tasks in three viewing conditions: 2D, 3D without ghosting and 3D with ghosting. Participants calibrated their exposure to crosstalk as the maximum level of ghosting that they could tolerate without discomfort. The Randot® Stereotest was used to verify stereoacuity. The study performance metric was time to completion. The NASA TLX was used to measure workload. Normal threshold stereoacuity (40-20 second of arc) was verified in all participants. Comparing optimal 3D with 2D viewing conditions, mean performance times were 2.8 and 1.6 times faster in laparoscopic navigation in space and suturing tasks respectively (p< .001). Comparing optimal 3D with suboptimal 3D viewing conditions, mean performance times were 2.9 times faster in both tasks (p< .001). Mean workload in 2D was 1.5 and 1.3 times greater than in optimal 3D viewing, for navigation in space and suturing tasks respectively (p< .001). Mean workload associated with suboptimal 3D was 1.3 times greater than optimal 3D in both laparoscopic tasks (p< .001). There was no significant relationship between the magnitude of ghosting score, laparoscopic performance and workload. Our findings highlight the advantages of 3D displays when used optimally, and their shortcomings when used sub-optimally, on both laparoscopic performance and workload.
A multimodal 3D framework for fire characteristics estimation
NASA Astrophysics Data System (ADS)
Toulouse, T.; Rossi, L.; Akhloufi, M. A.; Pieri, A.; Maldague, X.
2018-02-01
In the last decade we have witnessed an increasing interest in using computer vision and image processing in forest fire research. Image processing techniques have been successfully used in different fire analysis areas such as early detection, monitoring, modeling and fire front characteristics estimation. While the majority of the work deals with the use of 2D visible spectrum images, recent work has introduced the use of 3D vision in this field. This work proposes a new multimodal vision framework permitting the extraction of the three-dimensional geometrical characteristics of fires captured by multiple 3D vision systems. The 3D system is a multispectral stereo system operating in both the visible and near-infrared (NIR) spectral bands. The framework supports the use of multiple stereo pairs positioned so as to capture complementary views of the fire front during its propagation. Multimodal registration is conducted using the captured views in order to build a complete 3D model of the fire front. The registration process is achieved using multisensory fusion based on visual data (2D and NIR images), GPS positions and IMU inertial data. Experiments were conducted outdoors in order to show the performance of the proposed framework. The obtained results are promising and show the potential of using the proposed framework in operational scenarios for wildland fire research and as a decision management system in fighting.
Time-Dependent Simulations of Turbopump Flows
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan; Chan, William; Williams, Robert
2002-01-01
Unsteady flow simulations for RLV (Reusable Launch Vehicles) 2nd Generation baseline turbopump for one and half impeller rotations have been completed by using a 34.3 Million grid points model. MLP (Multi-Level Parallelism) shared memory parallelism has been implemented in INS3D, and benchmarked. Code optimization for cash based platforms will be completed by the end of September 2001. Moving boundary capability is obtained by using DCF module. Scripting capability from CAD (computer aided design) geometry to solution has been developed. Data compression is applied to reduce data size in post processing. Fluid/Structure coupling has been initiated.
A complete system for 3D reconstruction of roots for phenotypic analysis.
Kumar, Pankaj; Cai, Jinhai; Miklavcic, Stanley J
2015-01-01
Here we present a complete system for 3D reconstruction of roots grown in a transparent gel medium or washed and suspended in water. The system is capable of being fully automated as it is self calibrating. The system starts with detection of root tips in root images from an image sequence generated by a turntable motion. Root tips are detected using the statistics of Zernike moments on image patches centred on high curvature points on root boundary and Bayes classification rule. The detected root tips are tracked in the image sequence using a multi-target tracking algorithm. Conics are fitted to the root tip trajectories using a novel ellipse fitting algorithm which weighs the data points by its eccentricity. The conics projected from the circular trajectory have a complex conjugate intersection which are image of the circular points. Circular points constraint the image of the absolute conics which are directly related to the internal parameters of the camera. The pose of the camera is computed from the image of the rotation axis and the horizon. The silhouettes of the roots and camera parameters are used to reconstruction the 3D voxel model of the roots. We show the results of real 3D reconstruction of roots which are detailed and realistic for phenotypic analysis.
Louis, Fiona; Pannetier, Pauline; Souguir, Zied; Le Cerf, Didier; Valet, Philippe; Vannier, Jean-Pierre; Vidal, Guillaume; Demange, Elise
2017-08-01
The lack of relevant in vitro models for adipose tissue makes necessary the development of a more physiological environment providing spatial and chemical cues for the effective maturation of adipocytes. We developed a biofunctionalized hydrogel with components of adipose extracellular matrix: collagen I, collagen VI, and the cell binding domain of fibronectin and we compared it to usual 2D cultures on plastic plates. This scaffold allowed 3D culture of mature adipocytes from the preadipocytes cell lines 3T3-L1 and 3T3-F442A, as well as primary Human White Preadipocytes (HWP), acquiring in vivo-like organization, with spheroid shaped adipocytes forming multicellular aggregates. The size of these aggregates increased with time up to 120 μm in diameter after 4 weeks of maturation, with good viability. Significantly higher lipogenic activity (up to 20-fold at day 28 for HWP cultures) and differentiation rates were also observed compared to 2D. Gene expression analyses highlighted earlier differentiation and complete maturation of 3D HWP compared to 2D, reinforced by the expression of Perilipin protein after 21 days of nutrition. This increase in adipocytes phenotypic and genotypic markers made this scaffold-driven culture as a robust adipose 3D model. Retinoic acid inhibition of lipogenesis in HWP or isoprenalin and caffeine induction of lipolysis performed on mouse 3T3-F442A cells, showed higher doses of molecules than typically used in 2D, underlying the physiologic relevance of this 3D culture system. Biotechnol. Bioeng. 2017;114: 1813-1824. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Gee Kee, E L; Kimble, R M; Stockton, K A
2015-09-01
Reliability and validity of 3D photography (3D LifeViz™ System) compared to digital planimetry (Visitrak™) has been established in a compliant cohort of children with acute burns. Further research is required to investigate these assessment tools in children representative of the general pediatric burns population, specifically children under the age of three years. To determine if 3D photography is a reliable wound assessment tool compared to Visitrak™ in children of all ages with acute burns ≤10% TBSA. Ninety-six children (median age 1 year 9 months) who presented to the Royal Children's Hospital Brisbane with an acute burn ≤10% TBSA were recruited into the study. Wounds were measured at the first dressing change using the Visitrak™ system and 3D photography. All measurements were completed by one investigator and level of agreement between wound surface area measurements was calculated. Wound surface area measurements were complete (i.e. participants had measurements from both techniques) for 75 participants. Level of agreement between wound surface area measurements calculated using an intra-class correlation coefficient (ICC) was excellent (ICC 0.96, 95% CI 0.93, 0.97). Visitrak™ tracings could not be completed in 19 participants with 16 aged less than two years. 3D photography could not be completed for one participant. Barriers to completing tracings were: excessive movement, pain, young age or wound location (e.g. face or perineum). This study has confirmed 3D photography as a reliable alternative to digital planimetry in children of all ages with acute burns ≤10% TBSA. In addition, 3D photography is more suitable for very young children given its non-invasive nature. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
3D modeling of electric fields in the LUX detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerib, D. S.; Alsum, S.; Araújo, H. M.
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generatedmore » on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m 2. Here, from our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.« less
3D modeling of electric fields in the LUX detector
Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...
2017-11-24
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generatedmore » on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m 2. Here, from our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.« less
3D modeling of electric fields in the LUX detector
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.
2017-11-01
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.
Patient-specific pediatric silicone heart valve models based on 3D ultrasound
NASA Astrophysics Data System (ADS)
Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor
2017-03-01
PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.
Wei Liao; Rohr, Karl; Chang-Ki Kang; Zang-Hee Cho; Worz, Stefan
2016-01-01
We propose a novel hybrid approach for automatic 3D segmentation and quantification of high-resolution 7 Tesla magnetic resonance angiography (MRA) images of the human cerebral vasculature. Our approach consists of two main steps. First, a 3D model-based approach is used to segment and quantify thick vessels and most parts of thin vessels. Second, remaining vessel gaps of the first step in low-contrast and noisy regions are completed using a 3D minimal path approach, which exploits directional information. We present two novel minimal path approaches. The first is an explicit approach based on energy minimization using probabilistic sampling, and the second is an implicit approach based on fast marching with anisotropic directional prior. We conducted an extensive evaluation with over 2300 3D synthetic images and 40 real 3D 7 Tesla MRA images. Quantitative and qualitative evaluation shows that our approach achieves superior results compared with a previous minimal path approach. Furthermore, our approach was successfully used in two clinical studies on stroke and vascular dementia.
3D space positioning and image feature extraction for workpiece
NASA Astrophysics Data System (ADS)
Ye, Bing; Hu, Yi
2008-03-01
An optical system of 3D parameters measurement for specific area of a workpiece has been presented and discussed in this paper. A number of the CCD image sensors are employed to construct the 3D coordinate system for the measured area. The CCD image sensor of the monitoring target is used to lock the measured workpiece when it enters the field of view. The other sensors, which are placed symmetrically beam scanners, measure the appearance of the workpiece and the characteristic parameters. The paper established target image segmentation and the image feature extraction algorithm to lock the target, based on the geometric similarity of objective characteristics, rapid locking the goal can be realized. When line laser beam scan the tested workpiece, a number of images are extracted equal time interval and the overlapping images are processed to complete image reconstruction, and achieve the 3D image information. From the 3D coordinate reconstruction model, the 3D characteristic parameters of the tested workpiece are gained. The experimental results are provided in the paper.
NASA Astrophysics Data System (ADS)
Lo Brutto, M.; Spera, M. G.
2011-09-01
The Temple of Olympian Zeus in Agrigento (Italy) was one of the largest temple and at the same time one of the most original of all the Greek architecture. We don't know exactly how it was because the temple is now almost completely destroyed but it is very well-known for the presence of the Telamons. The Telamons were giant statues (about 8 meters high) probably located outside the temple to fill the interval between the columns. In accordance with the theory most accredited by archaeologists the Telamons were a decorative element and also a support for the structure. However, this hypothesis has never been scientifically proven. One Telamon has been reassembled and is shown at the Archaeological Museum of Agrigento. In 2009 a group of researchers at the University of Palermo has begun a study to test the hypothesis that the Telamons support the weight of the upper part of the temple. The study consists of a 3D survey of the Telamon, to reconstruct a detailed 3D digital model, and of a structural analysis with the Finite Element Method (FEM) to test the possibility that the Telamon could to support the weight of the upper portion of the temple. In this work the authors describe the 3D survey of Telamon carry out with Range-Based Modelling (RBM) and Image-Based Modeling (IBM). The RBM was performed with a TOF laser scanner while the IBM with the ZScan system of Menci Software and Image Master of Topcon. Several tests were conducted to analyze the accuracy of the different 3D models and to evaluate the difference between laser scanning and photogrammetric data. Moreover, an appropriate data reduction to generate a 3D model suitable for FEM analysis was tested.
NASA Astrophysics Data System (ADS)
Dong, H.; Kun, Z.; Zhang, L.
2015-12-01
This magnetotelluric (MT) system contains static shift correction and 3D inversion. The correction method is based on the data study on 3D forward modeling and field test. The static shift can be detected by the quantitative analysis of apparent parameters (apparent resistivity and impedance phase) of MT in high frequency range, and completed correction with inversion. The method is an automatic processing technology of computer with zero-cost, and avoids the additional field work and indoor processing with good results shown in Figure 1a-e. Figure 1a shows a normal model (I) without any local heterogeneity. Figure 1b shows a static-shifted model (II) with two local heterogeneous bodies (10 and 1000 ohm.m). Figure 1c is the inversion result (A) for the synthetic data generated from model I. Figure 1d is the inversion result (B) for the static-shifted data generated from model II. Figure 1e is the inversion result (C) for the static-shifted data from model II, but with static shift correction. The results show that the correction method is useful. The 3D inversion algorithm is improved base on the NLCG method of Newman & Alumbaugh (2000) and Rodi & Mackie (2001). For the algorithm, we added the frequency based parallel structure, improved the computational efficiency, reduced the memory of computer, added the topographic and marine factors, and added the constraints of geology and geophysics. So the 3D inversion could even work in PAD with high efficiency and accuracy. The application example of theoretical assessment in oil and gas exploration is shown in Figure 1f-i. The synthetic geophysical model consists of five layers (from top to downwards): shale, limestone, gas, oil, groundwater and limestone overlying a basement rock. Figure 1f-g show the 3D model and central profile. Figure 1h shows the centrel section of 3D inversion, the resultsd show a high degree of reduction in difference on the synthetic model. Figure 1i shows the seismic waveform reflects the interfaces of every layer overall, but the relative positions of the interface of the two-way travel time vary, and the interface between limestone and oil at the sides of the section is not reflected. So 3-D MT can make up for the deficiency of the seismic results such as the fake sync-phase axis and multiple waves.
Research on Splicing Method of Digital Relic Fragment Model
NASA Astrophysics Data System (ADS)
Yan, X.; Hu, Y.; Hou, M.
2018-04-01
In the course of archaeological excavation, a large number of pieces of cultural relics were unearthed, and the restoration of these fragments was done manually by traditional arts and crafts experts. In this process, cultural relics experts often try to splice the existing cultural relics, and then use adhesive to stick together the fragments of correct location, which will cause irreversible secondary damage to cultural relics. In order to minimize such damage, the surveyors combine 3D laser scanning with computer technology, and use the method of establishing digital cultural relics fragments model to make virtual splicing of cultural relics. The 3D software on the common market can basically achieve the model translation and rotation, using this two functions can be achieved manually splicing between models, mosaic records after the completion of the specific location of each piece of fragments, so as to effectively reduce the damage to the relics had tried splicing process.
NASA Astrophysics Data System (ADS)
Woolfrey, John R.; Avery, Mitchell A.; Doweyko, Arthur M.
1998-03-01
Two three-dimensional quantitative structure-activity relationship (3D-QSAR) methods, comparative molecular field analysis (CoMFA) and hypothetical active site lattice (HASL), were compared with respect to the analysis of a training set of 154 artemisinin analogues. Five models were created, including a complete HASL and two trimmed versions, as well as two CoMFA models (leave-one-out standard CoMFA and the guided-region selection protocol). Similar r2 and q2 values were obtained by each method, although some striking differences existed between CoMFA contour maps and the HASL output. Each of the four predictive models exhibited a similar ability to predict the activity of a test set of 23 artemisinin analogues, although some differences were noted as to which compounds were described well by either model.
Verification of BOUT++ by the method of manufactured solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudson, B. D., E-mail: benjamin.dudson@york.ac.uk; Hill, P.; Madsen, J.
2016-06-15
BOUT++ is a software package designed for solving plasma fluid models. It has been used to simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid models. A verification exercise has been performed as part of a EUROfusion Enabling Research project, to rigorously test the correctness of the algorithms implemented in BOUT++, by testing order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We present tests of individual components including time-integration and advection schemes, non-orthogonal toroidal field-aligned coordinate systemsmore » and the shifted metric procedure which is used to handle highly sheared grids. The flux coordinate independent approach to differencing along magnetic field-lines has been implemented in BOUT++ and is here verified using the MMS in a sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal coordinates, and 5-field reduced MHD in slab geometry.« less
Virtual reality system for planning minimally invasive neurosurgery. Technical note.
Stadie, Axel Thomas; Kockro, Ralf Alfons; Reisch, Robert; Tropine, Andrei; Boor, Stephan; Stoeter, Peter; Perneczky, Axel
2008-02-01
The authors report on their experience with a 3D virtual reality system for planning minimally invasive neurosurgical procedures. Between October 2002 and April 2006, the authors used the Dextroscope (Volume Interactions, Ltd.) to plan neurosurgical procedures in 106 patients, including 100 with intracranial and 6 with spinal lesions. The planning was performed 1 to 3 days preoperatively, and in 12 cases, 3D prints of the planning procedure were taken into the operating room. A questionnaire was completed by the neurosurgeon after the planning procedure. After a short period of acclimatization, the system proved easy to operate and is currently used routinely for preoperative planning of difficult cases at the authors' institution. It was felt that working with a virtual reality multimodal model of the patient significantly improved surgical planning. The pathoanatomy in individual patients could easily be understood in great detail, enabling the authors to determine the surgical trajectory precisely and in the most minimally invasive way. The authors found the preoperative 3D model to be in high concordance with intraoperative conditions; the resulting intraoperative "déjà-vu" feeling enhanced surgical confidence. In all procedures planned with the Dextroscope, the chosen surgical strategy proved to be the correct choice. Three-dimensional virtual reality models of a patient allow quick and easy understanding of complex intracranial lesions.
NASA Astrophysics Data System (ADS)
Yang, W. B.; Yen, Y. N.; Cheng, H. M.
2015-08-01
The integration of preservation of heritage and the digital technology is an important international trend in the 21st century. The digital technology not only is able to record and preserve detailed documents and information of heritage completely, but also brings the value-added features effectively. In this study, 3D laser scanning is used to perform the digitalized archives for the interior and exterior body work of the building which contains integration of 3D scanner technology, mobile scanning collaboration and multisystem reverse modeling and integration technology. The 3D model is built by combining with multi-media presentations and reversed modeling in real scale to perform the simulation of virtual reality (VR). With interactive teaching and presentation of augmented reality to perform the interaction technology to extend the continuously update in traditional architecture information. With the upgrade of the technology and value-added in digitalization, the cultural asset value can be experienced through 3D virtual reality which makes the information presentation from the traditional reading in the past toward user operation with sensory experience and keep exploring the possibilities and development of cultural asset preservation by using digital technology makes the presentation and learning of cultural asset information toward diversification.
Superconductivity in epitaxial InN thin films with large critical fields
NASA Astrophysics Data System (ADS)
Pal, Buddhadeb; Joshi, Bhanu P.; Chakraborti, Himadri; Jain, Aditya K.; Barick, Barun K.; Ghosh, Kankat; Laha, Apurba; Dhar, Subhabrata; Gupta, Kantimay Das
2018-04-01
We report superconductivity in Chemical Vapor Deposition (CVD) and Plasma-Assisted Molecular Beam Epitaxy (PA-MBE) grown epitaxial InN films having carrier density ˜ 1019 - 1020cm-3. The superconducting phase transition starts at temperatures around Tc,onset˜3 K and the resistance goes to zero completely at Tc0 ˜ 1.6 K. The temperature dependence of the critical field HC2(T) does not obey a two fluid Casimir-Gorter (C-G) model rather it is well explained by the 2-D Tinkham model. The extrapolated value of the zero-temperature perpendicular critical field HC2(0) is found to be between 0.25 - 0.9 T, which is ten times greater than that of Indium metal. It may indicate the intrinsic nature of superconductivity in InN films. The angle dependence of critical field is well described by Lawrence-Doniach (L-D) model, which suggest the existence of quasi-2D superconducting layers.
NASA Astrophysics Data System (ADS)
Fargier, Yannick; Dore, Ludovic; Antoine, Raphael; Palma Lopes, Sérgio; Fauchard, Cyrille
2016-04-01
The extraction of subsurface materials is a key element for the economy of a nation. However, natural degradation of underground quarries is a major issue from an economic and public safety point of view. Consequently, the quarries stakeholders require relevant tools to define hazards associated to these structures. Safety assessment methods of underground quarries are recent and mainly based on rock physical properties. This kind of method leads to a certain homogeneity assumption of pillar internal properties that can cause an underestimation of the risk. Electrical Resistivity Imaging (ERI) is a widely used method that possesses two advantages to overcome this limitation. The first is to provide a qualitative understanding for the detection and monitoring of anomalies in the pillar body (e.g. faults). The second is to provide a quantitative description of the electrical resistivity distribution inside the pillar. This quantitative description can be interpreted with constitutive laws to help decision support (water content decreases the mechanical resistance of a chalk). However, conventional 2D and 3D Imaging techniques are usually applied to flat surface surveys or to surfaces with moderate topography. A 3D inversion of more complex media (case of the pillar) requires a full consideration of the geometry that was never taken into account before. The Photogrammetric technique presents a cost effective solution to obtain an accurate description of the external geometry of a complex media. However, this method has never been fully coupled with a geophysical method to enhance/improve the inversion process. Consequently we developed a complete procedure showing that photogrammetric and ERI tools can be efficiently combined to assess a complex 3D structure. This procedure includes in a first part a photogrammetric survey, a processing stage with an open source software and a post-processing stage finalizing a 3D surface model. The second part necessitates the production of a complete 3D mesh of the previous surface model to operate some forward modelization of the geo-electrical problem. To solve the inverse problem and obtain a 3D resistivity distribution we use a double grid method associated with a regularized Gauss-Newton inversion scheme. We applied this procedure to a synthetic case to demonstrate the impact of the geometry on the inversion result. This study shows that geometrical information in between electrodes are necessary to reconstruct finely the "true model". Finally, we apply the methodology to a real underground quarry pillar, implying one photogrammetric survey and three ERI surveys. The results show that the procedure can greatly improve the reconstruction and avoid some artifacts due to strong geometry variations.
Structured Light-Based 3D Reconstruction System for Plants
Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima
2015-01-01
Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701
Advances in HYDRA and its application to simulations of Inertial Confinement Fusion targets
NASA Astrophysics Data System (ADS)
Marinak, M. M.; Kerbel, G. D.; Koning, J. M.; Patel, M. V.; Sepke, S. M.; Brown, P. N.; Chang, B.; Procassini, R.; Veitzer, S. A.
2008-11-01
We will outline new capabilities added to the HYDRA 2D/3D multiphysics ICF simulation code. These include a new SN multigroup radiation transport package (1D), constitutive models for elastic-plastic (strength) effects, and a mix model. A Monte Carlo burn package is being incorporated to model diagnostic signatures of neutrons, gamma rays and charged particles. A 3D MHD package that treats resistive MHD is available. Improvements to HYDRA's implicit Monte Carlo photonics package, including the addition of angular biasing, now enable integrated hohlraum simulations to complete in substantially shorter time. The heavy ion beam deposition package now includes a new model for ion stopping power developed by the Tech-X Corporation, with improved accuracy below the Bragg peak. Examples will illustrate HYDRA's enhanced capabilities to simulate various aspects of inertial confinement fusion targets.This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. The work of Tech-X personnel was funded by the Department of Energy under Small Business Innovation Research Contract No. DE-FG02-03ER83797.
The application of artificial intelligence in the optimal design of mechanical systems
NASA Astrophysics Data System (ADS)
Poteralski, A.; Szczepanik, M.
2016-11-01
The paper is devoted to new computational techniques in mechanical optimization where one tries to study, model, analyze and optimize very complex phenomena, for which more precise scientific tools of the past were incapable of giving low cost and complete solution. Soft computing methods differ from conventional (hard) computing in that, unlike hard computing, they are tolerant of imprecision, uncertainty, partial truth and approximation. The paper deals with an application of the bio-inspired methods, like the evolutionary algorithms (EA), the artificial immune systems (AIS) and the particle swarm optimizers (PSO) to optimization problems. Structures considered in this work are analyzed by the finite element method (FEM), the boundary element method (BEM) and by the method of fundamental solutions (MFS). The bio-inspired methods are applied to optimize shape, topology and material properties of 2D, 3D and coupled 2D/3D structures, to optimize the termomechanical structures, to optimize parameters of composites structures modeled by the FEM, to optimize the elastic vibrating systems to identify the material constants for piezoelectric materials modeled by the BEM and to identify parameters in acoustics problem modeled by the MFS.
de Boer, Bouke A; Soufan, Alexandre T; Hagoort, Jaco; Mohun, Timothy J; van den Hoff, Maurice J B; Hasman, Arie; Voorbraak, Frans P J M; Moorman, Antoon F M; Ruijter, Jan M
2011-01-01
Interpretation of the results of anatomical and embryological studies relies heavily on proper visualization of complex morphogenetic processes and patterns of gene expression in a three-dimensional (3D) context. However, reconstruction of complete 3D datasets is time consuming and often researchers study only a few sections. To help in understanding the resulting 2D data we developed a program (TRACTS) that places such arbitrary histological sections into a high-resolution 3D model of the developing heart. The program places sections correctly, robustly and as precisely as the best of the fits achieved by five morphology experts. Dissemination of 3D data is severely hampered by the 2D medium of print publication. Many insights gained from studying the 3D object are very hard to convey using 2D images and are consequently lost or cannot be verified independently. It is possible to embed 3D objects into a pdf document, which is a format widely used for the distribution of scientific papers. Using the freeware program Adobe Reader to interact with these 3D objects is reasonably straightforward; creating such objects is not. We have developed a protocol that describes, step by step, how 3D objects can be embedded into a pdf document. Both the use of TRACTS and the inclusion of 3D objects in pdf documents can help in the interpretation of 2D and 3D data, and will thus optimize communication on morphological issues in developmental biology.
