Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.
CONCEPTUAL DESIGNS FOR A NEW HIGHWAY VEHICLE EMISSIONS ESTIMATION METHODOLOGY
The report discusses six conceptual designs for a new highway vehicle emissions estimation methodology and summarizes the recommendations of each design for improving the emissions and activity factors in the emissions estimation process. he complete design reports are included a...
2017-10-01
to patient safety by addressing key methodological and conceptual gaps in healthcare simulation-based team training. The investigators are developing...primary outcome of Aim 1a is a conceptually and methodologically sound training design architecture that supports the development and integration of team...should be delivered. This subtask was delayed by approximately 1 month and is now completed. Completed Evaluation of existing experimental dataset to
Scenario for concurrent conceptual assembly line design: A case study
NASA Astrophysics Data System (ADS)
Mas, F.; Ríos, J.; Menéndez, J. L.
2012-04-01
The decision to design and build a new aircraft is preceded by years of research and study. Different disciplines work together throughout the lifecycle to ensure not only a complete functional definition of the product, but also a complete industrialization, a marketing plan, a maintenance plan, etc. This case study focuses on the conceptual design phase. During this phase, the design solutions that will meet the functional and industrial requirements are defined, i.e.: the basic requirements of industrialization. During this phase, several alternatives are studied, and the most attractive in terms of performance and cost requirements is selected. As a result of the study of these alternatives, it is possible to define an early conceptual design of the assembly line and its basic parameters. The plant needs, long cycle jigs & tools or industrial means and human resources with the necessary skills can be determined in advance.
ERIC Educational Resources Information Center
Urey, Mustafa; Calik, Muammer
2008-01-01
Since students' misconceptions are not completely remedied by means of only one conceptual change method, the authors assume that using different conceptual methods embedded within the 5E model will not only be more effective in enhancing students' conceptual understanding, but also may eliminate all students' misconceptions. The aim of this study…
Application of the generalized reduced gradient method to conceptual aircraft design
NASA Technical Reports Server (NTRS)
Gabriele, G. A.
1984-01-01
The complete aircraft design process can be broken into three phases of increasing depth: conceptual design, preliminary design, and detail design. Conceptual design consists primarily of developing general arrangements and selecting the configuration that optimally satisfies all mission requirements. The result of the conceptual phase is a conceptual baseline configuration that serves as the starting point for the preliminary design phase. The conceptual design of an aircraft involves a complex trade-off of many independent variables that must be investigated before deciding upon the basic configuration. Some of these variables are discrete (number of engines), some represent different configurations (canard vs conventional tail) and some may represent incorporation of new technologies (aluminum vs composite materials). At Lockheed-Georgia, the sizing program is known as GASP (Generalized Aircraft Sizing Program). GASP is a large program containing analysis modules covering the many different disciplines involved fin defining the aricraft, such as aerodynamics, structures, stability and control, mission performance, and cost. These analysis modules provide first-level estimates the aircraft properties that are derived from handbook, experimental, and historical sources.
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.
1992-01-01
The goal was the design and implementation of software to be used in the conceptual design of aerospace vehicles. Several packages and design studies were completed, including two software tools currently used in the conceptual level design of aerospace vehicles. These tools are the Solid Modeling Aerospace Research Tool (SMART) and the Environment for Software Integration and Execution (EASIE). SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass property analysis. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand alone analysis codes that result in the streamlining of the exchange of data between programs, reducing errors and improving efficiency.
Forest Fire Advanced System Technology (FFAST): A Conceptual Design for Detection and Mapping
J. David Nichols; John R. Warren
1987-01-01
The Forest Fire Advanced System Technology (FFAST) project is developing a data system to provide near-real-time forest fire information to fire management at the fire Incident Command Post (ICP). The completed conceptual design defined an integrated forest fire detection and mapping system that is based upon technology available in the 1990's. System component...
Measuring Conceptual Gains and Benefits of Student Problem Designs
NASA Astrophysics Data System (ADS)
Mandell, Eric; Snyder, Rachel; Oswald, Wayne
2011-10-01
Writing assignments can be an effective way of getting students to practice higher-order learning skills in physics. One example of such an assignment is that of problem design. One version of the problem design assignment asks the student to evaluate the material from a chapter, after all instruction and other activities are complete. The student is to decide what concepts and ideas are most central, or critical in the chapter, and construct a problem that he or she feels best encompasses the major themes. Here, we use two concept surveys (FCI and EMCS) to measure conceptual gains for students completing the problem design assignment and present the preliminary results, comparing across several categories including gender, age, degree program, and class standing.
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.; Lavelle, Thomas M.
1995-01-01
Modifications made to the axial-flow compressor conceptual design code CSPAN are documented in this report. Endwall blockage and stall margin predictions were added. The loss-coefficient model was upgraded. Default correlations for rotor and stator solidity and aspect-ratio inputs and for stator-exit tangential velocity inputs were included in the code along with defaults for aerodynamic design limits. A complete description of input and output along with sample cases are included.
Shuttle Orbiter-like Cargo Carrier on Crew Launch Vehicle
NASA Technical Reports Server (NTRS)
Martinovic, Zoran
2009-01-01
The following document summarizes the results of a conceptual design study for which the goal was to investigate the possibility of using a crew launch vehicle to deliver the remaining International Space Station elements should the Space Shuttle orbiter not be available to complete that task. Conceptual designs and structural weight estimates for two designs are presented. A previously developed systematic approach that was based on finite-element analysis and structural sizing was used to estimate growth of structural weight from analytical to "as built" conditions.
Addressing Children's Alternative Frameworks of the Moon's Phases and Eclipses.
ERIC Educational Resources Information Center
Barnett, Michael; Morran, Judy
2002-01-01
Analyzes a project-based space science curriculum designed to support elementary school students in understanding complex, inter-related astronomy concepts. Uses pre- and post-interviews, examines student work, and has students complete a pre- and post-astronomy conceptual survey to assess conceptual change. Points out that instruction should…
Henderson, Rebecca J; Johnson, Andrew M; Moodie, Sheila T
2016-06-01
A scoping review of the literature was conducted, resulting in the development of a conceptual framework of parent-to-parent support for parents with children who are Deaf or hard of hearing. This is the 2nd stage of a dual-stage scoping review. This study sought stakeholder opinion and feedback with an aim to achieve consensus on the constructs, components, and design of the initial conceptual framework. A modified electronic Delphi study was completed with 21 handpicked experts from 7 countries who have experience in provision, research, or experience in the area of parent-to-parent support. Participants completed an online questionnaire using an 11-point Likert scale (strongly disagree to strongly agree) and open-ended questions to answer various questions related to the descriptor terms, definitions, constructs, components, and overall design of the framework. Participant responses led to the revision of the original conceptual framework. The findings from this dual-stage scoping review and electronic Delphi study provide a conceptual framework that defines the vital contribution of parents in Early Hearing Detection and Intervention programs that will be a useful addition to these programs.
