Sample records for complete atomic models

  1. An atomic model for neutral and singly ionized uranium

    NASA Technical Reports Server (NTRS)

    Maceda, E. L.; Miley, G. H.

    1979-01-01

    A model for the atomic levels above ground state in neutral, U(0), and singly ionized, U(+), uranium is described based on identified atomic transitions. Some 168 states in U(0) and 95 in U(+) are found. A total of 1581 atomic transitions are used to complete this process. Also discussed are the atomic inverse lifetimes and line widths for the radiative transitions as well as the electron collisional cross sections.

  2. Mg I as a probe of the solar chromosphere - The atomic model

    NASA Technical Reports Server (NTRS)

    Mauas, Pablo J.; Avrett, Eugene H.; Loeser, Rudolf

    1988-01-01

    This paper presents a complete atomic model for Mg I line synthesis, where all the atomic parameters are based on recent experimental and theoretical data. It is shown how the computed profiles at 4571 A and 5173 A are influenced by the choice of these parameters and the number of levels included in the model atom. In addition, observed profiles of the 5173 A b2 line and theoretical profiles for comparison (based on a recent atmospheric model for the average quiet sun) are presented.

  3. Building chemistry one atom at a time: An investigation of the effects of two curricula in students' understanding of covalent bonding and atomic size

    NASA Astrophysics Data System (ADS)

    Bull, Barbara Jeanne

    Chemists have to rely on models to aid in the explanation of phenomena they experience. Instruction of atomic theory has been used as the introduction and primary model for many concepts in chemistry. Therefore, it is important for students to have a robust understanding of the different atomic models, their relationships and their limitations. Previous research has shown that students have alternative conceptions concerning their interpretation of atomic models, but there is less exploration into how students apply their understanding of atomic structure to other chemical concepts. Therefore, this research concentrated on the development of three Model Eliciting Activities to investigate the most fundamental topic of the atom and how students applied their atomic model to covalent bonding and atomic size. Along with the investigation into students' use of their atomic models, a comparison was included between a traditional chemistry curriculum using an Atoms First approach and Chemistry, Life, the Universe and Everything (CLUE), a NSF-funded general chemistry curriculum. Treatment and Control groups were employed to determine the effectiveness of the curricula in conveying the relationship between atoms, covalent bonds and atomic size. The CLUE students developed a Cloud representation on the Atomic Model Eliciting Activity and maintained this depiction through the Covalent Bonding Model Eliciting Activity. The traditional students more often illustrated the atom using a Bohr representation and continued to apply the same model to their portrayal of covalent bonding. During the analysis of the Atomic Size Model Eliciting Activity, students had difficulty fully supporting their explanation of the atomic size trend. Utilizing the beSocratic platform, an activity was designed to aid students' construction of explanations using Toulmin's Argumentation Pattern. In order to study the effectiveness of the activity, the students were asked questions relating to a four-week long investigation into the identity of an inorganic salt during their laboratory class. Students who completed the activity exhibited an improvement in their explanation of the identity of their salt's cation. After completing the activity, another question was posed about the identity of their anion. Both groups saw a decrease in the percentage of students who included reasoning in their answer; however, the activity group maintained a significantly higher percentage of responses with a reasoning than the control group.

  4. PROGEN: An automated modelling algorithm for the generation of complete protein structures from the α-carbon atomic coordinates

    NASA Astrophysics Data System (ADS)

    Mandal, Chhabinath; Linthicum, D. Scott

    1993-04-01

    A modelling algorithm (PROGEN) for the generation of complete protein atomic coordinates from only the α-carbon coordinates is described. PROGEN utilizes an optimal geometry parameter (OGP) database for the positioning of atoms for each amino acid of the polypeptide model. The OGP database was established by examining the statistical correlations between 23 different intra-peptide and inter-peptide geometric parameters relative to the α-carbon distances for each amino acid in a library of 19 known proteins from the Brookhaven Protein Database (BPDB). The OGP files for specific amino acids and peptides were used to generate the atomic positions, with respect to α-carbons, for main-chain and side-chain atoms in the modelled structure. Refinement of the initial model was accomplished using energy minimization (EM) and molecular dynamics techniques. PROGEN was tested using 60 known proteins in the BPDB, representing a wide spectrum of primary and secondary structures. Comparison between PROGEN models and BPDB crystal reference structures gave r.m.s.d. values for peptide main-chain atoms between 0.29 and 0.76 Å, with a grand average of 0.53 Å for all 60 models. The r.m.s.d. for all non-hydrogen atoms ranged between 1.44 and 1.93 Å for the 60 polypeptide models. PROGEN was also able to make the correct assignment of cis- or trans-proline configurations in the protein structures examined. PROGEN offers a fully automatic building and refinement procedure and requires no special or specific structural considerations for the protein to be modelled.

  5. An atomic model of brome mosaic virus using direct electron detection and real-space optimization.

    PubMed

    Wang, Zhao; Hryc, Corey F; Bammes, Benjamin; Afonine, Pavel V; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L; Kao, Cheng; Ludtke, Steven J; Schmid, Michael F; Adams, Paul D; Chiu, Wah

    2014-09-04

    Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.

  6. Entanglement dynamics in random media

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.; Zarro, C. A. D.

    2017-12-01

    We study how the entanglement dynamics between two-level atoms is impacted by random fluctuations of the light cone. In our model the two-atom system is envisaged as an open system coupled with an electromagnetic field in the vacuum state. We employ the quantum master equation in the Born-Markov approximation in order to describe the completely positive time evolution of the atomic system. We restrict our investigations to the situation in which the atoms are coupled individually to two spatially separated cavities, one of which displays the emergence of light-cone fluctuations. In such a disordered cavity, we assume that the coefficients of the Klein-Gordon equation are random functions of the spatial coordinates. The disordered medium is modeled by a centered, stationary, and Gaussian process. We demonstrate that disorder has the effect of slowing down the entanglement decay. We conjecture that in a strong-disorder environment the mean life of entangled states can be enhanced in such a way as to almost completely suppress quantum nonlocal decoherence.

  7. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Technical Reports Server (NTRS)

    Kurucz, Robert L.; West, Donald (Technical Monitor)

    2001-01-01

    With this funding I produced a web site kurucz.harvard.edu that can also be accessed by FTP. it has a 73GB disk that holds all of my atomic and diatomic molecular data, my tables of distribution function opacities, my grids of model atmospheres, colors, fluxes, etc., my programs that are ready for distribution, and most of my recent papers. Atlases and computed spectra will be added as they are completed. New atomic and molecular calculations will be added as they are completed.

  8. Development of an analytical-numerical model to predict radiant emission or absorption

    NASA Technical Reports Server (NTRS)

    Wallace, Tim L.

    1994-01-01

    The development of an analytical-numerical model to predict radiant emission or absorption is discussed. A voigt profile is assumed to predict the spectral qualities of a singlet atomic transition line for atomic species of interest to the OPAD program. The present state of this model is described in each progress report required under contract. Model and code development is guided by experimental data where available. When completed, the model will be used to provide estimates of specie erosion rates from spectral data collected from rocket exhaust plumes or other sources.

  9. SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model.

    PubMed

    Vaguine, A A; Richelle, J; Wodak, S J

    1999-01-01

    In this paper we present SFCHECK, a stand-alone software package that features a unified set of procedures for evaluating the structure-factor data obtained from X-ray diffraction experiments and for assessing the agreement of the atomic coordinates with these data. The evaluation is performed completely automatically, and produces a concise PostScript pictorial output similar to that of PROCHECK [Laskowski, MacArthur, Moss & Thornton (1993). J. Appl. Cryst. 26, 283-291], greatly facilitating visual inspection of the results. The required inputs are the structure-factor amplitudes and the atomic coordinates. Having those, the program summarizes relevant information on the deposited structure factors and evaluates their quality using criteria such as data completeness, structure-factor uncertainty and the optical resolution computed from the Patterson origin peak. The dependence of various parameters on the nominal resolution (d spacing) is also given. To evaluate the global agreement of the atomic model with the experimental data, the program recomputes the R factor, the correlation coefficient between observed and calculated structure-factor amplitudes and Rfree (when appropriate). In addition, it gives several estimates of the average error in the atomic coordinates. The local agreement between the model and the electron-density map is evaluated on a per-residue basis, considering separately the macromolecule backbone and side-chain atoms, as well as solvent atoms and heterogroups. Among the criteria are the normalized average atomic displacement, the local density correlation coefficient and the polymer chain connectivity. The possibility of computing these criteria using the omit-map procedure is also provided. The described software should be a valuable tool in monitoring the refinement procedure and in assessing structures deposited in databases.

  10. Effects of cavity-cavity interaction on the entanglement dynamics of a generalized double Jaynes-Cummings model

    NASA Astrophysics Data System (ADS)

    Pandit, Mahasweta; Das, Sreetama; Singha Roy, Sudipto; Shekhar Dhar, Himadri; Sen, Ujjwal

    2018-02-01

    We consider a generalized double Jaynes-Cummings model consisting of two isolated two-level atoms, each contained in a lossless cavity that interact with each other through a controlled photon-hopping mechanism. We analytically show that at low values of such a mediated cavity-cavity interaction, the temporal evolution of entanglement between the atoms, under the effects of cavity perturbation, exhibits the well-known phenomenon of entanglement sudden death (ESD). Interestingly, for moderately large interaction values, a complete preclusion of ESD is achieved, irrespective of its value in the initial atomic state. Our results provide a model to sustain entanglement between two atomic qubits, under the adverse effect of cavity induced perturbation, by introducing a non-intrusive inter-cavity photon exchange that can be physically realized through cavity-QED setups in contemporary experiments.

  11. Ab initio structure determination and refinement of a scorpion protein toxin.

    PubMed

    Smith, G D; Blessing, R H; Ealick, S E; Fontecilla-Camps, J C; Hauptman, H A; Housset, D; Langs, D A; Miller, R

    1997-09-01

    The structure of toxin II from the scorpion Androctonus australis Hector has been determined ab initio by direct methods using SnB at 0.96 A resolution. For the purpose of this structure redetermination, undertaken as a test of the minimal function and the SnB program, the identity and sequence of the protein was withheld from part of the research team. A single solution obtained from 1 619 random atom trials was clearly revealed by the bimodal distribution of the final value of the minimal function associated with each individual trial. Five peptide fragments were identified from a conservative analysis of the initial E-map, and following several refinement cycles with X-PLOR, a model was built of the complete structure. At the end of the X-PLOR refinement, the sequence was compared with the published sequence and 57 of the 64 residues had been correctly identified. Two errors in sequence resulted from side chains with similar size while the rest of the errors were a result of severe disorder or high thermal motion in the side chains. Given the amino-acid sequence, it is estimated that the initial E-map could have produced a model containing 99% of all main-chain and 81% of side-chain atoms. The structure refinement was completed with PROFFT, including the contributions of protein H atoms, and converged at a residual of 0.158 for 30 609 data with F >or= 2sigma(F) in the resolution range 8.0-0.964 A. The final model consisted of 518 non-H protein atoms (36 disordered), 407 H atoms, and 129 water molecules (43 with occupancies less than unity). This total of 647 non-H atoms represents the largest light-atom structure solved to date.

  12. NLTE atomic kinetics modeling in ICF target simulations

    NASA Astrophysics Data System (ADS)

    Patel, Mehul V.; Mauche, Christopher W.; Scott, Howard A.; Jones, Ogden S.; Shields, Benjamin T.

    2017-10-01

    Radiation hydrodynamics (HYDRA) simulations using recently developed 1D spherical and 2D cylindrical hohlraum models have enabled a reassessment of the accuracy of energetics modeling across a range of NIF target configurations. Higher-resolution hohlraum calculations generally find that the X-ray drive discrepancies are greater than previously reported. We identify important physics sensitivities in the modeling of the NLTE wall plasma and highlight sensitivity variations between different hohlraum configurations (e.g. hohlraum gas fill). Additionally, 1D capsule only simulations show the importance of applying a similar level of rigor to NLTE capsule ablator modeling. Taken together, these results show how improved target performance predictions can be achieved by performing inline atomic kinetics using more complete models for the underlying atomic structure and transitions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  13. Surface atomic structure of alloyed Mn 5Ge 3(0 0 0 1) by scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Howon; Jung, Goo-Eun; Yoon, Jong Keon; Chung, Kyung Hoon; Kahng, Se-Jong

    Surface atomic structure of Mn 5Ge 3(0 0 0 1) is studied by scanning tunneling microscopy. Hexagonal honeycomb ordering is observed at high energy levels, ∣ E - EF∣ ˜ 1.2 eV, on the flat regions of three-dimensional Mn 5Ge 3 islands. At low energy levels, ∣ E - EF∣ ˜ 0.5 eV, however, atomic images exhibit dot-array and ring-array structures, which show complete and partial contrast inversion, compared to the honeycomb ordering. Experimental observations are discussed on the basis of possible atomic models.

  14. Molecular dynamics study of the melting of a supported 887-atom Pd decahedron.

    PubMed

    Schebarchov, D; Hendy, S C; Polak, W

    2009-04-08

    We employ classical molecular dynamics simulations to investigate the melting behaviour of a decahedral Pd(887) cluster on a single layer of graphite (graphene). The interaction between Pd atoms is modelled with an embedded-atom potential, while the adhesion of Pd atoms to the substrate is approximated with a Lennard-Jones potential. We find that the decahedral structure persists at temperatures close to the melting point, but that just below the melting transition, the cluster accommodates to the substrate by means of complete melting and then recrystallization into an fcc structure. These structural changes are in qualitative agreement with recently proposed models, and they verify the existence of an energy barrier preventing softly deposited clusters from 'wetting' the substrate at temperatures below the melting point.

  15. AtomPy: an open atomic-data curation environment

    NASA Astrophysics Data System (ADS)

    Bautista, Manuel; Mendoza, Claudio; Boswell, Josiah S; Ajoku, Chukwuemeka

    2014-06-01

    We present a cloud-computing environment for atomic data curation, networking among atomic data providers and users, teaching-and-learning, and interfacing with spectral modeling software. The system is based on Google-Drive Sheets, Pandas (Python Data Analysis Library) DataFrames, and IPython Notebooks for open community-driven curation of atomic data for scientific and technological applications. The atomic model for each ionic species is contained in a multi-sheet Google-Drive workbook, where the atomic parameters from all known public sources are progressively stored. Metadata (provenance, community discussion, etc.) accompanying every entry in the database are stored through Notebooks. Education tools on the physics of atomic processes as well as their relevance to plasma and spectral modeling are based on IPython Notebooks that integrate written material, images, videos, and active computer-tool workflows. Data processing workflows and collaborative software developments are encouraged and managed through the GitHub social network. Relevant issues this platform intends to address are: (i) data quality by allowing open access to both data producers and users in order to attain completeness, accuracy, consistency, provenance and currentness; (ii) comparisons of different datasets to facilitate accuracy assessment; (iii) downloading to local data structures (i.e. Pandas DataFrames) for further manipulation and analysis by prospective users; and (iv) data preservation by avoiding the discard of outdated sets.

  16. Aspherical-atom modeling of coordination compounds by single-crystal X-ray diffraction allows the correct metal atom to be identified.

    PubMed

    Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

    2015-02-02

    Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Outer satellite atmospheres: Their nature and planetary interactions

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Combi, M. R.

    1982-01-01

    Significant progress is reported in early modeling analysis of observed sodium cloud images with our new model which includes the oscillating Io plasma torus ionization sink. Both the general w-D morphology of the region B cloud as well as the large spatial gradient seen between the region A and B clouds are found to be consistent with an isotropic flux of sodium atoms from Io. Model analysis of the spatially extended high velocity directional features provided substantial evidence for a magnetospheric wind driven gas escape mechanism from Io. In our efforts to define the source(s) of hydrogen atoms in the Saturn system, major steps were taken in order to understand the role of Titan. We have completed the comparison of the Voyager UVS data with previous Titan model results, as well as the update of the old model computer code to handle the spatially varying ionization sink for H atoms.

  18. Outer satellite atmospheres: Their nature and planetary interactions

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1981-01-01

    Modeling capabilities and initial model calculations are reported for the peculiar directional features of the Io sodium cloud discovered by Pilcher and the extended atomic oxygen atmosphere of Io discovered by Brown. Model results explaining the directional feature by a localized emission from the satellite are encouraging, but as yet, inconclusive; whereas for the oxygen cloud, an escape rate of 1 to 2 x 10 to the 27th power atoms/sec or higher from Io is suggested. Preliminary modeling efforts were also initiated for the extended hydrogen ring-atmosphere of Saturn detected by the Voyager spacecraft and for possible extended atmospheres of some of the smaller satellites located in the E-ring. Continuing research efforts reported for the Io sodium cloud include further refinement in the modeling of the east-west asymmetry data, the asymmetric line profile shape, and the intersection of the cloud with the Io plasma torus. In addition, the completed pre-Voyager modeling of Titan's hydrogen torus is included and the near completed model development for the extended atmosphere of comets is discussed.

  19. Analytic model of a multi-electron atom

    NASA Astrophysics Data System (ADS)

    Skoromnik, O. D.; Feranchuk, I. D.; Leonau, A. U.; Keitel, C. H.

    2017-12-01

    A fully analytical approximation for the observable characteristics of many-electron atoms is developed via a complete and orthonormal hydrogen-like basis with a single-effective charge parameter for all electrons of a given atom. The basis completeness allows us to employ the secondary-quantized representation for the construction of regular perturbation theory, which includes in a natural way correlation effects, converges fast and enables an effective calculation of the subsequent corrections. The hydrogen-like basis set provides a possibility to perform all summations over intermediate states in closed form, including both the discrete and continuous spectra. This is achieved with the help of the decomposition of the multi-particle Green function in a convolution of single-electronic Coulomb Green functions. We demonstrate that our fully analytical zeroth-order approximation describes the whole spectrum of the system, provides accuracy, which is independent of the number of electrons and is important for applications where the Thomas-Fermi model is still utilized. In addition already in second-order perturbation theory our results become comparable with those via a multi-configuration Hartree-Fock approach.

  20. Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms

    PubMed Central

    Wagoner, Jason A.; Baker, Nathan A.

    2006-01-01

    Continuum solvation models provide appealing alternatives to explicit solvent methods because of their ability to reproduce solvation effects while alleviating the need for expensive sampling. Our previous work has demonstrated that Poisson-Boltzmann methods are capable of faithfully reproducing polar explicit solvent forces for dilute protein systems; however, the popular solvent-accessible surface area model was shown to be incapable of accurately describing nonpolar solvation forces at atomic-length scales. Therefore, alternate continuum methods are needed to reproduce nonpolar interactions at the atomic scale. In the present work, we address this issue by supplementing the solvent-accessible surface area model with additional volume and dispersion integral terms suggested by scaled particle models and Weeks–Chandler–Andersen theory, respectively. This more complete nonpolar implicit solvent model shows very good agreement with explicit solvent results and suggests that, although often overlooked, the inclusion of appropriate dispersion and volume terms are essential for an accurate implicit solvent description of atomic-scale nonpolar forces. PMID:16709675

  1. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri

    2015-10-01

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modelling methodology. See DOI: 10.1039/c5nr04678e

  2. Atomtronics: Realizing the behavior of electronic components in ultracold atomic systems

    NASA Astrophysics Data System (ADS)

    Pepino, Ron

    2007-06-01

    Atomtronics focuses on creating an analogy of electronic devices and circuits with ultracold atoms. Such an analogy can come from the highly tunable band structure of ultracold neutral atoms trapped in optical lattices. Solely by tuning the parameters of the optical lattice, we demonstrate that conditions can be created that cause atoms in lattices to exhibit the same behavior as electrons moving through solid state media. We present our model and show how the atomtronic diode, field effect transistor, and bipolar junction transistor can all be realized. Our analogs of these fundamental components exhibit precisely-controlled atomic signal amplification, trimming, and switching (on/off) characteristics. In addition, the evolution of dynamics of the superfluid atomic currents within these systems is completely reversible. This implies a possible use of atomtronic systems in the development of quantum computational devices.

  3. Efecto de la difusión y la velocidad en la ionización del átomo de Carbono

    NASA Astrophysics Data System (ADS)

    Rovira, M. G.; Fontenla, J. M.

    The equations of statistical equilibrium for all ionization states of the atom are solved. The effects of diffusion and center of mass velocity are included. In order to estimate the modifications of the ionization curves, they were applied to the Carbon atom. To solve these equations, solar prominences' models obtained in a previous paper were adopted. They were extended to reach a temperature of 1.5 × 106 K and the complete model of the prominence was calculated. Ionization curves for different values of velocity, diffusion and medium models were obtained. The different models represent structures with different densities. Considerable modifications due to these effects are found.

  4. Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy.

    PubMed

    Klocke, Michael; Wolf, Dietrich E

    2016-01-01

    A molecular dynamics model is presented, which adds harmonic potentials to the atomic interactions to mimic the elastic properties of an AFM cantilever. It gives new insight into the correlation between the experimentally monitored frequency shift and cantilever damping due to the interaction between tip atoms and scanned surface. Applying the model to ionic crystals with rock salt structure two damping mechanisms are investigated, which occur separately or simultaneously depending on the tip position. These mechanisms are adhesion hysteresis on the one hand and lateral excitations of the cantilever on the other. We find that the short range Lennard-Jones part of the atomic interaction alone is sufficient for changing the predominant mechanism. When the long range ionic interaction is switched off, the two damping mechanisms occur with a completely different pattern, which is explained by the energy landscape for the apex atom of the tip. In this case the adhesion hysteresis is always associated with a distinct lateral displacement of the tip. It is shown how this may lead to a systematic shift between the periodic patterns obtained from the frequency and from the damping signal, respectively.

  5. Modeling the Oxygen K Absorption in the Interstellar Medium: An XMM-Newton View of Sco X-1

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Ramirez, J. M.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Mendoza, C.; Palmeri, P.; Quinet, P.

    2011-01-01

    We investigate the absorption structure of the oxygen in the interstellar medium by analyzing XMM-Newton observations of the low mass X-ray binary Sco X-1. We use simple models based on the O I atomic cross section from different sources to fit the data and evaluate the impact of the atomic data in the interpretation of astrophysical observations. We show that relatively small differences in the atomic calculations can yield spurious results. We also show that the most complete and accurate set of atomic cross sections successfully reproduce the observed data in the 21 - 24.5 Angstrom wavelength region of the spectrum. Our fits indicate that the absorption is mainly due to neutral gas with an ionization parameter of Epsilon = 10(exp -4) erg/sq cm, and an oxygen column density of N(sub O) approx. = 8-10 x 10(exp 17)/sq cm. Our models are able to reproduce both the K edge and the K(alpha) absorption line from O I, which are the two main features in this region. We find no conclusive evidence for absorption by other than atomic oxygen.

  6. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  7. Toward the Development of a Fundamentally Based Chemical Model for Cyclopentanone: High-Pressure-Limit Rate Constants for H Atom Abstraction and Fuel Radical Decomposition

    DOE PAGES

    Zhou, Chong-Wen; Simmie, John M.; Pitz, William J.; ...

    2016-08-25

    Theoretical aspects of the development of a chemical kinetic model for the pyrolysis and combustion of a cyclic ketone, cyclopentanone, are considered. We present calculated thermodynamic and kinetic data for the first time for the principal species including 2- and 3-oxo-cyclopentyl radicals, which are in reasonable agreement with the literature. Furthermore, these radicals can be formed via H atom abstraction reactions by H and Ö atoms and OH, HO 2, and CH 3 radicals, the rate constants of which have been calculated. Abstraction from the β-hydrogen atom is the dominant process when OH is involved, but the reverse holds truemore » for HO 2 radicals. We also determined the subsequent β-scission of the radicals formed, and it is shown that recent tunable VUV photoionization mass spectrometry experiments can be interpreted in this light. The bulk of the calculations used the composite model chemistry G4, which was benchmarked in the simplest case with a coupled cluster treatment, CCSD(T), in the complete basis set limit.« less

  8. Ignition and combustion characteristics of metallized propellants

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, Stephen R.

    1991-01-01

    Over the past six months, experimental investigations were continued and theoretical work on the secondary atomization process was begun. Final shakedown of the sizing/velocity measuring system was completed and the aluminum combustion detection system was modified and tested. Atomizer operation was improved to allow steady state operation over long periods of time for several slurries. To validate the theoretical modeling, work involving carbon slurry atomization and combustion was begun and qualitative observations were made. Simultaneous measurements of aluminum slurry droplet size distributions and detection of burning aluminum particles were performed at several axial locations above the burner. The principle theoretical effort was the application of a rigid shell formation model to aluminum slurries and an investigation of the effects of various parameters on the shell formation process. This shell formation model was extended to include the process leading up to droplet disruption, and previously developed analytical models were applied to yield theoretical aluminum agglomerate ignition and combustion times. The several theoretical times were compared with the experimental results.

  9. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents laboratory procedures, classroom materials/activities, and demonstrations, including: vapor pressure of liquid mixtures and Raoult's law; preparation/analysis of transition metal complexes of ethylammonium chloride; atomic structure display using a ZX81 (includes complete program listing); "pop-up" models of molecules and ions;…

  10. Atom Resonance Lines for Modeling Atmosphere: Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima (Technical Monitor); Kirby, K.; Babb, J.; Yoshino, K.

    2005-01-01

    We report on progress made in a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Accurate knowledge of the line profiles of Na and K as a function of temperature and pressure will allow such lines to serve as valuable diagnostics of the atmospheres of brown dwarfs and extra-solar giant planets. A new experimental apparatus has been designed, built and tested over the past year, and we are poised to begin collecting data on the first system of interest, the potassium resonance lines perturbed by collisions with helium. On the theoretical front, calculations of line-broadening due to sodium collisions with helium are nearly complete, using accurate molecular potential energy curves and transition moments just recently computed for this system. In addition we have completed calculations of the three relevant potential energy curves and associated transition moments for K - He, using the MOLPRO quantum chemistry codes. Currently, calculations of the potential surfaces describing K-H2 are in progress.

  11. Atomic adsorption on pristine graphene along the Periodic Table of Elements - From PBE to non-local functionals

    NASA Astrophysics Data System (ADS)

    Pašti, Igor A.; Jovanović, Aleksandar; Dobrota, Ana S.; Mentus, Slavko V.; Johansson, Börje; Skorodumova, Natalia V.

    2018-04-01

    The understanding of atomic adsorption on graphene is of high importance for many advanced technologies. Here we present a complete database of the atomic adsorption energies for the elements of the Periodic Table up to the atomic number 86 (excluding lanthanides) on pristine graphene. The energies have been calculated using the projector augmented wave (PAW) method with PBE, long-range dispersion interaction corrected PBE (PBE+D2, PBE+D3) as well as non-local vdW-DF2 approach. The inclusion of dispersion interactions leads to an exothermic adsorption for all the investigated elements. Dispersion interactions are found to be of particular importance for the adsorption of low atomic weight earth alkaline metals, coinage and s-metals (11th and 12th groups), high atomic weight p-elements and noble gases. We discuss the observed adsorption trends along the groups and rows of the Periodic Table as well some computational aspects of modelling atomic adsorption on graphene.

  12. The Atmospheric Tomography Mission (ATom): Comparing the Chemical Climatology of Reactive Species and Air Parcels from Measurements and Global Models

    NASA Astrophysics Data System (ADS)

    Prather, M. J.; Flynn, C.; Wennberg, P. O.; Kim, M. J.; Ryerson, T. B.; Hanisco, T. F.; Diskin, G. S.; Daube, B. C.; Commane, R.; McKain, K.; Apel, E. C.; Blake, N. J.; Blake, D. R.; Elkins, J. W.; Hall, S.; Steenrod, S.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Murray, L. T.; Mao, J.; Shindell, D. T.; Wofsy, S. C.

    2017-12-01

    The NASA Atmospheric Tomography Mission (ATom) is building a photochemical climatology of the remote troposphere based on objective sampling and profiling transects over the Pacific and Atlantic Oceans. These statistics provide direct tests of chemistry-climate models. The choice of species focuses on those controlling primary reactivity (a.k.a. oxidative state) of the troposphere, specifically chemical tendencies of O3 and CH4. These key species include, inter alia, O3, CH4, CO, C2H6, other alkanes, alkenes, aromatics, NOx, HNO3, HO2NO2, PAN, other organic nitrates, H2O, HCHO, H2O2, CH3OOH. Three of the four ATom deployments are now complete, and data from the first two (ATom-1 & -2) have been released as of this talk (see espoarchive.nasa.gov/archive/browse/atom). The statistical distributions of key species are presented as 1D and 2D probability densities (PDs) and we focus here on the tropical and mid-latitude regions of the Pacific during ATom-1 (Aug) and -2 (Feb). PDs are computed from ATom observations and 6 global chemistry models over the tropospheric depth (0-12 km) and longitudinal extent of the observations. All data are weighted to achieve equal mass-weighting by latitude regimes to account for spatial sampling biases. The models are used to calculate the reactivity in each ATom air parcel. Reweighting parcels with loss of CH4 or production of O3, for example, allows us to identify which air parcels are most influential, including assessment of the importance of fine pollution layers in the most remote troposphere. Another photochemical climatology developed from ATom, and used to test models, includes the effect of clouds on photolysis rates. The PDs and reactivity-weighted PDs reveal important seasonal differences and similarities between the two campaigns and also show which species may be most important in controlling reactivities. They clearly identify some very specific failings in the modeled climatologies and help us evaluate the chemical importance of fine-scale laminae with distinct chemical composition that are beyond model simulations.

  13. Evaluation of a locally homogeneous flow model of spray combustion

    NASA Technical Reports Server (NTRS)

    Mao, C. P.; Szekely, G. A., Jr.; Faeth, G. M.

    1980-01-01

    A model of spray combustion which employs a second-order turbulence model was developed. The assumption of locally homogeneous flow is made, implying infinitely fast transport rates between the phase. Measurements to test the model were completed for a gaseous n-propane flame and an air atomized n-pentane spray flame, burning in stagnant air at atmospheric pressure. Profiles of mean velocity and temperature, as well as velocity fluctuations and Reynolds stress, were measured in the flames. The predictions for the gas flame were in excellent agreement with the measurements. The predictions for the spray were qualitatively correct, but effects of finite rate interphase transport were evident, resulting in a overstimation of the rate development of the flow. Predictions of spray penetration length at high pressures, including supercritical combustion conditions, were also completed for comparison with earlier measurements. Test conditions involved a pressure atomized n-pentane spray, burning in stagnant air at pressures of 3, 5, and 9 MPa. The comparison between predictions and measurements was fair. This is not a very sensitive test of the model, however, and further high pressure experimental and theoretical results are needed before a satisfactory assessment of the locally homogeneous flow approximation can be made.

  14. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments.

    PubMed

    Prasai, Binay; Wilson, A R; Wiley, B J; Ren, Y; Petkov, Valeri

    2015-11-14

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au(100-x)Pd(x) (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when "tuned up" against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.

  15. AtomDB: Expanding an Accessible and Accurate Atomic Database for X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Smith, Randall

    Since its inception in 2001, the AtomDB has become the standard repository of accurate and accessible atomic data for the X-ray astrophysics community, including laboratory astrophysicists, observers, and modelers. Modern calculations of collisional excitation rates now exist - and are in AtomDB - for all abundant ions in a hot plasma. AtomDB has expanded beyond providing just a collisional model, and now also contains photoionization data from XSTAR as well as a charge exchange model, amongst others. However, building and maintaining an accurate and complete database that can fully exploit the diagnostic potential of high-resolution X-ray spectra requires further work. The Hitomi results, sadly limited as they were, demonstrated the urgent need for the best possible wavelength and rate data, not merely for the strongest lines but for the diagnostic features that may have 1% or less of the flux of the strong lines. In particular, incorporation of weak but powerfully diagnostic satellite lines will be crucial to understanding the spectra expected from upcoming deep observations with Chandra and XMM-Newton, as well as the XARM and Athena satellites. Beyond incorporating this new data, a number of groups, both experimental and theoretical, have begun to produce data with errors and/or sensitivity estimates. We plan to use this to create statistically meaningful spectral errors on collisional plasmas, providing practical uncertainties together with model spectra. We propose to continue to (1) engage the X-ray astrophysics community regarding their issues and needs, notably by a critical comparison with other related databases and tools, (2) enhance AtomDB to incorporate a large number of satellite lines as well as updated wavelengths with error estimates, (3) continue to update the AtomDB with the latest calculations and laboratory measurements, in particular velocity-dependent charge exchange rates, and (4) enhance existing tools, and create new ones as needed to increase the functionality of, and access to, AtomDB.

  16. Equations of state for hydrogen and deuterium.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerley, Gerald Irwin

    2003-12-01

    This report describes the complete revision of a deuterium equation of state (EOS) model published in 1972. It uses the same general approach as the 1972 EOS, i.e., the so-called 'chemical model,' but incorporates a number of theoretical advances that have taken place during the past thirty years. Three phases are included: a molecular solid, an atomic solid, and a fluid phase consisting of both molecular and atomic species. Ionization and the insulator-metal transition are also included. The most important improvements are in the liquid perturbation theory, the treatment of molecular vibrations and rotations, and the ionization equilibrium and mixturemore » models. In addition, new experimental data and theoretical calculations are used to calibrate certain model parameters, notably the zero-Kelvin isotherms for the molecular and atomic solids, and the quantum corrections to the liquid phase. The report gives a general overview of the model, followed by detailed discussions of the most important theoretical issues and extensive comparisons with the many experimental data that have been obtained during the last thirty years. Questions about the validity of the chemical model are also considered. Implications for modeling the 'giant planets' are also discussed.« less

  17. Development of optical diagnostics for performance evaluation of arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Cappelli, Mark A.

    1995-01-01

    Laser and optical emission-based measurements have been developed and implemented for use on low-power hydrogen arcjet thrusters and xenon-propelled electric thrusters. In the case of low power hydrogen arcjets, these laser induce fluorescence measurements constitute the first complete set of data that characterize the velocity and temperature field of such a device. The research performed under the auspices of this NASA grant includes laser-based measurements of atomic hydrogen velocity and translational temperature, ultraviolet absorption measurements of ground state atomic hydrogen, Raman scattering measurements of the electronic ground state of molecular hydrogen, and optical emission based measurements of electronically excited atomic hydrogen, electron number density, and electron temperature. In addition, we have developed a collisional-radiative model of atomic hydrogen for use in conjunction with magnetohydrodynamic models to predict the plasma radiative spectrum, and near-electrode plasma models to better understand current transfer from the electrodes to the plasma. In the final year of the grant, a new program aimed at developing diagnostics for xenon plasma thrusters was initiated, and results on the use of diode lasers for interrogating Hall accelerator plasmas has been presented at recent conferences.

  18. Predicting RNA folding thermodynamics with a reduced chain representation model

    PubMed Central

    CAO, SONG; CHEN, SHI-JIE

    2005-01-01

    Based on the virtual bond representation for the nucleotide backbone, we develop a reduced conformational model for RNA. We use the experimentally measured atomic coordinates to model the helices and use the self-avoiding walks in a diamond lattice to model the loop conformations. The atomic coordinates of the helices and the lattice representation for the loops are matched at the loop–helix junction, where steric viability is accounted for. Unlike the previous simplified lattice-based models, the present virtual bond model can account for the atomic details of realistic three-dimensional RNA structures. Based on the model, we develop a statistical mechanical theory for RNA folding energy landscapes and folding thermodynamics. Tests against experiments show that the theory can give much more improved predictions for the native structures, the thermal denaturation curves, and the equilibrium folding/unfolding pathways than the previous models. The application of the model to the P5abc region of Tetrahymena group I ribozyme reveals the misfolded intermediates as well as the native-like intermediates in the equilibrium folding process. Moreover, based on the free energy landscape analysis for each and every loop mutation, the model predicts five lethal mutations that can completely alter the free energy landscape and the folding stability of the molecule. PMID:16251382

  19. The role of electronic mechanisms in surface erosion and glow phenomena

    NASA Technical Reports Server (NTRS)

    Haglund, Richard F., Jr.

    1987-01-01

    Experimental studies of desorption induced by electronic transitions (DIET) are described. Such studies are producing an increasingly complete picture of the dynamical pathways through which incident electronic energy is absorbed and rechanneled to produce macroscopic erosion and glow. These mechanistic studies can determine rate constants for erosion and glow processes in model materials and provide valuable guidance in materials selection and development. Extensive experiments with electron, photon, and heavy particle irradiation of alkali halides and other simple model materials have produced evidence showing that: (1) surface erosion, consisting primarily in the ejection or desorption of ground-state neutral atoms, occurs with large efficiencies for all irradiated species; (2) surface glow, resulting from the radiative decay of desorbed atoms, likewise occurs for all irradiating species; (3) the typical mechanism for ground-state neutral desorption is exciton formation, followed by relaxation to a permanent, mobile electronic defect which is the precursor to bond-breaking in the surface or near-surface bulk of the material; and (4) the mechanisms for excited atom formation may include curve crossing in atomic collisions, interactions with surface defect or impurity states, or defect diffusion.

  20. The behavior of commensurate-incommensurate transitions using the phase field crystal model

    NASA Astrophysics Data System (ADS)

    Zhang, Tinghui; Lu, Yanli; Chen, Zheng

    2018-02-01

    We study the behavior of the commensurate-incommensurate (CI) transitions by using a phase field crystal model. The model is capable of modeling both elastic and plastic deformation and can simulate the evolution of the microstructure of the material at the atomic scale and the diffusive time scale, such as for adsorbed monolayer. Specifically, we study the behavior of the CI transitions as a function of lattice mismatch and the amplitude of substrate pinning potential. The behavior of CI phase transitions is revealed with the increase of the amplitude of pinning potential in some certain lattice mismatches. We find that for the negative lattice mismatch absorbed monolayer undergoes division, reorganization and displacement as increasing the amplitude of substrate pinning potential. In addition, for the positive mismatch absorbed monolayer undergoes a progress of phase transformation after a complete grain is split. Our results accord with simulations for atomic models of absorbed monolayer on a substrate surface.

  1. Spin dynamics and Kondo physics in optical tweezers

    NASA Astrophysics Data System (ADS)

    Lin, Yiheng; Lester, Brian J.; Brown, Mark O.; Kaufman, Adam M.; Long, Junling; Ball, Randall J.; Isaev, Leonid; Wall, Michael L.; Rey, Ana Maria; Regal, Cindy A.

    2016-05-01

    We propose to use optical tweezers as a toolset for direct observation of the interplay between quantum statistics, kinetic energy and interactions, and thus implement minimum instances of the Kondo lattice model in systems with few bosonic rubidium atoms. By taking advantage of strong local exchange interactions, our ability to tune the spin-dependent potential shifts between the two wells and complete control over spin and motional degrees of freedom, we design an adiabatic tunneling scheme that efficiently creates a spin-singlet state in one well starting from two initially separated atoms (one atom per tweezer) in opposite spin state. For three atoms in a double-well, two localized in the lowest vibrational mode of each tweezer and one atom in an excited delocalized state, we plan to use similar techniques and observe resonant transfer of two-atom singlet-triplet states between the wells in the regime when the exchange coupling exceeds the mobile atom hopping. Moreover, we argue that such three-atom double-tweezers could potentially be used for quantum computation by encoding logical qubits in collective spin and motional degrees of freedom. Current address: Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

  2. The Au modified Ge(1 1 0) surface

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Kabanov, N. S.; Bampoulis, P.; Saletsky, A. M.; Zandvliet, H. J. W.; Klavsyuk, A. L.

    2018-05-01

    The pristine Ge(1 1 0) surface is composed of Ge pentagons, which are arranged in relatively large (16 × 2) and c(8 × 10) unit cells. The deposition of sub-monolayer amounts of Au and mild annealing results into de-reconstructed Ge(1 1 0) regions completely free of Ge pentagons and regions composed of nanowires that are aligned along the high symmetry [ 1 1 bar 0 ] direction of the Ge(1 1 0) surface. The de-reconstructed Ge(1 1 0) regions consist of atomic rows that are aligned along the [ 1 1 bar 0 ] direction. A substantial fraction of these substrate rows are straight and resemble the atom rows of the unreconstructed, i.e. bulk terminated, Ge(1 1 0) surface, whereas the other substrate rows have a meandering appearance. These meandering atom rows are comprised of two types of atoms, one type that appears dim, whereas the other type appears bright in filled-state scanning tunneling microscopy images. Using density functional theory calculations, we have tested more than 20 different atomic models for the meandering atom rows. The density functional theory calculations reveal that it is energetically favorable for the deposited Au atoms to exchange position with Ge atoms in the first layer. Based on these findings we conclude that the bright atoms are Ge atoms, whereas the dim atoms are Au atoms.

  3. Charge Exchange: Velocity Dependent X-ray Emission Modeling

    NASA Astrophysics Data System (ADS)

    Cumbee, Renata

    2017-06-01

    Atomic collisions play a fundamental role in astrophysics, plasma physics, and fusion physics. Here, we focus on charge exchange (CX) between hot ions and neutral atoms and molecules. Even though charge exchange calculations can provide vital information, including neutral and ion density distributions, ion temperatures, elemental abundances, and ion charge state distributions in the environments considered, both theoretical calculations and laboratory studies of these processes lack the necessary reliability and/or coverage. In order to better understand the spectra we observe in astrophysical environments in which both hot plasma and neutral gas are present, including comets, the heliosphere, supernova remnants, galaxy clusters, star forming galaxies, the outflows of starburst galaxies, and cooling flows of hot gas in the intracluster medium, a thorough CX X-ray model is needed. Included in this model should be a complete set of X-ray line ratios for relevant ion and neutral interactions for a range of energies.In this work, theoretical charge exchange emission spectra are produced using cross sections calculated with widely applied approaches including the quantum mechanical molecular orbital close coupling (QMOCC), atomic orbital close coupling (AOCC), classical trajectory Monte Carlo (CTMC), and the multichannel Landau-Zener (MCLZ) methods. When possible, theoretical data are benchmarked to experiments. Using a comprehensive, but still far from complete, CX database, new models are performed for a variety of X-ray emitting environments. In an attempt to describe the excess emission in X-rays of the starburst galaxy M82, Ne X CX line ratios are compared to line ratios observed in the region. A more complete XSPEC X-ray emission model is produced for H-like and He-like C-Al ions colliding with H and He for a range of energies; 200 to 5000 eV/u. This model is applied to the northeast rim of the Cygnus Loop supernova remnant in an attempt to determine the contribution of CX within that region.This work was partially supported by NASA grants NNX09AC46G and NNG09WF24I and accomplished with the help of many collaborators including Phillip C. Stancil, David Lyons, Patrick Mullen, and Robin L. Shelton.

  4. Entanglement dynamics in a Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Menezes, G.

    2018-04-01

    We consider the entanglement dynamics between two-level atoms in a rotating black hole background. In our model the two-atom system is envisaged as an open system coupled with a massless scalar field prepared in one of the physical vacuum states of interest. We employ the quantum master equation in the Born-Markov approximation in order to describe the time evolution of the atomic subsystem. We investigate two different states of motion for the atoms, namely static atoms and also stationary atoms with zero angular momentum. The purpose of this work is to expound the impact on the creation of entanglement coming from the combined action of the different physical processes underlying the Hawking effect and the Unruh-Starobinskii effect. We demonstrate that, in the scenario of rotating black holes, the degree of quantum entanglement is significantly modified due to the phenomenon of superradiance in comparison with the analogous cases in a Schwarzschild spacetime. In the perspective of a zero angular momentum observer (ZAMO), one is allowed to probe entanglement dynamics inside the ergosphere, since static observers cannot exist within such a region. On the other hand, the presence of superradiant modes could be a source for violation of complete positivity. This is verified when the quantum field is prepared in the Frolov-Thorne vacuum state. In this exceptional situation, we raise the possibility that the loss of complete positivity is due to the breakdown of the Markovian approximation, which means that any arbitrary physically admissible initial state of the two atoms would not be capable to hold, with time evolution, its interpretation as a physical state inasmuch as negative probabilities are generated by the dynamical map.

  5. Atomic Decay Data for Modeling K Lines of Iron Peak and Light Odd-Z Elements*

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Quinet, P.; Mendoza, C.; Bautista, M. A.; Garcia, J.; Witthoeft, M. C.; Kallman, T. R.

    2012-01-01

    Complete data sets of level energies, transition wavelengths, A-values, radiative and Auger widths and fluorescence yields for K-vacancy levels of the F, Na, P, Cl, K, Sc, Ti, V, Cr, Mn, Co, Cu and Zn isonuclear sequences have been computed by a Hartree-Fock method that includes relativistic corrections as implemented in Cowan's atomic structure computer suite. The atomic parameters for more than 3 million fine-structure K lines have been determined. Ions with electron number N greater than 9 are treated for the first time, and detailed comparisons with available measurements and theoretical data for ions with N less than or equal to 9 are carried out in order to estimate reliable accuracy ratings.

  6. On the Convenience of Using the Complete Linearization Method in Modelling the BLR of AGN

    NASA Astrophysics Data System (ADS)

    Patriarchi, P.; Perinotto, M.

    The Complete Linearization Method (Mihalas, 1978) consists in the determination of the radiation field (at a set of frequency points), atomic level populations, temperature, electron density etc., by resolving the system of radiative transfer, thermal equilibrium, statistical equilibrium equations simultaneously and self-consistently. Since the system is not linear, it must be solved by iteration after linearization, using a perturbative method, starting from an initial guess solution. Of course the Complete Linearization Method is more time consuming than the previous one. But how great can this disadvantage be in the age of supercomputers? It is possible to approximately evaluate the CPU time needed to run a model by computing the number of multiplications necessary to solve the system.

  7. Single Pd Atoms on θ-Al 2O 3 (010) Surface do not Catalyze NO Oxidation

    DOE PAGES

    Narula, Chaitanya K.; Allard, Lawrence F.; Moses-DeBusk, Melanie; ...

    2017-04-03

    New convenient wet chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms. The majority of single supported atoms have been synthesized on active supports which participate in oxidation reactions. The single supported atoms on inert substrates (e.g. alumina) are limited to Pt adatoms and Pd cations, and are generally active toward CO oxidation. In this manuscript, we show that single Pd atoms on -alumina show high CO oxidation activity; however, they exhibit no detectable NO oxidation under our experimental conditions. This led us to employ first principles modeling to explore multiplemore » Langmuir-Hinshelwood-type pathways to explain high CO oxidation activity but lack of NO oxidation activity. For completeness, we have also examined Eley-Riedel pathways. We find that a pathway that involves carbonate or nitrate as an intermediate can explain the experimental results of CO and NO oxidation on single alumina supported Pd cations.« less

  8. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Technical Reports Server (NTRS)

    Kurucz, Robert L.

    1999-01-01

    A web site has been set up to make the calculations accessible; (i.e., cfakus.harvard.edu) This data can also be accessed by FTP. It has all of the atomic and diatomic molecular data, tables of distribution function opacities, grids of model atmospheres, colors, fluxes, etc, programs that are ready for distribution, and most of recent papers developed during this grant. Atlases and computed spectra will be added as they are completed. New atomic and molecular calculations will be added as they are completed. The atomic programs that had been running on a Cray at the San Diego Supercomputer Center can now run on the Vaxes and Alpha. The work started with Ni and Co because there were new laboratory analyses that included isotopic and hyperfine splitting. Those calculations are described in the appended abstract for the 6th Atomic Spectroscopy and oscillator Strengths meeting in Victoria last summer. A surprising finding is that quadrupole transitions have been grossly in error because mixing with higher levels has not been included. All levels up through n=9 for Fe I and II, the spectra for which the most information is available, are now included. After Fe I and Fe II, all other spectra are "easy". ATLAS12, the opacity sampling program for computing models with arbitrary abundances, has been put on the web server. A new distribution function opacity program for workstations that replaces the one used on the Cray at the San Diego Supercomputer Center has been written. Each set of abundances would take 100 Cray hours costing $100,000.

  9. Atomic clusters and atomic surfaces in icosahedral quasicrystals.

    PubMed

    Quiquandon, Marianne; Portier, Richard; Gratias, Denis

    2014-05-01

    This paper presents the basic tools commonly used to describe the atomic structures of quasicrystals with a specific focus on the icosahedral phases. After a brief recall of the main properties of quasiperiodic objects, two simple physical rules are discussed that lead one to eventually obtain a surprisingly small number of atomic structures as ideal quasiperiodic models for real quasicrystals. This is due to the fact that the atomic surfaces (ASs) used to describe all known icosahedral phases are located on high-symmetry special points in six-dimensional space. The first rule is maximizing the density using simple polyhedral ASs that leads to two possible sets of ASs according to the value of the six-dimensional lattice parameter A between 0.63 and 0.79 nm. The second rule is maximizing the number of complete orbits of high symmetry to construct as large as possible atomic clusters similar to those observed in complex intermetallic structures and approximant phases. The practical use of these two rules together is demonstrated on two typical examples of icosahedral phases, i-AlMnSi and i-CdRE (RE = Gd, Ho, Tm).

  10. CREATION OF THE MODEL ADDITIONAL PROTOCOL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houck, F.; Rosenthal, M.; Wulf, N.

    In 1991, the international nuclear nonproliferation community was dismayed to discover that the implementation of safeguards by the International Atomic Energy Agency (IAEA) under its NPT INFCIRC/153 safeguards agreement with Iraq had failed to detect Iraq's nuclear weapon program. It was now clear that ensuring that states were fulfilling their obligations under the NPT would require not just detecting diversion but also the ability to detect undeclared materials and activities. To achieve this, the IAEA initiated what would turn out to be a five-year effort to reappraise the NPT safeguards system. The effort engaged the IAEA and its Member Statesmore » and led to agreement in 1997 on a new safeguards agreement, the Model Protocol Additional to the Agreement(s) between States and the International Atomic Energy Agency for the Application of Safeguards. The Model Protocol makes explicit that one IAEA goal is to provide assurance of the absence of undeclared nuclear material and activities. The Model Protocol requires an expanded declaration that identifies a State's nuclear potential, empowers the IAEA to raise questions about the correctness and completeness of the State's declaration, and, if needed, allows IAEA access to locations. The information required and the locations available for access are much broader than those provided for under INFCIRC/153. The negotiation was completed in quite a short time because it started with a relatively complete draft of an agreement prepared by the IAEA Secretariat. This paper describes how the Model Protocol was constructed and reviews key decisions that were made both during the five-year period and in the actual negotiation.« less

  11. Rapid model building of beta-sheets in electron-density maps.

    PubMed

    Terwilliger, Thomas C

    2010-03-01

    A method for rapidly building beta-sheets into electron-density maps is presented. beta-Strands are identified as tubes of high density adjacent to and nearly parallel to other tubes of density. The alignment and direction of each strand are identified from the pattern of high density corresponding to carbonyl and C(beta) atoms along the strand averaged over all repeats present in the strand. The beta-strands obtained are then assembled into a single atomic model of the beta-sheet regions. The method was tested on a set of 42 experimental electron-density maps at resolutions ranging from 1.5 to 3.8 A. The beta-sheet regions were nearly completely built in all but two cases, the exceptions being one structure at 2.5 A resolution in which a third of the residues in beta-sheets were built and a structure at 3.8 A in which under 10% were built. The overall average r.m.s.d. of main-chain atoms in the residues built using this method compared with refined models of the structures was 1.5 A.

  12. Collective Lamb Shift of a Nanoscale Atomic Vapor Layer within a Sapphire Cavity

    NASA Astrophysics Data System (ADS)

    Peyrot, T.; Sortais, Y. R. P.; Browaeys, A.; Sargsyan, A.; Sarkisyan, D.; Keaveney, J.; Hughes, I. G.; Adams, C. S.

    2018-06-01

    We measure the near-resonant transmission of light through a dense medium of potassium vapor confined in a cell with nanometer thickness in order to investigate the origin and validity of the collective Lamb shift. A complete model including the multiple reflections in the nanocell reproduces accurately the observed line shape. It allows the extraction of a density-dependent shift and width of the bulk atomic medium resonance, deconvolved from the cavity effect. We observe an additional, unexpected dependence of the shift with the thickness of the medium. This extra dependence demands further experimental and theoretical investigations.

  13. Mathematical model for Dengue with three states of infection

    NASA Astrophysics Data System (ADS)

    Hincapie, Doracelly; Ospina, Juan

    2012-06-01

    A mathematical model for dengue with three states of infection is proposed and analyzed. The model consists in a system of differential equations. The three states of infection are respectively asymptomatic, partially asymptomatic and fully asymptomatic. The model is analyzed using computer algebra software, specifically Maple, and the corresponding basic reproductive number and the epidemic threshold are computed. The resulting basic reproductive number is an algebraic synthesis of all epidemic parameters and it makes clear the possible control measures. The microscopic structure of the epidemic parameters is established using the quantum theory of the interactions between the atoms and radiation. In such approximation, the human individual is represented by an atom and the mosquitoes are represented by radiation. The force of infection from the mosquitoes to the humans is considered as the transition probability from the fundamental state of atom to excited states. The combination of computer algebra software and quantum theory provides a very complete formula for the basic reproductive number and the possible control measures tending to stop the propagation of the disease. It is claimed that such result may be important in military medicine and the proposed method can be applied to other vector-borne diseases.

  14. Efficient minimization of multipole electrostatic potentials in torsion space

    PubMed Central

    Bodmer, Nicholas K.

    2018-01-01

    The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate degrees of freedom. Nevertheless, a number of macromolecular modeling programs use a reduced set of conformational variables limited to rotatable bonds. Efficient algorithms for minimizing the energies of macromolecular systems with torsional degrees of freedom have been developed with the assumption that all atom-atom interaction potentials are isotropic. We describe novel modifications to address the anisotropy of higher order multipole terms while retaining the efficiency of these approaches. In addition, we present a treatment for obtaining derivatives of atom-centered tensors with respect to torsional degrees of freedom. We apply these results to enable minimization of the Amoeba multipole electrostatics potential in a system with torsional degrees of freedom, and validate the correctness of the gradients by comparison to finite difference approximations. In the interest of enabling a complete model of electrostatics with implicit treatment of solvent-mediated effects, we also derive expressions for the derivative of solvent accessible surface area with respect to torsional degrees of freedom. PMID:29641557

  15. Two-dimensional nanowires on homoepitaxial interfaces: Atomic-scale mechanism of breakdown and disintegration

    NASA Astrophysics Data System (ADS)

    Michailov, Michail; Ranguelov, Bogdan

    2018-03-01

    We present a model for hole-mediated spontaneous breakdown of ahomoepitaxial two-dimensional (2D) flat nanowire based exclusively on random, thermally-activated motion of atoms. The model suggests a consecutive three-step mechanism driving the rupture and complete disintegration of the nanowire on a crystalline surface. The breakdown scenario includes: (i) local narrowing of a part of the stripe to a monatomic chain, (ii) formation of a recoverable single vacancy or a 2D vacancy cluster that causes temporary nanowire rupture, (iii) formation of a non-recoverable 2D hole leading to permanent nanowire breakdown. These successive events in the temporal evolution of the nanowire morphology bring the nanowire stripe into an irreversible unstable state, leading to a dramatic change in its peculiar physical properties and conductivity. The atomistic simulations also reveal a strong increase of the nanowire lifetime with an enlargement of its width and open up a way for a fine atomic-scale control of the nanowire lifetime and structural, morphological and thermodynamic stability.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chong-Wen; Simmie, John M.; Pitz, William J.

    Theoretical aspects of the development of a chemical kinetic model for the pyrolysis and combustion of a cyclic ketone, cyclopentanone, are considered. We present calculated thermodynamic and kinetic data for the first time for the principal species including 2- and 3-oxo-cyclopentyl radicals, which are in reasonable agreement with the literature. Furthermore, these radicals can be formed via H atom abstraction reactions by H and Ö atoms and OH, HO 2, and CH 3 radicals, the rate constants of which have been calculated. Abstraction from the β-hydrogen atom is the dominant process when OH is involved, but the reverse holds truemore » for HO 2 radicals. We also determined the subsequent β-scission of the radicals formed, and it is shown that recent tunable VUV photoionization mass spectrometry experiments can be interpreted in this light. The bulk of the calculations used the composite model chemistry G4, which was benchmarked in the simplest case with a coupled cluster treatment, CCSD(T), in the complete basis set limit.« less

  17. Further along the Road Less Traveled: AMBER ff15ipq, an Original Protein Force Field Built on a Self-Consistent Physical Model

    PubMed Central

    2016-01-01

    We present the AMBER ff15ipq force field for proteins, the second-generation force field developed using the Implicitly Polarized Q (IPolQ) scheme for deriving implicitly polarized atomic charges in the presence of explicit solvent. The ff15ipq force field is a complete rederivation including more than 300 unique atomic charges, 900 unique torsion terms, 60 new angle parameters, and new atomic radii for polar hydrogens. The atomic charges were derived in the context of the SPC/Eb water model, which yields more-accurate rotational diffusion of proteins and enables direct calculation of nuclear magnetic resonance (NMR) relaxation parameters from molecular dynamics simulations. The atomic radii improve the accuracy of modeling salt bridge interactions relative to contemporary fixed-charge force fields, rectifying a limitation of ff14ipq that resulted from its use of pair-specific Lennard-Jones radii. In addition, ff15ipq reproduces penta-alanine J-coupling constants exceptionally well, gives reasonable agreement with NMR relaxation rates, and maintains the expected conformational propensities of structured proteins/peptides, as well as disordered peptides—all on the microsecond (μs) time scale, which is a critical regime for drug design applications. These encouraging results demonstrate the power and robustness of our automated methods for deriving new force fields. All parameters described here and the mdgx program used to fit them are included in the AmberTools16 distribution. PMID:27399642

  18. Measurements and kinetic modeling of atomic species in fuel-oxidizer mixtures excited by a repetitive nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Winters, C.; Eckert, Z.; Yin, Z.; Frederickson, K.; Adamovich, I. V.