Digital 3D facial reconstruction of George Washington
NASA Astrophysics Data System (ADS)
Razdan, Anshuman; Schwartz, Jeff; Tocheri, Mathew; Hansford, Dianne
2006-02-01
PRISM is a focal point of interdisciplinary research in geometric modeling, computer graphics and visualization at Arizona State University. Many projects in the last ten years have involved laser scanning, geometric modeling and feature extraction from such data as archaeological vessels, bones, human faces, etc. This paper gives a brief overview of a recently completed project on the 3D reconstruction of George Washington (GW). The project brought together forensic anthropologists, digital artists and computer scientists in the 3D digital reconstruction of GW at 57, 45 and 19 including detailed heads and bodies. Although many other scanning projects such as the Michelangelo project have successfully captured fine details via laser scanning, our project took it a step further, i.e. to predict what that individual (in the sculpture) might have looked like both in later and earlier years, specifically the process to account for reverse aging. Our base data was GWs face mask at Morgan Library and Hudons bust of GW at Mount Vernon, both done when GW was 53. Additionally, we scanned the statue at the Capitol in Richmond, VA; various dentures, and other items. Other measurements came from clothing and even portraits of GW. The digital GWs were then milled in high density foam for a studio to complete the work. These will be unveiled at the opening of the new education center at Mt Vernon in fall 2006.
Augmented reality in a tumor resection model.
Chauvet, Pauline; Collins, Toby; Debize, Clement; Novais-Gameiro, Lorraine; Pereira, Bruno; Bartoli, Adrien; Canis, Michel; Bourdel, Nicolas
2018-03-01
Augmented Reality (AR) guidance is a technology that allows a surgeon to see sub-surface structures, by overlaying pre-operative imaging data on a live laparoscopic video. Our objectives were to evaluate a state-of-the-art AR guidance system in a tumor surgical resection model, comparing the accuracy of the resection with and without the system. Our system has three phases. Phase 1: using the MRI images, the kidney's and pseudotumor's surfaces are segmented to construct a 3D model. Phase 2: the intra-operative 3D model of the kidney is computed. Phase 3: the pre-operative and intra-operative models are registered, and the laparoscopic view is augmented with the pre-operative data. We performed a prospective experimental study on ex vivo porcine kidneys. Alginate was injected into the parenchyma to create pseudotumors measuring 4-10 mm. The kidneys were then analyzed by MRI. Next, the kidneys were placed into pelvictrainers, and the pseudotumors were laparoscopically resected. The AR guidance system allows the surgeon to see tumors and margins using classical laparoscopic instruments, and a classical screen. The resection margins were measured microscopically to evaluate the accuracy of resection. Ninety tumors were segmented: 28 were used to optimize the AR software, and 62 were used to randomly compare surgical resection: 29 tumors were resected using AR and 33 without AR. The analysis of our pathological results showed 4 failures (tumor with positive margins) (13.8%) in the AR group, and 10 (30.3%) in the Non-AR group. There was no complete miss in the AR group, while there were 4 complete misses in the non-AR group. In total, 14 (42.4%) tumors were completely missed or had a positive margin in the non-AR group. Our AR system enhances the accuracy of surgical resection, particularly for small tumors. Crucial information such as resection margins and vascularization could also be displayed.
The Impact of 3D Data Quality on Improving GNSS Performance Using City Models Initial Simulations
NASA Astrophysics Data System (ADS)
Ellul, C.; Adjrad, M.; Groves, P.
2016-10-01
There is an increasing demand for highly accurate positioning information in urban areas, to support applications such as people and vehicle tracking, real-time air quality detection and navigation. However systems such as GPS typically perform poorly in dense urban areas. A number of authors have made use of 3D city models to enhance accuracy, obtaining good results, but to date the influence of the quality of the 3D city model on these results has not been tested. This paper addresses the following question: how does the quality, and in particular the variation in height, level of generalization and completeness and currency of a 3D dataset, impact the results obtained for the preliminary calculations in a process known as Shadow Matching, which takes into account not only where satellite signals are visible on the street but also where they are predicted to be absent. We describe initial simulations to address this issue, examining the variation in elevation angle - i.e. the angle above which the satellite is visible, for three 3D city models in a test area in London, and note that even within one dataset using different available height values could cause a difference in elevation angle of up to 29°. Missing or extra buildings result in an elevation variation of around 85°. Variations such as these can significantly influence the predicted satellite visibility which will then not correspond to that experienced on the ground, reducing the accuracy of the resulting Shadow Matching process.
An application of cascaded 3D fully convolutional networks for medical image segmentation.
Roth, Holger R; Oda, Hirohisa; Zhou, Xiangrong; Shimizu, Natsuki; Yang, Ying; Hayashi, Yuichiro; Oda, Masahiro; Fujiwara, Michitaka; Misawa, Kazunari; Mori, Kensaku
2018-06-01
Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ∼10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. 1 . Copyright © 2018 Elsevier Ltd. All rights reserved.
Investigating source processes of isotropic events
NASA Astrophysics Data System (ADS)
Chiang, Andrea
This dissertation demonstrates the utility of the complete waveform regional moment tensor inversion for nuclear event discrimination. I explore the source processes and associated uncertainties for explosions and earthquakes under the effects of limited station coverage, compound seismic sources, assumptions in velocity models and the corresponding Green's functions, and the effects of shallow source depth and free-surface conditions. The motivation to develop better techniques to obtain reliable source mechanism and assess uncertainties is not limited to nuclear monitoring, but they also provide quantitative information about the characteristics of seismic hazards, local and regional tectonics and in-situ stress fields of the region . This dissertation begins with the analysis of three sparsely recorded events: the 14 September 1988 US-Soviet Joint Verification Experiment (JVE) nuclear test at the Semipalatinsk test site in Eastern Kazakhstan, and two nuclear explosions at the Chinese Lop Nor test site. We utilize a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long period waveforms and first motion observations provides unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We examine the effects of the free surface on the moment tensor via synthetic testing, and apply the moment tensor based discrimination method to well-recorded chemical explosions. These shallow chemical explosions represent rather severe source-station geometry in terms of the vanishing traction issues. We show that the combined waveform and first motion method enables the unique discrimination of these events, even though the data include unmodeled single force components resulting from the collapse and blowout of the quarry face immediately following the initial explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve the fit to the data. When we apply the 3D model to real data, at long periods (20-50 seconds), we see good agreement in the solutions between the 1D and 3D models and slight improvement in waveform fits when using the 3D velocity model Green's functions. (Abstract shortened by ProQuest.).
a Semi-Automated Point Cloud Processing Methodology for 3d Cultural Heritage Documentation
NASA Astrophysics Data System (ADS)
Kıvılcım, C. Ö.; Duran, Z.
2016-06-01
The preliminary phase in any architectural heritage project is to obtain metric measurements and documentation of the building and its individual elements. On the other hand, conventional measurement techniques require tremendous resources and lengthy project completion times for architectural surveys and 3D model production. Over the past two decades, the widespread use of laser scanning and digital photogrammetry have significantly altered the heritage documentation process. Furthermore, advances in these technologies have enabled robust data collection and reduced user workload for generating various levels of products, from single buildings to expansive cityscapes. More recently, the use of procedural modelling methods and BIM relevant applications for historic building documentation purposes has become an active area of research, however fully automated systems in cultural heritage documentation still remains open. In this paper, we present a semi-automated methodology, for 3D façade modelling of cultural heritage assets based on parametric and procedural modelling techniques and using airborne and terrestrial laser scanning data. We present the contribution of our methodology, which we implemented in an open source software environment using the example project of a 16th century early classical era Ottoman structure, Sinan the Architect's Şehzade Mosque in Istanbul, Turkey.
NASA Astrophysics Data System (ADS)
Chiabrando, F.; Sammartano, G.; Spanò, A.
2016-06-01
This paper retraces some research activities and application of 3D survey techniques and Building Information Modelling (BIM) in the environment of Cultural Heritage. It describes the diffusion of as-built BIM approach in the last years in Heritage Assets management, the so-called Built Heritage Information Modelling/Management (BHIMM or HBIM), that is nowadays an important and sustainable perspective in documentation and administration of historic buildings and structures. The work focuses the documentation derived from 3D survey techniques that can be understood like a significant and unavoidable knowledge base for the BIM conception and modelling, in the perspective of a coherent and complete management and valorisation of CH. It deepens potentialities, offered by 3D integrated survey techniques, to acquire productively and quite easilymany 3D information, not only geometrical but also radiometric attributes, helping the recognition, interpretation and characterization of state of conservation and degradation of architectural elements. From these data, they provide more and more high descriptive models corresponding to the geometrical complexity of buildings or aggregates in the well-known 5D (3D + time and cost dimensions). Points clouds derived from 3D survey acquisition (aerial and terrestrial photogrammetry, LiDAR and their integration) are reality-based models that can be use in a semi-automatic way to manage, interpret, and moderately simplify geometrical shapes of historical buildings that are examples, as is well known, of non-regular and complex geometry, instead of modern constructions with simple and regular ones. In the paper, some of these issues are addressed and analyzed through some experiences regarding the creation and the managing of HBIMprojects on historical heritage at different scales, using different platforms and various workflow. The paper focuses on LiDAR data handling with the aim to manage and extract geometrical information; on development and optimization of semi-automatic process of segmentation, recognition and modelling of historical shapes of complex structures; on communication of historical heritage by virtual and augmented reality (VR/AR) in a 3D reconstruction of buildings aggregates from a LiDAR and UAV survey. The HBIM model have been implemented and optimized to be managed and browse by mobile devices for not only touristic or informative scopes, but also to ensure that HBIM platforms will become more easy and valuable tools helping all professionals of AEC involved in the documentation and valorisation process, that nowadays more and more distinguish CH policies.
DOT National Transportation Integrated Search
2016-12-31
In the past decades, expansion projects of port in USA, have been completed by placing hydraulic fills. These loose man-made fills and even their subjacent natural estuarine and marine deposits, have shown to be susceptible to liquefaction. The case ...
Spatial Cognition Support for Exploring the Design Mechanics of Building Structures
ERIC Educational Resources Information Center
Rudy, Margit; Hauck, Richard
2008-01-01
A web-based tool for visualizing the simulated structural behavior of building models was developed to support the teaching of structural design to architecture and engineering students by activating their spatial cognition capabilities. The main didactic issues involved establishing a consistent and complete three-dimensional vocabulary (3D)…
A unified and efficient framework for court-net sports video analysis using 3D camera modeling
NASA Astrophysics Data System (ADS)
Han, Jungong; de With, Peter H. N.
2007-01-01
The extensive amount of video data stored on available media (hard and optical disks) necessitates video content analysis, which is a cornerstone for different user-friendly applications, such as, smart video retrieval and intelligent video summarization. This paper aims at finding a unified and efficient framework for court-net sports video analysis. We concentrate on techniques that are generally applicable for more than one sports type to come to a unified approach. To this end, our framework employs the concept of multi-level analysis, where a novel 3-D camera modeling is utilized to bridge the gap between the object-level and the scene-level analysis. The new 3-D camera modeling is based on collecting features points from two planes, which are perpendicular to each other, so that a true 3-D reference is obtained. Another important contribution is a new tracking algorithm for the objects (i.e. players). The algorithm can track up to four players simultaneously. The complete system contributes to summarization by various forms of information, of which the most important are the moving trajectory and real-speed of each player, as well as 3-D height information of objects and the semantic event segments in a game. We illustrate the performance of the proposed system by evaluating it for a variety of court-net sports videos containing badminton, tennis and volleyball, and we show that the feature detection performance is above 92% and events detection about 90%.
A 3D geological and geomechanical model of the 1963 Vajont landslide
NASA Astrophysics Data System (ADS)
Bistacchi, Andrea; Massironi, Matteo; Francese, Roberto; Giorgi, Massimo; Chistolini, Filippo; Battista Crosta, Giovanni; Castellanza, Riccardo; Frattini, Paolo; Agliardi, Federico; Frigerio, Gabriele
2014-05-01
The Vajont rockslide has been the object of several studies because of its catastrophic consequences and particular evolution. Several qualitative or quantitative models have been presented in the last 50 years, but a complete explanation of all relevant geological and mechanical processes remains elusive. In order to better understand the mechanics and dynamics of the 1963 event, we have reconstructed the first 3D geological model of the rockslide, which allowed us to accurately investigate the rockslide structure and kinematics. The input data for the model consisted in: pre- and post-rockslide geological maps, pre- and post-rockslide orthophotos, pre- and post-rockslide digital elevation models, structural data, boreholes, and geophysical data (2D and 3D seismics and resistivity). All these data have been integrated in a 3D geological model implemented in Gocad®, using the implicit surface modelling method. Results of the 3D geological model include the depth and geometry of the sliding surface, the volume of the two lobes of the rockslide accumulation, kinematics of the rockslide in terms of the vector field of finite displacement, and high quality meshes useful for mechanical and hydrogeological simulations. The latter can include information about the stratigraphy and internal structure of the rock masses and allow tracing the displacement of different material points in the rockslide from the pre-1963-failure to the post-rockslide state. As a general geological conclusion, we may say that the 3D model allowed us to recognize very effectively a sliding surface, whose non-planar geometry is affected by the interference pattern of two regional-scale fold systems. The rockslide is partitioned into two distinct and internally continuous rock masses with a distinct kinematics, which were characterised by a very limited internal deformation during the slide. The continuity of these two large blocks points to a very localized deformation, occurring along a thin, continuous and weak cataclastic horizon. The chosen modelling strategy, based on both traditional "explicit" and implicit techniques, was found to be very effective for reconstructing complex folded and faulted geological structures, and could be applied also to other geological environments. Finally 3D FEM analyses using the code MidasGTS have been performed adopting the 3D geological model. A c-phi reduction procedure was employed along the pre-defined failure surface until the onset of the landslide occurred. The initiation of the rock mass movements is properly described by considering the evolution of plastic shear strain in the failure surface. The stress, strain and displacement fields of the rock mass were analysed in detail and compared with the monitored data.
Charge transfer polarisation wave and carrier pairing in the high T(sub c) copper oxides
NASA Technical Reports Server (NTRS)
Chakraverty, B. K.
1990-01-01
The High T(sub c) oxides are highly polarizable materials and are charge transfer insulators. The charge transfer polarization wave formalism is developed in these oxides. The dispersion relationships due to long range dipole-dipole interaction of a charge transfer dipole lattice are obtained in 3-D and 2-D. These are high frequency bosons and their coupling with carriers is weak and antiadiabatic in nature. As a result, the mass renormalization of the carriers is negligible in complete contrast to conventional electron-phonon interaction, that give polarons and bipolarons. Both bound and superconducting pairing is discussed for a model Hamiltonian valid in the antiadiabatic regime, both in 3-D and 2-D. The stability of the charge transfer dipole lattice has interesting consequences that are discussed.
DAVIS: A direct algorithm for velocity-map imaging system
NASA Astrophysics Data System (ADS)
Harrison, G. R.; Vaughan, J. C.; Hidle, B.; Laurent, G. M.
2018-05-01
In this work, we report a direct (non-iterative) algorithm to reconstruct the three-dimensional (3D) momentum-space picture of any charged particles collected with a velocity-map imaging system from the two-dimensional (2D) projected image captured by a position-sensitive detector. The method consists of fitting the measured image with the 2D projection of a model 3D velocity distribution defined by the physics of the light-matter interaction. The meaningful angle-correlated information is first extracted from the raw data by expanding the image with a complete set of Legendre polynomials. Both the particle's angular and energy distributions are then directly retrieved from the expansion coefficients. The algorithm is simple, easy to implement, fast, and explicitly takes into account the pixelization effect in the measurement.
3D Modeling of Glacial Erratic Boulders in the Haizi Shan Region, Eastern Tibetan Plateau
NASA Astrophysics Data System (ADS)
Sheriff, M.; Stevens, J.; Radue, M. J.; Strand, P.; Zhou, W.; Putnam, A. E.
2017-12-01
The focus of our team's research is to study patterns of glacier retreat in the Northern and Southern Hemispheres at the end of the last ice age. Our purpose is to search for what caused this great global warming. Such information will improve understanding of how the climate system may respond to the human-induced buildup of fossil carbon dioxide. To reconstruct past glacier behavior, we sample boulders deposited by glaciers to find the rate of ancient recession. Each sample is tested to determine the age of the boulder using 10Be cosmogenic-nuclide dating. My portion of this research focuses on creating 3D models of the sampled boulders. Such high-resolution 3D models afford visual inspection and analysis of each boulder in a virtual reality environment after fieldwork is complete. Such detailed virtual reconstructions will aid post-fieldwork evaluation of sampled boulders. This will help our team interpret 10Be dating results. For example, a high-resolution model can aid post-fieldwork observations, and allow scientists to determine whether the rock has been previously covered, eroded, or moved since it was deposited by the glacier, but before the sample was collected. Also a model can be useful for recognizing patterns between age and boulder morphology. Lastly, the models can be used for those who wish to review the data after publication. To create the 3D models, I will use Hero4 GoPro and Canon PowerShot digital cameras to collect photographs of each boulder from different angles. I will then process the digital imagery using `structure-from-motion' techniques and Agisoft Photoscan software. All boulder photographs will be synthesized to 3D and based on a standardized scale. We will then import these models into an environment that can be accessed using cutting-edge virtual reality technology. By producing a virtual archive of 3D glacial boulder reconstructions, I hope to provide deeper insight into geological processes influencing these boulders during and since their deposition, and ultimately to improve methods that are being used to develop glacial histories on a global scale.
The Usability of Online Geographic Virtual Reality for Urban Planning
NASA Astrophysics Data System (ADS)
Zhang, S.; Moore, A. B.
2013-08-01
Virtual reality (VR) technology is starting to become widely and freely available (for example the online OpenSimulator tool), with potential for use in 3D urban planning and design tasks but still needing rigorous assessment to establish this. A previous study consulted with a small group of urban professionals, who concluded in a satisfaction usability test that online VR had potential value as a usable 3D communication and remote marketing tool but acknowledged that visual quality and geographic accuracy were obstacles to overcome. This research takes the investigation a significant step further to also examine the usability aspects of efficiency (how quickly tasks are completed) and effectiveness (how successfully tasks are completed), relating to OpenSimulator in an urban planning situation. The comparative study pits a three-dimensional VR model (with increased graphic fidelity and geographic content to address the feedback of the previous study) of a subdivision design (in a Dunedin suburb) against 3D models built with GIS (ArcGIS) and CAD (BricsCAD) tools, two types of software environment well established in urban professional practice. Urban professionals participated in the study by attempting to perform timed tasks correctly in each of the environments before being asked questions about the technologies involved and their perceived importance to their professional work. The results reinforce the positive feedback for VR of the previous study, with the graphical and geographic data issues being somewhat addressed (though participants stressed the need for accurate and precise object and terrain modification capabilities in VR). Ease-ofuse and associated fastest task completion speed were significant positive outcomes to emerge from the comparison with GIS and CAD, pointing to a strong future for VR in an urban planning context.
Research on animation design of growing plant based on 3D MAX technology
NASA Astrophysics Data System (ADS)
Chen, Yineng; Fang, Kui; Bu, Weiqiong; Zhang, Xiaoling; Lei, Menglong
In view of virtual plant has practical demands on quality, image and degree of realism animation in growing process of plant, this thesis design the animation based on mechanism and regularity of plant growth, and propose the design method based on 3D MAX technology. After repeated analysis and testing, it is concluded that there are modeling, rendering, animation fabrication and other key technologies in the animation design process. Based on this, designers can subdivid the animation into seed germination animation, plant growth prophase animation, catagen animation, later animation and blossom animation. This paper compounds the animation of these five stages by VP window to realize the completed 3D animation. Experimental result shows that the animation can realized rapid, visual and realistic simulatation the plant growth process.
FPCAS3D User's guide: A three dimensional full potential aeroelastic program, version 1
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.
1995-01-01
The FPCAS3D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady three-dimensional full potential equation which is solved for a blade row. The structural analysis is based on a finite-element model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS3D code. A complete description of the input data is provided in this report. In addition, six examples, including inputs and outputs, are provided.
Small SWAP 3D imaging flash ladar for small tactical unmanned air systems
NASA Astrophysics Data System (ADS)
Bird, Alan; Anderson, Scott A.; Wojcik, Michael; Budge, Scott E.
2015-05-01
The Space Dynamics Laboratory (SDL), working with Naval Research Laboratory (NRL) and industry leaders Advanced Scientific Concepts (ASC) and Hood Technology Corporation, has developed a small SWAP (size, weight, and power) 3D imaging flash ladar (LAser Detection And Ranging) sensor system concept design for small tactical unmanned air systems (STUAS). The design utilizes an ASC 3D flash ladar camera and laser in a Hood Technology gyro-stabilized gimbal system. The design is an autonomous, intelligent, geo-aware sensor system that supplies real-time 3D terrain and target images. Flash ladar and visible camera data are processed at the sensor using a custom digitizer/frame grabber with compression. Mounted in the aft housing are power, controls, processing computers, and GPS/INS. The onboard processor controls pointing and handles image data, detection algorithms and queuing. The small SWAP 3D imaging flash ladar sensor system generates georeferenced terrain and target images with a low probability of false return and <10 cm range accuracy through foliage in real-time. The 3D imaging flash ladar is designed for a STUAS with a complete system SWAP estimate of <9 kg, <0.2 m3 and <350 W power. The system is modeled using LadarSIM, a MATLAB® and Simulink®- based ladar system simulator designed and developed by the Center for Advanced Imaging Ladar (CAIL) at Utah State University. We will present the concept design and modeled performance predictions.
Avazmohammadi, Reza; Li, David S; Leahy, Thomas; Shih, Elizabeth; Soares, João S; Gorman, Joseph H; Gorman, Robert C; Sacks, Michael S
2018-02-01
Knowledge of the complete three-dimensional (3D) mechanical behavior of soft tissues is essential in understanding their pathophysiology and in developing novel therapies. Despite significant progress made in experimentation and modeling, a complete approach for the full characterization of soft tissue 3D behavior remains elusive. A major challenge is the complex architecture of soft tissues, such as myocardium, which endows them with strongly anisotropic and heterogeneous mechanical properties. Available experimental approaches for quantifying the 3D mechanical behavior of myocardium are limited to preselected planar biaxial and 3D cuboidal shear tests. These approaches fall short in pursuing a model-driven approach that operates over the full kinematic space. To address these limitations, we took the following approach. First, based on a kinematical analysis and using a given strain energy density function (SEDF), we obtained an optimal set of displacement paths based on the full 3D deformation gradient tensor. We then applied this optimal set to obtain novel experimental data from a 1-cm cube of post-infarcted left ventricular myocardium. Next, we developed an inverse finite element (FE) simulation of the experimental configuration embedded in a parameter optimization scheme for estimation of the SEDF parameters. Notable features of this approach include: (i) enhanced determinability and predictive capability of the estimated parameters following an optimal design of experiments, (ii) accurate simulation of the experimental setup and transmural variation of local fiber directions in the FE environment, and (iii) application of all displacement paths to a single specimen to minimize testing time so that tissue viability could be maintained. Our results indicated that, in contrast to the common approach of conducting preselected tests and choosing an SEDF a posteriori, the optimal design of experiments, integrated with a chosen SEDF and full 3D kinematics, leads to a more robust characterization of the mechanical behavior of myocardium and higher predictive capabilities of the SEDF. The methodology proposed and demonstrated herein will ultimately provide a means to reliably predict tissue-level behaviors, thus facilitating organ-level simulations for efficient diagnosis and evaluation of potential treatments. While applied to myocardium, such developments are also applicable to characterization of other types of soft tissues.
NASA Astrophysics Data System (ADS)
Dashti-Naserabadi, H.; Najafi, M. N.
2017-10-01
We present extensive numerical simulations of Bak-Tang-Wiesenfeld (BTW) sandpile model on the hypercubic lattice in the upper critical dimension Du=4 . After re-extracting the critical exponents of avalanches, we concentrate on the three- and two-dimensional (2D) cross sections seeking for the induced criticality which are reflected in the geometrical and local exponents. Various features of finite-size scaling (FSS) theory have been tested and confirmed for all dimensions. The hyperscaling relations between the exponents of the distribution functions and the fractal dimensions are shown to be valid for all dimensions. We found that the exponent of the distribution function of avalanche mass is the same for the d -dimensional cross sections and the d -dimensional BTW model for d =2 and 3. The geometrical quantities, however, have completely different behaviors with respect to the same-dimensional BTW model. By analyzing the FSS theory for the geometrical exponents of the two-dimensional cross sections, we propose that the 2D induced models have degrees of similarity with the Gaussian free field (GFF). Although some local exponents are slightly different, this similarity is excellent for the fractal dimensions. The most important one showing this feature is the fractal dimension of loops df, which is found to be 1.50 ±0.02 ≈3/2 =dfGFF .
Towards Complete, Geo-Referenced 3d Models from Crowd-Sourced Amateur Images
NASA Astrophysics Data System (ADS)
Hartmann, W.; Havlena, M.; Schindler, K.