Evaluating the Functionality of Conceptual Models
NASA Astrophysics Data System (ADS)
Mehmood, Kashif; Cherfi, Samira Si-Said
Conceptual models serve as the blueprints of information systems and their quality plays decisive role in the success of the end system. It has been witnessed that majority of the IS change-requests results due to deficient functionalities in the information systems. Therefore, a good analysis and design method should ensure that conceptual models are functionally correct and complete, as they are the communicating mediator between the users and the development team. Conceptual model is said to be functionally complete if it represents all the relevant features of the application domain and covers all the specified requirements. Our approach evaluates the functional aspects on multiple levels of granularity in addition to providing the corrective actions or transformation for improvement. This approach has been empirically validated by practitioners through a survey.
Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
IJ van Rooyen; SR Morrell; AE Wright
2014-10-01
Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizesmore » that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.« less
Ocean Thermal Energy Conversion power system development. Phase I. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-12-04
This report covers the conceptual and preliminary design of closed-cycle, ammonia, ocean thermal energy conversion power plants by Westinghouse Electric Corporation. Preliminary designs for evaporator and condenser test articles (0.13 MWe size) and a 10 MWe modular experiment power system are described. Conceptual designs for 50 MWe power systems, and 100 MWe power plants are also descirbed. Design and cost algorithms were developed, and an optimized power system design at the 50 MWe size was completed. This design was modeled very closely in the test articles and in the 10 MWe Modular Application. Major component and auxiliary system design, materials,more » biofouling, control response, availability, safety and cost aspects are developed with the greatest emphasis on the 10 MWe Modular Application Power System. It is concluded that all power plant subsystems are state-of-practice and require design verification only, rather than continued research. A complete test program, which verifies the mechanical reliability as well as thermal performance, is recommended and described.« less
Thai Grade 10 and 11 Students' Conceptual Understanding and Ability to Solve Stoichiometry Problems
ERIC Educational Resources Information Center
Dahsah, Chanyah; Coll, Richard K.
2007-01-01
Stoichiometry and related concepts are an important part of student learning in chemistry. In this interpretive-based inquiry, we investigated Thai Grade 10 and 11 students' conceptual understanding and ability to solve numerical problems for stoichiometry-related concepts. Ninety-seven participants completed a purpose-designed survey instrument…
Solar-C Conceptual Spacecraft Design Study: Final Review. Release 2
NASA Technical Reports Server (NTRS)
Hopkins, Randall; Baysinger, Mike; Thomas, Dan; Heaton, Andy; Stough, Rob; Hill, Spencer; Owens, Jerry; Young, Roy; Fabisinski, Leo; Thomas, Scott;
2010-01-01
This briefing package contains the conceptual spacecraft design completed by the Advanced Concepts Office (ED04) in support of the Solar-C Study. The mission is to succeed Hinode (Solar B), and is designed to study the polar regions of the sun. Included in the slide presentation are sections that review the payload data, and overall ground rules and assumptions, mission analysis and trajectory design, the conceptual spacecraft design section includes: (1) Integrated Systems Design, (2) Mass Properties (3) Cost, (4) Solar Sail Systems, (6) Propulsion, (7) Structures, (8) Thermal (9) Power (10) Avionics / GN&C. There are also conclusions and follow-up work that must be done. In the Back-up section there is information about the JAXA H-11A Launch Vehicle, scalability and spiral development, Mass Projections, a comparison of the TRL assessment for two potential vendors of solar sails, and a chart with the mass properties,
Conceptual design of a connected vehicle wrong-way driving detection and management system.
DOT National Transportation Integrated Search
2016-04-01
This report describes the tasks completed to develop a concept of operations, functional requirements, and : high-level system design for a Connected Vehicle (CV) Wrong-Way Driving (WWD) Detection and Management : System. This system was designed to ...
Developing a comprehensive conceptual arhictecture to support Earth sciences
NASA Astrophysics Data System (ADS)
Yang, C. P.; Xu, C.; Sun, M.; Li, Z.
2014-12-01
Global challenges require the comprehensive understanding of the earth system to make smarter descisions about scientific research, operational management, and educational activities. We conducted in the one and half year a comprehensive investigation about how to develop a comprehensive conceptual architecture for developing a cyberinfrastructure that can help address such global challenges. This includes three aspects of research and outreach: we first analyzed the conceptual architecture requirements from the earth science domains and the exisiting global and national systems from different agencies and organizations to consolidate a list of requirements from scientific, technological, and educational aspects. A conceptual design by considering these reqquirements and the latest development in enterprise arhictecture was conducted based on our past decade's investigation about cyberinfrastructure architecture for supporting different aspects. We also organized several levels of reviews by different levels of experts from different organizations and background to help us comment the completeness, reasonability, and practicality of the design. A comprehensive conceptual design will be released for public comments this spring to solicit the general comments for reaching a design as comprehensive as possible. The final design is scheduled to be published in 2015 to contribute to the general world wide scientists and CI builders in the geoscience domain and beyond.
A Concept for a Mobile Remote Manipulator System
NASA Technical Reports Server (NTRS)
Mikulus, M. M., Jr.; Bush, H. G.; Wallsom, R. E.; Jensen, J. K.
1985-01-01
A conceptual design for a Mobile Remote Manipulator System (MRMS) is presented. This concept does not require continuous rails for mobility (only guide pins at truss hardpoints) and is very compact, being only one bay square. The MRMS proposed is highly maneuverable and is able to move in any direction along the orthogonal guide pin array under complete control at all times. The proposed concept would greatly enhance the safety and operational capabilities of astronauts performing EVA functions such as structural assembly, payload transport and attachment, space station maintenance, repair or modification, and future spacecraft construction or servicing. The MRMS drive system conceptual design presented is a reasonably simple mechanical device which can be designed to exhibit high reliability. Developmentally, all components of the proposed MRMS either exist or are considered to be completely state of the art designs requiring minimal development, features which should enhance reliability and minimize costs.
Aircraft Conceptual Design Using Vehicle Sketch Pad
NASA Technical Reports Server (NTRS)
Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.
2010-01-01
Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.