    2018-01-01

    This work presents the results of number density measurements of metastable Ar atoms and ground state H atoms in diluted mixtures of H2 and O2 with Ar, as well as ground state O atoms in diluted H2-O2-Ar, CH4-O2-Ar, C3H8-O2-Ar, and C2H4-O2-Ar mixtures excited by a repetitive nanosecond pulse discharge. The measurements have been made in a nanosecond pulse, double dielectric barrier discharge plasma sustained in a flow reactor between two plane electrodes encapsulated within dielectric material, at an initial temperature of 500 K and pressures ranging from 300 Torr to 700 Torr. Metastable Ar atom number density distribution in the afterglow is measured by tunable diode laser absorption spectroscopy, and used to characterize plasma uniformity. Temperature rise in the reacting flow is measured by Rayleigh scattering. H atom and O atom number densities are measured by two-photon absorption laser induced fluorescence. The results are compared with kinetic model predictions, showing good agreement, with the exception of extremely lean mixtures. O atoms and H atoms in the plasma are produced mainly during quenching of electronically excited Ar atoms generated by electron impact. In H2-Ar and O2-Ar mixtures, the atoms decay by three-body recombination. In H2-O2-Ar, CH4-O2-Ar, and C3H8-O2-Ar mixtures, O atoms decay in a reaction with OH, generated during H atom reaction with HO2, with the latter produced by three-body H atom recombination with O2. The net process of O atom decay is O  +  H  →  OH, such that the decay rate is controlled by the amount of H atoms produced in the discharge. In extra lean mixtures of propane and ethylene with O2-Ar the model underpredicts the O atom decay rate. At these conditions, when fuel is completely oxidized by the end of the discharge burst, the net process of O atom decay, O  +  O  →  O2, becomes nearly independent of H atom number density. Lack of agreement with the data at these conditions is likely due to diffusion of H atoms from the partially oxidized regions near the side walls of the reactor into the plasma. Although significant fractions of hydrogen and hydrocarbon fuels are oxidized by O atoms produced in the plasma, chain branching remains a minor effect at these relatively low temperature conditions.

  19. Determination of the global recombination rate coefficient for the ISX-B Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langley, R.A.; Howe, H.C.

    1983-01-01

    The global recombination rate coefficient for hydrogen has been measured for the ISX-B tokamak vacuum vessel for various surface conditions. The measurements were performed by observing the rate of decrease of gas pressure in the vessel during a glow discharge. The parameters of the glow discharge and the complete experimental method are described. Previously published analytic and numerical models are used for data analysis. The effects of surface contamination on the results are described. For ''unclean'' wall conditions sigmak/sub r/ = 1.8 x 10/sup -28/ cm/sup 4//atom.s at 296 K and increases to sigmak/sub r/ = 4.4 x 10/sup -28/more » cm/sup 4//atoms.s for ''clean'' conditions and remains constant until subsequent exposure to air.« less

  20. The 2017 Release Cloudy

    NASA Astrophysics Data System (ADS)

    Ferland, G. J.; Chatzikos, M.; Guzmán, F.; Lykins, M. L.; van Hoof, P. A. M.; Williams, R. J. R.; Abel, N. P.; Badnell, N. R.; Keenan, F. P.; Porter, R. L.; Stancil, P. C.

    2017-10-01

    We describe the 2017 release of the spectral synthesis code Cloudy, summarizing the many improvements to the scope and accuracy of the physics which have been made since the previous release. Exporting the atomic data into external data files has enabled many new large datasets to be incorporated into the code. The use of the complete datasets is not realistic for most calculations, so we describe the limited subset of data used by default, which predicts significantly more lines than the previous release of Cloudy. This version is nevertheless faster than the previous release, as a result of code optimizations. We give examples of the accuracy limits using small models, and the performance requirements of large complete models. We summarize several advances in the H- and He-like iso-electronic sequences and use our complete collisional-radiative models to establish the densities where the coronal and local thermodynamic equilibrium approximations work.

  1. Measurement of complete and continuous Wigner functions for discrete atomic systems

    NASA Astrophysics Data System (ADS)

    Tian, Yali; Wang, Zhihui; Zhang, Pengfei; Li, Gang; Li, Jie; Zhang, Tiancai

    2018-01-01

    We measure complete and continuous Wigner functions of a two-level cesium atom in both a nearly pure state and highly mixed states. We apply the method [T. Tilma et al., Phys. Rev. Lett. 117, 180401 (2016), 10.1103/PhysRevLett.117.180401] of strictly constructing continuous Wigner functions for qubit or spin systems. We find that the Wigner function of all pure states of a qubit has negative regions and the negativity completely vanishes when the purity of an arbitrary mixed state is less than 2/3 . We experimentally demonstrate these findings using a single cesium atom confined in an optical dipole trap, which undergoes a nearly pure dephasing process. Our method can be applied straightforwardly to multi-atom systems for measuring the Wigner function of their collective spin state.

  2. Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements

    NASA Astrophysics Data System (ADS)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.

    2016-12-01

    A complete kinematics measurement of the two fission fragments was used for the first time to investigate fission dynamics at small and large deformations. Fissioning systems with high excitation energies, compact shapes, and low angular momenta were produced in inverse kinematics by using spallation reactions of lead projectiles. A new generation experimental setup allowed for the first full and unambiguous identification in mass and atomic number of both fission fragments. This measurement permitted us to accurately determine fission cross sections, the charge distribution, and the neutron excess of the fission fragments as a function of the atomic number of the fissioning system. These data are compared with different model calculations to extract information on the value of the dissipation parameter at small and large deformations. The present results do not show any sizable dependence of the nuclear dissipation parameter on temperature or deformation.

  3. A statistical model of a metallic inclusion in semiconducting media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shikin, V. B., E-mail: shikin@issp.ac.ru

    The properties of an isolated multicharged atom embedded into a semiconducting medium are discussed. The analysis generalizes the results of the known Thomas–Fermi theory for a multicharged (Z ≫ 1) atom in vacuum when it is immersed into an electron–hole gas of finite temperature. The Thomas–Fermi–Debye (TFD) atom problem is directly related to the properties of donors in low-doped semiconductors and is alternative in its conclusions to the ideal scenario of dissociation of donors. In the existing ideal statistics, an individual donor under infinitely low doping is completely ionized (a charged center does not hold its neutralizing counter-ions). A Thomas–Fermi–Debyemore » atom (briefly, a TFD donor) remains a neutral formation that holds its screening “coat” even for infinitely low doping level, i.e., in the region of n{sub d}λ{sub 0}{sup 3} ≪ 1, where n{sub d} is the concentration of the doping impurity and λ{sub 0} is the Debye length with the parameters of intrinsic semiconductor. Various observed consequences in the behavior of a TFD donor are discussed that allow one to judge the reality of the implications of the TFD donor model.« less

  4. Computation of forces arising from the polarizable continuum model within the domain-decomposition paradigm

    NASA Astrophysics Data System (ADS)

    Gatto, Paolo; Lipparini, Filippo; Stamm, Benjamin

    2017-12-01

    The domain-decomposition (dd) paradigm, originally introduced for the conductor-like screening model, has been recently extended to the dielectric Polarizable Continuum Model (PCM), resulting in the ddPCM method. We present here a complete derivation of the analytical derivatives of the ddPCM energy with respect to the positions of the solute's atoms and discuss their efficient implementation. As it is the case for the energy, we observe a quadratic scaling, which is discussed and demonstrated with numerical tests.

  5. Sputter deposition of MgxAlyOz thin films in a dual-magnetron device: a multi-species Monte Carlo model

    NASA Astrophysics Data System (ADS)

    Yusupov, M.; Saraiva, M.; Depla, D.; Bogaerts, A.

    2012-07-01

    A multi-species Monte Carlo (MC) model, combined with an analytical surface model, has been developed in order to investigate the general plasma processes occurring during the sputter deposition of complex oxide films in a dual-magnetron sputter deposition system. The important plasma species, such as electrons, Ar+ ions, fast Ar atoms and sputtered metal atoms (i.e. Mg and Al atoms) are described with the so-called multi-species MC model, whereas the deposition of MgxAlyOz films is treated by an analytical surface model. Target-substrate distances for both magnetrons in the dual-magnetron setup are varied for the purpose of growing stoichiometric complex oxide thin films. The metal atoms are sputtered from pure metallic targets, whereas the oxygen flux is only directed toward the substrate and is high enough to obtain fully oxidized thin films but low enough to avoid target poisoning. The calculations correspond to typical experimental conditions applied to grow these complex oxide films. In this paper, some calculation results are shown, such as the densities of various plasma species, their fluxes toward the targets and substrate, the deposition rates, as well as the film stoichiometry. Moreover, some results of the combined model are compared with experimental observations. Note that this is the first complete model, which can be applied for large and complicated magnetron reactor geometries, such as dual-magnetron configurations. With this model, we are able to describe all important plasma species as well as the deposition process. It can also be used to predict film stoichiometries of complex oxide films on the substrate.

  6. The role of atomic level steric effects and attractive forces in protein folding.

    PubMed

    Lammert, Heiko; Wolynes, Peter G; Onuchic, José N

    2012-02-01

    Protein folding into tertiary structures is controlled by an interplay of attractive contact interactions and steric effects. We investigate the balance between these contributions using structure-based models using an all-atom representation of the structure combined with a coarse-grained contact potential. Tertiary contact interactions between atoms are collected into a single broad attractive well between the C(β) atoms between each residue pair in a native contact. Through the width of these contact potentials we control their tolerance for deviations from the ideal structure and the spatial range of attractive interactions. In the compact native state dominant packing constraints limit the effects of a coarse-grained contact potential. During folding, however, the broad attractive potentials allow an early collapse that starts before the native local structure is completely adopted. As a consequence the folding transition is broadened and the free energy barrier is decreased. Eventually two-state folding behavior is lost completely for systems with very broad attractive potentials. The stabilization of native-like residue interactions in non-perfect geometries early in the folding process frequently leads to structural traps. Global mirror images are a notable example. These traps are penalized by the details of the repulsive interactions only after further collapse. Successful folding to the native state requires simultaneous guidance from both attractive and repulsive interactions. Copyright © 2011 Wiley Periodicals, Inc.

  7. Outer satellite atmospheres: Their nature and planetary interactions. [atmospheric models for Amalthea, Ganymede, Callisto, and Titan are presented

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.

    1978-01-01

    Results show that Amalthea is likely to form a tightly-bound partial toroidal-shaped hydrogen cloud about its planet, while Ganymede, Callisto and Titan may have rather large, complete and nearly symmetric toroidal-shaped clouds. The toroidal cloud for Amalthea compares favorably with spacecraft data of Pioneer 10 for a satellite escape flux of order 10 to the 11th power atoms/sq cm/sec. Model results for Ganymede, Callisto and Titan suggest that these extended hydrogen atmospheres are likely to be detected by the Voyager spacecrafts and that Titan's cloud might also be detected by the Pioneer 11 spacecraft. Ions created because of atoms lost through ionization processes from these four extended hydrogen atmospheres and from the sodium cloud of Io are discussed.

  8. A new paradigm for atomically detailed simulations of kinetics in biophysical systems.

    PubMed

    Elber, Ron

    2017-01-01

    The kinetics of biochemical and biophysical events determined the course of life processes and attracted considerable interest and research. For example, modeling of biological networks and cellular responses relies on the availability of information on rate coefficients. Atomically detailed simulations hold the promise of supplementing experimental data to obtain a more complete kinetic picture. However, simulations at biological time scales are challenging. Typical computer resources are insufficient to provide the ensemble of trajectories at the correct length that is required for straightforward calculations of time scales. In the last years, new technologies emerged that make atomically detailed simulations of rate coefficients possible. Instead of computing complete trajectories from reactants to products, these approaches launch a large number of short trajectories at different positions. Since the trajectories are short, they are computed trivially in parallel on modern computer architecture. The starting and termination positions of the short trajectories are chosen, following statistical mechanics theory, to enhance efficiency. These trajectories are analyzed. The analysis produces accurate estimates of time scales as long as hours. The theory of Milestoning that exploits the use of short trajectories is discussed, and several applications are described.

  9. Phonon interference control of atomic-scale metamirrors, meta-absorbers, and heat transfer through crystal interfaces

    NASA Astrophysics Data System (ADS)

    Kosevich, Yu. A.; Potyomina, L. G.; Darinskii, A. N.; Strelnikov, I. A.

    2018-03-01

    The paper theoretically studies the possibility of using the effects of phonon interference between paths through different interatomic bonds for the control of phonon heat transfer through internal crystal interfaces and for the design of phonon metamirrors and meta-absorbers. These metamirrors and meta-absorbers are considered to be defect nanolayers of atomic-scale thicknesses embedded in a crystal. Several analytically solvable three-dimensional lattice-dynamics models of the phonon metamirrors and meta-absorbers at the internal crystal planes are described. It is shown that due to destructive interference in the two or more phonon paths, the internal crystal planes, fully or partially filled with weakly bound or heavy-isotope defect atoms, can completely reflect or completely absorb phonons at the transmission antiresonances, whose wavelengths are larger than the effective thickness of the metamirror or meta-absorber. Due to cooperative superradiant effect, the spectral widths of the two-path interference antiresonances for the plane waves are given by the square of partial filling fraction in the defect crystal plane. Our analysis reveals that the presence of two or more phonon paths plays the dominant role in the emergence of the transmission antiresonances in phonon scattering at the defect crystal planes and in reduction of the thermal interface conductance in comparison with the Fano-resonance concept. We study analytically phonon transmission through internal crystal plane in a model cubic lattice of Si-like atoms, partially filled with Ge-like defect atoms. Such a plane can serve as interference phonon metamirror with the transmission antiresonances in the vicinities of eigenmode frequencies of Ge-like defect atoms in the terahertz frequency range. We predict the extraordinary phonon transmission induced by the two-path constructive interference of the lattice waves in resonance with the vibrations of rare host atoms, periodically distributed in the crystal plane almost completely filled with heavy-isotope defects. We show that the phonon-interference-induced transparency can be produced by the defect nanolayer with the non-nearest-neighbor interactions, filled with two types of isotopes with relatively small difference in masses or binding force constants. In this case, relatively broad transmission antiresonance is accompanied by the narrow transmission peak close to the antiresonance frequency. We describe the softening of the flexural surface acoustic wave, localized at the embedded defect nanolayer, caused by negative surface stress in the layer. The surface wave softening results in spatially periodic static bending deformation of the embedded nanolayer with the definite wave number. The latter effect is estimated for graphene monolayer embedded in a strained matrix of polyethylene. We analyze the effect of nonlinearity in the dynamics of defect atoms on the one- and two-path phonon interference and show that the interference transmission resonances and antiresonances are shifted in frequencies but not completely suppressed by rather strong anharmonicity of interatomic bonds. The reduction of the Kapitza thermal interface conductance caused by the destructive phonon interference in a defect monolayer is described. We show that the additional relatively weak non-nearest-neighbor interactions through the defect crystal plane filled with heavy isotopes substantially reduces the interface thermal conductance, and this effect is stronger in the three-dimensional system than in the quasi-one-dimensional systems studied previously.

  10. Study of inelastic e-Cd and e-Zn collisions

    NASA Astrophysics Data System (ADS)

    Piwinski, Mariusz; Klosowski, Lukasz; Dziczek, Darek; Chwirot, Stanislaw

    2016-09-01

    Electron-photon coincidence experiments are well known for providing more detailed information about electron-atom collision than any other technique. The Electron Impact Coherence Parameters (EICP) values obtained in such studies deliver the most complete characterization of the inelastic collision and allow for a verification of proposed theoretical models. We present the results of Stokes and EICP parameters characterising electronic excitation of the lowest singlet P-state of cadmium and zinc atoms for various collision energies. The experiments were performed using electron-photon coincidence technique in the coherence analysis version. The obtained data are presented and compared with existing CCC and RDWA theoretical predictions.

  11. Molecular dynamics of bacteriorhodopsin.

    PubMed

    Lupo, J A; Pachter, R

    1997-02-01

    A model of bacteriorhodopsin (bR), with a retinal chromophore attached, has been derived for a molecular dynamics simulation. A method for determining atomic coordinates of several ill-defined strands was developed using a structure prediction algorithm based on a sequential Kalman filter technique. The completed structure was minimized using the GROMOS force field. The structure was then heated to 293 K and run for 500 ps at constant temperature. A comparison with the energy-minimized structure showed a slow increase in the all-atom RMS deviation over the first 200 ps, leveling off to approximately 2.4 A relative to the starting structure. The final structure yielded a backbone-atom RMS deviation from the crystallographic structure of 2.8 A. The residue neighbors of the chromophore atoms were followed as a function of time. The set of persistent near-residue neighbors supports the theory that differences in pKa values control access to the Schiff base proton, rather than formation of a counterion complex.

  12. Monte Carlo study of magnetization reversal in the model of a hard/soft magnetic bilayer

    NASA Astrophysics Data System (ADS)

    Taaev, T. A.; Khizriev, K. Sh.; Murtazaev, A. K.

    2017-06-01

    Magnetization reversal in the model of a hard/soft magnetic bilayer under the action of an external magnetic field has been investigated by the Monte Carlo method. Calculations have been performed for three systems: (i) the model without a soft-magnetic layer (hard-magnetic layer), (ii) the model with a soft-magnetic layer of thickness 25 atomic layers (predominantly exchange-coupled system), and (iii) with 50 (weak exchange coupling) atomic layers. The effect of a soft-magnetic phase on the magnetization reversal of the magnetic bilayer and on the formation of a 1D spin spring in the magnetic bilayer has been demonstrated. An inf lection that has been detected on the arch of the hysteresis loop only for the system with weak exchange coupling is completely determined by the behavior of the soft layer in the external magnetic field. The critical fields of magnetization reversal decrease with increasing thickness of the soft phase.

  13. Ab initio solution of macromolecular crystal structures without direct methods.

    PubMed

    McCoy, Airlie J; Oeffner, Robert D; Wrobel, Antoni G; Ojala, Juha R M; Tryggvason, Karl; Lohkamp, Bernhard; Read, Randy J

    2017-04-04

    The majority of macromolecular crystal structures are determined using the method of molecular replacement, in which known related structures are rotated and translated to provide an initial atomic model for the new structure. A theoretical understanding of the signal-to-noise ratio in likelihood-based molecular replacement searches has been developed to account for the influence of model quality and completeness, as well as the resolution of the diffraction data. Here we show that, contrary to current belief, molecular replacement need not be restricted to the use of models comprising a substantial fraction of the unknown structure. Instead, likelihood-based methods allow a continuum of applications depending predictably on the quality of the model and the resolution of the data. Unexpectedly, our understanding of the signal-to-noise ratio in molecular replacement leads to the finding that, with data to sufficiently high resolution, fragments as small as single atoms of elements usually found in proteins can yield ab initio solutions of macromolecular structures, including some that elude traditional direct methods.

  14. Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.

    2016-12-01

    Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.

  15. Model of twelve properties of a set of organic solvents with graph-theoretical and/or experimental parameters.

    PubMed

    Pogliani, Lionello

    2010-01-30

    Twelve properties of a highly heterogeneous class of organic solvents have been modeled with a graph-theoretical molecular connectivity modified (MC) method, which allows to encode the core electrons and the hydrogen atoms. The graph-theoretical method uses the concepts of simple, general, and complete graphs, where these last types of graphs are used to encode the core electrons. The hydrogen atoms have been encoded by the aid of a graph-theoretical perturbation parameter, which contributes to the definition of the valence delta, delta(v), a key parameter in molecular connectivity studies. The model of the twelve properties done with a stepwise search algorithm is always satisfactory, and it allows to check the influence of the hydrogen content of the solvent molecules on the choice of the type of descriptor. A similar argument holds for the influence of the halogen atoms on the type of core electron representation. In some cases the molar mass, and in a minor way, special "ad hoc" parameters have been used to improve the model. A very good model of the surface tension could be obtained by the aid of five experimental parameters. A mixed model method based on experimental parameters plus molecular connectivity indices achieved, instead, to consistently improve the model quality of five properties. To underline is the importance of the boiling point temperatures as descriptors in these last two model methodologies. Copyright 2009 Wiley Periodicals, Inc.

  16. A complete active space valence bond method with nonorthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Hirao, Kimihiko; Nakano, Haruyuki; Nakayama, Kenichi

    1997-12-01

    A complete active space self-consistent field (SCF) wave function is transformed into a valence bond type representation built from nonorthogonal orbitals, each strongly localized on a single atom. Nonorthogonal complete active space SCF orbitals are constructed by Ruedenberg's projected localization procedure so that they have maximal overlaps with the corresponding minimum basis set of atomic orbitals of the free-atoms. The valence bond structures which are composed of such nonorthogonal quasiatomic orbitals constitute the wave function closest to the concept of the oldest and most simple valence bond method. The method is applied to benzene, butadiene, hydrogen, and methane molecules and compared to the previously proposed complete active space valence bond approach with orthogonal orbitals. The results demonstrate the validity of the method as a powerful tool for describing the electronic structure of various molecules.

  17. The Advanced Trauma Operative Management course--a two student to one faculty model.

    PubMed

    Ali, Jameel; Sorvari, Anne; Henry, Sharon; Kortbeek, John; Tremblay, Lorraine

    2013-09-01

    The internationally recognized Advanced Trauma Operative Management (ATOM) course uses a 1:1 student-to-faculty teaching model. This study examines a two student to one faculty ATOM teaching model. We randomly assigned 16 residents to four experienced ATOM faculty members. Half started with the one-student model and the other half with the two-student model and then switched using the same faculty. Students and faculty completed forms on the educational value of the two models (1 = very poor; 2 = poor; 3 = average; 4 = good; and 5 = excellent) and identified educational preferences and recommendations. We assigned educational values for the 13 procedures as follows: All faculty rated the one-student model as excellent; six members rated the two-student model as excellent, and seven as good. Students rated 50%-75% as excellent and 12%-44% as good for the two-student model, and 56%-81% as excellent and 12%-44% as good for the one-student model. Given resource constraints, all faculty and 88% of students preferred the two-student model. With no resource constraints, 75% of students and 50% of faculty chose the two-student model. All faculty and students rated both models "acceptable." Overall, 81% of students and 50% of faculty rated the two-student model better. All faculty members recommended that the models be optional; 94% of students recommended that they be either optional (50%) or a two-student model (44%). Performing or assisting on each procedure twice was considered an advantage of the two-student model. The two-student teaching model was acceptable and generally preferred in this study. With appropriately trained faculty and students, the two-student model is feasible and should result in less animal usage and possibly wider promulgation. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Atomic Fuel, Understanding the Atom Series. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is part of the "Understanding the Atom" series. Complete sets of the series are available free to teachers, schools, and public librarians who can make them available for reference or use by groups. Among the topics discussed are: What Atomic Fuel Is; The Odyssey of Uranium; Production of Uranium; Fabrication of Reactor…

  19. Classification Order of Surface-Confined Intermixing at Epitaxial Interface

    NASA Astrophysics Data System (ADS)

    Michailov, M.

    The self-organization phenomena at epitaxial interface hold special attention in contemporary material science. Being relevant to the fundamental physical problem of competing, long-range and short-range atomic interactions in systems with reduced dimensionality, these phenomena have found exacting academic interest. They are also of great technological importance for their ability to bring spontaneous formation of regular nanoscale surface patterns and superlattices with exotic properties. The basic phenomenon involved in this process is surface diffusion. That is the motivation behind the present study which deals with important details of diffusion scenarios that control the fine atomic structure of epitaxial interface. Consisting surface imperfections (terraces, steps, kinks, and vacancies), the interface offers variety of barriers for surface diffusion. Therefore, the adatoms and clusters need a certain critical energy to overcome the corresponding diffusion barriers. In the most general case the critical energies can be attained by variation of the system temperature. Hence, their values define temperature limits of system energy gaps associated with different diffusion scenarios. This systematization imply classification order of surface alloying: blocked, incomplete, and complete. On that background, two diffusion problems, related to the atomic-scale surface morphology, will be discussed. The first problem deals with diffusion of atomic clusters on atomically smooth interface. On flat domains, far from terraces and steps, we analyzed the impact of size, shape, and cluster/substrate lattice misfit on the diffusion behavior of atomic clusters (islands). We found that the lattice constant of small clusters depends on the number N of building atoms at 1 < N ≤ 10. In heteroepitaxy, this effect of variable lattice constant originates from the enhanced charge transfer and the strong influence of the surface potential on cluster atomic arrangement. At constant temperature, the variation of the lattice constant leads to variable misfit which affects the island migration. The cluster/substrate commensurability influences the oscillation behavior of the diffusion coefficient caused by variation in the cluster shape. We discuss the results in a physical model that implies cluster diffusion with size-dependent cluster/substrate misfit. The second problem is devoted to diffusion phenomena in the vicinity of atomic terraces on stepped or vicinal surfaces. Here, we develop a computational model that refines important details of diffusion behavior of adatoms accounting for the energy barriers at specific atomic sites (smooth domains, terraces, and steps) located on the crystal surface. The dynamic competition between energy gained by mixing and substrate strain energy results in diffusion scenario where adatoms form alloyed islands and alloyed stripes in the vicinity of terrace edges. Being in agreement with recent experimental findings, the observed effect of stripe and island alloy formation opens up a way regular surface patterns to be configured at different atomic levels on the crystal surface. The complete surface alloying of the entire interface layer is also briefly discussed with critical analysis and classification of experimental findings and simulation data.

  20. Atomic Data Needs for X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy; White, Nicholas E. (Technical Monitor)

    1999-01-01

    This publication contains written versions of most of the invited talks presented at the workshop on Atomic Data Needs for X-ray Astronomy which was held at NASA's Goddard Space Flight Center on December 16-1 7 1999. The idea of hosting such a workshop emerged from an imminent need to update and complete current atomic datasets in anticipation of a new era of high quality X-ray spectra starting with the launching of Chandra and XMM-Newton observatories. At first, our vision of the workshop was of a short and limited attendance event, given the specialization of the topic. But it, was soon realized, from the response to the first workshop announcement, that the topic was of much interest, to researchers working in X-ray spectra (physicists and astronomers). As a result, the workshop grew to approximately 120 participants from several countries. The kind of atomic data that interests us are those parameters needed for analysis and modeling of spectra shortward of about about 100 A and relevant to ionic species of astronomical interest. The physical mechanisms of interest in the formation of spectra include photoionization. collisional ionization, recombination (radiative and dielectronic). collisional excitation (by electrons and protons). and radiative deexcitation. Unique to X-ray spectroscopy are the ionization and excitation processes from inner-closed shells. in addition to the challenges in interpret,ing the medium resolution (epsilon/delta epsilon is about 0.05 - 0.1) data obtained by current X-ray astronomy experiments. Line wavelengths are of interest too, particularly owing to the high resolution spectra from the new experiments. The workshop was divided into five major areas: Observational Spectroscopy, Theoretical Calculations of Atomic Data, Laboratory Measurements of Atomic Parameters. Spectra Modeling, and Atomic Databases. One comforting finding from the work shop is that the enthusiasm felt by X-ray astronomers about the new observational missions seems to be shared by theoretical and experimental physicists. Talks were presented about several exciting new projects and experimental and theoretical techniques devoted to X-ray spectroscopy. Simultaneously, several new tools for spectral analysis and modeling have recently been developed, together with improved atomic databases. These proceeding are expected to be of interests to producers and users of atomic data. Moreover. the contributions presented here have been written in a way that can be used by a general audience of scientists and graduate students in X-ray astronomy, modelling, and in computational and experimental atomic physics.

  1. Multiscale modeling and simulation for nano/micro materials

    NASA Astrophysics Data System (ADS)

    Wang, Xianqiao

    Continuum description and atomic description used to be two distinct methods in the community of modeling and simulations. Science and technology have become so advanced that our understanding of many physical phenomena involves the concepts of both. So our goal now is to build a bridge to make atoms and continua communicate with each other. Micromorphic theory (MMT) envisions a material body as a continuous collection of deformable particles; each possesses finite size and inner structure. It is considered as the most successful top-down formulation of a two-level continuum model to bridge the gap between the micro level and macro level. Therefore MMT can be expected to unveil many new classes of physical phenomena that fall beyond classical field theories. In this work, the constitutive equations for generalized Micromorphic thermoviscoelastic solid and generalized Micromorphic fluid have been formulated. To enlarge the domain of applicability of MMT, from nano, micro to macro, we take a bottom-up approach to re-derive the generalized atomistic field theory (AFT) comprehensively and completely and establish the relationship between AFT and MMT. Finite element (FE) method is then implemented to pursue the numerical solutions of the governing equations derived in AFT. When the finest mesh is used, i.e., the size of FE mesh is equal to the lattice constant of the material, the computational model becomes identical to molecular dynamics simulation. When a coarse mesh is used, the resulting model is a coarse-grained model, the majority of the degrees of freedom are eliminated and the computational cost is largely reduced. When the coarse mesh and finest mesh exist concurrently, i.e., the finest mesh is used in the critical regions and the coarser mesh is used in the far field, it leads naturally to a concurrent atomistic/continuum model. Atomic scale, coarse-grained scale and concurrent atomistic/continuum simulations have demonstrated the potential capability of AFT to simulate most grand challenging problems in nano/micro physics, and shown that AFT has the advantages of both atomic model and MMT. Therefore, AFT has accomplished the mission to bridge the gap between continuum mechanics and atomic physics.

  2. Measurements of Excitation Functions and Line Polarizations for Electron Impact Excitation of the n = 2, 3 States of Atomic Hydrogen in the Energy Range 11 - 2000 eV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Kanik, I.; Slevin, J.; Franklin, B.; Shemansky, D.

    1993-01-01

    The electron-atomic hydrogen scattering system is an important testing ground for theoretical models and has received a great deal of attention from experimentalists and theoreticians alike over the years. A complete description of the excitation process requires a knowledge of many different parameters, and experimental measurements of these parameters have been performed in various laboratories around the world. As far as total cross section data are concerned it has been noted that the discrepancy between the data of Long et al. and Williams for n = 2 excitations needs to be resolved in the interests of any further refinement of theory. We report new measurements of total cross sections and atomic line polarizations for both n=2 and n=3 excitations at energies from threshold to 2000 eV...

  3. Atomic Data in X-Ray Astrophysics

    NASA Technical Reports Server (NTRS)

    Brickhouse, N. S.

    2000-01-01

    With the launches of the Chandra X-ray Observatory (CXO) and the X-ray Multimirror Mission (XMM) and the upcoming launch of the Japanese mission ASTRO-E, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for the atomic data under collisional equilibrium conditions. Analysis of the Chandra X-ray Observatory data, and data from other telescopes taken simultaneously, for these stars is ongoing as part of the Emission Line Project. Goals of the Emission Line Project are: (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. The Astrophysical Plasma Emission Database will be described in some detail, as it is introducing standardization and flexibility into X-ray spectral modeling. Spectral models of X-ray astrophysical plasmas can be generally classified as dominated by either collisional ionization or by X-ray photoionization. While the atomic data needs for spectral models under these two types of ionization are significantly different, there axe overlapping data needs, as I will describe. Early results from the Emission Line Project benchmarks are providing an invaluable starting place, but continuing work to improve the accuracy and completeness of atomic data is needed. Additionally, we consider the possibility that some sources will require that both collisional ionization and photoionization be taken into account, or that time-dependent ionization be considered. Thus plasma spectral models of general use need to be computed over a wide range of physical conditions.

  4. Atomic Mass and Nuclear Binding Energy for I-131 (Iodine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope I-131 (Iodine, atomic number Z = 53, mass number A = 131).

  5. Atomic Mass and Nuclear Binding Energy for F-22 (Fluorine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-22 (Fluorine, atomic number Z = 9, mass number A = 22).

  6. Nanoarchitectonics for Controlling the Number of Dopant Atoms in Solid Electrolyte Nanodots.

    PubMed

    Nayak, Alpana; Unayama, Satomi; Tai, Seishiro; Tsuruoka, Tohru; Waser, Rainer; Aono, Masakazu; Valov, Ilia; Hasegawa, Tsuyoshi

    2018-02-01

    Controlling movements of electrons and holes is the key task in developing today's highly sophisticated information society. As transistors reach their physical limits, the semiconductor industry is seeking the next alternative to sustain its economy and to unfold a new era of human civilization. In this context, a completely new information token, i.e., ions instead of electrons, is promising. The current trend in solid-state nanoionics for applications in energy storage, sensing, and brain-type information processing, requires the ability to control the properties of matter at the ultimate atomic scale. Here, a conceptually novel nanoarchitectonic strategy is proposed for controlling the number of dopant atoms in a solid electrolyte to obtain discrete electrical properties. Using α-Ag 2+ δ S nanodots with a finite number of nonstoichiometry excess dopants as a model system, a theory matched with experiments is presented that reveals the role of physical parameters, namely, the separation between electrochemical energy levels and the cohesive energy, underlying atomic-scale manipulation of dopants in nanodots. This strategy can be applied to different nanoscale materials as their properties strongly depend on the number of doping atoms/ions, and has the potential to create a new paradigm based on controlled single atom/ion transfer. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. "Bohr's Atomic Model."

    ERIC Educational Resources Information Center

    Willden, Jeff

    2001-01-01

    "Bohr's Atomic Model" is a small interactive multimedia program that introduces the viewer to a simplified model of the atom. This interactive simulation lets students build an atom using an atomic construction set. The underlying design methodology for "Bohr's Atomic Model" is model-centered instruction, which means the central model of the…

  8. Footprints of electron correlation in strong-field double ionization of Kr close to the sequential-ionization regime

    NASA Astrophysics Data System (ADS)

    Li, Xiaokai; Wang, Chuncheng; Yuan, Zongqiang; Ye, Difa; Ma, Pan; Hu, Wenhui; Luo, Sizuo; Fu, Libin; Ding, Dajun

    2017-09-01

    By combining kinematically complete measurements and a semiclassical Monte Carlo simulation we study the correlated-electron dynamics in the strong-field double ionization of Kr. Interestingly, we find that, as we step into the sequential-ionization regime, there are still signatures of correlation in the two-electron joint momentum spectrum and, more intriguingly, the scaling law of the high-energy tail is completely different from early predictions on the low-Z atom (He). These experimental observations are well reproduced by our generalized semiclassical model adapting a Green-Sellin-Zachor potential. It is revealed that the competition between the screening effect of inner-shell electrons and the Coulomb focusing of nuclei leads to a non-inverse-square central force, which twists the returned electron trajectory at the vicinity of the parent core and thus significantly increases the probability of hard recollisions between two electrons. Our results might have promising applications ranging from accurately retrieving atomic structures to simulating celestial phenomena in the laboratory.

  9. Improved hopcalite procedure for the determination of mercury vapor in air by flameless atomic absorption.

    PubMed

    Rathje, A O; Marcero, D H

    1976-05-01

    Mercury vapor is efficiently trapped from air by passage through a small glass tube filled with hopcalite. The hopcalite and adsorbed mercury are dissolved in a mixture of nitric and hydrochloric acids. Solution is rapid and complete, with no loss of mercury. Analysis is completed by flameless atomic absorption.

  10. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    DOE PAGES

    Colgan, James; Fontes, Christopher; Zhang, Honglin; ...

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore » submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. As a result, we also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less

  11. Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping

    NASA Technical Reports Server (NTRS)

    Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.

    2012-01-01

    A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.

  12. Evaluation of Oxygen Interactions with Materials 3: Mission and induced environments

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Leger, Lubert J.; Rickman, Steven L.; Hakes, Charles L.; Bui, David T.; Hunton, Donald; Cross, Jon B.

    1995-01-01

    The Evaluation of Oxygen Interactions with Materials 3 (EOIM-3) flight experiment was developed to obtain benchmark atomic oxygen/material reactivity data. The experiment was conducted during Space Shuttle mission 46 (STS-46), which flew July 31 to August 7, 1992. Quantitative interpretation of the materials reactivity measurements requires a complete and accurate definition of the space environment exposure, including the thermal history of the payload, the solar ultraviolet exposure, the atomic oxygen fluence, and any spacecraft outgassing contamination effects. The thermal history of the payload was measured using twelve thermocouple sensors placed behind selected samples and on the EOIM-3 payload structure. The solar ultraviolet exposure history of the EOIM-3 payload was determined by analysis of the as-flown orbit and vehicle attitude combined with daily average solar ultraviolet and vacuum ultraviolet (UV/VUV) fluxes. The atomic oxygen fluence was assessed in three different ways. First, the O-atom fluence was calculated using a program that incorporates the MSIS-86 atmospheric model, the as-flown Space Shuttle trajectory, and solar activity parameters. Second, the oxygen atom fluence was estimated directly from Kapton film erosion. Third, ambient oxygen atom measurements were made using the quadrupole mass spectrometer on the EOIM-3 payload. Our best estimate of the oxygen atom fluence as of this writing is 2.3 +/- 0.3 x 10(exp 20) atoms/sq cm. Finally, results of post-flight X-ray photoelectron spectroscopy (XPS) surface analyses of selected samples indicate low levels of contamination on the payload surface.

  13. Atoms in molecules, an axiomatic approach. I. Maximum transferability

    NASA Astrophysics Data System (ADS)

    Ayers, Paul W.

    2000-12-01

    Central to chemistry is the concept of transferability: the idea that atoms and functional groups retain certain characteristic properties in a wide variety of environments. Providing a completely satisfactory mathematical basis for the concept of atoms in molecules, however, has proved difficult. The present article pursues an axiomatic basis for the concept of an atom within a molecule, with particular emphasis devoted to the definition of transferability and the atomic description of Hirshfeld.

  14. Effectiveness of an Asynchronous Online Module on University Students' Understanding of the Bohr Model of the Hydrogen Atom

    NASA Astrophysics Data System (ADS)

    Farina, William J.; Bodzin, Alec M.

    2017-12-01

    Web-based learning is a growing field in education, yet empirical research into the design of high quality Web-based university science instruction is scarce. A one-week asynchronous online module on the Bohr Model of the atom was developed and implemented guided by the knowledge integration framework. The unit design aligned with three identified metaprinciples of science learning: making science accessible, making thinking visible, and promoting autonomy. Students in an introductory chemistry course at a large east coast university completed either an online module or traditional classroom instruction. Data from 99 students were analyzed and results showed significant knowledge growth in both online and traditional formats. For the online learning group, findings revealed positive student perceptions of their learning experiences, highly positive feedback for online science learning, and an interest amongst students to learn chemistry within an online environment.

  15. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: I. Thomas related mechanisms

    NASA Astrophysics Data System (ADS)

    Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.

    2018-04-01

    The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.

  16. Theoretical Modeling and Computer Simulations for the Origins and Evolution of Reproducing Molecular Systems and Complex Systems with Many Interactive Parts

    NASA Technical Reports Server (NTRS)

    Liang, Shoudan

    2000-01-01

    Our research effort has produced nine publications in peer-reviewed journals listed at the end of this report. The work reported here are in the following areas: (1) genetic network modeling; (2) autocatalytic model of pre-biotic evolution; (3) theoretical and computational studies of strongly correlated electron systems; (4) reducing thermal oscillations in atomic force microscope; (5) transcription termination mechanism in prokaryotic cells; and (6) the low glutamine usage in thennophiles obtained by studying completely sequenced genomes. We discuss the main accomplishments of these publications.

  17. Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.

    2006-01-15

    For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zeromore » and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters.« less

  18. Potential surfaces for O atom-polymer reactions

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Jaffe, R. L.

    1987-01-01

    Ab initio quantum chemistry methods are used to study the energetics of interactions of O atoms with organic compounds. Polyethylene (CH2)n has been chosen as the model system to study the interactions of O(3P) and O(1D) atoms with polymers. In particular, H abstraction is investigated and polyethylene is represented by a C3 (propane) oligomeric model. The gradient method, as implemented in the GRADSCF package of programs, is used to determine the geometries and energies of products and reactants. The saddle point, barrier geometry is determined by minimizing the squares of the gradients of the potential with respect to the internal coordinates. To correctly describe the change in bonding during the reaction at least a two configuration MCSCF (multiconfiguration self consistent field) or GVB (generalized valence bond) wave function has to be used. Basis sets include standard Pople and Dunning sets, however, increased with polarization functions and diffuse p functions on both the C and O atoms. The latter is important due to the O(-) character of the wave function at the saddle point and products. Normal modes and vibrational energy levels are given for the reactants, saddle points and products. Finally, quantitative energetics are obtained by implementing a small CAS (complete active space) approach followed by limited configuration interaction (CI) calculations. Comparisons are made with available experimental data.

  19. Atomic Mass and Nuclear Binding Energy for U-287 (Uranium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope U-287 (Uranium, atomic number Z = 92, mass number A = 287).

  20. Atomic Mass and Nuclear Binding Energy for Ac-212 (Actinium)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume B `Nuclei with Z = 55 - 100' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms', and additionally including data for nuclei with Z = 101 - 130. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope Ac-212 (Actinium, atomic number Z = 89, mass number A = 212).

  1. Developing a Complete and Effective ACT-R Architecture

    DTIC Science & Technology

    2008-01-01

    of computational primitives , as contrasted with the predominant “one-off” and “grab-bag” cognitive models in the field. These architectures have...transport/ semaphore protocols connected via a glue script. Both protocols rely on the fact that file rename and file remove operations are atomic...the Trial Log file until just prior to processing the next input request. Thus, to perform synchronous identifications it is necessary to run an

  2. Microscopic modeling of gas-surface scattering. I. A combined molecular dynamics-rate equation approach

    NASA Astrophysics Data System (ADS)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A combination of first principle molecular dynamics (MD) simulations with a rate equation model (MD-RE approach) is presented to study the trapping and the scattering of rare gas atoms from metal surfaces. The temporal evolution of the atom fractions that are either adsorbed or scattered into the continuum is investigated in detail. We demonstrate that for this description one has to consider trapped, quasi-trapped and scattering states, and present an energetic definition of these states. The rate equations contain the transition probabilities between the states. We demonstrate how these rate equations can be derived from kinetic theory. Moreover, we present a rigorous way to determine the transition probabilities from a microscopic analysis of the particle trajectories generated by MD simulations. Once the system reaches quasi-equilibrium, the rates converge to stationary values, and the subsequent thermal adsorption/desorption dynamics is completely described by the rate equations without the need to perform further time-consuming MD simulations. As a proof of concept of our approach, MD simulations for argon atoms interacting with a platinum (111) surface are presented. A detailed deterministic trajectory analysis is performed, and the transition rates are constructed. The dependence of the rates on the incidence conditions and the lattice temperature is analyzed. Based on this example, we analyze the time scale of the gas-surface system to approach the quasi-stationary state. The MD-RE model has great relevance for the plasma-surface modeling as it makes an extension of accurate simulations to long, experimentally relevant time scales possible. Its application to the computation of atomic sticking probabilities is given in the second part (paper II).

  3. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less

  4. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    PubMed Central

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  5. Smallest Nanoelectronic with Atomic Devices with Precise Structures

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige

    2000-01-01

    Since its invention in 1948, the transistor has revolutionized our everyday life - transistor radios and TV's appeared in the early 1960s, personal computers came into widespread use in the mid-1980s, and cellular phones, laptops, and palm-sized organizers dominated the 1990s. The electronics revolution is based upon transistor miniaturization; smaller transistors are faster, and denser circuitry has more functionality. Transistors in current generation chips are 0.25 micron or 250 nanometers in size, and the electronics industry has completed development of 0.18 micron transistors which will enter production within the next few years. Industry researchers are now working to reduce transistor size down to 0.13 micron - a thousandth of the width of a human hair. However, studies indicate that the miniaturization of silicon transistors will soon reach its limit. For further progress in microelectronics, scientists have turned to nanotechnology to advance the science. Rather than continuing to miniaturize transistors to a point where they become unreliable, nanotechnology offers the new approach of building devices on the atomic scale [see sidebar]. One vision for the next generation of miniature electronics is atomic chain electronics, where devices are composed of atoms aligned on top of a substrate surface in a regular pattern. The Atomic Chain Electronics Project (ACEP) - part of the Semiconductor Device Modeling and Nanotechnology group, Integrated Product Team at the NAS Facility has been developing the theory of understanding atomic chain devices, and the author's patent for atomic chain electronics is now pending.

  6. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    DOE PAGES

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-11-21

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moietymore » with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. Finally, we also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.« less

  7. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks.

    PubMed

    Haraldsdóttir, Hulda S; Fleming, Ronan M T

    2016-11-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties.

  8. Influence of the ordering of impurities on the appearance of an energy gap and on the electrical conductance of graphene.

    PubMed

    Repetsky, S P; Vyshyvana, I G; Kruchinin, S P; Bellucci, Stefano

    2018-06-14

    In the one-band model of strong coupling, the influence of substitutional impurity atoms on the energy spectrum and electrical conductance of graphene is studied. It is established that the ordering of substitutional impurity atoms on nodes of the crystal lattice causes the appearance of a gap in the energy spectrum of graphene with width η|δ| centered at the point yδ, where η is the parameter of ordering, δ is the difference of the scattering potentials of impurity atoms and carbon atoms, and y is the impurity concentration. The maximum value of the parameter of ordering is [Formula: see text]. For the complete ordering of impurity atoms, the energy gap width equals [Formula: see text]. If the Fermi level falls in the region of the mentioned gap, then the electrical conductance [Formula: see text] at the ordering of graphene, i.e., the metal-dielectric transition arises. If the Fermi level is located outside the gap, then the electrical conductance increases with the parameter of order η by the relation [Formula: see text]. At the concentration [Formula: see text], as the ordering of impurity atoms η →1, the electrical conductance of graphene [Formula: see text], i.e., the transition of graphene in the state of ideal electrical conductance arises.

  9. Picture this: The value of multiple visual representations for student learning of quantum concepts in general chemistry

    NASA Astrophysics Data System (ADS)

    Allen, Emily Christine

    Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about abstract topics such as atomic and molecular structure. There is further gain if students' difficulties with these representations are targeted through the use additional instruction such as a workbook that requires the students to exercise their visual modeling skills.

  10. Molecular-level removal of proteinaceous contamination from model surfaces and biomedical device materials by air plasma treatment.

    PubMed

    Banerjee, K K; Kumar, S; Bremmell, K E; Griesser, H J

    2010-11-01

    Established methods for cleaning and sterilising biomedical devices may achieve removal of bioburden only at the macroscopic level while leaving behind molecular levels of contamination (mainly proteinaceous). This is of particular concern if the residue might contain prions. We investigated at the molecular level the removal of model and real-life proteinaceous contamination from model and practical surfaces by air plasma (ionised air) treatment. The surface-sensitive technique of X-ray photoelectron spectroscopy (XPS) was used to assess the removal of proteinaceous contamination, with the nitrogen (N1s) photoelectron signal as its marker. Model proteinaceous contamination (bovine serum albumin) adsorbed on to a model surface (silicon wafer) and the residual proteinaceous contamination resulting from incubating surgical stainless steel (a practical biomaterial) in whole human blood exhibited strong N1s signals [16.8 and 18.5 atomic percent (at.%), respectively] after thorough washing. After 5min air plasma treatment, XPS detected no nitrogen on the sample surfaces, indicating complete removal of proteinaceous contamination, down to the estimated XPS detection limit 10ng/cm(2). Applying the same plasma treatment, the 7.7at.% nitrogen observed on a clinically cleaned dental bur was reduced to a level reflective of new, as-received burs. Contact angle measurements and atomic force microscopy also indicated complete molecular-level removal of the proteinaceous contamination upon air plasma treatment. This study demonstrates the effectiveness of air plasma treatment for removing proteinaceous contamination from both model and practical surfaces and offers a method for ensuring that no molecular residual contamination such as prions is transferred upon re-use of surgical and dental instruments. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  11. Physico-chemical study of some areas of fundamental significance to biophysics. Annual report, 1975--1976. [Chemistry Dept. , Louisiana State University, Baton Rouge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGlynn, S.P.

    1976-05-15

    Lists of titles published, symposia attended, laboratory guests, departing personnel, and equipment purchased are presented in the first part of this report. It is to be emphasized that completed work already published is mentioned only by title. Reports are provided for research recently completed or in progress in the following areas: Rydberg spectroscopy, intermediate-coupling model for linear molecules, atomic correlation lines, electronic structure of dicarbonyl compounds, absorption and emission characteristics of highly polar aromatics, valence-bond description of metal--anion interaction, and matrix elements of mono-excited Slater determinants constructed from axial spin-orbitals. (RWR)

  12. Visualisation and orbital-free parametrisation of the large-Z scaling of the kinetic energy density of atoms

    NASA Astrophysics Data System (ADS)

    Cancio, Antonio C.; Redd, Jeremy J.

    2017-03-01

    The scaling of neutral atoms to large Z, combining periodicity with a gradual trend to homogeneity, is a fundamental probe of density functional theory, one that has driven recent advances in understanding both the kinetic and exchange-correlation energies. Although research focus is normally upon the scaling of integrated energies, insights can also be gained from energy densities. We visualise the scaling of the positive-definite kinetic energy density (KED) in closed-shell atoms, in comparison to invariant quantities based upon the gradient and Laplacian of the density. We notice a striking fit of the KED within the core of any atom to a gradient expansion using both the gradient and the Laplacian, appearing as an asymptotic limit around which the KED oscillates. The gradient expansion is qualitatively different from that derived from first principles for a slowly varying electron gas and is correlated with a nonzero Pauli contribution to the KED near the nucleus. We propose and explore orbital-free meta-GGA models for the kinetic energy to describe these features, with some success, but the effects of quantum oscillations in the inner shells of atoms make a complete parametrisation difficult. We discuss implications for improved orbital-free description of molecular properties.

  13. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    NASA Astrophysics Data System (ADS)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  14. Complete suite of geochemical values computed using wireline logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, J.R.; Atkinson, A.

    1996-12-31

    Geochemical values of {open_quotes}black shale{close_quotes} source rocks can be computed from a complete suite of wireline log data. The computed values are: Total Organic Carbon (Wt%). S1, S2, S3, Hydrogen Index, Oxygen Index, Atomic H/C and O/C ratios, Genetic Potential (S1+S2), S2/S3, and Transfomation Ratio (S1/(S1+S2)). The results are most reliable when calibrated to laboratory analyses of samples in the study area. However, in the absence of samples, reasonable estimates can be made using calibration data from analogous depositional and thermal environments and/or professional judgement and experience. The evaluations provide answers to critical geochemical questions relative to: (1) Organic Mattermore » Quantity; T.O.C. (Wt%), S1, and S2. (2) Kerogen Types; I, II, and III, based on T.O.C. vs S2 cross plot and the van Krevelen diagram of Atomic O/C vs Atomic H/C ratios. (3) Thermal Maturation levels; Transfomation Ratio can be converted to Level of Organic Metamorphism (LOM), pyrolysis Tmax (degC), Vitrinite Reflectance (Ro), Time Temperature Index (TTI) and others. Various analog plots and cross plots can be prepared for interpretation. Case history examples are shown and discussed. Lowstand fan deposits on Barbados were studied in outcrop to construct a conceptual reservoir model for prediction of facies assemblages.« less

  15. Complete suite of geochemical values computed using wireline logs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, J.R.; Atkinson, A.

    1996-01-01

    Geochemical values of [open quotes]black shale[close quotes] source rocks can be computed from a complete suite of wireline log data. The computed values are: Total Organic Carbon (Wt%). S1, S2, S3, Hydrogen Index, Oxygen Index, Atomic H/C and O/C ratios, Genetic Potential (S1+S2), S2/S3, and Transfomation Ratio (S1/(S1+S2)). The results are most reliable when calibrated to laboratory analyses of samples in the study area. However, in the absence of samples, reasonable estimates can be made using calibration data from analogous depositional and thermal environments and/or professional judgement and experience. The evaluations provide answers to critical geochemical questions relative to: (1)more » Organic Matter Quantity; T.O.C. (Wt%), S1, and S2. (2) Kerogen Types; I, II, and III, based on T.O.C. vs S2 cross plot and the van Krevelen diagram of Atomic O/C vs Atomic H/C ratios. (3) Thermal Maturation levels; Transfomation Ratio can be converted to Level of Organic Metamorphism (LOM), pyrolysis Tmax (degC), Vitrinite Reflectance (Ro), Time Temperature Index (TTI) and others. Various analog plots and cross plots can be prepared for interpretation. Case history examples are shown and discussed. Lowstand fan deposits on Barbados were studied in outcrop to construct a conceptual reservoir model for prediction of facies assemblages.« less

  16. {μ-2-[(3-Amino-2,2-dimethyl-prop-yl)imino-meth-yl]-6-meth-oxy-phenolato-1:2κ(5)O(1),O(6):N,N',O(1)}{2-[(3-amino-2,2-dimethyl-prop-yl)imino-meth-yl]-6-meth-oxy-phenolato-1κ(3)N,N',O(1)}-μ-azido-1:2κ(2)N:N-azido-2κN-methanol-2κO-dinickel(II).

    PubMed

    Ghaemi, Akbar; Rayati, Saeed; Fayyazi, Kazem; Ng, Seik Weng; Tiekink, Edward R T

    2012-08-01

    Two distinct coordination geometries are found in the binuclear title complex, [Ni(2)(C(13)H(19)N(2)O(2))(2)(N(3))(2)(CH(3)OH)], as one Schiff base ligand is penta-dentate, coordinating via the anti-cipated oxide O, imine N and amine N atoms (as for the second, tridentate, ligand) but the oxide O is bridging and coordination also occurs through the meth-oxy O atom. The Ni(II) atoms are linked by a μ(2)-oxide atom and one end of a μ(2)-azide ligand, forming an Ni(2)ON core. The coordination geometry for the Ni(II) atom coordinated by the tridentate ligand is completed by the meth-oxy O atom derived from the penta-dentate ligand, with the resulting N(3)O(3) donor set defining a fac octa-hedron. The second Ni(II) atom has its cis-octa-hedral N(4)O(2) coordination geometry completed by the imine N and amine N atoms of the penta-dentate Schiff base ligand, a terminally coordinated azide N and a methanol O atom. The arrangement is stabilized by an intra-molecular hydrogen bond between the methanol H and the oxide O atom. Linear supra-molecular chains along the a axis are formed in the crystal packing whereby two amine H atoms from different amine atoms hydrogen bond to the terminal N atom of the monodentate azide ligand.

  17. Precision muon physics

    NASA Astrophysics Data System (ADS)

    Gorringe, T. P.; Hertzog, D. W.

    2015-09-01

    The muon is playing a unique role in sub-atomic physics. Studies of muon decay both determine the overall strength and establish the chiral structure of weak interactions, as well as setting extraordinary limits on charged-lepton-flavor-violating processes. Measurements of the muon's anomalous magnetic moment offer singular sensitivity to the completeness of the standard model and the predictions of many speculative theories. Spectroscopy of muonium and muonic atoms gives unmatched determinations of fundamental quantities including the magnetic moment ratio μμ /μp, lepton mass ratio mμ /me, and proton charge radius rp. Also, muon capture experiments are exploring elusive features of weak interactions involving nucleons and nuclei. We will review the experimental landscape of contemporary high-precision and high-sensitivity experiments with muons. One focus is the novel methods and ingenious techniques that achieve such precision and sensitivity in recent, present, and planned experiments. Another focus is the uncommonly broad and topical range of questions in atomic, nuclear and particle physics that such experiments explore.

  18. Eigenstates and dynamics of Hooke's atom: Exact results and path integral simulations

    NASA Astrophysics Data System (ADS)

    Gholizadehkalkhoran, Hossein; Ruokosenmäki, Ilkka; Rantala, Tapio T.

    2018-05-01

    The system of two interacting electrons in one-dimensional harmonic potential or Hooke's atom is considered, again. On one hand, it appears as a model for quantum dots in a strong confinement regime, and on the other hand, it provides us with a hard test bench for new methods with the "space splitting" arising from the one-dimensional Coulomb potential. Here, we complete the numerous previous studies of the ground state of Hooke's atom by including the excited states and dynamics, not considered earlier. With the perturbation theory, we reach essentially exact eigenstate energies and wave functions for the strong confinement regime as novel results. We also consider external perturbation induced quantum dynamics in a simple separable case. Finally, we test our novel numerical approach based on real-time path integrals (RTPIs) in reproducing the above. The RTPI turns out to be a straightforward approach with exact account of electronic correlations for solving the eigenstates and dynamics without the conventional restrictions of electronic structure methods.

  19. Calculation of the electron structure of vacancies and their compensated states in III-VI semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrabova, M. A., E-mail: Mehrabova@mail.ru; Madatov, R. S.

    2011-08-15

    The Green's functions theory and the bond-orbital model are used as a basis for calculations of the electron structure of local defects-specifically, vacancies and their compensated states in III-VI semiconductors. The energy levels in the band gap are established, and the changes induced in the electron densities in the GaS, GaSe, and InSe semiconductors by anion and cation vacancies and their compensated states are calculated. It is established that, if a vacancy is compensated by an atom of an element from the same subgroup with the same tetrahedral coordination and if the ionic radius of the compensating atom is smallermore » than that of the substituted atom, the local levels formed by the vacancy completely disappear. It is shown that this mechanism of compensation of vacancies provides a means not only for recovering the parameters of the crystal, but for improving the characteristics of the crystal as well.« less

  20. Systematic measurements of opacity dependence on temperature, density, and atomic number at stellar interior conditions

    NASA Astrophysics Data System (ADS)

    Nagayama, Taisuke

    2017-10-01

    Model predictions for iron opacity are notably different from measurements performed at matter conditions similar to the boundary between the solar radiation and convection zones. The calculated iron opacities have narrower spectral lines, weaker quasi-continuum at short wavelength, and deeper opacity windows than the measurements. If correct, these measurements help resolve a decade old problem in solar physics. A key question is therefore: What is responsible for the model-data discrepancy? The answer is complex because the experiments are challenging and opacity theories depend on multiple entangled physical processes such as the influence of completeness and accuracy of atomic states, line broadening, contributions from myriad transitions from excited states, and multi-photon absorption processes. To help determine the cause of this discrepancy, a systematic study of opacity variation with temperature, density, and atomic number is underway. Measurements of chromium, iron, and nickel opacities have been performed at two different temperatures and densities. The collection of measured opacities provides constraints on hypotheses to explain the discrepancy. We will discuss implications of measured opacities, experimental errors, and possible opacity model refinements. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  1. A computer model for liquid jet atomization in rocket thrust chambers

    NASA Astrophysics Data System (ADS)

    Giridharan, M. G.; Lee, J. G.; Krishnan, A.; Yang, H. Q.; Ibrahim, E.; Chuech, S.; Przekwas, A. J.

    1991-12-01

    The process of atomization has been used as an efficient means of burning liquid fuels in rocket engines, gas turbine engines, internal combustion engines, and industrial furnaces. Despite its widespread application, this complex hydrodynamic phenomenon has not been well understood, and predictive models for this process are still in their infancy. The difficulty in simulating the atomization process arises from the relatively large number of parameters that influence it, including the details of the injector geometry, liquid and gas turbulence, and the operating conditions. In this study, numerical models are developed from first principles, to quantify factors influencing atomization. For example, the surface wave dynamics theory is used for modeling the primary atomization and the droplet energy conservation principle is applied for modeling the secondary atomization. The use of empirical correlations has been minimized by shifting the analyses to fundamental levels. During applications of these models, parametric studies are performed to understand and correlate the influence of relevant parameters on the atomization process. The predictions of these models are compared with existing experimental data. The main tasks of this study were the following: development of a primary atomization model; development of a secondary atomization model; development of a model for impinging jets; development of a model for swirling jets; and coupling of the primary atomization model with a CFD code.