2016-06-01
Despite a lot of recent research, photogrammetric reconstruction from crowd-sourced imagery is plagued by a number of recurrent problems. (i) The resulting models are chronically incomplete, because even touristic landmarks are photographed mostly from a few "canonical" viewpoints. (ii) Man-made constructions tend to exhibit repetitive structure and rotational symmetries, which lead to gross errors in the 3D reconstruction and aggravate the problem of incomplete reconstruction. (iii) The models are normally not geo-referenced. In this paper, we investigate the possibility of using sparse GNSS geo-tags from digital cameras to address these issues and push the boundaries of crowd-sourced photogrammetry. A small proportion of the images in Internet collections (≍ 10 %) do possess geo-tags. While the individual geo-tags are very inaccurate, they nevertheless can help to address the problems above. By providing approximate geo-reference for partial reconstructions they make it possible to fuse those pieces into more complete models; the capability to fuse partial reconstruction opens up the possibility to be more restrictive in the matching phase and avoid errors due to repetitive structure; and collectively, the redundant set of low-quality geo-tags can provide reasonably accurate absolute geo-reference. We show that even few, noisy geo-tags can help to improve architectural models, compared to puristic structure-from-motion only based on image correspondence.
Ophthalmologic diagnostic tool using MR images for biomechanically-based muscle volume deformation
NASA Astrophysics Data System (ADS)
Buchberger, Michael; Kaltofen, Thomas
2003-05-01
We would like to give a work-in-progress report on our ophthalmologic diagnostic software system which performs biomechanically-based muscle volume deformations using MR images. For reconstructing a three-dimensional representation of an extraocular eye muscle, a sufficient amount of high resolution MR images is used, each representing a slice of the muscle. In addition, threshold values are given, which restrict the amount of data used from the MR images. The Marching Cube algorithm is applied to the polygons, resulting in a 3D representation of the muscle, which can efficiently be rendered. A transformation to a dynamic, deformable model is applied by calculating the center of gravity of each muscle slice, approximating the muscle path and subsequently adding Hermite splines through the centers of gravity of all slices. Then, a radius function is defined for each slice, completing the transformation of the static 3D polygon model. Finally, this paper describes future extensions to our system. One of these extensions is the support for additional calculations and measurements within the reconstructed 3D muscle representation. Globe translation, localization of muscle pulleys by analyzing the 3D reconstruction in two different gaze positions and other diagnostic measurements will be available.
Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
Zhang, Yu Shrike; Arneri, Andrea; Bersini, Simone; Shin, Su-Ryon; Zhu, Kai; Goli-Malekabadi, Zahra; Aleman, Julio; Colosi, Cristina; Busignani, Fabio; Dell'Erba, Valeria; Bishop, Colin; Shupe, Thomas; Demarchi, Danilo; Moretti, Matteo; Rasponi, Marco; Dokmeci, Mehmet Remzi; Atala, Anthony; Khademhosseini, Ali
2016-01-01
Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling. PMID:27710832
Zhang, Yu Shrike; Arneri, Andrea; Bersini, Simone; Shin, Su-Ryon; Zhu, Kai; Goli-Malekabadi, Zahra; Aleman, Julio; Colosi, Cristina; Busignani, Fabio; Dell'Erba, Valeria; Bishop, Colin; Shupe, Thomas; Demarchi, Danilo; Moretti, Matteo; Rasponi, Marco; Dokmeci, Mehmet Remzi; Atala, Anthony; Khademhosseini, Ali
2016-12-01
Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shock Interaction of Metal Particles in Condensed Explosive Detonation
NASA Astrophysics Data System (ADS)
Ripley, Robert; Zhang, Fan; Lien, Fue-Sang
2005-07-01
For detonation propagation in a condensed explosive with metal particles, a macro-scale physical model describing the momentum transfer between the explosive and particles has yet to be completely established. Previous 1D and 2D meso-scale modeling studies indicated that significant momentum transfer from the explosive to the particles occurs as the leading shock front crosses the particles, thus influencing the initiation and detonation structure. In this work, 3D meso-scale modeling is conducted to further study the two-phase momentum transfer during the shock diffraction and subsequent detonation in liquid nitromethane containing packed metal particles. Detonation of the condensed explosive is computed using an Arrhenius reaction model and a hybrid EOS model that combines the Mie-Gruneisen equation for reactants and the JWL equation for products. The compressible particles are modeled using the Tait EOS, where the material strength is negligible. The effect of particle packing configuration and inter-particle spacing is shown by parametric studies. Finally, a physical description of the momentum transfer is discussed.
AAFE man-made noise experiment project. Volume 3: Appendices
NASA Technical Reports Server (NTRS)
1974-01-01
Management and operational considerations involved in the project to measure man-made electromagnetic noise at earth orbital altitudes are discussed. The subjects considered are: (1) launch and orbit of the Scout D vehicles, (2) experiment management, (3) receiver scanning considerations, (4) data handling, and (5) threshold measurements. The storage requirements for a high resolution, complete data storage library are defined. Mathematical models of signal detection probability are developed.
3-D Survey Applied to Industrial Archaeology by Tls Methodology
NASA Astrophysics Data System (ADS)
Monego, M.; Fabris, M.; Menin, A.; Achilli, V.
2017-05-01
This work describes the three-dimensional survey of "Ex Stazione Frigorifera Specializzata": initially used for agricultural storage, during the years it was allocated to different uses until the complete neglect. The historical relevance and the architectural heritage that this building represents has brought the start of a recent renovation project and functional restoration. In this regard it was necessary a global 3-D survey that was based on the application and integration of different geomatic methodologies (mainly terrestrial laser scanner, classical topography, and GNSS). The acquisitions of point clouds was performed using different laser scanners: with time of flight (TOF) and phase shift technologies for the distance measurements. The topographic reference network, needed for scans alignment in the same system, was measured with a total station. For the complete survey of the building, 122 scans were acquired and 346 targets were measured from 79 vertices of the reference network. Moreover, 3 vertices were measured with GNSS methodology in order to georeference the network. For the detail survey of machine room were executed 14 scans with 23 targets. The 3-D global model of the building have less than one centimeter of error in the alignment (for the machine room the error in alignment is not greater than 6 mm) and was used to extract products such as longitudinal and transversal sections, plans, architectural perspectives, virtual scans. A complete spatial knowledge of the building is obtained from the processed data, providing basic information for restoration project, structural analysis, industrial and architectural heritage valorization.
Applications of patient-specific 3D printing in medicine.
Heller, Martin; Bauer, Heide-Katharina; Goetze, Elisabeth; Gielisch, Matthias; Roth, Klaus E; Drees, Philipp; Maier, Gerrit S; Dorweiler, Bernhard; Ghazy, Ahmed; Neufurth, Meik; Müller, Werner E G; Schröder, Heinz C; Wang, Xiaohong; Vahl, Christian-Friedrich; Al-Nawas, Bilal
Already three decades ago, the potential of medical 3D printing (3DP) or rapid prototyping for improved patient treatment began to be recognized. Since then, more and more medical indications in different surgical disciplines have been improved by using this new technique. Numerous examples have demonstrated the enormous benefit of 3DP in the medical care of patients by, for example, planning complex surgical interventions preoperatively, reducing implantation steps and anesthesia times, and helping with intraoperative orientation. At the beginning of every individual 3D model, patient-specific data on the basis of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound data is generated, which is then digitalized and processed using computer-aided design/computer-aided manufacturing (CAD/CAM) software. Finally, the resulting data sets are used to generate 3D-printed models or even implants. There are a variety of different application areas in the various medical fields, eg, drill or positioning templates, or surgical guides in maxillofacial surgery, or patient-specific implants in orthopedics. Furthermore, in vascular surgery it is possible to visualize pathologies such as aortic aneurysms so as to improve the planning of surgical treatment. Although rapid prototyping of individual models and implants is already applied very successfully in regenerative medicine, most of the materials used for 3DP are not yet suitable for implantation in the body. Therefore, it will be necessary in future to develop novel therapy approaches and design new materials in order to completely reconstruct natural tissue.
The SF3M approach to 3-D photo-reconstruction for non-expert users: application to a gully network
NASA Astrophysics Data System (ADS)
Castillo, C.; James, M. R.; Redel-Macías, M. D.; Pérez, R.; Gómez, J. A.
2015-04-01
3-D photo-reconstruction (PR) techniques have been successfully used to produce high resolution elevation models for different applications and over different spatial scales. However, innovative approaches are required to overcome some limitations that this technique may present in challenging scenarios. Here, we evaluate SF3M, a new graphical user interface for implementing a complete PR workflow based on freely available software (including external calls to VisualSFM and CloudCompare), in combination with a low-cost survey design for the reconstruction of a several-hundred-meters-long gully network. SF3M provided a semi-automated workflow for 3-D reconstruction requiring ~ 49 h (of which only 17% required operator assistance) for obtaining a final gully network model of > 17 million points over a gully plan area of 4230 m2. We show that a walking itinerary along the gully perimeter using two light-weight automatic cameras (1 s time-lapse mode) and a 6 m-long pole is an efficient method for 3-D monitoring of gullies, at a low cost (about EUR 1000 budget for the field equipment) and time requirements (~ 90 min for image collection). A mean error of 6.9 cm at the ground control points was found, mainly due to model deformations derived from the linear geometry of the gully and residual errors in camera calibration. The straightforward image collection and processing approach can be of great benefit for non-expert users working on gully erosion assessment.
From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.
Pepe, M; Wiese, U-J
2009-05-15
We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.
Sea breeze: Induced mesoscale systems and severe weather
NASA Technical Reports Server (NTRS)
Nicholls, M. E.; Pielke, R. A.; Cotton, W. R.
1990-01-01
Sea-breeze-deep convective interactions over the Florida peninsula were investigated using a cloud/mesoscale numerical model. The objective was to gain a better understanding of sea-breeze and deep convective interactions over the Florida peninsula using a high resolution convectively explicit model and to use these results to evaluate convective parameterization schemes. A 3-D numerical investigation of Florida convection was completed. The Kuo and Fritsch-Chappell parameterization schemes are summarized and evaluated.
NASA Astrophysics Data System (ADS)
Bravo, Agustín; Barham, Richard; Ruiz, Mariano; López, Juan Manuel; De Arcas, Guillermo; Alonso, Jesus
2012-12-01
In part I, the feasibility of using three-dimensional (3D) finite elements (FEs) to model the acoustic behaviour of the IEC 60318-1 artificial ear was studied and the numerical approach compared with classical lumped elements modelling. It was shown that by using a more complex acoustic model that took account of thermo-viscous effects, geometric shapes and dimensions, it was possible to develop a realistic model. This model then had clear advantages in comparison with the models based on equivalent circuits using lumped parameters. In fact results from FE modelling produce a better understanding about the physical phenomena produced inside ear simulator couplers, facilitating spatial and temporal visualization of the sound fields produced. The objective of this study (part II) is to extend the investigation by validating the numerical calculations against measurements on an ear simulator conforming to IEC 60318-1. For this purpose, an appropriate commercially available device is taken and a complete 3D FE model developed for it. The numerical model is based on key dimensional data obtained with a non-destructive x-ray inspection technique. Measurements of the acoustic transfer impedance have been carried out on the same device at a national measurement institute using the method embodied in IEC 60318-1. Having accounted for the actual device dimensions, the thermo-viscous effects inside narrow slots and holes and environmental conditions, the results of the numerical modelling were found to be in good agreement with the measured values.
3D Printing the Complete CubeSat
NASA Technical Reports Server (NTRS)
Kief, Craig
2015-01-01
The 3D Printing the Complete CubeSat project is designed to advance the state-of-the-art in 3D printing for CubeSat applications. Printing in 3D has the potential to increase reliability, reduce design iteration time and provide greater design flexibility in the areas of radiation mitigation, communications, propulsion, and wiring, among others. This project is investigating the possibility of including propulsion systems into the design of printed CubeSat components. One such concept, an embedded micro pulsed plasma thruster (mPPT), could provide auxiliary reaction control propulsion for a spacecraft as a means to desaturate momentum wheels.
NASA Astrophysics Data System (ADS)
Pignalosa, Antonio; Di Crescenzo, Giuseppe; Marino, Ermanno; Terracciano, Rosario; Santo, Antonio
2015-04-01
The work here presented concerns a case study in which a complete multidisciplinary workflow has been applied for an extensive assessment of the rockslide susceptibility and hazard in a common scenario such as a vertical and fractured rocky cliffs. The studied area is located in a high-relief zone in Southern Italy (Sacco, Salerno, Campania), characterized by wide vertical rocky cliffs formed by tectonized thick successions of shallow-water limestones. The study concerned the following phases: a) topographic surveying integrating of 3d laser scanning, photogrammetry and GNSS; b) gelogical surveying, characterization of single instabilities and geomecanichal surveying, conducted by geologists rock climbers; c) processing of 3d data and reconstruction of high resolution geometrical models; d) structural and geomechanical analyses; e) data filing in a GIS-based spatial database; f) geo-statistical and spatial analyses and mapping of the whole set of data; g) 3D rockfall analysis; The main goals of the study have been a) to set-up an investigation method to achieve a complete and thorough characterization of the slope stability conditions and b) to provide a detailed base for an accurate definition of the reinforcement and mitigation systems. For this purposes the most up-to-date methods of field surveying, remote sensing, 3d modelling and geospatial data analysis have been integrated in a systematic workflow, accounting of the economic sustainability of the whole project. A novel integrated approach have been applied both fusing deterministic and statistical surveying methods. This approach enabled to deal with the wide extension of the studied area (near to 200.000 m2), without compromising an high accuracy of the results. The deterministic phase, based on a field characterization of single instabilities and their further analyses on 3d models, has been applied for delineating the peculiarity of each single feature. The statistical approach, based on geostructural field mapping and on punctual geomechanical data from scan-line surveying, allowed the rock mass partitioning in homogeneous geomechanical sectors and data interpolation through bounded geostatistical analyses on 3d models. All data, resulting from both approaches, have been referenced and filed in a single spatial database and considered in global geo-statistical analyses for deriving a fully modelled and comprehensive evaluation of the rockslide susceptibility. The described workflow yielded the following innovative results: a) a detailed census of single potential instabilities, through a spatial database recording the geometrical, geological and mechanical features, along with the expected failure modes; b) an high resolution characterization of the whole slope rockslide susceptibility, based on the partitioning of the area according to the stability and mechanical conditions which can be directly related to specific hazard mitigation systems; c) the exact extension of the area exposed to the rockslide hazard, along with the dynamic parameters of expected phenomena; d) an intervention design for hazard mitigation.
Ling, Qinjie; He, Erxing; Ouyang, Hanbin; Guo, Jing; Yin, Zhixun; Huang, Wenhua
2017-07-27
To introduce a new surgical approach to the multilevel ossification of the ligamentum flavum (OLF) aided by three-dimensional (3D) printing technology. A multilevel OLF patient (male, 66 years) was scanned using computed tomography (CT). His saved DICOM format data were inputted to the Mimics14.0 3D reconstruction software (Materialise, Belgium). The resulting 3D model was used to observe the anatomical features of the multilevel OLF area and to design the surgical approach. At the base of the spinous process, two channels were created using an osteotomy bilaterally to create a "V" shape to remove the bone ligamentous complex (BLC). The decompressive laminoplasty using mini-plate fixation was simulated with the computer. The physical model was manufactured using 3D printing technology. The patient was subsequently treated using the designed surgery. The operation was completed successfully without any complications. The operative time was 90 min, and blood loss was 200 ml. One month after the operation, neurologic function was recovered well, and the JOA score was improved from 6 preoperatively to 10. Postoperative CT scanning showed that the OLF was totally removed, and the replanted BLC had not subsided. 3D printing technology is an effective, reliable, and minimally invasive method to design operations. The technique can be an option for multilevel OLF surgical treatment. This can provide sufficient decompression with minimum damage to the spine and other intact anatomical structures.
Additive Manufacturing of Shape Memory Alloys
NASA Astrophysics Data System (ADS)
Van Humbeeck, Jan
2018-04-01
Selective Laser Melting (SLM) is an additive manufacturing production process, also called 3D printing, in which functional, complex parts are produced by selectively melting patterns in consecutive layers of powder with a laser beam. The pattern the laser beam is following is controlled by software that calculates the pattern by slicing a 3D CAD model of the part to be constructed. Apart from SLM, also other additive manufacturing techniques such as EBM (Electron Beam Melting), FDM (Fused Deposition Modelling), WAAM (Wire Arc Additive Manufacturing), LENS (Laser Engineered Net Shaping such as Laser Cladding) and binder jetting allow to construct complete parts layer upon layer. But since more experience of AM of shape memory alloys is collected by SLM, this paper will overview the potentials, limits and problems of producing NiTi parts by SLM.
Soluble Model Fluids with Complete Scaling and Yang-Yang Features
NASA Astrophysics Data System (ADS)
Cerdeiriña, Claudio A.; Orkoulas, Gerassimos; Fisher, Michael E.
2016-01-01
Yang-Yang (YY) and singular diameter critical anomalies arise in exactly soluble compressible cell gas (CCG) models that obey complete scaling with pressure mixing. Thus, on the critical isochore ρ =ρc , C˜ μ≔-T d2μ /d T2 diverges as |t |-α when t ∝T -Tc→0- while ρd-ρc˜|t |2β where ρd(T )=1/2 [ρliq+ρgas] . When the discrete local CCG cell volumes fluctuate freely, the YY ratio Rμ=C˜μ/CV may take any value -∞
Single-image-based Modelling Architecture from a Historical Photograph
NASA Astrophysics Data System (ADS)
Dzwierzynska, Jolanta
2017-10-01
Historical photographs are proved to be very useful to provide a dimensional and geometrical analysis of buildings as well as to generate 3D reconstruction of the whole structure. The paper addresses the problem of single historical photograph analysis and modelling of an architectural object from it. Especially, it focuses on reconstruction of the original look of New-Town synagogue from the single historic photograph, when camera calibration is completely unknown. Due to the fact that the photograph faithfully followed the geometric rules of perspective, it was possible to develop and apply the method to obtain a correct 3D reconstruction of the building. The modelling process consisted of a series of familiar steps: feature extraction, determination of base elements of perspective, dimensional analyses and 3D reconstruction. Simple formulas were proposed in order to estimate location of characteristic points of the building in 3D Cartesian system of axes on the base of their location in 2D Cartesian system of axes. The reconstruction process proceeded well, although slight corrections were necessary. It was possible to reconstruct the shape of the building in general, and two of its facades in detail. The reconstruction of the other two facades requires some additional information or the additional picture. The success of the presented reconstruction method depends on the geometrical content of the photograph as well as quality of the picture, which ensures the legibility of building edges. The presented method of reconstruction is a combination of the descriptive method of reconstruction and computer aid; therefore, it seems to be universal. It can prove useful for single-image-based modelling architecture.
Divided attention limits perception of 3-D object shapes
Scharff, Alec; Palmer, John; Moore, Cathleen M.
2013-01-01
Can one perceive multiple object shapes at once? We tested two benchmark models of object shape perception under divided attention: an unlimited-capacity and a fixed-capacity model. Under unlimited-capacity models, shapes are analyzed independently and in parallel. Under fixed-capacity models, shapes are processed at a fixed rate (as in a serial model). To distinguish these models, we compared conditions in which observers were presented with simultaneous or sequential presentations of a fixed number of objects (The extended simultaneous-sequential method: Scharff, Palmer, & Moore, 2011a, 2011b). We used novel physical objects as stimuli, minimizing the role of semantic categorization in the task. Observers searched for a specific object among similar objects. We ensured that non-shape stimulus properties such as color and texture could not be used to complete the task. Unpredictable viewing angles were used to preclude image-matching strategies. The results rejected unlimited-capacity models for object shape perception and were consistent with the predictions of a fixed-capacity model. In contrast, a task that required observers to recognize 2-D shapes with predictable viewing angles yielded an unlimited capacity result. Further experiments ruled out alternative explanations for the capacity limit, leading us to conclude that there is a fixed-capacity limit on the ability to perceive 3-D object shapes. PMID:23404158
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, W.S.
Progress during the period includes completion of the SNAP 7C system tests, completion of safety analysis for the SNAP 7A and C systems, assembly and initial testing of SNAP 7A, assembly of a modified reliability model, and assembly of a 10-W generator. Other activities include completion of thermal and safety analyses for SNAP 7B and D generators and fuel processing for these generators. (J.R.D.)
NASA Astrophysics Data System (ADS)
Ayala, Conxi; Izquierdo-Llavall, Esther; Pueyo, Emilio Luis; Rubio, Félix; Rodríguez-Pintó, Adriana; María Casas, Antonio; Oliva-Urcía, Belén; Rey-Moral, Carmen
2015-04-01
Obtaining an accurate 3D image of the geometry and physical properties of geological structures in depth is a challenge regardless the scale and the aim of the investigation. In this framework, assessing the origin of the uncertainties and reducing them is a key issue when building a 3D reconstruction of a target area. Usually, this process involves an interdisciplinary approach and also the use of different software whose inputs and outputs have to be interoperable. We have designed a new workflow for 2.5D and 3D geological and potential field modelling, especially useful in areas where no seismic data is available. The final aim is to obtain a 3D geological model, at a regional or local scale, with the smaller uncertainty as possible. Once the study area and the working scale are is decided, the first obvious step is to compile all preexisting data and to determine its uncertainties. If necessary, a survey will be carried out to acquire additional data (e.g., gravity, magnetic or petrophysical data) to have an appropriated coverage of information and rock samples. A thorough study of the petrophysical properties is made to determine the density, magnetic susceptibility and remanence that will be assigned to each lithology, together with its corresponding uncertainty. Finally, the modelling process is started, and it includes a feedback between geology and potential fields in order to progressively refine the model until it fits all the existing data. The procedure starts with the construction of balanced geological cross sections from field work, available geological maps as well as data from stratigraphic columns, boreholes, etc. These geological cross sections are exported and imported in GMSYS software to carry out the 2.5D potential field modelling. The model improves and its uncertainty is reduced through the feedback between the geologists and the geophysicists. Once the potential field anomalies are well adjusted, the cross sections are exported into 3DMove (Midland Valley) to construct a preliminary balanced 3D model. Inversion of the potential field data in GeoModeller is the final step to obtain a 3D model consistent with the input data and with the minimum possible uncertainty. Our case study is a 3D model from the Linking Zone between the Iberian Range and the Catalonian Costal ones (NE Spain, an extension of 11,325 km2). No seismic data was available, so we carried out several surveys to acquire new gravity data and rock samples to complete the data from IGME petrophysical databases. A total of 1470 samples have been used to define the physical properties for the modelled lithologies. The gravity data consists of 2902 stations. The initial model is based on the surface geology, eleven boreholes and 8 balanced geological cross sections built in the frame of this research. The final model resulted from gravimetric inversion has allowed us to define the geometry of the top of the basement as well as to identify two structures (anticlines) as potential CO2 reservoirs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czarnecki, A.; Krause, B.
1997-06-01
We present a complete three-loop calculation of the electric dipole moment of the u and d quarks in the standard model. For the d quark, more relevant for the experimentally important neutron electric dipole moment, we find cancellations which lead to an order of magnitude suppression compared with previous estimates. {copyright} {ital 1997} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Norris, Hannah; Zhang, Yakun; Frush, Jack; Sturgeon, Gregory M.; Minhas, Anum; Tward, Daniel J.; Ratnanather, J. Tilak; Miller, M. I.; Frush, Donald; Samei, Ehsan; Segars, W. Paul
2014-03-01
With the increased use of CT examinations, the associated radiation dose has become a large concern, especially for pediatrics. Much research has focused on reducing radiation dose through new scanning and reconstruction methods. Computational phantoms provide an effective and efficient means for evaluating image quality, patient-specific dose, and organ-specific dose in CT. We previously developed a set of highly-detailed 4D reference pediatric XCAT phantoms at ages of newborn, 1, 5, 10, and 15 years with organ and tissues masses matched to ICRP Publication 89 values. We now extend this reference set to a series of 64 pediatric phantoms of a variety of ages and height and weight percentiles, representative of the public at large. High resolution PET-CT data was reviewed by a practicing experienced radiologist for anatomic regularity and was then segmented with manual and semi-automatic methods to form a target model. A Multi-Channel Large Deformation Diffeomorphic Metric Mapping (MC-LDDMM) algorithm was used to calculate the transform from the best age matching pediatric reference phantom to the patient target. The transform was used to complete the target, filling in the non-segmented structures and defining models for the cardiac and respiratory motions. The complete phantoms, consisting of thousands of structures, were then manually inspected for anatomical accuracy. 3D CT data was simulated from the phantoms to demonstrate their ability to generate realistic, patient quality imaging data. The population of pediatric phantoms developed in this work provides a vital tool to investigate dose reduction techniques in 3D and 4D pediatric CT.
3D printing utility for surgical treatment of acetabular fractures.