POWER-BURST FACILITY (PBF) CONCEPTUAL DESIGN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wasserman, A.A.; Johnson, S.O.; Heffner, R.E.
1963-06-21
A description is presented of the conceptual design of a high- performance, pulsed reactor called the Power Burst Facility (PBF). This reactor is designed to generate power bursts with initial asymptotic periods as short as 1 msec, producing energy releases large enough to destroy entire fuel subassemblies placed in a capsule or flow loop mounted in the reactor, all without damage to the reactor itself. It will be used primarily to evaluate the consequences and hazards of very rapid destructive accidents in reactors representing the entire range of current nuclear technology as applied to power generation, propulsion, and testing. Itmore » will also be used to carry out detailed studies of nondestructive reactivity feedback mechanisms in the shortperiod domain. The facility was designed to be sufficiently flexible to accommodate future cores of even more advanced design. The design for the first reactor core is based upon proven technology; hence, completion of the final design of this core will involve no significant development delays. Construction of the PBF is proposed to begin in September 1984, and is expected to take approximately 20 months to complete. (auth)« less
Conceptual design of the National Ignition Facility
NASA Astrophysics Data System (ADS)
Paisner, Jeffrey A.; Boyes, John D.; Kumpan, Steven A.; Lowdermilk, W. Howard; Sorem, Michael S.
1995-12-01
The Secretary of the U.S. Department of Energy (DOE) commissioned a conceptual design report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a key decision zero (KD0), justification of mission need. Motivated by the progress to date by the inertial confinement fusion (ICF) program in meeting the Nova technical contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 micrometer) of neodymium (Nd) glass. The participating ICF laboratories signed a memorandum of agreement in August 1993, and established a project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE defense program's site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a facilities requirements document, a conceptual design scope and plan, a target physics design document, a laser design cost basis document, a functional requirements document, an experimental plan for indirect drive ignition, and a preliminary hazards analysis (PHA) document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a key decision one (KD1) for the NIF, which approved the project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. In February 1995, the NIF Project was formally submitted to Congress as part of the President's FY 1996 budget. If funded as planned, the Project will cost approximately $1.1 billion and will be completed at the end of FY 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
The conceptual design of an advanced central receiver power system using liquid sodium as a heat transport medium has been completed by a team consisting of the Energy Systems Group (prime contractor), McDonnell Douglas, Stearns-Roger, The University of Houston, and Salt River Project. The purpose of this study was to determine the technical and economic advantages of this concept for commercial-scale power plants. This final report covers all tasks of the project. These tasks were as follows: (1) review and analysis of preliminary specification; (2) parametric analysis; (3) select commercial configuration; (4) commercial plant conceptual design; (5) assessment of commercialmore » plant; (6) advanced central receiver power system development plan; (7) program plan; (8) reports and data; (9) program management; and (10) safety analysis. A programmatic overview of the accomplishments of this program is given. The 100-MW conceptual commercial plant, the 281-MW optimum plant, and the 10-MW pilot plant are described. (WHK)« less
Space Nuclear Power Plant Pre-Conceptual Design Report, For Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Levine
2006-01-27
This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.
Environmentally Responsible Aviation N plus 2 Advanced Vehicle Study
NASA Technical Reports Server (NTRS)
Drake, Aaron; Harris, Christopher A.; Komadina, Steven C.; Wang, Donny P.; Bender, Anne M.
2013-01-01
This is the Northrop Grumman final report for the Environmentally Responsible Aviation (ERA) N+2 Advanced Vehicle Study performed for the National Aeronautics and Space Administration (NASA). Northrop Grumman developed advanced vehicle concepts and associated enabling technologies with a high potential for simultaneously achieving significant reductions in emissions, airport area noise, and fuel consumption for transport aircraft entering service in 2025. A Preferred System Concept (PSC) conceptual design has been completed showing a 42% reduction in fuel burn compared to 1998 technology, and noise 75dB below Stage 4 for a 224- passenger, 8,000 nm cruise transport aircraft. Roadmaps have been developed for the necessary technology maturation to support the PSC. A conceptual design for a 55%-scale demonstrator aircraft to reduce development risk for the PSC has been completed.
Pattern of students' conceptual change on magnetic field based on students' mental models
NASA Astrophysics Data System (ADS)
Hamid, Rimba; Widodo, Ari; Sopandi, Wahyu
2017-05-01
Students understanding about natural phenomena can be identified by analyzing their mental model. Changes in students' mental model are good indicator of students' conceptual change. This research aims at identifying students' conceptual change by analyzing changes in students' mental model. Participants of the study were twenty five elementary school students. Data were collected through throughout the lessons (prior to the lessons, during the lessons and after the lessons) based on students' written responses and individual interviews. Lessons were designed to facilitate students' conceptual change by allowing students to work in groups of students who have the similar ideas. Therefore, lessons were students-directed. Changes of students' ideas in every stage of the lessons were identified and analyzed. The results showed that there are three patterns of students' mental models, namely type of scientific (44%), analogous to everyday life (52%), and intuitive (4%). Further analyses of the pattern of their conceptual change identifies four different patterns, i.e. consistently correct (20%), consistently incomplete (16%), changing from incorrect to incomplete (8%), changing from incomplete to complete (32%), changing from complete to incorrect (4%), and changing from incorrect to complete (4%). This study suggest that the process of learning science does not move in a linear and progressive ways, rather they move in random and may move backward and forward.
Forest fire advanced system technology (FFAST) conceptual design study
NASA Technical Reports Server (NTRS)
Nichols, J. David; Warren, John R.
1987-01-01
The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Brian; Gutowska, Izabela; Chiger, Howard
Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less
A Worksheet to Enhance Students’ Conceptual Understanding in Vector Components
NASA Astrophysics Data System (ADS)
Wutchana, Umporn; Emarat, Narumon
2017-09-01
With and without physical context, we explored 59 undergraduate students’conceptual and procedural understanding of vector components using both open ended problems and multiple choice items designed based on research instruments used in physics education research. The results showed that a number of students produce errors and revealed alternative conceptions especially when asked to draw graphical form of vector components. It indicated that most of them did not develop a strong foundation of understanding in vector components and could not apply those concepts to such problems with physical context. Based on the findings, we designed a worksheet to enhance the students’ conceptual understanding in vector components. The worksheet is composed of three parts which help students to construct their own understanding of definition, graphical form, and magnitude of vector components. To validate the worksheet, focus group discussions of 3 and 10 graduate students (science in-service teachers) had been conducted. The modified worksheet was then distributed to 41 grade 9 students in a science class. The students spent approximately 50 minutes to complete the worksheet. They sketched and measured vectors and its components and compared with the trigonometry ratio to condense the concepts of vector components. After completing the worksheet, their conceptual model had been verified. 83% of them constructed the correct model of vector components.