  2. Index to the Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    This index was prepared for the set of 51 booklets in the "Understanding the Atom Series" published by the U. S. Atomic Energy Commission for high school students and their teachers. In addition to the index, a complete list of the series is provided in which the booklets are grouped into the categories of physics, chemistry, biology, nuclear…

  3. ProQ3: Improved model quality assessments using Rosetta energy terms

    PubMed Central

    Uziela, Karolis; Shu, Nanjiang; Wallner, Björn; Elofsson, Arne

    2016-01-01

    Quality assessment of protein models using no other information than the structure of the model itself has been shown to be useful for structure prediction. Here, we introduce two novel methods, ProQRosFA and ProQRosCen, inspired by the state-of-art method ProQ2, but using a completely different description of a protein model. ProQ2 uses contacts and other features calculated from a model, while the new predictors are based on Rosetta energies: ProQRosFA uses the full-atom energy function that takes into account all atoms, while ProQRosCen uses the coarse-grained centroid energy function. The two new predictors also include residue conservation and terms corresponding to the agreement of a model with predicted secondary structure and surface area, as in ProQ2. We show that the performance of these predictors is on par with ProQ2 and significantly better than all other model quality assessment programs. Furthermore, we show that combining the input features from all three predictors, the resulting predictor ProQ3 performs better than any of the individual methods. ProQ3, ProQRosFA and ProQRosCen are freely available both as a webserver and stand-alone programs at http://proq3.bioinfo.se/. PMID:27698390

  4. Cumulative atomic multipole moments complement any atomic charge model to obtain more accurate electrostatic properties

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Shibata, M.; Ornstein, R. L.; Rein, R.

    1992-01-01

    The quality of several atomic charge models based on different definitions has been analyzed using cumulative atomic multipole moments (CAMM). This formalism can generate higher atomic moments starting from any atomic charges, while preserving the corresponding molecular moments. The atomic charge contribution to the higher molecular moments, as well as to the electrostatic potentials, has been examined for CO and HCN molecules at several different levels of theory. The results clearly show that the electrostatic potential obtained from CAMM expansion is convergent up to R-5 term for all atomic charge models used. This illustrates that higher atomic moments can be used to supplement any atomic charge model to obtain more accurate description of electrostatic properties.

  5. Building proteins from C alpha coordinates using the dihedral probability grid Monte Carlo method.

    PubMed Central

    Mathiowetz, A. M.; Goddard, W. A.

    1995-01-01

    Dihedral probability grid Monte Carlo (DPG-MC) is a general-purpose method of conformational sampling that can be applied to many problems in peptide and protein modeling. Here we present the DPG-MC method and apply it to predicting complete protein structures from C alpha coordinates. This is useful in such endeavors as homology modeling, protein structure prediction from lattice simulations, or fitting protein structures to X-ray crystallographic data. It also serves as an example of how DPG-MC can be applied to systems with geometric constraints. The conformational propensities for individual residues are used to guide conformational searches as the protein is built from the amino-terminus to the carboxyl-terminus. Results for a number of proteins show that both the backbone and side chain can be accurately modeled using DPG-MC. Backbone atoms are generally predicted with RMS errors of about 0.5 A (compared to X-ray crystal structure coordinates) and all atoms are predicted to an RMS error of 1.7 A or better. PMID:7549885

  6. Seismic anisotropy from crust to core: a mineral and rock physics perspective

    NASA Astrophysics Data System (ADS)

    Mainprice, David

    2014-05-01

    Since the early work of Hess and co-works for mantle in the 1960s and Poupinet et al. in 1980s for the inner core, we know that seismic anisotropy is a global phenomenon. Progress in seismology has led to a much more complete image of the Earth's interior in terms of heterogeneity and anisotropy. The interpretation of the seismic anisotropy requires a multidisciplinary effort to unravel the geodynamic scenario recorded in today's seismological snapshot. Progress in mineral physics on the experimental measurement of elastic properties at extreme conditions are now completed by ab initio atomic modelling for the full range of temperatures and pressures of the Earth's interior. The new data on the elastic constants of wider range minerals enables more realistic petrology for seismic anisotropy models. Experimental plastic deformation of polycrystalline samples at deep Earth conditions allows the direct study of crystal preferred orientation (CPO) and these studies are completed by ab initio atomic modelling of dislocations and other defects that control plasticity. Finally, polycrystalline plasticity codes allow the simulation of CPO reported by experimentalists and the modelling of more complex strain paths required for geodynamic models. The CPO of crustal and mantle rocks from the Earth's surface or recovered as xenoliths, provides a geological verification of the CPOs present in the Earth. The systematic use of CPO measured by U-stage for field studies all over the world for last 40 years has now been intensified in last 15 years by the use of electron back-scattered diffraction (EBSD) to study of CPO and the associated digital microstructure. It is an appropriate time to analysis CPO databases of olivine and other minerals, which represents the work of our group, both present and former members, as well as collaborating colleagues. It is also interesting to compare the natural record as illustrated by our databases in the light of recent experimental results. Information on CPO together with single crystal elastic constants and the equation of state allow the modelling of seismic anisotropy due to plasticity at any PT condition, and the connection with geodynamic processes related to large-scale flow in the deep Earth.

  7. Full System Model of Magnetron Sputter Chamber - Proof-of-Principle Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, C; Gilmer, G; Zepeda-Ruiz, L

    2007-05-04

    The lack of detailed knowledge of internal process conditions remains a key challenge in magnetron sputtering, both for chamber design and for process development. Fundamental information such as the pressure and temperature distribution of the sputter gas, and the energies and arrival angles of the sputtered atoms and other energetic species is often missing, or is only estimated from general formulas. However, open-source or low-cost tools are available for modeling most steps of the sputter process, which can give more accurate and complete data than textbook estimates, using only desktop computations. To get a better understanding of magnetron sputtering, wemore » have collected existing models for the 5 major process steps: the input and distribution of the neutral background gas using Direct Simulation Monte Carlo (DSMC), dynamics of the plasma using Particle In Cell-Monte Carlo Collision (PIC-MCC), impact of ions on the target using molecular dynamics (MD), transport of sputtered atoms to the substrate using DSMC, and growth of the film using hybrid Kinetic Monte Carlo (KMC) and MD methods. Models have been tested against experimental measurements. For example, gas rarefaction as observed by Rossnagel and others has been reproduced, and it is associated with a local pressure increase of {approx}50% which may strongly influence film properties such as stress. Results on energies and arrival angles of sputtered atoms and reflected gas neutrals are applied to the Kinetic Monte Carlo simulation of film growth. Model results and applications to growth of dense Cu and Be films are presented.« less

  8. An atomic model of the tropomyosin cable on F-actin.

    PubMed

    Orzechowski, Marek; Li, Xiaochuan Edward; Fischer, Stefan; Lehman, William

    2014-08-05

    Tropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin's coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain. This is because the conformation of the overlap region that joins neighboring molecules is poorly understood, thus leaving a significant gap in our understanding of thin-filament structure and regulation. However, recent molecular-dynamics simulations of overlap segments defined their overall shape and provided unique and sufficient cues to model the whole actin-tropomyosin filament assembly in atomic detail. In this study, we show that these MD structures merge seamlessly onto the ends of tropomyosin coiled-coils. Adjacent tropomyosin molecules can then be joined together to provide a comprehensive model of the tropomyosin cable running continuously on F-actin. The resulting complete model presented here describes for the first time (to our knowledge) an atomic-level structure of αα-striated muscle tropomyosin bound to an actin filament that includes the critical overlap domain. Thus, the model provides a structural correlate to evaluate thin-filament mechanics, self-assembly mechanisms, and the effect of disease-causing mutations. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Unreal perpetual motion machine, Rydberg constant and Carnot non-unitary efficiency as a consequence of the atomic irreversibility

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2018-02-01

    A perpetual motion machine is a completely ideal engine which cannot be realized. Carnot introduced the concept of the ideal engine which operates on a completely reversible cycle, without any dissipation, but with an upper limit in it. So, even in ideal condition without any dissipation, there is something that prevents the conversion of all the energy absorbed by an ideal reservoir into work. But what is the cause of irreversibility? Here we highlight the atomic nature of this irreversibility, proving that it is no more than the continuous interaction of the atoms with the surrounding field. The macroscopic irreversibility is the consequence of the microscopic irreversibility.

  10. AtomDB Progress Report: Atomic data and new models for X-ray spectroscopy.

    NASA Astrophysics Data System (ADS)

    Smith, Randall K.; Foster, Adam; Brickhouse, Nancy S.; Stancil, Phillip C.; Cumbee, Renata; Mullen, Patrick Dean; AtomDB Team

    2018-06-01

    The AtomDB project collects atomic data from both theoretical and observational/experimental sources, providing both a convenient interface (http://www.atomdb.org/Webguide/webguide.php) as well as providing input to spectral models for many types of astrophysical X-ray plasmas. We have released several updates to AtomDB in response to the Hitomi data, including new data for the Fe K complex, and have expanded the range of models available in AtomDB to include the Kronos charge exchange models from Mullen at al. (2016, ApJS, 224, 2). Combined with the previous AtomDB charge exchange model (http://www.atomdb.org/CX/), these data enable a velocity-dependent model for X-ray and EUV charge exchange spectra. We also present a new Kappa-distribution spectral model, enabling plasmas with non-Maxwellian electron distributions to be modeled with AtomDB. Tools are provided within pyAtomDB to explore and exploit these new plasma models. This presentation will review these enhancements and describe plans for the new few years of database and code development in preparation for XARM, Athena, and (hopefully) Arcus.

  11. Experimental and theoretical oscillator strengths of Mg I for accurate abundance analysis

    NASA Astrophysics Data System (ADS)

    Pehlivan Rhodin, A.; Hartman, H.; Nilsson, H.; Jönsson, P.

    2017-02-01

    Context. With the aid of stellar abundance analysis, it is possible to study the galactic formation and evolution. Magnesium is an important element to trace the α-element evolution in our Galaxy. For chemical abundance analysis, such as magnesium abundance, accurate and complete atomic data are essential. Inaccurate atomic data lead to uncertain abundances and prevent discrimination between different evolution models. Aims: We study the spectrum of neutral magnesium from laboratory measurements and theoretical calculations. Our aim is to improve the oscillator strengths (f-values) of Mg I lines and to create a complete set of accurate atomic data, particularly for the near-IR region. Methods: We derived oscillator strengths by combining the experimental branching fractions with radiative lifetimes reported in the literature and computed in this work. A hollow cathode discharge lamp was used to produce free atoms in the plasma and a Fourier transform spectrometer recorded the intensity-calibrated high-resolution spectra. In addition, we performed theoretical calculations using the multiconfiguration Hartree-Fock program ATSP2K. Results: This project provides a set of experimental and theoretical oscillator strengths. We derived 34 experimental oscillator strengths. Except from the Mg I optical triplet lines (3p 3P°0,1,2-4s 3S1), these oscillator strengths are measured for the first time. The theoretical oscillator strengths are in very good agreement with the experimental data and complement the missing transitions of the experimental data up to n = 7 from even and odd parity terms. We present an evaluated set of oscillator strengths, gf, with uncertainties as small as 5%. The new values of the Mg I optical triplet line (3p 3P°0,1,2-4s 3S1) oscillator strength values are 0.08 dex larger than the previous measurements.

  12. Standard deviations of composition measurements in atom probe analyses. Part I conventional 1D atom probe.

    PubMed

    Danoix, F; Grancher, G; Bostel, A; Blavette, D

    2007-09-01

    Atom probe is a very powerful instrument to measure concentrations on a sub nanometric scale [M.K. Miller, G.D.W. Smith, Atom Probe Microanalysis, Principles and Applications to Materials Problems, Materials Research Society, Pittsburgh, 1989]. Atom probe is therefore a unique tool to study and characterise finely decomposed metallic materials. Composition profiles or 3D mapping can be realised by gathering elemental composition measurements. As the detector efficiency is generally not equal to 1, the measured compositions are only estimates of actual values. The variance of the estimates depends on which information is to be estimated. It can be calculated when the detection process is known. These two papers are devoted to give complete analytical derivation and expressions of the variance on composition measurements in several situations encountered when using atom probe. In the first paper, we will concentrate on the analytical derivation of the variance when estimation of compositions obtained from a conventional one dimension (1D) atom probe is considered. In particular, the existing expressions, and the basic hypotheses on which they rely, will be reconsidered, and complete analytical demonstrations established. In the second companion paper, the case of 3D atom probe will be treated, highlighting how the knowledge of the 3D position of detected ions modifies the analytical derivation of the variance of local composition data.

  13. X-ray photoelectron spectroscopy study of excimer laser treated alumina films

    NASA Astrophysics Data System (ADS)

    Georgiev, D. G.; Kolev, K.; Laude, L. D.; Mednikarov, B.; Starbov, N.

    1998-01-01

    Amorphous alumina layers are deposited on a single crystal Si substrate by a e-gun evaporation technique. These films are then thermally annealed in oxygen to be crystallized and, further, irradiated with an excimer laser beam. At each stage of the film preparation, an x-ray photoelectron spectroscopy analysis is performed at the film surface and in depth, upon ion beam grinding. Results give evidence for the formation of an aluminosilicate upon thermal annealing of the film in oxygen. At the surface itself, this compound is observed to decompose upon excimer laser irradiation at energy densities exceeding 1.75 J/cm2, giving rise to free Si atoms and SiO2, however with complete disappearance of Al atoms. Model photochemical reactions are proposed to explain such transformations.

  14. Redox reactions with empirical potentials: atomistic battery discharge simulations.

    PubMed

    Dapp, Wolf B; Müser, Martin H

    2013-08-14

    Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

  15. Nondestructive imaging of atomically thin nanostructures buried in silicon

    PubMed Central

    Gramse, Georg; Kölker, Alexander; Lim, Tingbin; Stock, Taylor J. Z.; Solanki, Hari; Schofield, Steven R.; Brinciotti, Enrico; Aeppli, Gabriel; Kienberger, Ferry; Curson, Neil J.

    2017-01-01

    It is now possible to create atomically thin regions of dopant atoms in silicon patterned with lateral dimensions ranging from the atomic scale (angstroms) to micrometers. These structures are building blocks of quantum devices for physics research and they are likely also to serve as key components of devices for next-generation classical and quantum information processing. Until now, the characteristics of buried dopant nanostructures could only be inferred from destructive techniques and/or the performance of the final electronic device; this severely limits engineering and manufacture of real-world devices based on atomic-scale lithography. Here, we use scanning microwave microscopy (SMM) to image and electronically characterize three-dimensional phosphorus nanostructures fabricated via scanning tunneling microscope–based lithography. The SMM measurements, which are completely nondestructive and sensitive to as few as 1900 to 4200 densely packed P atoms 4 to 15 nm below a silicon surface, yield electrical and geometric properties in agreement with those obtained from electrical transport and secondary ion mass spectroscopy for unpatterned phosphorus δ layers containing ~1013 P atoms. The imaging resolution was 37 ± 1 nm in lateral and 4 ± 1 nm in vertical directions, both values depending on SMM tip size and depth of dopant layers. In addition, finite element modeling indicates that resolution can be substantially improved using further optimized tips and microwave gradient detection. Our results on three-dimensional dopant structures reveal reduced carrier mobility for shallow dopant layers and suggest that SMM could aid the development of fabrication processes for surface code quantum computers. PMID:28782006

  16. Understanding complete oxidation of methane on spinel oxides at a molecular level

    DOE PAGES

    Tao, Franklin Feng; Shan, Jun-jun; Nguyen, Luan; ...

    2015-08-04

    It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo 2O 4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550 °C. Being a cost-effective catalyst, NiCo 2O 4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. Finally, in situ studies of complete oxidation of methane on NiCo 2Omore » 4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH 3O with a following dehydrogenation to -CH 2O; a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.« less

  17. Complete wavelength mismatching effect in a Doppler broadened Y-type six-level EIT atomic medium

    NASA Astrophysics Data System (ADS)

    Bharti, Vineet; Wasan, Ajay

    We present a theoretical study of the Doppler broadened Y-type six-level atomic system, using a density matrix approach, to investigate the effect of varying control field wavelengths and closely spaced hyperfine levels in the 5P state of 87Rb. The closely spaced hyperfine levels in our six-level system affect the optical properties of Y-type system and cause asymmetry in absorption profiles. Depending upon the choices of π-probe, σ+-control and σ--control fields transitions, we consider three regimes: (i) perfect wavelength matching regime (λp=λ=λ), (ii) partial wavelength mismatching regime (λp≠λ=λ), and (iii) complete wavelength mismatching regime (λp≠λ≠λ). The complete wavelength mismatching regime is further distinguished into two situations, i.e., λ<λ and λ>λ. We have shown that in the room temperature atomic vapor, the asymmetric transparency window gets broadened in the partial wavelength mismatching regime as compared to the perfect wavelength matching regime. This broad transparency window also splits at the line center in the complete wavelength mismatching regime.

  18. Kinetic and radiation-hydrodynamic modeling of x-ray heating in laboratory photoionized plasmas

    NASA Astrophysics Data System (ADS)

    Mancini, Roberto

    2017-06-01

    In experiments performed at the Z facility of Sandia National Laboratories a cm-scale cell filled with neon gas was driven by the burst of broadband x-rays emitted at the collapse of a wire-array z-pinch turning the gas into a photoionized plasma. Transmission spectroscopy of a narrowband portion of the x-ray flux was used to diagnose the plasma. The data show a highly-ionized neon plasma with a rich line absorption spectrum that permits the extraction of the ionization distribution among Be-, Li-, He- and H-like ions. Analysis of the spectra produced atomic ground and low excited state areal densities in these ions, and from the ratio of first-excited to ground state populations in Li-like neon a temperature of 19±4eV was extracted to characterize the x-ray heating of the plasma. To interpret this observation, we have performed data-constrained view-factor calculations of the spectral distribution of the x-ray drive, self-consistent modeling of electron and atomic kinetics, and radiation-hydrodynamic simulations. For the conditions of the experiment, the electron distribution thermalizes quickly, has a negligible high-energy tail, and is very well approximated by a single Maxwellian distribution. Radiation-hydrodynamic simulations with either LTE or NLTE (i.e. non-equilibrium) atomic physics provide a more complete modeling of the experiment. We found that in order to compute electron temperatures consistent with observation inline non-equilibrium collisional-radiative neon atomic kinetics needs to be taken into account. We discuss the details of LTE and NLTE simulations, and the impact of atomic physics on the radiation heating and cooling rates that determine the plasma temperature. This work was sponsored in part by DOE Office of Science Grant DE-SC0014451, and the Z Facility Fundamental Science Program of SNL.

  19. A Near-Atomic Structure of the Dark Apoptosome Provides Insight into Assembly and Activation.

    PubMed

    Cheng, Tat Cheung; Akey, Ildikó V; Yuan, Shujun; Yu, Zhiheng; Ludtke, Steven J; Akey, Christopher W

    2017-01-03

    In Drosophila, the Apaf-1-related killer (Dark) forms an apoptosome that activates procaspases. To investigate function, we have determined a near-atomic structure of Dark double rings using cryo-electron microscopy. We then built a nearly complete model of the apoptosome that includes 7- and 8-blade β-propellers. We find that the preference for dATP during Dark assembly may be governed by Ser325, which is in close proximity to the 2' carbon of the deoxyribose ring. Interestingly, β-propellers in V-shaped domains of the Dark apoptosome are more widely separated, relative to these features in the Apaf-1 apoptosome. This wider spacing may be responsible for the lack of cytochrome c binding to β-propellers in the Dark apoptosome. Our structure also highlights the roles of two loss-of-function mutations that may block Dark assembly. Finally, the improved model provides a framework to understand apical procaspase activation in the intrinsic cell death pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. First Measurement of the Atomic Electric Dipole Moment of (225)Ra.

    PubMed

    Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T

    2015-06-12

    The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22)  e cm (95% confidence).

  1. Automated Reflectance Measurement System Designed and Fabricated to Determine the Limits of Atomic Oxygen Treatment of Art Through Contrast Optimization

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.; Rutledge, Sharon K.

    2000-01-01

    Atomic oxygen generated in ground-based research facilities has been used to not only test erosion of candidate spacecraft materials but as a noncontact technique for removing organic deposits from the surfaces of artwork. NASA has patented the use of atomic oxygen to remove carbon-based soot contamination from fire-damaged artwork. The process of cleaning soot-damaged paintings with atomic oxygen requires exposures for variable lengths of time, dependent on the condition of a painting. Care must be exercised while cleaning to prevent the removal of pigment. The cleaning process must be stopped as soon as visual inspection or surface reflectance measurements indicate that cleaning is complete. Both techniques rely on optical comparisons of known bright locations against known dark locations on the artwork being cleaned. Difficulties arise with these techniques when either a known bright or dark location cannot be determined readily. Furthermore, dark locations will lighten with excessive exposure to atomic oxygen. Therefore, an automated test instrument to quantitatively characterize cleaning progression was designed and developed at the NASA Glenn Research Center at Lewis Field to determine when atomic oxygen cleaning is complete.

  2. The disk averaged star formation relation for Local Volume dwarf galaxies

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Á. R.; Lagos, C. D. P.; Young, T.; Jerjen, H.

    2018-05-01

    Spatially resolved H I studies of dwarf galaxies have provided a wealth of precision data. However these high-quality, resolved observations are only possible for handful of dwarf galaxies in the Local Volume. Future H I surveys are unlikely to improve the current situation. We therefore explore a method for estimating the surface density of the atomic gas from global H I parameters, which are conversely widely available. We perform empirical tests using galaxies with resolved H I maps, and find that our approximation produces values for the surface density of atomic hydrogen within typically 0.5 dex of the true value. We apply this method to a sample of 147 galaxies drawn from modern near-infrared stellar photometric surveys. With this sample we confirm a strict correlation between the atomic gas surface density and the star formation rate surface density, that is vertically offset from the Kennicutt-Schmidt relation by a factor of 10 - 30, and significantly steeper than the classical N = 1.4 of Kennicutt (1998). We further infer the molecular fraction in the sample of low surface brightness, predominantly dwarf galaxies by assuming that the star formation relationship with molecular gas observed for spiral galaxies also holds in these galaxies, finding a molecular-to-atomic gas mass fraction within the range of 5-15%. Comparison of the data to available models shows that a model in which the thermal pressure balances the vertical gravitational field captures better the shape of the ΣSFR-Σgas relationship. However, such models fail to reproduce the data completely, suggesting that thermal pressure plays an important role in the disks of dwarf galaxies.

  3. X-ray Modeling of Classical Novae

    NASA Astrophysics Data System (ADS)

    Nemeth, Peter

    2010-01-01

    It has been observed and theoretically supported in the last decade that the peak of the spectral energy distribution of classical novae gradually shifts to higher energies at constant bolometric luminosity after a nova event. For this reason, comprehensive evolutionary studies require spectral analysis in multiple spectral bands. After a nova explosion, the white dwarf can maintain stable surface hydrogen burning, the duration of which strongly correlates with the white dwarf mass. During this stage the peak of the luminosity is in the soft X-ray band (15 - 60 Angstroms). By extending the modeling range of TLUSTY/SYNSPEC, I analyse the luminosity and abundance evolution of classical novae. Model atoms required for this work were built using atomic data from NIST/ASD and TOPBASE. The accurate but incomplete set of energy levels and radiative transitions in NIST were completed with calculated data from TOPBASE. Synthetic spectra were then compared to observed data to derive stellar parameters. I show the capabilities and validity of this project on the example of V4743 Sgr. This nova was observed with both Chandra and XMM-Newton observatories and has already been modeled by several scientific groups (PHOENIX, TMAP).

  4. Model for Team Training Using the Advanced Trauma Operative Management Course: Pilot Study Analysis.

    PubMed

    Perkins, R Serene; Lehner, Kathryn A; Armstrong, Randy; Gardiner, Stuart K; Karmy-Jones, Riyad C; Izenberg, Seth D; Long, William B; Wackym, P Ashley

    2015-01-01

    Education and training of surgeons has traditionally focused on the development of individual knowledge, technical skills, and decision making. Team training with the surgeon's operating room staff has not been prioritized in existing educational paradigms, particularly in trauma surgery. We aimed to determine whether a pilot curriculum for surgical technicians and nurses, based on the American College of Surgeons' Advanced Trauma Operative Management (ATOM) course, would improve staff knowledge if conducted in a team-training environment. Between December 2012 and December 2014, 22 surgical technicians and nurses participated in a curriculum complementary to the ATOM course, consisting of 8 individual 8-hour training sessions designed by and conducted at our institution. Didactic and practical sessions included educational content, hands-on instruction, and alternating role play during 5 system-specific injury scenarios in a simulated operating room environment. A pre- and postcourse examination was administered to participants to assess for improvements in team members' didactic knowledge. Course participants displayed a significant improvement in didactic knowledge after working in a team setting with trauma surgeons during the ATOM course, with a 9-point improvement on the postcourse examination (83%-92%, p = 0.0008). Most participants (90.5%) completing postcourse surveys reported being "highly satisfied" with course content and quality after working in our simulated team-training setting. Team training is critical to improving the knowledge base of surgical technicians and nurses in the trauma operative setting. Improved communication, efficiency, appropriate equipment use, and staff awareness are the desired outcomes when shifting the paradigm from individual to surgical team training so that improved patient outcomes, decreased risk, and cost savings can be achieved. Determine whether a pilot curriculum for surgical technicians and nurses, based on the American College of Surgeons' ATOM course, improves staff knowledge if conducted in a team-training environment. Surgical technicians and nurses participated in a curriculum complementary to the ATOM course. In all, 8 individual 8-hour training sessions were conducted at our institution and contained both didactic and practical content, as well as alternating role play during 5 system-specific injury scenarios. A pre- and postcourse examination was administered to assess for improvements in didactic knowledge. The course was conducted in a simulated team-training setting at the Legacy Institute for Surgical Education and Innovation (Portland, OR), an American College of Surgeons Accredited Educational Institute. In all, 22 surgical technicians and operating room nurses participated in 8 separate ATOM(s) courses and had at least 1 year of surgical scrubbing experience in general surgery with little or no exposure to Level I trauma surgical care. Of these participants, 16 completed the postcourse examination. Participants displayed a significant improvement in didactic knowledge (83%-92%, p = 0.0008) after the ATOM(s) course. Of the 14 participants who completed postcourse surveys, 90.5% were "highly satisfied" with the course content and quality. Team training is critical to improving the knowledge base of surgical technicians and nurses in the trauma operative setting and may contribute to improved patient outcomes, decreased risk, and hospital cost savings. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  5. Role of Protein Flexibility in Ion Permeation: A Case Study in Gramicidin A

    PubMed Central

    Baştuğ, Turgut; Gray-Weale, Angus; Patra, Swarna M.; Kuyucak, Serdar

    2006-01-01

    Proteins have a flexible structure, and their atoms exhibit considerable fluctuations under normal operating conditions. However, apart from some enzyme reactions involving ligand binding, our understanding of the role of flexibility in protein function remains mostly incomplete. Here we investigate this question in the realm of membrane proteins that form ion channels. Specifically, we consider ion permeation in the gramicidin A channel, and study how the energetics of ion conduction changes as the channel structure is progressively changed from completely flexible to a fixed one. For each channel structure, the potential of mean force for a permeating potassium ion is determined from molecular dynamics (MD) simulations. Using the same molecular dynamics data for completely flexible gramicidin A, we also calculate the average densities and fluctuations of the peptide atoms and investigate the correlations between these fluctuations and the motion of a permeating ion. Our results show conclusively that peptide flexibility plays an important role in ion permeation in the gramicidin A channel, thus providing another reason—besides the well-known problem with the description of single file pore water—why this channel cannot be modeled using continuum electrostatics with a fixed structure. The new method developed here for studying the role of protein flexibility on its function clarifies the contributions of the fluctuations to energy and entropy, and places limits on the level of detail required in a coarse-grained model. PMID:16415054

  6. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less

  7. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    DOE PAGES

    Samolyuk, German D.; Osetskiy, Yury N.; Stoller, Roger E.

    2015-06-03

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascademore » production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (~0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential.« less

  8. Simulation of Laser Cooling and Trapping in Engineering Applications

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, Jaime; Kohel, James; Thompson, Robert; Yu, Nan; Lunblad, Nathan

    2005-01-01

    An advanced computer code is undergoing development for numerically simulating laser cooling and trapping of large numbers of atoms. The code is expected to be useful in practical engineering applications and to contribute to understanding of the roles that light, atomic collisions, background pressure, and numbers of particles play in experiments using laser-cooled and -trapped atoms. The code is based on semiclassical theories of the forces exerted on atoms by magnetic and optical fields. Whereas computer codes developed previously for the same purpose account for only a few physical mechanisms, this code incorporates many more physical mechanisms (including atomic collisions, sub-Doppler cooling mechanisms, Stark and Zeeman energy shifts, gravitation, and evanescent-wave phenomena) that affect laser-matter interactions and the cooling of atoms to submillikelvin temperatures. Moreover, whereas the prior codes can simulate the interactions of at most a few atoms with a resonant light field, the number of atoms that can be included in a simulation by the present code is limited only by computer memory. Hence, the present code represents more nearly completely the complex physics involved when using laser-cooled and -trapped atoms in engineering applications. Another advantage that the code incorporates is the possibility to analyze the interaction between cold atoms of different atomic number. Some properties that cold atoms of different atomic species have, like cross sections and the particular excited states they can occupy when interacting with each other and light fields, play important roles not yet completely understood in the new experiments that are under way in laboratories worldwide to form ultracold molecules. Other research efforts use cold atoms as holders of quantum information, and more recent developments in cavity quantum electrodynamics also use ultracold atoms to explore and expand new information-technology ideas. These experiments give a hint on the wide range of applications and technology developments that can be tackled using cold atoms and light fields. From more precise atomic clocks and gravity sensors to the development of quantum computers, there will be a need to completely understand the whole ensemble of physical mechanisms that play a role in the development of such technologies. The code also permits the study of the dynamic and steady-state operations of technologies that use cold atoms. The physical characteristics of lasers and fields can be time-controlled to give a realistic simulation of the processes involved such that the design process can determine the best control features to use. It is expected that with the features incorporated into the code it will become a tool for the useful application of ultracold atoms in engineering applications. Currently, the software is being used for the analysis and understanding of simple experiments using cold atoms, and for the design of a modular compact source of cold atoms to be used in future research and development projects. The results so far indicate that the code is a useful design instrument that shows good agreement with experimental measurements (see figure), and a Windows-based user-friendly interface is also under development.

  9. Sediment Tracking Using Carbon and Nitrogen Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Fox, J. F.; Papanicolaou, A.

    2002-12-01

    As landscapes are stripped of valuable, nutrient rich topsoils and streams are clouded with habitat degrading fine sediment, it becomes increasingly important to identify and mitigate erosive surfaces. Particle tracking using vegetative derived carbon (C) and nitrogen (N) isotopic signatures and carbon/nitrogen (C/N) atomic ratios offer a promising technique to identify such problematic sources. Consultants and researchers successfully use C, N, and other stable isotopes of water for hydrologic purposes, such as quantifying groundwater vs. surface water contribution to a hydrograph. Recently, C and N isotopes and C/N atomic ratios of sediment were used to determine sediment mass balance within estuarine environments. The current research investigates C and N isotopes and C/N atomic ratios of source sediment for two primary purposes: (1) to establish a blueprint methodology for estimating sediment source and erosion rates within a watershed using this isotopic technology coupled with mineralogy fingerprinting techniques, radionuclide transport monitoring, and erosion-transport models, and (2) to complete field studies of upland erosion processes, such as, solifluction, mass wasting, creep, fluvial erosion, and vegetative induced erosion. Upland and floodplain sediment profiles and riverine suspended sediment were sampled on two occasions, May 2002 and August 2002, in the upper Palouse River watershed of northern Idaho. Over 300 samples were obtained from deep intermountain valley (i.e. forest) and rolling crop field (i.e. agriculture) locations. Preliminary sample treatment was completed at the Washington State University Water Quality Laboratory where samples were dried, removed of organic constituents, and prepared for isotopic analysis. C and N isotope and C/N atomic ratio analyses was performed at the University of Idaho Natural Resources Stable Isotope Laboratory using a Costech 4010 Elemental Combustion System connected with a continuous flow inlet system to the Finnigan MAT Delta Plus isotope ratio mass spectrometer. Results indicate distinct N isotopic signatures and C/N atomic ratios for forest and agriculture sediment sources. In addition, unique C and N isotopic signatures and C/N atomic ratios exist within floodplain and upland surfaces, and within the 10 centimeter profiles of erosion and deposition locations. Suspended sediment analyses are preliminary at this time. Conclusions indicate that sediment C and N isotopic signature and C/N atomic ratio are dependent upon land use and soil moisture conditions, and will serve as a useful technique in quantifying erosive source rates and understanding upland erosion processes.

  10. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Technical Reports Server (NTRS)

    Kurucz, Robert L.

    1999-01-01

    To make my calculations more readily accessible I have set up a web site cfaku5.harvard.edu that can also be accessed by FTP. it has 5 9GB disks that hold all of my atomic and diatomic molecular data, my tables of distribution function opacities, my grids of model atmospheres, colors, fluxes, etc, my program that are ready for distribution, most of my recent papers. Atlases and computed spectra will be added as they are completed. New atomic and molecular calculations will be added as they are completed. I got my atomic programs that had been running on a Cray at the San Diego Supercomputer Center to run on my Vaxes and Alpha. I started with Ni and Co because there were new laboratory analyses that included isotopic and hyperfine splitting. Those calculations are described in the appended abstract for the 6th Atomic Spectroscopy and oscillator Strengths meeting in Victoria last summer. A surprising finding is that quadrupole transitions have been grossly in error because mixing with higher levels has not been included. I now have enough memory in my Alpha to treat 3000 x 3000 matrices. I now include all levels up through n=9 for Fe I and 11, the spectra for which the most information is available. I am finishing those calculations right now. After Fe I and Fe 11, all other spectra are "easy", and I will be in mass production. ATL;LS12, my opacity sampling program for computing models with arbitrary abundances, has been put on the web server. I wrote a new distribution function opacity program for workstations that replaces the one I used on the Cray at the San Diego Supercomputer Center. Each set of abundances would take 100 Cray hours costing $100,000. 1 ran 25 cases. Each of my opacity CDs contains three abundances. I have a new program -iinning on the Alpha that takes about a week. I am going to have to get a faster processor or I will have to dedicate a whole workstation just to opacities.

  11. The Tübingen Model-Atom Database: A Revised Aluminum Model Atom and its Application for the Spectral Analysis of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Löbling, L.

    2017-03-01

    Aluminum (Al) nucleosynthesis takes place during the asymptotic-giant-branch (AGB) phase of stellar evolution. Al abundance determinations in hot white dwarf stars provide constraints to understand this process. Precise abundance measurements require advanced non-local thermodynamic stellar-atmosphere models and reliable atomic data. In the framework of the German Astrophysical Virtual Observatory (GAVO), the Tübingen Model-Atom Database (TMAD) contains ready-to- use model atoms for elements from hydrogen to barium. A revised, elaborated Al model atom has recently been added. We present preliminary stellar-atmosphere models and emergent Al line spectra for the hot white dwarfs G191-B2B and RE 0503-289.

  12. A probabilistic approach to radiative energy loss calculations for optically thick atmospheres - Hydrogen lines and continua

    NASA Technical Reports Server (NTRS)

    Canfield, R. C.; Ricchiazzi, P. J.

    1980-01-01

    An approximate probabilistic radiative transfer equation and the statistical equilibrium equations are simultaneously solved for a model hydrogen atom consisting of three bound levels and ionization continuum. The transfer equation for L-alpha, L-beta, H-alpha, and the Lyman continuum is explicitly solved assuming complete redistribution. The accuracy of this approach is tested by comparing source functions and radiative loss rates to values obtained with a method that solves the exact transfer equation. Two recent model solar-flare chromospheres are used for this test. It is shown that for the test atmospheres the probabilistic method gives values of the radiative loss rate that are characteristically good to a factor of 2. The advantage of this probabilistic approach is that it retains a description of the dominant physical processes of radiative transfer in the complete redistribution case, yet it achieves a major reduction in computational requirements.

  13. Ultra-cold 4He atom beams

    NASA Astrophysics Data System (ADS)

    Mulders, N.; Wyatt, A. F. G.

    1994-02-01

    It has been shown that it is possible to create ultra-cold 4He atom beams, using a metal film heater covered with a superfluid helium film. The transient behaviour of the atom pulse can be improved significantly by shaping of the heater pulse. The leading edge of more energetic atoms can be suppressed nearly completely, leaving a core of mono-energetic atoms. The maximum number of atoms in the pulse is determined by the amount of helium in the superfluid film on the heater. This seriously limits the ranges of pulse width and energy over which this beam source can be operated. However, these can be increased significantly by using porous gold smoke heaters.

  14. First Measurement of the Atomic Electric Dipole Moment of Ra 225

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, R. H.; Dietrich, M. R.; Kalita, M. R.

    The radioactive radium-225 (Ra-225) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, Ra-225 is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of Ra-225 atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of vertical bar d(Ra-225)vertical bar < 5.0 x 10(-22) e cm (95% confidence).

  15. Will Organic Synthesis Within Icy Grains or on Dust Surfaces in the Primitive Solar Nebula Completely Erase the Effects of Photochemical Self Shielding?

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    There are at least 3 separate photochemical self-shielding models with different degrees of commonality. All of these models rely on the selective absorption of (12))C(16)O dissociative photons as the radiation source penetrates through the gas allowing the production of reactive O-17 and O-18 atoms within a specific volume. Each model also assumes that the undissociated C(16)O is stable and does not participate in the chemistry of nebular dust grains. In what follows we will argue that this last, very important assumption is simply not true despite the very high energy of the CO molecular bond.

  16. Fragmentation dynamics of ionized neon clusters (Ne(n), n=3-14) embedded in helium nanodroplets.

    PubMed

    Bonhommeau, David; Halberstadt, Nadine; Viel, Alexandra

    2006-01-14

    We report a theoretical study of the nonadiabatic fragmentation dynamics of ionized neon clusters embedded in helium nanodroplets for cluster sizes up to n=14 atoms. The dynamics of the neon atoms is modeled using the molecular dynamics with quantum transitions method of Tully [J. Chem. Phys. 93, 1061 (1990)] with the nuclei treated classically and transitions between electronic states quantum mechanically. The potential-energy surfaces are derived from a diatomics-in-molecules model to which induced dipole-induced dipole interactions are added. The effect of the spin-orbit interaction is also discussed. The helium environment is modeled by a friction force acting on charged atoms whose speed exceeds the critical Landau velocity. The dependence of the fragment size distribution on the friction strength and on the initial nanodroplet size is investigated. By comparing with the available experimental data obtained for Ne3+ and Ne4+, a reasonable value for the friction coefficient, the only parameter of the model, is deduced. This value is then used to predict the effect of the helium environment on the dissociation dynamics of larger neon clusters, n=5-14. The results show stabilization of larger fragments than in the gas phase, but fragmentation is not completely caged. In addition, two types of dynamics are characterized for Ne4+: fast and explosive, therefore leaving no time for friction to cool down the process when dynamics starts on one of the highest electronic states, and slower, therefore leading to some stabilization by helium when it starts on one of the lowest electronic states.

  17. Hydrodynamic model for expansion and collisional relaxation of x-ray laser-excited multi-component nanoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Vikrant, E-mail: vikrant.saxena@desy.de; Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg; Ziaja, Beata, E-mail: ziaja@mail.desy.de

    The irradiation of an atomic cluster with a femtosecond x-ray free-electron laser pulse results in a nanoplasma formation. This typically occurs within a few hundred femtoseconds. By this time the x-ray pulse is over, and the direct photoinduced processes no longer contributing. All created electrons within the nanoplasma are thermalized. The nanoplasma thus formed is a mixture of atoms, electrons, and ions of various charges. While expanding, it is undergoing electron impact ionization and three-body recombination. Below we present a hydrodynamic model to describe the dynamics of such multi-component nanoplasmas. The model equations are derived by taking the moments ofmore » the corresponding Boltzmann kinetic equations. We include the equations obtained, together with the source terms due to electron impact ionization and three-body recombination, in our hydrodynamic solver. Model predictions for a test case, expanding spherical Ar nanoplasma, are obtained. With this model, we complete the two-step approach to simulate x-ray created nanoplasmas, enabling computationally efficient simulations of their picosecond dynamics. Moreover, the hydrodynamic framework including collisional processes can be easily extended for other source terms and then applied to follow relaxation of any finite non-isothermal multi-component nanoplasma with its components relaxed into local thermodynamic equilibrium.« less

  18. Non-LTE radiative transfer with lambda-acceleration - Convergence properties using exact full and diagonal lambda-operators

    NASA Technical Reports Server (NTRS)

    Macfarlane, J. J.

    1992-01-01

    We investigate the convergence properties of Lambda-acceleration methods for non-LTE radiative transfer problems in planar and spherical geometry. Matrix elements of the 'exact' A-operator are used to accelerate convergence to a solution in which both the radiative transfer and atomic rate equations are simultaneously satisfied. Convergence properties of two-level and multilevel atomic systems are investigated for methods using: (1) the complete Lambda-operator, and (2) the diagonal of the Lambda-operator. We find that the convergence properties for the method utilizing the complete Lambda-operator are significantly better than those of the diagonal Lambda-operator method, often reducing the number of iterations needed for convergence by a factor of between two and seven. However, the overall computational time required for large scale calculations - that is, those with many atomic levels and spatial zones - is typically a factor of a few larger for the complete Lambda-operator method, suggesting that the approach should be best applied to problems in which convergence is especially difficult.

  19. Making It Visual: Creating a Model of the Atom

    ERIC Educational Resources Information Center

    Pringle, Rose M.

    2004-01-01

    This article describes a lesson in which students construct Bohr's planetary model of the atom. Niels Bohr's atomic model provides a framework for discussing with middle and high school students the historical development of our understanding of the structure of the atom. The model constructed in this activity will enable students to visualize the…

  20. Protein Folding and Structure Prediction from the Ground Up: The Atomistic Associative Memory, Water Mediated, Structure and Energy Model.

    PubMed

    Chen, Mingchen; Lin, Xingcheng; Zheng, Weihua; Onuchic, José N; Wolynes, Peter G

    2016-08-25

    The associative memory, water mediated, structure and energy model (AWSEM) is a coarse-grained force field with transferable tertiary interactions that incorporates local in sequence energetic biases using bioinformatically derived structural information about peptide fragments with locally similar sequences that we call memories. The memory information from the protein data bank (PDB) database guides proper protein folding. The structural information about available sequences in the database varies in quality and can sometimes lead to frustrated free energy landscapes locally. One way out of this difficulty is to construct the input fragment memory information from all-atom simulations of portions of the complete polypeptide chain. In this paper, we investigate this approach first put forward by Kwac and Wolynes in a more complete way by studying the structure prediction capabilities of this approach for six α-helical proteins. This scheme which we call the atomistic associative memory, water mediated, structure and energy model (AAWSEM) amounts to an ab initio protein structure prediction method that starts from the ground up without using bioinformatic input. The free energy profiles from AAWSEM show that atomistic fragment memories are sufficient to guide the correct folding when tertiary forces are included. AAWSEM combines the efficiency of coarse-grained simulations on the full protein level with the local structural accuracy achievable from all-atom simulations of only parts of a large protein. The results suggest that a hybrid use of atomistic fragment memory and database memory in structural predictions may well be optimal for many practical applications.

  1. Big Atoms for Small Children: Building Atomic Models from Common Materials to Better Visualize and Conceptualize Atomic Structure

    ERIC Educational Resources Information Center

    Cipolla, Laura; Ferrari, Lia A.

    2016-01-01

    A hands-on approach to introduce the chemical elements and the atomic structure to elementary/middle school students is described. The proposed classroom activity presents Bohr models of atoms using common and inexpensive materials, such as nested plastic balls, colored modeling clay, and small-sized pasta (or small plastic beads).

  2. Quantum State Transfer via Noisy Photonic and Phononic Waveguides

    NASA Astrophysics Data System (ADS)

    Vermersch, B.; Guimond, P.-O.; Pichler, H.; Zoller, P.

    2017-03-01

    We describe a quantum state transfer protocol, where a quantum state of photons stored in a first cavity can be faithfully transferred to a second distant cavity via an infinite 1D waveguide, while being immune to arbitrary noise (e.g., thermal noise) injected into the waveguide. We extend the model and protocol to a cavity QED setup, where atomic ensembles, or single atoms representing quantum memory, are coupled to a cavity mode. We present a detailed study of sensitivity to imperfections, and apply a quantum error correction protocol to account for random losses (or additions) of photons in the waveguide. Our numerical analysis is enabled by matrix product state techniques to simulate the complete quantum circuit, which we generalize to include thermal input fields. Our discussion applies both to photonic and phononic quantum networks.

  3. "Electronium": A Quantum Atomic Teaching Model.

    ERIC Educational Resources Information Center

    Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John

    2002-01-01

    Outlines an alternative atomic model to the probability model, the descriptive quantum atomic model Electronium. Discusses the way in which it is intended to support students in learning quantum-mechanical concepts. (Author/MM)

  4. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.

    1993-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.

  5. Assembly of streptolysin O pores assessed by quartz crystal microbalance and atomic force microscopy provides evidence for the formation of anchored but incomplete oligomers.

    PubMed

    Stewart, Sarah E; D'Angelo, Michael E; Paintavigna, Stefania; Tabor, Rico F; Martin, Lisandra L; Bird, Phillip I

    2015-01-01

    Streptolysin O (SLO) is a bacterial pore forming protein that is part of the cholesterol dependent cytolysin (CDC) family. We have used quartz crystal microbalance with dissipation monitoring (QCM-D) to examine SLO membrane binding and pore formation. In this system, SLO binds tightly to cholesterol-containing membranes, and assembles into partial and complete pores confirmed by atomic force microscopy. SLO binds to the lipid bilayer at a single rate consistent with the Langmuir isotherm model of adsorption. Changes in dissipation illustrate that SLO alters the viscoelastic properties of the bilayer during pore formation, but there is no loss of material from the bilayer as reported for small membrane-penetrating peptides. SLO mutants were used to further dissect the assembly and insertion processes by QCM-D. This shows the signature of SLO in QCM-D changes when pore formation is inhibited, and that bound and inserted SLO forms can be distinguished. Furthermore a pre-pore locked SLO mutant binds reversibly to lipid, suggesting that the partially complete wtSLO forms observed by AFM are anchored to the membrane. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. First principles study of surface stability and segregation of PdRuRh ternary metal alloy system

    NASA Astrophysics Data System (ADS)

    Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Nakanishi, Hiroshi; Kasai, Hideaki

    2018-05-01

    The recognized importance on the studies of alloyed materials is due to the high possibility of forming designer materials that caters to different applications. In any reaction and application, the stability and configuration of the alloy combination are important. In this study, we analyzed the surface stability and segregation of ternary metal alloy system PdRuRh through first principles calculation using density functional theory (DFT). We considered the possibility of forming phases as observed in the binary combinations of elements, i.e., completely miscible, and separating phases. With that, the model we analyzed for the ternary metal alloy slabs considers forming complete atomic miscibility, segregation of each component, and segregation of one component with mixing of the two other. Our results show that for the ternary combination of Pd, Rh and Ru, the Pd atoms have high tendency to segregate at the surface, while due to the high tendency of Ru and Rh to mix, core formation of a mixed RuRh is possible. Also, we determined that the trend of stability in the binary alloy system is a good determinant of stability in the ternary alloy system.

  7. Atomic and molecular data for spacecraft re-entry plasmas

    NASA Astrophysics Data System (ADS)

    Celiberto, R.; Armenise, I.; Cacciatore, M.; Capitelli, M.; Esposito, F.; Gamallo, P.; Janev, R. K.; Laganà, A.; Laporta, V.; Laricchiuta, A.; Lombardi, A.; Rutigliano, M.; Sayós, R.; Tennyson, J.; Wadehra, J. M.

    2016-06-01

    The modeling of atmospheric gas, interacting with the space vehicles in re-entry conditions in planetary exploration missions, requires a large set of scattering data for all those elementary processes occurring in the system. A fundamental aspect of re-entry problems is represented by the strong non-equilibrium conditions met in the atmospheric plasma close to the surface of the thermal shield, where numerous interconnected relaxation processes determine the evolution of the gaseous system towards equilibrium conditions. A central role is played by the vibrational exchanges of energy, so that collisional processes involving vibrationally excited molecules assume a particular importance. In the present paper, theoretical calculations of complete sets of vibrationally state-resolved cross sections and rate coefficients are reviewed, focusing on the relevant classes of collisional processes: resonant and non-resonant electron-impact excitation of molecules, atom-diatom and molecule-molecule collisions as well as gas-surface interaction. In particular, collisional processes involving atomic and molecular species, relevant to Earth (N2, O2, NO), Mars (CO2, CO, N2) and Jupiter (H2, He) atmospheres are considered.

  8. Geometry-dependent atomic multipole models for the water molecule.

    PubMed

    Loboda, O; Millot, C

    2017-10-28

    Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.

  9. Geometry-dependent atomic multipole models for the water molecule

    NASA Astrophysics Data System (ADS)

    Loboda, O.; Millot, C.

    2017-10-01

    Models of atomic electric multipoles for the water molecule have been optimized in order to reproduce the electric potential around the molecule computed by ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set. Different models of increasing complexity, from atomic charges up to models containing atomic charges, dipoles, and quadrupoles, have been obtained. The geometry dependence of these atomic multipole models has been investigated by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For several models, the atomic multipole components have been fitted as a function of the geometry by a Taylor series of fourth order in monomer coordinate displacements.

  10. Structure cristalline du composé Hg3-xSbx(S+Se)2+xI2-x (x ≃ 0.1)

    PubMed Central

    Kars, Mohammed; Herrero, Adrian Gómez; Roisnel, Thierry; Rebbah, Allaoua; Otero-Diáz, L. Carlos

    2016-01-01

    Single crystals of the mercury chalcohalide Hg3-xSbx(S+Se)2+xI2-x (x ≃ 0.1) (mercury anti­mony sulfide selenide iodide), were grown by a chemical transport reaction. The structure contains three independent A (Hg/Sb) atoms; each atom is strongly covalently bonded with two X (Se/S) atoms to form approximately linear X–A–X units. The X–A–X units link to form A 4 X 4 rings, which are combined into infinite crankshaft-type bands running along the [100] direction. Four equatorial E (I/X = Se,S) atoms at relatively long distances complete the distorted octa­hedral coordination of A (Hg/Sb). The crystal under investigation was twinned by non-merohedry with a refined twin domain fraction of 0.814 (6):0.186 (6). The structure is isotypic with Hg3Se2I2 [Beck & Hedderich (2000 ▸). J. Solid State Chem. 151, 73–76], but the current determination reveals a coupled substitution, with partial replacement of Hg+2 by Sb+3, balanced by the equivalent substitution of I−1 by S−2 and Se−2. Bond-valence calculations are consistent with this relative substitution model. PMID:27006793

  11. Laboratory studies in ultraviolet solar physics

    NASA Technical Reports Server (NTRS)

    Parkinson, W. H.; Kohl, J. L.; Gardner, L. D.; Raymond, J. C.; Smith, P. L.

    1991-01-01

    The research activity comprised the measurement of basic atomic processes and parameters which relate directly to the interpretation of solar ultraviolet observations and to the development of comprehensive models of the component structures of the solar atmosphere. The research was specifically directed towards providing the relevant atomic data needed to perform and to improve solar diagnostic techniques which probe active and quiet portions of the solar chromosphere, the transition zone, the inner corona, and the solar wind acceleration regions of the extended corona. The accuracy with which the physical conditions in these structures can be determined depends directly on the accuracy and completeness of the atomic and molecular data. These laboratory data are used to support the analysis programs of past and current solar observations (e.g., the Orbiting solar Observatories, the Solar Maximum Mission, the Skylab Apollo Telescope Mount, and the Naval Research Laboratory's rocket-borne High Resolution Telescope and Spectrograph). In addition, we attempted to anticipate the needs of future space-borne solar studies such as from the joint ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft. Our laboratory activities stressed two categories of study: (1) the measurement of absolute rate coefficients for dielectronic recombination and electron impact excitation; and (2) the measurement of atomic transition probabilities for solar density diagnostics. A brief summary of the research activity is provided.

  12. Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR

    PubMed Central

    Fenwick, R. Bryn; van den Bedem, Henry; Fraser, James S.; Wright, Peter E.

    2014-01-01

    Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond–nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S2) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements. PMID:24474795

  13. Why we should teach the Bohr model and how to teach it effectively

    NASA Astrophysics Data System (ADS)

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2008-06-01

    Some education researchers have claimed that we should not teach the Bohr model of the atom because it inhibits students’ ability to learn the true quantum nature of electrons in atoms. Although the evidence for this claim is weak, many have accepted it. This claim has implications for how to present atoms in classes ranging from elementary school to graduate school. We present results from a study designed to test this claim by developing a curriculum on models of the atom, including the Bohr and Schrödinger models. We examine student descriptions of atoms on final exams in transformed modern physics classes using various versions of this curriculum. We find that if the curriculum does not include sufficient connections between different models, many students still have a Bohr-like view of atoms rather than a more accurate Schrödinger model. However, with an improved curriculum designed to develop model-building skills and with better integration between different models, it is possible to get most students to describe atoms using the Schrödinger model. In comparing our results with previous research, we find that comparing and contrasting different models is a key feature of a curriculum that helps students move beyond the Bohr model and adopt Schrödinger’s view of the atom. We find that understanding the reasons for the development of models is much more difficult for students than understanding the features of the models. We also present interactive computer simulations designed to help students build models of the atom more effectively.

  14. Underlying theory of a model for the Renner-Teller effect in tetra-atomic molecules: X(2)Πu electronic state of C2H2(+).

    PubMed

    Perić, M; Jerosimić, S; Mitić, M; Milovanović, M; Ranković, R

    2015-05-07

    In the present study, we prove the plausibility of a simple model for the Renner-Teller effect in tetra-atomic molecules with linear equilibrium geometry by ab initio calculations of the electronic energy surfaces and non-adiabatic matrix elements for the X(2)Πu state of C2H2 (+). This phenomenon is considered as a combination of the usual Renner-Teller effect, appearing in triatomic species, and a kind of the Jahn-Teller effect, similar to the original one arising in highly symmetric molecules. Only four parameters (plus the spin-orbit constant, if the spin effects are taken into account), which can be extracted from ab initio calculations carried out at five appropriate (planar) molecular geometries, are sufficient for building up the Hamiltonian matrix whose diagonalization results in the complete low-energy (bending) vibronic spectrum. The main result of the present study is the proof that the diabatization scheme, hidden beneath the apparent simplicity of the model, can safely be carried out, at small-amplitude bending vibrations, without cumbersome computation of non-adiabatic matrix elements at large number of molecular geometries.

  15. Entangling two unequal atoms through a common bath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benatti, F.; Marzolino, U.; Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34014 Trieste

    The evolution of two, noninteracting, two-level atoms immersed in a weakly coupled bath can be described by a refined, time-coarse-grained Markovian evolution, still preserving complete positivity. We find that this improved, reduced dynamics is able to entangle the two atoms even when their internal frequencies are unequal, an effect that appears impossible in the standard weak-coupling-limit approach. We study in detail this phenomenon for an environment made of quantum fields.

  16. Selective Reflection of Potassium Vapor Nanolayers in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sargsyan, A.; Tonoyan, A.; Keaveney, J.; Hughes, I. G.; Adams, C. S.; Sarkisyan, D.

    2018-03-01

    The selective reflection of laser radiation from the interface between a dielectric window and the atomic vapors confined in a nanocell of thickness L ≈ 350 nm is used to develop effective Doppler-broadening- free spectroscopy of potassium atoms. A small atomic line width and a relation between the signal intensity and the transition probability allowed us to resolve four lines of atomic transitions responsible for the D1 lines of the 39K and 41K isotopes. Two groups containing four atomic transitions form in an applied magnetic field upon pumping by radiation with circular polarization σ+ or σ-. Different intensities (probabilities) of transitions for the σ+ and σ- excitations are detected in magnetic field B 0 ≈ A hfs /μB ≈ 165 G ( A hfs is the magnetic dipole constant for the ground state and μB is the Bohr magneton). A substantially different situation is observed at B ≫ B 0, since high symmetry appears for the two groups formed by radiation with circular polarization σ+ or σ-. Each group is the mirror image of the other group with respect to the frequency of the 42 S 1/2-42 P 1/2 transition, which additionally proves the occurrence of the complete Paschen-Back regime of the hyperfine structure at B ≈ 2.5 kG. A developed theoretical model well reproduces the experimental results. Possible practical applications are described. The results obtained can also be applied to the D 1 lines of 87Rb and 23Na.

  17. Nonperturbative Time Dependent Solution of a Simple Ionization Model

    NASA Astrophysics Data System (ADS)

    Costin, Ovidiu; Costin, Rodica D.; Lebowitz, Joel L.

    2018-02-01

    We present a non-perturbative solution of the Schrödinger equation {iψ_t(t,x)=-ψ_{xx}(t,x)-2(1 +α sinω t) δ(x)ψ(t,x)} , written in units in which \\hbar=2m=1, describing the ionization of a model atom by a parametric oscillating potential. This model has been studied extensively by many authors, including us. It has surprisingly many features in common with those observed in the ionization of real atoms and emission by solids, subjected to microwave or laser radiation. Here we use new mathematical methods to go beyond previous investigations and to provide a complete and rigorous analysis of this system. We obtain the Borel-resummed transseries (multi-instanton expansion) valid for all values of α, ω, t for the wave function, ionization probability, and energy distribution of the emitted electrons, the latter not studied previously for this model. We show that for large t and small α the energy distribution has sharp peaks at energies which are multiples of ω, corresponding to photon capture. We obtain small α expansions that converge for all t, unlike those of standard perturbation theory. We expect that our analysis will serve as a basis for treating more realistic systems revealing a form of universality in different emission processes.

  18. Atomic structure of self-organizing iridium induced nanowires on Ge(001)

    NASA Astrophysics Data System (ADS)

    Kabanov, N. S.; Heimbuch, R.; Zandvliet, H. J. W.; Saletsky, A. M.; Klavsyuk, A. L.