Chana Rodríguez, F; Pérez Mañanes, R; Narbona Cárceles, F J; Gil Martínez, P
2018-05-25
Preoperative 3D modelling enables more effective diagnosis and simulates the surgical procedure. We report twenty cases of acetabular fractures with preoperative planning performed by pre-contouring synthesis plates on a 3D printed mould obtained from a computarized tomography (CT) scan. The mould impression was made with the DaVinci 1.0 printer model (XYZ Printing). After obtaining the printed hemipelvis, we proceeded to select the implant size (pelvic Matta system, Stryker ® ) that matched the characteristics of the fracture and the approach to be used. Printing the moulds took a mean of 385minutes (322-539), and 238grams of plastic were used to print the model (180-410). In all cases, anatomic reduction was obtained and intra-operative changes were not required in the initial contouring of the plates. The time needed to perform the full osteosynthesis, once the fracture had been reduced was 16.9minutes (10-24). In one case fixed with two plates, a postoperative CT scan showed partial contact of the implant with the surface of the quadrilateral plate. In the remaining cases, the contact was complete. In conclusion, our results suggest that the use of preoperative planning, by printing 3D mirror imaging models of the opposite hemipelvis and pre-contouring plates over the mould, might effectively achieve a predefined surgical objective and reduce the inherent risks in these difficult procedures. Copyright © 2018. Publicado por Elsevier España, S.L.U.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C., III
1999-01-01
As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.
NASA Technical Reports Server (NTRS)
Walker, A. B. C., Jr.; Rugge, H. R.; Weiss, K.
1974-01-01
Permitted lines in the optically thin coronal X-ray spectrum were analyzed to find the distribution of coronal material, as a function of temperature, without special assumptions concerning coronal conditions. The resonance lines of N, O, Ne, Na, Mg, Al, Si, S, and Ar which dominate the quiet coronal spectrum below 25A were observed. Coronal models were constructed and the relative abundances of these elements were determined. The intensity in the lines of the 2p-3d transitions near 15A was used in conjunction with these coronal models, with the assumption of coronal excitation, to determine the Fe XVII abundance. The relative intensities of the 2p-3d Fe XVII lines observed in the corona agreed with theoretical prediction. Using a more complete theoretical model, and higher resolution observations, a revised calculation of iron abundance relative to hydrogen of 0.000026 was made.
Buytaert, Jan A N; Salih, Wasil H M; Dierick, Manual; Jacobs, Patric; Dirckx, Joris J J
2011-12-01
In order to improve realism in middle ear (ME) finite-element modeling (FEM), comprehensive and precise morphological data are needed. To date, micro-scale X-ray computed tomography (μCT) recordings have been used as geometric input data for FEM models of the ME ossicles. Previously, attempts were made to obtain these data on ME soft tissue structures as well. However, due to low X-ray absorption of soft tissue, quality of these images is limited. Another popular approach is using histological sections as data for 3D models, delivering high in-plane resolution for the sections, but the technique is destructive in nature and registration of the sections is difficult. We combine data from high-resolution μCT recordings with data from high-resolution orthogonal-plane fluorescence optical-sectioning microscopy (OPFOS), both obtained on the same gerbil specimen. State-of-the-art μCT delivers high-resolution data on the 3D shape of ossicles and other ME bony structures, while the OPFOS setup generates data of unprecedented quality both on bone and soft tissue ME structures. Each of these techniques is tomographic and non-destructive and delivers sets of automatically aligned virtual sections. The datasets coming from different techniques need to be registered with respect to each other. By combining both datasets, we obtain a complete high-resolution morphological model of all functional components in the gerbil ME. The resulting 3D model can be readily imported in FEM software and is made freely available to the research community. In this paper, we discuss the methods used, present the resulting merged model, and discuss the morphological properties of the soft tissue structures, such as muscles and ligaments.
Integration of Point Clouds Dataset from Different Sensors
NASA Astrophysics Data System (ADS)
Abdullah, C. K. A. F. Che Ku; Baharuddin, N. Z. S.; Ariff, M. F. M.; Majid, Z.; Lau, C. L.; Yusoff, A. R.; Idris, K. M.; Aspuri, A.
2017-02-01
Laser Scanner technology become an option in the process of collecting data nowadays. It is composed of Airborne Laser Scanner (ALS) and Terrestrial Laser Scanner (TLS). ALS like Phoenix AL3-32 can provide accurate information from the viewpoint of rooftop while TLS as Leica C10 can provide complete data for building facade. However if both are integrated, it is able to produce more accurate data. The focus of this study is to integrate both types of data acquisition of ALS and TLS and determine the accuracy of the data obtained. The final results acquired will be used to generate models of three-dimensional (3D) buildings. The scope of this study is focusing on data acquisition of UTM Eco-home through laser scanning methods such as ALS which scanning on the roof and the TLS which scanning on building façade. Both device is used to ensure that no part of the building that are not scanned. In data integration process, both are registered by the selected points among the manmade features which are clearly visible in Cyclone 7.3 software. The accuracy of integrated data is determined based on the accuracy assessment which is carried out using man-made registration methods. The result of integration process can achieve below 0.04m. This integrated data then are used to generate a 3D model of UTM Eco-home building using SketchUp software. In conclusion, the combination of the data acquisition integration between ALS and TLS would produce the accurate integrated data and able to use for generate a 3D model of UTM eco-home. For visualization purposes, the 3D building model which generated is prepared in Level of Detail 3 (LOD3) which recommended by City Geographic Mark-Up Language (CityGML).
A MULTI-WAVELENGTH 3D MODEL OF BD+30°3639
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, M. J.; Kastner, Joel H.
2016-10-01
We present a 3D multi-wavelength reconstruction of BD+30°3639, one of the best-studied planetary nebulae in the solar neighborhood. BD+30°3639, which hosts a [WR]-type central star, has been imaged at wavelength regimes that span the electromagnetic spectrum, from radio to X-rays. We have used the astrophysical modeling software SHAPE to construct a 3D morpho-kinematic model of BD+30°3639. This reconstruction represents the most complete 3D model of a PN to date from the standpoint of the incorporation of multi-wavelength data. Based on previously published kinematic data in optical emission lines and in lines of CO (radio) and H{sub 2} (near-IR), we weremore » able to reconstruct BD+30's basic velocity components assuming a set of homologous velocity expansion laws combined with collimated flows along the major axis of the nebula. We confirm that the CO “bullets” in the PN lie along an axis that is slightly misaligned with respect to the major axis of the optical nebula, and that these bullets are likely responsible for the disrupted structures of the ionized and H{sub 2}-emitting shells within BD+30. Given the relative geometries and thus dynamical ages of BD+30's main structural components, it is furthermore possible that the same jets that ejected the CO bullets are responsible for the generation of the X-ray-emitting hot bubble within the PN. Comparison of alternative viewing geometries for our 3D reconstruction of BD+30°3639 with imagery of NGC 40 and NGC 6720 suggests a common evolutionary path for these nebulae.« less
Acartürk Tunçay, Eylem; Karakurt, Zuhal; Aksoy, Emine; Saltürk, Cuneyt; Gungor, Sinem; Ciftaslan, Nezihe; Irmak, İlim; Yavuz, Dilek; Ocakli, Birsen; Adıgüzel, Nalan
2017-01-01
Increased dyspnea, sputum volume, and purulence are subjective symptoms in COPD patients. To diagnose COPD exacerbations with chronic respiratory failure (CRF) and to assess the requirement for antibiotic treatment, physicians require more objective criteria. We aimed to investigate whether neutrophil-to-lymphocyte ratio (NLR) can be used as an infectious exacerbation marker in COPD patients with CRF. This retrospective cross-sectional study was performed in the intensive care outpatient clinic of a tertiary training hospital between 2014 and 2015. Patients admitted with CRF due to COPD and who had complete blood count (CBC) results were enrolled. CBC results and C-reactive protein (CRP) levels were obtained from the hospital online database. The "modified exacerbation model (MEM)" was defined as follows: exacerbation A, leukocytes ≥12,000/mm 3 , CRP >10 mg/dL; exacerbation B, leukocytes ≥10,000/mm 3 , CRP >10 mg/dL; exacerbation C, leukocytes ≥10,000/mm 3 , CRP >8 mg/dL; exacerbation D, leukocytes ≥10,000/mm 3 , CRP >5 mg/dL. The cutoff value of NLR was defined for each model. Patients were split into two groups based on the NLR cutoff value according to the "NLR exacerbation model" and further subgrouped according to peripheral eosinophil percentage (eosinophils ≥2% and <2%) and compared with the MEM. A total of 1,066 COPD patients (430 females, 40.3%), with a mean age of 66±13 years, were included. A NLR cutoff value of 3.54 (NLR ≥3.54, n=366, 34%) showed the highest sensitivity and specificity for model A (78%, 69%), model B (63%, 71%), model C (61%, 72%), and model D (58%, 72%). Peripheral eosinophilia (PE ≥2%) was present in 48 patients (4.5%). The ratio of patients with PE <2% in the NLR ≥3.54 group was significantly higher in the MEM ( P <0.001). The NLR presents an attractive option as an exacerbation marker in COPD patients with CRF due to its simplicity and cost-effectiveness. In COPD patients with CRF, where the NLR is ≥3.54, PE levels are <2%, and subjective symptoms are present, antibiotic treatment should be considered.
Developing a Near Real-time System for Earthquake Slip Distribution Inversion
NASA Astrophysics Data System (ADS)
Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen
2016-04-01
Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.
An Application Domain Extension to CityGML for immovable property taxation: A Turkish case study
NASA Astrophysics Data System (ADS)
Çağdaş, Volkan
2013-04-01
It is generally acknowledged that immovable property taxes are one of the main revenue sources for local government. The literature emphasizes that the administration of property taxes needs well-developed inventories or registers that provide complete and accurate records of the taxed properties and their legal-economic attributes. This requirement is generally fulfilled by Spatial Data Infrastructures (SDIs) in which the coordinate exchange and sharing of geo-spatial data is provided by separate registers/information systems such as: cadastral systems, building and address registers. Recently, the Open Geospatial Consortium presented a core component of a 3D SDI in the form of an international domain standard for representing, storing and exchanging 3D city models. The CityGML allows the semantic and 3D geometrical representation of physical objects but does not deal with the legal and administrative aspects of the city objects which are required for the process of property taxation. This paper outlines the development of an Application Domain Extension (ADE) for the immovable property taxation domain that expands the CityGML data model with the legal and administrative concepts defined in Turkish Law. The study shows that this ADE could be a 3D national data model for municipal information systems and facilitate a more efficient taxation process, as well as providing data for urban planning, facility management and other municipal services.
Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo
2017-02-08
Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency.
Augmented Reality versus Virtual Reality for 3D Object Manipulation.
Krichenbauer, Max; Yamamoto, Goshiro; Taketom, Takafumi; Sandor, Christian; Kato, Hirokazu
2018-02-01
Virtual Reality (VR) Head-Mounted Displays (HMDs) are on the verge of becoming commodity hardware available to the average user and feasible to use as a tool for 3D work. Some HMDs include front-facing cameras, enabling Augmented Reality (AR) functionality. Apart from avoiding collisions with the environment, interaction with virtual objects may also be affected by seeing the real environment. However, whether these effects are positive or negative has not yet been studied extensively. For most tasks it is unknown whether AR has any advantage over VR. In this work we present the results of a user study in which we compared user performance measured in task completion time on a 9 degrees of freedom object selection and transformation task performed either in AR or VR, both with a 3D input device and a mouse. Our results show faster task completion time in AR over VR. When using a 3D input device, a purely VR environment increased task completion time by 22.5 percent on average compared to AR ( ). Surprisingly, a similar effect occurred when using a mouse: users were about 17.3 percent slower in VR than in AR ( ). Mouse and 3D input device produced similar task completion times in each condition (AR or VR) respectively. We further found no differences in reported comfort.
NASA Technical Reports Server (NTRS)
Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)
2001-01-01
Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.
Geometrically nonlinear analysis of laminated elastic structures
NASA Technical Reports Server (NTRS)
Reddy, J. N.; Chandrashekhara, K.; Chao, W. C.
1993-01-01
This final technical report contains three parts: Part 1 deals with the 2-D shell theory and its element formulation and applications. Part 2 deals with the 3-D degenerated element. These two parts constitute the two major tasks that were completed under the grant. Another related topic that was initiated during the present investigation is the development of a nonlinear material model. This topic is briefly discussed in Part 3. To make each part self-contained, conclusions and references are included in each part. In the interest of brevity, the discussions presented are relatively brief. The details and additional topics are described in the references cited.
Three-dimensional model-based object recognition and segmentation in cluttered scenes.
Mian, Ajmal S; Bennamoun, Mohammed; Owens, Robyn
2006-10-01
Viewpoint independent recognition of free-form objects and their segmentation in the presence of clutter and occlusions is a challenging task. We present a novel 3D model-based algorithm which performs this task automatically and efficiently. A 3D model of an object is automatically constructed offline from its multiple unordered range images (views). These views are converted into multidimensional table representations (which we refer to as tensors). Correspondences are automatically established between these views by simultaneously matching the tensors of a view with those of the remaining views using a hash table-based voting scheme. This results in a graph of relative transformations used to register the views before they are integrated into a seamless 3D model. These models and their tensor representations constitute the model library. During online recognition, a tensor from the scene is simultaneously matched with those in the library by casting votes. Similarity measures are calculated for the model tensors which receive the most votes. The model with the highest similarity is transformed to the scene and, if it aligns accurately with an object in the scene, that object is declared as recognized and is segmented. This process is repeated until the scene is completely segmented. Experiments were performed on real and synthetic data comprised of 55 models and 610 scenes and an overall recognition rate of 95 percent was achieved. Comparison with the spin images revealed that our algorithm is superior in terms of recognition rate and efficiency.
3D finite element model of the chinchilla ear for characterizing middle ear functions
Wang, Xuelin; Gan, Rong Z.
2016-01-01
Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa - a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis. PMID:26785845
SpreaD3: Interactive Visualization of Spatiotemporal History and Trait Evolutionary Processes.
Bielejec, Filip; Baele, Guy; Vrancken, Bram; Suchard, Marc A; Rambaut, Andrew; Lemey, Philippe
2016-08-01
Model-based phylogenetic reconstructions increasingly consider spatial or phenotypic traits in conjunction with sequence data to study evolutionary processes. Alongside parameter estimation, visualization of ancestral reconstructions represents an integral part of these analyses. Here, we present a complete overhaul of the spatial phylogenetic reconstruction of evolutionary dynamics software, now called SpreaD3 to emphasize the use of data-driven documents, as an analysis and visualization package that primarily complements Bayesian inference in BEAST (http://beast.bio.ed.ac.uk, last accessed 9 May 2016). The integration of JavaScript D3 libraries (www.d3.org, last accessed 9 May 2016) offers novel interactive web-based visualization capacities that are not restricted to spatial traits and extend to any discrete or continuously valued trait for any organism of interest. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Theoretical foundation for measuring the groundwater age distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, William Payton; Arnold, Bill Walter
2014-01-01
In this study, we use PFLOTRAN, a highly scalable, parallel, flow and reactive transport code to simulate the concentrations of 3H, 3He, CFC-11, CFC-12, CFC-113, SF6, 39Ar, 81Kr, 4He and themean groundwater age in heterogeneous fields on grids with an excess of 10 million nodes. We utilize this computational platform to simulate the concentration of multiple tracers in high-resolution, heterogeneous 2-D and 3-D domains, and calculate tracer-derived ages. Tracer-derived ages show systematic biases toward younger ages when the groundwater age distribution contains water older than the maximum tracer age. The deviation of the tracer-derived age distribution from the true groundwatermore » age distribution increases with increasing heterogeneity of the system. However, the effect of heterogeneity is diminished as the mean travel time gets closer the tracer age limit. Age distributions in 3-D domains differ significantly from 2-D domains. 3D simulations show decreased mean age, and less variance in age distribution for identical heterogeneity statistics. High-performance computing allows for investigation of tracer and groundwater age systematics in high-resolution domains, providing a platform for understanding and utilizing environmental tracer and groundwater age information in heterogeneous 3-D systems. Groundwater environmental tracers can provide important constraints for the calibration of groundwater flow models. Direct simulation of environmental tracer concentrations in models has the additional advantage of avoiding assumptions associated with using calculated groundwater age values. This study quantifies model uncertainty reduction resulting from the addition of environmental tracer concentration data. The analysis uses a synthetic heterogeneous aquifer and the calibration of a flow and transport model using the pilot point method. Results indicate a significant reduction in the uncertainty in permeability with the addition of environmental tracer data, relative to the use of hydraulic measurements alone. Anthropogenic tracers and their decay products, such as CFC11, 3H, and 3He, provide significant constraint oninput permeability values in the model. Tracer data for 39Ar provide even more complete information on the heterogeneity of permeability and variability in the flow system than the anthropogenic tracers, leading to greater parameter uncertainty reduction.« less
Using 3D range cameras for crime scene documentation and legal medicine
NASA Astrophysics Data System (ADS)
Cavagnini, Gianluca; Sansoni, Giovanna; Trebeschi, Marco
2009-01-01
Crime scene documentation and legal medicine analysis are part of a very complex process which is aimed at identifying the offender starting from the collection of the evidences on the scene. This part of the investigation is very critical, since the crime scene is extremely volatile, and once it is removed, it can not be precisely created again. For this reason, the documentation process should be as complete as possible, with minimum invasiveness. The use of optical 3D imaging sensors has been considered as a possible aid to perform the documentation step, since (i) the measurement is contactless and (ii) the process required to editing and modeling the 3D data is quite similar to the reverse engineering procedures originally developed for the manufacturing field. In this paper we show the most important results obtained in the experimentation.
Integration of 3d Models and Diagnostic Analyses Through a Conservation-Oriented Information System
NASA Astrophysics Data System (ADS)
Mandelli, A.; Achille, C.; Tommasi, C.; Fassi, F.
2017-08-01
In the recent years, mature technologies for producing high quality virtual 3D replicas of Cultural Heritage (CH) artefacts has grown thanks to the progress of Information Technologies (IT) tools. These methods are an efficient way to present digital models that can be used with several scopes: heritage managing, support to conservation, virtual restoration, reconstruction and colouring, art cataloguing and visual communication. The work presented is an emblematic case of study oriented to the preventive conservation through monitoring activities, using different acquisition methods and instruments. It was developed inside a project founded by Lombardy Region, Italy, called "Smart Culture", which was aimed to realise a platform that gave the users the possibility to easily access to the CH artefacts, using as an example a very famous statue. The final product is a 3D reality-based model that contains a lot of information inside it, and that can be consulted through a common web browser. In the end, it was possible to define the general strategies oriented to the maintenance and the valorisation of CH artefacts, which, in this specific case, must consider the integration of different techniques and competencies, to obtain a complete, accurate and continuative monitoring of the statue.
Becklund, Bryan R; James, Bradley J; Gagel, Robert F; DeLuca, Hector F
2009-08-15
The active form of vitamin D, 1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), can suppress disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Calcium appears to be a critical component of 1,25(OH)(2)D(3)-mediated suppression of EAE, as complete disease prevention only occurs with a concomitant increase in serum calcium levels. Calcitonin (CT) is a peptide hormone released in response to acute increases in serum calcium, which led us to explore its importance in 1,25(OH)(2)D(3)-mediated suppression of EAE. Previously, we discovered that co-administration of pharmacological doses of CT enhanced the suppressive effect of 1,25(OH)(2)D(3) on EAE, suggesting CT may play a role in 1,25(OH)(2)D(3)-mediated suppression of EAE. To determine the importance of CT in EAE we have utilized a mouse strain in which the gene encoding CT and its alternative splice product, calcitonin gene related peptide-alpha (CGRP), have been deleted. Deletion of the CT/CGRP gene had no effect on EAE progression. Furthermore, treatment with 1,25(OH)(2)D(3) suppressed EAE in CT/CGRP knock-out mice equal to that in wild type mice. Therefore, we conclude that CT is not necessary for 1,25(OH)(2)D(3)-mediated suppression of EAE.
Time-Dependent Simulations of Incompressible Flow in a Turbopump Using Overset Grid Approach
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Kwak, Dochan
2001-01-01
This viewgraph presentation provides information on mathematical modelling of the SSME (space shuttle main engine). The unsteady SSME-rig1 start-up procedure from the pump at rest has been initiated by using 34.3 million grid points. The computational model for the SSME-rig1 has been completed. Moving boundary capability is obtained by using DCF module in OVERFLOW-D. MPI (Message Passing Interface)/OpenMP hybrid parallel code has been benchmarked.
DockoMatic 2.0: high throughput inverse virtual screening and homology modeling.
Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T; McDougal, Owen M; Andersen, Timothy L
2013-08-26
DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly graphical user interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to (1) conduct high throughput inverse virtual screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELER programs and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education.
Orthostatic Intolerance After ISS and Space Shuttle Missions.
Lee, Stuart M C; Feiveson, Alan H; Stein, Sydney; Stenger, Michael B; Platts, Steven H
2015-12-01
Cardiovascular deconditioning apparently progresses with flight duration, resulting in a greater incidence of orthostatic intolerance following long-duration missions. Therefore, we anticipated that the proportion of astronauts who could not complete an orthostatic tilt test (OTT) would be higher on landing day and the number of days to recover greater after International Space Station (ISS) than after Space Shuttle missions. There were 20 ISS and 65 Shuttle astronauts who participated in 10-min 80° head-up tilt tests 10 d before launch, on landing day (R+0), and 3 d after landing (R+3). Fisher's Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the OTT. Cox regression was used to identify cardiovascular parameters associated with OTT completion and mixed model analysis was used to compare the change and recovery rates between groups. The proportion of astronauts who completed the OTT on R+0 (2 of 6) was less in ISS than in Shuttle astronauts (52 of 65). On R+3, 13 of 15 and 19 of 19 of the ISS and Shuttle astronauts, respectively, completed the OTT. An index comprised of stroke volume and diastolic blood pressure provided a good prediction of OTT completion and was altered by spaceflight similarly for both astronaut groups, but recovery was slower in ISS than in Shuttle astronauts. The proportion of ISS astronauts who could not complete the OTT on R+0 was greater and the recovery rate slower after ISS compared to Shuttle missions. Thus, mission planners and crew surgeons should anticipate the need to tailor scheduled activities and level of medical support to accommodate protracted recovery after long-duration microgravity exposures.
Fusion of Terrestrial and Airborne Laser Data for 3D modeling Applications
NASA Astrophysics Data System (ADS)
Mohammed, Hani Mahmoud
This thesis deals with the 3D modeling phase of the as-built large BIM projects. Among several means of BIM data capturing, such as photogrammetric or range tools, laser scanners have been one of the most efficient and practical tool for a long time. They can generate point clouds with high resolution for 3D models that meet nowadays' market demands. The current 3D modeling projects of as-built BIMs are mainly focused on using one type of laser scanner data, such as Airborne or Terrestrial. According to the literatures, no significant (few) efforts were made towards the fusion of heterogeneous laser scanner data despite its importance. The importance of the fusion of heterogeneous data arises from the fact that no single type of laser data can provide all the information about BIM, especially for large BIM projects that are existing on a large area, such as university buildings, or Heritage places. Terrestrial laser scanners are able to map facades of buildings and other terrestrial objects. However, they lack the ability to map roofs or higher parts in the BIM project. Airborne laser scanner on the other hand, can map roofs of the buildings efficiently and can map only small part of the facades. Short range laser scanners can map the interiors of the BIM projects, while long range scanners are used for mapping wide exterior areas in BIM projects. In this thesis the long range laser scanner data obtained in the Stop-and-Go mapping mode, the short range laser scanner data, obtained in a fully static mapping mode, and the airborne laser data are all fused together to bring a complete effective solution for a large BIM project. Working towards the 3D modeling of BIM projects, the thesis framework starts with the registration of the data, where a new fast automatic registration algorithm were developed. The next step is to recognize the different objects in the BIM project (classification), and obtain 3D models for the buildings. The last step is the development of an occlusion removal algorithm to efficiently retain parts of the buildings occluded by surrounding objects such as trees, vehicles, or street poles.
Improvement of electrical resistivity tomography for leachate injection monitoring.
Clément, R; Descloitres, M; Günther, T; Oxarango, L; Morra, C; Laurent, J-P; Gourc, J-P
2010-03-01
Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a "minimum length" constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills. Copyright 2009 Elsevier Ltd. All rights reserved.
Improvement of electrical resistivity tomography for leachate injection monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clement, R., E-mail: remi.clement@hmg.inpg.f; Descloitres, M.; Guenther, T., E-mail: Thomas.Guenther@liag-hannover.d
2010-03-15
Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significantmore » increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a 'minimum length' constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills.« less
Spectral-element Method for 3D Marine Controlled-source EM Modeling
NASA Astrophysics Data System (ADS)
Liu, L.; Yin, C.; Zhang, B., Sr.; Liu, Y.; Qiu, C.; Huang, X.; Zhu, J.