Bioaugmentation for Aerobic Bioremediation of RDX-Contaminated Groundwater
2016-06-01
CONTAMINANT DISTRIBUTION ..............................................................................12 5.0 TEST DESIGN ...Complete (>90%) removal by mass and/or concentration reduction to < 2.1 µg L-1 No treatments met this goal during the tests ; however, based on ...in groundwater at UMCD (SCS, 2010). 13 5.0 TEST DESIGN This section provides a brief overview of the field demonstration conceptual design
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-11-30
Universal Oil Products, Inc. (UOP) of Des Plaines, Illinois has contracted A.E. Roberts & Associates, Inc. (AERA) of Atlanta, Georgia to prepare a sensitivity analysis for the development of the Fluidized-bed Copper Oxide (FBCO) process. As proposed by AERA in September 1991, development of the FBCO process design for a 500 mega-watt (MW) unit was divided into three tasks: (1) Establishment of a Conceptual Design, (2) Conceptual Design, (3) Cost Analysis Task 1 determined the basis for a conceptual design for the 500 megawatt (MW) FBCO process. It was completed by AERA in September of 1992, and a report wasmore » submitted at that time {open_quotes}Establishment of the Design Basis for Application to a 500 MW Coal-fired Facility.{close_quotes} Task 2 gathered all pertinent data available to date and reviewed its applicability to the 500 MW FBCO process. Work on this task was carried out on a joint basis by the AERA team members: Roberts & Schaefers worked on the dense phase transport aspect of the design; Cornell and Carnegie Mellon Universities worked on the design kinetics and modeling; and AERA contributed commercial power and combustion experience. Task 3 provides budgetary cost estimates for the FBCO process and competing alternative technologies for sulfur dioxide and nitrogen oxide removal.« less
Conceptual design study of a nuclear Brayton turboalternator-compressor
NASA Technical Reports Server (NTRS)
1971-01-01
A comprehensive analysis and conceptual design study of the turboalternator-compressor components using HeXe as the working fluid was performed. The study was conducted in three phases: general configuration analysis (Phase 1), design variations (Phase 2), and conceptual design study (Phase 3). During the Phase 1 analysis, individual turbine, alternator, compressor, and bearing and seal designs were evaluated. Six turboalternator-compressor (TAC) configurations were completed. Phase 2 consisted of evaluating one selected Phase 1 TAC configuration to calculate its performance when operating under new cycle conditions, namely, one higher and one lower turbine inlet temperature and one case with krypton as the working fluid. Based on the Phase 1 and 2 results, a TAC configuration that incorporated a radial compressor, a radial turbine, a Lundell alternator, and gas bearings was selected. During Phase 3 a new layout of the TAC was prepared that reflects the cycle state points necessary to accommodate a zirconium hydride moderated reactor and a 400 Hz alternator. The final TAC design rotates at 24,000 rpm and produces 160 kWe, 480 V, 3-phase, 400 hertz power.
Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications
NASA Technical Reports Server (NTRS)
O'Neill, Mark J.; Piszczor, Michael F.
1987-01-01
A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.
Transitioning from conceptual design to construction performance specification
NASA Astrophysics Data System (ADS)
Jeffers, Paul; Warner, Mark; Craig, Simon; Hubbard, Robert; Marshall, Heather
2012-09-01
On successful completion of a conceptual design review by a funding agency or customer, there is a transition phase before construction contracts can be placed. The nature of this transition phase depends on the Project's approach to construction and the particular subsystem being considered. There are generically two approaches; project retention of design authority and issuance of build to print contracts, or issuance of subsystem performance specifications with controlled interfaces. This paper relates to the latter where a proof of concept (conceptual or reference design) is translated into performance based sub-system specifications for competitive tender. This translation is not a straightforward process and there are a number of different issues to consider in the process. This paper deals with primarily the Telescope mount and Enclosure subsystems. The main subjects considered in this paper are: • Typical status of design at Conceptual Design Review compared with the desired status of Specifications and Interface Control Documents at Request for Quotation. • Options for capture and tracking of system requirements flow down from science / operating requirements and sub-system requirements, and functional requirements derived from reference design. • Requirements that may come specifically from the contracting approach. • Methods for effective use of reference design work without compromising a performance based specification. • Management of project team's expectation relating to design. • Effects on cost estimates from reference design to actual. This paper is based on experience and lessons learned through this process on both the VISTA and the ATST projects.
System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO
NASA Technical Reports Server (NTRS)
Olds, John R.
1994-01-01
This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.
ERIC Educational Resources Information Center
Lott, Donalyn; O'Dell, Jade
2014-01-01
This study examined the efficacy of general education development (GED®) acquisition and GED® completers' perceptions of college readiness and social capital using a quantitative methodology. Also, the study used a descriptive, cross-sectional research design framed by the social capital theoretical perspective. The conceptual framework developed…
Ultra-low-mass flexible planar solar arrays using 50-micron-thick solar cells
NASA Technical Reports Server (NTRS)
Costogue, E. N.; Rayl, G.
1978-01-01
A conceptual design study has been completed which has shown the feasibility of ultra-low-mass planar solar arrays with specific power of 200 watts/kilogram. The beginning of life (BOL) power output of the array designs would be 10 kW at 1 astronomical unit (AU) and a 55C deg operating temperature. Two designs were studied: a retractable rollout design and a non-retractable fold-out. The designs employed a flexible low-mass blanket and low-mass structures. The blanket utilized 2 x 2 cm high-efficiency (13.5% at 28C deg AM0), ultra-thin (50 micron), silicon solar cells protected by thin (75 micron) plastic encapsulants. The structural design utilized the 'V'-stiffened approach which allows a lower mass boom to be used. In conjunction with the conceptual design, modules using the thin cells and plastic encapsulant were designed and fabricated.