    2017-05-01

    The atomic structure of self-organizing iridium (Ir) induced nanowires on Ge(001) is studied by density functional theory (DFT) calculations and variable-temperature scanning tunneling microscopy. The Ir induced nanowires are aligned in a direction perpendicular to the Ge(001) substrate dimer rows, have a width of two atoms and are completely kink-less. Density functional theory calculations show that the Ir atoms prefer to dive into the Ge(001) substrate and push up the neighboring Ge substrate atoms. The nanowires are composed of Ge atoms and not Ir atoms as previously assumed. The regions in the vicinity of the nanowires are very dynamic, even at temperatures as low as 77 K. Time-resolved scanning tunneling microscopy measurements reveal that this dynamics is caused by buckled Ge substrate dimers that flip back and forth between their two buckled configurations.

  19. Multipole correction of atomic monopole models of molecular charge distribution. I. Peptides

    NASA Technical Reports Server (NTRS)

    Sokalski, W. A.; Keller, D. A.; Ornstein, R. L.; Rein, R.

    1993-01-01

    The defects in atomic monopole models of molecular charge distribution have been analyzed for several model-blocked peptides and compared with accurate quantum chemical values. The results indicate that the angular characteristics of the molecular electrostatic potential around functional groups capable of forming hydrogen bonds can be considerably distorted within various models relying upon isotropic atomic charges only. It is shown that these defects can be corrected by augmenting the atomic point charge models by cumulative atomic multipole moments (CAMMs). Alternatively, sets of off-center atomic point charges could be automatically derived from respective multipoles, providing approximately equivalent corrections. For the first time, correlated atomic multipoles have been calculated for N-acetyl, N'-methylamide-blocked derivatives of glycine, alanine, cysteine, threonine, leucine, lysine, and serine using the MP2 method. The role of the correlation effects in the peptide molecular charge distribution are discussed.

  20. NIST Databases on Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new database intended to assist interpretation of soft x-ray astronomical spectra, such as from the Chandra X-ray Observatory. These data will be available soon on the World Wide Web [7].

  1. Operation of the computer model for microenvironment atomic oxygen exposure

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.; Gruenbaum, P. E.

    1995-01-01

    A computer model for microenvironment atomic oxygen exposure has been developed to extend atomic oxygen modeling capability to include shadowing and reflections. The model uses average exposure conditions established by the direct exposure model and extends the application of these conditions to treat surfaces of arbitrary shape and orientation.

  2. A measurement of the angular distribution of 5 eV atomic oxygen scattered off a solid surface in earth orbit

    NASA Technical Reports Server (NTRS)

    Gregory, John C.; Peters, Palmer N.

    1986-01-01

    The angular distribution of 5 eV atomic oxygen scattered off a polished vitreous carbon surface was measured on a recent Space Shuttle flight. The experimental apparatus was of novel design, completely passive, and used thin silver films as the recording device for oxygen atoms. Most of the incident oxygen was contained in the reflected beam and remained in an active form and probably still atoms. Allowance was made for 12 percent loss of incident atoms which are converted to CO at the carbon surface. The scattered distribution which is wide lobular, peaking 15 deg in the forward direction, shows almost but not quite full accommodation.

  3. Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry.

    PubMed

    Johnson, K G; Neyenhuis, B; Mizrahi, J; Wong-Campos, J D; Monroe, C

    2015-11-20

    We sense the motion of a trapped atomic ion using a sequence of state-dependent ultrafast momentum kicks. We use this atom interferometer to characterize a nearly pure quantum state with n=1 phonon and accurately measure thermal states ranging from near the zero-point energy to n[over ¯]~10^{4}, with the possibility of extending at least 100 times higher in energy. The complete energy range of this method spans from the ground state to far outside of the Lamb-Dicke regime, where atomic motion is greater than the optical wavelength. Apart from thermometry, these interferometric techniques are useful for characterizing ultrafast entangling gates between multiple trapped ions.

  4. Injection Principles from Combustion Studies in a 200-Pound-Thrust Rocket Engine Using Liquid Oxygen and Heptane

    NASA Technical Reports Server (NTRS)

    Heidmann, M. F.; Auble, C. M.

    1955-01-01

    The importance of atomizing and mixing liquid oxygen and heptane was studied in a 200-pound-thrust rocket engine. Ten injector elements were used with both steel and transparent chambers. Characteristic velocity was measured over a range of mixture ratios. Combustion gas-flow and luminosity patterns within the chamber were obtained by photographic methods. The results show that, for efficient combustion, the propellants should be both atomized and mixed. Heptane atomization controlled the combustion rate to a much larger extent than oxygen atomization. Induced mixing, however, was required to complete combustion in the smallest volume. For stable, high-efficiency combustion and smooth engine starts, mixing after atomization was most promising.

  5. Liquid rocket combustor computer code development

    NASA Technical Reports Server (NTRS)

    Liang, P. Y.

    1985-01-01

    The Advanced Rocket Injector/Combustor Code (ARICC) that has been developed to model the complete chemical/fluid/thermal processes occurring inside rocket combustion chambers are highlighted. The code, derived from the CONCHAS-SPRAY code originally developed at Los Alamos National Laboratory incorporates powerful features such as the ability to model complex injector combustion chamber geometries, Lagrangian tracking of droplets, full chemical equilibrium and kinetic reactions for multiple species, a fractional volume of fluid (VOF) description of liquid jet injection in addition to the gaseous phase fluid dynamics, and turbulent mass, energy, and momentum transport. Atomization and droplet dynamic models from earlier generation codes are transplated into the present code. Currently, ARICC is specialized for liquid oxygen/hydrogen propellants, although other fuel/oxidizer pairs can be easily substituted.

  6. Atomic Forces for Geometry-Dependent Point Multipole and Gaussian Multipole Models

    PubMed Central

    Elking, Dennis M.; Perera, Lalith; Duke, Robert; Darden, Thomas; Pedersen, Lee G.

    2010-01-01

    In standard treatments of atomic multipole models, interaction energies, total molecular forces, and total molecular torques are given for multipolar interactions between rigid molecules. However, if the molecules are assumed to be flexible, two additional multipolar atomic forces arise due to 1) the transfer of torque between neighboring atoms, and 2) the dependence of multipole moment on internal geometry (bond lengths, bond angles, etc.) for geometry-dependent multipole models. In the current study, atomic force expressions for geometry-dependent multipoles are presented for use in simulations of flexible molecules. The atomic forces are derived by first proposing a new general expression for Wigner function derivatives ∂Dlm′m/∂Ω. The force equations can be applied to electrostatic models based on atomic point multipoles or Gaussian multipole charge density. Hydrogen bonded dimers are used to test the inter-molecular electrostatic energies and atomic forces calculated by geometry-dependent multipoles fit to the ab initio electrostatic potential (ESP). The electrostatic energies and forces are compared to their reference ab initio values. It is shown that both static and geometry-dependent multipole models are able to reproduce total molecular forces and torques with respect to ab initio, while geometry-dependent multipoles are needed to reproduce ab initio atomic forces. The expressions for atomic force can be used in simulations of flexible molecules with atomic multipoles. In addition, the results presented in this work should lead to further development of next generation force fields composed of geometry-dependent multipole models. PMID:20839297

  7. Redetermination of dicerium(III) tris-(sulfate) tetra-hydrate.

    PubMed

    Xu, Xin

    2007-12-06

    Ce(2)(SO(4))(3)(H(2)O)(4) was obtained hydro-thermally from an aqueous solution of cerium(III) oxide, trimethyl-amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 ▶). Bull. Soc. Fr. Mineral. Cristallogr.95, 269-280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S-O-Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands.

  8. Repetitive Interrogation of 2-Level Quantum Systems

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang K.

    2010-01-01

    Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.

  9. Self-consistent assessment of Englert-Schwinger model on atomic properties

    NASA Astrophysics Data System (ADS)

    Lehtomäki, Jouko; Lopez-Acevedo, Olga

    2017-12-01

    Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-1/5 vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model.

  10. Self-consistent assessment of Englert-Schwinger model on atomic properties.

    PubMed

    Lehtomäki, Jouko; Lopez-Acevedo, Olga

    2017-12-21

    Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-15vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model.

  11. Capping Ligand Vortices as “Atomic Orbitals” in Nanocrystal Self-Assembly

    DOE PAGES

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    2017-10-27

    In this work, we present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation.more » We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.« less

  12. Parallel transformation of K-SVD solar image denoising algorithm

    NASA Astrophysics Data System (ADS)

    Liang, Youwen; Tian, Yu; Li, Mei

    2017-02-01

    The images obtained by observing the sun through a large telescope always suffered with noise due to the low SNR. K-SVD denoising algorithm can effectively remove Gauss white noise. Training dictionaries for sparse representations is a time consuming task, due to the large size of the data involved and to the complexity of the training algorithms. In this paper, an OpenMP parallel programming language is proposed to transform the serial algorithm to the parallel version. Data parallelism model is used to transform the algorithm. Not one atom but multiple atoms updated simultaneously is the biggest change. The denoising effect and acceleration performance are tested after completion of the parallel algorithm. Speedup of the program is 13.563 in condition of using 16 cores. This parallel version can fully utilize the multi-core CPU hardware resources, greatly reduce running time and easily to transplant in multi-core platform.

  13. Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.

    PubMed

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    2017-11-28

    We present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.

  14. Analytical study of nano-scale logical operations

    NASA Astrophysics Data System (ADS)

    Patra, Moumita; Maiti, Santanu K.

    2018-07-01

    A complete analytical prescription is given to perform three basic (OR, AND, NOT) and two universal (NAND, NOR) logic gates at nano-scale level using simple tailor made geometries. Two different geometries, ring-like and chain-like, are taken into account where in each case the bridging conductor is coupled to a local atomic site through a dangling bond whose site energy can be controlled by means of external gate electrode. The main idea is that when injecting electron energy matches with site energy of local atomic site transmission probability drops exactly to zero, whereas the junction exhibits finite transmission for other energies. Utilizing this prescription we perform logical operations, and, we strongly believe that the proposed results can be verified in laboratory. Finally, we numerically compute two-terminal transmission probability considering general models and the numerical results match exactly well with our analytical findings.

  15. Monte Carlo Computational Modeling of Atomic Oxygen Interactions

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Miller, Sharon K.; De Groh, Kim K.

    2017-01-01

    Computational modeling of the erosion of polymers caused by atomic oxygen in low Earth orbit (LEO) is useful for determining areas of concern for spacecraft environment durability. Successful modeling requires that the characteristics of the environment such as atomic oxygen energy distribution, flux, and angular distribution be properly represented in the model. Thus whether the atomic oxygen is arriving normal to or inclined to a surface and whether it arrives in a consistent direction or is sweeping across the surface such as in the case of polymeric solar array blankets is important to determine durability. When atomic oxygen impacts a polymer surface it can react removing a certain volume per incident atom (called the erosion yield), recombine, or be ejected as an active oxygen atom to potentially either react with other polymer atoms or exit into space. Scattered atoms can also have a lower energy as a result of partial or total thermal accommodation. Many solutions to polymer durability in LEO involve protective thin films of metal oxides such as SiO2 to prevent atomic oxygen erosion. Such protective films also have their own interaction characteristics. A Monte Carlo computational model has been developed which takes into account the various types of atomic oxygen arrival and how it reacts with a representative polymer (polyimide Kapton H) and how it reacts at defect sites in an oxide protective coating, such as SiO2 on that polymer. Although this model was initially intended to determine atomic oxygen erosion behavior at defect sites for the International Space Station solar arrays, it has been used to predict atomic oxygen erosion or oxidation behavior on many other spacecraft components including erosion of polymeric joints, durability of solar array blanket box covers, and scattering of atomic oxygen into telescopes and microwave cavities where oxidation of critical component surfaces can take place. The computational model is a two dimensional model which has the capability to tune the interactions of how the atomic oxygen reacts, scatters, or recombines on polymer or nonreactive surfaces. In addition to the specification of atomic oxygen arrival details, a total of 15 atomic oxygen interaction parameters have been identified as necessary to properly simulate observed interactions and resulting polymer erosion that have been observed in LEO. The tuning of the Monte Carlo model has been accomplished by adjusting interaction parameters so the erosion patterns produced by the model match those from several actual LEO space experiments. Surface texturing in LEO can also be predicted by the model. Such comparison of space tests with ground laboratory experiments have enabled confidence in ground laboratory lifetime prediction of protected polymers. Results of Monte Carlo tuning, examples of surface texturing and undercutting erosion prediction, and several examples of how the model can be used to predict other LEO and Mars orbital space results are presented.

  16. Numerical simulations of the seasonal/latitudinal variations of atomic oxygen and nitric oxide in the lower thermosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Rees, D.; Fuller-Rowell, T. J.

    1989-01-01

    A 2-Dimensional zonally-averaged thermospheric model and the global University College London (UCL) thermospheric model have been used to investigate the seasonal, solar activity and geomagnetic variation of atomic oxygen and nitric oxide. The 2-dimensional model includes detailed oxygen and nitrogen chemistry, with appropriate completion of the energy equation, by adding the thermal infrared cooling by O and NO. This solution includes solar and auroral production of odd nitrogen compounds and metastable species. This model has been used for three investigations; firstly, to study the interactions between atmospheric dynamics and minor species transport and density; secondly, to examine the seasonal variations of atomic oxygen and nitric oxide within the upper mesosphere and thermosphere and their response to solar and geomagnetic activity variations; thirdly, to study the factor of 7 to 8 peak nitric oxide density increase as solar F sub 10.7 cm flux increases from 70 to 240 reported from the Solar Mesospheric Explorer. Auroral production of NO is shown to be the dominant source at high latitudes, generating peak NO densities a factor of 10 greater than typical number densities at low latitudes. At low latitudes, the predicted variation of the peak NO density, near 110 km, with the solar F sub 10.7 cm flux is rather smaller than is observed. This is most likely due to an overestimate of the soft X-ray flux at low solar activity, for times of extremely low support number, as occurred in June 1986. As observed on pressure levels, the variation of O density is small. The global circulation during solstice and periods of elevated geomagnetic activity causes depletion of O in regions of upwelling, and enhancements in regions of downwelling.

  17. Cooperative single-photon subradiant states in a three-dimensional atomic array

    NASA Astrophysics Data System (ADS)

    Jen, H. H.

    2016-11-01

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing.

  18. Research Investigation Directed Toward Extending the Useful Range of the Electromagnetic Spectrum. [atomic spectra and electronic structure of alkali metals

    NASA Technical Reports Server (NTRS)

    Hartmann, S. R.; Happer, W.

    1974-01-01

    The report discusses completed and proposed research in atomic and molecular physics conducted at the Columbia Radiation Laboratory from July 1972 to June 1973. Central topics described include the atomic spectra and electronic structure of alkali metals and helium, molecular microwave spectroscopy, the resonance physics of photon echoes in some solid state systems (including Raman echoes, superradiance, and two photon absorption), and liquid helium superfluidity.

  19. Calculated values of atomic oxygen fluences and solar exposure on selected surfaces of LDEF

    NASA Technical Reports Server (NTRS)

    Gillis, J. R.; Pippin, H. G.; Bourassa, R. J.; Gruenbaum, P. E.

    1995-01-01

    Atomic oxygen (AO) fluences and solar exposure have been modeled for selected hardware from the Long Duration Exposure Facility (LDEF). The atomic oxygen exposure was modeled using the microenvironment modeling code SHADOWV2. The solar exposure was modeled using the microenvironment modeling code SOLSHAD version 1.0.

  20. On the evolution of the Universe

    NASA Astrophysics Data System (ADS)

    Kondratenko, P. O.

    2014-12-01

    In this paper a model of creation and evolution of the universe in which the laws of physics are performed. The model implies that our Universe is a part of a Super-Universe as a separate layer in the fiber space, and the information communication exists between adjacent layers through the single point. During the formation of Super-Universe it was filled first a one-dimensional World of Field-time, then a two-dimensional (1+1) World was filled with energy and Planck's particles which carry the electric and magnetic charges. Completion of two-dimensional world filling leads to a "transfusion" of energy into the neighboring three-dimensional World which presents a world of known quarks which have the fractional electric charges, color charges, and spins. The next step is a "transfusion" of energy into the four-dimensional (3+1) World and the birth of the particles of this World. Evolution of this World has a completion by the brane creation of five-dimensional World. This evolution is accompanying by the birth of the entire set of stable and unstable heavy nuclei and atoms. A filling of each new layer at the fiber space does not bring the entropy into this space (i.e. cold and completely deterministic start of evolution). The proposed model supports the anthropic principle in the Universe.

  1. Quantum crystallographic charge density of urea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  2. Quantum crystallographic charge density of urea

    DOE PAGES

    Wall, Michael E.

    2016-06-08

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  3. Molecular dynamics modeling of bonding two materials by atomic scale friction stir welding

    NASA Astrophysics Data System (ADS)

    Konovalenko S., Iv.; Konovalenko, Ig. S.; Psakhie, S. G.

    2017-12-01

    Molecular dynamics model of atomic scale friction stir welding has been developed. Formation of a butt joint between two crystallites was modeled by means of rotating rigid conical tool traveling along the butt joint line. The formed joint had an intermixed atomic structure composed of atoms initially belonged to the opposite mated piece of metal. Heat removal was modeled by adding the extra viscous force to peripheral atomic layers. This technique provides the temperature control in the tool-affected zone during welding. Auxiliary vibration action was added to the rotating tool. The model provides the variation of the tool's angular velocity, amplitude, frequency and direction of the auxiliary vibration action to provide modeling different welding modes.

  4. Mechanistic characterization of chloride interferences in electrothermal atomization systems

    USGS Publications Warehouse

    Shekiro, J.M.; Skogerboe, R.K.; Taylor, Howard E.

    1988-01-01

    A computer-controlled spectrometer with a photodiode array detector has been used for wavelength and temperature resolved characterization of the vapor produced by an electrothermal atomizer. The system has been used to study the chloride matrix interference on the atomic absorption spectrometric determination of manganese and copper. The suppression of manganese and copper atom populations by matrix chlorides such as those of calcium and magnesium is due to the gas-phase formation of an analyte chloride species followed by the diffusion of significant fractions of these species from the atom cell prior to completion of the atomization process. The analyte chloride species cannot be formed when matrix chlorides with metal-chloride bond dissociation energies above those of the analyte chlorides are the principal entitles present. The results indicate that multiple wavelength spectrometry used to obtain temperature-resolved spectra is a viable tool in the mechanistic characterization of interference effects observed with electrothermal atomization systems. ?? 1988 American Chemical Society.

  5. Atomic Data for Stellar Astrophysics: from the UV to the IR

    NASA Technical Reports Server (NTRS)

    Wahlgren, Glenn M.

    2011-01-01

    The study of stars and stellar evolution relies heavily on the analysis of stellar spectra. The need for atomic line data from the ultraviolet (UV) to the infrared (lR) regions is greater now than ever. In the past twenty years, the time since the launch of the Hubble Space Telescope, great progress has been made in acquiring atomic data for UV transitions. The optical wavelength region, now expanded by progress in detector technology, continues to provide motivation for new atomic data. In addition, investments in new instrumentation for ground-based and space observatories has lead to the availability of high-quality spectra at IR wavelengths, where the need for atomic data is most critical. In this review, examples are provided of the progress made in generating atomic data for stellar studies, with a look to the future for addressing the accuracy and completeness of atomic data for anticipated needs.

  6. Computational model for noncontact atomic force microscopy: energy dissipation of cantilever.

    PubMed

    Senda, Yasuhiro; Blomqvist, Janne; Nieminen, Risto M

    2016-09-21

    We propose a computational model for noncontact atomic force microscopy (AFM) in which the atomic force between the cantilever tip and the surface is calculated using a molecular dynamics method, and the macroscopic motion of the cantilever is modeled by an oscillating spring. The movement of atoms in the tip and surface is connected with the oscillating spring using a recently developed coupling method. In this computational model, the oscillation energy is dissipated, as observed in AFM experiments. We attribute this dissipation to the hysteresis and nonconservative properties of the interatomic force that acts between the atoms in the tip and sample surface. The dissipation rate strongly depends on the parameters used in the computational model.

  7. Benchmarking transition energies and emission strengths for X-ray astrophysics with measurements at the Livermore EBITs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hell, Natalie

    K-shell transitions in astrophysically abundant metals and L-shell transitions in Fe group elements show characteristic signatures in the soft X-ray spectrum in the energy range 0.1–10 keV. These signatures have great diagnostic value for plasma parameters such as electron and ion temperatures and densities, and can thus help understand the physics controlling the energetic processes in astrophysical sources. This diagnostic power increases with advances in spectral resolution and effective area of the employed X-ray observatories. However, to make optimal use of the diagnostic potential – whether through global spectral modeling or through diagnostics from local modeling of individual lines –more » the underlying atomic physics has to be complete and well known. With the next generation of soft X-ray observatories featuring micro-calorimeters such as the SXS on Astro- H/Hitomi and the X-IFU on Athena, broadband high-resolution spectroscopy with large effective area will become more commonly available in the next decade. With these spectrometers, the accuracy of the plasma parameters derived from spectral modeling will be limited by the uncertainty of the reference atomic data rather than by instrumental factors, as is sometimes already the case for the high-resolution grating observations with Chandra-HETG and XMM-Newton-RGS. To take full advantage of the measured spectra, assessment of the accuracy of and improvements to the available atomic reference data are therefore important. Dedicated measurements in the laboratory are essential to benchmark the theoretical calculations providing the bulk of the reference data used in astrophysics. Experiments at the Lawrence Livermore National Laboratory electron beam ion traps (EBIT-I and SuperEBIT) have a long history of providing this service. In this work, I present new measurements of transition energies and absolute electron impact excitation cross sections geared towards currently open atomic physics data needs.« less

  8. Technical Note: Effect of explicit M and N-shell atomic transitions on a low-energy x-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Peter G. F., E-mail: peter.watson@mail.mcgill.ca; Seuntjens, Jan

    Purpose: In EGSnrc, atomic transitions to and from the M and N-shells are treated in an average way by default. This approach is justified in which the energy difference between explicit and average M and N-shell binding energies is less than 1 keV, and for most applications can be considered negligible. However, for simulations of low energy x-ray sources on thin, high-Z targets, characteristic x-rays can make up a significant portion of the source spectra. As of release V4-2.4.0, EGSnrc has included an option to enable a more complete algorithm of all atomic transitions available in the EADL compilation. Inmore » this paper, the effect of M and N-shell averaging on the calculation of half-value layer (HVL) and relative depth dose (RDD) curve of a 50 kVp intraoperative x-ray tube with a thin gold target was investigated. Methods: A 50 kVp miniature x-ray source with a gold target (The INTRABEAM System, Carl Zeiss, Germany) was modeled with the EGSnrc user code cavity, both with and without M and N-shell averaging. From photon fluence spectra simulations, the source HVLs were determined analytically. The same source model was then used with egs-chamber to calculate RDD curves in water. Results: A 4% increase of HVL was reported when accounting for explicit M and N-shell transitions, and up to a 9% decrease in local relative dose for normalization at 3 mm depth in water. Conclusions: The EGSnrc default of using averaged M and N-shell binding energies has an observable effect on the HVL and RDD of a low energy x-ray source with high-Z target. For accurate modeling of this class of devices, explicit atomic transitions should be included.« less

  9. LDEF microenvironments, observed and predicted

    NASA Astrophysics Data System (ADS)

    Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.

    1993-04-01

    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.

  10. LDEF microenvironments, observed and predicted

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.

    1993-01-01

    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.

  11. Learning about Regiochemistry from a Hydrogen-Atom Abstraction Reaction in Water

    ERIC Educational Resources Information Center

    Sears-Dundes, Christopher; Huon, Yoeup; Hotz, Richard P.; Pinhas, Allan R.

    2011-01-01

    An experiment has been developed in which the hydrogen-atom abstraction and the coupling of propionitrile, using Fenton's reagent, are investigated. Students learn about the regiochemistry of radical formation, the stereochemistry of product formation, and the interpretation of GC-MS data, in a safe reaction that can be easily completed in one…

  12. The Harnessed Atom: Nuclear Energy & Electricity.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    This document is part of a nuclear energy curriculum designed for grades six through eight. The complete kit includes a written text, review exercises, activities for the students, and a teachers guide. The 19 lessons in the curriculum are divided into four units including: (1) "Energy and Electricity"; (2) "Understanding Atoms and Radiation"; (3)…

  13. An all-atom structure-based potential for proteins: bridging minimal models with all-atom empirical forcefields.

    PubMed

    Whitford, Paul C; Noel, Jeffrey K; Gosavi, Shachi; Schug, Alexander; Sanbonmatsu, Kevin Y; Onuchic, José N

    2009-05-01

    Protein dynamics take place on many time and length scales. Coarse-grained structure-based (Go) models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All-atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure-based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all-atom model. Results for the B domain of Protein A, the SH3 domain of C-Src Kinase, and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a C(alpha) structure-based model and an all-atom empirical forcefield. Key findings include: (1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature, (2) folding mechanisms are robust to variations of the energetic parameters, (3) protein folding free-energy barriers can be manipulated through parametric modifications, (4) the global folding mechanisms in a C(alpha) model and the all-atom model agree, although differences can be attributed to energetic heterogeneity in the all-atom model, and (5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Because this structure-based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function.

  14. An All-atom Structure-Based Potential for Proteins: Bridging Minimal Models with All-atom Empirical Forcefields

    PubMed Central

    Whitford, Paul C.; Noel, Jeffrey K.; Gosavi, Shachi; Schug, Alexander; Sanbonmatsu, Kevin Y.; Onuchic, José N.

    2012-01-01

    Protein dynamics take place on many time and length scales. Coarse-grained structure-based (Gō) models utilize the funneled energy landscape theory of protein folding to provide an understanding of both long time and long length scale dynamics. All-atom empirical forcefields with explicit solvent can elucidate our understanding of short time dynamics with high energetic and structural resolution. Thus, structure-based models with atomic details included can be used to bridge our understanding between these two approaches. We report on the robustness of folding mechanisms in one such all-atom model. Results for the B domain of Protein A, the SH3 domain of C-Src Kinase and Chymotrypsin Inhibitor 2 are reported. The interplay between side chain packing and backbone folding is explored. We also compare this model to a Cα structure-based model and an all-atom empirical forcefield. Key findings include 1) backbone collapse is accompanied by partial side chain packing in a cooperative transition and residual side chain packing occurs gradually with decreasing temperature 2) folding mechanisms are robust to variations of the energetic parameters 3) protein folding free energy barriers can be manipulated through parametric modifications 4) the global folding mechanisms in a Cα model and the all-atom model agree, although differences can be attributed to energetic heterogeneity in the all-atom model 5) proline residues have significant effects on folding mechanisms, independent of isomerization effects. Since this structure-based model has atomic resolution, this work lays the foundation for future studies to probe the contributions of specific energetic factors on protein folding and function. PMID:18837035

  15. Three-dimensional time-dependent computer modeling of the electrothermal atomizers for analytical spectrometry

    NASA Astrophysics Data System (ADS)

    Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.

    2016-02-01

    A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.

  16. Quantum dynamics of a two-state system induced by a chirped zero-area pulse

    NASA Astrophysics Data System (ADS)

    Lee, Han-gyeol; Song, Yunheung; Kim, Hyosub; Jo, Hanlae; Ahn, Jaewook

    2016-02-01

    It is well known that area pulses make Rabi oscillation and chirped pulses in the adiabatic interaction regime induce complete population inversion of a two-state system. Here we show that chirped zero-area pulses could engineer an interplay between the adiabatic evolution and Rabi-like rotations. In a proof-of-principle experiment utilizing spectral chirping of femtosecond laser pulses with a resonant spectral hole, we demonstrate that the chirped zero-area pulses could induce, for example, complete population inversion and return of the cold rubidium atom two-state system. Experimental result agrees well with the theoretically considered overall dynamics, which could be approximately modeled to a Ramsey-like three-pulse interaction, where the x and z rotations are driven by the hole and the main pulse, respectively.

  17. Voronoi Based Nanocrystalline Generation Algorithm for Atomistic Simulations

    DTIC Science & Technology

    2016-12-22

    the  time  for reviewing instructions, searching existing data sources, gathering and maintaining the  data needed, and completing and reviewing the...taken when generating nanocrystals (left to right): populating cell with grain centers, sphere of atoms with defined crystal structure centered at...nanocrystals (left to right): populating cell with grain centers, sphere of atoms with defined crystal structure centered at each grain center, identifying atoms

  18. Coherent and radiative couplings through two-dimensional structured environments

    NASA Astrophysics Data System (ADS)

    Galve, F.; Zambrini, R.

    2018-03-01

    We study coherent and radiative interactions induced among two or more quantum units by coupling them to two-dimensional (2D) lattices acting as structured environments. This model can be representative of atoms trapped near photonic crystal slabs, trapped ions in Coulomb crystals, or to surface acoustic waves on piezoelectric materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice, for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g., related to long-time or large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details such as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this behavior with known van Hove singularities in the infinite lattice limit. Furthermore, we export the understanding of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the 2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally, we demonstrate that induced coherent interactions for dark states are zero for the finite lattice.

  19. Observing heliospheric neutral atoms at 1 AU

    NASA Astrophysics Data System (ADS)

    Heerikhuisen, Jacob; Pogorelov, Nikolai; Florinski, Vladimir; Zank, Gary

    2006-09-01

    Although in situ observations of distant heliospheric plasma by the Voyagers has proven to be extremely enlightening, such point observations need to be complemented with global measurements taken remotely to obtain a complete picture of the heliosphere and local interstellar environment. Neutral atoms, with their contempt for magnetic fields, provide useful probes of the plasma that generated them. However, there will be a number of ambiguities in neutral atom readings that require a deeper understanding of the plasma processes generating neutral atoms, as well as the loss mechanisms on their flight to the observation point. We introduce a procedure for generating all-sky maps of energetic H-atoms, calculated directly in our Monte-Carlo neutral atom code. Results obtained for a self-consistent axisymmetric MHD-Boltzmann calculation, as well as several non-selfconsistent 3D sky maps, will be presented.

  20. Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity

    NASA Technical Reports Server (NTRS)

    Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.

  1. Giant (12 ×12 ) and (4 ×8 ) reconstructions of the 6 H -SiC(0001) surface obtained by progressive enrichment in Si atoms

    NASA Astrophysics Data System (ADS)

    Martrou, David; Leoni, Thomas; Chaumeton, Florian; Castanié, Fabien; Gauthier, Sébastien; Bouju, Xavier

    2018-02-01

    Silicon carbide (SiC) is nowadays a major material for applications in high power electronics, quantum optics, or nitride semiconductors growth. Mastering the surface of SiC substrate is crucial to obtain reproducible results. Previous studies on the 6 H -SiC(0001) surface have determined several reconstructions, including the (√{3 }×√{3 }) -R 30∘ and the (3 ×3 ) . Here, we introduce a process of progressive Si enrichment that leads to the formation of two reconstructions, the giant (12 ×12 ) and the (4 ×8 ) . From electron diffraction and tunneling microscopy completed by molecular dynamics simulations, we build models introducing a type of Si adatom bridging two Si surface atoms. Using these Si bridges, we also propose a structure for two other reconstructions, the (2 √{3 }×2 √{3 }) -R 30∘ and the (2 √{3 }×2 √{13 } ). We show that five reconstructions follow each other with Si coverage ranging from 1 and 1.444 monolayer. This result opens the way to greatly improve the control of 6 H -SiC(0001) at the atomic scale.

  2. A Computer-Controlled Classroom Model of an Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Engstrom, Tyler A.; Johnson, Matthew M.; Eklund, Peter C.; Russin, Timothy J.

    2015-12-01

    The concept of "seeing by feeling" as a way to circumvent limitations on sight is universal on the macroscopic scale—reading Braille, feeling one's way around a dark room, etc. The development of the atomic force microscope (AFM) in 1986 extended this concept to imaging in the nanoscale. While there are classroom demonstrations that use a tactile probe to map the topography or some other property of a sample, the rastering of the probe over the sample is manually controlled, which is both tedious and potentially inaccurate. Other groups have used simulation or tele-operation of an AFM probe. In this paper we describe a teaching AFM with complete computer control to map out topographic and magnetic properties of a "crystal" consisting of two-dimensional arrays of spherical marble "atoms." Our AFM is well suited for lessons on the "Big Ideas of Nanoscale" such as tools and instrumentation, as well as a pre-teaching activity for groups with remote access AFM or mobile AFM. The principle of operation of our classroom AFM is the same as that of a real AFM, excepting the nature of the force between sample and probe.

  3. Rayleigh Scattering in Spectral Series with L-term Interference

    NASA Astrophysics Data System (ADS)

    Casini, R.; Manso Sainz, R.; del Pino Alemán, T.

    2017-12-01

    We derive a formalism to describe the scattering of polarized radiation over the full spectral range encompassed by atomic transitions belonging to the same spectral series (e.g., the H I Lyman and Balmer series, the UV multiplets of Fe I and Fe II). This allows us to study the role of radiation-induced coherence among the upper terms of the spectral series, and its contribution to Rayleigh scattering and the polarization of the solar continuum. We rely on previous theoretical results for the emissivity of a three-term atom of the Λ-type, taking into account partially coherent scattering, and generalize its expression in order to describe a “multiple Λ” atomic system underlying the formation of a spectral series. Our study shows that important polarization effects must be expected because of the combined action of partial frequency redistribution and radiation-induced coherence among the terms of the series. In particular, our model predicts the correct asymptotic limit of 100% polarization in the far wings of a complete (i.e., {{Δ }}L=0,+/- 1) group of transitions, which must be expected on the basis of the principle of spectroscopic stability.

  4. Research on System Coherence Evolution of Different Environmental Models

    NASA Astrophysics Data System (ADS)

    Zhang, Si-Qi; Lu, Jing-Bin; Li, Hong; Liu, Ji-Ping; Zhang, Xiao-Ru; Liu, Han; Liang, Yu; Ma, Ji; Liu, Xiao-Jing; Wu, Xiang-Yao

    2018-04-01

    In this paper, we have studied the evolution curve of two-level atomic system that the initial state is excited state. At the different of environmental reservoir models, which include the single Lorentzian, ideal photon band-gap, double Lorentzian and square Lorentzian reservoir, we researched the influence of these environmental reservoir models on the evolution of energy level population. At static no modulation, comparing the four environmental models, the atomic energy level population oscillation of square Lorentzian reservoir model is fastest, and the atomic system decoherence is slowest. Under dynamic modulation, comparing the photon band-gap model with the single Lorentzian reservoir model, no matter what form of dynamic modulation, the time of atoms decay to the ground state is longer for the photonic band-gap model. These conclusions make the idea of using the environmental change to modulate the coherent evolution of atomic system become true.

  5. Redetermination of dicerium(III) tris­(sulfate) tetra­hydrate

    PubMed Central

    Xu, Xin

    2008-01-01

    Ce2(SO4)3(H2O)4 was obtained hydro­thermally from an aqueous solution of cerium(III) oxide, trimethyl­amine and sulfuric acid. The precision of the structure determination has been significantly improved compared with the previous result [Dereigne (1972 ▶). Bull. Soc. Fr. Mineral. Cristallogr. 95, 269–280]. The coordination about the two Ce atoms is achieved by seven and six bridging O atoms from sulfate anions. Each S atom makes four S—O—Ce linkages through bridging O atoms. The coordination sphere of each Ce is completed by two water molecules, which act as terminal ligands. PMID:21200451

  6. Mathematical Modeling of Resonant Processes in Confined Geometry of Atomic and Atom-Ion Traps

    NASA Astrophysics Data System (ADS)

    Melezhik, Vladimir S.

    2018-02-01

    We discuss computational aspects of the developed mathematical models for resonant processes in confined geometry of atomic and atom-ion traps. The main attention is paid to formulation in the nondirect product discrete-variable representation (npDVR) of the multichannel scattering problem with nonseparable angular part in confining traps as the boundary-value problem. Computational efficiency of this approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we predicted recently.

  7. QTAIM charge-charge flux-dipole flux interpretation of electronegativity and potential models of the fluorochloromethane mean dipole moment derivatives.

    PubMed

    Silva, Arnaldo F; da Silva, João V; Haiduke, R L A; Bruns, Roy E

    2011-11-17

    Infrared fundamental vibrational intensities and quantum theory atoms in molecules (QTAIM) charge-charge flux-dipole flux (CCFDF) contributions to the polar tensors of the fluorochloromethanes have been calculated at the QCISD/cc-pVTZ level. A root-mean-square error of 20.0 km mol(-1) has been found compared to an experimental error estimate of 14.4 and 21.1 km mol(-1) for MP2/6-311++G(3d,3p) results. The errors in the QCISD polar tensor elements and mean dipole moment derivatives are 0.059 e when compared with the experimental values. Both theoretical levels provide results showing that the dynamical charge and dipole fluxes provide significant contributions to the mean dipole moment derivatives and tend to be of opposite signs canceling one another. Although the experimental mean dipole moment derivative values suggest that all the fluorochloromethane molecules have electronic structures consistent with a simple electronegativity model with transferable atomic charges for their terminal atoms, the QTAIM/CCFDF models confirm this only for the fluoromethanes. Whereas the fluorine atom does not suffer a saturation effect in its capacity to drain electronic charge from carbon atoms that are attached to other fluorine and chlorine atoms, the zero flux electronic charge of the chlorine atom depends on the number and kind of the other substituent atoms. Both the QTAIM carbon charges (r = 0.990) and mean dipole moment derivatives (r = 0.996) are found to obey Siegbahn's potential model for carbon 1s electron ionization energies at the QCISD/cc-pVTZ level. The latter is a consequence of the carbon mean derivatives obeying the electronegativity model and not necessarily to their similarities with atomic charges. Atomic dipole contributions to the neighboring atom electrostatic potentials of the fluorochloromethanes are found to be of comparable size to the atomic charge contributions and increase the accuracy of Siegbahn's model for the QTAIM charge model results. Substitution effects of the hydrogen, fluorine, and chlorine atoms on the charge and dipole flux QTAIM contributions are found to be additive for the mean dipole derivatives of the fluorochloromethanes.

  8. Atomic data and line intensities for the S V ion

    NASA Astrophysics Data System (ADS)

    Iorga, C.; Stancalie, V.

    2017-05-01

    The energy levels, oscillator strengths, spontaneous radiative decay rates, lifetimes and electron impact collision strengths have been obtained for the [ Ne ] 3s nl, [ Ne ] 3p nl, [ Ne ] 3d nl configurations belonging to S V ion, with n ≤ 7 and l ≤ 4, resulting in 567 fine-structure levels. The calculations have been performed within the fully relativistic Flexible Atomic Code (FAC, Gu, 2008) framework and the distorted wave approximation. To attain the desired accuracy for the levels energy, the valence-valence and valence-core correlations have been taken care of by including 96 configuration state functions (CSFs) in the model, reaching a total of 3147 fine-structure levels. Two separate calculations have been performed with the local central potential computed for two different average configurations. A third calculation is also performed without the addition of the core-excited states in the atomic model for completeness. The effects of slightly different mean configurations and valence-core correlations on the energy levels and decay rates are investigated. The collision data have been computed employing the relativistic distorted-wave method along with the atomic model containing the 96 CSFs and corresponding to the ground state mean configuration. The collision strengths corresponding to excitation from the first four fine-structure levels are given for five energy values of the scattered electron 2.65, 6.18, 11.02, 17.36, 25.43 Rydberg, plus an additional variable small energy value near the threshold. A collisional-radiative model has been employed to solve the rate equations for the populations of the 567 fine-structure levels, for a temperature of LogTE(K) = 5.2 corresponding to the maximum abundance of S V, and at densities 106-1016cm-3, assuming a Maxwellian electron energy distribution function and black body radiation of temperature 6000 K and dilution factor 0.35 for the photon distribution function. The main processes responsible for the level population variations are the electron-impact collisional excitation and the radiative decay along with their inverse processes. As a result, the level populations along with the spectral high-line intensity ratios are provided.

  9. Knowledge Extraction from Atomically Resolved Images.

    PubMed

    Vlcek, Lukas; Maksov, Artem; Pan, Minghu; Vasudevan, Rama K; Kalinin, Sergei V

    2017-10-24

    Tremendous strides in experimental capabilities of scanning transmission electron microscopy and scanning tunneling microscopy (STM) over the past 30 years made atomically resolved imaging routine. However, consistent integration and use of atomically resolved data with generative models is unavailable, so information on local thermodynamics and other microscopic driving forces encoded in the observed atomic configurations remains hidden. Here, we present a framework based on statistical distance minimization to consistently utilize the information available from atomic configurations obtained from an atomically resolved image and extract meaningful physical interaction parameters. We illustrate the applicability of the framework on an STM image of a FeSe x Te 1-x superconductor, with the segregation of the chalcogen atoms investigated using a nonideal interacting solid solution model. This universal method makes full use of the microscopic degrees of freedom sampled in an atomically resolved image and can be extended via Bayesian inference toward unbiased model selection with uncertainty quantification.

  10. Characterization of Phosphate Species on Hydrated Anatase TiO2 Surfaces.

    PubMed

    Tielens, Frederik; Gervais, Christel; Deroy, Geraldine; Jaber, Maguy; Stievano, Lorenzo; Coelho Diogo, Cristina; Lambert, Jean-François

    2016-02-02

    The adsorption/interaction of KH2PO4 with solvated (100) and (101) TiO2 anatase surfaces is investigated using periodic DFT calculations in combination with GIPAW NMR calculations and experimental IR and solid state (17)O, and (31)P NMR spectroscopies. A complete and realistic model has been used to simulate the solvent by individual water molecules. The most stable adsorption configurations are characterized theoretically at the atomic scale, and experimentally supported by NMR and IR spectroscopies. It is shown that H2PO4(-) chemisorbs on the (100) and (101) anatase surfaces, preferentially via a bidentate geometry. Dimer (H3P2O7(-)) and trimer (H4P3O10(-)) adsorption models are confronted with monomer adsorption models, in order to rationalize their occurrence.

  11. Interaction with a field: a simple integrable model with backreaction

    NASA Astrophysics Data System (ADS)

    Mouchet, Amaury

    2008-09-01

    The classical model of an oscillator linearly coupled to a string captures, for a low price in technique, many general features of more realistic models for describing a particle interacting with a field or an atom in an electromagnetic cavity. The scattering matrix and the asymptotic in and out-waves on the string can be computed exactly and the phenomenon of resonant scattering can be introduced in the simplest way. The dissipation induced by the coupling of the oscillator to the string can be studied completely. In the case of a d'Alembert string, the backreaction leads to an Abraham-Lorentz-Dirac-like equation. In the case of a Klein-Gordon string, one can see explicitly how radiation governs the (meta)stability of the (quasi)bounded mode.

  12. Quasi-coarse-grained dynamics: modelling of metallic materials at mesoscales

    NASA Astrophysics Data System (ADS)

    Dongare, Avinash M.

    2014-12-01

    A computationally efficient modelling method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of molecular dynamics (MD) simulations to model behaviour of metallic materials at the mesoscales. This mesoscale method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and using scaling relationships for the atomic-scale interatomic potentials in MD simulations to define the interactions between representative atoms. The scaling relationships retain the atomic-scale degrees of freedom and therefore energetics of the representative atoms as would be predicted in MD simulations. The total energetics of the system is retained by scaling the energetics and the atomic-scale degrees of freedom of these representative atoms to account for the missing atoms in the microstructure. This scaling of the energetics renders improved time steps for the QCGD simulations. The success of the QCGD method is demonstrated by the prediction of the structural energetics, high-temperature thermodynamics, deformation behaviour of interfaces, phase transformation behaviour, plastic deformation behaviour, heat generation during plastic deformation, as well as the wave propagation behaviour, as would be predicted using MD simulations for a reduced number of representative atoms. The reduced number of atoms and the improved time steps enables the modelling of metallic materials at the mesoscale in extreme environments.

  13. Optical Pattern Formation in Cold Atoms: Explaining the Red-Blue Asymmetry

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie; Gauthier, Daniel

    2013-05-01

    The study of pattern formation in atomic systems has provided new insight into fundamental many-body physics and low-light-level nonlinear optics. Pattern formation in cold atoms in particular is of great interest in condensed matter physics and quantum information science because atoms undergo self-organization at ultralow input powers. We recently reported the first observation of pattern formation in cold atoms but found that our results were not accurately described by any existing theoretical model of pattern formation. Previous models describing pattern formation in cold atoms predict that pattern formation should occur using both red and blue-detuned pump beams, favoring a lower threshold for blue detunings. This disagrees with our recent work, in which we only observed pattern formation with red-detuned pump beams. Previous models also assume a two-level atom, which cannot account for the cooling processes that arise when beams counterpropagate through a cold atomic vapor. We describe a new model for pattern formation that accounts for Sisyphus cooling in multi-level atoms, which gives rise to a new nonlinearity via spatial organization of the atoms. This spatial organization causes a sharp red-blue detuning asymmetry, which agrees well with our experimental observations. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  14. Hydrogen ADPs with Cu Kα data? Invariom and Hirshfeld atom modelling of fluconazole.

    PubMed

    Orben, Claudia M; Dittrich, Birger

    2014-06-01

    For the structure of fluconazole [systematic name: 2-(2,4-difluorophenyl)-1,3-bis(1H-1,2,4-triazol-1-yl)propan-2-ol] monohydrate, C13H12F2N6O·H2O, a case study on different model refinements is reported, based on single-crystal X-ray diffraction data measured at 100 K with Cu Kα radiation to a resolution of sin θ/λ of 0.6 Å(-1). The structure, anisotropic displacement parameters (ADPs) and figures of merit from the independent atom model are compared to `invariom' and `Hirshfeld atom' refinements. Changing from a spherical to an aspherical atom model lowers the figures of merit and improves both the accuracy and the precision of the geometrical parameters. Differences between results from the two aspherical-atom refinements are small. However, a refinement of ADPs for H atoms is only possible with the Hirshfeld atom density model. It gives meaningful results even at a resolution of 0.6 Å(-1), but requires good low-order data.

  15. Molecular dynamics modeling of atomic displacement cascades in 3C-SiC: Comparison of interatomic potentials

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Osetsky, Y. N.; Stoller, R. E.

    2015-10-01

    We used molecular dynamics modeling of atomic displacement cascades to characterize the nature of primary radiation damage in 3C-SiC. We demonstrated that the most commonly used interatomic potentials are inconsistent with ab initio calculations of defect energetics. Both the Tersoff potential used in this work and a modified embedded-atom method potential reveal a barrier to recombination of the carbon interstitial and carbon vacancy which is much higher than the density functional theory (DFT) results. The barrier obtained with a newer potential by Gao and Weber is closer to the DFT result. This difference results in significant differences in the cascade production of point defects. We have completed both 10 keV and 50 keV cascade simulations in 3C-SiC at a range of temperatures. In contrast to the Tersoff potential, the Gao-Weber potential produces almost twice as many C vacancies and interstitials at the time of maximum disorder (∼0.2 ps) but only about 25% more stable defects at the end of the simulation. Only about 20% of the carbon defects produced with the Tersoff potential recombine during the in-cascade annealing phase, while about 60% recombine with the Gao-Weber potential. The Gao-Weber potential appears to give a more realistic description of cascade dynamics in SiC, but still has some shortcomings when the defect migration barriers are compared to the ab initio results.

  16. Student perception and conceptual development as represented by student mental models of atomic structure

    NASA Astrophysics Data System (ADS)

    Park, Eun Jung

    The nature of matter based upon atomic theory is a principal concept in science; hence, how to teach and how to learn about atoms is an important subject for science education. To this end, this study explored student perceptions of atomic structure and how students learn about this concept by analyzing student mental models of atomic structure. Changes in student mental models serve as a valuable resource for comprehending student conceptual development. Data was collected from students who were taking the introductory chemistry course. Responses to course examinations, pre- and post-questionnaires, and pre- and post-interviews were used to analyze student mental models of atomic structure. First, this study reveals that conceptual development can be achieved, either by elevating mental models toward higher levels of understanding or by developing a single mental model. This study reinforces the importance of higher-order thinking skills to enable students to relate concepts in order to construct a target model of atomic structure. Second, Bohr's orbital structure seems to have had a strong influence on student perceptions of atomic structure. With regard to this finding, this study suggests that it is instructionally important to teach the concept of "orbitals" related to "quantum theory." Third, there were relatively few students who had developed understanding at the level of the target model, which required student understanding of the basic ideas of quantum theory. This study suggests that the understanding of atomic structure based on the idea of quantum theory is both important and difficult. Fourth, this study included different student assessments comprised of course examinations, questionnaires, and interviews. Each assessment can be used to gather information to map out student mental models. Fifth, in the comparison of the pre- and post-interview responses, this study showed that high achieving students moved toward more improved models or to advanced levels of understanding. The analysis of mental models in this study has provided information describing student understanding of the nature and structure of an atom. In addition to an assessment of student cognition, information produced from this study can serve as an important resource for curriculum development, teacher education, and instruction.

  17. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1993-01-01

    Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.

  18. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  19. ITFITS model for vibration--translation energy partitioning in atom-- polyatomic molecule collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shobatake, K.; Rice, S.A.; Lee, Y.T.

    1973-09-01

    A model for vibration-translation energy partitioning in the collinear collision of an atom and an axially symmetric polyatonaic molecule is proposed. The model is based on an extension of the ideas of Mahan and Heidrich, Wilson, and Rapp. Comparison of energy transfers computed from classical trajesctory calculations and the model proposed indicate good agreement when the mass of the free atom is small relative to the mass of the bound atom it strikes. The agreement is less satisfactory when that mass ratio becomes large. (auth)

  20. Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging

    DOE PAGES

    Ishikawa, Ryo; Lupini, Andrew R.; Hinuma, Yoyo; ...

    2014-11-26

    To completely understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us tomore » measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation.« less

  1. Dynamics of Hollow Atom Formation in Intense X-Ray Pulses Probed by Partial Covariance Mapping

    NASA Astrophysics Data System (ADS)

    Frasinski, L. J.; Zhaunerchyk, V.; Mucke, M.; Squibb, R. J.; Siano, M.; Eland, J. H. D.; Linusson, P.; v. d. Meulen, P.; Salén, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Schorb, S.; Messerschmidt, M.; Glownia, J. M.; Cryan, J. P.; Coffee, R. N.; Takahashi, O.; Wada, S.; Piancastelli, M. N.; Richter, R.; Prince, K. C.; Feifel, R.

    2013-08-01

    When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called “partial covariance mapping” to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

  2. Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations for Z between 2 and 106

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.; Aoyagi, M.; Mark, H.; Chen, M. H.; Crasemann, B.

    1976-01-01

    Electron binding energies in neutral atoms have been calculated relativistically, with the requirement of complete relaxation. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all elements with atomic numbers ranging from 2 to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. Binding energies including relaxation are listed for all electrons in all atoms over the indicated range of atomic numbers. A self-energy correction is included for the 1s, 2s, and 2p(1/2) levels. Results for selected atoms are compared with energies calculated by other methods and with experimental values.

  3. Calibration and validation of coarse-grained models of atomic systems: application to semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Farrell, Kathryn; Oden, J. Tinsley

    2014-07-01

    Coarse-grained models of atomic systems, created by aggregating groups of atoms into molecules to reduce the number of degrees of freedom, have been used for decades in important scientific and technological applications. In recent years, interest in developing a more rigorous theory for coarse graining and in assessing the predictivity of coarse-grained models has arisen. In this work, Bayesian methods for the calibration and validation of coarse-grained models of atomistic systems in thermodynamic equilibrium are developed. For specificity, only configurational models of systems in canonical ensembles are considered. Among major challenges in validating coarse-grained models are (1) the development of validation processes that lead to information essential in establishing confidence in the model's ability predict key quantities of interest and (2), above all, the determination of the coarse-grained model itself; that is, the characterization of the molecular architecture, the choice of interaction potentials and thus parameters, which best fit available data. The all-atom model is treated as the "ground truth," and it provides the basis with respect to which properties of the coarse-grained model are compared. This base all-atom model is characterized by an appropriate statistical mechanics framework in this work by canonical ensembles involving only configurational energies. The all-atom model thus supplies data for Bayesian calibration and validation methods for the molecular model. To address the first challenge, we develop priors based on the maximum entropy principle and likelihood functions based on Gaussian approximations of the uncertainties in the parameter-to-observation error. To address challenge (2), we introduce the notion of model plausibilities as a means for model selection. This methodology provides a powerful approach toward constructing coarse-grained models which are most plausible for given all-atom data. We demonstrate the theory and methods through applications to representative atomic structures and we discuss extensions to the validation process for molecular models of polymer structures encountered in certain semiconductor nanomanufacturing processes. The powerful method of model plausibility as a means for selecting interaction potentials for coarse-grained models is discussed in connection with a coarse-grained hexane molecule. Discussions of how all-atom information is used to construct priors are contained in an appendix.

  4. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  5. The Chocolate Shop and Atomic Orbitals: A New Atomic Model Created by High School Students to Teach Elementary Students

    ERIC Educational Resources Information Center

    Liguori, Lucia

    2014-01-01

    Atomic orbital theory is a difficult subject for many high school and beginning undergraduate students, as it includes mathematical concepts not yet covered in the school curriculum. Moreover, it requires certain ability for abstraction and imagination. A new atomic orbital model "the chocolate shop" created "by" students…

  6. Project Physics Text 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Basic atomic theories are presented in this fifth unit of the Project Physics text for use by senior high students. Chemical basis of atomic models in the early years of the 18th Century is discussed n connection with Dalton's theory, atomic properties, and periodic tables. The discovery of electrons is described by using cathode rays, Millikan's…

  7. Numerical Modeling of Turbulence Effects within an Evaporating Droplet in Atomizing Sprays

    NASA Technical Reports Server (NTRS)

    Balasubramanyam, M. S.; Chen, C. P.; Trinh, H. P.

    2006-01-01

    A new approach to account for finite thermal conductivity and turbulence effects within atomizing liquid sprays is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen (2005). This finite conductivity model is based on the two-temperature film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal diffhsivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. The current evaporation model is incorporated into the T-blob atomization model of Trinh and Chen (2005) and implemented in an existing CFD Eulerian-Lagrangian two-way coupling numerical scheme. Validation studies were carried out by comparing with available evaporating atomization spray experimental data in terms of jet penetration, temperature field, and droplet SMD distribution within the spray. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating spray.

  8. Monte Carlo Particle Trajectory Models for Neutral Cometary Gases. II. The Spatial Morphology of the Lyman-Alpha Coma

    NASA Astrophysics Data System (ADS)

    Combi, Michael R.; Smyth, William H.

    1988-04-01

    The Monte Carlo particle-trajectory model (MCPTM) developed in Paper 1 is applied to explain the observed morphology of the spatially extended Lyα comae of comets. The physical processes and assumptions used in the model as they relate to the photodissociation of H2O and OH and the solar radiation pressure acceleration are presented herein. For this first application, the rocket and Skylab images of the Lyα coma of comet Kohoutek were chosen for study. The self-consistent modeling analysis of these data consisted of two parts. The first part entailed using a steady state spherically symmetric inner coma MCPTM coupled with a simple gas-dynamic model to calculate the physical development of the coma, i.e., the dependence of coma temperature and outflow speed on radial distance to the center of the nucleus, as a function of the (time) heliocentric distance of the comet. The inner coma MCPTM was used to calculate correctly the photo-chemical heating of the coma due to the partial collisional thermalization of the hot hydrogen atoms produced in the photodissociation of water molecules. In the second part of the analysis the results from the first part were used in a fully time-dependent and three-dimensional extended coma MCPTM which includes the explicit calculation of partial thermalization of the H atoms by multiple collisions with coma molecules. The same physical model yielded very good matches between the modeled Lycα isophotes and those observed in both of the two very different images of comet Kohoutek. The production rate was varied in time as implied by the shape of the visual light curve. All other physical parameters were varied only according to their naturally expected heliocentric distance and velocity dependencies. The complete physical description of the inner coma provided by the coupled gas-dynamic/MCPTM calculation was needed to obtain a good fit to the data. The correct inner coma description is important since it provides not only the initial conditions for the photodissociated H atoms but also (and most importantly) the collisional targets for the H atoms produced in the innermost regions of the coma. Simplistic descriptions for the coma (single speed and perfectly radial molecular motion) do not yield realistic isophote contours. The implications of the model results as they apply to other comets, species, and a variety of conditions are also discussed.

  9. Polarizable atomic multipole-based force field for DOPC and POPE membrane lipids

    NASA Astrophysics Data System (ADS)

    Chu, Huiying; Peng, Xiangda; Li, Yan; Zhang, Yuebin; Min, Hanyi; Li, Guohui

    2018-04-01

    A polarizable atomic multipole-based force field for the membrane bilayer models 1,2-dioleoyl-phosphocholine (DOPC) and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine (POPE) has been developed. The force field adopts the same framework as the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) model, in which the charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments. Many-body polarization including the inter- and intra-molecular polarization is modelled in a consistent manner with distributed atomic polarizabilities. The van der Waals parameters were first transferred from existing AMOEBA parameters for small organic molecules and then optimised by fitting to ab initio intermolecular interaction energies between models and a water molecule. Molecular dynamics simulations of the two aqueous DOPC and POPE membrane bilayer systems, consisting of 72 model molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, etc. were consistent with experimental values.

  10. A density functional theory study on the carbon chain growth of ethanol formation on Cu-Co (111) and (211) surfaces

    NASA Astrophysics Data System (ADS)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Wen, Guobin; Zhang, Minhua

    2017-08-01

    Calculations based on the first-principle density functional theory were carried out to study the most controversial reactions in ethanol formation from syngas on Cu-Co surfaces: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions) on four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) to investigate the synergy of the Cu and Co components since the complete reaction network of ethanol formation from syngas is a huge computational burden to calculate on four Cu-Co surface models. We investigated adsorption of important species involved in these reactions, activation barrier and reaction energy of H-assisted dissociation mechanism, directly dissociation of CO, and HCO insertion reactions (CHx + HCO → CHxCHO (x = 1-3)) on four Cu-Co surface models. It was found that reactions on Cu-rich (111) and (211) surfaces all have lower activation barrier in H-assisted dissociation and HCO insertion reactions, especially CH + HCO → CHCHO reaction. The PDOS of 4d orbitals of surface Cu and Co atoms of all surfaces were studied. Analysis of d-band center of Cu and Co atoms and the activation barrier data suggested the correlation between electronic property and catalytic performance. Cu-Co bimetallic with Cu-rich surface allows Co to have higher catalytic activity through the interaction of Cu and Co atom. Then it will improve the adsorption of CO and catalytic activity of Co. Thus it is more favorable to the carbon chain growth in ethanol formation. Our study revealed the factors influencing the carbon chain growth in ethanol production and explained the internal mechanism from electronic property aspect.

  11. Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium

    NASA Technical Reports Server (NTRS)

    Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter

    2013-01-01

    This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.