2017-12-01
As one of the predrill reservoir appraisal methods, marine controlled-source EM (MCSEM) has been widely used in mapping oil reservoirs to reduce risk of deep water exploration. With the technical development of MCSEM, the need for improved forward modeling tools has become evident. We introduce in this paper spectral element method (SEM) for 3D MCSEM modeling. It combines the flexibility of finite-element and high accuracy of spectral method. We use Galerkin weighted residual method to discretize the vector Helmholtz equation, where the curl-conforming Gauss-Lobatto-Chebyshev (GLC) polynomials are chosen as vector basis functions. As a kind of high-order complete orthogonal polynomials, the GLC have the characteristic of exponential convergence. This helps derive the matrix elements analytically and improves the modeling accuracy. Numerical 1D models using SEM with different orders show that SEM method delivers accurate results. With increasing SEM orders, the modeling accuracy improves largely. Further we compare our SEM with finite-difference (FD) method for a 3D reservoir model (Figure 1). The results show that SEM method is more effective than FD method. Only when the mesh is fine enough, can FD achieve the same accuracy of SEM. Therefore, to obtain the same precision, SEM greatly reduces the degrees of freedom and cost. Numerical experiments with different models (not shown here) demonstrate that SEM is an efficient and effective tool for MSCEM modeling that has significant advantages over traditional numerical methods.This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900).
Jettison Engineering Trajectory Tool
NASA Technical Reports Server (NTRS)
Zaczek, Mariusz; Walter, Patrick; Pascucci, Joseph; Armstrong, Phyllis; Hallbick, Patricia; Morgan, Randal; Cooney, James
2013-01-01
The Jettison Engineering Trajectory Tool (JETT) performs the jettison analysis function for any orbiting asset. It provides a method to compute the relative trajectories between an orbiting asset and any jettisoned item (intentional or unintentional) or sublimating particles generated by fluid dumps to assess whether an object is safe to jettison, or if there is a risk with an item that was inadvertently lost overboard. The main concern is the interaction and possible recontact of the jettisoned object with an asset. This supports the analysis that jettisoned items will safely clear the vehicle, ensuring no collisions. The software will reduce the jettison analysis task from one that could take days to complete to one that can be completed in hours, with an analysis that is more comprehensive than the previous method. It provides the ability to define the jettison operation relative to International Space Station (ISS) structure, and provides 2D and 3D plotting capability to allow an analyst to perform a subjective clearance assessment with ISS structures. The developers followed the SMP to create the code and all supporting documentation. The code makes extensive use of the object-oriented format of Java and, in addition, the Model-View-Controller architecture was used in the organization of the code, allowing each piece to be independent of updates to the other pieces. The model category is for maintaining data entered by the user and generated by the analysis. The view category provides capabilities for data entry and displaying all or a portion of the analysis data in tabular, 2D, and 3D representation. The controller category allows for handling events that affect the model or view(s). The JETT utilizes orbital mechanics with complex algorithms. Since JETT is written in JAVA, it is essentially platform-independent.
Barber, F Alan; Dockery, W D
2016-04-01
To evaluate the long-term in vivo degradation of biocomposite interference screws made with self-reinforced poly-levo (96%)/dextro (4%)-lactide/β-tricalcium phosphate [SR-PL(96)/D(4)LA/β-TCP]. A study of the in vivo biologic behavior of an SR-PL(96)/D(4)LA/β-TCP biocomposite interference screw was initiated in 2011 using an anterior cruciate ligament (ACL) reconstruction model. Eight patients undergoing a bone-patellar tendon-bone ACL reconstruction fixed at both the femur and tibia with an SR-PL(96)/D(4)LA/β-TCP screw at least 36 months earlier were evaluated by physical, radiographic, and computed tomography (CT) evaluations. Lysholm, Tegner, Cincinnati, and International Knee Documentation Committee scores were obtained. After incomplete degradation was observed in these 8 patients, a subsequent series of 17 patients were evaluated at a minimum of 48 months after surgery. By use of CT scans, Hounsfield unit (HU) data were obtained at the femoral and tibial screw and other bone sites. An ossification quality score (range, 1 to 4) was used to determine osteoconductivity at the screw sites. Eleven male and 6 female patients evaluated by CT scan and radiographs at a mean of 50 months (range, 48 to 61 months) after surgery showed bone plug healing to the tunnel wall and the SR-PL(96)/D(4)LA/β-TCP screws were replaced with material that was calcified and non-trabecular. Osteoconductivity was present in 24 of 34 tunnels (70.58%) and nearly complete or complete (type 3 or 4 ossification) in 11 of 34 (32.35%). Mean screw site densities (femoral, 242 HU; tibial, 240 HU) were consistent with cancellous bone density. One positive pivot-shift test was found. Lysholm, Cincinnati, Tegner, and International Knee Documentation Committee activity scores improved from 44.5, 40.7, 2.3, and 1.4, respectively, preoperatively to 92, 92.4, 5.7, and 3.3, respectively, at follow-up (P < .0001). The average postoperative Single Assessment Numeric Evaluation score was 92. The mean KT arthrometer (MEDmetric, San Diego, CA) difference was 1.25 mm. The SR-PL(96)/D(4)LA/β-TCP interference screw was replaced with calcified, non-trabecular material 4 years after implantation in a bone-patellar tendon-bone ACL reconstruction model. Osteoconductivity was confirmed in 24 of 34 screw sites (71%), with nearly complete or complete filling in 11 of 34 (33%). The SR-PL(96)/D(4)LA/β-TCP biocomposite interference screw is osteoconductive. Level IV, therapeutic case series. Copyright © 2016 The Arthroscopy Association of North America. All rights reserved.
Lee, Joung-Hyun; Gu, Yexin; Wang, Hongjun; Lee, Woo Y
2012-02-01
We report the use of a microfluidic 3D bone tissue model, as a high-throughput means of evaluating the efficacy of biomaterials aimed at accelerating orthopaedic implant-related wound-healing while preventing bacterial infection. As an example of such biomaterials, inkjet-printed micropatterns were prepared to contain antibiotic and biphasic calcium phosphate (BCP) nanoparticles dispersed in a poly(D,L-lactic-co-glycolic) acid matrix. The micropatterns were integrated with a microfluidic device consisting of eight culture chambers. The micropatterns immediately and completely killed Staphylococcus epidermidis upon inoculation, and enhanced the calcified extracellular matrix production of osteoblasts. Without antibiotic elution, bacteria rapidly proliferated to result in an acidic microenvironment which was detrimental to osteoblasts. These results were used to demonstrate the tissue model's potential in: (i) significantly reducing the number of biomaterial samples and culture experiments required to assess in vitro efficacy for wound-healing and infection prevention and (ii) in situ monitoring of dynamic interactions of biomaterials with bacteria as wells as with tissue cells simultaneously. Copyright © 2011 Elsevier Ltd. All rights reserved.
Understanding Crystal Populations; Looking Towards 3D Quantitative Analysis
NASA Astrophysics Data System (ADS)
Jerram, D. A.; Morgan, D. J.
2010-12-01
In order to understand volcanic systems, the potential record held within crystal populations needs to be revealed. It is becoming increasingly clear, however, that the crystal populations that arrive at the surface in volcanic eruptions are commonly mixtures of crystals, which may be representative of simple crystallization, recycling of crystals and incorporation of alien crystals. If we can quantify the true 3D population within a sample then we will be able to separate crystals with different histories and begin to interrogate the true and complex plumbing within the volcanic system. Modeling crystal populations is one area where we can investigate the best methodologies to use when dealing with sections through 3D populations. By producing known 3D shapes and sizes with virtual textures and looking at the statistics of shape and size when such populations are sectioned, we are able to gain confidence about what our 2D information is telling us about the population. We can also use this approach to test the size of population we need to analyze. 3D imaging through serial sectioning or x-ray CT, provides a complete 3D quantification of a rocks texture. Individual phases can be identified and in principle the true 3D statistics of the population can be interrogated. In practice we need to develop strategies (as with 2D-3D transformations), that enable a true characterization of the 3D data, and an understanding of the errors and pitfalls that exist. Ultimately, the reproduction of true 3D textures and the wealth of information they hold, is now within our reach.
The GBS code for tokamak scrape-off layer simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halpern, F.D., E-mail: federico.halpern@epfl.ch; Ricci, P.; Jolliet, S.
2016-06-15
We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by Ricci et al. (2012) [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarizationmore » drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagelueken, Gregor; Huang, Hexian; Harlos, Karl
2012-10-01
The optimization of WbdD crystals using a novel dehydration protocol and experimental phasing at 3.5 Å resolution by cross-crystal averaging followed by molecular replacement of electron density into a non-isomorphous 3.0 Å resolution native data set are reported. WbdD is a bifunctional kinase/methyltransferase that is responsible for regulation of lipopolysaccharide O antigen polysaccharide chain length in Escherichia coli serotype O9a. Solving the crystal structure of this protein proved to be a challenge because the available crystals belonging to space group I23 only diffracted to low resolution (>95% of the crystals diffracted to resolution lower than 4 Å and most onlymore » to 8 Å) and were non-isomorphous, with changes in unit-cell dimensions of greater than 10%. Data from a serendipitously found single native crystal that diffracted to 3.0 Å resolution were non-isomorphous with a lower (3.5 Å) resolution selenomethionine data set. Here, a strategy for improving poor (3.5 Å resolution) initial phases by density modification and cross-crystal averaging with an additional 4.2 Å resolution data set to build a crude model of WbdD is desribed. Using this crude model as a mask to cut out the 3.5 Å resolution electron density yielded a successful molecular-replacement solution of the 3.0 Å resolution data set. The resulting map was used to build a complete model of WbdD. The hydration status of individual crystals appears to underpin the variable diffraction quality of WbdD crystals. After the initial structure had been solved, methods to control the hydration status of WbdD were developed and it was thus possible to routinely obtain high-resolution diffraction (to better than 2.5 Å resolution). This novel and facile crystal-dehydration protocol may be useful for similar challenging situations.« less
Young, Andrea S; Arnold, L Eugene; Wolfson, Hannah L; Fristad, Mary A
2017-07-01
This pilot randomized controlled trial (RCT) investigated benefits of omega-3 fatty acid supplementation and Individual-Family Psychoeducational Psychotherapy (PEP; a family-focused, cognitive-behavioral therapy) for behavior problems among youth with depression. Participants aged 7-14 with DSM-IV-TR depressive disorders (N = 72; 56.9 % male) were randomized to 1 of 4 treatment conditions: PEP + omega-3, PEP monotherapy (with pill placebo), omega-3 monotherapy, or placebo (without active intervention). At screen, baseline, and 2, 4, 6, 9, and 12 weeks post-baseline, parents completed the SNAP-IV, which assesses attention-deficit/hyperactivity disorder symptoms, oppositional defiant disorder symptoms, and overall behavior problems. At screen, baseline (randomization), 6 and 12 weeks, parents completed the Eyberg Child Behavior Inventory (ECBI), which includes Intensity and Problem scales for child behavior problems. Youth who had a completed SNAP-IV or ECBI for at least two assessments during treatment (n = 48 and 38, respectively) were included in analyses of the respective outcome. ClinicalTrials.gov.:NCT01341925. Linear mixed effects models indicated a significant effect of combined PEP + omega-3 on SNAP-IV Total (p = 0.022, d = 0.80) and Hyperactivity/Impulsivity trajectories (p = 0.008, d = 0.80), such that youth in the combined group saw greater behavioral improvement than those receiving only placebo. Similarly, youth in combined treatment had more favorable ECBI Intensity trajectories than youth who received no active treatment (p = 0.012, d = 1.07). Results from this pilot RCT suggest that combined PEP + omega-3 is a promising treatment for co-occurring behavior symptoms in youth with depression.
NASA Technical Reports Server (NTRS)
Hansen, Jeff L.; Delaney, Robert A.
1997-01-01
This contact had two main objectives involving both numerical and experimental investigations of a small highly loaded two-stage axial compressor designated Advanced Small Turboshaft Compressor (ASTC) winch had a design pressure ratio goal of 5:1 at a flowrate of 10.53 lbm/s. The first objective was to conduct 3-D Navier Stokes multistage analyses of the ASTC using several different flow modelling schemes. The second main objective was to complete a numerical/experimental investigation into stall range enhancement of the ASTC. This compressor was designed wider a cooperative Space Act Agreement and all testing was completed at NASA Lewis Research Center. For the multistage analyses, four different flow model schemes were used, namely: (1) steady-state ADPAC analysis, (2) unsteady ADPAC analysis, (3) steady-state APNASA analysis, and (4) steady state OCOM3D analysis. The results of all the predictions were compared to the experimental data. The steady-state ADPAC and APNASA codes predicted similar overall performance and produced good agreement with data, however the blade row performance and flowfield details were quite different. In general, it can be concluded that the APNASA average-passage code does a better job of predicting the performance and flowfield details of the highly loaded ASTC compressor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkelstein, J.
I construct a positive-operator-valued measure (POVM) which has 2d rank-1 elements and which is informationally complete for generic pure states in d dimensions, thus confirming a conjecture made by Flammia, Silberfarb, and Caves (e-print quant-ph/0404137). I show that if a rank-1 POVM is required to be informationally complete for all pure states in d dimensions, it must have at least 3d-2 elements. I also show that, in a POVM which is informationally complete for all pure states in d dimensions, for any vector there must be at least 2d-1 POVM elements which do not annihilate that vector.
Complete Tem-Tomography: 3D Structure of Gems Cluster
NASA Technical Reports Server (NTRS)
Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.
2015-01-01
GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.
Dopamine D2-Like Receptors and Behavioral Economics of Food Reinforcement
Soto, Paul L; Hiranita, Takato; Xu, Ming; Hursh, Steven R; Grandy, David K; Katz, Jonathan L
2016-01-01
Previous studies suggest dopamine (DA) D2-like receptor involvement in the reinforcing effects of food. To determine contributions of the three D2-like receptor subtypes, knockout (KO) mice completely lacking DA D2, D3, or D4 receptors (D2R, D3R, or D4R KO mice) and their wild-type (WT) littermates were exposed to a series of fixed-ratio (FR) food-reinforcement schedules in two contexts: an open economy with additional food provided outside the experimental setting and a closed economy with all food earned within the experimental setting. A behavioral economic model was used to quantify reinforcer effectiveness with food pellets obtained as a function of price (FR schedule value) plotted to assess elasticity of demand. Under both economies, as price increased, food pellets obtained decreased more rapidly (ie, food demand was more elastic) in DA D2R KO mice compared with WT littermates. Extinction of responding was studied in two contexts: by eliminating food deliveries and by delivering food independently of responding. A hyperbolic model quantified rates of extinction. Extinction in DA D2R KO mice occurred less rapidly compared with WT mice in both contexts. Elasticity of food demand was higher in DA D4R KO than WT mice in the open, but not closed, economy. Extinction of responding in DA D4R KO mice was not different from that in WT littermates in either context. No differences in elasticity of food demand or extinction rate were obtained in D3R KO mice and WT littermates. These results indicate that the D2R is the primary DA D2-like receptor subtype mediating the reinforcing effectiveness of food. PMID:26205210
NASA Astrophysics Data System (ADS)
Cipriani, L.; Fantini, F.; Bertacchi, S.
2014-06-01
Image-based modelling tools based on SfM algorithms gained great popularity since several software houses provided applications able to achieve 3D textured models easily and automatically. The aim of this paper is to point out the importance of controlling models parameterization process, considering that automatic solutions included in these modelling tools can produce poor results in terms of texture utilization. In order to achieve a better quality of textured models from image-based modelling applications, this research presents a series of practical strategies aimed at providing a better balance between geometric resolution of models from passive sensors and their corresponding (u,v) map reference systems. This aspect is essential for the achievement of a high-quality 3D representation, since "apparent colour" is a fundamental aspect in the field of Cultural Heritage documentation. Complex meshes without native parameterization have to be "flatten" or "unwrapped" in the (u,v) parameter space, with the main objective to be mapped with a single image. This result can be obtained by using two different strategies: the former automatic and faster, while the latter manual and time-consuming. Reverse modelling applications provide automatic solutions based on splitting the models by means of different algorithms, that produce a sort of "atlas" of the original model in the parameter space, in many instances not adequate and negatively affecting the overall quality of representation. Using in synergy different solutions, ranging from semantic aware modelling techniques to quad-dominant meshes achieved using retopology tools, it is possible to obtain a complete control of the parameterization process.
Template-free modeling by LEE and LEER in CASP11.
Joung, InSuk; Lee, Sun Young; Cheng, Qianyi; Kim, Jong Yun; Joo, Keehyoung; Lee, Sung Jong; Lee, Jooyoung
2016-09-01
For the template-free modeling of human targets of CASP11, we utilized two of our modeling protocols, LEE and LEER. The LEE protocol took CASP11-released server models as the input and used some of them as templates for 3D (three-dimensional) modeling. The template selection procedure was based on the clustering of the server models aided by a community detection method of a server-model network. Restraining energy terms generated from the selected templates together with physical and statistical energy terms were used to build 3D models. Side-chains of the 3D models were rebuilt using target-specific consensus side-chain library along with the SCWRL4 rotamer library, which completed the LEE protocol. The first success factor of the LEE protocol was due to efficient server model screening. The average backbone accuracy of selected server models was similar to that of top 30% server models. The second factor was that a proper energy function along with our optimization method guided us, so that we successfully generated better quality models than the input template models. In 10 out of 24 cases, better backbone structures than the best of input template structures were generated. LEE models were further refined by performing restrained molecular dynamics simulations to generate LEER models. CASP11 results indicate that LEE models were better than the average template models in terms of both backbone structures and side-chain orientations. LEER models were of improved physical realism and stereo-chemistry compared to LEE models, and they were comparable to LEE models in the backbone accuracy. Proteins 2016; 84(Suppl 1):118-130. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
The role of three-dimensional visualization in robotics-assisted cardiac surgery
NASA Astrophysics Data System (ADS)
Currie, Maria; Trejos, Ana Luisa; Rayman, Reiza; Chu, Michael W. A.; Patel, Rajni; Peters, Terry; Kiaii, Bob
2012-02-01
Objectives: The purpose of this study was to determine the effect of three-dimensional (3D) versus two-dimensional (2D) visualization on the amount of force applied to mitral valve tissue during robotics-assisted mitral valve annuloplasty, and the time to perform the procedure in an ex vivo animal model. In addition, we examined whether these effects are consistent between novices and experts in robotics-assisted cardiac surgery. Methods: A cardiac surgery test-bed was constructed to measure forces applied by the da Vinci surgical system (Intuitive Surgical, Sunnyvale, CA) during mitral valve annuloplasty. Both experts and novices completed roboticsassisted mitral valve annuloplasty with 2D and 3D visualization. Results: The mean time for both experts and novices to suture the mitral valve annulus and to tie sutures using 3D visualization was significantly less than that required to suture the mitral valve annulus and to tie sutures using 2D vision (p∠0.01). However, there was no significant difference in the maximum force applied by novices to the mitral valve during suturing (p = 0.3) and suture tying (p = 0.6) using either 2D or 3D visualization. Conclusion: This finding suggests that 3D visualization does not fully compensate for the absence of haptic feedback in robotics-assisted cardiac surgery. Keywords: Robotics-assisted surgery, visualization, cardiac surgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vuong, Te; Kopek, Neil; Ducruet, Thierry
2007-04-01
Purpose: To evaluate the clinical outcomes of three-dimensional conformal radiotherapy (3D-CRT) in patients with anal canal cancer, in terms of local control (LC), freedom from relapse (FFR), and overall survival (OS) rates, and to estimate long-term toxicity data. Methods and Materials: Sixty historical patients, treated with conventional radiation techniques (C-RT), were used as controls, and 62 consecutive patients were treated with 3D-CRT. Patients treated with 3D-CRT received 54 Gy in 30 fractions delivered continuously, compared with 45-58.9 Gy (median dose, 54 Gy) in a split course in patients treated with C-RT. Chemotherapy consisted of 5-fluorouracil with either mitomycin-C or cis-platinummore » given concurrently with radiation. Survival curves were performed using the Kaplan-Meier model, and the Cox proportional hazards model was used for multivariate analysis of risk factors. Results: No differences in stage and age distribution were observed between the two groups. Patients treated with 3D-CRT and C-RT had an actuarial 5-year LC rate of 85.1% and 61.1%, respectively (p = 0.0056); the FFR rate was 70.2% and 46.1% (p = 0.0166), and the OS rate was 80.7% and 53.9% (p = 0.0171). In multivariate analysis, factors of significance for LC were nodal (N) status (p < 0.001); for OS, 3D-CRT (p = 0.038), N status (p 0.011), and T status (p = 0.012); and for FFR, 3D-CRT (p = 0.024) and N status (p < 0.001). Conclusion: The use of 3D-CRT allows patients with anal canal cancer to complete radiation and chemotherapy without interruption for toxicity, with significant improvements in LC, FFR, and OS.« less
Early Design Energy Analysis Using Building Information Modeling Technology
2011-11-01
building, (a) floor plan and (b) 3D image. ....................................... 50 Figure 28. Comparison of different energy estimates...when they make the biggest impact on building life-cycle costs. Traditionally, most building energy analyses have been conducted late in design, by...complete energy analysis. This method enables project teams to make energy conscious decisions early in design when they impact building life-cycle
Yurie, Hirofumi; Ikeguchi, Ryosuke; Aoyama, Tomoki; Kaizawa, Yukitoshi; Tajino, Junichi; Ito, Akira; Ohta, Souichi; Oda, Hiroki; Takeuchi, Hisataka; Akieda, Shizuka; Tsuji, Manami; Nakayama, Koichi; Matsuda, Shuichi
2017-01-01
Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit. We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer. Twelve adult male rats with immune deficiency underwent mid-thigh-level transection of the right sciatic nerve. The resulting 5-mm nerve gap was bridged using 8-mm Bio 3D conduits (Bio 3D group, n = 6) and silicone tube (silicone group, n = 6). Several assessments were conducted to examine nerve regeneration eight weeks post-surgery. Kinematic analysis revealed that the toe angle to the metatarsal bone at the final segment of the swing phase was significantly higher in the Bio 3D group than the silicone group (-35.78 ± 10.68 versus -62.48 ± 6.15, respectively; p < 0.01). Electrophysiological studies revealed significantly higher compound muscle action potential in the Bio 3D group than the silicone group (53.60 ± 26.36% versus 2.93 ± 1.84%; p < 0.01). Histological and morphological studies revealed neural cell expression in all regions of the regenerated nerves and the presence of many well-myelinated axons in the Bio 3D group. The wet muscle weight of the tibialis anterior muscle was significantly higher in the Bio 3D group than the silicone group (0.544 ± 0.063 versus 0.396 ± 0.031, respectively; p < 0.01). We confirmed that scaffold-free Bio 3D conduits composed entirely of fibroblast cells promote nerve regeneration in a rat sciatic nerve model.
Yurie, Hirofumi; Ikeguchi, Ryosuke; Aoyama, Tomoki; Kaizawa, Yukitoshi; Tajino, Junichi; Ito, Akira; Ohta, Souichi; Oda, Hiroki; Takeuchi, Hisataka; Akieda, Shizuka; Tsuji, Manami; Nakayama, Koichi; Matsuda, Shuichi
2017-01-01
Background Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit. Methods We developed six scaffold-free conduits from human normal dermal fibroblasts using a Bio 3D Printer. Twelve adult male rats with immune deficiency underwent mid-thigh-level transection of the right sciatic nerve. The resulting 5-mm nerve gap was bridged using 8-mm Bio 3D conduits (Bio 3D group, n = 6) and silicone tube (silicone group, n = 6). Several assessments were conducted to examine nerve regeneration eight weeks post-surgery. Results Kinematic analysis revealed that the toe angle to the metatarsal bone at the final segment of the swing phase was significantly higher in the Bio 3D group than the silicone group (-35.78 ± 10.68 versus -62.48 ± 6.15, respectively; p < 0.01). Electrophysiological studies revealed significantly higher compound muscle action potential in the Bio 3D group than the silicone group (53.60 ± 26.36% versus 2.93 ± 1.84%; p < 0.01). Histological and morphological studies revealed neural cell expression in all regions of the regenerated nerves and the presence of many well-myelinated axons in the Bio 3D group. The wet muscle weight of the tibialis anterior muscle was significantly higher in the Bio 3D group than the silicone group (0.544 ± 0.063 versus 0.396 ± 0.031, respectively; p < 0.01). Conclusions We confirmed that scaffold-free Bio 3D conduits composed entirely of fibroblast cells promote nerve regeneration in a rat sciatic nerve model. PMID:28192527
Modeling Conformal Growth in Photonic Crystals and Comparing to Experiment
NASA Astrophysics Data System (ADS)
Brzezinski, Andrew; Chen, Ying-Chieh; Wiltzius, Pierre; Braun, Paul
2008-03-01
Conformal growth, e.g. atomic layer deposition (ALD), of materials such as silicon and TiO2 on three dimensional (3D) templates is important for making photonic crystals. However, reliable calculations of optical properties as a function of the conformal growth, such as the optical band structure, are hampered by difficultly in accurately assessing a deposited material's spatial distribution. A widely used approximation ignores ``pinch off'' of precursor gas and assumes complete template infilling. Another approximation results in non-uniform growth velocity by employing iso-intensity surfaces of the 3D interference pattern used to create the template. We have developed an accurate model of conformal growth in arbitrary 3D periodic structures, allowing for arbitrary surface orientation. Results are compared with the above approximations and with experimentally fabricated photonic crystals. We use an SU8 polymer template created by 4-beam interference lithography, onto which various amounts of TiO2 are grown by ALD. Characterization is performed by analysis of cross-sectional scanning electron micrographs and by solid angle resolved optical spectroscopy.