Gligorović, Milica; Buha, Nataša
2013-06-01
The ability to generate and flexibly change concepts is of great importance for the development of academic and adaptive skills. This paper analyses the conceptual reasoning ability of children with mild intellectual disability (MID) by their achievements on the Wisconsin Card Sorting Test (WCST). The sample consisted of 95 children with MID aged between 10 years and 13 years 11 months. The following variables from the WCST were analysed: number of categories completed, initial conceptualisation, total number of errors, non-perseverative errors, perseverative errors, number of perseverative responses, and failures to maintain set. The observed WCST predictive variables account for 79% of the variability in the number of categories completed (p < .000). The total number of errors was the most significant predictor of performance on the WCST. We can conclude that there is a significant progress of conceptual abilities between the age of 13 years to 13 years 11 months, compared to other assessed age groups. The results of our research suggests that the development of mental set flexibility is the basis of progress in conceptual abilities, thus intervention programs should offer specially designed activities that vary in their attentional demands, content, conceptual patterns, and actions required.
Johnson, Angela N
2016-08-01
In bioengineering training for new researchers and engineers, a great deal of time is spent discussing what constitutes "good" design. Conceptualization of good design, however, varies widely across interdisciplinary team members, with potential to both foster innovation or lead to unproductive conflict. To explore how groups central to bioengineering teams (physicians/clinicians and engineers/physicists) conceptualize good design, we asked 176 professionals in bioengineering to complete a comprehensive online survey including items designed to assess cognitive and moral foundations (validated MFQ30 tool) and custom items assessing perceptions on good design in three areas (good design characteristics, reputation of design approvers, and perceived design patient/consumer suitability). Of those that responded, 82 completed all quantitative survey sections and were included in this preliminary analysis. Correlations between response areas were examined to explore the possible links between cognitive and moral biases and perspectives on good design. The survey results indicated that both groups were more conservative than average Americans based on previous reports, and clinicians scored higher on average for all MFQ30 domains. Numerous significant correlations with good design were observed among clinicians, while engineers/physicists most closely correlated good design with prescriber approval and scientific/technical literature. The exploratory analysis demonstrated the potential utility of sociological frameworks to explore relationships in design thinking with potential utility to stimulate thriving conversation on team-based design thinking in bioengineering education and practice.
Architectural design of an Algol interpreter
NASA Technical Reports Server (NTRS)
Jackson, C. K.
1971-01-01
The design of a syntax-directed interpreter for a subset of Algol is described. It is a conceptual design with sufficient details and completeness but as much independence of implementation as possible. The design includes a detailed description of a scanner, an analyzer described in the Floyd-Evans productions, a hash-coded symbol table, and an executor. Interpretation of sample programs is also provided to show how the interpreter functions.
Space station experiment definition: Long-term cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Jetley, R. L.; Scarlotti, R. D.
1987-01-01
The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.
Enhanced analysis and users manual for radial-inflow turbine conceptual design code RTD
NASA Technical Reports Server (NTRS)
Glassman, Arthur J.
1995-01-01
Modeling enhancements made to a radial-inflow turbine conceptual design code are documented in this report. A stator-endwall clearance-flow model was added for use with pivoting vanes. The rotor calculations were modified to account for swept blades and splitter blades. Stator and rotor trailing-edge losses and a vaneless-space loss were added to the loss model. Changes were made to the disk-friction and rotor-clearance loss calculations. The loss model was then calibrated based on experimental turbine performance. A complete description of code input and output along with sample cases are included in the report.
Advanced Turbomachinery Components for Supercritical CO 2 Power Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, Michael
2016-03-31
Six indirectly heated supercritical CO 2 (SCO 2 ) Brayton cycles with turbine inlet conditions of 1300°F and 4000 psia with varying plant capacities from 10MWe to 550MWe were analyzed. 550 MWe plant capacity directly heated SCO 2 Brayton cycles with turbine inlet conditions of 2500°F and 4000 psia were also analyzed. Turbomachinery configurations and conceptual designs for both indirectly and directly heated cycles were developed. Optimum turbomachinery and generator configurations were selected and the resulting analysis provides validation that the turbomachinery conceptual designs meet efficiency performance targets. Previously identified technology gaps were updated based on these conceptual designs. Materialmore » compatibility testing was conducted for materials typically used in turbomachinery housings, turbine disks and blades. Testing was completed for samples in unstressed and stressed conditions. All samples exposed to SCO 2 showed some oxidation, the extent of which varied considerably between the alloys tested. Examination of cross sections of the stressed samples found no evidence of cracking due to SCO 2 exposure.« less
Large-scale breeder reactor prototype mechanical pump conceptual design study, hot leg
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-09-01
Due to the extensive nature of this study, the report is presented as a series of small reports. The complete design analysis is placed in a separate section. The drawings and tabulations are in the back portion of the report. Other topics are enumerated and located as shown in the table of contents.
NASA Technical Reports Server (NTRS)
DeMott, Diana; Fuqua, Bryan; Wilson, Paul
2013-01-01
Once a project obtains approval, decision makers have to consider a variety of alternative paths for completing the project and meeting the project objectives. How decisions are made involves a variety of elements including: cost, experience, current technology, ideologies, politics, future needs and desires, capabilities, manpower, timing, available information, and for many ventures management needs to assess the elements of risk versus reward. The use of high level Probabilistic Risk Assessment (PRA) Models during conceptual design phases provides management with additional information during the decision making process regarding the risk potential for proposed operations and design prototypes. The methodology can be used as a tool to: 1) allow trade studies to compare alternatives based on risk, 2) determine which elements (equipment, process or operational parameters) drives the risk, and 3) provide information to mitigate or eliminate risks early in the conceptual design to lower costs. Creating system models using conceptual design proposals and generic key systems based on what is known today can provide an understanding of the magnitudes of proposed systems and operational risks and facilitates trade study comparisons early in the decision making process. Identifying the "best" way to achieve the desired results is difficult, and generally occurs based on limited information. PRA provides a tool for decision makers to explore how some decisions will affect risk before the project is committed to that path, which can ultimately save time and money.
Analysis of Life-Cycle Costs and Market Applications of Flywheel Energy-Storage Transit Vehicles
DOT National Transportation Integrated Search
1979-07-01
The Urban Mass Transportation Administration (UMTA) has recently completed the Phase I activities of its Flywheel Energy Storage Program involving an analysis of the operational requirements and the conceptual design of flywheel energy storage vehicl...
Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor
2010-01-01
Rotor MCP Maximum Continuous Power MRP Maximum Rated Power (take-off power) NDARC NASA Design and Analysis of Rotorcraft OEI One Engine Inoperative...OGE Out of Ground Effect SFC Specific Fuel Consumption SNI Simultaneous Non-Interfering approach STOL Short Takeoff and Landing VTOL Vertical...that are assembled into a complete aircraft model. NDARC is designed for high computational efficiency. Performance is calculated with physics- based
Nuclear Brayton turboalternator-compressor (TAC) conceptual design study
NASA Technical Reports Server (NTRS)
Mock, E. A.; Davis, J. E.