  12. Free kick instead of cross-validation in maximum-likelihood refinement of macromolecular crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pražnikar, Jure; University of Primorska,; Turk, Dušan, E-mail: dusan.turk@ijs.si

    2014-12-01

    The maximum-likelihood free-kick target, which calculates model error estimates from the work set and a randomly displaced model, proved superior in the accuracy and consistency of refinement of crystal structures compared with the maximum-likelihood cross-validation target, which calculates error estimates from the test set and the unperturbed model. The refinement of a molecular model is a computational procedure by which the atomic model is fitted to the diffraction data. The commonly used target in the refinement of macromolecular structures is the maximum-likelihood (ML) function, which relies on the assessment of model errors. The current ML functions rely on cross-validation. Theymore » utilize phase-error estimates that are calculated from a small fraction of diffraction data, called the test set, that are not used to fit the model. An approach has been developed that uses the work set to calculate the phase-error estimates in the ML refinement from simulating the model errors via the random displacement of atomic coordinates. It is called ML free-kick refinement as it uses the ML formulation of the target function and is based on the idea of freeing the model from the model bias imposed by the chemical energy restraints used in refinement. This approach for the calculation of error estimates is superior to the cross-validation approach: it reduces the phase error and increases the accuracy of molecular models, is more robust, provides clearer maps and may use a smaller portion of data for the test set for the calculation of R{sub free} or may leave it out completely.« less

  13. Plasmon-induced nonlinear response of silver atomic chains.

    PubMed

    Yan, Lei; Guan, Mengxue; Meng, Sheng

    2018-05-10

    Nonlinear response of a linear silver atomic chain upon ultrafast laser excitation has been studied in real time using the time-dependent density functional theory. We observe the presence of nonlinear responses up to the fifth order in tunneling current, which is ascribed to the excitation of high-energy electrons generated by Landau damping of plasmons. The nonlinear effect is enhanced after adsorption of polar molecules such as water due to the enhanced damping rates during plasmon decay. Increasing the length of atomic chains also increases the nonlinear response, favoring higher-order plasmon excitation. These findings offer new insights towards a complete understanding and ultimate control of plasmon-induced nonlinear phenomena to atomic precision.

  14. Coherent control of strong-field two-pulse ionization of Rydberg atoms.

    PubMed

    Fedorov, M; Poluektov, N

    2000-02-28

    Strong-field ionization of Rydberg atoms is investigated in its dependence on phase features of the initial coherent population of Rydberg levels. In the case of a resonance between Rydberg levels and some lower-energy atomic level (V-type transitions), this dependence is shown to be very strong: by a proper choice of the initial population an atom can be made either completely or very little ionized by a strong laser pulse. It is shown that phase features of the initial coherent population of Rydberg levels and the ionization yield can be efficiently controlled in a scheme of ionization by two strong laser pulses with a varying delay time between them.

  15. Resolution-Adapted All-Atomic and Coarse-Grained Model for Biomolecular Simulations.

    PubMed

    Shen, Lin; Hu, Hao

    2014-06-10

    We develop here an adaptive multiresolution method for the simulation of complex heterogeneous systems such as the protein molecules. The target molecular system is described with the atomistic structure while maintaining concurrently a mapping to the coarse-grained models. The theoretical model, or force field, used to describe the interactions between two sites is automatically adjusted in the simulation processes according to the interaction distance/strength. Therefore, all-atomic, coarse-grained, or mixed all-atomic and coarse-grained models would be used together to describe the interactions between a group of atoms and its surroundings. Because the choice of theory is made on the force field level while the sampling is always carried out in the atomic space, the new adaptive method preserves naturally the atomic structure and thermodynamic properties of the entire system throughout the simulation processes. The new method will be very useful in many biomolecular simulations where atomistic details are critically needed.

  16. Is It Time to Retire the Hybrid Atomic Orbital?

    ERIC Educational Resources Information Center

    Grushow, Alexander

    2011-01-01

    A rationale for the removal of the hybrid atomic orbital from the chemistry curriculum is examined. Although the hybrid atomic orbital model does not accurately predict spectroscopic energies, many chemical educators continue to use and teach the model despite the confusion it can cause for students. Three arguments for retaining the model in the…

  17. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  18. Adiabatic quantum computation with neutral atoms via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Goyal, Krittika; Deutsch, Ivan

    2011-05-01

    We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We study a trapped-neutral-atom implementation of the adiabatic model of quantum computation whereby the Hamiltonian of a set of interacting qubits is changed adiabatically so that its ground state evolves to the desired output of the algorithm. We employ the ``Rydberg blockade interaction,'' which previously has been used to implement two-qubit entangling gates in the quantum circuit model. Here it is employed via off-resonant virtual dressing of the excited levels, so that atoms always remain in the ground state. The resulting dressed-Rydberg interaction is insensitive to the distance between the atoms within a certain blockade radius, making this process robust to temperature and vibrational fluctuations. Single qubit interactions are implemented with global microwaves and atoms are locally addressed with light shifts. With these ingredients, we study a protocol to implement the two-qubit Quadratic Unconstrained Binary Optimization (QUBO) problem. We model atom trapping, addressing, coherent evolution, and decoherence. We also explore collective control of the many-atom system and generalize the QUBO problem to multiple qubits. We acknowledge funding from the AQUARIUS project, Sandia National Laboratories

  19. Modeling Solar Atmospheric Phenomena with AtomDB and PyAtomDB

    NASA Astrophysics Data System (ADS)

    Dupont, Marcus; Foster, Adam

    2018-01-01

    Taking advantage of the modeling tools made available by PyAtomDB (Foster 2015), we evaluated the impact of changing atomic data on solar phenomena, in particular their effects on models of coronal mass ejections (CME). Intitially, we perform modifications to the canonical SunNEI code (Murphy et al. 2011) in order to include non-equilibrium ionization (NEI) processes that occur in the CME modeled in SunNEI. The methods used involve the consideration of radiaitive cooling as well as ion balance calculations. These calculations were subsequently implemented within the SunNEI simulation. The insertion of aforementioned processes and parameter customizaton produced quite similar results of the original except for the case of iron. These differences were traced to inconsistencies in the recombination rates for Argon-like iron ions between the CHIANTI and AtomDB databases, even though they in theory use the same data. The key finding was that theoretical models are greatly impacted by the relative atomic database update cycles.Following the SunNEI comparison, we then use the AtomDB database to model the time depedencies of intensity flux spikes produced by a coronal shock wave (Ma et al. 2011). We produced a theretical representation for an ionizing plasma that interpolated over the intensity in four Astronomical Imaging Assembly (AIA) filters. Specifically, the 171 A (Fe IX) ,193 A (Fe XII, FeXXIV),211 A (Fe XIV),and 335 A (Fe XVI) wavelengths in order to assess the comparative spectral emissions between AtomDB and the observed data. The results of the theoretical model, in principle, shine light on both the equilibrium conditions before the shock and the non-equilibrium response to the shock front, as well as discrepancies introduced by changing the atomic data.

  20. Dirac equation in noncommutative space for hydrogen atom

    NASA Astrophysics Data System (ADS)

    Adorno, T. C.; Baldiotti, M. C.; Chaichian, M.; Gitman, D. M.; Tureanu, A.

    2009-11-01

    We consider the energy levels of a hydrogen-like atom in the framework of θ-modified, due to space noncommutativity, Dirac equation with Coulomb field. It is shown that on the noncommutative (NC) space the degeneracy of the levels 2S1 / 2, 2P1 / 2 and 2P3 / 2 is lifted completely, such that new transition channels are allowed.

  1. Alkylation of Silicon(111) surfaces

    NASA Astrophysics Data System (ADS)

    Rivillon, S.; Chabal, Y. J.

    2006-03-01

    Methylation of chlorine-terminated silicon (111) (Si-Cl) is investigated by Infra Red Absorption Spectroscopy (IRAS). Starting from an atomically flat H-terminated Si(111), the surface is first chlorinated by a gas phase process, then methylated using a Grignard reagent. Methyl groups completely replace Cl, and are oriented normal to the surface. The surface remains atomically flat with no evidence of etching.

  2. Atom counting in HAADF STEM using a statistical model-based approach: methodology, possibilities, and inherent limitations.

    PubMed

    De Backer, A; Martinez, G T; Rosenauer, A; Van Aert, S

    2013-11-01

    In the present paper, a statistical model-based method to count the number of atoms of monotype crystalline nanostructures from high resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images is discussed in detail together with a thorough study on the possibilities and inherent limitations. In order to count the number of atoms, it is assumed that the total scattered intensity scales with the number of atoms per atom column. These intensities are quantitatively determined using model-based statistical parameter estimation theory. The distribution describing the probability that intensity values are generated by atomic columns containing a specific number of atoms is inferred on the basis of the experimental scattered intensities. Finally, the number of atoms per atom column is quantified using this estimated probability distribution. The number of atom columns available in the observed STEM image, the number of components in the estimated probability distribution, the width of the components of the probability distribution, and the typical shape of a criterion to assess the number of components in the probability distribution directly affect the accuracy and precision with which the number of atoms in a particular atom column can be estimated. It is shown that single atom sensitivity is feasible taking the latter aspects into consideration. © 2013 Elsevier B.V. All rights reserved.

  3. Cooperative single-photon subradiant states in a three-dimensional atomic array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jen, H.H., E-mail: sappyjen@gmail.com

    2016-11-15

    We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative schememore » for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing. - Highlights: • Cooperative single-photon subradiant states in a three-dimensional atomic array. • Subradiant state manipulation via spatially-increasing phase imprinting. • Quantum storage of light in the subradiant state in two-level atoms.« less

  4. Dynamics of atom-field entanglement for Tavis-Cummings models

    NASA Astrophysics Data System (ADS)

    Bashkirov, Eugene K.

    2018-04-01

    An exact solution of the problem of two-atom one- and two-mode Jaynes-Cummings model with intensity- dependent coupling is presented. Asymptotic solutions for system state vectors are obtained in the approximation of large initial coherent fields. The atom-field entanglement is investigated on the basis of the reduced atomic entropy dynamics. The possibility of the system being initially in a pure disentangled state to revive into this state during the evolution process for both models is shown. Conditions and times of disentanglement are derived.

  5. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    PubMed

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  6. Operation of the computer model for direct atomic oxygen exposure of Earth satellites

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gruenbaum, P. E.; Gillis, J. R.; Hargraves, C. R.

    1995-01-01

    One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.

  7. Nagaoka's atomic model and hyperfine interactions.

    PubMed

    Inamura, Takashi T

    2016-01-01

    The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.

  8. New stent design for use in small coronary arteries during percutaneous coronary intervention

    PubMed Central

    Granada, Juan F; Huibregtse, Barbara A; Dawkins, Keith D

    2010-01-01

    Patients with diabetes mellitus, of female gender, increased age, and/or with peripheral vascular disease often develop coronary stenoses in small caliber vessels. This review describes treatment of these lesions with the paclitaxel-eluting 2.25 mm TAXUS® Liberté® Atom™ stent. Given the same stent composition, polymer, antirestenotic drug (paclitaxel), and release kinetics as the first-generation 2.25 mm TAXUS® Express® Atom™ stent, the second-generation TAXUS Liberté Atom stent incorporates improved stent design characteristics, including thinner struts (0.0038 versus 0.0052 inches), intended to increase conformability and deliverability. In a porcine noninjured coronary artery model, TAXUS Liberté Atom stent implantation in small vessels demonstrated complete strut tissue coverage compared with the bare metal stent control, suggesting a similar degree of tissue healing between the groups at 30, 90, and 180 days. The prospective, single-armed TAXUS ATLAS Small Vessel trial demonstrated improved instent late loss (0.28 ± 0.45 versus 0.84 ± 0.57 mm, P < 0.001), instent binary restenosis (13.0% versus 38.1%, P < 0.001), and target lesion revascularization (5.8% versus 17.6%, P < 0.001) at nine months with the TAXUS Liberté Atom stent as compared with the bare metal Express stent control, with similar safety measures between the two groups. The TAXUS Liberté Atom also significantly reduced nine-month angiographic rates of both instent late loss (0.28 ± 0.45 versus 0.44 ± 0.61 mm, P = 0.03) and instent binary restenosis (13.0% versus 25.9%, P = 0.02) when compared with the 2.25 mm TAXUS Express Atom control. The observed reduction in target lesion revascularization with the TAXUS Liberté Atom compared with the TAXUS Express Atom at nine months (5.8% versus 13.7%, P = 0.02) was sustained through three years (10.0% versus 22.1%, P = 0.008) with similar, stable safety outcomes between the groups. In conclusion, these data confirm the safety and favorable performance of the TAXUS Liberté Atom stent in the treatment of small coronary vessels. PMID:22915922

  9. Uncertainties in Atomic Data and Their Propagation Through Spectral Models. I.

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Fivet, V.; Quinet, P.; Dunn, J.; Gull, T. R.; Kallman, T. R.; Mendoza, C.

    2013-01-01

    We present a method for computing uncertainties in spectral models, i.e., level populations, line emissivities, and emission line ratios, based upon the propagation of uncertainties originating from atomic data.We provide analytic expressions, in the form of linear sets of algebraic equations, for the coupled uncertainties among all levels. These equations can be solved efficiently for any set of physical conditions and uncertainties in the atomic data. We illustrate our method applied to spectral models of Oiii and Fe ii and discuss the impact of the uncertainties on atomic systems under different physical conditions. As to intrinsic uncertainties in theoretical atomic data, we propose that these uncertainties can be estimated from the dispersion in the results from various independent calculations. This technique provides excellent results for the uncertainties in A-values of forbidden transitions in [Fe ii]. Key words: atomic data - atomic processes - line: formation - methods: data analysis - molecular data - molecular processes - techniques: spectroscopic

  10. A three-level atomicity model for decentralized workflow management systems

    NASA Astrophysics Data System (ADS)

    Ben-Shaul, Israel Z.; Heineman, George T.

    1996-12-01

    A workflow management system (WFMS) employs a workflow manager (WM) to execute and automate the various activities within a workflow. To protect the consistency of data, the WM encapsulates each activity with a transaction; a transaction manager (TM) then guarantees the atomicity of activities. Since workflows often group several activities together, the TM is responsible for guaranteeing the atomicity of these units. There are scalability issues, however, with centralized WFMSs. Decentralized WFMSs provide an architecture for multiple autonomous WFMSs to interoperate, thus accommodating multiple workflows and geographically-dispersed teams. When atomic units are composed of activities spread across multiple WFMSs, however, there is a conflict between global atomicity and local autonomy of each WFMS. This paper describes a decentralized atomicity model that enables workflow administrators to specify the scope of multi-site atomicity based upon the desired semantics of multi-site tasks in the decentralized WFMS. We describe an architecture that realizes our model and execution paradigm.

  11. Optical Pattern Formation in Spatially Bunched Atoms: A Self-Consistent Model and Experiment

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-05-01

    The nonlinear optics and optomechanical physics communities use different theoretical models to describe how optical fields interact with a sample of atoms. There does not yet exist a model that is valid for finite atomic temperatures but that also produces the zero temperature results that are generally assumed in optomechanical systems. We present a self-consistent model that is valid for all atomic temperatures and accounts for the back-action of the atoms on the optical fields. Our model provides new insights into the competing effects of the bunching-induced nonlinearity and the saturable nonlinearity. We show that it is crucial to keep the fifth and seventh-order nonlinearities that arise when there exists atomic bunching, even at very low optical field intensities. We go on to apply this model to the results of our experimental system where we observe spontaneous, multimode, transverse optical pattern formation at ultra-low light levels. We show that our model accurately predicts our experimentally observed threshold for optical pattern formation, which is the lowest threshold ever reported for pattern formation. We gratefully acknowledge the financial support of the NSF through Grant #PHY-1206040.

  12. Molecular Solid EOS based on Quasi-Harmonic Oscillator approximation for phonons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2014-09-02

    A complete equation of state (EOS) for a molecular solid is derived utilizing a Helmholtz free energy. Assuming that the solid is nonconducting, phonon excitations dominate the specific heat. Phonons are approximated as independent quasi-harmonic oscillators with vibrational frequencies depending on the specific volume. The model is suitable for calibrating an EOS based on isothermal compression data and infrared/Raman spectroscopy data from high pressure measurements utilizing a diamond anvil cell. In contrast to a Mie-Gruneisen EOS developed for an atomic solid, the specific heat and Gruneisen coefficient depend on both density and temperature.

  13. Magnetic anisotropy in nickel complexes as determined by combined magnetic susceptibility/magnetization/theoretical studies

    NASA Astrophysics Data System (ADS)

    Mašlejová, Anna; Boča, Roman; Dlháň, L.'ubor; Herchel, Radovan

    2004-05-01

    The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.

  14. Deducing 2D crystal structure at the liquid/solid interface with atomic resolution: a combined STM and SFG study.

    PubMed

    McClelland, Arthur A; Ahn, Seokhoon; Matzger, Adam J; Chen, Zhan

    2009-11-17

    Sum frequency generation vibrational spectroscopy (SFG) has been applied to study two-dimensional (2D) crystals formed by an isophthalic acid diester on the surface of highly oriented pyrolytic graphite, providing complementary measurements to scanning tunneling microscopy (STM) and computational modeling. SFG results indicate that both aromatic and C=O groups in the 2D crystal tilt from the surface. This study demonstrates that a combination of SFG and STM techniques can be used to gain a more complete picture of 2D crystal structure, and it is necessary to consider solvent-2D crystal interactions and dynamics in the computer models to achieve an accurate representation of interfacial structure.

  15. Sparse Representation for Infrared Dim Target Detection via a Discriminative Over-Complete Dictionary Learned Online

    PubMed Central

    Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju

    2014-01-01

    It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively. PMID:24871988

  16. Sparse representation for infrared Dim target detection via a discriminative over-complete dictionary learned online.

    PubMed

    Li, Zheng-Zhou; Chen, Jing; Hou, Qian; Fu, Hong-Xia; Dai, Zhen; Jin, Gang; Li, Ru-Zhang; Liu, Chang-Ju

    2014-05-27

    It is difficult for structural over-complete dictionaries such as the Gabor function and discriminative over-complete dictionary, which are learned offline and classified manually, to represent natural images with the goal of ideal sparseness and to enhance the difference between background clutter and target signals. This paper proposes an infrared dim target detection approach based on sparse representation on a discriminative over-complete dictionary. An adaptive morphological over-complete dictionary is trained and constructed online according to the content of infrared image by K-singular value decomposition (K-SVD) algorithm. Then the adaptive morphological over-complete dictionary is divided automatically into a target over-complete dictionary describing target signals, and a background over-complete dictionary embedding background by the criteria that the atoms in the target over-complete dictionary could be decomposed more sparsely based on a Gaussian over-complete dictionary than the one in the background over-complete dictionary. This discriminative over-complete dictionary can not only capture significant features of background clutter and dim targets better than a structural over-complete dictionary, but also strengthens the sparse feature difference between background and target more efficiently than a discriminative over-complete dictionary learned offline and classified manually. The target and background clutter can be sparsely decomposed over their corresponding over-complete dictionaries, yet couldn't be sparsely decomposed based on their opposite over-complete dictionary, so their residuals after reconstruction by the prescribed number of target and background atoms differ very visibly. Some experiments are included and the results show that this proposed approach could not only improve the sparsity more efficiently, but also enhance the performance of small target detection more effectively.

  17. Cation-Poor Complex Metallic Alloys in Ba(Eu)-Au-Al(Ga) Systems: Identifying the Keys that Control Structural Arrangements and Atom Distributions at the Atomic Level.

    PubMed

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; Pecharsky, Vitalij; Miller, Gordon J; Mudring, Anja-Verena

    2015-11-02

    Four complex intermetallic compounds BaAu(6±x)Ga(6±y) (x = 1, y = 0.9) (I), BaAu(6±x)Al(6±y) (x = 0.9, y = 0.6) (II), EuAu6.2Ga5.8 (III), and EuAu6.1Al5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn13-type structure (cF104-112, Fm3̅c), III (tP52, P4/nbm) is derived from the tetragonal Ce2Ni17Si9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupation by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution ("coloring scheme"). Chemical bonding analyses for two different "EuAu6Tr6" models reveal maximization of the number of heteroatomic Au-Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the "EuAu6Tr6" models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu6.2Ga5.8 (III) and EuAu6.1Al5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at TC = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. The effective moments of 8.3 μB/f.u., determined from Curie-Weiss fits, point to divalent oxidation states for europium in both III and IV.

  18. Cation-poor complex metallic alloys in Ba(Eu)–Au–Al(Ga) systems: Identifying the keys that control structural arrangements and atom distributions at the atomic level

    DOE PAGES

    Smetana, Volodymyr; Steinberg, Simon; Mudryk, Yaroslav; ...

    2015-10-19

    Four complex intermetallic compounds BaAu 6±xGa 6±y (x = 1, y = 0.9) (I), BaAu 6±xAl 6±y (x = 0.9, y = 0.6) (II), EuAu 6.2Ga 5.8 (III), and EuAu 6.1Al 5.9 (IV) have been synthesized, and their structures and homogeneity ranges have been determined by single crystal and powder X-ray diffraction. Whereas I and II originate from the NaZn 13-type structure (cF104–112, Fm3C), III (tP52, P4/nbm) is derived from the tetragonal Ce 2Ni 17Si 9-type, and IV (oP104, Pbcm) crystallizes in a new orthorhombic structure type. Both I and II feature formally anionic networks with completely mixed site occupationmore » by Au and triel (Tr = Al, Ga) atoms, while a successive decrease of local symmetry from the parental structures of I and II to III and, ultimately, to IV correlates with increasing separation of Au and Tr on individual crystallographic sites. Density functional theory-based calculations were employed to determine the crystallographic site preferences of Au and the respective triel element to elucidate reasons for the atom distribution (“coloring scheme”). Chemical bonding analyses for two different “EuAu 6Tr 6” models reveal maximization of the number of heteroatomic Au–Tr bonds as the driving force for atom organization. The Fermi levels fall in broad pseudogaps for both models allowing some electronic flexibility. Spin-polarized band structure calculations on the “EuAu 6Tr 6” models hint to singlet ground states for europium and long-range magnetic coupling for both EuAu 6.2Ga 5.8 (III) and EuAu 6.1Al 5.9 (IV). This is substantiated by experimental evidence because both compounds show nearly identical magnetic behavior with ferromagnetic transitions at T C = 6 K and net magnetic moments of 7.35 μB/f.u. at 2 K. As a result, the effective moments of 8.3 μB/f.u., determined from Curie–Weiss fits, point to divalent oxidation states for europium in both III and IV.« less

  19. Reading PDB: perception of molecules from 3D atomic coordinates.

    PubMed

    Urbaczek, Sascha; Kolodzik, Adrian; Groth, Inken; Heuser, Stefan; Rarey, Matthias

    2013-01-28

    The analysis of small molecule crystal structures is a common way to gather valuable information for drug development. The necessary structural data is usually provided in specific file formats containing only element identities and three-dimensional atomic coordinates as reliable chemical information. Consequently, the automated perception of molecular structures from atomic coordinates has become a standard task in cheminformatics. The molecules generated by such methods must be both chemically valid and reasonable to provide a reliable basis for subsequent calculations. This can be a difficult task since the provided coordinates may deviate from ideal molecular geometries due to experimental uncertainties or low resolution. Additionally, the quality of the input data often differs significantly thus making it difficult to distinguish between actual structural features and mere geometric distortions. We present a method for the generation of molecular structures from atomic coordinates based on the recently published NAOMI model. By making use of this consistent chemical description, our method is able to generate reliable results even with input data of low quality. Molecules from 363 Protein Data Bank (PDB) entries could be perceived with a success rate of 98%, a result which could not be achieved with previously described methods. The robustness of our approach has been assessed by processing all small molecules from the PDB and comparing them to reference structures. The complete data set can be processed in less than 3 min, thus showing that our approach is suitable for large scale applications.

  20. Dynamics of interacting Dicke model in a coupled-cavity array

    NASA Astrophysics Data System (ADS)

    Badshah, Fazal; Qamar, Shahid; Paternostro, Mauro

    2014-09-01

    We consider the dynamics of an array of mutually interacting cavities, each containing an ensemble of N two-level atoms. By exploring the possibilities offered by ensembles of various dimensions and a range of atom-light and photon-hopping values, we investigate the generation of multisite entanglement, as well as the performance of excitation transfer across the array, resulting from the competition between on-site nonlinearities of the matter-light interaction and intersite photon hopping. In particular, for a three-cavity interacting system it is observed that the initial excitation in the first cavity completely transfers to the ensemble in the third cavity through the hopping of photons between the adjacent cavities. Probabilities of the transfer of excitation of the cavity modes and ensembles exhibit characteristics of fast and slow oscillations governed by coupling and hopping parameters, respectively. In the large-hopping case, by seeding an initial excitation in the cavity at the center of the array, a tripartite W state, as well as a bipartite maximally entangled state, is obtained, depending on the interaction time. Population of the ensemble in a cavity has a positive impact on the rate of excitation transfer between the ensembles and their local cavity modes. In particular, for ensembles of five to seven atoms, tripartite W states can be produced even when the hopping rate is comparable to the cavity-atom coupling rate. A similar behavior of the transfer of excitation is observed for a four-coupled-cavity system with two initial excitations.

  1. Atomic-scale phase composition through multivariate statistical analysis of atom probe tomography data.

    PubMed

    Keenan, Michael R; Smentkowski, Vincent S; Ulfig, Robert M; Oltman, Edward; Larson, David J; Kelly, Thomas F

    2011-06-01

    We demonstrate for the first time that multivariate statistical analysis techniques can be applied to atom probe tomography data to estimate the chemical composition of a sample at the full spatial resolution of the atom probe in three dimensions. Whereas the raw atom probe data provide the specific identity of an atom at a precise location, the multivariate results can be interpreted in terms of the probabilities that an atom representing a particular chemical phase is situated there. When aggregated to the size scale of a single atom (∼0.2 nm), atom probe spectral-image datasets are huge and extremely sparse. In fact, the average spectrum will have somewhat less than one total count per spectrum due to imperfect detection efficiency. These conditions, under which the variance in the data is completely dominated by counting noise, test the limits of multivariate analysis, and an extensive discussion of how to extract the chemical information is presented. Efficient numerical approaches to performing principal component analysis (PCA) on these datasets, which may number hundreds of millions of individual spectra, are put forward, and it is shown that PCA can be computed in a few seconds on a typical laptop computer.

  2. Complete protein-protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling

    NASA Astrophysics Data System (ADS)

    Plattner, Nuria; Doerr, Stefan; de Fabritiis, Gianni; Noé, Frank

    2017-10-01

    Protein-protein association is fundamental to many life processes. However, a microscopic model describing the structures and kinetics during association and dissociation is lacking on account of the long lifetimes of associated states, which have prevented efficient sampling by direct molecular dynamics (MD) simulations. Here we demonstrate protein-protein association and dissociation in atomistic resolution for the ribonuclease barnase and its inhibitor barstar by combining adaptive high-throughput MD simulations and hidden Markov modelling. The model reveals experimentally consistent intermediate structures, energetics and kinetics on timescales from microseconds to hours. A variety of flexibly attached intermediates and misbound states funnel down to a transition state and a native basin consisting of the loosely bound near-native state and the tightly bound crystallographic state. These results offer a deeper level of insight into macromolecular recognition and our approach opens the door for understanding and manipulating a wide range of macromolecular association processes.

  3. Simple Spectral Lines Data Model Version 1.0

    NASA Astrophysics Data System (ADS)

    Osuna, Pedro; Salgado, Jesus; Guainazzi, Matteo; Dubernet, Marie-Lise; Roueff, Evelyne; Osuna, Pedro; Salgado, Jesus

    2010-12-01

    This document presents a Data Model to describe Spectral Line Transitions in the context of the Simple Line Access Protocol defined by the IVOA (c.f. Ref[13] IVOA Simple Line Access protocol) The main objective of the model is to integrate with and support the Simple Line Access Protocol, with which it forms a compact unit. This integration allows seamless access to Spectral Line Transitions available worldwide in the VO context. This model does not provide a complete description of Atomic and Molecular Physics, which scope is outside of this document. In the astrophysical sense, a line is considered as the result of a transition between two energy levels. Under the basis of this assumption, a whole set of objects and attributes have been derived to define properly the necessary information to describe lines appearing in astrophysical contexts. The document has been written taking into account available information from many different Line data providers (see acknowledgments section).

  4. DOT2: Macromolecular Docking With Improved Biophysical Models

    PubMed Central

    Roberts, Victoria A.; Thompson, Elaine E.; Pique, Michael E.; Perez, Martin S.; Eyck, Lynn Ten

    2015-01-01

    Computational docking is a useful tool for predicting macromolecular complexes, which are often difficult to determine experimentally. Here we present the DOT2 software suite, an updated version of the DOT intermolecular docking program. DOT2 provides straightforward, automated construction of improved biophysical models based on molecular coordinates, offering checkpoints that guide the user to include critical features. DOT has been updated to run more quickly, allow flexibility in grid size and spacing, and generate a complete list of favorable candidate configu-rations. Output can be filtered by experimental data and rescored by the sum of electrostatic and atomic desolvation energies. We show that this rescoring method improves the ranking of correct complexes for a wide range of macromolecular interactions, and demonstrate that biologically relevant models are essential for biologically relevant results. The flexibility and versatility of DOT2 accommodate realistic models of complex biological systems, improving the likelihood of a successful docking outcome. PMID:23695987

  5. Fast Three-Dimensional Method of Modeling Atomic Oxygen Undercutting of Protected Polymers

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Banks, Bruce A.

    2002-01-01

    A method is presented to model atomic oxygen erosion of protected polymers in low Earth orbit (LEO). Undercutting of protected polymers by atomic oxygen occurs in LEO due to the presence of scratch, crack or pin-window defects in the protective coatings. As a means of providing a better understanding of undercutting processes, a fast method of modeling atomic-oxygen undercutting of protected polymers has been developed. Current simulation methods often rely on computationally expensive ray-tracing procedures to track the surface-to-surface movement of individual "atoms." The method introduced in this paper replaces slow individual particle approaches by substituting a model that utilizes both a geometric configuration-factor technique, which governs the diffuse transport of atoms between surfaces, and an efficient telescoping series algorithm, which rapidly integrates the cumulative effects stemming from the numerous atomic oxygen events occurring at the surfaces of an undercut cavity. This new method facilitates the systematic study of three-dimensional undercutting by allowing rapid simulations to be made over a wide range of erosion parameters.

  6. Atomistic study of the solid state inside graphene nanobubbles.

    PubMed

    Iakovlev, Evgeny; Zhilyaev, Petr; Akhatov, Iskander

    2017-12-20

    A two-dimensional (2D) material placed on an atomically flat substrate can lead to the formation of surface nanobubbles trapping different types of substances. In this paper graphene nanobubbles of the radius of 7-34 nm with argon atoms inside are studied using molecular dynamics (MD). All modeled graphene nanobubbles except for the smallest ones exhibit an universal shape, i.e., a constant ratio of a bubble height to its footprint radius, which is in an agreement with experimental studies and their interpretation using the elastic theory of membranes. MD simulations reveal that argon does exist in a solid close-packed phase, although the internal pressure in the nanobubble is not sufficiently high for the ordinary crystallization that would occur in a bulk system. The smallest graphene bubbles with a radius of 7 nm exhibit an unusual "pancake" shape. Previously, nanobubbles with a similar pancake shape were experimentally observed in completely different systems at the interface between water and a hydrophobic surface.

  7. Element Abundances in the Galactic Cosmic Rays with Atomic Number (Z) in the Interval 30 is less than or equal to Z is less than or equal to 40

    NASA Technical Reports Server (NTRS)

    Barbier, Louis; Binns, W. R.; Christian, E.; deNolfo, G.; Geier, S.; Israel, M. H.; Link, J. T.; Mewaldt, R. A.; Mitchell, J.; Rauch, B. F.

    2004-01-01

    We present new results on the elemental abundances of galactic cosmic rays with atomic number, Z, greater than 30, and comparison of these observations with abundances expected from galactic propagation of various suggested models of the cosmic-ray source. We combine preliminary results from the 2003-04 flight of the Trans-Iron Galactic Element Recorder (TIGER) cosmic-ray detector with previously reported results from the 2001-02 flight. This instrument flew over Antarctica for nearly 32 days at a mean atmospheric depth of 5.2 mb in December 2001 - January 2002. At the time of submission of this abstract, January 8, 2004, TIGER was again in the air over Antarctica having completed 22 days of an expected 30day flight at a mean atmospheric depth of about 4 nb, Data from the first flight demonstrated excellent resolution of individual elements, and we expect similar resolution from the second flight.

  8. Roles of water in protein structure and function studied by molecular liquid theory.

    PubMed

    Imai, Takashi

    2009-01-01

    The roles of water in the structure and function of proteins have not been completely elucidated. Although molecular simulation has been widely used for the investigation of protein structure and function, it is not always useful for elucidating the roles of water because the effect of water ranges from atomic to thermodynamic level. The three-dimensional reference interaction site model (3D-RISM) theory, which is a statistical-mechanical theory of molecular liquids, can yield the solvation structure at the atomic level and calculate the thermodynamic quantities from the intermolecular potentials. In the last few years, the author and coworkers have succeeded in applying the 3D-RISM theory to protein aqueous solution systems and demonstrated that the theory is useful for investigating the roles of water. This article reviews some of the recent applications and findings, which are concerned with molecular recognition by protein, protein folding, and the partial molar volume of protein which is related to the pressure effect on protein.

  9. Magnetic interactions at Ce impurities in REMn2Ge2 (RE = La, Ce, Pr, Nd) compounds

    NASA Astrophysics Data System (ADS)

    Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Burimova, A. N.; Carbonari, A. W.

    2018-05-01

    In the work reported in this paper, the temperature dependence of the magnetic hyperfine field (Bh f) at 140Ce nuclei replacing Pr atoms in PrMn2Ge2 compound was measured by the perturbed angular correlation technique to complete the sequence of measurements in REMn2Ge2 (RE = La, Ce, Pr, Nd). Results show an anomalous behavior different from the expected Brillouin curve. A model was used to fit the data showing that the Ce impurity contribution (Bhfimp) to Bhf is negative for NdMn2Ge2 below 210 K. The impurity contribution (Bhfimp) at 0 K for all compounds is much smaller than that for the free Ce3+, showing that the 4f band of Ce is more likely highly hybridized with 5d band of the host. Results show that direction of the localized magnetic moment at Mn atoms strongly affects the exchange interaction at Ce impurities.

  10. Watching adsorption and electron beam induced decomposition on the model system Mo(CO)6/Cu(1 1 1) by X-ray absorption and photoemission spectroscopies

    NASA Astrophysics Data System (ADS)

    Paufert, Pierre; Fonda, Emiliano; Li, Zheshen; Domenichini, Bruno; Bourgeois, Sylvie

    2013-11-01

    An in-depth study of the first steps of electron beam assisted growth of Mo from molybdenum hexacarbonyl on Cu(1 1 1) has been carried out exploiting the complementarity of X-ray photoemission and X-ray absorption spectroscopies. Frank van der Merwe (2D) growth mode has been observed for the completion of the two first monolayers of adsorbed molecules through a simple physisorption process. Irradiation of the Mo(CO)6 deposit by 1 keV electron beam induces a modification of molybdenum coordination, the average number of C-neighbors decreasing from 6 to 3. Decomposed molecules remain on the surface after annealing at 520 K and organize themselves, the molybdenum atoms moving in Cu(1 1 1) surface fcc hollow sites. After annealing at 670 K, metallic molybdenum growth begins, if the total amount of adsorbed Mo atoms exceeds 1.2 monolayers.

  11. In-core flux sensor evaluations at the ATR critical facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troy Unruh; Benjamin Chase; Joy Rempe

    2014-09-01

    Flux detector evaluations were completed as part of a joint Idaho State University (ISU) / Idaho National Laboratory (INL) / French Atomic Energy commission (CEA) ATR National Scientific User Facility (ATR NSUF) project to compare the accuracy, response time, and long duration performance of several flux detectors. Special fixturing developed by INL allows real-time flux detectors to be inserted into various ATRC core positions and perform lobe power measurements, axial flux profile measurements, and detector cross-calibrations. Detectors initially evaluated in this program include the French Atomic Energy Commission (CEA)-developed miniature fission chambers; specialized self-powered neutron detectors (SPNDs) developed by themore » Argentinean National Energy Commission (CNEA); specially developed commercial SPNDs from Argonne National Laboratory. As shown in this article, data obtained from this program provides important insights related to flux detector accuracy and resolution for subsequent ATR and CEA experiments and flux data required for bench-marking models in the ATR V&V Upgrade Initiative.« less

  12. Atomic Data Needs for X-ray Astronomy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A. (Editor); Kallman, Timothy R. (Editor); Pradhan, Anil K. (Editor)

    2000-01-01

    This publication contains written versions of most of the invited talks presented at the workshop on "Atomic Data Needs for X-ray Astronomy," which was held at NASA's Goddard Space Flight Center on December 16-17, 1999. The workshop was divided into five major areas: Observational Spectroscopy, Theoretical Calculations of Atomic Data, Laboratory Measurements of Atomic Parameters, Spectra Modeling, and Atomic Databases. These proceedings are expected to be of interest to producers and users of atomic data. Moreover, the contributions presented here have been written in a way that can be used by a general audience of scientists and graduate students in X-ray astronomy, modelling, and in computational and experimental atomic physics.

  13. Anharmonic Normal Mode Analysis of Elastic Network Model Improves the Modeling of Atomic Fluctuations in Protein Crystal Structures

    PubMed Central

    Zheng, Wenjun

    2010-01-01

    Abstract Protein conformational dynamics, despite its significant anharmonicity, has been widely explored by normal mode analysis (NMA) based on atomic or coarse-grained potential functions. To account for the anharmonic aspects of protein dynamics, this study proposes, and has performed, an anharmonic NMA (ANMA) based on the Cα-only elastic network models, which assume elastic interactions between pairs of residues whose Cα atoms or heavy atoms are within a cutoff distance. The key step of ANMA is to sample an anharmonic potential function along the directions of eigenvectors of the lowest normal modes to determine the mean-squared fluctuations along these directions. ANMA was evaluated based on the modeling of anisotropic displacement parameters (ADPs) from a list of 83 high-resolution protein crystal structures. Significant improvement was found in the modeling of ADPs by ANMA compared with standard NMA. Further improvement in the modeling of ADPs is attained if the interactions between a protein and its crystalline environment are taken into account. In addition, this study has determined the optimal cutoff distances for ADP modeling based on elastic network models, and these agree well with the peaks of the statistical distributions of distances between Cα atoms or heavy atoms derived from a large set of protein crystal structures. PMID:20550915

  14. Analysis of TIMED/GUVI Dayglow Utraviolet Oxygen Images

    NASA Astrophysics Data System (ADS)

    Christensen, A. B.; Crowley, G.; Meier, R.

    2016-12-01

    Analysis of the atomic oxygen resonance transition at 130.4 nm and the inter-combination transition at 135.6 nm measured by the TIMED/GUVI mission demonstrates the state of knowledge of these important dayglow emission features and the degree to which current models can simulate their global properties. The complete modeling framework comprises several models, including the Thermosphere ionosphere Mesosphere Electrodynamics General Circulation Model (TIME-GCM), Assimilative Mapping of Ionospheric Electrodynamics (AMIE), a partial frequency redistribution resonance scattering model usually called REDISTER needed to compute the optically thick radiative transfer of the 130.4 nm emission, airglow emission models, GLOW and AURIC and other procedures. Observations for four different days, collected under different geophysical conditions of magnetic activity and solar cycle, show very good agreement with the calculated emission brightness and geographic distribution for both emissions. The differences between the airglow codes for the 135.6 nm emission will be discussed in connection to the photoelectron energy loss cross sections, as well as the excitation cross sections used in the various models.

  15. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  16. Mixing of gaseous reactants in chemical generation of atomic iodine for COIL: two-dimensional study

    NASA Astrophysics Data System (ADS)

    Jirasek, Vit; Spalek, Otomar; Kodymova, Jarmila; Censky, Miroslav

    2003-11-01

    Two-dimensional CFD model was applied for the study of mixing and reaction between gaseous chlorine dioxide and nitrogen monoxide diluted with nitrogen during atomic iodine generation. The influence of molecular diffusion on the production of atomic chlorine as a precursor of atomic iodine was predominantly studied. The results were compared with one-dimensional modeling of the system.

  17. Completeness of the Coulomb Wave Functions in Quantum Mechanics

    ERIC Educational Resources Information Center

    Mukunda, N.

    1978-01-01

    Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)

  18. Single-molecule imaging of DNA polymerase I (Klenow fragment) activity by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chao, J.; Zhang, P.; Wang, Q.; Wu, N.; Zhang, F.; Hu, J.; Fan, C. H.; Li, B.

    2016-03-01

    We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA.We report a DNA origami-facilitated single-molecule platform that exploits atomic force microscopy to study DNA replication. We imaged several functional activities of the Klenow fragment of E. coli DNA polymerase I (KF) including binding, moving, and dissociation from the template DNA. Upon completion of these actions, a double-stranded DNA molecule was formed. Furthermore, the direction of KF activities was captured and then confirmed by shifting the KF binding sites on the template DNA. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06544e

  19. GMI-IPS: Python Processing Software for Aircraft Campaigns

    NASA Technical Reports Server (NTRS)

    Damon, M. R.; Strode, S. A.; Steenrod, S. D.; Prather, M. J.

    2018-01-01

    NASA's Atmospheric Tomography Mission (ATom) seeks to understand the impact of anthropogenic air pollution on gases in the Earth's atmosphere. Four flight campaigns are being deployed on a seasonal basis to establish a continuous global-scale data set intended to improve the representation of chemically reactive gases in global atmospheric chemistry models. The Global Modeling Initiative (GMI), is creating chemical transport simulations on a global scale for each of the ATom flight campaigns. To meet the computational demands required to translate the GMI simulation data to grids associated with the flights from the ATom campaigns, the GMI ICARTT Processing Software (GMI-IPS) has been developed and is providing key functionality for data processing and analysis in this ongoing effort. The GMI-IPS is written in Python and provides computational kernels for data interpolation and visualization tasks on GMI simulation data. A key feature of the GMI-IPS, is its ability to read ICARTT files, a text-based file format for airborne instrument data, and extract the required flight information that defines regional and temporal grid parameters associated with an ATom flight. Perhaps most importantly, the GMI-IPS creates ICARTT files containing GMI simulated data, which are used in collaboration with ATom instrument teams and other modeling groups. The initial main task of the GMI-IPS is to interpolate GMI model data to the finer temporal resolution (1-10 seconds) of a given flight. The model data includes basic fields such as temperature and pressure, but the main focus of this effort is to provide species concentrations of chemical gases for ATom flights. The software, which uses parallel computation techniques for data intensive tasks, linearly interpolates each of the model fields to the time resolution of the flight. The temporally interpolated data is then saved to disk, and is used to create additional derived quantities. In order to translate the GMI model data to the spatial grid of the flight path as defined by the pressure, latitude, and longitude points at each flight time record, a weighted average is then calculated from the nearest neighbors in two dimensions (latitude, longitude). Using SciPya's Regular Grid Interpolator, interpolation functions are generated for the GMI model grid and the calculated weighted averages. The flight path points are then extracted from the ATom ICARTT instrument file, and are sent to the multi-dimensional interpolating functions to generate GMI field quantities along the spatial path of the flight. The interpolated field quantities are then written to a ICARTT data file, which is stored for further manipulation. The GMI-IPS is aware of a generic ATom ICARTT header format, containing basic information for all flight campaigns. The GMI-IPS includes logic to edit metadata for the derived field quantities, as well as modify the generic header data such as processing dates and associated instrument files. The ICARTT interpolated data is then appended to the modified header data, and the ICARTT processing is complete for the given flight and ready for collaboration. The output ICARTT data adheres to the ICARTT file format standards V1.1. The visualization component of the GMI-IPS uses Matplotlib extensively and has several functions ranging in complexity. First, it creates a model background curtain for the flight (time versus model eta levels) with the interpolated flight data superimposed on the curtain. Secondly, it creates a time-series plot of the interpolated flight data. Lastly, the visualization component creates averaged 2D model slices (longitude versus latitude) with overlaid flight track circles at key pressure levels. The GMI-IPS consists of a handful of classes and supporting functionality that have been generalized to be compatible with any ICARTT file that adheres to the base class definition. The base class represents a generic ICARTT entry, only defining a single time entry and 3D spatial positioning parameters. Other classes inherit from this base class; several classes for input ICARTT instrument files, which contain the necessary flight positioning information as a basis for data processing, as well as other classes for output ICARTT files, which contain the interpolated model data. Utility classes provide functionality for routine procedures such as: comparing field names among ICARTT files, reading ICARTT entries from a data file and storing them in data structures, and returning a reduced spatial grid based on a collection of ICARTT entries. Although the GMI-IPS is compatible with GMI model data, it can be adapted with reasonable effort for any simulation that creates Hierarchical Data Format (HDF) files. The same can be said of its adaptability to ICARTT files outside of the context of the ATom mission. The GMI-IPS contains just under 30,000 lines of code, eight classes, and a dozen drivers and utility programs. It is maintained with GIT source code management and has been used to deliver processed GMI model data for the ATom campaigns that have taken place to date.

  20. Vibration-translation energy transfer in anharmonic diatomic molecules. 2: The vibrational quantum number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1975-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom was used to predict the variation of thermally averaged vibration-translation rate coefficients with temperature and initial-state quantum number. Multiple oscillator states were included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model was also used as a basis for evaluating several less complete but analytic models. Two computationally simple analytic approximations were found that successfully reproduced the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations were also identified. The relative rates of multiple-quantum transitions from excited states were evaluated for several molecular types.

  1. Solidification Sequence of Spray-Formed Steels

    NASA Astrophysics Data System (ADS)

    Zepon, Guilherme; Ellendt, Nils; Uhlenwinkel, Volker; Bolfarini, Claudemiro

    2016-02-01

    Solidification in spray-forming is still an open discussion in the atomization and deposition area. This paper proposes a solidification model based on the equilibrium solidification path of alloys. The main assumptions of the model are that the deposition zone temperature must be above the alloy's solidus temperature and that the equilibrium liquid fraction at this temperature is reached, which involves partial remelting and/or redissolution of completely solidified droplets. When the deposition zone is cooled, solidification of the remaining liquid takes place under near equilibrium conditions. Scanning electron microscopy (SEM) and optical microscopy (OM) were used to analyze the microstructures of two different spray-formed steel grades: (1) boron modified supermartensitic stainless steel (SMSS) and (2) D2 tool steel. The microstructures were analyzed to determine the sequence of phase formation during solidification. In both cases, the solidification model proposed was validated.

  2. X-ray Reflected Spectra from Accretion Disk Models. I. Constant Density Atmospheres

    NASA Technical Reports Server (NTRS)

    Garcia, Javier; Kallman, Timothy R.

    2009-01-01

    We present new models for illuminated accretion disks, their structure and reprocessed emission. We consider the effects of incident X-rays on the surface of an accretion disk by solving simultaneously the equations of radiative transfer, energy balance and ionization equilibrium over a large range of column densities. We assume plane-parallel geometry and azimuthal symmetry, such that each calculation corresponds to a ring at a given distance from the central object. Our models include recent and complete atomic data for K-shell of the iron and oxygen isonuclear sequences. We examine the effect on the spectrum of fluorescent Ka line emission and absorption in the emitted spectrum. We also explore the dependence of the spectrum on the strength of the incident X-rays and other input parameters, and discuss the importance of Comptonization on the emitted spectrum.

  3. Nagaoka’s atomic model and hyperfine interactions

    PubMed Central

    INAMURA, Takashi T.

    2016-01-01

    The prevailing view of Nagaoka’s “Saturnian” atom is so misleading that today many people have an erroneous picture of Nagaoka’s vision. They believe it to be a system involving a ‘giant core’ with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka’s model is exactly the same as Rutherford’s. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure. PMID:27063182

  4. Atomic Structure and Valence: Level II, Unit 10, Lesson 1; Chemical Bonding: Lesson 2; The Table of Elements: Lesson 3; Electrolysis: Lesson 4. Advanced General Education Program. A High School Self-Study Program.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Atomic Structure and Valence, Chemical Bonding, The Table of Elements, and Electrolysis. Each of the lessons concludes with a Mastery Test to be completed by the student. (DB)

  5. Multipartite quantum correlations among atoms in QED cavities

    NASA Astrophysics Data System (ADS)

    Batle, J.; Farouk, A.; Tarawneh, O.; Abdalla, S.

    2018-02-01

    We study the nonlocality dynamics for two models of atoms in cavity quantum electrodynamics (QED); the first model contains atoms in a single cavity undergoing nearest-neighbor interactions with no initial correlation, and the second contains atoms confined in n different and noninteracting cavities, all of which were initially prepared in a maximally correlated state of n qubits corresponding to the atomic degrees of freedom. The nonlocality evolution of the states in the second model shows that the corresponding maximal violation of a multipartite Bell inequality exhibits revivals at precise times, defining, nonlocality sudden deaths and nonlocality sudden rebirths, in analogy with entanglement. These quantum correlations are provided analytically for the second model to make the study more thorough. Differences in the first model regarding whether the array of atoms inside the cavity is arranged in a periodic or open fashion are crucial to the generation or redistribution of quantum correlations. This contribution paves the way to using the nonlocality multipartite correlation measure for describing the collective complex behavior displayed by slightly interacting cavity QED arrays.

  6. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, J.B.

    An ultra-high Q isotropically sensitive optical filter or optical detector is disclosed employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (approx. 2 ..pi.. steradians) and very narrow acceptance bandwidth approaching 0.01A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor than providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filters have no common transmission band, therby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be located in an orbiting satellite.

  7. Constructing Molecular Models with Low-Cost Toy Beads

    ERIC Educational Resources Information Center

    Ng, Pun-hon; Wong, Siu-ling; Mak, Se-yuen

    2012-01-01

    In teaching the science of the nano world, ball-and-stick molecular models are frequently used as 3D representations of molecules. Unlike a chemical formula, a molecular model allows us to visualise the 3D shape of the molecule and the relative positions of its atoms, the bonds between atoms and why a pair of mirror isomers with the same atoms,…

  8. A theoretical-electron-density databank using a model of real and virtual spherical atoms.

    PubMed

    Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian

    2017-08-01

    A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.

  9. Atomic modeling of cryo-electron microscopy reconstructions--joint refinement of model and imaging parameters.

    PubMed

    Chapman, Michael S; Trzynka, Andrew; Chapman, Brynmor K

    2013-04-01

    When refining the fit of component atomic structures into electron microscopic reconstructions, use of a resolution-dependent atomic density function makes it possible to jointly optimize the atomic model and imaging parameters of the microscope. Atomic density is calculated by one-dimensional Fourier transform of atomic form factors convoluted with a microscope envelope correction and a low-pass filter, allowing refinement of imaging parameters such as resolution, by optimizing the agreement of calculated and experimental maps. A similar approach allows refinement of atomic displacement parameters, providing indications of molecular flexibility even at low resolution. A modest improvement in atomic coordinates is possible following optimization of these additional parameters. Methods have been implemented in a Python program that can be used in stand-alone mode for rigid-group refinement, or embedded in other optimizers for flexible refinement with stereochemical restraints. The approach is demonstrated with refinements of virus and chaperonin structures at resolutions of 9 through 4.5 Å, representing regimes where rigid-group and fully flexible parameterizations are appropriate. Through comparisons to known crystal structures, flexible fitting by RSRef is shown to be an improvement relative to other methods and to generate models with all-atom rms accuracies of 1.5-2.5 Å at resolutions of 4.5-6 Å. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy.

    PubMed

    Martinez, G T; Rosenauer, A; De Backer, A; Verbeeck, J; Van Aert, S

    2014-02-01

    High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed. © 2013 Published by Elsevier B.V. All rights reserved.

  11. The chip-scale atomic clock : prototype evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mescher, Mark; Varghese, Mathew; Lutwak, Robert

    2007-12-01

    The authors have developed a chip-scale atomic clock (CSAC) for applications requiring atomic timing accuracy in portable battery-powered applications. At PTTI/FCS 2005, they reported on the demonstration of a prototype CSAC, with an overall size of 10 cm{sup 3}, power consumption > 150 mW, and short-term stability sy(t) < 1 x 10-9t-1/2. Since that report, they have completed the development of the CSAC, including provision for autonomous lock acquisition and a calibrated output at 10.0 MHz, in addition to modifications to the physics package and system architecture to improve performance and manufacturability.

  12. Diamond like carbon coatings: Categorization by atomic number density

    NASA Technical Reports Server (NTRS)

    Angus, John C.

    1986-01-01

    Dense diamond-like hydrocarbon films grown at the NASA Lewis Research Center by radio frequency self bias discharge and by direct ion beam deposition were studied. A new method for categorizing hydrocarbons based on their atomic number density and elemental composition was developed and applied to the diamond-like hydrocarbon films. It was shown that the diamond-like hydrocarbon films are an entirely new class of hydrocarbons with atomic number densities lying between those of single crystal diamond and adamantanes. In addition, a major review article on these new materials was completed in cooperation with NASA Lewis Research Center personnel.

  13. High-resolution laser spectroscopy of hot Cs and Rb vapor confined in a thin optical cell

    NASA Astrophysics Data System (ADS)

    Todorov, P.; Krasteva, A.; Vartanyan, T.; Todorov, G.; Sarkisyan, D.; Cartaleva, S.

    2018-03-01

    We propose a novel use of an optical cell of micrometer thickness filled with Cs vapor in view of studying the collisions between two different alkali atoms of strongly different densities. We demonstrate narrow and good-contrast sub-Doppler resonances at the Rb D2 line for a mean-free-path of the Cs atoms comparable to the optical cell longitudinal dimension; the resonances are completely destroyed when the mean-free-path of the Cs atoms is more than two orders of magnitude shorter than the longitudinal dimension of the thin cell.

  14. Report on the activities of the Danish Atomic Energy Commission up to 31 March 1957

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1958-01-15

    Activities of the Danish Atomic Energy Commission from its establishment in 1955 through March, 1957, are reported. The technical and administrative organization of the Commission are outlined. Contracts were signed for the purchase of two reactors. The site for a reactor research establishment was acquired on the Risoe Peninsula near Roskilde. Land for agricultural experiments was acquired nearby. Buildings and facilities were nearing completion by 1957. Training programs for personnel were held. Areas of international cooperation in the peaceful use of atomic energy are outlined. A statement of expenditures is included. (C.H.)

  15. Pair distribution function analysis applied to decahedral gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Nakotte, H.; Silkwood, C.; Page, K.; Wang, H.-W.; Olds, D.; Kiefer, B.; Manna, S.; Karpov, D.; Fohtung, E.; Fullerton, E. E.

    2017-11-01

    The five-fold symmetry of face-centered cubic (fcc) derived nanoparticles is inconsistent with the translational symmetry of a Bravais lattice and generally explained by multiple twinning of a tetrahedral subunit about a (joint) symmetry axis, with or without structural modification to the fcc motif. Unlike in bulk materials, five-fold twinning in cubic nanoparticles is common and strongly affects their structural, chemical, and electronic properties. To test and verify theoretical approaches, it is therefore pertinent that the local structural features of such materials can be fully characterized. The small size of nanoparticles severely limits the application of traditional analysis techniques, such as Bragg diffraction. A complete description of the atomic arrangement in nanoparticles therefore requires a departure from the concept of translational symmetry, and prevents fully evaluating all the structural features experimentally. We describe how recent advances in instrumentation, together with the increasing power of computing, are shaping the development of alternative analysis methods of scattering data for nanostructures. We present the application of Debye scattering and pair distribution function (PDF) analysis towards modeling of the total scattering data for the example of decahedral gold nanoparticles. PDF measurements provide a statistical description of the pair correlations of atoms within a material, allowing one to evaluate the probability of finding two atoms within a given distance. We explored the sensitivity of existing synchrotron x-ray PDF instruments for distinguishing four different simple models for our gold nanoparticles: a multiply twinned fcc decahedron with either a single gap or multiple distributed gaps, a relaxed body-centered orthorhombic (bco) decahedron, and a hybrid decahedron. The data simulations of the models were then compared with experimental data from synchrotron x-ray total scattering. We present our experimentally derived atomistic models of the gold nanoparticles, with surprising results and a perspective on remaining challenges. Our findings provide evidence for the suitability of PDF analysis in the characterization of other nanosized particles that may have commercial applications.

  16. Polder maps: Improving OMIT maps by excluding bulk solvent

    DOE PAGES

    Liebschner, Dorothee; Afonine, Pavel V.; Moriarty, Nigel W.; ...