Control of the interaction strength of photonic molecules by nanometer precise 3D fabrication.
Rawlings, Colin D; Zientek, Michal; Spieser, Martin; Urbonas, Darius; Stöferle, Thilo; Mahrt, Rainer F; Lisunova, Yuliya; Brugger, Juergen; Duerig, Urs; Knoll, Armin W
2017-11-28
Applications for high resolution 3D profiles, so-called grayscale lithography, exist in diverse fields such as optics, nanofluidics and tribology. All of them require the fabrication of patterns with reliable absolute patterning depth independent of the substrate location and target materials. Here we present a complete patterning and pattern-transfer solution based on thermal scanning probe lithography (t-SPL) and dry etching. We demonstrate the fabrication of 3D profiles in silicon and silicon oxide with nanometer scale accuracy of absolute depth levels. An accuracy of less than 1nm standard deviation in t-SPL is achieved by providing an accurate physical model of the writing process to a model-based implementation of a closed-loop lithography process. For transfering the pattern to a target substrate we optimized the etch process and demonstrate linear amplification of grayscale patterns into silicon and silicon oxide with amplification ratios of ∼6 and ∼1, respectively. The performance of the entire process is demonstrated by manufacturing photonic molecules of desired interaction strength. Excellent agreement of fabricated and simulated structures has been achieved.
Lin, Wei-Shao; Harris, Bryan T; Pellerito, John; Morton, Dean
2018-04-30
This report describes a proof of concept for fabricating an interim complete removable dental prosthesis with a digital light processing 3-dimensional (3D) printer. Although an in-office 3D printer can reduce the overall production cost for an interim complete removable dental prosthesis, the process has not been validated with clinical studies. This report provided a preliminary proof of concept in developing a digital workflow for the in-office additively manufactured interim complete removable dental prosthesis. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
du Mas des Bourboux, Helion; Le Goff, Jean-Marc; Blomqvist, Michael; ...
2017-08-08
We present a measurement of baryon acoustic oscillations (BAO) in the cross-correlation of quasars with the Lyα-forest flux-transmission at a mean redshift z = 2.40. The measurement uses the complete SDSS-III data sample: 168,889 forests and 234,367 quasars from the SDSS Data Release DR12. In addition to the statistical improvement on our previous study using DR11, we have implemented numerous improvements at the analysis level allowing a more accurate measurement of this cross-correlation. We also developed the first simulations of the cross-correlation allowing us to test different aspects of our data analysis and to search for potential systematic errors inmore » the determination of the BAO peak position. We measure the two ratios D H(z = 2.40)=r d = 9.01 ± 0.36 and D M(z = 2.40)=r d = 35.7 ±1.7, where the errors include marginalization over the non-linear velocity of quasars and the metal - quasar cross-correlation contribution, among other effects. These results are within 1.8σ of the prediction of the flat-ΛCDM model describing the observed CMB anisotropies.We combine this study with the Lyα-forest auto-correlation function (Bautista et al. 2017), yielding D H(z = 2.40)=r d = 8.94 ± 0.22 and D M(z = 2.40)=r d = 36.6 ± 1.2, within 2.3σ of the same flat-ΛCDM model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
du Mas des Bourboux, Helion; Le Goff, Jean-Marc; Blomqvist, Michael
We present a measurement of baryon acoustic oscillations (BAO) in the cross-correlation of quasars with the Lyα-forest flux-transmission at a mean redshift z = 2.40. The measurement uses the complete SDSS-III data sample: 168,889 forests and 234,367 quasars from the SDSS Data Release DR12. In addition to the statistical improvement on our previous study using DR11, we have implemented numerous improvements at the analysis level allowing a more accurate measurement of this cross-correlation. We also developed the first simulations of the cross-correlation allowing us to test different aspects of our data analysis and to search for potential systematic errors inmore » the determination of the BAO peak position. We measure the two ratios D H(z = 2.40)=r d = 9.01 ± 0.36 and D M(z = 2.40)=r d = 35.7 ±1.7, where the errors include marginalization over the non-linear velocity of quasars and the metal - quasar cross-correlation contribution, among other effects. These results are within 1.8σ of the prediction of the flat-ΛCDM model describing the observed CMB anisotropies.We combine this study with the Lyα-forest auto-correlation function (Bautista et al. 2017), yielding D H(z = 2.40)=r d = 8.94 ± 0.22 and D M(z = 2.40)=r d = 36.6 ± 1.2, within 2.3σ of the same flat-ΛCDM model.« less
Dopamine D₂-Like Receptors and Behavioral Economics of Food Reinforcement.
Soto, Paul L; Hiranita, Takato; Xu, Ming; Hursh, Steven R; Grandy, David K; Katz, Jonathan L
2016-03-01
Previous studies suggest dopamine (DA) D2-like receptor involvement in the reinforcing effects of food. To determine contributions of the three D2-like receptor subtypes, knockout (KO) mice completely lacking DA D2, D3, or D4 receptors (D2R, D3R, or D4R KO mice) and their wild-type (WT) littermates were exposed to a series of fixed-ratio (FR) food-reinforcement schedules in two contexts: an open economy with additional food provided outside the experimental setting and a closed economy with all food earned within the experimental setting. A behavioral economic model was used to quantify reinforcer effectiveness with food pellets obtained as a function of price (FR schedule value) plotted to assess elasticity of demand. Under both economies, as price increased, food pellets obtained decreased more rapidly (ie, food demand was more elastic) in DA D2R KO mice compared with WT littermates. Extinction of responding was studied in two contexts: by eliminating food deliveries and by delivering food independently of responding. A hyperbolic model quantified rates of extinction. Extinction in DA D2R KO mice occurred less rapidly compared with WT mice in both contexts. Elasticity of food demand was higher in DA D4R KO than WT mice in the open, but not closed, economy. Extinction of responding in DA D4R KO mice was not different from that in WT littermates in either context. No differences in elasticity of food demand or extinction rate were obtained in D3R KO mice and WT littermates. These results indicate that the D2R is the primary DA D2-like receptor subtype mediating the reinforcing effectiveness of food.
Parameterizations of Chromospheric Condensations in dG and dMe Model Flare Atmospheres
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.; Allred, Joel C.
2018-01-01
The origin of the near-ultraviolet and optical continuum radiation in flares is critical for understanding particle acceleration and impulsive heating in stellar atmospheres. Radiative-hydrodynamic (RHD) simulations in 1D have shown that high energy deposition rates from electron beams produce two flaring layers at T ∼ 104 K that develop in the chromosphere: a cooling condensation (downflowing compression) and heated non-moving (stationary) flare layers just below the condensation. These atmospheres reproduce several observed phenomena in flare spectra, such as the red-wing asymmetry of the emission lines in solar flares and a small Balmer jump ratio in M dwarf flares. The high beam flux simulations are computationally expensive in 1D, and the (human) timescales for completing NLTE models with adaptive grids in 3D will likely be unwieldy for some time to come. We have developed a prescription for predicting the approximate evolved states, continuum optical depth, and emergent continuum flux spectra of RHD model flare atmospheres. These approximate prescriptions are based on an important atmospheric parameter: the column mass ({m}{ref}) at which hydrogen becomes nearly completely ionized at the depths that are approximately in steady state with the electron beam heating. Using this new modeling approach, we find that high energy flux density (>F11) electron beams are needed to reproduce the brightest observed continuum intensity in IRIS data of the 2014 March 29 X1 solar flare, and that variation in {m}{ref} from 0.001 to 0.02 g cm‑2 reproduces most of the observed range of the optical continuum flux ratios at the peak of M dwarf flares.
Stefaniak, Aleksandr B.; LeBouf, Ryan F.; Yi, Jinghai; Ham, Jason; Nurkewicz, Timothy; Schwegler-Berry, Diane E.; Chen, Bean T.; Wells, J. Raymond; Duling, Matthew G.; Lawrence, Robert B.; Martin, Stephen B.; Johnson, Alyson R.; Virji, M. Abbas
2018-01-01
Printing devices are known to emit chemicals into the indoor atmosphere. Understanding factors that influence release of chemical contaminants from printers is necessary to develop effective exposure assessment and control strategies. In this study, a desktop fused deposition modeling (FDM) 3-dimensional (3-D) printer using acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) filaments and two monochrome laser printers were evaluated in a 0.5 m3 chamber. During printing, chamber air was monitored for vapors using a real-time photoionization detector (results expressed as isobutylene equivalents) to measure total volatile organic compound (TVOC) concentrations, evacuated canisters to identify specific VOCs by off-line gas chromatography-mass spectrometry (GC-MS) analysis, and liquid bubblers to identify carbonyl compounds by GC-MS. Airborne particles were collected on filters for off-line analysis using scanning electron microscopy with an energy dispersive x-ray detector to identify elemental constituents. For 3-D printing, TVOC emission rates were influenced by a printer malfunction, filament type, and to a lesser extent, by filament color; however, rates were not influenced by the number of printer nozzles used or the manufacturer’s provided cover. TVOC emission rates were significantly lower for the 3-D printer (49–3552 μg h−1) compared to the laser printers (5782–7735 μg h−1). A total of 14 VOCs were identified during 3-D printing that were not present during laser printing. 3-D printed objects continued to off-gas styrene, indicating potential for continued exposure after the print job is completed. Carbonyl reaction products were likely formed from emissions of the 3-D printer, including 4-oxopentanal. Ultrafine particles generated by the 3-D printer using ABS and a laser printer contained chromium. Consideration of the factors that influenced the release of chemical contaminants (including known and suspected asthmagens such as styrene and 4-oxopentanal) from a FDM 3-D printer should be made when designing exposure assessment and control strategies. PMID:28440728
WE-F-16A-05: Use of 3D-Printers to Create a Tissue Equivalent 3D-Bolus for External Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burleson, S; Baker, J; Hsia, A
2014-06-15
Purpose: The purpose of this project is to demonstrate that a non-expensive 3D-printer can be used to manufacture a 3D-bolus for external beam therapy. The printed bolus then can be modeled in our treatment planning system to ensure accurate dose delivery to the patient. Methods: We developed a simple method to manufacture a patient-specific custom 3Dbolus. The bolus is designed using Eclipse Treatment Planning System, contoured onto the patients CT images. The bolus file is exported from Eclipse to 3D-printer software, and then printed using a 3D printer. Various tests were completed to determine the properties of the printing material.more » Percent depth dose curves in this material were measured with electron and photon beams for comparison to other materials. In order to test the validity of the 3D printed bolus for treatment planning, a custom bolus was printed and tested on the Rando phantom using film for a dose plane comparison. We compared the dose plane measured on the film to the same dose plane exported from our treatment planning system using Film QA software. The gamma-dose distribution tool was used in our film analysis. Results: We compared point measurements throughout the dose plane and were able to achieve greater than 95% passing rate at 3% dose difference and 3 mm distance to agreement, which is our departments acceptable gamma pixel parameters. Conclusion: The printed 3D bolus has proven to be accurately modeled in our treatment planning system, it is more conformal to the patient surface and more durable than other bolus currently used (wax, superflab etc.). It is also more convenient and less costly than comparable bolus from milling machine companies.« less
3D Reconstruction of Space Objects from Multi-Views by a Visible Sensor
Zhang, Haopeng; Wei, Quanmao; Jiang, Zhiguo
2017-01-01
In this paper, a novel 3D reconstruction framework is proposed to recover the 3D structural model of a space object from its multi-view images captured by a visible sensor. Given an image sequence, this framework first estimates the relative camera poses and recovers the depths of the surface points by the structure from motion (SFM) method, then the patch-based multi-view stereo (PMVS) algorithm is utilized to generate a dense 3D point cloud. To resolve the wrong matches arising from the symmetric structure and repeated textures of space objects, a new strategy is introduced, in which images are added to SFM in imaging order. Meanwhile, a refining process exploiting the structural prior knowledge that most sub-components of artificial space objects are composed of basic geometric shapes is proposed and applied to the recovered point cloud. The proposed reconstruction framework is tested on both simulated image datasets and real image datasets. Experimental results illustrate that the recovered point cloud models of space objects are accurate and have a complete coverage of the surface. Moreover, outliers and points with severe noise are effectively filtered out by the refinement, resulting in an distinct improvement of the structure and visualization of the recovered points. PMID:28737675
3-D Digitization of Stereoscopic Jet-in-Crossflow Vortex Structure Images via Augmented Reality
NASA Astrophysics Data System (ADS)
Sigurdson, Lorenz; Strand, Christopher; Watson, Graeme; Nault, Joshua; Tucker, Ryan
2006-11-01
Stereoscopic images of smoke-laden vortex flows have proven useful for understanding the topology of the embedded 3-D vortex structures. Images from two cameras allow a perception of the 3-D structure via the use of red/blue eye glasses. The human brain has an astonishing capacity to calculate and present to the observer the complex turbulent smoke volume. We have developed a technique whereby a virtual cursor is introduced to the perception, which creates an ``augmented reality.'' The perceived position of this cursor in the 3-D field can be precisely controlled by the observer. It can be brought near a characteristic vortex structure in order to digitally estimate the spatial coordinates of that feature. A calibration procedure accounts for camera positioning. Vortex tubes can be traced and recorded for later or real time supersposition of tube skeleton models. These models can be readily digitally obtained for display in graphics systems to allow complete exploration from any location or perspective. A unique feature of this technology is the use of the human brain to naturally perform the difficult computation of the shape of the translucent smoke volume. Examples are given of application to low velocity ratio and Reynolds number elevated jets-in-crossflow.
Stability of a tachyon braneworld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germán, Gabriel; Kuerten, André Martorano; Malagón-Morejón, Dagoberto
2016-01-01
Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetricmore » 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.« less
Stability of a tachyon braneworld
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germán, Gabriel; Herrera-Aguilar, Alfredo; Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Ciudad Universitaria, CP 58040, Morelia, Michoacán
2016-01-26
Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetricmore » 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton’s law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb’s law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.« less
Stability of a tachyon braneworld
NASA Astrophysics Data System (ADS)
Germán, Gabriel; Herrera-Aguilar, Alfredo; Martorano Kuerten, André; Malagón-Morejón, Dagoberto; da Rocha, Roldão
2016-01-01
Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.
Patient-Clinician Encounter Information Modeling Through Web Based Intelligent 3D Visual Interface
2002-09-01
system must allow immediate access to the lab data without the need to abort the evaluation process), and (5) must apply visual thinking principles. It... Systems Research, Incorporated For a period of five (5) years after completion of the project from which the data was generated, the Government’s rights...Report 3 Sigma Systems Research, Inc. List of Figures FIGURE 1. THE TWO MAJOR ELEMENTS OF THE DEVELOPED MEDICAL DATA VISUALIZATION FRAMEWORK ..... 7
NASA Astrophysics Data System (ADS)
Miensopust, Marion P.; Queralt, Pilar; Jones, Alan G.; 3D MT modellers
2013-06-01
Over the last half decade the need for, and importance of, three-dimensional (3-D) modelling of magnetotelluric (MT) data have increased dramatically and various 3-D forward and inversion codes are in use and some have become commonly available. Comparison of forward responses and inversion results is an important step for code testing and validation prior to `production' use. The various codes use different mathematical approximations to the problem (finite differences, finite elements or integral equations), various orientations of the coordinate system, different sign conventions for the time dependence and various inversion strategies. Additionally, the obtained results are dependent on data analysis, selection and correction as well as on the chosen mesh, inversion parameters and regularization adopted, and therefore, a careful and knowledge-based use of the codes is essential. In 2008 and 2011, during two workshops at the Dublin Institute for Advanced Studies over 40 people from academia (scientists and students) and industry from around the world met to discuss 3-D MT inversion. These workshops brought together a mix of code writers as well as code users to assess the current status of 3-D modelling, to compare the results of different codes, and to discuss and think about future improvements and new aims in 3-D modelling. To test the numerical forward solutions, two 3-D models were designed to compare the responses obtained by different codes and/or users. Furthermore, inversion results of these two data sets and two additional data sets obtained from unknown models (secret models) were also compared. In this manuscript the test models and data sets are described (supplementary files are available) and comparisons of the results are shown. Details regarding the used data, forward and inversion parameters as well as computational power are summarized for each case, and the main discussion points of the workshops are reviewed. In general, the responses obtained from the various forward models are comfortingly very similar, and discrepancies are mainly related to the adopted mesh. For the inversions, the results show how the inversion outcome is affected by distortion and the choice of errors, as well as by the completeness of the data set. We hope that these compilations will become useful not only for those that were involved in the workshops, but for the entire MT community and also the broader geoscience community who may be interested in the resolution offered by MT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott Hara
2000-02-18
The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tarmore » (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.« less
Petroleum system modeling capabilities for use in oil and gas resource assessments
Higley, Debra K.; Lewan, Michael; Roberts, Laura N.R.; Henry, Mitchell E.
2006-01-01
Summary: Petroleum resource assessments are among the most highly visible and frequently cited scientific products of the U.S. Geological Survey. The assessments integrate diverse and extensive information on the geologic, geochemical, and petroleum production histories of provinces and regions of the United States and the World. Petroleum systems modeling incorporates these geoscience data in ways that strengthen the assessment process and results are presented visually and numerically. The purpose of this report is to outline the requirements, advantages, and limitations of one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) petroleum systems modeling that can be applied to the assessment of oil and gas resources. Primary focus is on the application of the Integrated Exploration Systems (IES) PetroMod? software because of familiarity with that program as well as the emphasis by the USGS Energy Program on standardizing to one modeling application. The Western Canada Sedimentary Basin (WCSB) is used to demonstrate the use of the PetroMod? software. Petroleum systems modeling quantitatively extends the 'total petroleum systems' (TPS) concept (Magoon and Dow, 1994; Magoon and Schmoker, 2000) that is employed in USGS resource assessments. Modeling allows integration of state-of-the-art analysis techniques, and provides the means to test and refine understanding of oil and gas generation, migration, and accumulation. Results of modeling are presented visually, numerically, and statistically, which enhances interpretation of the processes that affect TPSs through time. Modeling also provides a framework for the input and processing of many kinds of data essential in resource assessment, including (1) petroleum system elements such as reservoir, seal, and source rock intervals; (2) timing of depositional, hiatus, and erosional events and their influences on petroleum systems; (3) incorporation of vertical and lateral distribution and lithologies of strata that compose the petroleum systems; and (4) calculations of pressure-volume-temperature (PVT) histories. As digital data on petroleum systems continue to expand, the models can integrate these data into USGS resource assessments by building and displaying, through time, areas of petroleum generation, migration pathways, accumulations, and relative contributions of source rocks to the hydrocarbon components. IES PetroMod? 1-D, 2-D, and 3-D models are integrated such that each uses the same variables for petroleum systems modeling. 1-D burial history models are point locations, mainly wells. Maps and cross-sections model geologic information in two dimensions and can incorporate direct input of 2-D seismic data and interpretations using various formats. Both 1-D and 2-D models use data essential for assessments and, following data compilation, they can be completed in hours and retested in minutes. Such models should be built early in the geologic assessment process, inasmuch as they incorporate the petroleum system elements of reservoir, source, and seal rock intervals with associated lithologies and depositional and erosional ages. The models can be used to delineate the petroleum systems. A number of 1-D and 2-D models can be constructed across a geologic province and used by the assessment geologists as a 3-D framework of processes that control petroleum generation, migration, and accumulation. The primary limitation of these models is that they only represent generation, migration, and accumulation in two dimensions. 3-D models are generally built at reservoir to basin scales. They provide a much more detailed and realistic representation of petroleum systems than 1-D or 2-D models because they portray more fully the temporal and physical relations among (1) burial history; (2) lithologies and associated changes through burial in porosity, permeability, and compaction; (3) hydrodynamic effects; and (4) other parameters that influence petroleum gen
Photogrammetry in maritime and underwater archaeology: two marble wrecks from Sicily
NASA Astrophysics Data System (ADS)
Balletti, C.; Beltrame, C.; Costa, E.; Guerra, F.; Vernier, P.
2015-06-01
Underwater survey, compared to land archaeology, needs some specific techniques, because the application of some active 3D sensor, such as laser scanner, is obviously impossible. The necessity to produce three-dimensional survey, offering the same accuracy of classical terrestrial laserscanning or photogrammetric methods, combined with the request of low costs and rapid solutions, led the researchers to test and apply oftentimes image-based techniques. In the last two years the Ca' Foscari University and University IUAV of Venice are conducting a research on the application of integrated techniques to support underwater metric documentation, comparing them to the manual traditional one. The gained experience (and confirmed by other recently published papers) shows that the actual multiimage digital photogrammetry is a good solution for the underwater archaeology. This approach is useful both from a metric and from a recording point of view, because it achieves high quality results, such as accurate 3D models or 2D representations, offering a complete documentation of underwater sites. But photogrammetry has to be supported by a topographical survey (to acquire ground control points - GCP) to georeference all the finds in the same reference system. This paper presents the integrated survey of two roman shipwrecks, approaching differently in the GCP's acquisition just for the different morphological characteristic of the sites. The wrecks' cargos are huge marble blocks, presenting differences in quantities, layout and depths. Those characteristics determine the choice of the topographic survey. The results of the survey are two 3D polygonal textured models of the sites, which can be easily used for different analyses and reconstructive hypothesis, opening new possibilities of documentation with both specialists and the wider public. Furthermore, 3D models are the geometric base for 2D orthophoto and cross section extraction. The paper will illustrate all the phases regarding the survey's design, acquisition and realization and the data processing to obtain 2D and 3D final representation.
Training in Cerebral Aneurysm Clipping Using Self-Made 3-Dimensional Models.
Mashiko, Toshihiro; Kaneko, Naoki; Konno, Takehiko; Otani, Keisuke; Nagayama, Rie; Watanabe, Eiju
Recently, there have been increasingly fewer opportunities for junior surgeons to receive on-the-job training. Therefore, we created custom-built three-dimensional (3D) surgical simulators for training in connection with cerebral aneurysm clipping. Three patient-specific models were composed of a trimmed skull, retractable brain, and a hollow elastic aneurysm with its parent artery. The brain models were created using 3D printers via a casting technique. The artery models were made by 3D printing and a lost-wax technique. Four residents and 2 junior neurosurgeons attended the training courses. The trainees retracted the brain, observed the parent arteries and aneurysmal neck, selected the clip(s), and clipped the neck of an aneurysm. The duration of simulation was recorded. A senior neurosurgeon then assessed the trainee's technical skill and explained how to improve his/her performance for the procedure using a video of the actual surgery. Subsequently, the trainee attempted the clipping simulation again, using the same model. After the course, the senior neurosurgeon assessed each trainee's technical skill. The trainee critiqued the usefulness of the model and the effectiveness of the training course. Trainees succeeded in performing the simulation in line with an actual surgery. Their skills tended to improve upon completion of the training. These simulation models are easy to create, and we believe that they are very useful for training junior neurosurgeons in the surgical techniques needed for cerebral aneurysm clipping. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Sun, Xiaomin; Cao, Zhen-Bo; Tanisawa, Kumpei; Ito, Tomoko; Oshima, Satomi; Higuchi, Mitsuru
2016-10-01
Higher circulating 25-hydroxyvitamin D (25[OH]D) concentration has been linked to a lower prevalence of insulin resistance and type 2 diabetes mellitus. However, randomized controlled trials have not clarified the effect of vitamin D supplementation on insulin resistance in healthy adults. The objective of this study was to assess the effect of vitamin D supplementation for 1 year on insulin resistance; the study was a secondary analysis of a clinical trial. We hypothesized that increased 25(OH)D concentration after vitamin D supplementation for 1 year would significantly improve insulin resistance. Ninety-six healthy adults participated in this study, of whom 81 completed the study. The participants randomly received daily either 420 IU vitamin D 3 or placebo in a double-blind manner for 1 year. The levels of fasting insulin, glucose, and other parameters were assessed at baseline and after 1 year of intervention. Homeostasis model assessment of insulin resistance index was calculated from insulin and glucose levels. Visceral fat area and physical activity were also investigated. Serum 25(OH)D and 1,25-dihydroxyvitamin D concentrations were significantly increased by approximately 29.5 nmol/L and 7.0 pg/mL, respectively, after 1-year vitamin D supplementation. After vitamin D supplementation, fasting glucose levels and values of homeostasis model assessment of insulin resistance index significantly decreased from 88.3 to 85.3 mg/dL (P < .01) and 1.17 to 0.84 (P < .01), respectively, and the results were independent of physical activity and visceral fat accumulation. In conclusion, the present study showed that vitamin D supplementation for 1 year effectively improves fasting glucose level and insulin resistance in healthy Japanese adults. Copyright © 2016 Elsevier Inc. All rights reserved.