1972-01-01
A comprehensive analysis and conceptual design study of the turboalternator-compressor components was performed using HeXe as the working fluid. Individual turbine, alternator, compressor, and bearing and seal designs were evaluated. Six turboalternator-compressor TAC configurations were completed. One TAC configuration was evaluated to calculate its performance when operating under new cycle conditions,namely, one higher and one lower turbine inlet temperature and one case with krypton as the working fluid. Based on the results, a TAC configuration that incorporated a radial compressor, a radial turbine, a Lundell Alternator, and gas bearings was selected. A new layout of the TAC was prepared that reflects the cycle state points necessary to accommodate a zirconium hydride moderated reactor and a 400 Hz alternator. The final TAC design rotates at 24,000 rpm and produces 160 kWe, 480V, 3-phase, 400 hertz power.
Design of an Indoor Sonic Boom Simulator at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Klos, Jacob; Sullivan, Brenda M.; Shepherd, Kevin P.
2008-01-01
Construction of a simulator to recreate the soundscape inside residential buildings exposed to sonic booms is scheduled to start during the summer of 2008 at NASA Langley Research Center. The new facility should be complete by the end of the year. The design of the simulator allows independent control of several factors that create the indoor soundscape. Variables that will be isolated include such factors as boom duration, overpressure, rise time, spectral shape, level of rattle, level of squeak, source of rattle and squeak, level of vibration and source of vibration. Test subjects inside the simulator will be asked to judge the simulated soundscape, which will represent realistic indoor boom exposure. Ultimately, this simulator will be used to develop a functional relationship between human response and the sound characteristics creating the indoor soundscape. A conceptual design has been developed by NASA personnel, and is currently being vetted through small-scale risk reduction tests that are being performed in-house. The purpose of this document is to introduce the conceptual design, identify how the indoor response will be simulated, briefly outline some of the risk reduction tests that have been completed to vet the design, and discuss the impact of these tests on the simulator design.
NASA Technical Reports Server (NTRS)
Fuller, H.; Demler, R.; Poulin, E.; Dantowitz, P.
1979-01-01
An evaluation was made of the potential of a steam Rankine reheat reciprocator engine to operate at high efficiency in a point-focusing distributed receiver solar thermal-electric power system. The scope of the study included the engine system and electric generator; not included was the solar collector/mirror or the steam generator/receiver. A parametric analysis of steam conditions was completed leading to the selection of 973 K 12.1 MPa as the steam temperature/pressure for a conceptual design. A conceptual design was completed for a two cylinder/ opposed engine operating at 1800 rpm directly coupled to a commercially available induction generator. A unique part of the expander design is the use of carbon/graphite piston rings to eliminate the need for using oil as an upper cylinder lubricant. The evaluation included a system weight estimate of 230 kg at the mirror focal point with the condenser mounted separately on the ground. The estimated cost of the overall system is $1932 or $90/kW for the maximum 26 kW output.
Conceptual Chemical Process Design for Sustainability. ...
This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyses throughout the conceptual design. Hierarchical and short-cut decision-making methods will be used to approach sustainability. An example showing a sustainability-based evaluation of chlor-alkali production processes is presented with economic analysis and five pollutants described as emissions. These emissions are analyzed according to their human toxicity potential by ingestion using the Waste Reduction Algorithm and a method based on US Environmental Protection Agency reference doses, with the addition of biodegradation for suitable components. Among the emissions, mercury as an element will not biodegrade, and results show the importance of this pollutant to the potential toxicity results and therefore the sustainability of the process design. The dominance of mercury in determining the long-term toxicity results when energy use is included suggests that all process system evaluations should (re)consider the role of mercury and other non-/slow-degrading pollutants in sustainability analyses. The cycling of nondegrading pollutants through the biosphere suggests the need for a complete analysis based on the economic, environmental, and social aspects of sustainability. Chapter reviews
Update on HCDstruct - A Tool for Hybrid Wing Body Conceptual Design and Structural Optimization
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2015-01-01
HCDstruct is a Matlab® based software tool to rapidly build a finite element model for structural optimization of hybrid wing body (HWB) aircraft at the conceptual design level. The tool uses outputs from a Flight Optimization System (FLOPS) performance analysis together with a conceptual outer mold line of the vehicle, e.g. created by Vehicle Sketch Pad (VSP), to generate a set of MSC Nastran® bulk data files. These files can readily be used to perform a structural optimization and weight estimation using Nastran’s® Solution 200 multidisciplinary optimization solver. Initially developed at NASA Langley Research Center to perform increased fidelity conceptual level HWB centerbody structural analyses, HCDstruct has grown into a complete HWB structural sizing and weight estimation tool, including a fully flexible aeroelastic loads analysis. Recent upgrades to the tool include the expansion to a full wing tip-to-wing tip model for asymmetric analyses like engine out conditions and dynamic overswings, as well as a fully actuated trailing edge, featuring up to 15 independently actuated control surfaces and twin tails. Several example applications of the HCDstruct tool are presented.
Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine
NASA Technical Reports Server (NTRS)
White, M. A.
1982-01-01
A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.
Conceptual design and analysis of orbital cryogenic liquid storage and supply systems
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Cunnington, G. R.; Johns, W. A.
1981-01-01
A wide variety of orbital cryogenic liquid storage and supply systems are defined in NASA and DOD long-range plans. These systems include small cooling applications, large chemical and electrical orbit transfer vehicles and supply tankers. All have the common requirements of low-g fluid management to accomplish gas-free liquid expulsion and efficient thermal control to manage heat leak and tank pressure. A preliminary design study was performed to evaluate tanks ranging from 0.6 to 37.4 cu m (22 to 1320 cu ft). Liquids of interest were hydrogen, oxygen, methane, argon and helium. Conceptual designs were generated for each tank system and fluid dynamic, thermal and structural analyses were performed for Shuttle compatible operations. Design trades considered the paradox of conservative support structure and minimum thermal input. Orbital performance and weight data were developed, and a technology evaluation was completed.
Feasibility and systems definition study for Microwave Multi-Application Payload (MMAP)
NASA Technical Reports Server (NTRS)
Horton, J. B.; Allen, C. C.; Massaro, M. J.; Zemany, J. L.; Murrell, J. W.; Stanhouse, R. W.; Condon, G. P.; Stone, R. F.; Swana, J.; Afifi, M.