    2017-02-01

    The crystallographic maps that are routinely used during the structure-solution workflow are almost always model-biased because model information is used for their calculation. As these maps are also used to validate the atomic models that result from model building and refinement, this constitutes an immediate problem: anything added to the model will manifest itself in the map and thus hinder the validation. OMIT maps are a common tool to verify the presence of atoms in the model. The simplest way to compute an OMIT map is to exclude the atoms in question from the structure, update the corresponding structure factorsmore » and compute a residual map. It is then expected that if these atoms are present in the crystal structure, the electron density for the omitted atoms will be seen as positive features in this map. This, however, is complicated by the flat bulk-solvent model which is almost universally used in modern crystallographic refinement programs. This model postulates constant electron density at any voxel of the unit-cell volume that is not occupied by the atomic model. Consequently, if the density arising from the omitted atoms is weak then the bulk-solvent model may obscure it further. A possible solution to this problem is to prevent bulk solvent from entering the selected OMIT regions, which may improve the interpretative power of residual maps. This approach is called a polder (OMIT) map. Polder OMIT maps can be particularly useful for displaying weak densities of ligands, solvent molecules, side chains, alternative conformations and residues both in terminal regions and in loops. As a result, the tools described in this manuscript have been implemented and are available in PHENIX.« less

  17. F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly.

    PubMed

    Jain, Swati; Schlick, Tamar

    2017-11-24

    Coarse-grained models represent attractive approaches to analyze and simulate ribonucleic acid (RNA) molecules, for example, for structure prediction and design, as they simplify the RNA structure to reduce the conformational search space. Our structure prediction protocol RAGTOP (RNA-As-Graphs Topology Prediction) represents RNA structures as tree graphs and samples graph topologies to produce candidate graphs. However, for a more detailed study and analysis, construction of atomic from coarse-grained models is required. Here we present our graph-based fragment assembly algorithm (F-RAG) to convert candidate three-dimensional (3D) tree graph models, produced by RAGTOP into atomic structures. We use our related RAG-3D utilities to partition graphs into subgraphs and search for structurally similar atomic fragments in a data set of RNA 3D structures. The fragments are edited and superimposed using common residues, full atomic models are scored using RAGTOP's knowledge-based potential, and geometries of top scoring models is optimized. To evaluate our models, we assess all-atom RMSDs and Interaction Network Fidelity (a measure of residue interactions) with respect to experimentally solved structures and compare our results to other fragment assembly programs. For a set of 50 RNA structures, we obtain atomic models with reasonable geometries and interactions, particularly good for RNAs containing junctions. Additional improvements to our protocol and databases are outlined. These results provide a good foundation for further work on RNA structure prediction and design applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi

    NASA Astrophysics Data System (ADS)

    Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; Bautz, Marshall W.; Blandford, Roger; Brenneman, Laura W.; Brown, Gregory V.; Bulbul, Esra; Cackett, Edward M.; Chernyakova, Maria; Chiao, Meng P.; Coppi, Paolo S.; Costantini, Elisa; de Plaa, Jelle; de Vries, Cor P.; den Herder, Jan-Willem; Done, Chris; Dotani, Tadayasu; Ebisawa, Ken; Eckart, Megan E.; Enoto, Teruaki; Ezoe, Yuichiro; Fabian, Andrew C.; Ferrigno, Carlo; Foster, Adam R.; Fujimoto, Ryuichi; Fukazawa, Yasushi; Furuzawa, Akihiro; Galeazzi, Massimiliano; Gallo, Luigi C.; Gandhi, Poshak; Giustini, Margherita; Goldwurm, Andrea; Gu, Liyi; Guainazzi, Matteo; Haba, Yoshito; Hagino, Kouichi; Hamaguchi, Kenji; Harrus, Ilana M.; Hatsukade, Isamu; Hayashi, Katsuhiro; Hayashi, Takayuki; Hayashida, Kiyoshi; Hell, Natalie; Hiraga, Junko S.; Hornschemeier, Ann; Hoshino, Akio; Hughes, John P.; Ichinohe, Yuto; Iizuka, Ryo; Inoue, Hajime; Inoue, Yoshiyuki; Ishida, Manabu; Ishikawa, Kumi; Ishisaki, Yoshitaka; Iwai, Masachika; Kaastra, Jelle; Kallman, Tim; Kamae, Tsuneyoshi; Kataoka, Jun; Katsuda, Satoru; Kawai, Nobuyuki; Kelley, Richard L.; Kilbourne, Caroline A.; Kitaguchi, Takao; Kitamoto, Shunji; Kitayama, Tetsu; Kohmura, Takayoshi; Kokubun, Motohide; Koyama, Katsuji; Koyama, Shu; Kretschmar, Peter; Krimm, Hans A.; Kubota, Aya; Kunieda, Hideyo; Laurent, Philippe; Lee, Shiu-Hang; Leutenegger, Maurice A.; Limousin, Olivier; Loewenstein, Michael; Long, Knox S.; Lumb, David; Madejski, Greg; Maeda, Yoshitomo; Maier, Daniel; Makishima, Kazuo; Markevitch, Maxim; Matsumoto, Hironori; Matsushita, Kyoko; McCammon, Dan; McNamara, Brian R.; Mehdipour, Missagh; Miller, Eric D.; Miller, Jon M.; Mineshige, Shin; Mitsuda, Kazuhisa; Mitsuishi, Ikuyuki; Miyazawa, Takuya; Mizuno, Tsunefumi; Mori, Hideyuki; Mori, Koji; Mukai, Koji; Murakami, Hiroshi; Mushotzky, Richard F.; Nakagawa, Takao; Nakajima, Hiroshi; Nakamori, Takeshi; Nakashima, Shinya; Nakazawa, Kazuhiro; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Noda, Hirofumi; Odaka, Hirokazu; Ohashi, Takaya; Ohno, Masanori; Okajima, Takashi; Ota, Naomi; Ozaki, Masanobu; Paerels, Frits; Paltani, Stéphane; Petre, Robert; Pinto, Ciro; Porter, Frederick S.; Pottschmidt, Katja; Reynolds, Christopher S.; Safi-Harb, Samar; Saito, Shinya; Sakai, Kazuhiro; Sasaki, Toru; Sato, Goro; Sato, Kosuke; Sato, Rie; Sawada, Makoto; Schartel, Norbert; Serlemtsos, Peter J.; Seta, Hiromi; Shidatsu, Megumi; Simionescu, Aurora; Smith, Randall K.; Soong, Yang; Stawarz, Łukasz; Sugawara, Yasuharu; Sugita, Satoshi; Szymkowiak, Andrew; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Takeda, Shin'ichiro; Takei, Yoh; Tamagawa, Toru; Tamura, Takayuki; Tanaka, Takaaki; Tanaka, Yasuo; Tanaka, Yasuyuki T.; Tashiro, Makoto S.; Tawara, Yuzuru; Terada, Yukikatsu; Terashima, Yuichi; Tombesi, Francesco; Tomida, Hiroshi; Tsuboi, Yohko; Tsujimoto, Masahiro; Tsunemi, Hiroshi; Tsuru, Takeshi Go; Uchida, Hiroyuki; Uchiyama, Hideki; Uchiyama, Yasunobu; Ueda, Shutaro; Ueda, Yoshihiro; Uno, Shin'ichiro; Urry, C. Megan; Ursino, Eugenio; Watanabe, Shin; Werner, Norbert; Wilkins, Dan R.; Williams, Brian J.; Yamada, Shinya; Yamaguchi, Hiroya; Yamaoka, Kazutaka; Yamasaki, Noriko Y.; Yamauchi, Makoto; Yamauchi, Shigeo; Yaqoob, Tahir; Yatsu, Yoichi; Yonetoku, Daisuke; Zhuravleva, Irina; Zoghbi, Abderahmen; Raassen, A. J. J.

    2018-03-01

    The Hitomi Soft X-ray Spectrometer spectrum of the Perseus cluster, with ˜5 eV resolution in the 2-9 keV band, offers an unprecedented benchmark of the atomic modeling and database for hot collisional plasmas. It reveals both successes and challenges of the current atomic data and models. The latest versions of AtomDB/APEC (3.0.8), SPEX (3.03.00), and CHIANTI (8.0) all provide reasonable fits to the broad-band spectrum, and are in close agreement on best-fit temperature, emission measure, and abundances of a few elements such as Ni. For the Fe abundance, the APEC and SPEX measurements differ by 16%, which is 17 times higher than the statistical uncertainty. This is mostly attributed to the differences in adopted collisional excitation and dielectronic recombination rates of the strongest emission lines. We further investigate and compare the sensitivity of the derived physical parameters to the astrophysical source modeling and instrumental effects. The Hitomi results show that accurate atomic data and models are as important as the astrophysical modeling and instrumental calibration aspects. Substantial updates of atomic databases and targeted laboratory measurements are needed to get the current data and models ready for the data from the next Hitomi-level mission.

  19. Molecule-specific determination of atomic polarizabilities with the polarizable atomic multipole model.

    PubMed

    Woo Kim, Hyun; Rhee, Young Min

    2012-07-30

    Recently, many polarizable force fields have been devised to describe induction effects between molecules. In popular polarizable models based on induced dipole moments, atomic polarizabilities are the essential parameters and should be derived carefully. Here, we present a parameterization scheme for atomic polarizabilities using a minimization target function containing both molecular and atomic information. The main idea is to adopt reference data only from quantum chemical calculations, to perform atomic polarizability parameterizations even when relevant experimental data are scarce as in the case of electronically excited molecules. Specifically, our scheme assigns the atomic polarizabilities of any given molecule in such a way that its molecular polarizability tensor is well reproduced. We show that our scheme successfully works for various molecules in mimicking dipole responses not only in ground states but also in valence excited states. The electrostatic potential around a molecule with an externally perturbing nearby charge also exhibits a near-quantitative agreement with the reference data from quantum chemical calculations. The limitation of the model with isotropic atoms is also discussed to examine the scope of its applicability. Copyright © 2012 Wiley Periodicals, Inc.

  20. Modeling of Turbulence Effects on Liquid Jet Atomization and Breakup

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Chen, C. P.

    2004-01-01

    Recent experimental investigations and physical modeling studies have indicated that turbulence behaviors within a liquid jet have considerable effects on the atomization process. For certain flow regimes, it has been observed that the liquid jet surface is highly turbulent. This turbulence characteristic plays a key role on the breakup of the liquid jet near to the injector exit. Other experiments also showed that the breakup length of the liquid core is sharply shortened as the liquid jet is changed from the laminar to the turbulent flow conditions. In the numerical and physical modeling arena, most of commonly used atomization models do not include the turbulence effect. Limited attempts have been made in modeling the turbulence phenomena on the liquid jet disintegration. The subject correlation and models treat the turbulence either as an only source or a primary driver in the breakup process. This study aims to model the turbulence effect in the atomization process of a cylindrical liquid jet. In the course of this study, two widely used models, Reitz's primary atomization (blob) and Taylor-Analogy-Break (TAB) secondary droplet breakup by O Rourke et al. are examined. Additional terms are derived and implemented appropriately into these two models to account for the turbulence effect on the atomization process. Since this enhancement effort is based on a framework of the two existing atomization models, it is appropriate to denote the two present models as T-blob and T-TAB for the primary and secondary atomization predictions, respectively. In the primary breakup model, the level of the turbulence effect on the liquid breakup depends on the characteristic time scales and the initial flow conditions. This treatment offers a balance of contributions of individual physical phenomena on the liquid breakup process. For the secondary breakup, an addition turbulence force acted on parent drops is modeled and integrated into the TAB governing equation. The drop size formed from this breakup regime is estimated based on the energy balance before and after the breakup occurrence. The turbulence energy is also considered in this process.

  1. Bond-length relaxation in crystalline Si1-xGex alloys: An extended x-ray-absorption fine-structure study

    NASA Astrophysics Data System (ADS)

    Kajiyama, Hiroshi; Muramatsu, Shin-Ichi; Shimada, Toshikazu; Nishino, Yoichi

    1992-06-01

    Extended x-ray-absorption fine-structure spectra for crystalline Si1-xGex alloys, measured at the K edge of Ge at room temperature, are analyzed with a curve-fitting method based on the spherical-wave approximation. The Ge-Ge and Ge-Si bond lengths, coordination numbers of Ge and Si atoms around a Ge atom, and Debye-Waller factors of Ge and Si atoms are obtained. It is shown that Ge-Ge and Ge-Si bonds relax completely, for all Ge concentrations of their study, while the lattice constant varies monotonically, following Vegard's law. As noted by Bragg and later by Pauling and Huggins, the Ge-Ge and Ge-Si bond lengths are close to the sum of their constituent-element atomic radii: nearly 2.45 Å for Ge-Ge bonds and 2.40 Å for Ge-Si bonds. A study on the coordination around a Ge atom in the alloys revealed that Ge and Si atoms mix randomly throughout the compositional range studied.

  2. High Fidelity Preparation of a Single Atom in Its 2D Center of Mass Ground State

    NASA Astrophysics Data System (ADS)

    Sompet, Pimonpan; Fung, Yin Hsien; Schwartz, Eyal; Hunter, Matthew D. J.; Phrompao, Jindaratsamee; Andersen, Mikkel F.

    2017-04-01

    Complete control over quantum states of individual atoms is important for the study of the microscopic world. Here, we present a push button method for high fidelity preparation of a single 85Rb atom in the vibrational ground state of tightly focused optical tweezers. The method combines near-deterministic preparation of a single atom with magnetically-insensitive Raman sideband cooling. We achieve 2D cooling in the radial plane with a ground state population of 0.85, which provides a fidelity of 0.7 for the entire procedure (loading and cooling). The Raman beams couple two sublevels (| F = 3 , m = 0 〉 and | F = 2 , m = 0 〉) that are indifferent to magnetic noise to first order. This leads to long atomic coherence times, and allows us to implement the cooling in an environment where magnetic field fluctuations prohibit previously demonstrated variations. Additionally, we implement the trapping and manipulation of two atoms confined in separate dynamically reconfigurable optical tweezers, to study few-body dynamics.

  3. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma

    NASA Astrophysics Data System (ADS)

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G.; Watts, Colin; Welland, Mark

    2014-08-01

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c4nr03693j

  4. Inhibition of dog and human gastric lipases by enantiomeric phosphonate inhibitors: a structure-activity study.

    PubMed

    Miled, Nabil; Roussel, Alain; Bussetta, Cécile; Berti-Dupuis, Liliane; Rivière, Mireille; Buono, Gérard; Verger, Robert; Cambillau, Christian; Canaan, Stéphane

    2003-10-14

    The crystal structures of gastric lipases in the apo form [Roussel, A., et al. (1999) J. Biol. Chem. 274, 16995-17002] or in complex with the (R(P))-undecyl butyl phosphonate [C(11)Y(4)(+)] [Roussel, A., et al. (2002) J. Biol. Chem. 277, 2266-2274] have improved our understanding of the structure-activity relationships of acid lipases. In this report, we have performed a kinetic study with dog and human gastric lipases (DGL and HGL, respectively) using several phosphonate inhibitors by varying the absolute configuration of the phosphorus atom and the chain length of the alkyl/alkoxy substituents. Using the two previously determined structures and that of a new crystal structure obtained with the other (S(P))-phosphonate enantiomer [C(11)Y(4)(-)], we constructed models of phosphonate inhibitors fitting into the active site crevices of DGL and HGL. All inhibitors with a chain length of fewer than 12 carbon atoms were found to be completely buried in the catalytic crevice, whereas longer alkyl/alkoxy chains were found to point out of the cavity. The main stereospecific determinant explaining the stronger inhibition of the S(P) enantiomers is the presence of a hydrogen bond involving the catalytic histidine as found in the DGL-C(11)Y(4)(-) complex. On the basis of these results, we have built a model of the first tetrahedral intermediate corresponding to the tristearoyl-lipase complex. The triglyceride molecule completely fills the active site crevice of DGL, in contrast with what is observed with other lipases such as pancreatic lipases which have a shallower and narrower active site. For substrate hydrolysis, the supply of water molecules to the active site might be achieved through a lateral channel identified in the protein core.

  5. Knowledge-based probabilistic representations of branching ratios in chemical networks: The case of dissociative recombinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plessis, Sylvain; Carrasco, Nathalie; Pernot, Pascal

    Experimental data about branching ratios for the products of dissociative recombination of polyatomic ions are presently the unique information source available to modelers of natural or laboratory chemical plasmas. Yet, because of limitations in the measurement techniques, data for many ions are incomplete. In particular, the repartition of hydrogen atoms among the fragments of hydrocarbons ions is often not available. A consequence is that proper implementation of dissociative recombination processes in chemical models is difficult, and many models ignore invaluable data. We propose a novel probabilistic approach based on Dirichlet-type distributions, enabling modelers to fully account for the available information.more » As an application, we consider the production rate of radicals through dissociative recombination in an ionospheric chemistry model of Titan, the largest moon of Saturn. We show how the complete scheme of dissociative recombination products derived with our method dramatically affects these rates in comparison with the simplistic H-loss mechanism implemented by default in all recent models.« less

  6. Knowledge-based probabilistic representations of branching ratios in chemical networks: the case of dissociative recombinations.

    PubMed

    Plessis, Sylvain; Carrasco, Nathalie; Pernot, Pascal

    2010-10-07

    Experimental data about branching ratios for the products of dissociative recombination of polyatomic ions are presently the unique information source available to modelers of natural or laboratory chemical plasmas. Yet, because of limitations in the measurement techniques, data for many ions are incomplete. In particular, the repartition of hydrogen atoms among the fragments of hydrocarbons ions is often not available. A consequence is that proper implementation of dissociative recombination processes in chemical models is difficult, and many models ignore invaluable data. We propose a novel probabilistic approach based on Dirichlet-type distributions, enabling modelers to fully account for the available information. As an application, we consider the production rate of radicals through dissociative recombination in an ionospheric chemistry model of Titan, the largest moon of Saturn. We show how the complete scheme of dissociative recombination products derived with our method dramatically affects these rates in comparison with the simplistic H-loss mechanism implemented by default in all recent models.

  7. Methanol oxidation on stoichiometric and oxygen-rich RuO2(110).

    PubMed

    Rai, Rahul; Weaver, Jason F

    2017-07-26

    We used temperature-programmed reaction spectroscopy (TPRS) to investigate the adsorption and oxidation of methanol on stoichiometric and O-rich RuO 2 (110) surfaces. We find that the complete oxidation of CH 3 OH is strongly preferred on stoichiometric RuO 2 (110) during TPRS for initial CH 3 OH coverages below ∼0.33 ML (monolayer), and that partial oxidation to mainly CH 2 O becomes increasingly favored with increasing CH 3 OH coverage from 0.33 to 1.0 ML. We present evidence that an adsorbed CH 2 O 2 species serves as the key intermediate to complete oxidation and that CH 2 O 2 formation is intrinsically facile but becomes limited by the availability of bridging O-atoms on stoichiometric RuO 2 (110) at initial CH 3 OH coverages above 0.33 ML. We show that methanol molecules adsorbed in excess of 0.33 ML dehydrogenate to mainly CH 2 O and desorb during TPRS, with adsorbed CH 3 O groups mediating the evolution of both CH 2 O and CH 3 OH. We find that O-rich RuO 2 (110) surfaces are also highly active toward methanol oxidation and that selectivity toward the complete oxidation of methanol increases markedly with increasing coverage of on-top O-atoms (O ot ) on RuO 2 (110). Our results demonstrate that CH 3 OH species adsorbed within O ot -rich domains react efficiently during TPRS, in parallel with reaction of CH 3 OH adsorbed initially on cus-Ru sites. The data suggests that the facile hydrogenation of O ot atoms and the resulting desorption of H 2 O at low-temperature (<∼400 K) provides an efficient pathway for restoring reactive O-atoms and thereby promoting complete oxidation of methanol on the O-rich RuO 2 (110) surface.

  8. Single Pd Atoms on θ-Al2O3 (010) Surface do not Catalyze NO Oxidation.

    PubMed

    Narula, Chaitanya K; Allard, Lawrence F; Moses-DeBusk, Melanie; Stocks, G Malcom; Wu, Zili

    2017-04-03

    New convenient wet-chemistry synthetic routes have made it possible to explore catalytic activities of a variety of single supported atoms, however, the single supported atoms on inert substrates (e.g. alumina) are limited to adatoms and cations of Pt, Pd, and Ru. Previously, we have found that single supported Pt atoms are remarkable NO oxidation catalysts. In contrast, we report that Pd single atoms are completely inactive for NO oxidation. The diffuse reflectance infra-red spectroscopy (DRIFTS) results show the absence of nitrate formation on catalyst. To explain these results, we explored modified Langmuir-Hinshelwood type pathways that have been proposed for oxidation reactions on single supported atom. In the first pathway, we find that there is energy barrier for the release of NO 2 which prevent NO oxidation. In the second pathway, our results show that there is no driving force for the formation of O=N-O-O intermediate or nitrate on single supported Pd atoms. The decomposition of nitrate, if formed, is an endothermic event.

  9. Rydberg interaction induced enhanced excitation in thermal atomic vapor.

    PubMed

    Kara, Dushmanta; Bhowmick, Arup; Mohapatra, Ashok K

    2018-03-27

    We present the experimental demonstration of interaction induced enhancement in Rydberg excitation or Rydberg anti-blockade in thermal atomic vapor. We have used optical heterodyne detection technique to measure Rydberg population due to two-photon excitation to the Rydberg state. The anti-blockade peak which doesn't satisfy the two-photon resonant condition is observed along with the usual two-photon resonant peak which can't be explained using the model with non-interacting three-level atomic system. A model involving two interacting atoms is formulated for thermal atomic vapor using the dressed states of three-level atomic system to explain the experimental observations. A non-linear dependence of vapor density is observed for the anti-blockade peak which also increases with increase in principal quantum number of the Rydberg state. A good agreement is found between the experimental observations and the proposed interacting model. Our result implies possible applications towards quantum logic gates using Rydberg anti-blockade in thermal atomic vapor.

  10. From deep TLS validation to ensembles of atomic models built from elemental motions. II. Analysis of TLS refinement results by explicit interpretation

    DOE PAGES

    Afonine, Pavel V.; Adams, Paul D.; Urzhumtsev, Alexandre

    2018-06-08

    TLS modelling was developed by Schomaker and Trueblood to describe atomic displacement parameters through concerted (rigid-body) harmonic motions of an atomic group [Schomaker & Trueblood (1968), Acta Cryst. B 24 , 63–76]. The results of a TLS refinement are T , L and S matrices that provide individual anisotropic atomic displacement parameters (ADPs) for all atoms belonging to the group. These ADPs can be calculated analytically using a formula that relates the elements of the TLS matrices to atomic parameters. Alternatively, ADPs can be obtained numerically from the parameters of concerted atomic motions corresponding to the TLS matrices. Both proceduresmore » are expected to produce the same ADP values and therefore can be used to assess the results of TLS refinement. Here, the implementation of this approach in PHENIX is described and several illustrations, including the use of all models from the PDB that have been subjected to TLS refinement, are provided.« less

  11. From deep TLS validation to ensembles of atomic models built from elemental motions. II. Analysis of TLS refinement results by explicit interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonine, Pavel V.; Adams, Paul D.; Urzhumtsev, Alexandre

    TLS modelling was developed by Schomaker and Trueblood to describe atomic displacement parameters through concerted (rigid-body) harmonic motions of an atomic group [Schomaker & Trueblood (1968), Acta Cryst. B 24 , 63–76]. The results of a TLS refinement are T , L and S matrices that provide individual anisotropic atomic displacement parameters (ADPs) for all atoms belonging to the group. These ADPs can be calculated analytically using a formula that relates the elements of the TLS matrices to atomic parameters. Alternatively, ADPs can be obtained numerically from the parameters of concerted atomic motions corresponding to the TLS matrices. Both proceduresmore » are expected to produce the same ADP values and therefore can be used to assess the results of TLS refinement. Here, the implementation of this approach in PHENIX is described and several illustrations, including the use of all models from the PDB that have been subjected to TLS refinement, are provided.« less

  12. Spectroscopic and Computational Investigations of a Mononuclear Manganese(IV)-Oxo Complex Reveal Electronic Structure Contributions to Reactivity

    DOE PAGES

    Leto, Domenick F.; Massie, Allyssa A.; Rice, Derek B.; ...

    2016-11-01

    The mononuclear Mn(IV)-oxo complex [Mn IV(O)(N4py)] 2+, where N4py is the pentadentate ligand N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine, we propose to attack C–H bonds by an excited-state reactivity pattern [Cho, K.-B.; Shaik, S.; Nam, W. J. Phys. Chem. Lett. 2012, 3, 2851-2856 (DOI: 10.1021/jz301241z)]. In this model, a 4E excited state is utilized to provide a lower-energy barrier for hydrogen-atom transfer. This proposal is intriguing, as it offers both a rationale for the relatively high hydrogen-atom-transfer reactivity of [Mn IV(O)(N4py)] 2+ and a guideline for creating more reactive complexes through ligand modification. Here we employ a combination of electronic absorption and variable-temperature magnetic circularmore » dichroism (MCD) spectroscopy to experimentally evaluate this excited-state reactivity model. Using these spectroscopic methods, in conjunction with time-dependent density functional theory (TD-DFT) and complete-active space self-consistent-field calculations (CASSCF), we define the ligand-field and charge-transfer excited states of [MnIV(O)(N4py)]2+. Through a graphical analysis of the signs of the experimental C-term MCD signals, we unambiguously assign a low-energy MCD feature of [Mn IV(O)(N4py)] 2+ as the 4E excited state predicted to be involved in hydrogen-atom-transfer reactivity. The CASSCF calculations predict enhanced Mn III-oxyl character on the excited-state 4E surface, consistent with previous DFT calculations. Potential-energy surfaces, developed using the CASSCF methods, are used to determine how the energies and wave functions of the ground and excited states evolved as a function of Mn=O distance. Furthermore, the unique insights into ground- and excited-state electronic structure offered by these spectroscopic and computational studies are harmonized with a thermodynamic model of hydrogen-atom-transfer reactivity, which predicts a correlation between transition-state barriers and driving force« less

  13. Spectroscopic and Computational Investigations of a Mononuclear Manganese(IV)-Oxo Complex Reveal Electronic Structure Contributions to Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leto, Domenick F.; Massie, Allyssa A.; Rice, Derek B.

    The mononuclear Mn(IV)-oxo complex [Mn IV(O)(N4py)] 2+, where N4py is the pentadentate ligand N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine, we propose to attack C–H bonds by an excited-state reactivity pattern [Cho, K.-B.; Shaik, S.; Nam, W. J. Phys. Chem. Lett. 2012, 3, 2851-2856 (DOI: 10.1021/jz301241z)]. In this model, a 4E excited state is utilized to provide a lower-energy barrier for hydrogen-atom transfer. This proposal is intriguing, as it offers both a rationale for the relatively high hydrogen-atom-transfer reactivity of [Mn IV(O)(N4py)] 2+ and a guideline for creating more reactive complexes through ligand modification. Here we employ a combination of electronic absorption and variable-temperature magnetic circularmore » dichroism (MCD) spectroscopy to experimentally evaluate this excited-state reactivity model. Using these spectroscopic methods, in conjunction with time-dependent density functional theory (TD-DFT) and complete-active space self-consistent-field calculations (CASSCF), we define the ligand-field and charge-transfer excited states of [MnIV(O)(N4py)]2+. Through a graphical analysis of the signs of the experimental C-term MCD signals, we unambiguously assign a low-energy MCD feature of [Mn IV(O)(N4py)] 2+ as the 4E excited state predicted to be involved in hydrogen-atom-transfer reactivity. The CASSCF calculations predict enhanced Mn III-oxyl character on the excited-state 4E surface, consistent with previous DFT calculations. Potential-energy surfaces, developed using the CASSCF methods, are used to determine how the energies and wave functions of the ground and excited states evolved as a function of Mn=O distance. Furthermore, the unique insights into ground- and excited-state electronic structure offered by these spectroscopic and computational studies are harmonized with a thermodynamic model of hydrogen-atom-transfer reactivity, which predicts a correlation between transition-state barriers and driving force« less

  14. Refined Dummy Atom Model of Mg(2+) by Simple Parameter Screening Strategy with Revised Experimental Solvation Free Energy.

    PubMed

    Jiang, Yang; Zhang, Haiyang; Feng, Wei; Tan, Tianwei

    2015-12-28

    Metal ions play an important role in the catalysis of metalloenzymes. To investigate metalloenzymes via molecular modeling, a set of accurate force field parameters for metal ions is highly imperative. To extend its application range and improve the performance, the dummy atom model of metal ions was refined through a simple parameter screening strategy using the Mg(2+) ion as an example. Using the AMBER ff03 force field with the TIP3P model, the refined model accurately reproduced the experimental geometric and thermodynamic properties of Mg(2+). Compared with point charge models and previous dummy atom models, the refined dummy atom model yields an enhanced performance for producing reliable ATP/GTP-Mg(2+)-protein conformations in three metalloenzyme systems with single or double metal centers. Similar to other unbounded models, the refined model failed to reproduce the Mg-Mg distance and favored a monodentate binding of carboxylate groups, and these drawbacks needed to be considered with care. The outperformance of the refined model is mainly attributed to the use of a revised (more accurate) experimental solvation free energy and a suitable free energy correction protocol. This work provides a parameter screening strategy that can be readily applied to refine the dummy atom models for metal ions.

  15. A Comparison between Elementary School Students' Mental Models and Visualizations in Textbooks for the Concept of Atom

    ERIC Educational Resources Information Center

    Polat-Yaseen, Zeynep

    2012-01-01

    This study was designed for two major goals, which are to describe students' mental models about atom concept from 6th to 8th grade and to compare students' mental models with visual representations of atom in textbooks. Qualitative and quantitative data were collected with 4 open-ended questions including drawings which were quantified using the…

  16. Experimental studies of electron impact depopulation of excited states of atoms: applications to laser development for fusion and isotope separation. Final report, 1 January 1977-30 June 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubell, M.S.

    1980-06-01

    Motivated by the need for measurements of metastable depopulation mechanisms of Ar and Kr in the KrF rare-gas monohalide excimer laser, an ultra-high vacuum triple crossed-beams apparatus has been designed, fabricated, and assembled for the purpose of studying electron scattering from excited states of Ar and Kr atoms. A beam of metastable rare gas atoms, produced by near-resonant charge transfer of rare gas ions with alkali neutral atoms, is crossed by an electron beam and a far-red laser beam along mutually orthogonal axes. A hemispherical electron monochromator-spectrometer pair is used to measure the cross section for electron scattering from themore » 2p/sub 9/ excited state of the rare gas atom. Testing of parts of the assembled apparatus has been completed.« less

  17. Total Born approximation cross sections for single electron loss by atoms and ions colliding with atoms

    NASA Technical Reports Server (NTRS)

    Rule, D. W.

    1977-01-01

    The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.

  18. Measurements of electrostatic double layer potentials with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Giamberardino, Jason

    The aim of this thesis is to provide a thorough description of the development of theory and experiment pertaining to the electrostatic double layer (EDL) in aqueous electrolytic systems. The EDL is an important physical element of many systems and its behavior has been of interest to scientists for many decades. Because many areas of science and engineering move to test, build, and understand systems at smaller and smaller scales, this work focuses on nanoscopic experimental investigations of the EDL. In that vein, atomic force microscopy (AFM) will be introduced and discussed as a tool for making high spatial resolution measurements of the solid-liquid interface, culminating in a description of the development of a method for completely characterizing the EDL. This thesis first explores, in a semi-historical fashion, the development of the various models and theories that are used to describe the electrostatic double layer. Later, various experimental techniques and ideas are addressed as ways to make measurements of interesting characteristics of the EDL. Finally, a newly developed approach to measuring the EDL system with AFM is introduced. This approach relies on both implementation of existing theoretical models with slight modifications as well as a unique experimental measurement scheme. The model proposed clears up previous ambiguities in definitions of various parameters pertaining to measurements of the EDL and also can be used to fully characterize the system in a way not yet demonstrated.

  19. A knowledge-based potential with an accurate description of local interactions improves discrimination between native and near-native protein conformations.

    PubMed

    Ferrada, Evandro; Vergara, Ismael A; Melo, Francisco

    2007-01-01

    The correct discrimination between native and near-native protein conformations is essential for achieving accurate computer-based protein structure prediction. However, this has proven to be a difficult task, since currently available physical energy functions, empirical potentials and statistical scoring functions are still limited in achieving this goal consistently. In this work, we assess and compare the ability of different full atom knowledge-based potentials to discriminate between native protein structures and near-native protein conformations generated by comparative modeling. Using a benchmark of 152 near-native protein models and their corresponding native structures that encompass several different folds, we demonstrate that the incorporation of close non-bonded pairwise atom terms improves the discriminating power of the empirical potentials. Since the direct and unbiased derivation of close non-bonded terms from current experimental data is not possible, we obtained and used those terms from the corresponding pseudo-energy functions of a non-local knowledge-based potential. It is shown that this methodology significantly improves the discrimination between native and near-native protein conformations, suggesting that a proper description of close non-bonded terms is important to achieve a more complete and accurate description of native protein conformations. Some external knowledge-based energy functions that are widely used in model assessment performed poorly, indicating that the benchmark of models and the specific discrimination task tested in this work constitutes a difficult challenge.

  20. The adsorption of helium atoms on coronene cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurzthaler, Thomas; Rasul, Bilal; Kuhn, Martin

    2016-08-14

    We report the first experimental study of the attachment of multiple foreign atoms to a cationic polycyclic aromatic hydrocarbon (PAH). The chosen PAH was coronene, C{sub 24}H{sub 12}, which was added to liquid helium nanodroplets and then subjected to electron bombardment. Using mass spectrometry, coronene cations decorated with helium atoms were clearly seen and the spectrum shows peaks with anomalously high intensities (“magic number” peaks), which represent ion-helium complexes with added stability. The data suggest the formation of a rigid helium layer consisting of 38 helium atoms that completely cover both faces of the coronene ion. Additional magic numbers canmore » be seen for the further addition of 3 and 6 helium atoms, which are thought to attach to the edge of the coronene. The observation of magic numbers for the addition of 38 and 44 helium atoms is in good agreement with a recent path integral Monte Carlo prediction for helium atoms on neutral coronene. An understanding of how atoms and molecules attach to PAH ions is important for a number of reasons including the potential role such complexes might play in the chemistry of the interstellar medium.« less

  1. Optical-bistability-enabled control of resonant light transmission for an atom-cavity system

    NASA Astrophysics Data System (ADS)

    Sawant, Rahul; Rangwala, S. A.

    2016-02-01

    The control of light transmission through a standing-wave Fabry-Pérot cavity containing atoms is theoretically and numerically investigated, when the cavity mode beam and an intersecting control beam are both close to specific atomic resonances. A four-level atomic system is considered and its interaction with the cavity mode is studied by solving for the cavity field and atomic state populations. The conditions for optical bistability of the atom-cavity system are obtained. The response of the intracavity intensity to an intersecting beam on atomic resonance is understood in the presence of stationary atoms (closed system) and nonstatic atoms (open system) in the cavity. The nonstatic system of atoms is modelled by adjusting the atomic state populations to represent the exchange of atoms in the cavity mode, which corresponds to a thermal environment where atoms are moving in and out of the cavity mode volume. The control behavior with three- and two-level atomic systems is also studied, and the rich physics arising out of these systems for closed and open atomic systems is discussed. The solutions to the models are used to interpret the steady-state and transient behavior observed by Sharma et al. [Phys. Rev. A 91, 043824 (2015)], 10.1103/PhysRevA.91.043824.

  2. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  3. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korolev, Yu. D., E-mail: korolev@lnp.hcei.tsc.ru; Frants, O. B.; Nekhoroshev, V. O.

    2016-06-15

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark andmore » aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.« less

  4. Benchmarking Atomic Data for Astrophysics: Be-like Ions between B II and Ne VII

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Chen, Zhan Bin; Zhang, Chun Yu; Si, Ran; Jönsson, Per; Hartman, Henrik; Gu, Ming Feng; Chen, Chong Yang; Yan, Jun

    2018-02-01

    Large-scale self-consistent multiconfiguration Dirac–Hartree–Fock and relativistic configuration interaction calculations are reported for the n≤slant 6 levels in Be-like ions from B II to Ne VII. Effects from electron correlation are taken into account by means of large expansions in terms of a basis of configuration state functions, and a complete and accurate data set of excitation energies; lifetimes; wavelengths; electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole line strengths; transition rates; and oscillator strengths for these levels is provided for each ion. Comparisons are made with available experimental and theoretical results. The uncertainty of excitation energies is assessed to be 0.01% on average, which makes it possible to find and rule out misidentifications and aid new line identifications involving high-lying levels in astrophysical spectra. The complete data set is also useful for modeling and diagnosing astrophysical plasmas.

  5. Comparison of all atom, continuum, and linear fitting empirical models for charge screening effect of aqueous medium surrounding a protein molecule

    NASA Astrophysics Data System (ADS)

    Takahashi, Takuya; Sugiura, Junnnosuke; Nagayama, Kuniaki

    2002-05-01

    To investigate the role hydration plays in the electrostatic interactions of proteins, the time-averaged electrostatic potential of the B1 domain of protein G in an aqueous solution was calculated with full atomic molecular dynamics simulations that explicitly considers every atom (i.e., an all atom model). This all atom calculated potential was compared with the potential obtained from an electrostatic continuum model calculation. In both cases, the charge-screening effect was fairly well formulated with an effective relative dielectric constant which increased linearly with increasing charge-charge distance. This simulated linear dependence agrees with the experimentally determined linear relation proposed by Pickersgill. Cut-off approximations for Coulomb interactions failed to reproduce this linear relation. Correlation between the all atom model and the continuum models was found to be better than the respective correlation calculated for linear fitting to the two models. This confirms that the continuum model is better at treating the complicated shapes of protein conformations than the simple linear fitting empirical model. We have tried a sigmoid fitting empirical model in addition to the linear one. When weights of all data were treated equally, the sigmoid model, which requires two fitting parameters, fits results of both the all atom and the continuum models less accurately than the linear model which requires only one fitting parameter. When potential values are chosen as weighting factors, the fitting error of the sigmoid model became smaller, and the slope of both linear fitting curves became smaller. This suggests the screening effect of an aqueous medium within a short range, where potential values are relatively large, is smaller than that expected from the linear fitting curve whose slope is almost 4. To investigate the linear increase of the effective relative dielectric constant, the Poisson equation of a low-dielectric sphere in a high-dielectric medium was solved and charges distributed near the molecular surface were indicated as leading to the apparent linearity.

  6. Project Physics Tests 5, Models of the Atom.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…

  7. ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package

    NASA Astrophysics Data System (ADS)

    Hill, E. G.; Pérez-Callejo, G.; Rose, S. J.

    2018-03-01

    All three parts of an atomic physics, atomic kinetics and lineshape code, ALICE, are described. Examples of the code being used to model the emissivity and opacity of plasmas are discussed and interesting features of the code which build on the existing corpus of models are shown throughout.

  8. WW LCI v2: A second-generation life cycle inventory model for chemicals discharged to wastewater systems.

    PubMed

    Kalbar, Pradip P; Muñoz, Ivan; Birkved, Morten

    2018-05-01

    We present a second-generation wastewater treatment inventory model, WW LCI 2.0, which on many fronts represents considerable advances compared to its previous version WW LCI 1.0. WW LCI 2.0 is a novel and complete wastewater inventory model integrating WW LCI 1.0, i.e. a complete life cycle inventory, including infrastructure requirement, energy consumption and auxiliary materials applied for the treatment of wastewater and disposal of sludge and SewageLCI, i.e. fate modelling of chemicals released to the sewer. The model is expanded to account for different wastewater treatment levels, i.e. primary, secondary and tertiary treatment, independent treatment by septic tanks and also direct discharge to natural waters. Sludge disposal by means of composting is added as a new option. The model also includes a database containing statistics on wastewater treatment levels and sludge disposal patterns in 56 countries. The application of the new model is demonstrated using five chemicals assumed discharged to wastewater systems in four different countries. WW LCI 2.0 model results shows that chemicals such as diethylenetriamine penta (methylene phosphonic acid) (DTPMP) and Diclofenac, exhibit lower climate change (CC) and freshwater ecotoxicity (FET) burdens upon wastewater treatment compared to direct discharge in all country scenarios. Results for Ibuprofen and Acetaminophen (more readily degradable) show that the CC burden depends on the country-specific levels of wastewater treatment. Higher treatment levels lead to lower CC and FET burden compared to direct discharge. WW LCI 2.0 makes it possible to generate complete detailed life cycle inventories and fate analyses for chemicals released to wastewater systems. Our test of the WW LCI 2.0 model with five chemicals illustrates how the model can provide substantially different outcomes, compared to conventional wastewater inventory models, making the inventory dependent upon the atomic composition of the molecules undergoing treatment as well as the country specific wastewater treatment levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Atom-atom inelastic collisions and three-body atomic recombination in weakly ionized argon plasmas

    NASA Technical Reports Server (NTRS)

    Braun, C. G.; Kunc, J. A.

    1989-01-01

    A stationary collisional-radiative model including both inelastic electron-atom and atom-atom collisions is used to examine nonequilibrium weakly ionized argon plasmas with atomic densities 10 to the 16th to 10 to the 20th/cu cm, temperatures below 6000 K, and with different degrees of radiation trapping. It is shown that three-body atomic recombination becomes important at high particle densities. Comparison is made between the present approach and Thomson's theory for atomic recombination.

  10. Reaction and Protection of Electrical Wire Insulators in Atomic-oxygen Environments

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Cantrell, Gidget

    1994-01-01

    Atomic-oxygen erosion on spacecraft in low Earth orbit is an issue which is becoming increasingly important because of the growing number of spacecraft that will fly in the orbits which have high concentrations of atomic oxygen. In this investigation, the atomic-oxygen durability of three types of electrical wire insulation (carbon-based, fluoropolymer, and polysiloxane elastomer) were evaluated. These insulation materials were exposed to thermal-energy atomic oxygen, which was obtained by RF excitation of air at a pressure of 11-20 Pa. The effects of atomic-oxygen exposure on insulation materials indicate that all carbon-based materials erode at about the same rate as polyamide Kapton and, therefore, are not atomic-oxygen durable. However, the durability of fluoropolymers needs to be evaluated on a case by case basis because the erosion rates of fluoropolymers vary widely. For example, experimental data suggest the formation of atomic fluorine during atomic-oxygen amorphous-fluorocarbon reactions. Dimethyl polysiloxanes (silicone) do not lose mass during atomic-oxygen exposure, but develop silica surfaces which are under tension and frequently crack as a result of loss of methyl groups. However, if the silicone sample surfaces were properly pretreated to provide a certain roughness, atomic oxygen exposure resulted in a sturdy, non-cracked atomic-oxygen durable SiO2 layer. Since the surface does not crack during such silicone-atomic oxygen reaction, the crack-induced contamination by silicone can be reduced or completely stopped. Therefore, with proper pretreatment, silicone can be either a wire insulation material or a coating on wire insulation materials to provide atomic-oxygen durability.

  11. Enhancing light-atom interactions via atomic bunching

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-07-01

    There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting a single photon induces a nonlinear material response. Here we show theoretically that sub-Doppler-cooled two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity of the applied optical fields is much less than the off-resonance saturation intensity, we show that the third-order nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all regimes of atomic bunching and simultaneously accounts for the backaction of the atoms on the optical fields. Our results agree with previous theoretical and experimental results for light-atom interactions that have considered only limited regimes of atomic bunching. For lattice beams tuned to the low-frequency side of the atomic transition, we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity. We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for ultracold atoms in optical lattices.

  12. Progress towards a space-borne quantum gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Yu, Nan; Kohel, James M.; Ramerez-Serrano, Jaime; Kellogg, James R.; Lim, Lawrence; Maleki, Lute

    2004-01-01

    Quantum interferometer gravity gradiometer for 3D mapping is a project for developing the technology of atom interferometer-based gravity sensor in space. The atom interferometer utilizes atomic particles as free fall test masses to measure inertial forces with unprecedented sensitivity and precision. It also allows measurements of the gravity gradient tensor components for 3D mapping of subsurface mass distribution. The overall approach is based on recent advances of laser cooling and manipulation of atoms in atomic and optical physics. Atom interferometers have been demonstrated in research laboratories for gravity and gravity gradient measurements. In this approach, atoms are first laser cooled to micro-kelvin temperatures. Then they are allowed to freefall in vacuum as true drag-free test masses. During the free fall, a sequence of laser pulses is used to split and recombine the atom waves to realize the interferometric measurements. We have demonstrated atom interferometer operation in the Phase I period, and we are implementing the second generation for a complete gradiometer demonstration unit in the laboratory. Along with this development, we are developing technologies at component levels that will be more suited for realization of a space instrument. We will present an update of these developments and discuss the future directions of the quantum gravity gradiometer project.

  13. Atomic quantum simulation of the lattice gauge-Higgs model: Higgs couplings and emergence of exact local gauge symmetry.

    PubMed

    Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2013-09-13

    Recently, the possibility of quantum simulation of dynamical gauge fields was pointed out by using a system of cold atoms trapped on each link in an optical lattice. However, to implement exact local gauge invariance, fine-tuning the interaction parameters among atoms is necessary. In the present Letter, we study the effect of violation of the U(1) local gauge invariance by relaxing the fine-tuning of the parameters and showing that a wide variety of cold atoms is still a faithful quantum simulator for a U(1) gauge-Higgs model containing a Higgs field sitting on sites. The clarification of the dynamics of this gauge-Higgs model sheds some light upon various unsolved problems, including the inflation process of the early Universe. We study the phase structure of this model by Monte Carlo simulation and also discuss the atomic characteristics of the Higgs phase in each simulator.

  14. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.

    1992-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.

  15. A Nonlinear Model for Fuel Atomization in Spray Combustion

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave

    2003-01-01

    Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.

  16. Coherent scattering of near-resonant light by a dense, microscopic cloud of cold two-level atoms: Experiment versus theory

    NASA Astrophysics Data System (ADS)

    Jennewein, Stephan; Brossard, Ludovic; Sortais, Yvan R. P.; Browaeys, Antoine; Cheinet, Patrick; Robert, Jacques; Pillet, Pierre

    2018-05-01

    We measure the coherent scattering of low-intensity, near-resonant light by a cloud of laser-cooled two-level rubidium atoms with a size comparable to the wavelength of light. We isolate a two-level atomic structure by applying a 300-G magnetic field. We measure both the temporal and the steady-state coherent optical response of the cloud for various detunings of the laser and for atom numbers ranging from 5 to 100. We compare our results to a microscopic coupled-dipole model and to a multimode, paraxial Maxwell-Bloch model. In the low-intensity regime, both models are in excellent agreement, thus validating the Maxwell-Bloch model. Comparing to the data, the models are found in very good agreement for relatively low densities (n /k3≲0.1 ), while significant deviations start to occur at higher density. This disagreement indicates that light scattering in dense, cold atomic ensembles is still not quantitatively understood, even in pristine experimental conditions.

  17. Efficient Nonlinear Atomization Model for Thin 3D Free Liquid Films

    NASA Astrophysics Data System (ADS)

    Mehring, Carsten

    2007-03-01

    Reviewed is a nonlinear reduced-dimension thin-film model developed by the author and aimed at the prediction of spray formation from thin films such as those found in gas-turbine engines (e.g., prefilming air-blast atomizers), heavy-fuel-oil burners (e.g., rotary-cup atomizers) and in the paint industry (e.g., flat-fan atomizers). Various implementations of the model focusing on different model-aspects, i.e., effect of film geometry, surface tension, liquid viscosity, coupling with surrounding gas-phase flow, influence of long-range intermolecular forces during film rupture are reviewed together with a validation of the nonlinear wave propagation characteristics predicted by the model for inviscid planar films using a two-dimensional vortex- method. An extension and generalization of the current nonlinear film model for implementation into a commercial flow- solver is outlined.

  18. Evaluation of the reactive nitrogen budget of the remote atmosphere in global models using airborne measurements

    NASA Astrophysics Data System (ADS)

    Murray, L. T.; Strode, S. A.; Fiore, A. M.; Lamarque, J. F.; Prather, M. J.; Thompson, C. R.; Peischl, J.; Ryerson, T. B.; Allen, H.; Blake, D. R.; Crounse, J. D.; Brune, W. H.; Elkins, J. W.; Hall, S. R.; Hintsa, E. J.; Huey, L. G.; Kim, M. J.; Moore, F. L.; Ullmann, K.; Wennberg, P. O.; Wofsy, S. C.

    2017-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the background atmosphere are critical precursors for the formation of tropospheric ozone and OH, thereby exerting strong influence on surface air quality, reactive greenhouse gases, and ecosystem health. The impact of NOx on atmospheric composition and climate is sensitive to the relative partitioning of reactive nitrogen between NOx and longer-lived reservoir species of the total reactive nitrogen family (NOy) such as HNO3, HNO4, PAN and organic nitrates (RONO2). Unfortunately, global chemistry-climate models (CCMs) and chemistry-transport models (CTMs) have historically disagreed in their reactive nitrogen budgets outside of polluted continental regions, and we have lacked in situ observations with which to evaluate them. Here, we compare and evaluate the NOy budget of six global models (GEOS-Chem CTM, GFDL AM3 CCM, GISS E2.1 CCM, GMI CTM, NCAR CAM CCM, and UCI CTM) using new observations of total reactive nitrogen and its member species from the NASA Atmospheric Tomography (ATom) mission. ATom has now completed two of its four planned deployments sampling the remote Pacific and Atlantic basins of both hemispheres with a comprehensive suite of measurements for constraining reactive photochemistry. All six models have simulated conditions climatologically similar to the deployments. The GMI and GEOS-Chem CTMs have in addition performed hindcast simulations using the MERRA-2 reanalysis, and have been sampled along the flight tracks. We evaluate the performance of the models relative to the observations, and identify factors contributing to their disparate behavior using known differences in model oxidation mechanisms, heterogeneous loss pathways, lightning and surface emissions, and physical loss processes.

  19. Pseudopotential theoretical study of the alkali metals under arbitrary pressure: Density, bulk modulus, and shear moduli

    NASA Astrophysics Data System (ADS)

    Rasky, Daniel J.; Milstein, Frederick

    1986-02-01

    Milstein and Hill previously derived formulas for computing the bulk and shear moduli, κ, μ, and μ', at arbitrary pressures, for cubic crystals in which interatomic interaction energies are modeled by pairwise functions, and they carried out the moduli computations using the complete family of Morse functions. The present study extends their work to a pseudopotential description of atomic binding. Specifically: (1) General formulas are derived for determining these moduli under hydrostatic loading within the framework of a pseudopotential model. (2) A two-parameter pseudopotential model is used to describe atomic binding of the alkali metals, and the two parameters are determined from experimental data (the model employs the Heine-Abarenkov potential with the Taylor dielectric function). (3) For each alkali metal (Li, Na, K, Rb, and Cs), the model is used to compute the pressure-versus-volume behavior and, at zero pressure, the binding energy, the density, and the elastic moduli and their pressure derivatives; the theoretical behavior is found to be in excellent agreement with experiment. (4) Calculations are made of κ, μ, and μ' of the bcc alkali metals over wide ranges of hydrostatic compression and expansion. (5) The pseudopotential results are compared with those of arbitrary-central-force models (wherein κ-(2/3)μ=μ'+2P) and with the specific Morse-function results. The pressures, bulk moduli, and zero-pressure shear moduli (as determined for the Morse and pseudopotential models) are in excellent agreement, but important differences appear in the shear moduli under high compressions. The computations in the present paper are for the bcc metals; a subsequent paper will extend this work to include both the bcc and fcc structures, at compressions and expansions where elastic stability or lattice cohesion is, in practice, lost.

  20. Non-thermal hydrogen atoms in the terrestrial upper thermosphere.

    PubMed

    Qin, Jianqi; Waldrop, Lara

    2016-12-06

    Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere.

  1. Non-thermal hydrogen atoms in the terrestrial upper thermosphere

    PubMed Central

    Qin, Jianqi; Waldrop, Lara

    2016-01-01

    Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere. PMID:27922018

  2. Tools for Model Building and Optimization into Near-Atomic Resolution Electron Cryo-Microscopy Density Maps.

    PubMed

    DiMaio, F; Chiu, W

    2016-01-01

    Electron cryo-microscopy (cryoEM) has advanced dramatically to become a viable tool for high-resolution structural biology research. The ultimate outcome of a cryoEM study is an atomic model of a macromolecule or its complex with interacting partners. This chapter describes a variety of algorithms and software to build a de novo model based on the cryoEM 3D density map, to optimize the model with the best stereochemistry restraints and finally to validate the model with proper protocols. The full process of atomic structure determination from a cryoEM map is described. The tools outlined in this chapter should prove extremely valuable in revealing atomic interactions guided by cryoEM data. © 2016 Elsevier Inc. All rights reserved.

  3. Anion Exchange in II-VI Semiconducting Nanostructures via Atomic Templating.

    PubMed

    Agarwal, Rahul; Krook, Nadia M; Ren, Ming-Liang; Tan, Liang Z; Liu, Wenjing; Rappe, Andrew M; Agarwal, Ritesh

    2018-03-14

    Controlled chemical transformation of nanostructures is a promising technique to obtain precisely designed novel materials, which are difficult to synthesize otherwise. We report high-temperature vapor-phase anion-exchange reactions to chemically transform II-VI semiconductor nanostructures (100-300 nm length scale) while retaining the single crystallinity, crystal structure, morphology, and even defect distribution of the parent material via atomic templating. The concept of atomic templating is employed to obtain kinetically controlled, thermodynamically metastable structural phases such as zincblende CdSe and CdS from zincblende CdTe upon complete chemical replacement of Te with Se or S. The underlying transformation mechanisms are explained through first-principles density functional theory calculations. Atomic templating is a unique path to independently tune materials' phase and composition at the nanoscale, allowing the synthesis of novel materials.

  4. Geometrical eigen-subspace framework based molecular conformation representation for efficient structure recognition and comparison

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Tian; Yang, Xiao-Bao; Zhao, Yu-Jun

    2017-04-01

    We have developed an extended distance matrix approach to study the molecular geometric configuration through spectral decomposition. It is shown that the positions of all atoms in the eigen-space can be specified precisely by their eigen-coordinates, while the refined atomic eigen-subspace projection array adopted in our approach is demonstrated to be a competent invariant in structure comparison. Furthermore, a visual eigen-subspace projection function (EPF) is derived to characterize the surrounding configuration of an atom naturally. A complete set of atomic EPFs constitute an intrinsic representation of molecular conformation, based on which the interatomic EPF distance and intermolecular EPF distance can be reasonably defined. Exemplified with a few cases, the intermolecular EPF distance shows exceptional rationality and efficiency in structure recognition and comparison.

  5. Microhartree precision in density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Gulans, Andris; Kozhevnikov, Anton; Draxl, Claudia

    2018-04-01

    To address ultimate precision in density functional theory calculations we employ the full-potential linearized augmented plane-wave + local-orbital (LAPW + lo) method and justify its usage as a benchmark method. LAPW + lo and two completely unrelated numerical approaches, the multiresolution analysis (MRA) and the linear combination of atomic orbitals, yield total energies of atoms with mean deviations of 0.9 and 0.2 μ Ha , respectively. Spectacular agreement with the MRA is reached also for total and atomization energies of the G2-1 set consisting of 55 molecules. With the example of α iron we demonstrate the capability of LAPW + lo to reach μ Ha /atom precision also for periodic systems, which allows also for the distinction between the numerical precision and the accuracy of a given functional.

  6. Physically representative atomistic modeling of atomic-scale friction

    NASA Astrophysics Data System (ADS)

    Dong, Yalin

    Nanotribology is a research field to study friction, adhesion, wear and lubrication occurred between two sliding interfaces at nano scale. This study is motivated by the demanding need of miniaturization mechanical components in Micro Electro Mechanical Systems (MEMS), improvement of durability in magnetic storage system, and other industrial applications. Overcoming tribological failure and finding ways to control friction at small scale have become keys to commercialize MEMS with sliding components as well as to stimulate the technological innovation associated with the development of MEMS. In addition to the industrial applications, such research is also scientifically fascinating because it opens a door to understand macroscopic friction from the most bottom atomic level, and therefore serves as a bridge between science and engineering. This thesis focuses on solid/solid atomic friction and its associated energy dissipation through theoretical analysis, atomistic simulation, transition state theory, and close collaboration with experimentalists. Reduced-order models have many advantages for its simplification and capacity to simulating long-time event. We will apply Prandtl-Tomlinson models and their extensions to interpret dry atomic-scale friction. We begin with the fundamental equations and build on them step-by-step from the simple quasistatic one-spring, one-mass model for predicting transitions between friction regimes to the two-dimensional and multi-atom models for describing the effect of contact area. Theoretical analysis, numerical implementation, and predicted physical phenomena are all discussed. In the process, we demonstrate the significant potential for this approach to yield new fundamental understanding of atomic-scale friction. Atomistic modeling can never be overemphasized in the investigation of atomic friction, in which each single atom could play a significant role, but is hard to be captured experimentally. In atomic friction, the interesting physical process is buried between the two contact interfaces, thus makes a direct measurement more difficult. Atomistic simulation is able to simulate the process with the dynamic information of each single atom, and therefore provides valuable interpretations for experiments. In this, we will systematically to apply Molecular Dynamics (MD) simulation to optimally model the Atomic Force Microscopy (AFM) measurement of atomic friction. Furthermore, we also employed molecular dynamics simulation to correlate the atomic dynamics with the friction behavior observed in experiments. For instance, ParRep dynamics (an accelerated molecular dynamic technique) is introduced to investigate velocity dependence of atomic friction; we also employ MD simulation to "see" how the reconstruction of gold surface modulates the friction, and the friction enhancement mechanism at a graphite step edge. Atomic stick-slip friction can be treated as a rate process. Instead of running a direction simulation of the process, we can apply transition state theory to predict its property. We will have a rigorous derivation of velocity and temperature dependence of friction based on the Prandtl-Tomlinson model as well as transition theory. A more accurate relation to prediction velocity and temperature dependence is obtained. Furthermore, we have included instrumental noise inherent in AFM measurement to interpret two discoveries in experiments, suppression of friction at low temperature and the attempt frequency discrepancy between AFM measurement and theoretical prediction. We also discuss the possibility to treat wear as a rate process.

  7. Isotropically sensitive optical filter employing atomic resonance transitions

    DOEpatents

    Marling, John B.

    1981-01-01

    An ultra-high Q isotropically sensitive optical filter or optical detector employing atomic resonance transitions. More specifically, atomic resonance transitions utilized in conjunction with two optical bandpass filters provide an optical detector having a wide field of view (.about.2.pi. steradians) and very narrow acceptance bandwidth approaching 0.01 A. A light signal to be detected is transmitted through an outer bandpass filter into a resonantly absorbing atomic vapor, the excited atomic vapor then providing a fluorescence signal at a different wavelength which is transmitted through an inner bandpass filter. The outer and inner bandpass filters have no common transmission band, thereby resulting in complete blockage of all optical signals that are not resonantly shifted in wavelength by the intervening atomic vapor. Two embodiments are disclosed, one in which the light signal raises atoms contained in the atomic vapor from the ground state to an excited state from which fluorescence occurs, and the other in which a pump laser is used to raise the atoms in the ground state to a first excited state from which the light signal then is resonantly absorbed, thereby raising the atoms to a second excited state from which fluorescence occurs. A specific application is described in which an optical detector according to the present invention can be used as an underwater detector for light from an optical transmitter which could be located in an orbiting satellite.

  8. Hirshfeld atom refinement for modelling strong hydrogen bonds.

    PubMed

    Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon

    2014-09-01

    High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.

  9. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    NASA Astrophysics Data System (ADS)

    Meng, Qingyong; Meyer, Hans-Dieter

    2015-10-01

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  10. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn; Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in themore » present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.« less

  11. Current Status of Superheat Spray Modeling With NCC

    NASA Technical Reports Server (NTRS)

    Raju, M. S.; Bulzan, Dan L.

    2012-01-01

    An understanding of liquid fuel behavior at superheat conditions is identified to be a topic of importance in the design of modern supersonic engines. As a part of the NASA's supersonics project office initiative on high altitude emissions, we have undertaken an effort to assess the accuracy of various existing CFD models used in the modeling of superheated sprays. As a part of this investigation, we have completed the implementation of a modeling approach into the national combustion code (NCC), and then applied it to investigate the following three cases: (1) the validation of a flashing jet generated by the sudden release of pressurized R134A from a cylindrical nozzle, (2) the differences between two superheat vaporization models were studied based on both hot and cold flow calculations of a Parker-Hannifin pressure swirl atomizer, (3) the spray characteristics generated by a single-element LDI (Lean Direct Injector) experiment were studied to investigate the differences between superheat and non-superheat conditions. Further details can be found in the paper.