2008-10-01
and UTCHEM (Clement et al., 1998). While all four of these software packages use conservation of mass as the basic principle for tracking NAPL...simulate dissolution of a single NAPL component. UTCHEM can be used to simulate dissolution of a multiple NAPL components using either linear or first...parameters. No UTCHEM a/ 3D model, general purpose NAPL simulator. Yes Virulo a/ Probabilistic model for predicting leaching of viruses in unsaturated
Complete D =11 embedding of SO(8) supergravity
NASA Astrophysics Data System (ADS)
Varela, Oscar
2018-02-01
The truncation formulas of D =11 supergravity on S7 to D =4 N =8 SO(8)-gauged supergravity are completed to include the full nonlinear dependence of the D =11 three-form potential A^ (3 ) on the D =4 fields, and their consistency is shown. The full embedding into A^ (3 ) is naturally expressed in terms of a restricted version, still N =8 but only SL(8)-covariant, of the D =4 tensor hierarchy. The redundancies introduced by this approach are removed at the level of the field strength F^ (4 ) by exploiting D =4 duality relations. Finally, new expressions for the full consistent truncation formulas are given that are explicit in all D =11 and D =4 fields.
NASA Astrophysics Data System (ADS)
Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.
2015-12-01
Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.
Integrated Hydrologic Models for Closing the Water Budget: Whitewater River Basin, Kansas
NASA Astrophysics Data System (ADS)
Beeson, P.; Duffy, C.; Springer, E.; Panday, S.
2004-12-01
Groundwater and its recharge are unobserved and unmeasured components of the water cycle of a river basin. The objectives of this study were: 1) to evaluate the groundwater component of the water balance for the Whitewater River Basin using a 3-D saturated groundwater model, 2) to compare the groundwater model results with a fully integrated hydrologic model and, 3) to describe the spectral frequency response of the basin to long-term climate forcing. The basin is the Whitewater River, near Wichita, Kansas. The basin has an area of 1,100 square-kilometers, an elevation range of 380 - 470m (amsl), and an average annual precipitation of 858 millimeters. The near-surface geology is comprised of a weathered shale overlying limestone bedrock of Mississippian age. Streamflow and weather records are available from 1960. A steady-state saturated groundwater model (MODFLOW) was implemented assuming a simple two-layer conceptual model. A total of 422 wells with static water levels were available. Using a subset of the wells, a steady-state calibration of MODFLOW was performed by adjusting permeability between the two layers. Steady-state calibration resulted in an R2 of 0.89 for predicted and observed water levels. The remaining wells were used for validation, with an R2 of 0.92. The next step constructed the transient model using a fixed percentage of rainfall as groundwater recharge. For a single observation well the R2 was 0.89 (observed vs. predicted) for the transient calibration and 0.77 for the validation for a year simulation. The final step was to compare MODFLOW to an integrated model to provide a more complete representation of surface hydrologic dynamics. Here MODHMS (developed by HydroGeologic Inc, Herndon, VA) was used since it is MODFLOW-based with 3D variably-saturated groundwater flow, 2D overland flow, and 1D channel flow. MODHMS allows for canopy interception and evapotranspiration so total precipitation and potential evaporation were input to the model for a better estimate of recharge through complete energy and water balance. Singular spectrum analysis (SSA) was used to analyze the temporal response of precipitation, streamflow and groundwater levels from selected points in the model both for MODFLOW and MODHMS results. This paper demonstrates the use of integrated models for determination of groundwater recharge. Time series analysis proved to be a useful tool in identifying climate response within the watershed.
A Cost-Effective, In-House, Positioning and Cutting Guide System for Orthognathic Surgery.
McAllister, Peter; Watson, Melanie; Burke, Ezra
2018-03-01
Technological advances in 3D printing can dramatically improve orthognathic surgical planning workflow. Custom positioning and cutting guides enable intraoperative reproduction of pre-planned osteotomy cuts and can result in greater surgical accuracy and patient safety. This short paper describes the use of freeware (some with open-source) combined with in-house 3D printing facilities to produce reliable, affordable osteotomy cutting guides. Open-source software (3D Slicer) is used to visualise and segment three-dimensional planning models from imported conventional computed tomography (CT) scans. Freeware (Autodesk Meshmixer ©) allows digital manipulation of maxillary and mandibular components to plan precise osteotomy cuts. Bespoke cutting guides allow exact intraoperative positioning. These are printed in polylactic acid (PLA) using a fused-filament fabrication 3D printer. Fixation of the osteotomised segments is achieved using plating templates and four pre-adapted plates with planned screw holes over the thickest bone. We print maxilla/ mandible models with desired movements incorporated to use as a plating template. A 3D printer capable of reproducing a complete skull can be procured for £1000, with material costs in the region of £10 per case. Our production of models and guides typically takes less than 24 hours of total print time. The entire production process is frequently less than three days. Externally sourced models and guides cost significantly more, frequently encountering costs totalling £1500-£2000 for models and guides for a bimaxillary osteotomy. Three-dimensional guided surgical planning utilising custom cutting guides enables the surgeon to determine optimal orientation of osteotomy cuts and better predict the skeletal maxilla/mandible relationship following surgery. The learning curve to develop proficiency using planning software and printer settings is offset by increased surgical predictability and reduced theatre time, making this form of planning a worthy investment.
Wang, Dongwen; Zhang, Bin; Yuan, Xiaobin; Zhang, Xuhui; Liu, Chen
2015-09-01
To evaluate the feasibility and effectiveness of preoperative planning and real-time assisted surgical navigation for three-dimensional laparoscopic partial nephrectomy under the guidance of three-dimensional individual digital model (3D-IDM) created using three-dimensional medical image reconstructing and guiding system (3D-MIRGS). Between May 2012 and February 2014, 44 patients with cT1 renal tumors underwent retroperitoneal laparoscopic partial nephrectomy (LPN) using a three-dimensional laparoscopic system. The 3D-IDMs were created using the 3D-MIRGS in 21 patients (3D-MIRGS group) between February 2013 and February 2014. After preoperative planning, operations were real-time assisted using composite 3D-IDMs, which were fused with two-dimensional retrolaparoscopic images. The remaining 23 patients underwent surgery without 3D-MIRGS between May 2012 and February 2013; 14 of these patients were selected as a control group. Preoperative aspects and dimensions used for an anatomical score, "radius; exophytic/endophytic; nearness; anterior/posterior; location" nephrometry score, tumor size, operative time (OT), segmental renal artery clamping (SRAC) time, estimated blood loss (EBL), postoperative hospitalization, the preoperative serum creatinine level and ipsilateral glomerular filtration rate (GFR), as well as postoperative 6-month data were compared between groups. All the SRAC procedures were technically successful, and each targeted tumor was excised completely; final pathological margin results were negative. The OT was shorter (159.0 vs. 193.2 min; p < 0.001), and EBL (148.1 vs. 176.1 mL; p < 0.001) was reduced in the 3D-MIRGS group compared with controls. No statistically significant differences in SRAC time or postoperative hospitalization were found between the groups. Neither group showed any statistically significant increases in serum creatinine level or decreases in ipsilateral GFR postoperatively. Preoperative planning and real-time assisted surgical navigation using the 3D-IDM reconstructed from 3D-MIRGS and combined with the 3D laparoscopic system can facilitate LPN and result in precise SRAC and accurate excision of tumor that is both effective and safe.
The GB/3D Type Fossils Online Web Portal
NASA Astrophysics Data System (ADS)
McCormick, T.; Howe, M. P.
2013-12-01
Fossils are the remains of once-living organisms that existed and played out their lives in 3-dimensional environments. The information content provided by a 3d representation of a fossil is much greater than that provided by a traditional photograph, and can grab the attention and imagination of the younger and older general public alike. The British Geological Survey has been leading a consortium of UK natural history museums including the Oxford University Museum of Natural History, the Sedgwick Museum Cambridge, the National Museum of Wales Cardiff, and a number of smaller regional British museums to construct a web portal giving access to metadata, high resolution images and interactive 3d models of type fossils from the UK. The web portal at www.3d-fossils.ac.uk was officially launched in August 2013. It can be used to discover metadata describing the provenance, taxonomy, and stratigraphy of the specimens. Zoom-able high resolution digital photographs are available, including for many specimens ';anaglyph' stereo images that can be viewed in 3d using red-cyan stereo spectacles. For many of the specimens interactive 3d models were generated by scanning with portable ';NextEngine 3D HD' 3d scanners. These models can be downloaded in zipped .OBJ and .PLY format from the web portal, or may be viewed and manipulated directly in certain web browsers. The images and scans may be freely downloaded subject to a Creative Commons Attribution ShareAlike Non-Commercial license. There is a simple application programming interface (API) allowing metadata to be downloaded, with links to the images and models, in a standardised format for use in data mash-ups and third party applications. The web portal also hosts ';open educational resources' explaining the process of fossilization and the importance of type specimens in taxonomy, as well as providing introductions to the most important fossil groups. We have experimented with using a 3d printer to create replicas of the fossils which can be used in education and public outreach. The audience for the web portal includes both professional paleontologists and the general public. The professional paleontologist can use the portal to discover the whereabouts of the type material for a taxon they are studying, and can use the pictures and 3d models to assess the completeness and preservation quality of the material. This may reduce or negate the need to send specimens (which are often fragile and always irreplaceable) to researchers through the post, or for researchers to make possibly long, expensive and environmentally damaging journeys to visit far-off collections. We hope that the pictures and 3d models will help to stimulate public interest in paleontology and natural history. The ability to digitally image and scan specimens in 3d enables institutions to have an archive record in case specimens are lost or destroyed by accident or warfare. Recent events in Cairo and Baghdad remind us that museum collections are vulnerable to civil and military strife.
NASA Astrophysics Data System (ADS)
Drummond, B.; Mayne, N. J.; Manners, J.; Carter, A. L.; Boutle, I. A.; Baraffe, I.; Hébrard, É.; Tremblin, P.; Sing, D. K.; Amundsen, D. S.; Acreman, D.
2018-03-01
We present a study of the effect of wind-driven advection on the chemical composition of hot-Jupiter atmospheres using a fully consistent 3D hydrodynamics, chemistry, and radiative transfer code, the Met Office Unified Model (UM). Chemical modeling of exoplanet atmospheres has primarily been restricted to 1D models that cannot account for 3D dynamical processes. In this work, we couple a chemical relaxation scheme to the UM to account for the chemical interconversion of methane and carbon monoxide. This is done consistently with the radiative transfer meaning that departures from chemical equilibrium are included in the heating rates (and emission) and hence complete the feedback between the dynamics, thermal structure, and chemical composition. In this Letter, we simulate the well studied atmosphere of HD 209458b. We find that the combined effect of horizontal and vertical advection leads to an increase in the methane abundance by several orders of magnitude, which is directly opposite to the trend found in previous works. Our results demonstrate the need to include 3D effects when considering the chemistry of hot-Jupiter atmospheres. We calculate transmission and emission spectra, as well as the emission phase curve, from our simulations. We conclude that gas-phase nonequilibrium chemistry is unlikely to explain the model–observation discrepancy in the 4.5 μm Spitzer/IRAC channel. However, we highlight other spectral regions, observable with the James Webb Space Telescope, where signatures of wind-driven chemistry are more prominant.
a 24/7 High Resolution Storm Surge, Inundation and Circulation Forecasting System for Florida Coast
NASA Astrophysics Data System (ADS)
Paramygin, V.; Davis, J. R.; Sheng, Y.
2012-12-01
A 24/7 forecasting system for Florida is needed because of the high risk of tropical storm surge-induced coastal inundation and damage, and the need to support operational management of water resources, utility infrastructures, and fishery resources. With the anticipated climate change impacts, including sea level rise, coastal areas are facing the challenges of increasing inundation risk and increasing population. Accurate 24/7 forecasting of water level, inundation, and circulation will significantly enhance the sustainability of coastal communities and environments. Supported by the Southeast Coastal Ocean Observing Regional Association (SECOORA) through NOAA IOOS, a 24/7 high-resolution forecasting system for storm surge, coastal inundation, and baroclinic circulation is being developed for Florida using CH3D Storm Surge Modeling System (CH3D-SSMS). CH3D-SSMS is based on the CH3D hydrodynamic model coupled to a coastal wave model SWAN and basin scale surge and wave models. CH3D-SSMS has been verified with surge, wave, and circulation data from several recent hurricanes in the U.S.: Isabel (2003); Charley, Dennis and Ivan (2004); Katrina and Wilma (2005); Ike and Fay (2008); and Irene (2011), as well as typhoons in the Pacific: Fanapi (2010) and Nanmadol (2011). The effects of tropical cyclones on flow and salinity distribution in estuarine and coastal waters has been simulated for Apalachicola Bay as well as Guana-Tolomato-Matanzas Estuary using CH3D-SSMS. The system successfully reproduced different physical phenomena including large waves during Ivan that damaged I-10 Bridges, a large alongshore wave and coastal flooding during Wilma, salinity drop during Fay, and flooding in Taiwan as a result of combined surge and rain effect during Fanapi. The system uses 4 domains that cover entire Florida coastline: West, which covers the Florida panhandle and Tampa Bay; Southwest spans from Florida Keys to Charlotte Harbor; Southeast, covering Biscayne Bay and Miami and East, which continues north to the Florida/Georgia border. The system has a data acquisition and processing module that is used to collect data for model runs (e.g. wind, river flow, precipitation). Depending on the domain, forecasts runs can take ~1-18 hours to complete on a single CPU (8-core) system (1-2 hrs for 2D setup and up to 18 hrs for a 3D setup) with 4 forecasts generated per day. All data is archived / catalogued and model forecast skill is continuously being evaluated. In addition to the baseline forecasts, additional forecasts are being perform using various options for wind forcing (GFS, GFDL, WRF, and parametric hurricane models), model configurations (2D/ 3D), and open boundary conditions by coupling with large scale models (ROMS, NCOM, HYCOM), as well as incorporating real-time and forecast river flow and precipitation data to better understand how to improve model skill. In addition, new forecast products (e.g. more informative inundation maps) are being developed to targeted stakeholders. To support modern data standards, CH3D-SSMS results are available online via a THREDDS server in CF-Compliant NetCDF format as well as other stakeholder-friendly (e.g. GIS) formats. The SECOORA website provides visualization of the model via GODIVA-THREDDS interface.
Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing.
Kucherov, Fedor A; Gordeev, Evgeny G; Kashin, Alexey S; Ananikov, Valentine P
2017-12-11
Biomass-derived poly(ethylene-2,5-furandicarboxylate) (PEF) has been used for fused deposition modeling (FDM) 3D printing. A complete cycle from cellulose to the printed object has been performed. The printed PEF objects created in the present study show higher chemical resistance than objects printed with commonly available materials (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), glycol-modified poly(ethylene terephthalate) (PETG)). The studied PEF polymer has shown key advantages for 3D printing: optimal adhesion, thermoplasticity, lack of delamination and low heat shrinkage. The high thermal stability of PEF and relatively low temperature that is necessary for extrusion are optimal for recycling printed objects and minimizing waste. Several successive cycles of 3D printing and recycling were successfully shown. The suggested approach for extending additive manufacturing to carbon-neutral materials opens a new direction in the field of sustainable development. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Henriquez, Miguel F.; Thompson, Derek S.; Kenily, Shane; Khaziev, Rinat; Good, Timothy N.; McIlvain, Julianne; Siddiqui, M. Umair; Curreli, Davide; Scime, Earl E.
2016-10-01
Understanding particle distributions in plasma boundary regions is critical to predicting plasma-surface interactions. Ions in the presheath exhibit complex behavior because of collisions and due to the presence of boundary-localized electric fields. Complete understanding of particle dynamics is necessary for understanding the critical problems of tokamak wall loading and Hall thruster channel wall erosion. We report measurements of 3D argon ion velocity distribution functions (IVDFs) in the vicinity of an absorbing boundary oriented obliquely to a background magnetic field. Measurements were obtained via argon ion laser induced fluorescence throughout a spatial volume upstream of the boundary. These distribution functions reveal kinetic details that provide a point-to-point check on particle-in-cell and 1D3V Boltzmann simulations. We present the results of this comparison and discuss some implications for plasma boundary interaction physics.
NASA Astrophysics Data System (ADS)
Liu, J. H.; Hu, J.; Li, Z. W.
2018-04-01
Three-dimensional (3-D) deformation fields with respect to the October 2016's Central Tottori earthquake are extracted in this paper from ALOS-2 conducted Interferometric Synthetic Aperture Radar (InSAR) observations with four different incline angles, i.e., ascending/descending and left-/right-looking. In particular, the Strain Model and Variance Component Estimation (SM-VCE) method is developed to integrate the heterogeneous InSAR observations without being affected by the coverage inconformity of SAR images associated with the earthquake focal area. Compare with classical weighted least squares (WLS) method, SM-VCE method is capable for the retrieval of more accurate and complete deformation field of Central Tottori earthquake, as indicated by the comparison with the GNSS observations. In addition, accuracies of heterogeneous InSAR observations and 3-D deformations on each point are quantitatively provided by the SM-VCE method.
Computer-aided design of microvasculature systems for use in vascular scaffold production.
Mondy, William Lafayette; Cameron, Don; Timmermans, Jean-Pierre; De Clerck, Nora; Sasov, Alexander; Casteleyn, Christophe; Piegl, Les A
2009-09-01
In vitro biomedical engineering of intact, functional vascular networks, which include capillary structures, is a prerequisite for adequate vascular scaffold production. Capillary structures are necessary since they provide the elements and compounds for the growth, function and maintenance of 3D tissue structures. Computer-aided modeling of stereolithographic (STL) micro-computer tomographic (micro-CT) 3D models is a technique that enables us to mimic the design of vascular tree systems containing capillary beds, found in tissues. In our first paper (Mondy et al 2009 Tissue Eng. at press), using micro-CT, we studied the possibility of using vascular tissues to produce data capable of aiding the design of vascular tree scaffolding, which would help in the reverse engineering of a complete vascular tree system including capillary bed structures. In this paper, we used STL models of large datasets of computer-aided design (CAD) data of vascular structures which contained capillary structures that mimic those in the dermal layers of rabbit skin. Using CAD software we created from 3D STL models a bio-CAD design for the development of capillary-containing vascular tree scaffolding for skin. This method is designed to enhance a variety of therapeutic protocols including, but not limited to, organ and tissue repair, systemic disease mediation and cell/tissue transplantation therapy. Our successful approach to in vitro vasculogenesis will allow the bioengineering of various other types of 3D tissue structures, and as such greatly expands the potential applications of biomedical engineering technology into the fields of biomedical research and medicine.
Yang, Wenhui; Xiong, Ge; Garrido, Luis Eduardo; Zhang, John X; Wang, Meng-Cheng; Wang, Chong
2018-04-16
We systematically examined the factor structure and criterion validity across the full scale and 10 short forms of the Center for Epidemiological Studies Depression Scale (CES-D) with Chinese youth. Participants were 5,434 Chinese adolescents in Grades 7 to 12 who completed the full CES-D; 612 of them further completed a structured diagnostic interview with the major depressive disorder (MDD) module of the Kiddie Schedule for Affective Disorder and Schizophrenia for School-age Children. Using a split-sample approach, a series of 4-, 3-, 2-, and 1-factor models were tested using exploratory structural equation modeling and cross-validated using confirmatory factor analysis; the dimensionality was also evaluated by parallel analysis in conjunction with the scree test and aided by factor mixture analysis. The results indicated that a single-factor model of depression with a wording method factor fitted the data well, and was the optimal structure underlying the scores of the full and shortened CES-D. Additionally, receiver operating characteristic curve analyses for MDD case detection showed that the CES-D full-scale scores accurately detected MDD youth (area under the curve [AUC] = .84). Furthermore, the short-form scores produced comparable AUCs with the full scale (.82 to .85), as well as similar levels of sensitivity and specificity when using optimal cutoffs. These findings suggest that depression among Chinese adolescents can be adequately measured and screened for by a single-factor structure underlying the CES-D scores, and that the short forms provide a viable alternative to the full instrument. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Complete Scene Recovery and Terrain Classification in Textured Terrain Meshes
Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae
2012-01-01
Terrain classification allows a mobile robot to create an annotated map of its local environment from the three-dimensional (3D) and two-dimensional (2D) datasets collected by its array of sensors, including a GPS receiver, gyroscope, video camera, and range sensor. However, parts of objects that are outside the measurement range of the range sensor will not be detected. To overcome this problem, this paper describes an edge estimation method for complete scene recovery and complete terrain reconstruction. Here, the Gibbs-Markov random field is used to segment the ground from 2D videos and 3D point clouds. Further, a masking method is proposed to classify buildings and trees in a terrain mesh. PMID:23112653
Economic Analysis of Obtaining a PharmD Degree and Career as a Pharmacist
Gatwood, Justin; Spivey, Christina A.
2015-01-01
Objective. To evaluate the economic value of pharmacy education/career and the effects of the cost of private or public pharmacy school, the length of degree program, residency training, and pharmacy career path on net career earnings. Methods. This study involved an economic analysis using Markov modeling. Estimated costs of education including student loans were considered in calculating net career earnings of 4 career paths following high school graduation: (1) immediate employment; (2) employment with bachelor’s degree in chemistry or biology; (3) employment as a pharmacist with no residency training; and (4) employment as a pharmacist after completing one or two years of residency training. Results. Models indicated that throughout their careers (up to age 67), PharmD graduates may accumulate net career earnings of $5.66 million to $6.29 million, roughly 3.15 times more than high school graduates and 1.57 to 1.73 times more than those with bachelor’s degrees in biology or chemistry. Attending a public pharmacy school after completing 3 years of prepharmacy education generally leads to higher net career earnings. Community pharmacists have the highest net career earnings, and PGY-1 residency-trained hospital pharmacists have greater net career earnings than those who immediately started their careers in a hospital setting. Conclusion. The economic models presented are based on assumptions described herein; as conditions are subject to variability, these models should not be used to predict future earnings. Nevertheless, the findings demonstrate investment in a pharmacy education yields favorable financial return. Application of results to schools of pharmacy, students, and graduates is discussed. PMID:26689560
Kumta, Samir; Kumta, Monica; Jain, Leena; Purohit, Shrirang; Ummul, Rani
2015-01-01
Introduction: Replication of the exact three-dimensional (3D) structure of the maxilla and mandible is now a priority whilst attempting reconstruction of these bones to attain a complete functional and aesthetic rehabilitation. We hereby present the process of rapid prototyping using stereolithography to produce templates for modelling bone grafts and implants for maxilla/mandible reconstructions, its applications in tumour/trauma, and outcomes for primary and secondary reconstruction. Materials and Methods: Stereolithographic template-assisted reconstruction was used on 11 patients for the reconstruction of the mandible/maxilla primarily following tumour excision and secondarily for the realignment of post-traumatic malunited fractures or deformity corrections. Data obtained from the computed tomography (CT) scans with 1-mm resolution were converted into a computer-aided design (CAD) using the CT Digital Imaging and Communications in Medicine (DICOM) data. Once a CAD model was constructed, it was converted into a stereolithographic format and then processed by the rapid prototyping technology to produce the physical anatomical model using a resin. This resin model replicates the native mandible, which can be thus used off table as a guide for modelling the bone grafts. Discussion: This conversion of two-dimensional (2D) data from CT scan into 3D models is a very precise guide to shaping the bone grafts. Further, this CAD can reconstruct the defective half of the mandible using the mirror image principle, and the normal anatomical model can be created to aid secondary reconstructions. Conclusion: This novel approach allows a precise translation of the treatment plan directly to the surgical field. It is also an important teaching tool for implant moulding and fixation, and helps in patient counselling. PMID:26933279
Kumta, Samir; Kumta, Monica; Jain, Leena; Purohit, Shrirang; Ummul, Rani
2015-01-01
Replication of the exact three-dimensional (3D) structure of the maxilla and mandible is now a priority whilst attempting reconstruction of these bones to attain a complete functional and aesthetic rehabilitation. We hereby present the process of rapid prototyping using stereolithography to produce templates for modelling bone grafts and implants for maxilla/mandible reconstructions, its applications in tumour/trauma, and outcomes for primary and secondary reconstruction. Stereolithographic template-assisted reconstruction was used on 11 patients for the reconstruction of the mandible/maxilla primarily following tumour excision and secondarily for the realignment of post-traumatic malunited fractures or deformity corrections. Data obtained from the computed tomography (CT) scans with 1-mm resolution were converted into a computer-aided design (CAD) using the CT Digital Imaging and Communications in Medicine (DICOM) data. Once a CAD model was constructed, it was converted into a stereolithographic format and then processed by the rapid prototyping technology to produce the physical anatomical model using a resin. This resin model replicates the native mandible, which can be thus used off table as a guide for modelling the bone grafts. This conversion of two-dimensional (2D) data from CT scan into 3D models is a very precise guide to shaping the bone grafts. Further, this CAD can reconstruct the defective half of the mandible using the mirror image principle, and the normal anatomical model can be created to aid secondary reconstructions. This novel approach allows a precise translation of the treatment plan directly to the surgical field. It is also an important teaching tool for implant moulding and fixation, and helps in patient counselling.