1977-01-01
Work completed on three Shuttle/Spacelab experiments is examined: the Adaptive Multibeam Phased Array Antenna (AMPA) Experiment, Electromagnetic Environment Experiment (EEE) and Millimeter Wave Communications Experiment (MWCE). Results included the definition of operating modes, sequence of operation, radii of operation about several ground stations, signal format, foot prints of typical orbits and preliminary definition of ground and user terminals. Conceptual hardware designs, Spacelab interfaces, data handling methods, experiment testing and verification studies were included. The MWCE-MOD I was defined conceptually for a steerable high gain antenna.
Conceptual design study of the moderate size superconducting spherical tokamak power plant
NASA Astrophysics Data System (ADS)
Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki
2015-06-01
A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.
Flawed Mathematical Conceptualizations: Marlon's Dilemma
ERIC Educational Resources Information Center
Garrett, Lauretta
2013-01-01
Adult developmental mathematics students often work under great pressure to complete the mathematics sequences designed to help them achieve success (Bryk & Treisman, 2010). Results of a teaching experiment demonstrate how the ability to reason can be impeded by flaws in students' mental representations of mathematics. The earnestness of the…
Development of the hybrid sulfur cycle for use with concentrated solar heat. I. Conceptual design
Gorensek, Maximilian B.; Corgnale, Claudio; Summers, William A.
2017-07-27
We propose a detailed conceptual design of a solar hybrid sulfur (HyS) cycle. Numerous design tradeoffs, including process operating conditions and strategies, methods of integration with solar energy sources, and solar design options were considered. A baseline design was selected, and process flowsheets were developed. Pinch analyses were performed to establish the limiting energy efficiency. Detailed material and energy balances were completed, and a full stream table prepared. Design assumptions include use of: location in the southwest US desert, falling particle concentrated solar receiver, indirect heat transfer via pressurized helium, continuous operation with thermal energy storage, liquid-fed electrolyzer with PBImore » membrane, and bayonet-type acid decomposer. Thermochemical cycle efficiency for the HyS process was estimated to be 35.0%, LHV basis. The solar-to-hydrogen (STH) energy conversion ratio was 16.9%. This thus exceeds the Year 2015 DOE STCH target of STH >10%, and shows promise for meeting the Year 2020 target of 20%.« less
Development of the hybrid sulfur cycle for use with concentrated solar heat. I. Conceptual design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorensek, Maximilian B.; Corgnale, Claudio; Summers, William A.
We propose a detailed conceptual design of a solar hybrid sulfur (HyS) cycle. Numerous design tradeoffs, including process operating conditions and strategies, methods of integration with solar energy sources, and solar design options were considered. A baseline design was selected, and process flowsheets were developed. Pinch analyses were performed to establish the limiting energy efficiency. Detailed material and energy balances were completed, and a full stream table prepared. Design assumptions include use of: location in the southwest US desert, falling particle concentrated solar receiver, indirect heat transfer via pressurized helium, continuous operation with thermal energy storage, liquid-fed electrolyzer with PBImore » membrane, and bayonet-type acid decomposer. Thermochemical cycle efficiency for the HyS process was estimated to be 35.0%, LHV basis. The solar-to-hydrogen (STH) energy conversion ratio was 16.9%. This thus exceeds the Year 2015 DOE STCH target of STH >10%, and shows promise for meeting the Year 2020 target of 20%.« less
Design, fabrication & performance analysis of an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Khan, M. I.; Salam, M. A.; Afsar, M. R.; Huda, M. N.; Mahmud, T.
2016-07-01
An Unmanned Aerial Vehicle was designed, analyzed and fabricated to meet design requirements and perform the entire mission for an international aircraft design competition. The goal was to have a balanced design possessing, good demonstrated flight handling qualities, practical and affordable manufacturing requirements while providing a high vehicle performance. The UAV had to complete total three missions named ferry flight (1st mission), maximum load mission (2nd mission) and emergency medical mission (3rd mission). The requirement of ferry flight mission was to fly as many as laps as possible within 4 minutes. The maximum load mission consists of flying 3 laps while carrying two wooden blocks which simulate cargo. The requirement of emergency medical mission was complete 3 laps as soon as possible while carrying two attendances and two patients. A careful analysis revealed lowest rated aircraft cost (RAC) as the primary design objective. So, the challenge was to build an aircraft with minimum RAC that can fly fast, fly with maximum payload, and fly fast with all the possible configurations. The aircraft design was reached by first generating numerous design concepts capable of completing the mission requirements. In conceptual design phase, Figure of Merit (FOM) analysis was carried out to select initial aircraft configuration, propulsion, empennage and landing gear. After completion of the conceptual design, preliminary design was carried out. The preliminary design iterations had a low wing loading, high lift coefficient, and a high thrust to weight ratio. To make the aircraft capable of Rough Field Taxi; springs were added in the landing gears for absorbing shock. An airfoil shaped fuselage was designed to allowed sufficient space for payload and generate less drag to make the aircraft fly fast. The final design was a high wing monoplane with conventional tail, single tractor propulsion system and a tail dragger landing gear. Payload was stored in undercarriage box for maximum load mission and emergency medical mission. The aircraft structure, weights 5.6 lb., constructed by balsa wood, depron and covering film was the only feasible match for the given requirements set by the competition organizers. The defined final aircraft was capable of: Completing 3 laps within 4 minutes at the first mission; flying 3 laps with 4 internal payloads at the second mission; flying 3 laps with all possible payload configurations at the third mission.
NASA Technical Reports Server (NTRS)
Cataldo, Robert L.
2014-01-01
The NASA Glenn Research Center (GRC) Radioisotope Power System Program Office (RPSPO) sponsored two studies lead by their mission analysis team. The studies were performed by NASA GRCs Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team. Typically a complete toplevel design reference mission (DRM) is performed assessing conceptual spacecraft design, launch mass, trajectory, science strategy and sub-system design such as, power, propulsion, structure and thermal.
Task 6 -- Advanced turbine systems program conceptual design and product development
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-01-10
The Allison Engine Company has completed the Task 6 Conceptual Design and Analysis of Phase 2 of the Advanced Turbine System (ATS) contract. At the heart of Allison`s system is an advanced simple cycle gas turbine engine. This engine will incorporate components that ensure the program goals are met. Allison plans to commercialize the ATS demonstrator and market a family of engines incorporating this technology. This family of engines, ranging from 4.9 MW to 12 MW, will be suitable for use in all industrial engine applications, including electric power generation, mechanical drive, and marine propulsion. In the field of electricmore » power generation, the engines will be used for base load, standby, cogeneration, and distributed generation applications.« less
ISTAR: Project Status and Ground Test Engine Design
NASA Technical Reports Server (NTRS)
Quinn, Jason Eugene
2003-01-01
Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.