  12. The Quantum Atomic Model "Electronium": A Successful Teaching Tool.

    ERIC Educational Resources Information Center

    Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John

    2002-01-01

    Focuses on the quantum atomic model Electronium. Outlines the Bremen teaching approach in which this model is used, and analyzes the learning of two students as they progress through the teaching unit. (Author/MM)

  13. Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D

    DOE PAGES

    Preciat Gonzalez, German A.; El Assal, Lemmer R. P.; Noronha, Alberto; ...

    2017-06-14

    The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, manymore » algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.« less

  14. Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preciat Gonzalez, German A.; El Assal, Lemmer R. P.; Noronha, Alberto

    The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, manymore » algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.« less

  15. Comparative evaluation of atom mapping algorithms for balanced metabolic reactions: application to Recon 3D.

    PubMed

    Preciat Gonzalez, German A; El Assal, Lemmer R P; Noronha, Alberto; Thiele, Ines; Haraldsdóttir, Hulda S; Fleming, Ronan M T

    2017-06-14

    The mechanism of each chemical reaction in a metabolic network can be represented as a set of atom mappings, each of which relates an atom in a substrate metabolite to an atom of the same element in a product metabolite. Genome-scale metabolic network reconstructions typically represent biochemistry at the level of reaction stoichiometry. However, a more detailed representation at the underlying level of atom mappings opens the possibility for a broader range of biological, biomedical and biotechnological applications than with stoichiometry alone. Complete manual acquisition of atom mapping data for a genome-scale metabolic network is a laborious process. However, many algorithms exist to predict atom mappings. How do their predictions compare to each other and to manually curated atom mappings? For more than four thousand metabolic reactions in the latest human metabolic reconstruction, Recon 3D, we compared the atom mappings predicted by six atom mapping algorithms. We also compared these predictions to those obtained by manual curation of atom mappings for over five hundred reactions distributed among all top level Enzyme Commission number classes. Five of the evaluated algorithms had similarly high prediction accuracy of over 91% when compared to manually curated atom mapped reactions. On average, the accuracy of the prediction was highest for reactions catalysed by oxidoreductases and lowest for reactions catalysed by ligases. In addition to prediction accuracy, the algorithms were evaluated on their accessibility, their advanced features, such as the ability to identify equivalent atoms, and their ability to map hydrogen atoms. In addition to prediction accuracy, we found that software accessibility and advanced features were fundamental to the selection of an atom mapping algorithm in practice.

  16. Continuous measurement of an atomic current

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Yang, D.; Zoller, P.

    2017-04-01

    We are interested in dynamics of quantum many-body systems under continuous observation, and its physical realizations involving cold atoms in lattices. In the present work we focus on continuous measurement of atomic currents in lattice models, including the Hubbard model. We describe a Cavity QED setup, where measurement of a homodyne current provides a faithful representation of the atomic current as a function of time. We employ the quantum optical description in terms of a diffusive stochastic Schrödinger equation to follow the time evolution of the atomic system conditional to observing a given homodyne current trajectory, thus accounting for the competition between the Hamiltonian evolution and measurement back action. As an illustration, we discuss minimal models of atomic dynamics and continuous current measurement on rings with synthetic gauge fields, involving both real space and synthetic dimension lattices (represented by internal atomic states). Finally, by "not reading" the current measurements the time evolution of the atomic system is governed by a master equation, where—depending on the microscopic details of our CQED setups—we effectively engineer a current coupling of our system to a quantum reservoir. This provides interesting scenarios of dissipative dynamics generating "dark" pure quantum many-body states.

  17. Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Tan, Xinsheng; Yu, Haifeng; Zhu, Shi-Liang; Yu, Yang

    2017-10-01

    We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely, qutrits, strongly coupled to a cavity mode. When the state transition of the atoms disobeys the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one-cavity-mode mediated interactions to the multicavity situation, providing a method to entangle atoms located in different cavities. Using experimentally feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, David E.; Krnjaic, Gordan Z.; Rehermann, Keith R.

    We present a simple UV completion of Atomic Dark Matter (aDM) in which heavy right-handed neutrinos decay to induce both dark and lepton number densities. This model addresses several outstanding cosmological problems: the matter/anti-matter asymmetry, the dark matter abundance, the number of light degrees of freedom in the early universe, and the smoothing of small-scale structure. Additionally, this realization of aDM may reconcile the CoGeNT excess with recently published null results and predicts a signal in the CRESST Oxygen band. We also find that, due to unscreened long-range interactions, the residual un recombined dark ions settle into a diffuse isothermalmore » halo.« less

  19. Line positions and intensities for the ν3 band of 5 isotopologues of germane for planetary applications

    NASA Astrophysics Data System (ADS)

    Boudon, V.; Grigoryan, T.; Philipot, F.; Richard, C.; Tchana, F. Kwabia; Manceron, L.; Rizopoulos, A.; Auwera, J. Vander; Encrenaz, Th.

    2018-01-01

    The germane molecule, GeH4, is present in the atmospheres of giant planets Jupiter and Saturn. The ongoing NASA mission Juno has renewed interest in its spectroscopy, whose accurate modeling is essential for the retrieval of other tropospheric species. We present here the first complete analysis and modeling of line positions and intensities in the strongly absorbing ν1/ν3 stretching dyad region near 2100 cm-1 , for all five germane isotopologues in natural abundance. New infrared spectra were recorded, absolute intensities were extracted through a careful procedure and modeled thanks to the formalism and programs developed in the Dijon group. A database of calculated germane lines, GeCaSDa, has been build and is available online through the Virtual Atomic and Molecular Data Centre (VAMDC) portal and at http://vamdc.icb.cnrs.fr/PHP/gecasda.php.

  20. Air pollution from aircraft

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Fay, J. A.; Chigier, N. A.

    1979-01-01

    Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.

  1. Precisely detecting atomic position of atomic intensity images.

    PubMed

    Wang, Zhijun; Guo, Yaolin; Tang, Sai; Li, Junjie; Wang, Jincheng; Zhou, Yaohe

    2015-03-01

    We proposed a quantitative method to detect atomic position in atomic intensity images from experiments such as high-resolution transmission electron microscopy, atomic force microscopy, and simulation such as phase field crystal modeling. The evaluation of detection accuracy proves the excellent performance of the method. This method provides a chance to precisely determine atomic interactions based on the detected atomic positions from the atomic intensity image, and hence to investigate the related physical, chemical and electrical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Monte Carlo Technique Used to Model the Degradation of Internal Spacecraft Surfaces by Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.

    2004-01-01

    Atomic oxygen is one of the predominant constituents of Earth's upper atmosphere. It is created by the photodissociation of molecular oxygen (O2) into single O atoms by ultraviolet radiation. It is chemically very reactive because a single O atom readily combines with another O atom or with other atoms or molecules that can form a stable oxide. The effects of atomic oxygen on the external surfaces of spacecraft in low Earth orbit can have dire consequences for spacecraft life, and this is a well-known and much studied problem. Much less information is known about the effects of atomic oxygen on the internal surfaces of spacecraft. This degradation can occur when openings in components of the spacecraft exterior exist that allow the entry of atomic oxygen into regions that may not have direct atomic oxygen attack but rather scattered attack. Openings can exist because of spacecraft venting, microwave cavities, and apertures for Earth viewing, Sun sensors, or star trackers. The effects of atomic oxygen erosion of polymers interior to an aperture on a spacecraft were simulated at the NASA Glenn Research Center by using Monte Carlo computational techniques. A two-dimensional model was used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of the distance into a parallel-walled cavity. The model allows the atomic oxygen arrival direction, the Maxwell Boltzman temperature, and the ram energy to be varied along with the interaction parameters of the degree of recombination upon impact with polymer or nonreactive surfaces, the initial reaction probability, the reaction probability dependence upon energy and angle of attack, degree of specularity of scattering of reactive and nonreactive surfaces, and the degree of thermal accommodation upon impact with reactive and non-reactive surfaces to be varied to allow the model to produce atomic oxygen erosion geometries that replicate actual experimental results from space. The degree of erosion of various interior locations was compared with the erosion that would occur external to the spacecraft. Results of one cavity model indicate that, at depths into a two-dimensional cavity that are equal to 10 cavity widths, the erosion on the walls of the cavity is less than that on the top surface by over 2 orders of magnitude. Wall erosion near the surface of a cavity depends on which wall is receiving direct atomic oxygen attack. However, deep in the cavity little difference is present. Testing of various cavity models such as these gives spacecraft designers an indication of the level of threat to sensitive interior surfaces for different geometries. Even though the Monte Carlo model is two-dimensional, it can be used to provide qualitative information about spacecraft openings that are three-dimensional by offering reasonable insight as to the nature of the attenuation of damage that occurs within a spacecraft in low Earth orbit. As shown, there is more erosion on the side seeing direct atomic oxygen attack until a depth of approximately 5 times the width of the opening, where the erosion is the same on both sides.

  3. Measuring the Newtonian constant of gravitation G with an atomic interferometer

    PubMed Central

    Prevedelli, M.; Cacciapuoti, L.; Rosi, G.; Sorrentino, F.; Tino, G. M.

    2014-01-01

    We have recently completed a measurement of the Newtonian constant of gravitation G using atomic interferometry. Our result is G=6.67191(77)(62)×10−11 m3 kg−1 s−2 where the numbers in parenthesis are the type A and type B standard uncertainties, respectively. An evaluation of the measurement uncertainty is presented and the perspectives for improvement are discussed. Our result is approaching the precision of experiments based on macroscopic sensing masses showing that the next generation of atomic gradiometers could reach a total relative uncertainty in the 10 parts per million range. PMID:25202001

  4. Pressure Dependence of Excitation Cross Sections for Resonant Levels of Rare Gases

    NASA Astrophysics Data System (ADS)

    Stewart, Michael D.; Chilton, J. Ethan; Lin, Chun C.

    2000-06-01

    In the rare gases, the excited n'p^5ns and n'p^5nd levels with J = 1 are optically coupled to ground as well as lower lying p levels. Resonant photons emitted when the atom decays to ground can be reabsorbed by another ground-state atom. At low gas pressures this reabsorption occurs infrequently, but at higher pressures becomes increasingly likely until the resonant transition is completely suppressed. This enhances the cascade transitions into lower p levels, resulting in pressure dependent optical emission cross sections. This reabsorption process can be understood quantitatively with a model developed by Heddle et al(D. W. O. Heddle and N. J. Samuel, J. Phys. B 3), 1593 (1970).. The radiation from transitions into the nonresonant levels often lie in the ir, while the resonant radiation is always in the uv spectral region. Using a Fourier-transform spectrometer, one can measure the cross sections for the ir transitions as a function of pressure. The Heddle model can be fit to these data with the use of theoretical values for the Einstein A coefficients. This provides a test of the accuracy of calculated A values. Discussion will include cross section measurements for Ne, Ar, and Kr excited by electron impact over a range of gas pressures.

  5. The role of meteoric smoke in the Earth s environment

    NASA Astrophysics Data System (ADS)

    Plane, J.

    An average of about 120 tonnes of interplanetary dust is believed to enter the earth's atmosphere each day. At least 55% of this ablates completely into atoms and ions, mostly between 70 and 110 km. Meteoric ablation is the source of the layers of metal atoms (Na, Fe etc.) that occur globally in the upper mesosphere; these layers are observed routinely by ground-based resonance lidars. This paper is concerned with the subsequent fate of the meteoric metals, and other constituents such as sulfur. The laboratory programme at the University of East Anglia studies the reactions that metallic species are likely to undergo in this region of the atmosphere. The resulting rate coefficients and photolysis cross sections are then used in atmospheric models. Once these models can satisfactorily reproduce the characteristic features of the mesospheric metal layers (as is the case for Na and Fe), they can then be used to predict the condensation of metal-containing species (oxides, hydroxides, carbonates) into nanometer-sized dust particles, known as "meteoric smoke". This paper will discuss the role of this smoke in providing condensation nuclei for noctilucent clouds in the upper mesosphere, forming sulphuric acid particles in the stratospheric Junge layer, and fertilizing the Fe-deficient Southern Ocean.

  6. Modeling Strongly Correlated Fermi Systems Using Ultra-Cold Atoms

    DTIC Science & Technology

    2008-06-28

    the two-dimensional Hubbard model on a square lattice ( a model which is purported to describe the high-temperature superconducting cuprates...beams and (2) stroboscopically alternating the beams very rapidly (~100 kHz) such that the beams were never on simultaneously ( the atoms experience a ...gases relies on (1) using a large-volume, magnetic trap to compress the atomic gas to a volume that can be captured by an optical trap

  7. Dynamics of entanglement of a three-level atom in motion interacting with two coupled modes including parametric down conversion

    NASA Astrophysics Data System (ADS)

    Faghihi, M. J.; Tavassoly, M. K.; Hatami, M.

    In this paper, a model by which we study the interaction between a motional three-level atom and two-mode field injected simultaneously in a bichromatic cavity is considered; the three-level atom is assumed to be in a Λ-type configuration. As a result, the atom-field and the field-field interaction (parametric down conversion) will be appeared. It is shown that, by applying a canonical transformation, the introduced model can be reduced to a well-known form of the generalized Jaynes-Cummings model. Under particular initial conditions, which may be prepared for the atom and the field, the time evolution of state vector of the entire system is analytically evaluated. Then, the dynamics of atom by considering ‘atomic population inversion’ and two different measures of entanglement, i.e., ‘von Neumann entropy’ and ‘idempotency defect’ is discussed, in detail. It is deduced from the numerical results that, the duration and the maximum amount of the considered physical quantities can be suitably tuned by selecting the proper field-mode structure parameter p and the detuning parameters.

  8. Hydrogenation and dehydrogenation of interstellar PAHs: Spectral characteristics and H2 formation

    NASA Astrophysics Data System (ADS)

    Andrews, H.; Candian, A.; Tielens, A. G. G. M.

    2016-10-01

    Context. We have modelled the abundance distribution and IR emission of the first 3 members of the coronene family in the north-west photodissociation region of the well-studied reflection nebulae NGC 7023. Aims: Our aim was 3-fold: I) analyze the distribution of abundances; (II) examine the spectral footprints from the hydrogenation state of polycyclic aromatic hydrocarbons (PAHs); and (III) assess the role of PAHs in the formation of H2 in photodissociation regions. Methods: To model the physical conditions inside the cloud, we used the Meudon PDR Code, and we gave this as input to our kinetic model. We used specific molecular properties for each PAH, based on the latest data available at the present time. We considered the loss of an H atom or an H2 molecule as multiphoton processes, and we worked under the premise that PAHs with extra H atoms can form H2 through an Eley-Rideal abstraction mechanism. Results: In terms of abundances, we can distinguish clear differences with PAH size. The smallest PAH, coronene (C24H12), is found to be easily destroyed down to the complete loss of all of its H atoms. The largest species circumcircumcoronene (C96H24), is found in its normal hydrogenated state. The intermediate size molecule, circumcoronene (C54H18), shows an intermediate behaviour with respect to the other two, where partial dehydrogenation is observed inside the cloud. Regarding spectral variations, we find that the emission spectra in NGC 7023 are dominated by the variation in the ionization of the dominant hydrogenation state of each species at each point inside the cloud. It is difficult to "catch" the effect of dehydrogenation in the emitted PAH spectra since, for any conditions, only PAHs within a narrow size range will be susceptible to dehydrogenation, being quickly stripped off of all H atoms (and may isomerize to cages or fullerenes). The 3 μm region is the most sensitive one towards the hydrogenation level of PAHs. Conclusions: Based on our results, we conclude that PAHs with extra H atoms are not the carriers of the 3.4 μm band observed in NGC 7023, since these species are only found in very benign environments. Finally, concerning the role of PAHs in the formation of H2 in photodissociation regions, we find that H2 abstraction from PAHs with extra H atoms is an inefficient process compared to grains. Instead, we propose that photodissociation of PAHs of small-to-intermediate sizes could contribute to H2 formation in PDR surfaces, but they cannot account by themselves for the inferred high H2 formation rates in these regions.

  9. Infrared Detector Research

    DTIC Science & Technology

    1976-08-01

    Bratt, Howard Davis, Frank Renda , Paul Chia, Arthur Lockwood. Bell Telephone Labs Leo F. Johnson, Alfred U. MacRae, Paul Norton. Texas Ins truments Werner...impurities which can "donate" their extra electron not required for bonding with the silicon atoms. When there are more acceptors than donors the material...will be p-type. The extra electrons from the donors can complete the bond missing due to the boron atoms. This process is call compensation. The

  10. Long-range sound-mediated dark-soliton interactions in trapped atomic condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, A. J.; Jackson, D. P.; Barenghi, C. F.

    2011-01-15

    A long-range soliton interaction is discussed whereby two or more dark solitons interact in an inhomogeneous atomic condensate, modifying their respective dynamics via the exchange of sound waves without ever coming into direct contact. An idealized double-well geometry is shown to yield perfect energy transfer and complete periodic identity reversal of the two solitons. Two experimentally relevant geometries are analyzed which should enable the observation of this long-range interaction.

  11. Elementary defects in graphane

    NASA Astrophysics Data System (ADS)

    Podlivaev, A. I.; Openov, L. A.

    2017-07-01

    The main zero-dimensional defects in graphane, a completely hydrogenated single-layer graphene, having the chair-type conformation have been numerically simulated. The hydrogen and carbon-hydrogen vacancies, Stone-Wales defect, and "transmutation defect" resulting from the simultaneous hoppings of two hydrogen atoms between the neighboring carbon atoms have been considered. The energies of formations of these defects have been calculated and their effect on the electronic structure, phonon spectra, and Young modulus has been studied.

  12. Nonmetallic electronegativity equalization and point-dipole interaction model including exchange interactions for molecular dipole moments and polarizabilities.

    PubMed

    Smalø, Hans S; Astrand, Per-Olof; Jensen, Lasse

    2009-07-28

    The electronegativity equalization model (EEM) has been combined with a point-dipole interaction model to obtain a molecular mechanics model consisting of atomic charges, atomic dipole moments, and two-atom relay tensors to describe molecular dipole moments and molecular dipole-dipole polarizabilities. The EEM has been phrased as an atom-atom charge-transfer model allowing for a modification of the charge-transfer terms to avoid that the polarizability approaches infinity for two particles at infinite distance and for long chains. In the present work, these shortcomings have been resolved by adding an energy term for transporting charges through individual atoms. A Gaussian distribution is adopted for the atomic charge distributions, resulting in a damping of the electrostatic interactions at short distances. Assuming that an interatomic exchange term may be described as the overlap between two electronic charge distributions, the EEM has also been extended by a short-range exchange term. The result is a molecular mechanics model where the difference of charge transfer in insulating and metallic systems is modeled regarding the difference in bond length between different types of system. For example, the model is capable of modeling charge transfer in both alkanes and alkenes with alternating double bonds with the same set of carbon parameters only relying on the difference in bond length between carbon sigma- and pi-bonds. Analytical results have been obtained for the polarizability of a long linear chain. These results show that the model is capable of describing the polarizability scaling both linearly and nonlinearly with the size of the system. Similarly, a linear chain with an end atom with a high electronegativity has been analyzed analytically. The dipole moment of this model system can either be independent of the length or increase linearly with the length of the chain. In addition, the model has been parametrized for alkane and alkene chains with data from density functional theory calculations, where the polarizability behaves differently with the chain length. For the molecular dipole moment, the same two systems have been studied with an aldehyde end group. Both the molecular polarizability and the dipole moment are well described as a function of the chain length for both alkane and alkene chains demonstrating the power of the presented model.

  13. Proposed reference models for atomic oxygen in the terrestrial atmosphere

    NASA Technical Reports Server (NTRS)

    Llewellyn, E. J.; Mcdade, I. C.; Lockerbie, M. D.

    1989-01-01

    A provisional Atomic Oxygen Reference model was derived from average monthly ozone profiles and the MSIS-86 reference model atmosphere. The concentrations are presented in tabular form for the altitude range 40 to 130 km.

  14. Internal Energy Transfer and Dissociation Model Development using Accelerated First-Principles Simulations of Hypersonic Flow Features

    DTIC Science & Technology

    2013-07-11

    in Fig. 3) is simulated. Each atom interacts with its neighboring atoms through a potential energy surface (PES), such as the simple Lennard - Jones ... Lennard -­‐ Jones  (LJ)   potential  energy  surface  (PES)  dictating  atomic  interaction  forces. The main point of this section is to...the potential energy surface (PES) that governs individual atomic interaction forces. In contrast to existing rotational energy models, we found

  15. The Kelvin-Thomson Atom. Part 2: The Many-Electron Atoms

    ERIC Educational Resources Information Center

    Walton, Alan J.

    1977-01-01

    Presents part two of a two-part article describing the Kelvin-Thomson atom. This part discusses the arrangement of electrons within the atom and examines some of the properties predicted for elements in the Kelvin-Thomson model. (SL)

  16. Rapid and Complete Degradation of the Herbicide Picloram by Lipomyces kononenkoaee

    USDA-ARS?s Scientific Manuscript database

    An enrichment culture approach was used to isolate a pure culture of the yeast Lipomyces kononenkoae, which had the ability to grow on the herbicide picloram. The yeast rapidly and completely degraded 50 µg/mL picloram by 48 hr of growth. While L. kononenkoae was found to use both N atoms of piclora...

  17. Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal.

    PubMed

    Shibuta, Yasushi; Sakane, Shinji; Miyoshi, Eisuke; Okita, Shin; Takaki, Tomohiro; Ohno, Munekazu

    2017-04-05

    Can completely homogeneous nucleation occur? Large scale molecular dynamics simulations performed on a graphics-processing-unit rich supercomputer can shed light on this long-standing issue. Here, a billion-atom molecular dynamics simulation of homogeneous nucleation from an undercooled iron melt reveals that some satellite-like small grains surrounding previously formed large grains exist in the middle of the nucleation process, which are not distributed uniformly. At the same time, grains with a twin boundary are formed by heterogeneous nucleation from the surface of the previously formed grains. The local heterogeneity in the distribution of grains is caused by the local accumulation of the icosahedral structure in the undercooled melt near the previously formed grains. This insight is mainly attributable to the multi-graphics processing unit parallel computation combined with the rapid progress in high-performance computational environments.Nucleation is a fundamental physical process, however it is a long-standing issue whether completely homogeneous nucleation can occur. Here the authors reveal, via a billion-atom molecular dynamics simulation, that local heterogeneity exists during homogeneous nucleation in an undercooled iron melt.

  18. Identifying Atomic Structure as a Threshold Concept: Student Mental Models and Troublesomeness

    ERIC Educational Resources Information Center

    Park, Eun Jung; Light, Gregory

    2009-01-01

    Atomic theory or the nature of matter is a principal concept in science and science education. This has, however, been complicated by the difficulty students have in learning the concept and the subsequent construction of many alternative models. To understand better the conceptual barriers to learning atomic structure, this study explores the…

  19. Diffraction peak profiles of surface relaxed spherical nanocrystals

    NASA Astrophysics Data System (ADS)

    Perez-Demydenko, C.; Scardi, P.

    2017-09-01

    A model is proposed for surface relaxation of spherical nanocrystals. Besides reproducing the primary effect of changing the average unit cell parameter, the model accounts for the inhomogeneous atomic displacement caused by surface relaxation and its effect on the diffraction line profiles. Based on three parameters with clear physical meanings - extension of the sub-coordination effect, maximum radial displacement due to sub-coordination, and effective hydrostatic pressure - the model also considers elastic anisotropy and provides parametric expressions of the diffraction line profiles directly applicable in data analysis. The model was tested on spherical nanocrystals of several fcc metals, matching atomic positions with those provided by Molecular Dynamics (MD) simulations based on embedded atom potentials. Agreement was also verified between powder diffraction patterns generated by the Debye scattering equation, using atomic positions from MD and the proposed model.

  20. A refined model of claudin-15 tight junction paracellular architecture by molecular dynamics simulations

    PubMed Central

    Alberini, Giulio; Benfenati, Fabio

    2017-01-01

    Tight-junctions between epithelial cells of biological barriers are specialized molecular structures that regulate the flux of solutes across the barrier, parallel to cell walls. The tight-junction backbone is made of strands of transmembrane proteins from the claudin family, but the molecular mechanism of its function is still not completely understood. Recently, the crystal structure of a mammalian claudin-15 was reported, displaying for the first time the detailed features of transmembrane and extracellular domains. Successively, a structural model of claudin-15-based paracellular channels has been proposed, suggesting a putative assembly that illustrates how claudins associate in the same cell (via cis interactions) and across adjacent cells (via trans interactions). Although very promising, the model offers only a static conformation, with residues missing in the most important extracellular regions and potential steric clashes. Here we present detailed atomic models of paracellular single and double pore architectures, obtained from the putative assembly and refined via structural modeling and all-atom molecular dynamics simulations in double membrane bilayer and water environment. Our results show an overall stable configuration of the complex with a fluctuating pore size. Extracellular residue loops in trans interaction are able to form stable contacts and regulate the size of the pore, which displays a stationary radius of 2.5–3.0 Å at the narrowest region. The side-by-side interactions of the cis configuration are preserved via stable hydrogen bonds, already predicted by cysteine crosslinking experiments. Overall, this work introduces an improved version of the claudin-15-based paracellular channel model that strengthens its validity and that can be used in further computational studies to understand the structural features of tight-junctions regulation. PMID:28863193

  1. Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory

    NASA Astrophysics Data System (ADS)

    Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.

    2017-12-01

    The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.

  2. Effect of dispersion forces on squeezing with Rydberg atoms

    NASA Technical Reports Server (NTRS)

    Ng, S. K.; Muhamad, M. R.; Wahiddin, M. R. B.

    1994-01-01

    We report exact results concerning the effect of dipole-dipole interaction (dispersion forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent field from two identical coherently driven two-level atoms. The atomic system is subjected to three different damping baths in particular the normal vacuum, a broad band thermal field and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible experiments are most likely to agree with theory when performed on systems of Rydberg atoms making microwave transitions. The presence of dipole-dipole interaction can enhance squeezing for realizable values of the various parameters involved.

  3. Extreme Adiabatic Expansion in Micro-gravity: Modeling for the Cold Atomic Laboratory

    NASA Astrophysics Data System (ADS)

    Sackett, C. A.; Lam, T. C.; Stickney, J. C.; Burke, J. H.

    2018-05-01

    The upcoming Cold Atom Laboratory mission for the International Space Station will allow the investigation of ultracold gases in a microgravity environment. Cold atomic samples will be produced using evaporative cooling in a magnetic chip trap. We investigate here the possibility to release atoms from the trap via adiabatic expansion. We discuss both general considerations and a detailed model of the planned apparatus. We find that it should be possible to reduce the mean trap confinement frequency to about 0.2 Hz, which will correspond to a three-dimensional sample temperature of about 150 pK and a mean atom velocity of 0.1 mm/s.

  4. Enhanced Spin Squeezing in Atomic Ensembles via Control of the Internal Spin States

    NASA Astrophysics Data System (ADS)

    Shojaee, Ezad; Norris, Leigh; Baragiola, Ben; Montano, Enrique; Hemmer, Daniel; Jessen, Poul; Deutsch, Ivan

    2015-05-01

    Abstract: We study the process by which the collective spin squeezing of an ensemble of Cesium atoms is enhanced by control of the internal spin state of the atoms. By increasing the initial atomic projection noise, one can enhance the Faraday interaction that entangles the atoms with a probe. The light acts as a quantum bus for creating atom-atom entanglement via measurement backaction. Further control can be used to transfer this entanglement to metrologically useful squeezing. We numerically simulate this protocol by a stochastic master equation, including QND measurement and optical pumping, which accounts for decoherence and transfer of coherences between magnetic sub-levels. We study the tradeoff between the enhanced entangling interaction and increased rates of decoherence for different initial state preparations. Under realistic conditions, we find that we can achieve squeezing with a ``CAT-State'' superpostion |F = 4, Mz = 4> + |F, Mz = -4> of ~ 9.9 dB and for the spin coherent state |F = 4, Mx = 4> of ~ 7.5 dB. The increased entanglement enabled by the CAT state preparation is partially, but not completely reduced by the increased fragility to decoherence. National Science Foundation.

  5. Detailed low-energy electron diffraction analysis of the (4×4) surface structure of C60 on Cu(111): Seven-atom-vacancy reconstruction

    NASA Astrophysics Data System (ADS)

    Xu, Geng; Shi, Xing-Qiang; Zhang, R. Q.; Pai, Woei Wu; Jeng, H. T.; Van Hove, M. A.

    2012-08-01

    A detailed and exhaustive structural analysis by low-energy electron diffraction (LEED) is reported for the C60-induced reconstruction of Cu(111), in the system Cu(111) + (4 × 4)-C60. A wide LEED energy range allows enhanced sensitivity to the crucial C60-metal interface that is buried below the 7-Å-thick molecular layer. The analysis clearly favors a seven-Cu-atom vacancy model (with Pendry R-factor Rp = 0.376) over a one-Cu-atom vacancy model (Rp = 0.608) and over nonreconstructed models (Rp = 0.671 for atop site and Rp = 0.536 for hcp site). The seven-Cu-atom vacancy forms a (4 × 4) lattice of bowl-like holes. In each hole, a C60 molecule can nestle by forming strong bonds (shorter than 2.30 Å) between 15 C atoms of the molecule and 12 Cu atoms of the outermost and second Cu layers.

  6. Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model.

    PubMed

    Ma, Yanping; Dong, Dandan; Wu, Aimin; Dong, Chuang

    2018-01-16

    The present paper attempts to identify the molecule-like structural units in inorganic compounds, by applying the so-called "cluster plus glue atom model". This model, originating from metallic glasses and quasi-crystals, describes any structure in terms of a nearest-neighbor cluster and a few outer-shell glue atoms, expressed in the cluster formula [cluster](glue atoms). Similar to the case for normal molecules where the charge transfer occurs within the molecule to meet the commonly known octet electron rule, the octet state is reached after matching the nearest-neighbor cluster with certain outer-shell glue atoms. These kinds of structural units contain information on local atomic configuration, chemical composition, and electron numbers, just as for normal molecules. It is shown that the formulas of typical inorganic compounds, such as fluorides, oxides, and nitrides, satisfy a similar octet electron rule, with the total number of valence electrons per unit formula being multiples of eight.

  7. Monte Carlo Computational Modeling of the Energy Dependence of Atomic Oxygen Undercutting of Protected Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo

    1998-01-01

    A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.

  8. Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase

    PubMed Central

    2013-01-01

    Background Hydrogen atoms represent about half of the total number of atoms in proteins and are often involved in substrate recognition and catalysis. Unfortunately, X-ray protein crystallography at usual resolution fails to access directly their positioning, mainly because light atoms display weak contributions to diffraction. However, sub-Ångstrom diffraction data, careful modeling and a proper refinement strategy can allow the positioning of a significant part of hydrogen atoms. Results A comprehensive study on the X-ray structure of the diisopropyl-fluorophosphatase (DFPase) was performed, and the hydrogen atoms were modeled, including those of solvent molecules. This model was compared to the available neutron structure of DFPase, and differences in the protein and the active site solvation were noticed. Conclusions A further examination of the DFPase X-ray structure provides substantial evidence about the presence of an activated water molecule that may constitute an interesting piece of information as regard to the enzymatic hydrolysis mechanism. PMID:23915572

  9. Final report on LDRD project : narrow-linewidth VCSELs for atomic microsystems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Weng Wah; Geib, Kent Martin; Peake, Gregory Merwin

    2011-09-01

    Vertical-cavity surface-emitting lasers (VCSELs) are well suited for emerging photonic microsystems due to their low power consumption, ease of integration with other optical components, and single frequency operation. However, the typical VCSEL linewidth of 100 MHz is approximately ten times wider than the natural linewidth of atoms used in atomic beam clocks and trapped atom research, which degrades or completely destroys performance in those systems. This report documents our efforts to reduce VCSEL linewidths below 10 MHz to meet the needs of advanced sub-Doppler atomic microsystems, such as cold-atom traps. We have investigated two complementary approaches to reduce VCSEL linewidth:more » (A) increasing the laser-cavity quality factor, and (B) decreasing the linewidth enhancement factor (alpha) of the optical gain medium. We have developed two new VCSEL devices that achieved increased cavity quality factors: (1) all-semiconductor extended-cavity VCSELs, and (2) micro-external-cavity surface-emitting lasers (MECSELs). These new VCSEL devices have demonstrated linewidths below 10 MHz, and linewidths below 1 MHz seem feasible with further optimization.« less

  10. The Challenges of Plasma Modeling: Current Status and Future Plans

    NASA Astrophysics Data System (ADS)

    Foster, A. R.; Smith, R. K.; Brickhouse, N. S.; Kallman, T. R.; Witthoeft, M. C.

    2010-12-01

    Successfully modeling X-ray emission from astrophysical plasmas requires a wide range of atomic data to be rapidly accessible by modeling codes, enabling calculation of synthetic spectra for fitting with observations. Over many years the astrophysical databases have roughly kept pace with the advances in detector and spectrometer technology. We outline here the basic atomic processes contributing to the emission from different types of plasmas and briefly touch on the difference between the methods used to calculate this data. We then discuss in more detail the different issues addressed by atomic databases in regards to what data to store and how to make it accessible. Finally, the question of the effect of uncertainties in atomic data is explored, as a reminder to observers that atomic data is not known to infinite precision, and should not be treated as such.

  11. Microscopic modeling of gas-surface scattering: II. Application to argon atom adsorption on a platinum (111) surface

    NASA Astrophysics Data System (ADS)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A new combination of first principle molecular dynamics (MD) simulations with a rate equation model presented in the preceding paper (paper I) is applied to analyze in detail the scattering of argon atoms from a platinum (111) surface. The combined model is based on a classification of all atom trajectories according to their energies into trapped, quasi-trapped and scattering states. The number of particles in each of the three classes obeys coupled rate equations. The coefficients in the rate equations are the transition probabilities between these states which are obtained from MD simulations. While these rates are generally time-dependent, after a characteristic time scale t E of several tens of picoseconds they become stationary allowing for a rather simple analysis. Here, we investigate this time scale by analyzing in detail the temporal evolution of the energy distribution functions of the adsorbate atoms. We separately study the energy loss distribution function of the atoms and the distribution function of in-plane and perpendicular energy components. Further, we compute the sticking probability of argon atoms as a function of incident energy, angle and lattice temperature. Our model is important for plasma-surface modeling as it allows to extend accurate simulations to longer time scales.

  12. Effect of atomic disorder on the magnetic phase separation.

    PubMed

    Groshev, A G; Arzhnikov, A K

    2018-05-10

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  13. Effect of atomic disorder on the magnetic phase separation

    NASA Astrophysics Data System (ADS)

    Groshev, A. G.; Arzhnikov, A. K.

    2018-05-01

    The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.

  14. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t-J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t-J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  15. Endo-Fullerene and Doped Diamond Nanocrystallite Based Models of Qubits for Solid-State Quantum Computers

    NASA Technical Reports Server (NTRS)

    Park, Seongjun; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Models of encapsulated 1/2 nuclear spin H-1 and P-31 atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with ab-initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A H-1 atom encapsulated in a fully deuterated fullerene, C(sub 20)D(sub 20), forms the first model system and ab-initio calculation shows that H-1 atom is stable in atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A P-31 atom positioned at the center of a diamond nanocrystallite is the second model system, and 3 1P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV, Vacancy formation energy is 6 eV in diamond so that substitutional P-31 atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and weakly bound (valance) donor electron coupling in both systems is found to be suitable for single qubit applications, where as the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed with in the context of our proposed solid-state qubits.

  16. Advanced Kr Atomic Structure and Ionization Kinetics for Pinches on ZR

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati; Clark, Robert; Giuliani, John; Ouart, Nick; Davis, Jack; Jones, Brent; Ampleford, Dave; Hansen, Stephanie

    2011-10-01

    High fluence photon sources above 10 keV are a challenge for HED plasmas. This motivates Kr atomic modeling as its K-shell radiation starts at 13 keV. We have developed atomic structure and collisional-radiatve data for the full K-and L-shell and much of the M-shell using the the state-of-the-art Flexible Atomic Code. All relevant atomic collisional and radiative processes that affect ionization balance and are necessary to accurately model the pinch dynamics and the spectroscopic details of the emitted radiation are included in constructing the model. This non-LTE CRE model will be used to generate synthetic spectra for fixed densities and temperatures relevant for Kr gas-puff simulations in ZR. Work supported by DOE/NNSA. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Identification and Characterization of Molecular Bonding Structures by ab initio Quasi-Atomic Orbital Analyses.

    PubMed

    West, Aaron C; Duchimaza-Heredia, Juan J; Gordon, Mark S; Ruedenberg, Klaus

    2017-11-22

    The quasi-atomic analysis of ab initio electronic wave functions in full valence spaces, which was developed in preceding papers, yields oriented quasi-atomic orbitals in terms of which the ab initio molecular wave function and energy can be expressed. These oriented quasi-atomic orbitals are the rigorous ab initio counterparts to the conceptual bond forming atomic hybrid orbitals of qualitative chemical reasoning. In the present work, the quasi-atomic orbitals are identified as bonding orbitals, lone pair orbitals, radical orbitals, vacant orbitals and orbitals with intermediate character. A program determines the bonding characteristics of all quasi-atomic orbitals in a molecule on the basis of their occupations, bond orders, kinetic bond orders, hybridizations and local symmetries. These data are collected in a record and provide the information for a comprehensive understanding of the synergism that generates the bonding structure that holds the molecule together. Applications to a series of molecules exhibit the complete bonding structures that are embedded in their ab initio wave functions. For the strong bonds in a molecule, the quasi-atomic orbitals provide quantitative ab initio amplifications of the Lewis dot symbols. Beyond characterizing strong bonds, the quasi-atomic analysis also yields an understanding of the weak interactions, such as vicinal, hyperconjugative and radical stabilizations, which can make substantial contributions to the molecular bonding structure.

  18. Rapid calculation of accurate atomic charges for proteins via the electronegativity equalization method.

    PubMed

    Ionescu, Crina-Maria; Geidl, Stanislav; Svobodová Vařeková, Radka; Koča, Jaroslav

    2013-10-28

    We focused on the parametrization and evaluation of empirical models for fast and accurate calculation of conformationally dependent atomic charges in proteins. The models were based on the electronegativity equalization method (EEM), and the parametrization procedure was tailored to proteins. We used large protein fragments as reference structures and fitted the EEM model parameters using atomic charges computed by three population analyses (Mulliken, Natural, iterative Hirshfeld), at the Hartree-Fock level with two basis sets (6-31G*, 6-31G**) and in two environments (gas phase, implicit solvation). We parametrized and successfully validated 24 EEM models. When tested on insulin and ubiquitin, all models reproduced quantum mechanics level charges well and were consistent with respect to population analysis and basis set. Specifically, the models showed on average a correlation of 0.961, RMSD 0.097 e, and average absolute error per atom 0.072 e. The EEM models can be used with the freely available EEM implementation EEM_SOLVER.

  19. Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations

    NASA Astrophysics Data System (ADS)

    Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.

    2015-12-01

    Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.

  20. Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy.

    PubMed

    Idrobo, Juan C; Walkosz, Weronika; Klie, Robert F; Oğüt, Serdar

    2012-12-01

    In silicon nitride structural ceramics, the overall mechanical and thermal properties are controlled by the atomic and electronic structures at the interface between the ceramic grains and the amorphous intergranular films (IGFs) formed by various sintering additives. In the last ten years the atomic arrangements of heavy elements (rare-earths) at the Si(3)N(4)/IGF interfaces have been resolved. However, the atomic position of light elements, without which it is not possible to obtain a complete description of the interfaces, has been lacking. This review article details the authors' efforts to identify the atomic arrangement of light elements such as nitrogen and oxygen at the Si(3)N(4)/SiO(2) interface and in bulk Si(3)N(4) using aberration-corrected scanning transmission electron microscopy. Published by Elsevier B.V.

  1. A combined scanning tunneling microscope-atomic layer deposition tool.

    PubMed

    Mack, James F; Van Stockum, Philip B; Iwadate, Hitoshi; Prinz, Fritz B

    2011-12-01

    We have built a combined scanning tunneling microscope-atomic layer deposition (STM-ALD) tool that performs in situ imaging of deposition. It operates from room temperature up to 200 °C, and at pressures from 1 × 10(-6) Torr to 1 × 10(-2) Torr. The STM-ALD system has a complete passive vibration isolation system that counteracts both seismic and acoustic excitations. The instrument can be used as an observation tool to monitor the initial growth phases of ALD in situ, as well as a nanofabrication tool by applying an electric field with the tip to laterally pattern deposition. In this paper, we describe the design of the tool and demonstrate its capability for atomic resolution STM imaging, atomic layer deposition, and the combination of the two techniques for in situ characterization of deposition.

  2. Dynamical Evolution of Properties for Atom and Field in the Process of Two-Photon Absorption and Emission Between Atomic Levels

    NASA Astrophysics Data System (ADS)

    Wang, Jian-ming; Xu, Xue-xiang

    2018-04-01

    Using dressed state method, we cleverly solve the dynamics of atom-field interaction in the process of two-photon absorption and emission between atomic levels. Here we suppose that the atom is initially in the ground state and the optical field is initially in Fock state, coherent state or thermal state, respectively. The properties of the atom, including the population in excited state and ground state, the atom inversion, and the properties for optical field, including the photon number distribution, the mean photon number, the second-order correlation function and the Wigner function, are discussed in detail. We derive their analytical expressions and then make numerical analysis for them. In contrast with Jaynes-Cummings model, some similar results, such as quantum Rabi oscillation, revival and collapse, are also exhibit in our considered model. Besides, some novel nonclassical states are generated.

  3. Interplay of weak interactions in the atom-by-atom condensation of xenon within quantum boxes

    PubMed Central

    Nowakowska, Sylwia; Wäckerlin, Aneliia; Kawai, Shigeki; Ivas, Toni; Nowakowski, Jan; Fatayer, Shadi; Wäckerlin, Christian; Nijs, Thomas; Meyer, Ernst; Björk, Jonas; Stöhr, Meike; Gade, Lutz H.; Jung, Thomas A.

    2015-01-01

    Condensation processes are of key importance in nature and play a fundamental role in chemistry and physics. Owing to size effects at the nanoscale, it is conceptually desired to experimentally probe the dependence of condensate structure on the number of constituents one by one. Here we present an approach to study a condensation process atom-by-atom with the scanning tunnelling microscope, which provides a direct real-space access with atomic precision to the aggregates formed in atomically defined ‘quantum boxes’. Our analysis reveals the subtle interplay of competing directional and nondirectional interactions in the emergence of structure and provides unprecedented input for the structural comparison with quantum mechanical models. This approach focuses on—but is not limited to—the model case of xenon condensation and goes significantly beyond the well-established statistical size analysis of clusters in atomic or molecular beams by mass spectrometry. PMID:25608225

  4. Improving atomic displacement and replacement calculations with physically realistic damage models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less

  5. Improving atomic displacement and replacement calculations with physically realistic damage models

    DOE PAGES

    Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.; ...

    2018-03-14

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less

  6. Improving atomic displacement and replacement calculations with physically realistic damage models.

    PubMed

    Nordlund, Kai; Zinkle, Steven J; Sand, Andrea E; Granberg, Fredric; Averback, Robert S; Stoller, Roger; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J; Willaime, Francois; Dudarev, Sergei L; Simeone, David

    2018-03-14

    Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.

  7. Multiscale equation-free algorithms for molecular dynamics

    NASA Astrophysics Data System (ADS)

    Abi Mansour, Andrew

    Molecular dynamics is a physics-based computational tool that has been widely employed to study the dynamics and structure of macromolecules and their assemblies at the atomic scale. However, the efficiency of molecular dynamics simulation is limited because of the broad spectrum of timescales involved. To overcome this limitation, an equation-free algorithm is presented for simulating these systems using a multiscale model cast in terms of atomistic and coarse-grained variables. Both variables are evolved in time in such a way that the cross-talk between short and long scales is preserved. In this way, the coarse-grained variables guide the evolution of the atom-resolved states, while the latter provide the Newtonian physics for the former. While the atomistic variables are evolved using short molecular dynamics runs, time advancement at the coarse-grained level is achieved with a scheme that uses information from past and future states of the system while accounting for both the stochastic and deterministic features of the coarse-grained dynamics. To complete the multiscale cycle, an atom-resolved state consistent with the updated coarse-grained variables is recovered using algorithms from mathematical optimization. This multiscale paradigm is extended to nanofluidics using concepts from hydrodynamics, and it is demonstrated for macromolecular and nanofluidic systems. A toolkit is developed for prototyping these algorithms, which are then implemented within the GROMACS simulation package and released as an open source multiscale simulator.

  8. Self-assembly based plasmonic arrays tuned by atomic layer deposition for extreme visible light absorption.

    PubMed

    Hägglund, Carl; Zeltzer, Gabriel; Ruiz, Ricardo; Thomann, Isabell; Lee, Han-Bo-Ram; Brongersma, Mark L; Bent, Stacey F

    2013-07-10

    Achieving complete absorption of visible light with a minimal amount of material is highly desirable for many applications, including solar energy conversion to fuel and electricity, where benefits in conversion efficiency and economy can be obtained. On a fundamental level, it is of great interest to explore whether the ultimate limits in light absorption per unit volume can be achieved by capitalizing on the advances in metamaterial science and nanosynthesis. Here, we combine block copolymer lithography and atomic layer deposition to tune the effective optical properties of a plasmonic array at the atomic scale. Critical coupling to the resulting nanocomposite layer is accomplished through guidance by a simple analytical model and measurements by spectroscopic ellipsometry. Thereby, a maximized absorption of light exceeding 99% is accomplished, of which up to about 93% occurs in a volume-equivalent thickness of gold of only 1.6 nm. This corresponds to a record effective absorption coefficient of 1.7 × 10(7) cm(-1) in the visible region, far exceeding those of solid metals, graphene, dye monolayers, and thin film solar cell materials. It is more than a factor of 2 higher than that previously obtained using a critically coupled dye J-aggregate, with a peak width exceeding the latter by 1 order of magnitude. These results thereby substantially push the limits for light harvesting in ultrathin, nanoengineered systems.

  9. A Dusty Coma Model of Comet Hyakutake

    NASA Astrophysics Data System (ADS)

    Boice, D. C.; Benkhoff, J.

    1996-09-01

    We present a multifluid, hydrodynamic model for the gas, dust, and plasma flow in a cometary coma appropriate for Comet Hyakutake. The model accounts for three sources of gas release: sublimation from surface ices, transport of gas from subsurface regions through the surface, and release of gas from dust in the coma. The simulations are based on a spherically symmetric neutral coma model with detailed photo and gas-phase chemistry and dust entrainment by the gas. The model includes a separate energy balance for the electrons, separate flow of the neutral gas, fast neutral atomic and molecular hydrogen, and dust entrainment with fragmentation. The simulations allow a study of how certain features of a cometary coma, e.g., spatial distributions of gas-phase species and dust of various sizes, change with heliocentric distance. Special attention is given to observations of hydrocarbon and sulphur species. In comparison with observations, the model can be used to characterize the environment surrounding Hyakutake and aid in assimilating a variety of diverse observations of this bright comet. A complete description of the model and more extensive results with comparisons to observations where possible will be presented.

  10. A sequence-dependent rigid-base model of DNA

    NASA Astrophysics Data System (ADS)

    Gonzalez, O.; Petkevičiutė, D.; Maddocks, J. H.

    2013-02-01

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can successfully predict the nonlocal changes in the minimum energy configuration of an oligomer that are consequent upon a local change of sequence at the level of a single point mutation.

  11. A sequence-dependent rigid-base model of DNA.

    PubMed

    Gonzalez, O; Petkevičiūtė, D; Maddocks, J H

    2013-02-07

    A novel hierarchy of coarse-grain, sequence-dependent, rigid-base models of B-form DNA in solution is introduced. The hierarchy depends on both the assumed range of energetic couplings, and the extent of sequence dependence of the model parameters. A significant feature of the models is that they exhibit the phenomenon of frustration: each base cannot simultaneously minimize the energy of all of its interactions. As a consequence, an arbitrary DNA oligomer has an intrinsic or pre-existing stress, with the level of this frustration dependent on the particular sequence of the oligomer. Attention is focussed on the particular model in the hierarchy that has nearest-neighbor interactions and dimer sequence dependence of the model parameters. For a Gaussian version of this model, a complete coarse-grain parameter set is estimated. The parameterized model allows, for an oligomer of arbitrary length and sequence, a simple and explicit construction of an approximation to the configuration-space equilibrium probability density function for the oligomer in solution. The training set leading to the coarse-grain parameter set is itself extracted from a recent and extensive database of a large number of independent, atomic-resolution molecular dynamics (MD) simulations of short DNA oligomers immersed in explicit solvent. The Kullback-Leibler divergence between probability density functions is used to make several quantitative assessments of our nearest-neighbor, dimer-dependent model, which is compared against others in the hierarchy to assess various assumptions pertaining both to the locality of the energetic couplings and to the level of sequence dependence of its parameters. It is also compared directly against all-atom MD simulation to assess its predictive capabilities. The results show that the nearest-neighbor, dimer-dependent model can successfully resolve sequence effects both within and between oligomers. For example, due to the presence of frustration, the model can successfully predict the nonlocal changes in the minimum energy configuration of an oligomer that are consequent upon a local change of sequence at the level of a single point mutation.

  12. Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier

    2015-10-01

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.

  13. Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme.

    PubMed

    Levitt, M; Sander, C; Stern, P S

    1985-02-05

    We have developed a new method for modelling protein dynamics using normal-mode analysis in internal co-ordinates. This method, normal-mode dynamics, is particularly well suited for modelling collective motion, makes possible direct visualization of biologically interesting modes, and is complementary to the more time-consuming simulation of molecular dynamics trajectories. The essential assumption and limitation of normal-mode analysis is that the molecular potential energy varies quadratically. Our study starts with energy minimization of the X-ray co-ordinates with respect to the single-bond torsion angles. The main technical task is the calculation of second derivative matrices of kinetic and potential energy with respect to the torsion angle co-ordinates. These enter into a generalized eigenvalue problem, and the final eigenvalues and eigenvectors provide a complete description of the motion in the basic 0.1 to 10 picosecond range. Thermodynamic averages of amplitudes, fluctuations and correlations can be calculated efficiently using analytical formulae. The general method presented here is applied to four proteins, trypsin inhibitor, crambin, ribonuclease and lysozyme. When the resulting atomic motion is visualized by computer graphics, it is clear that the motion of each protein is collective with all atoms participating in each mode. The slow modes, with frequencies of below 10 cm-1 (a period of 3 ps), are the most interesting in that the motion in these modes is segmental. The root-mean-square atomic fluctuations, which are dominated by a few slow modes, agree well with experimental temperature factors (B values). The normal-mode dynamics of these four proteins have many features in common, although in the larger molecules, lysozyme and ribonuclease, there is low frequency domain motion about the active site.

  14. Memory effects in the afterglow: open questions on long-lived species and the role of surface processes

    NASA Astrophysics Data System (ADS)

    Petrovic, Z. Lj; Markovic, V. Lj; Pejovic, M. M.; Gocic, S. R.

    2001-06-01

    The memory effect, the phenomenon that some active species survive very long afterglow periods and affect subsequent breakdown, was observed more than 40 years ago. The effects have been observed even over periods of several hours. Attempts to explain the memory effect in nitrogen were mostly based on hypothetical metastables and on the A3Σ state. However, such explanations had to neglect some quenching processes which are known to be very effective under the conditions of the experiments. The explanation based on atoms remaining from the previous discharge and recombining on the cathode to produce initial electrons was shown to be fully consistent with all the experimental data for nitrogen including a wide range of pressures and the addition of oxygen impurities. The memory effect was also shown to be sensitive to the work function of the cathode material. Thus, an attempt was made to use the memory effect as a diagnostic tool to establish the data on the dominant loss of nitrogen atoms from the discharge which is recombination on the walls of the tube. However, a possible role of higher vibrational levels has not been fully addressed, mainly due to the shortage of data. On the other hand, the memory effect which was observed for rare gases cannot be explained on the basis of the standard data unless the presence of molecular impurities is invoked. Another open issue would be the role of charges accumulated on the glass surfaces and whether those may be released to the gas phase. The aim of this paper is to summarize the achievements of the model based on atom recombination and to point out how the breakdown model associated with the memory effect may be completed and how it may be applied in practical discharges.

  15. Length-scale and strain rate-dependent mechanism of defect formation and fracture in carbon nanotubes under tensile loading

    NASA Astrophysics Data System (ADS)

    Javvaji, Brahmanandam; Raha, S.; Mahapatra, D. Roy

    2017-02-01

    Electromagnetic and thermo-mechanical forces play a major role in nanotube-based materials and devices. Under high-energy electron transport or high current densities, carbon nanotubes fail via sequential fracture. The failure sequence is governed by certain length scale and flow of current. We report a unified phenomenological model derived from molecular dynamic simulation data, which successfully captures the important physics of the complex failure process. Length-scale and strain rate-dependent defect nucleation, growth, and fracture in single-walled carbon nanotubes with diameters in the range of 0.47 to 2.03 nm and length which is about 6.17 to 26.45 nm are simulated. Nanotubes with long length and small diameter show brittle fracture, while those with short length and large diameter show transition from ductile to brittle fracture. In short nanotubes with small diameters, we observe several structural transitions like Stone-Wales defect initiation, its propagation to larger void nucleation, formation of multiple chains of atoms, conversion to monatomic chain of atoms, and finally complete fracture of the carbon nanotube. Hybridization state of carbon-carbon bonds near the end cap evolves, leading to the formation of monatomic chain in short nanotubes with small diameter. Transition from ductile to brittle fracture is also observed when strain rate exceeds a critical value. A generalized analytical model of failure is established, which correlates the defect energy during the formation of atomic chain with aspect ratio of the nanotube and strain rate. Variation in the mechanical properties such as elastic modulus, tensile strength, and fracture strain with the size and strain rate shows important implications in mitigating force fields and ways to enhance the life of electronic devices and nanomaterial conversion via fracture in manufacturing.

  16. Systematic Improvement of Potential-Derived Atomic Multipoles and Redundancy of the Electrostatic Parameter Space.

    PubMed

    Jakobsen, Sofie; Jensen, Frank

    2014-12-09

    We assess the accuracy of force field (FF) electrostatics at several levels of approximation from the standard model using fixed partial charges to conformational specific multipole fits including up to quadrupole moments. Potential-derived point charges and multipoles are calculated using least-squares methods for a total of ∼1000 different conformations of the 20 natural amino acids. Opposed to standard charge fitting schemes the procedure presented in the current work employs fitting points placed on a single isodensity surface, since the electrostatic potential (ESP) on such a surface determines the ESP at all points outside this surface. We find that the effect of multipoles beyond partial atomic charges is of the same magnitude as the effect due to neglecting conformational dependency (i.e., polarizability), suggesting that the two effects should be included at the same level in FF development. The redundancy at both the partial charge and multipole levels of approximation is quantified. We present an algorithm which stepwise reduces or increases the dimensionality of the charge or multipole parameter space and provides an upper limit of the ESP error that can be obtained at a given truncation level. Thereby, we can identify a reduced set of multipole moments corresponding to ∼40% of the total number of multipoles. This subset of parameters provides a significant improvement in the representation of the ESP compared to the simple point charge model and close to the accuracy obtained using the complete multipole parameter space. The selection of the ∼40% most important multipole sites is highly transferable among different conformations, and we find that quadrupoles are of high importance for atoms involved in π-bonding, since the anisotropic electric field generated in such regions requires a large degree of flexibility.

  17. Clustering/anticlustering effects on the GeSi Raman spectra at moderate (Ge,Si) contents: Percolation scheme vs. ab initio calculations

    NASA Astrophysics Data System (ADS)

    Torres, V. J. B.; Hajj Hussein, R.; Pagès, O.; Rayson, M. J.

    2017-02-01

    We test a presumed ability behind the phenomenological percolation scheme used for the basic description of the multi-mode Raman spectra of mixed crystals at one dimension along the linear chain approximation, to determine, via the Raman intensities, the nature of the atom substitution, as to whether this is random or due to local clustering/anticlustering. For doing so, we focus on the model percolation-type GeySi1-y system characterized by six oscillators { 1 × ( G e - G e ) , 3 × ( G e - S i ) , 2 × ( S i - S i ) } and place the study around the critical compositions y ˜ (0.16, 0.71, and 0.84) corresponding to nearly matching of intensities between the like Raman modes from a given multiplet ( G e - S i triplet or S i - S i doublet). The interplay between the GeySi1-y Raman intensities predicted by the percolation scheme depending on a suitable order parameter κ of local clustering/anticlustering is found to be consistent with ab initio calculations of the GeySi1-y Raman spectra done with the Ab Initio Modeling PROgram code using large (64-, 216-, and 512-atoms) disordered cubic supercells matching the required ( y , κ ) values. The actual "percolation vs. ab initio" comparative insight at moderate/dilute-(Ge,Si) limits, with an emphasis on the κ -induced intra-bond transfer of oscillator strength, extends a pioneering one earlier achieved at an intermediate composition ( y ˜ 0.50) by using small (32-atom) supercells [O. Pagès et al., J. Appl. Phys. 114, 033513 (2013)], mainly concerned with the inter-bond transfer of oscillator strength, providing altogether a complete picture.

  18. Why We Should Teach the Bohr Model and How to Teach it Effectively

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2008-01-01

    Some education researchers have claimed that we should not teach the Bohr model of the atom because it inhibits students' ability to learn the true quantum nature of electrons in atoms. Although the evidence for this claim is weak, many have accepted it. This claim has implications for how to present atoms in classes ranging from elementary school…

  19. Phenylethynyl-butyltellurium inhibits the sulfhydryl enzyme Na+, K+ -ATPase: an effect dependent on the tellurium atom.