NASA Astrophysics Data System (ADS)
Rodríguez Miranda, Á.; Valle Melón, J. M.
2017-02-01
Three-dimensional models with photographic textures have become a usual product for the study and dissemination of elements of heritage. The interest for cultural heritage also includes evolution along time; therefore, apart from the 3D models of the current state, it is interesting to be able to generate models representing how they were in the past. To that end, it is necessary to resort to archive information corresponding to the moments that we want to visualize. This text analyses the possibilities of generating 3D models of surfaces with photographic textures from old collections of analog negatives coming from works of terrestrial stereoscopic photogrammetry of historic buildings. The case studies presented refer to the geometric documentation of a small hermitage (done in 1996) and two sections of a wall (year 2000). The procedure starts with the digitization of the film negatives and the processing of the images generated, after which a combination of different methods for 3D reconstruction and texture wrapping are applied: techniques working simultaneously with several images (such as the algorithms of Structure from Motion - SfM) and single image techniques (such as the reconstruction based on vanishing points). Then, the features of the obtained models are described according to the geometric accuracy, completeness and aesthetic quality. In this way, it is possible to establish the real applicability of the models in order to be useful for the aforementioned historical studies and dissemination purposes. The text also wants to draw attention to the importance of preserving the documentary heritage available in the collections of negatives in archival custody and to the increasing difficulty of using them due to: (1) problems of access and physical conservation, (2) obsolescence of the equipment for scanning and stereoplotting and (3) the fact that the software for processing digitized photographs is discontinued.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.
2017-12-01
This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.
Body and Surface Wave Modeling of Observed Seismic Events. Part 2.
1987-05-12
is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical S coordinates in an asymptotic form which...using line source (2-D) theory. It is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical...generating synthetic point-source seismograms for shear dislocation sources using line source (2-D) theory. It is based on expanding the complete three
ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment with LX-10
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClelland, M A; Maienschein, J L; Howard, W M
We performed a computational and experimental analysis of fast cookoff of LX-10 (94.7% HMX, 5.3% Viton A) confined in a 2 kbar steel tube with reinforced end caps. A Scaled-Thermal-Explosion-eXperiment (STEX) was completed in which three radiant heaters were used to heat the vessel until ignition, resulting in a moderately violent explosion after 20.4 minutes. Thermocouple measurements showed tube temperatures as high as 340 C at ignition and LX-10 surface temperatures as high as 279 C, which is near the melting point of HMX. Three micro-power radar systems were used to measure mean fragment velocities of 840 m/s. Photonics Dopplermore » Velocimeters (PDVs) showed a rapid acceleration of fragments over 80 {micro}s. A one-dimensional ALE3D cookoff model at the vessel midplane was used to simulate the heating, thermal expansion, LX-10 decomposition composition, and closing of the gap between the HE (High Explosive) and vessel wall. Although the ALE3D simulation terminated before ignition, the model provided a good representation of heat transfer through the case and across the dynamic gap to the explosive.« less
NASA Astrophysics Data System (ADS)
Giampiccolo, E.; Brancato, A.; Manuella, F. C.; Carbone, S.; Gresta, S.; Scribano, V.
2017-12-01
In this study, we derived the first 3-D P-wave seismic attenuation images (QP) as well as new 3-D VP and VP/VS models for the crust in southeastern Sicily. We used a large data set of local seismic events occurring in the time span 1994-2013. The results of this tomographic study have important implications on the seismic behaviour of the region. Based on velocity and attenuation images, we identified distinct volumes characterized by different fluid content, which correlate well with seismicity distribution. Moreover, the obtained velocity and attenuation tomographies help us to provide a more complete picture of the crustal structure of the area. High VP, high QP and high VP/VS values have been obtained in the crustal basement, below a depth of 8 km, and may be interpreted as due to the presence of serpentinized peridotites. Accordingly, the new model for the degree of serpentinization, retrieved from VP values, shows that the basement has an average serpentinization value of 96 ± 3 vol.% at 8 km, decreasing to 44 ± 5 vol.% at about 18-20 km.
2013-01-01
Background We set out to examine whether structured professional judgement instruments DUNDRUM-3 programme completion (D-3) and DUNDRUM-4 recovery (D-4) scales along with measures of risk, mental state and global function could distinguish between those forensic patients detained in a secure forensic hospital (not guilty by reason of insanity or unfit to stand trial) who were subsequently discharged by a mental health review board. We also examined the interaction between these measures and risk, need for therapeutic security and eventual conditional discharge. Methods A naturalistic observational cohort study was carried out for 56 patients newly eligible for conditional discharge. Patients were rated using the D-3, D-4 and other scales including HCR-20, S-RAMM, START, SAPROF, PANSS and GAF and then observed over a period of twenty three months during which they were considered for conditional discharge by an independent Mental Health Review Board. Results The D-3 distinguished which patients were subsequently discharged by the Mental Health Review board (AUC = 0.902, p < 0.001) as did the D-4 (AUC = 0.848, p < 0.001). Item to outcome analysis showed each item of the D-3 and D-4 scales performed significantly better than random. The HCR-20 also distinguished those later discharged (AUC = 0.838, p < 0.001) as did the S-RAMM, START, SAPROF, PANSS and GAF. The D-3 and D-4 scores remained significantly lower (better) for those discharged even when corrected for the HCR-20 total score. Item to outcome analyses and logistic regression analysis showed that the strongest antecedents of discharge were the GAF and the DUNDRUM-3 programme completion scores. Conclusions Structured professional judgement instruments should improve the quality, consistency and transparency of clinical recommendations and decision making at mental health review boards. Further research is required to determine whether the DUNDRUM-3 programme completion and DUNDRUM-4 recovery instruments predict those who are or are not recalled or re-offend after conditional discharge. PMID:23837697
The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.
Chairside multi-unit restoration of a quadrant using the new Cerec 3D software.
Ender, A; Wiedhahn, K; Mörmann, W H
2003-01-01
The new Cerec 3D design software for inlays and partial and full crowns simplifies work when producing several restorations in one session. Quite significant progress has been achieved, in that the entire row of teeth of a quadrant can be acquired completely and displayed by successively overlapping optical impressions. The digital working model of a quadrant in which all preparations are acquired is the result. The restorations can be designed individually and inserted virtually. Thanks to virtual insertion, the proximal contacts to neighboring restorations can be designed perfectly and all restorations finally designed, milled, and inserted in one sitting. This method provides a significant rationalization effect.
Han, Guangjie; Li, Shanshan; Zhu, Chunsheng; Jiang, Jinfang; Zhang, Wenbo
2017-01-01
Marine environmental monitoring provides crucial information and support for the exploitation, utilization, and protection of marine resources. With the rapid development of information technology, the development of three-dimensional underwater acoustic sensor networks (3D UASNs) provides a novel strategy to acquire marine environment information conveniently, efficiently and accurately. However, the specific propagation effects of acoustic communication channel lead to decreased successful information delivery probability with increased distance. Therefore, we investigate two probabilistic neighborhood-based data collection algorithms for 3D UASNs which are based on a probabilistic acoustic communication model instead of the traditional deterministic acoustic communication model. An autonomous underwater vehicle (AUV) is employed to traverse along the designed path to collect data from neighborhoods. For 3D UASNs without prior deployment knowledge, partitioning the network into grids can allow the AUV to visit the central location of each grid for data collection. For 3D UASNs in which the deployment knowledge is known in advance, the AUV only needs to visit several selected locations by constructing a minimum probabilistic neighborhood covering set to reduce data latency. Otherwise, by increasing the transmission rounds, our proposed algorithms can provide a tradeoff between data collection latency and information gain. These algorithms are compared with basic Nearest-neighbor Heuristic algorithm via simulations. Simulation analyses show that our proposed algorithms can efficiently reduce the average data collection completion time, corresponding to a decrease of data latency. PMID:28208735
Detection of endoscopic looping during colonoscopy procedure by using embedded bending sensors
Bruce, Michael; Choi, JungHun
2018-01-01
Background Looping of the colonoscope shaft during procedure is one of the most common obstacles encountered by colonoscopists. It occurs in 91% of cases with the N-sigmoid loop being the most common, occurring in 79% of cases. Purpose Herein, a novel system is developed that will give a complete three-dimensional (3D) vector image of the shaft as it passes through the colon, to aid the colonoscopist in detecting loops before they form. Patients and methods A series of connected links spans the middle 50% of the shaft, where loops are likely to form. Two potentiometers are attached at each joint to measure angular deflection in two directions to allow for 3D positioning. This 3D positioning is converted into a 3D vector image using computer software. MATLAB software has been used to display the image on a computer monitor. For the different configuration of the colon model, the system determined the looping status. Results Different configurations (N loop, reverse gamma loop, and reverse splenic flexure) of the loops were well defined using 3D vector image. Conclusion The novel sensory system can accurately define the various configuration of the colon during the colonoscopy procedure. PMID:29849469
Framework for Automated GD&T Inspection Using 3D Scanner
NASA Astrophysics Data System (ADS)
Pathak, Vimal Kumar; Singh, Amit Kumar; Sivadasan, M.; Singh, N. K.
2018-04-01
Geometric Dimensioning and Tolerancing (GD&T) is a typical dialect that helps designers, production faculty and quality monitors to convey design specifications in an effective and efficient manner. GD&T has been practiced since the start of machine component assembly but without overly naming it. However, in recent times industries have started increasingly emphasizing on it. One prominent area where most of the industries struggle with is quality inspection. Complete inspection process is mostly human intensive. Also, the use of conventional gauges and templates for inspection purpose highly depends on skill of workers and quality inspectors. In industries, the concept of 3D scanning is not new but is used only for creating 3D drawings or modelling of physical parts. However, the potential of 3D scanning as a powerful inspection tool is hardly explored. This study is centred on designing a procedure for automated inspection using 3D scanner. Linear, geometric and dimensional inspection of the most popular test bar-stepped bar, as a simple example was also carried out as per the new framework. The new generation engineering industries would definitely welcome this automated inspection procedure being quick and reliable with reduced human intervention.
Huber, K; Zenner, L; Bicout, D J
2011-02-28
The poultry red mite Dermanyssus gallinae is a major pest and widespread ectoparasite of laying hens and other domestic and wild birds. Under optimal conditions, D. gallinae can complete its lifecycle in less than 10 days, leading to rapid proliferation of populations in poultry systems. This paper focuses on developing a theoretical model framework to describe the population dynamics of D. gallinae. This model is then used to test the efficacy and residual effect of different control options for managing D. gallinae. As well as allowing comparison between treatment options, the model also allows comparison of treatment efficacies to different D. gallinae life stages. Three different means for controlling D. gallinae populations were subjected to the model using computer simulations: mechanical cleaning (killing once at a given time all accessible population stages), sanitary clearance (starving the mite population for a given duration, e.g. between flocks) and acaricide treatment (killing a proportion of nymphs and adults during the persistence of the treatment). Simulations showed that mechanical cleaning and sanitary clearance alone could not eradicate the model D. gallinae population, although these methods did delay population establishment. In contrast, the complete eradication of the model D. gallinae population was achieved by several successive acaricide treatments in close succession, even when a relatively low treatment level was used. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
van Driel, Martin; Nissen-Meyer, Tarje; Stähler, Simon; Waszek, Lauren; Hempel, Stefanie; Auer, Ludwig; Deuss, Arwen
2014-05-01
We present a numerical method to compute high-frequency 3D elastic waves in fully anisotropic axisymmetric media. The method is based on a decomposition of the wavefield into a series of uncoupled 2D equations, for which the dependence of the wavefield on the azimuth can be solved analytically. The remaining 2D problems are then solved using a spectral element method (AxiSEM). AxiSEM was recently published open-source (Nissen-Meyer et al. 2014) as a production ready code capable to compute global seismic wave propagation up to frequencies of ~2Hz. It accurately models visco-elastic dissipation and anisotropy (van Driel et al., submitted to GJI) and runs efficiently on HPC resources using up to 10K cores. At very short period, the Fresnel Zone of body waves is narrow and sensitivity is focused around the geometrical ray. In cases where the azimuthal variations of structural heterogeneity exhibit long spatial wavelengths, so called 2.5D simulations (3D wavefields in 2D models) provide a good approximation. In AxiSEM, twodimensional variations in the source-receiver plane are effectively modelled as ringlike structures extending in the out-of-plane direction. In contrast to ray-theory, which is widely used in high-frequency applications, AxiSEM provides complete waveforms, thus giving access to frequency dependency, amplitude variations, and peculiar wave effects such as diffraction and caustics. Here we focus on the practical implications of the inherent axisymmetric geometry and show how the 2.5D-features of our method method can be used to model realistic anisotropic structures, by applying it to problems such as the D" region and the inner core.
Probabilistic Feasibility of the Reconstruction Process of Russian-Orthodox Churches
NASA Astrophysics Data System (ADS)
Chizhova, M.; Brunn, A.; Stilla, U.
2016-06-01
The cultural human heritage is important for the identity of following generations and has to be preserved in a suitable manner. In the course of time a lot of information about former cultural constructions has been lost because some objects were strongly damaged by natural erosion or on account of human work or were even destroyed. It is important to capture still available building parts of former buildings, mostly ruins. This data could be the basis for a virtual reconstruction. Laserscanning offers in principle the possibility to take up extensively surfaces of buildings in its actual status. In this paper we assume a priori given 3d-laserscanner data, 3d point cloud for the partly destroyed church. There are many well known algorithms, that describe different methods of extraction and detection of geometric primitives, which are recognized separately in 3d points clouds. In our work we put them in a common probabilistic framework, which guides the complete reconstruction process of complex buildings, in our case russian-orthodox churches. Churches are modeled with their functional volumetric components, enriched with a priori known probabilities, which are deduced from a database of russian-orthodox churches. Each set of components represents a complete church. The power of the new method is shown for a simulated dataset of 100 russian-orthodox churches.
ERIC Educational Resources Information Center
Garcia-Perez, Alexeis; Ayres, Robert
2012-01-01
A high proportion of PhD candidates in science and engineering fail to complete their degrees. This paper reports the results of a series of workshops where experienced researchers and supervisors were brought together with PhD students to discuss and develop a model of the PhD process. The objective was to help students develop a more rounded and…
NASA Astrophysics Data System (ADS)
Simmons, Nathan; Myers, Steve
2017-04-01
We continue to develop more advanced models of Earth's global seismic structure with specific focus on improving predictive capabilities for future seismic events. Our most recent version of the model combines high-quality P and S wave body wave travel times and surface-wave group and phase velocities into a joint (simultaneous) inversion process to tomographically image Earth's crust and mantle. The new model adds anisotropy (known as vertical transverse isotropy) to the model, which is necessitated by the addition of surface waves to the tomographic data set. Like previous versions of the model the new model consists of 59 surfaces and 1.6 million model nodes from the surface to the core-mantle boundary, overlaying a 1-D outer and inner core model. The model architecture is aspherical and we directly incorporate Earth's expected hydrostatic shape (ellipticity and mantle stretching). We also explicitly honor surface undulations including the Moho, several internal crustal units, and the upper mantle transition zone undulations as predicated by previous studies. The explicit Earth model design allows for accurate travel time computation using our unique 3-D ray tracing algorithms, capable of 3-D ray tracing more than 20 distinct seismic phases including crustal, regional, teleseismic, and core phases. Thus, we can now incorporate certain secondary (and sometimes exotic) phases into source location determination and other analyses. New work on model uncertainty quantification assesses the error covariance of the model, which when completed will enable calculation of path-specific estimates of uncertainty for travel times computed using our previous model (LLNL-G3D-JPS) which is available to the monitoring and broader research community and we encourage external evaluation and validation. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
In vitro 3D regeneration-like growth of human patient brain tissue.
Tang-Schomer, M D; Wu, W B; Kaplan, D L; Bookland, M J
2018-05-01
In vitro culture of primary neurons is widely adapted with embryonic but not mature brain tissue. Here, we extended a previously developed bioengineered three-dimensional (3D) embryonic brain tissue model to resected normal patient brain tissue in an attempt to regenerate human neurons in vitro. Single cells and small sized (diameter < 100 μm) spheroids from dissociated brain tissue were seeded into 3D silk fibroin-based scaffolds, with or without collagen or Matrigel, and compared with two-dimensional cultures and scaffold-free suspension cultures. Changes of cell phenotypes (neuronal, astroglial, neural progenitor, and neuroepithelial) were quantified with flow cytometry and analyzed with a new method of statistical analysis specifically designed for percentage comparison. Compared with a complete lack of viable cells in conventional neuronal cell culture condition, supplements of vascular endothelial growth factor-containing pro-endothelial cell condition led to regenerative growth of neurons and astroglial cells from "normal" human brain tissue of epilepsy surgical patients. This process involved delayed expansion of Nestin+ neural progenitor cells, emergence of TUJ1+ immature neurons, and Vimentin+ neuroepithelium-like cell sheet formation in prolonged cultures (14 weeks). Micro-tissue spheroids, but not single cells, supported the brain tissue growth, suggesting importance of preserving native cell-cell interactions. The presence of 3D scaffold, but not hydrogel, allowed for Vimentin+ cell expansion, indicating a different growth mechanism than pluripotent cell-based brain organoid formation. The slow and delayed process implied an origin of quiescent neural precursors in the neocortex tissue. Further optimization of the 3D tissue model with primary human brain cells could provide personalized brain disease models. Copyright © 2018 John Wiley & Sons, Ltd.
Solanki, Nayan G; Tahsin, Md; Shah, Ankita V; Serajuddin, Abu T M
2018-01-01
The primary aim of this study was to identify pharmaceutically acceptable amorphous polymers for producing 3D printed tablets of a model drug, haloperidol, for rapid release by fused deposition modeling. Filaments for 3D printing were prepared by hot melt extrusion at 150°C with 10% and 20% w/w of haloperidol using Kollidon ® VA64, Kollicoat ® IR, Affinsiol ™ 15 cP, and HPMCAS either individually or as binary blends (Kollidon ® VA64 + Affinisol ™ 15 cP, 1:1; Kollidon ® VA64 + HPMCAS, 1:1). Dissolution of crushed extrudates was studied at pH 2 and 6.8, and formulations demonstrating rapid dissolution rates were then analyzed for drug-polymer, polymer-polymer and drug-polymer-polymer miscibility by film casting. Polymer-polymer (1:1) and drug-polymer-polymer (1:5:5 and 2:5:5) mixtures were found to be miscible. Tablets with 100% and 60% infill were printed using MakerBot printer at 210°C, and dissolution tests of tablets were conducted at pH 2 and 6.8. Extruded filaments of Kollidon ® VA64-Affinisol ™ 15 cP mixtures were flexible and had optimum mechanical strength for 3D printing. Tablets containing 10% drug with 60% and 100% infill showed complete drug release at pH 2 in 45 and 120 min, respectively. Relatively high dissolution rates were also observed at pH 6.8. The 1:1-mixture of Kollidon ® VA64 and Affinisol ™ 15 cP was thus identified as a suitable polymer system for 3D printing and rapid drug release. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Soliman, Moomen; Eldyasti, Ahmed
2017-06-01
Recently, partial nitrification has been adopted widely either for the nitrite shunt process or intermediate nitrite generation step for the Anammox process. However, partial nitrification has been hindered by the complexity of maintaining stable nitrite accumulation at high nitrogen loading rates (NLR) which affect the feasibility of the process for high nitrogen content wastewater. Thus, the operational data of a lab scale SBR performing complete partial nitrification as a first step of nitrite shunt process at NLRs of 0.3-1.2kg/(m 3 d) have been used to calibrate and validate a process model developed using BioWin® in order to describe the long-term dynamic behavior of the SBR. Moreover, an identifiability analysis step has been introduced to the calibration protocol to eliminate the needs of the respirometric analysis for SBR models. The calibrated model was able to predict accurately the daily effluent ammonia, nitrate, nitrite, alkalinity concentrations and pH during all different operational conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Castagnetti, C.; Dubbini, M.; Ricci, P. C.; Rivola, R.; Giannini, M.; Capra, A.
2017-05-01
The new era of designing in architecture and civil engineering applications lies in the Building Information Modeling (BIM) approach, based on a 3D geometric model including a 3D database. This is easier for new constructions whereas, when dealing with existing buildings, the creation of the BIM is based on the accurate knowledge of the as-built construction. Such a condition is allowed by a 3D survey, often carried out with laser scanning technology or modern photogrammetry, which are able to guarantee an adequate points cloud in terms of resolution and completeness by balancing both time consuming and costs with respect to the request of final accuracy. The BIM approach for existing buildings and even more for historical buildings is not yet a well known and deeply discussed process. There are still several choices to be addressed in the process from the survey to the model and critical issues to be discussed in the modeling step, particularly when dealing with unconventional elements such as deformed geometries or historical elements. The paper describes a comprehensive workflow that goes through the survey and the modeling, allowing to focus on critical issues and key points to obtain a reliable BIM of an existing monument. The case study employed to illustrate the workflow is the Basilica of St. Stefano in Bologna (Italy), a large monumental complex with great religious, historical and architectural assets.
2012-08-01
model appears in cosmic microwave background analysis [10] which solves min A,Y λ 2 trace ( (ABY − X)>C−1(ABY − X) ) + r(Y), subject to A ∈ D (1.5...and “×n” represent outer product and tensor-matrix multiplication, respectively. (The necessary background of tensor is reviewed in Sec. 3) Most
Cawthon, Peggy M; Orwoll, Eric S; Peters, Katherine E; Ensrud, Kristine E; Cauley, Jane A; Kado, Deborah M; Stefanick, Marcia L; Shikany, James M; Strotmeyer, Elsa S; Glynn, Nancy W; Caserotti, Paolo; Shankaran, Mahalakshmi; Hellerstein, Marc; Cummings, Steven R; Evans, William J
2018-06-12
Direct assessment of skeletal muscle mass in older adults is clinically challenging. Relationships between lean mass and late-life outcomes have been inconsistent. The D3-creatine dilution method provides a direct assessment of muscle mass. Muscle mass was assessed by D3-creatine (D3Cr) dilution in 1,382 men (mean age, 84.2 yrs). Participants completed the Short Physical Performance Battery (SPPB); usual walking speed (6 meters); and DXA lean mass. Men self-reported mobility limitations (difficulty walking 2-3 blocks or climbing 10 steps); recurrent falls (2+); and serious injurious falls in the subsequent year. Across quartiles of D3Cr muscle mass/body mass, multivariate linear models calculated means for SPPB and gait speed; multivariate logistic models calculated odds ratios for incident mobility limitations or falls. Compared to men in the highest quartile, those in the lowest quartile of D3Cr muscle mass/body mass had slower gait speed (Q1: 1.04 vs Q4: 1.17 m/s); lower SPPB (Q1: 8.4 vs Q4: 10.4 points); greater likelihood of incident serious injurious falls (OR Q1 vs Q4: 2.49, 95% CI: 1.37, 4.54); prevalent mobility limitation (OR Q1 vs Q4,: 6.1, 95%CI: 3.7, 10.3) and incident mobility limitation (OR Q1 vs Q4: 2.15 95% CI: 1.42, 3.26); p for trend <.001 for all. Results for incident recurrent falls were in the similar direction (p=0.156). DXA lean mass had weaker associations with the outcomes. Unlike DXA lean mass, low D3Cr muscle mass/body mass is strongly related to physical performance, mobility and incident injurious falls in older me.
DockoMatic 2.0: High Throughput Inverse Virtual Screening and Homology Modeling
Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T.; McDougal, Owen M.; Andersen, Timothy L.
2013-01-01
DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly Graphical User Interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to: (1) conduct high throughput Inverse Virtual Screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying a receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories, and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELLER programs, and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education. PMID:23808933
Free viewpoint TV and its international standardization
NASA Astrophysics Data System (ADS)
Tanimoto, Masayuki
2009-05-01
We have developed a new type of television named FTV (Free-viewpoint TV). FTV is an innovative visual media that enables us to view a 3D scene by freely changing our viewpoints. We proposed the concept of FTV and constructed the world's first real-time system including the complete chain of operation from image capture to display. We also realized FTV on a single PC and FTV with free listening-point audio. FTV is based on the ray-space method that represents one ray in real space with one point in the ray-space. We have also developed new type of ray capture and display technologies such as a 360-degree mirror-scan ray capturing system and a 360 degree ray-reproducing display. MPEG regarded FTV as the most challenging 3D media and started the international standardization activities of FTV. The first phase of FTV is MVC (Multi-view Video Coding) and the second phase is 3DV (3D Video). MVC was completed in March 2009. 3DV is a standard that targets serving a variety of 3D displays. It will be completed within the next two years.