    PubMed

    Quines, Caroline B; Rosa, Suzan G; Neto, José S S; Zeni, Gilson; Nogueira, Cristina W

    2013-11-01

    Organotellurium compounds are known for their toxicological effects. These effects may be associated with the chemical structure of these compounds and the oxidation state of the tellurium atom. In this context, 2-phenylethynyl-butyltellurium (PEBT) inhibits the activity of the sulfhydryl enzyme, δ-aminolevulinate dehydratase. The present study investigated on the importance of the tellurium atom in the PEBT ability to oxidize mono- and dithiols of low molecular weight and sulfhydryl enzymes in vitro. PEBT, at high micromolar concentrations, oxidized dithiothreitol (DTT) and inhibited cerebral Na(+), K(+)-ATPase activity, but did not alter the lactate dehydrogenase activity. The inhibition of cerebral Na(+), K(+)-ATPase activity was completely restored by DTT. By contrast, 2-phenylethynyl-butyl, a molecule without the tellurium atom, neither oxidized DTT nor altered the Na(+), K(+)-ATPase activity. In conclusion, the tellurium atom of PEBT is crucial for the catalytic oxidation of sulfhydryl groups from thiols of low molecular weight and from Na(+), K(+)-ATPase.

  20. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states

    PubMed Central

    Rosi, G.; D'Amico, G.; Cacciapuoti, L.; Sorrentino, F.; Prevedelli, M.; Zych, M.; Brukner, Č.; Tino, G. M.

    2017-01-01

    The Einstein equivalence principle (EEP) has a central role in the understanding of gravity and space–time. In its weak form, or weak equivalence principle (WEP), it directly implies equivalence between inertial and gravitational mass. Verifying this principle in a regime where the relevant properties of the test body must be described by quantum theory has profound implications. Here we report on a novel WEP test for atoms: a Bragg atom interferometer in a gravity gradiometer configuration compares the free fall of rubidium atoms prepared in two hyperfine states and in their coherent superposition. The use of the superposition state allows testing genuine quantum aspects of EEP with no classical analogue, which have remained completely unexplored so far. In addition, we measure the Eötvös ratio of atoms in two hyperfine levels with relative uncertainty in the low 10−9, improving previous results by almost two orders of magnitude. PMID:28569742

  1. Effects of the local structure dependence of evaporation fields on field evaporation behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Lan; Marquis, Emmanuelle A., E-mail: emarq@umich.edu; Withrow, Travis

    2015-12-14

    Accurate three dimensional reconstructions of atomic positions and full quantification of the information contained in atom probe microscopy data rely on understanding the physical processes taking place during field evaporation of atoms from needle-shaped specimens. However, the modeling framework for atom probe microscopy has only limited quantitative justification. Building on the continuum field models previously developed, we introduce a more physical approach with the selection of evaporation events based on density functional theory calculations. This model reproduces key features observed experimentally in terms of sequence of evaporation, evaporation maps, and depth resolution, and provides insights into the physical limit formore » spatial resolution.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selle, J.E.

    A modification was made to the Kaufman method of calculating binary phase diagrams to permit calculation of intra-rare earth diagrams. Atomic volumes for all phases, real or hypothetical, are necessary to determine interaction parameters for calculation of complete diagrams. The procedures used to determine unknown atomic volumes are describes. Also, procedures are described for determining lattice stability parameters for unknown transformations. Results are presented on the calculation of intra-rare earth diagrams between both trivalent and divalent rare earths. 13 refs., 36 figs., 11 tabs.

  3. Storage and retrieval of time-entangled soliton trains in a three-level atom system coupled to an optical cavity

    NASA Astrophysics Data System (ADS)

    Welakuh, Davis D. M.; Dikandé, Alain M.

    2017-11-01

    The storage and subsequent retrieval of coherent pulse trains in the quantum memory (i.e. cavity-dark state) of three-level Λ atoms, are considered for an optical medium in which adiabatic photon transfer occurs under the condition of quantum impedance matching. The underlying mechanism is based on intracavity Electromagnetically-Induced Transparency, by which properties of a cavity filled with three-level Λ-type atoms are manipulated by an external control field. Under the impedance matching condition, we derive analytic expressions that suggest a complete transfer of an input field into the cavity-dark state by varying the mixing angle in a specific way, and its subsequent retrieval at a desired time. We illustrate the scheme by demonstrating the complete transfer and retrieval of a Gaussian, a single hyperbolic-secant and a periodic train of time-entangled hyperbolic-secant input photon pulses in the atom-cavity system. For the time-entangled hyperbolic-secant input field, a total controllability of the periodic evolution of the dark state population is made possible by changing the Rabi frequency of the classical driving field, thus allowing to alternately store and retrieve high-intensity photons from the optically dense Electromagnetically-Induced transparent medium. Such multiplexed photon states, which are expected to allow sharing quantum information among many users, are currently of very high demand for applications in long-distance and multiplexed quantum communication.

  4. Accuracy of Lagrange-sinc functions as a basis set for electronic structure calculations of atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sunghwan; Hong, Kwangwoo; Kim, Jaewook

    2015-03-07

    We developed a self-consistent field program based on Kohn-Sham density functional theory using Lagrange-sinc functions as a basis set and examined its numerical accuracy for atoms and molecules through comparison with the results of Gaussian basis sets. The result of the Kohn-Sham inversion formula from the Lagrange-sinc basis set manifests that the pseudopotential method is essential for cost-effective calculations. The Lagrange-sinc basis set shows faster convergence of the kinetic and correlation energies of benzene as its size increases than the finite difference method does, though both share the same uniform grid. Using a scaling factor smaller than or equal tomore » 0.226 bohr and pseudopotentials with nonlinear core correction, its accuracy for the atomization energies of the G2-1 set is comparable to all-electron complete basis set limits (mean absolute deviation ≤1 kcal/mol). The same basis set also shows small mean absolute deviations in the ionization energies, electron affinities, and static polarizabilities of atoms in the G2-1 set. In particular, the Lagrange-sinc basis set shows high accuracy with rapid convergence in describing density or orbital changes by an external electric field. Moreover, the Lagrange-sinc basis set can readily improve its accuracy toward a complete basis set limit by simply decreasing the scaling factor regardless of systems.« less

  5. Purification, crystallization and X-ray diffraction analysis of the C-terminal protease domain of Venezuelan equine encephalitis virus nsP2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russo, Andrew T.; Watowich, Stanley J., E-mail: watowich@xray.utmb.edu

    2006-06-01

    The C-terminal protease domain of Venezuelan equine encephalitis virus (VEEV) nsP2 has been overexpressed in E. coli, purified and successfully crystallized. Native crystals diffract to beyond 2.5 Å resolution and isomorphous heavy-atom derivatives suitable for phase analysis have been identified. The C-terminal region of Venezuelan equine encephalitis virus (VEEV) nsP2 is responsible for proteolytic processing of the VEEV polyprotein replication complex. This action regulates the activity of the replication complex and is essential for viral replication, thus making nsP2 a very attractive target for development of VEEV therapeutics. The 338-amino-acid C-terminal region of VEEV nsP2 has been overexpressed in Escherichiamore » coli, purified and crystallized. Crystals diffract to beyond 2.5 Å resolution and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. Isomorphous heavy-atom derivatives suitable for phase analysis have been obtained and work on building a complete structural model is under way.« less

  6. Study of Spray Disintegration in Accelerating Flow Fields

    NASA Technical Reports Server (NTRS)

    Nurick, W. H.

    1972-01-01

    An analytical and experimental investigation was conducted to perform "proof of principlem experiments to establish the effects of propellant combustion gas velocity on propella'nt atomization characteristics. The propellants were gaseous oxygen (GOX) and Shell Wax 270. The fuel was thus the same fluid used in earlier primary cold-flow atomization studies using the frozen wax method. Experiments were conducted over a range in L* (30 to 160 inches) at two contraction ratios (2 and 6). Characteristic exhaust velocity (c*) efficiencies varied from SO to 90 percent. The hot fire experimental performance characteristics at a contraction ratio of 6.0 in conjunction with analytical predictions from the drovlet heat-up version of the Distributed Energy Release (DER) combustion computer proDam showed that the apparent initial dropsize compared well with cold-flow predictions (if adjusted for the gas velocity effects). The results also compared very well with the trend in perfomnce as predicted with the model. significant propellant wall impingement at the contraction ratio of 2.0 precluded complete evaluation of the effect of gross changes in combustion gas velocity on spray dropsize.

  7. Investigation of Iron Oxide Morphology in a Cyclic Redox Water Splitting Process for Hydrogen Generation

    PubMed Central

    Bobek, Michael M.; Stehle, Richard C.; Hahn, David W.

    2012-01-01

    A solar fuels generation research program is focused on hydrogen production by means of reactive metal water splitting in a cyclic iron-based redox process. Iron-based oxides are explored as an intermediary reactive material to dissociate water molecules at significantly reduced thermal energies. With a goal of studying the resulting oxide chemistry and morphology, chemical assistance via CO is used to complete the redox cycle. In order to exploit the unique characteristics of highly reactive materials at the solar reactor scale, a monolithic laboratory scale reactor has been designed to explore the redox cycle at temperatures ranging from 675 to 875 K. Using high resolution scanning electron microscope (SEM) and electron dispersive X-ray spectroscopy (EDS), the oxide morphology and the oxide state are quantified, including spatial distributions. These images show the change of the oxide layers directly after oxidation and after reduction. The findings show a significant non-stoichiometric O/Fe gradient in the atomic ratio following oxidation, which is consistent with a previous kinetics model, and a relatively constant, non-stoichiometric O/Fe atomic ratio following reduction.

  8. From deep TLS validation to ensembles of atomic models built from elemental motions. Addenda and corrigendum

    DOE PAGES

    Urzhumtsev, Alexandre; Afonine, Pavel V.; Van Benschoten, Andrew H.; ...

    2016-08-31

    Researcher feedback has indicated that in Urzhumtsevet al.[(2015)Acta Cryst.D71, 1668–1683] clarification of key parts of the algorithm for interpretation of TLS matrices in terms of elemental atomic motions and corresponding ensembles of atomic models is required. Also, it has been brought to the attention of the authors that the incorrect PDB code was reported for one of test models. Lastly, these issues are addressed in this article.

  9. Computer modelling of cyclic deformation of high-temperature materials. Technical progress report, 16 November 1992-15 February 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duesbery, M.S.

    1993-02-26

    This program aims at improving current methods of lifetime assessment by building in the characteristics of the micro-mechanisms known to be responsible for damage and failure. The broad approach entails the integration and, where necessary, augmentation of the micro-scale research results currently available in the literature into a macro-scale model with predictive capability. In more detail, the program will develop a set of hierarchically structured models at different length scales, from atomic to macroscopic, at each level taking as parametric input the results of the model at the next smaller scale. In this way the known microscopic properties can bemore » transported by systematic procedures to the unknown macro-scale region. It may not be possible to eliminate empiricism completely, because some of the quantities involved cannot yet be estimated to the required degree of precision. In this case the aim will be at least to eliminate functional empiricism.« less

  10. The GBS code for tokamak scrape-off layer simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, F.D., E-mail: federico.halpern@epfl.ch; Ricci, P.; Jolliet, S.

    2016-06-15

    We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by Ricci et al. (2012) [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarizationmore » drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model.« less

  11. Line-blanketed model stellar atmospheres applied to Sirius. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Fowler, J. W.

    1972-01-01

    The primary goal of this analysis is to determine whether the effects of atomic bound-bound transitions on stellar atmospheric structure can be represented well in models. The investigation is based on an approach which is called the method of artificial absorption edges. The method is described, developed, tested, and applied to the problem of fitting a model stellar atmosphere to Sirius. It is shown that the main features of the entire observed spectrum of Sirius can be reproduced to within the observational uncertainty by a blanketed flux-constant model with T sub eff = 9700 K and Log g = 4.26. The profile of H sub gamma is reproduced completely within the standard deviations of the measurements except near line center, where non-LTE effects are expected to be significant. The equivalent width of H sub gamma, the Paschen slope, the Balmer jump, and the absolute flux at 5550 A all agree with the observed values.

  12. Entanglement evaluation with atomic Fisher information

    NASA Astrophysics Data System (ADS)

    Obada, A.-S. F.; Abdel-Khalek, S.

    2010-02-01

    In this paper, the concept of atomic Fisher information (AFI) is introduced. The marginal distributions of the AFI are defined. This quantity is used as a parameter of entanglement and compared with linear and atomic Wehrl entropies of the two-level atom. The evolution of the atomic Fisher information and atomic Wehrl entropy for only the pure state (or dissipation-free) of the Jaynes-Cummings model is analyzed. We demonstrate the connections between these measures.

  13. Atomic Precision Plasma Processing - Modeling Investigations

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2016-09-01

    Sub-nanometer precision is increasingly being required of many critical plasma processes in the semiconductor industry. Some of these critical processes include atomic layer etch and plasma enhanced atomic layer deposition. Accurate control over ion energy and ion / radical composition is needed during plasma processing to meet the demanding atomic-precision requirements. While improvements in mainstream inductively and capacitively coupled plasmas can help achieve some of these goals, newer plasma technologies can expand the breadth of problems addressable by plasma processing. Computational modeling is used to examine issues relevant to atomic precision plasma processing in this paper. First, a molecular dynamics model is used to investigate atomic layer etch of Si and SiO2 in Cl2 and fluorocarbon plasmas. Both planar surfaces and nanoscale structures are considered. It is shown that accurate control of ion energy in the sub-50 eV range is necessary for atomic scale precision. In particular, if the ion energy is greater than 10 eV during plasma processing, several atomic layers get damaged near the surface. Low electron temperature (Te) plasmas are particularly attractive for atomic precision plasma processing due to their low plasma potential. One of the most attractive options in this regard is energetic-electron beam generated plasma, where Te <0.5 eV has been achieved in plasmas of molecular gases. These low Te plasmas are computationally examined in this paper using a hybrid fluid-kinetic model. It is shown that such plasmas not only allow for sub-5 eV ion energies, but also enable wider range of ion / radical composition. Coauthors: Jun-Chieh Wang, Jason Kenney, Ankur Agarwal, Leonid Dorf, and Ken Collins.

  14. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  15. Theoretical modeling of laser-induced plasmas using the ATOMIC code

    NASA Astrophysics Data System (ADS)

    Colgan, James; Johns, Heather; Kilcrease, David; Judge, Elizabeth; Barefield, James, II; Clegg, Samuel; Hartig, Kyle

    2014-10-01

    We report on efforts to model the emission spectra generated from laser-induced breakdown spectroscopy (LIBS). LIBS is a popular and powerful method of quickly and accurately characterizing unknown samples in a remote manner. In particular, LIBS is utilized by the ChemCam instrument on the Mars Science Laboratory. We model the LIBS plasma using the Los Alamos suite of atomic physics codes. Since LIBS plasmas generally have temperatures of somewhere between 3000 K and 12000 K, the emission spectra typically result from the neutral and singly ionized stages of the target atoms. We use the Los Alamos atomic structure and collision codes to generate sets of atomic data and use the plasma kinetics code ATOMIC to perform LTE or non-LTE calculations that generate level populations and an emission spectrum for the element of interest. In this presentation we compare the emission spectrum from ATOMIC with an Fe LIBS laboratory-generated plasma as well as spectra from the ChemCam instrument. We also discuss various physics aspects of the modeling of LIBS plasmas that are necessary for accurate characterization of the plasma, such as multi-element target composition effects, radiation transport effects, and accurate line shape treatments. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396.

  16. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  17. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piquemal-Banci, M.; Galceran, R.; Bouzehouane, K.

    We report on the integration of atomically thin 2D insulating hexagonal boron nitride (h-BN) tunnel barriers into Co/h-BN/Fe magnetic tunnel junctions (MTJs). The h-BN monolayer is directly grown by chemical vapor deposition on Fe. The Conductive Tip Atomic Force Microscopy (CT-AFM) measurements reveal the homogeneity of the tunnel behavior of our h-BN layers. As expected for tunneling, the resistance depends exponentially on the number of h-BN layers. The h-BN monolayer properties are also characterized through integration into complete MTJ devices. A Tunnel Magnetoresistance of up to 6% is observed for a MTJ based on a single atomically thin h-BN layer.

  18. [μ-10,21-Dimethyl-3,6,14,17-tetra-za-tricyclo-[17.3.1.1]tetra-cosa-1(23),2,6,8,10,12 (24),13,17,19,21-deca-ene-23,24-diolato-κN,N,O,O:κN,N,O,O]bis-(perchlorato-κO)dimanganese(II).

    PubMed

    Liu, Jing; Pan, Zhi-Quan; Zhou, Hong; Li, Yi-Zhi

    2008-11-08

    In the centrosymmetric and dinuclear title complex, [Mn(2)(C(22)H(22)N(4)O(2))(ClO(4))(2)], the two Mn atoms are bridged by two phenolate O atoms of the N(4)O(2) macrocycle with an Mn⋯Mn distance of 2.9228 (11) Å. The distorted square-pyramidal N(2)O(3) coordination geometry is completed by an O atom derived from a perchlorate anion.

  19. Cluster adsorption on amorphous and crystalline surfaces - A molecular dynamics study of model Pt on Cu and model Pd on Pt

    NASA Technical Reports Server (NTRS)

    Garofalini, S. H.; Halicioglu, T.; Pound, G. M.

    1981-01-01

    Molecular dynamics was used to study the structure, dispersion and short-time behavior of ten-atom clusters adsorbed onto amorphous and crystalline substrates, in which the cluster atoms differed from the substrate atoms. Two adatom-substrate model systems were chosen; one, in which the interaction energy between adatom pairs was greater than that between substrate pairs, and the other, in which the reverse was true. At relatively low temperature ranges, increased dispersion of cluster atoms occurred: (a) on the amorphous substrate as compared to the FCC(100) surface, (b) with increasing reduced temperature, and (c) with adatom-substrate interaction energy stronger than adatom-adatom interaction. Two-dimensional clusters (rafts) on the FCC(100) surface displayed migration of edge atoms only, indicating a mechanism for the cluster rotation and shape changes found in experimental studies.

  20. Quantitative Subsurface Atomic Structure Fingerprint for 2D Materials and Heterostructures by First-Principles-Calibrated Contact-Resonance Atomic Force Microscopy.

    PubMed

    Tu, Qing; Lange, Björn; Parlak, Zehra; Lopes, Joao Marcelo J; Blum, Volker; Zauscher, Stefan

    2016-07-26

    Interfaces and subsurface layers are critical for the performance of devices made of 2D materials and heterostructures. Facile, nondestructive, and quantitative ways to characterize the structure of atomically thin, layered materials are thus essential to ensure control of the resultant properties. Here, we show that contact-resonance atomic force microscopy-which is exquisitely sensitive to stiffness changes that arise from even a single atomic layer of a van der Waals-adhered material-is a powerful experimental tool to address this challenge. A combined density functional theory and continuum modeling approach is introduced that yields sub-surface-sensitive, nanomechanical fingerprints associated with specific, well-defined structure models of individual surface domains. Where such models are known, this information can be correlated with experimentally obtained contact-resonance frequency maps to reveal the (sub)surface structure of different domains on the sample.

  1. Introduction to the fractality principle of consciousness and the sentyon postulate

    PubMed Central

    Bieberich, Erhard

    2013-01-01

    Recently, consciousness research has gained much attention. Indeed, the question at stake is significant: why is the brain not just a computing device, but generates a perception from within? Ambitious endeavors trying to simulate the entire human brain assume that the algorithm will do the trick: as soon as we assemble the brain in a computer and increase the number of operations per time, consciousness will emerge by itself. I disagree with this simplistic representation. My argument emerges from the “atomism paradox”: the irreducible space of the consciously perceived world, the endospace is incompatible with the reducible and decomposable architecture of the brain or a computer. I will first discuss the fundamental challenges in current consciousness models and then propose a new model based on the fractality principle: “the whole is in each of its parts”. This new model copes with the atomism paradox by implementing an iterative mapping of information from higher order brain structures to smaller scales on the cellular and molecular level, which I will refer to as “fractalization”. This information fractalization gives rise to a new form of matter that is conscious (“bright matter”). Bright matter is composed of conscious particles or units named “sentyons”. The internal fractality of these sentyons will close a loop (the “psychic loop”) in a recurrent fractal neural network (RFNN) that allows for continuous and complete information transformation and sharing between higher order brain structures and the endpoint substrate of consciousness at the molecular level. PMID:23950765

  2. Fourier transform imaging of impurities in the unit cells of crystals: Mn in GaAs

    NASA Astrophysics Data System (ADS)

    Lee, T.-L.; Bihler, C.; Schoch, W.; Limmer, W.; Daeubler, J.; Thieß, S.; Brandt, M. S.; Zegenhagen, J.

    2010-06-01

    The lattice sites of Mn in ferromagnetic (Ga,Mn)As thin films were imaged using the x-ray standing wave technique. The model-free images, obtained straightforwardly by Fourier inversion, disclose immediately that the Mn mostly substitutes the Ga with a small fraction residing on minority sites. The images further reveal variations in the Mn concentrations of the different sites upon post-growth treatments. Subsequent model refinement based on the directly reconstructed images resolves with high precision the complete Mn site distributions. It is found that post-growth annealing increases the fraction of substitutional Mn at the expense of interstitial Mn whereas hydrogenation has little influence on the Mn site distribution. Our study offers an element-specific high-resolution imaging approach for accurately determining the detailed site distributions of dilute concentrations of atoms in crystals.

  3. Crystal structure and phase stability in Fe{sub 1{minus}x}Co{sub x} from AB initio theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soederlind, P.; Abrikosov, I.A.; James, P.

    1996-06-01

    For alloys between Fe and Co, their magnetic properties determine their structure. From the occupation of d states, a phase diagram is expected which depend largely on the spin polarization. A method more elaborate than canonical band models is used to calculate the spin moment and crystal structure energies. This method was the multisublattice generalization of the coherent potential approximation in conjunction with the Linear-Muffin-Tin-Orbital method in the atomic sphere approximation. To treat itinerant magnetism, the Vosko-Wilk-Nusair parameterization was used for the local spin density approximation. The fcc, bcc, and hcp phases were studied as completely random alloys, while themore » {alpha}{prime} phase for off-stoichiometries were considered as partially ordered. Results are compared with experiment and canonical band model.« less

  4. Frequency dependence of viscous and viscoelastic dissipation in coated micro-cantilevers from noise measurement.

    PubMed

    Paolino, P; Bellon, L

    2009-10-07

    We measure the mechanical thermal noise of soft silicon atomic force microscope cantilevers. Using an interferometric setup, we obtain a resolution down to 10(-14) m Hz(-1/2) on a wide spectral range (3-10(5) Hz). The low frequency behavior depends dramatically on the presence of a reflective coating: almost flat spectra for uncoated cantilevers versus a 1/f like trend for coated ones. The addition of a viscoelastic term in models of the mechanical system can account for this observation. Use of Kramers-Kronig relations validate this approach with a complete determination of the response of the cantilever: a power law with a small coefficient is found for the frequency dependence of viscoelasticity due to the coating, whereas the viscous damping due to the surrounding atmosphere is accurately described by the Sader model.

  5. ROTAS: a rotamer-dependent, atomic statistical potential for assessment and prediction of protein structures.

    PubMed

    Park, Jungkap; Saitou, Kazuhiro

    2014-09-18

    Multibody potentials accounting for cooperative effects of molecular interactions have shown better accuracy than typical pairwise potentials. The main challenge in the development of such potentials is to find relevant structural features that characterize the tightly folded proteins. Also, the side-chains of residues adopt several specific, staggered conformations, known as rotamers within protein structures. Different molecular conformations result in different dipole moments and induce charge reorientations. However, until now modeling of the rotameric state of residues had not been incorporated into the development of multibody potentials for modeling non-bonded interactions in protein structures. In this study, we develop a new multibody statistical potential which can account for the influence of rotameric states on the specificity of atomic interactions. In this potential, named "rotamer-dependent atomic statistical potential" (ROTAS), the interaction between two atoms is specified by not only the distance and relative orientation but also by two state parameters concerning the rotameric state of the residues to which the interacting atoms belong. It was clearly found that the rotameric state is correlated to the specificity of atomic interactions. Such rotamer-dependencies are not limited to specific type or certain range of interactions. The performance of ROTAS was tested using 13 sets of decoys and was compared to those of existing atomic-level statistical potentials which incorporate orientation-dependent energy terms. The results show that ROTAS performs better than other competing potentials not only in native structure recognition, but also in best model selection and correlation coefficients between energy and model quality. A new multibody statistical potential, ROTAS accounting for the influence of rotameric states on the specificity of atomic interactions was developed and tested on decoy sets. The results show that ROTAS has improved ability to recognize native structure from decoy models compared to other potentials. The effectiveness of ROTAS may provide insightful information for the development of many applications which require accurate side-chain modeling such as protein design, mutation analysis, and docking simulation.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ünlü, Hilmi, E-mail: hunlu@itu.edu.tr

    We propose a non-orthogonal sp{sup 3} hybrid bond orbital model to determine the electronic properties of semiconductor heterostructures. The model considers the non-orthogonality of sp{sup 3} hybrid states of nearest neighboring adjacent atoms using the intra-atomic Coulomb interactions corrected Hartree-Fock atomic energies and metallic contribution to calculate the valence band width energies of group IV elemental and group III-V and II-VI compound semiconductors without any adjustable parameter.

  7. Students' Mental Models of Atomic Spectra

    ERIC Educational Resources Information Center

    Körhasan, Nilüfer Didis; Wang, Lu

    2016-01-01

    Mental modeling, which is a theory about knowledge organization, has been recently studied by science educators to examine students' understanding of scientific concepts. This qualitative study investigates undergraduate students' mental models of atomic spectra. Nine second-year physics students, who have already taken the basic chemistry and…

  8. 2D hybrid analysis: Approach for building three-dimensional atomic model by electron microscopy image matching.

    PubMed

    Matsumoto, Atsushi; Miyazaki, Naoyuki; Takagi, Junichi; Iwasaki, Kenji

    2017-03-23

    In this study, we develop an approach termed "2D hybrid analysis" for building atomic models by image matching from electron microscopy (EM) images of biological molecules. The key advantage is that it is applicable to flexible molecules, which are difficult to analyze by 3DEM approach. In the proposed approach, first, a lot of atomic models with different conformations are built by computer simulation. Then, simulated EM images are built from each atomic model. Finally, they are compared with the experimental EM image. Two kinds of models are used as simulated EM images: the negative stain model and the simple projection model. Although the former is more realistic, the latter is adopted to perform faster computations. The use of the negative stain model enables decomposition of the averaged EM images into multiple projection images, each of which originated from a different conformation or orientation. We apply this approach to the EM images of integrin to obtain the distribution of the conformations, from which the pathway of the conformational change of the protein is deduced.

  9. Modeling protein structure at near atomic resolutions with Gorgon.

    PubMed

    Baker, Matthew L; Abeysinghe, Sasakthi S; Schuh, Stephen; Coleman, Ross A; Abrams, Austin; Marsh, Michael P; Hryc, Corey F; Ruths, Troy; Chiu, Wah; Ju, Tao

    2011-05-01

    Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed. In this work, we describe a new interactive modeling toolkit called Gorgon targeted at intermediate to near-atomic resolution density maps (10-3.5 Å), particularly from cryo-EM. Gorgon's de novo modeling procedure couples sequence-based secondary structure prediction with feature detection and geometric modeling techniques to generate initial protein backbone models. Beyond model building, Gorgon is an extensible interactive visualization platform with a variety of computational tools for annotating a wide variety of 3D volumes. Examples from cryo-EM maps of Rotavirus and Rice Dwarf Virus are used to demonstrate its applicability to modeling protein structure. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. All-atom ensemble modeling to analyze small angle X-ray scattering of glycosylated proteins

    PubMed Central

    Guttman, Miklos; Weinkam, Patrick; Sali, Andrej; Lee, Kelly K.

    2013-01-01

    Summary The flexible and heterogeneous nature of carbohydrate chains often renders glycoproteins refractory to traditional structure determination methods. Small Angle X-ray scattering (SAXS) can be a useful tool for obtaining structural information of these systems. All-atom modeling of glycoproteins with flexible glycan chains was applied to interpret the solution SAXS data for a set of glycoproteins. For simpler systems (single glycan, with a well defined protein structure), all-atom modeling generates models in excellent agreement with the scattering pattern, and reveals the approximate spatial occupancy of the glycan chain in solution. For more complex systems (several glycan chains, or unknown protein substructure), the approach can still provide insightful models, though the orientations of glycans become poorly determined. Ab initio shape reconstructions appear to capture the global morphology of glycoproteins, but in most cases offer little information about glycan spatial occupancy. The all-atom modeling methodology is available as a webserver at http://modbase.compbio.ucsf.edu/allosmod-foxs. PMID:23473666

  11. An atomic and molecular fluid model for efficient edge-plasma transport simulations at high densities

    NASA Astrophysics Data System (ADS)

    Rognlien, Thomas; Rensink, Marvin

    2016-10-01

    Transport simulations for the edge plasma of tokamaks and other magnetic fusion devices requires the coupling of plasma and recycling or injected neutral gas. There are various neutral models used for this purpose, e.g., atomic fluid model, a Monte Carlo particle models, transition/escape probability methods, and semi-analytic models. While the Monte Carlo method is generally viewed as the most accurate, it is time consuming, which becomes even more demanding for device simulations of high densities and size typical of fusion power plants because the neutral collisional mean-free path becomes very small. Here we examine the behavior of an extended fluid neutral model for hydrogen that includes both atoms and molecules, which easily includes nonlinear neutral-neutral collision effects. In addition to the strong charge-exchange between hydrogen atoms and ions, elastic scattering is included among all species. Comparisons are made with the DEGAS 2 Monte Carlo code. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.

  12. Modelling the atomic structure of Al92U8 metallic glass.

    PubMed

    Michalik, S; Bednarcik, J; Jóvári, P; Honkimäki, V; Webb, A; Franz, H; Fazakas, E; Varga, L K

    2010-10-13

    The local atomic structure of the glassy Al(92)U(8) alloy was modelled by the reverse Monte Carlo (RMC) method, fitting x-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) signals. The final structural model was analysed by means of partial pair correlation functions, coordination number distributions and Voronoi tessellation. In our study we found that the most probable atomic separations between Al-Al and U-Al pairs in the glassy Al(92)U(8) alloy are 2.7 Å and 3.1 Å with coordination numbers 11.7 and 17.1, respectively. The Voronoi analysis did not support evidence of the existence of well-defined building blocks directly embedded in the amorphous matrix. The dense-random-packing model seems to be adequate for describing the connection between solvent and solute atoms.

  13. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    NASA Astrophysics Data System (ADS)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-12-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice.

  14. Complete Al-SI Order in Scapolite Me[subscript 37.5], Ideally Ca[subscript 3]Na[subscript 5][Al[subscript 8]Si[subscript 16]O[subscript 48

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antao, Sytle M.; Hassan, Ishmael; West Indies)

    2011-09-06

    The structure of an intermediate scapolite (Me{sub 36.6}) from Lake Clear, Ontario, was obtained using synchrotron high-resolution powder X-ray diffraction (HRPXRD) data and Rietveld structure refinement in space group P4{sub 2}/n. The chemical formula obtained by electron microprobe is Na{sub 2.19}Ca{sub 1.35}K{sub 0.16}[Al{sub 3.95}Si{sub 8.05}O{sub 24}]Cl{sub 0.55}(CO{sub 3}){sub 0.41}(SO{sub 4}){sub 0.04}, equivalent to Me{sub 36.6}. The unit-cell parameters are a 12.07899(1), c 7.583467(9) {angstrom}, and V 1106.443(2) {angstrom}{sup 3}. The average distances are = 1.617(1) {angstrom}, = 1.744(1) {angstrom}, and = 1.601(1) {angstrom}. Therefore, the T1 and T3 sites contain only Si atoms, and the T2 sitemore » contains only Al atoms, so the Al and Si atoms are completely ordered. Complete Al-Si order was predicted for Me{sub 37.5}, ideally Ca{sub 3}Na{sub 5}[Al{sub 8}Si{sub 16}O{sub 48}]Cl(CO{sub 3}), and is confirmed in this study. Antiphase domain boundaries (APBs) in scapolite cannot arise from Al-Si order because the average distances indicate complete Al-Si order in Me{sub 36.6}. If APBs were to arise from Al-Si order, switching of the T sites across the APBs will occur, and complete Al-Si order cannot be observed. Therefore, Al-Si order, which is present to various extents across the scapolite series, can be ruled out as the cause for the APBs. Order involving Cl and CO{sub 3} is the cause for the APBs in scapolite.« less

  15. 3DIANA: 3D Domain Interaction Analysis: A Toolbox for Quaternary Structure Modeling

    PubMed Central

    Segura, Joan; Sanchez-Garcia, Ruben; Tabas-Madrid, Daniel; Cuenca-Alba, Jesus; Sorzano, Carlos Oscar S.; Carazo, Jose Maria

    2016-01-01

    Electron microscopy (EM) is experiencing a revolution with the advent of a new generation of Direct Electron Detectors, enabling a broad range of large and flexible structures to be resolved well below 1 nm resolution. Although EM techniques are evolving to the point of directly obtaining structural data at near-atomic resolution, for many molecules the attainable resolution might not be enough to propose high-resolution structural models. However, accessing information on atomic coordinates is a necessary step toward a deeper understanding of the molecular mechanisms that allow proteins to perform specific tasks. For that reason, methods for the integration of EM three-dimensional maps with x-ray and NMR structural data are being developed, a modeling task that is normally referred to as fitting, resulting in the so called hybrid models. In this work, we present a novel application—3DIANA—specially targeted to those cases in which the EM map resolution is medium or low and additional experimental structural information is scarce or even lacking. In this way, 3DIANA statistically evaluates proposed/potential contacts between protein domains, presents a complete catalog of both structurally resolved and predicted interacting regions involving these domains and, finally, suggests structural templates to model the interaction between them. The evaluation of the proposed interactions is computed with DIMERO, a new method that scores physical binding sites based on the topology of protein interaction networks, which has recently shown the capability to increase by 200% the number of domain-domain interactions predicted in interactomes as compared to previous approaches. The new application displays the information at a sequence and structural level and is accessible through a web browser or as a Chimera plugin at http://3diana.cnb.csic.es. PMID:26772592

  16. Tensor algebra-based geometric methodology to codify central chirality on organic molecules.

    PubMed

    García-Jacas, C R; Marrero-Ponce, Y; Hernández-Ortega, T; Martinez-Mayorga, K; Cabrera-Leyva, L; Ledesma-Romero, J C; Aguilera-Fernández, I; Rodríguez-León, A R

    2017-06-01

    A novel mathematical procedure to codify chiral features of organic molecules in the QuBiLS-MIDAS framework is introduced. This procedure constitutes a generalization to that commonly used to date, where the values 1 and -1 (correction factor) are employed to weight the molecular vectors when each atom is labelled as R (rectus) or S (sinister) according to the Cahn-Ingold-Prelog rules. Therefore, values in the range [Formula: see text] with steps equal to 0.25 may be accounted for. The atoms labelled R or S can have negative and positive values assigned (e.g. -3 for an R atom and 1 for an S atom, or vice versa), opposed values (e.g. -3 for an R atom and 3 for an S atom, or vice versa), positive values (e.g. 3 for an R atom and 1 for an S atom) or negative values (e.g. -3 for an R atom and -1 for an S atom). These proposed Chiral QuBiLS-MIDAS 3D-MDs are real numbers, non-symmetric and reduced to 'classical' (non-chiral) QuBiLS-MIDAS 3D-MDs when symmetry is not codified (correction factor equal to zero). In this report, only the factors with opposed values were considered with the purpose of demonstrating the feasibility of this proposal. From QSAR modelling carried out on four chemical datasets (Cramer's steroids, fenoterol stereoisomer derivatives, N-alkylated 3-(3-hydroxyphenyl)-piperidines, and perindoprilat stereoisomers), it was demonstrated that the use of several correction factors contributes to the building of models with greater robustness and predictive ability than those reported in the literature, as well as with respect to the models exclusively developed with QuBiLS-MIDAS 3D-MDs based on the factor 1 | -1. In conclusion, it can be stated that this novel strategy constitutes a suitable alternative to computed chirality-based descriptors, contributing to the development of good models to predict properties depending on symmetry.

  17. The shadow map: a general contact definition for capturing the dynamics of biomolecular folding and function.

    PubMed

    Noel, Jeffrey K; Whitford, Paul C; Onuchic, José N

    2012-07-26

    Structure-based models (SBMs) are simplified models of the biomolecular dynamics that arise from funneled energy landscapes. We recently introduced an all-atom SBM that explicitly represents the atomic geometry of a biomolecule. While this initial study showed the robustness of the all-atom SBM Hamiltonian to changes in many of the energetic parameters, an important aspect, which has not been explored previously, is the definition of native interactions. In this study, we propose a general definition for generating atomically grained contact maps called "Shadow". The Shadow algorithm initially considers all atoms within a cutoff distance and then, controlled by a screening parameter, discards the occluded contacts. We show that this choice of contact map is not only well behaved for protein folding, since it produces consistently cooperative folding behavior in SBMs but also desirable for exploring the dynamics of macromolecular assemblies since, it distributes energy similarly between RNAs and proteins despite their disparate internal packing. All-atom structure-based models employing Shadow contact maps provide a general framework for exploring the geometrical features of biomolecules, especially the connections between folding and function.

  18. Nonlinearity, resonance, charging, and motion at the atomic scale studied with scanning tunneling microscopes

    NASA Astrophysics Data System (ADS)

    Tu, Xiuwen

    2008-10-01

    Several novel phenomena at the single-atom and single-molecule level occurring on the surfaces of single crystals were studied with home-built low temperature scanning tunneling microscopes. The results revealed intriguing properties of single atoms and single molecules, including nonlinearity, resonance, charging, and motion. First, negative differential resistance (NDR) was observed in the dI/dV spectra for single copper-phthalocyanine (CuPc) molecules adsorbed on one- and two-layer sodium bromide (NaBr), but not for single CuPc molecules adsorbed on three-layer NaBr, all grown on a NiAl(110) surface. This transition from NDR to the absence of NDR was explained as the result of competing effects in the double-barrier tunnel junction (DBTJ) and was reproduced in a calculation based on a resonant-tunneling model. Second, the nonlinearity of the STM junction due to a single manganese (Mn) atom or MnCO molecule adsorbed on a NiAl(110) surface was used to rectify microwave irradiation. The resulting rectification current was shown to be sensitive to the spin-splitting of the electronic states of the Mn atom and to the vibrations of the MnCO molecule. Next, the ordering of cesium (Cs) atoms adsorbed on a Au(111) surface and a NiAl(110) surface was imaged in real space. Because of charge transfer to the substrates, Cs adatoms were positively charged on both surfaces. Even at 12 K, Cs adatoms were able to move and adjust according to coverage. On Au(111), the Cs first layer had a quasi-hexagonal lattice and islands of the second Cs layer did not appear until the first was completed. On NiAl(110), a locally disordered Cs first layer was observed before a locally ordered layer appeared at higher coverages. The cation-pi interactions were then studied at the single molecular level. We were able to form cation-pi complexes such as Cs···DSB, Cs···DSB···Cs, Rb···DSB, and Rb···ZnEtiol controllably by manipulation with the STM tip. We could also separate these complexes controllably by voltage pulses. STM imaging and spectroscopy revealed precise information about the atomic and electronic structure of these cation-pi complexes. Finally, electron transport through single atoms and molecules in a double-barrier tunnel junction (DBTJ) was examined. Charge bistability was observed for single ZnEtioI molecules adsorbed in several different conformations on ultrathin aluminum oxide. A sudden decrease in local apparent barrier height (LABH) was observed at the onset of an adsorbate electronic orbital for single ZnEtioI molecules and Cs atoms supported by the ultrathin aluminum oxide. The resonant-tunneling model, which was proposed to explain the transition from NDR to the absence of NDR, was found useful in explaining the sudden decrease in LABH, too. NDR, bipolar tunneling, and vibronic states were also observed and discussed in the context of DBTJ.

  19. Students' use of atomic and molecular models in learning chemistry

    NASA Astrophysics Data System (ADS)

    O'Connor, Eileen Ann

    1997-09-01

    The objective of this study was to investigate the development of introductory college chemistry students' use of atomic and molecular models to explain physical and chemical phenomena. The study was conducted during the first semester of the course at a University and College II. Public institution (Carnegie Commission of Higher Education, 1973). Students' use of models was observed during one-on-one interviews conducted over the course of the semester. The approach to introductory chemistry emphasized models. Students were exposed to over two-hundred and fifty atomic and molecular models during lectures, were assigned text readings that used over a thousand models, and worked interactively with dozens of models on the computer. These models illustrated various features of the spatial organization of valence electrons and nuclei in atoms and molecules. Despite extensive exposure to models in lectures, in textbook, and in computer-based activities, the students in the study based their explanation in large part on a simple Bohr model (electrons arranged in concentric circles around the nuclei)--a model that had not been introduced in the course. Students used visual information from their models to construct their explanation, while overlooking inter-atomic and intra-molecular forces which are not represented explicitly in the models. In addition, students often explained phenomena by adding separate information about the topic without either integrating or logically relating this information into a cohesive explanation. The results of the study demonstrate that despite the extensive use of models in chemistry instruction, students do not necessarily apply them appropriately in explaining chemical and physical phenomena. The results of this study suggest that for the power of models as aids to learning to be more fully realized, chemistry professors must give more attention to the selection, use, integration, and limitations of models in their instruction.

  20. Direct counterfactual transmission of a quantum state

    NASA Astrophysics Data System (ADS)

    Li, Zheng-Hong; Al-Amri, M.; Zubairy, M. Suhail

    2015-11-01

    We show that an unknown quantum state can be transferred with neither quantum nor classical particle traveling in the transmission channel. Our protocol does not require prearranged entangled photon pairs and Bell measurements. By utilizing quantum Zeno effect and counterfactuality, we can entangle and disentangle a photon and an atom by nonlocal interaction. It is shown that quantum information is completely transferred from an atom to photon due to controllable disentanglement processes. There is no need to cross-check the result via classical channels.

  1. NMR spectra of androstane analogs of brassinosteroids

    NASA Astrophysics Data System (ADS)

    Baranovskii, A. V.; Litvinovskaya, R. P.; Aver'kova, M. A.; Khripach, N. B.; Khripach, V. A.

    2007-09-01

    We have used two-dimensional NMR spectroscopy to make a complete assignment of signals from the nuclei of hydrogen and carbon atoms in the spectra of brassinosteroids in the androstane series. We have confirmed the stereochemistry of the chiral centers and the structure of the molecules. We have studied the effect of the configuration of the 2,3-diol groups in the A ring of the steroids on the chemical shift of adjacent atoms in the 13C and 1H NMR spectra.

  2. In silico folding of a three helix protein and characterization of its free-energy landscape in an all-atom force field.

    PubMed

    Herges, T; Wenzel, W

    2005-01-14

    We report the reproducible first-principles folding of the 40 amino-acid, three-helix headpiece of the HIV accessory protein in a recently developed all-atom free-energy force field. Six of 20 simulations using an adapted basin-hopping method converged to better than 3 A backbone rms deviation to the experimental structure. Using over 60 000 low-energy conformations of this protein, we constructed a decoy tree that completely characterizes its folding funnel.

  3. In Silico Folding of a Three Helix Protein and Characterization of Its Free-Energy Landscape in an All-Atom Force Field

    NASA Astrophysics Data System (ADS)

    Herges, T.; Wenzel, W.

    2005-01-01

    We report the reproducible first-principles folding of the 40 amino-acid, three-helix headpiece of the HIV accessory protein in a recently developed all-atom free-energy force field. Six of 20 simulations using an adapted basin-hopping method converged to better than 3Å backbone rms deviation to the experimental structure. Using over 60 000 low-energy conformations of this protein, we constructed a decoy tree that completely characterizes its folding funnel.

  4. Atomic oxygen effects on metals

    NASA Technical Reports Server (NTRS)

    Fromhold, Albert T.

    1987-01-01

    The effect of specimen geometry on the attack of metals by atomic oxygen is addressed. This is done by extending the coupled-currents approach in metal oxidation to spherical and cylindrical geometries. Kinetic laws are derived for the rates of oxidation of samples having these geometries. It is found that the burn-up time for spherical particles of a given diameter can be as much as a factor of 3 shorter than the time required to completely oxidize a planar sample of the same thickness.

  5. Big Bang Day : The Great Big Particle Adventure - 1. Atom

    ScienceCinema

    None

    2017-12-09

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. The notion of atoms dates back to Greek philosophers who sought a natural mechanical explanation of the Universe, as opposed to a divine one. The existence what we call chemical atoms, the constituents of all we see around us, wasn't proved until a hundred years ago, but almost simultaneously it was realised these weren't the indivisible constituents the Greeks envisaged. Much of the story of physics since then has been the ever-deeper probing of matter until, at the end of the 20th century, a complete list of fundamental ingredients had been identified, apart from one, the much discussed Higgs particle. In this programme, Ben finds out why this last particle is so pivotal, not just to atomic theory, but to our very existence - and how hopeful the scientists are of proving its existence.

  6. Correlation energy, correlated electron density, and exchange-correlation potential in some spherically confined atoms.

    PubMed

    Vyboishchikov, Sergei F

    2016-12-05

    We report correlation energies, electron densities, and exchange-correlation potentials obtained from configuration interaction and density functional calculations on spherically confined He, Be, Be 2+ , and Ne atoms. The variation of the correlation energy with the confinement radius R c is relatively small for the He, Be 2+ , and Ne systems. Curiously, the Lee-Yang-Parr (LYP) functional works well for weak confinements but fails completely for small R c . However, in the neutral beryllium atom the CI correlation energy increases markedly with decreasing R c . This effect is less pronounced at the density-functional theory level. The LYP functional performs very well for the unconfined Be atom, but fails badly for small R c . The standard exchange-correlation potentials exhibit significant deviation from the "exact" potential obtained by inversion of Kohn-Sham equation. The LYP correlation potential behaves erratically at strong confinements. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Atomic oxygen degradation of Intelsat 4-type solar array interconnects: Laboratory investigations

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Cross, J. B.; Hoffbauer, M. A.; Kirkendahl, T. D.

    1991-01-01

    A Hughes 506 type communication satellite belonging to the Intelsat organization was marooned in low Earth orbit on March 14, 1990, following failure of the Titan third stage to separate properly. The satellite, Intelsat VI, was designed for service in geosynchronous orbit and contains several material configurations which are susceptible to attack by atomic oxygen. Analysis showed the silver foil interconnects in the satellite photovoltaic array to be the key materials issue because the silver is exposed directly to the atomic oxygen ram flux. The results are reported of atomic oxygen degradation testing of Intelsat VI type silver foil interconnects both as virgin material and in a configured solar cell element. Test results indicate that more than 80 pct. of the original thickness of silver in the Intelsat VI solar array interconnects should remain after completion of the proposed Space Shuttle rescue and/or reboost mission.

  8. Veselago lensing with ultracold atoms in an optical lattice.

    PubMed

    Leder, Martin; Grossert, Christopher; Weitz, Martin

    2014-01-01

    Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, that is, photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman π-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing that is completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wavelength imaging applications.

  9. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    PubMed

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  10. Longitudinal structure in atomic oxygen concentrations observed with WINDII on UARS. [Wind Imaging Interferometer

    NASA Technical Reports Server (NTRS)

    Shepherd, G. G.; Thuillier, G.; Solheim, B. H.; Chandra, S.; Cogger, L. L.; Duboin, M. L.; Evans, W. F. J.; Gattinger, R. L.; Gault, W. A.; Herse, M.

    1993-01-01

    WINDII, the Wind Imaging Interferometer on the Upper Atmosphere Research Satellite, began atmospheric observations on September 28, 1991 and since then has been collecting data on winds, temperatures and emissions rates from atomic, molecular and ionized oxygen species, as well as hydroxyl. The validation of winds and temperatures is not yet complete, and scientific interpretation has barely begun, but the dominant characteristic of these data so far is the remarkable structure in the emission rate from the excited species produced by the recombination of atomic oxygen. The latitudinal and temporal variability has been noted before by many others. In this preliminary report on WINDII results we draw attention to the dramatic longitudinal variations of planetary wave character in atomic oxygen concentration, as reflected in the OI 557.7 nm emission, and to similar variations seen in the Meine1 hydroxyl band emission.

  11. Chemical experiments with superheavy elements.

    PubMed

    Türler, Andreas

    2010-01-01

    Unnoticed by many chemists, the Periodic Table of the Elements has been extended significantly in the last couple of years and the 7th period has very recently been completed with eka-Rn (element 118) currently being the heaviest element whose synthesis has been reported. These 'superheavy' elements (also called transactinides with atomic number > or = 104 (Rf)) have been artificially synthesized in fusion reactions at accelerators in minute quantities of a few single atoms. In addition, all isotopes of the transactinide elements are radioactive and decay with rather short half-lives. Nevertheless, it has been possible in some cases to investigate experimentally chemical properties of transactinide elements and even synthesize simple compounds. The experimental investigation of superheavy elements is especially intriguing, since theoretical calculations predict significant deviations from periodic trends due to the influence of strong relativistic effects. In this contribution first experiments with hassium (Hs, atomic number 108), copernicium (Cn, atomic number 112) and element 114 (eka-Pb) are reviewed.

  12. One-range addition theorems for derivatives of Slater-type orbitals.

    PubMed

    Guseinov, Israfil

    2004-06-01

    Using addition theorems for STOs introduced by the author with the help of complete orthonormal sets of psi(alpha)-ETOs (Guseinov II (2003) J Mol Model 9:190-194), where alpha=1, 0, -1, -2, ..., a large number of one-range addition theorems for first and second derivatives of STOs are established. These addition theorems are especially useful for computation of multicenter-multielectron integrals over STOs that arise in the Hartree-Fock-Roothaan approximation and also in the Hylleraas function method, which play a significant role for the study of electronic structure and electron-nuclei interaction properties of atoms, molecules, and solids. The relationships obtained are valid for arbitrary quantum numbers, screening constants and location of STOs.

  13. Radiative gas dynamics of the Fire-II superorbital space vehicle

    NASA Astrophysics Data System (ADS)

    Surzhikov, S. T.

    2016-03-01

    The rates of convective and radiative heating of the Fire-II reentry vehicle are calculated, and the results are compared with experimental flight data. The computational model is based on solving a complete set of equations for (i) the radiative gas dynamics of a physically and chemically nonequilibrium viscous heatconducting gas and (ii) radiative transfer in 2D axisymmetric statement. The spectral optical parameters of high-temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The transfer of selective thermal radiation in terms of atomic lines is calculated using the line-by-line method on a specially generated computational grid that is nonuniform in radiation wavelength.

  14. Spin-orbit splitted excited states using explicitly-correlated equation-of-motion coupled-cluster singles and doubles eigenvectors

    NASA Astrophysics Data System (ADS)

    Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.

    2018-04-01

    An explicitly-correlated method of calculation of excited states with spin-orbit couplings, has been formulated and implemented. Developed approach utilizes left and right eigenvectors of equation-of-motion coupled-cluster model, which is based on the linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] method. The spin-orbit interactions are introduced by using the spin-orbit mean field (SOMF) approximation of the Breit-Pauli Hamiltonian. Numerical tests for several atoms and molecules show good agreement between explicitly-correlated results and the corresponding values, calculated in complete basis set limit (CBS); the highly-accurate excitation energies can be obtained already at triple- ζ level.

  15. Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly.

    PubMed

    Chernyatina, Anastasia A; Nicolet, Stefan; Aebi, Ueli; Herrmann, Harald; Strelkov, Sergei V

    2012-08-21

    Together with actin filaments and microtubules, intermediate filaments (IFs) are the basic cytoskeletal components of metazoan cells. Over 80 human diseases have been linked to mutations in various IF proteins to date. However, the filament structure is far from being resolved at the atomic level, which hampers rational understanding of IF pathologies. The elementary building block of all IF proteins is a dimer consisting of an α-helical coiled-coil (CC) "rod" domain flanked by the flexible head and tail domains. Here we present three crystal structures of overlapping human vimentin fragments that comprise the first half of its rod domain. Given the previously solved fragments, a nearly complete atomic structure of the vimentin rod has become available. It consists of three α-helical segments (coils 1A, 1B, and 2) interconnected by linkers (L1 and L12). Most of the CC structure has a left-handed twist with heptad repeats, but both coil 1B and coil 2 also exhibit untwisted, parallel stretches with hendecad repeats. In the crystal structure, linker L1 was found to be α-helical without being involved in the CC formation. The available data allow us to construct an atomic model of the antiparallel tetramer representing the second level of vimentin assembly. Although the presence of the nonhelical head domains is essential for proper tetramer stabilization, the precise alignment of the dimers forming the tetramer appears to depend on the complementarity of their surface charge distribution patterns, while the structural plasticity of linker L1 and coil 1A plays a role in the subsequent IF assembly process.

  16. Ion energy/momentum effects during ion assisted growth of niobium nitride films

    NASA Astrophysics Data System (ADS)

    Klingenberg, Melissa L.

    The research described herein was performed to better understand and discern ion energy vs. ion momentum effects during ion beam assisted (IBAD) film growth and their effects on residual stress, crystalline structure, morphology, and composition, which influence film tribological properties. NbxN y was chosen for this research because it is a refractory material that can possess a large number of crystalline structures, and it has been found to have good tribological properties. To separate the effects of momentum transfer per arriving atom (p/a), which considers bombarding species mass, energy, and ion-to-atom transport ratio, from those of energy deposition per arriving atom (E/a), a mass independent parameter, different inert ion beams (krypton, argon, and neon) were used to create a matrix of coatings formed using similar energy deposition, but different momentum transfer and vice versa. Deposition was conducted in a research-scale IBAD system using electron beam evaporation, a radio frequency ion source, and a neutral nitrogen gas backfill. Films were characterized using x-ray diffraction, atomic force microscopy, Rutherford backscattering spectrometry, and residual stress analysis. Direct and quantifiable effects of bombardment were observed; however, energy deposition and momentum transfer effects could not be completely separated, confirming that thin film processes are complex. Complexities arose from ion-specific interactions (ion size, recoil energy, per cent reflected neutrals, Penning ionization, etc.) and chemistry effects that are not considered by the simple models. Overall, it can be stated that bombardment promoted nitride formation, nanocrystallinity, and compressive stress formation; influenced morphology (which influenced post-deposition oxygen uptake) and stress evolution; increased lattice parameter; modified crystalline phase and texture; and led to inert gas incorporation. High stress levels correlated strongly with material disorder and closed-structured morphologies.

  17. From tunneling to contact: Inelastic signals in an atomic gold junction from first principles

    NASA Astrophysics Data System (ADS)

    Frederiksen, Thomas; Lorente, Nicolás; Paulsson, Magnus; Brandbyge, Mads

    2007-06-01

    The evolution of electron conductance in the presence of inelastic effects is studied as an atomic gold contact is formed evolving from a low-conductance regime (tunneling) to a high-conductance regime (contact). In order to characterize each regime, we perform density-functional theory (DFT) calculations to study the geometric and electronic structures, together with the strength of the atomic bonds and the associated vibrational frequencies. The conductance is calculated by, first, evaluating the transmission of electrons through the system and, second, by calculating the conductance change due to the excitation of vibrations. As found in previous studies [Paulsson , Phys. Rev. B 72, 201101(R) (2005)], the change in conductance due to inelastic effects permits us to characterize the crossover from tunneling to contact. The most notorious effect is the crossover from an increase in conductance in the tunneling regime to a decrease in conductance in the contact regime when the bias voltage matches a vibrational threshold. Our DFT-based calculations actually show that the effect of vibrational modes in electron conductance is rather complex, in particular, when modes localized in the contact region are permitted to extend into the electrodes. As an example, we find that certain modes can give rise to decreases in conductance when in the tunneling regime, opposite to the above-mentioned result. Whereas details in the inelastic spectrum depend on the size of the vibrational region, we show that the overall change in conductance is quantitatively well approximated by the simplest calculation where only the apex atoms are allowed to vibrate. Our study is completed by the application of a simplified model where the relevant parameters are obtained from the above DFT-based calculations.

  18. DFT Modeling of Cross-Linked Polyethylene: Role of Gold Atoms and Dispersion Interactions.

    PubMed

    Blaško, Martin; Mach, Pavel; Antušek, Andrej; Urban, Miroslav

    2018-02-08

    Using DFT modeling, we analyze the concerted action of gold atoms and dispersion interactions in cross-linked polyethylene. Our model consists of two oligomer chains (PEn) with 7, 11, 15, 19, or 23 carbon atoms in each oligomer cross-linked with one to three Au atoms through C-Au-C bonds. In structures with a single gold atom the C-Au-C bond is located in the central position of the oligomer. Binding energies (BEs) with respect to two oligomer radical fragments and Au are as high as 362-489 kJ/mol depending on the length of the oligomer chain. When the dispersion contribution in PEn-Au-PEn oligomers is omitted, BE is almost independent of the number of carbon atoms, lying between 293 and 296 kJ/mol. The dispersion energy contributions to BEs in PEn-Au-PEn rise nearly linearly with the number of carbon atoms in the PEn chain. The carbon-carbon distance in the C-Au-C moiety is around 4.1 Å, similar to the bond distance between saturated closed shell chains in the polyethylene crystal. BEs of pure saturated closed shell PEn-PEn oligomers are 51-187 kJ/mol. Both Au atoms and dispersion interactions contribute considerably to the creation of nearly parallel chains of oligomers with reasonably high binding energies.

  19. Two-level structural sparsity regularization for identifying lattices and defects in noisy images

    DOE PAGES

    Li, Xin; Belianinov, Alex; Dyck, Ondrej E.; ...

    2018-03-09

    Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less

  20. Two-level structural sparsity regularization for identifying lattices and defects in noisy images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xin; Belianinov, Alex; Dyck, Ondrej E.

    Here, this paper presents a regularized regression model with a two-level structural sparsity penalty applied to locate individual atoms in a noisy scanning transmission electron microscopy image (STEM). In crystals, the locations of atoms is symmetric, condensed into a few lattice groups. Therefore, by identifying the underlying lattice in a given image, individual atoms can be accurately located. We propose to formulate the identification of the lattice groups as a sparse group selection problem. Furthermore, real atomic scale images contain defects and vacancies, so atomic identification based solely on a lattice group may result in false positives and false negatives.more » To minimize error, model includes an individual sparsity regularization in addition to the group sparsity for a within-group selection, which results in a regression model with a two-level sparsity regularization. We propose a modification of the group orthogonal matching pursuit (gOMP) algorithm with a thresholding step to solve the atom finding problem. The convergence and statistical analyses of the proposed algorithm are presented. The proposed algorithm is also evaluated through numerical experiments with simulated images. The applicability of the algorithm on determination of atom structures and identification of imaging distortions and atomic defects was demonstrated using three real STEM images. In conclusion, we believe this is an important step toward automatic phase identification and assignment with the advent of genomic databases for materials.« less

Top