Re-Storying an Entrepreneurial Identity: Education, Experience and Self-Narrative
ERIC Educational Resources Information Center
Harmeling, Susan S.
2011-01-01
Purpose: This paper aims to explore the ways in which entrepreneurship education may serve as an identity workspace. Design/methodology/approach: This is a conceptual/theoretical paper based on previously completed empirical work. Findings: The paper makes the connection between worldmaking, experience, action and identity. Practical implications:…
Gateway National Recreation Area, Jamaica Bay Unit : Jamaica Bay Greenway Missing Links Study.
DOT National Transportation Integrated Search
2010-09-24
Based on both a field site reconnaissance and workshop, this study developed a conceptual plan for the location and design of bicyle facilites to complete a "missing link" of the Jamaica Bay through the Rockaway region of Brooklyn and Queens in New Y...
Conceptual Design of the Chornobyl New Safe Confinement - an Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulishenko, Valery N.; Hogg, Charles; Schmieman, Eric A.
2006-05-01
The Object Shelter, constructed over the Chornobyl nuclear power plant that was destroyed by a 1986 accident, is at risk of collapse. The Consortium of Bechtel, Electricité De France, and Battelle, in cooperation with subcontractor КСК, recently completed the conceptual design for a New Safe Confinement (NSC) building to reduce Shelter corrosion, to mitigate the consequences of potential collapse, and to enable the safe deconstruction of unstable structures. The arch-shaped NSC will be constructed at a distance from the Shelter to minimize radiation exposure to construction workers, and then slid into place over the Shelter. After sliding, cranes and othermore » tools inside the NSC will be remotely operated for deconstruction of the Shelter. The NSC is designed for a 100-year life. Bechtel designed the arch structure and was responsible for project management functions. Electricité De France designed the foundations and designed deconstruction of the Object Shelter unstable elements. Battelle performed safety analyses and environmental impact assessment. КСК (a consortium of КIЕЛ [KIEP], НДIБК [NIISK], and МНТЦ [ISTC]), as a working partner in all aspects of the design and analysis processes, was the Ukrainian licensed engineer for conceptual design. The design is currently being reviewed by Ukrainian regulatory authorities. An open international tender for detailed design and construction is anticipated to be announced by the European Bank for Reconstruction and Development in December, 2003, with two-stage bid evaluation beginning in April, 2004.« less
NASA Technical Reports Server (NTRS)
Woodfill, J. R.; Thomson, F. J.
1979-01-01
The paper deals with the design, construction, and applications of an active/passive multispectral scanner combining lasers with conventional passive remote sensors. An application investigation was first undertaken to identify remote sensing applications where active/passive scanners (APS) would provide improvement over current means. Calibration techniques and instrument sensitivity are evaluated to provide predictions of the APS's capability to meet user needs. A preliminary instrument design was developed from the initial conceptual scheme. A design review settled the issues of worthwhile applications, calibration approach, hardware design, and laser complement. Next, a detailed mechanical design was drafted and construction of the APS commenced. The completed APS was tested and calibrated in the laboratory, then installed in a C-47 aircraft and ground tested. Several flight tests completed the test program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautsky, Mark; Findlay, Richard C.; Hodges, Rex A.
2013-07-01
Managing technical references for projects that have long histories is hampered by the large collection of documents, each of which might contain discrete pieces of information relevant to the site conceptual model. A database application has been designed to improve the efficiency of retrieving technical information for a project. Although many databases are currently used for accessing analytical and geo-referenced data, applications designed specifically to manage technical reference material for projects are scarce. Retrieving site data from the array of available references becomes an increasingly inefficient use of labor. The electronic-Knowledge Information Tool (e-KIT) is designed as a project-level resourcemore » to access and communicate technical information. The e-KIT is a living tool that grows as new information becomes available, and its value to the project increases as the volume of site information increases. Having all references assembled in one location with complete reference citations and links to elements of the site conceptual model offers a way to enhance communication with outside groups. The published and unpublished references are incorporated into the e-KIT, while the compendium of references serves as a complete bibliography for the project. (authors)« less
Substantiation of Structure of Adaptive Control Systems for Motor Units
NASA Astrophysics Data System (ADS)
Ovsyannikov, S. I.
2018-05-01
The article describes the development of new electronic control systems, in particular motor units, for small-sized agricultural equipment. Based on the analysis of traffic control systems, the main course of development of the conceptual designs of motor units has been defined. The systems aimed to control the course motion of the motor unit in automatic mode using the adaptive systems have been developed. The article presents structural models of the conceptual motor units based on electrically controlled systems by the operation of drive motors and adaptive systems that make the motor units completely automated.
Feasibility and systems definition study for microwave multi-application payload (MMAP)
NASA Technical Reports Server (NTRS)
Horton, J. B.; Allen, C. C.; Massaro, M. J.; Zemany, J. L.; Murrell, J. W.; Stanhouse, R. W.; Condon, G. P.; Stone, R. F.
1977-01-01
There were three Shuttle/Spacelab experiments: adaptive multibeam phased array antenna (AMPA) experiment, electromagnetic environment experiment (EEE), and millimeter wave communications experiment (MWCE). Work on the AMPA experiment was completed. Results included are definition of operating modes, sequence of operation, radii of operation about several ground stations, signal format, foot prints of typical orbits and preliminary definition of ground and user terminals. Definition of the MOD I EEE included conceptual hardware designs, spacelab interfaces, preliminary data handling methods, experiment tests and verification, and EMC studies. The MWCE was defined conceptually for a steerable high gain antenna.
Analysis and design of ion thrusters for large space systems
NASA Technical Reports Server (NTRS)
James, E. L.
1980-01-01
This study undertakes the analysis and conceptual design of a 0.5 Newton electrostatic ion thruster suitable for use on large space system missions in the next decade. Either argon or xenon gas shall be used as propellant. A 50 cm diameter discharge chamber was selected to meet stipulated performance goals. The discharge plasma is contained at the boundary by a periodic structure of alternating permanent magnets generating a series of line cusps. Anode strips between the magnets collect Maxwellian electrons generated by a central cathode. Ion extraction utilizes either two or three grid optics at the user's choice. An extensive analysis was undertaken to investigate optics behavior in the high power environment of this large thruster. A plasma bridge neutralizer operating on inert gas provides charge neutralizing electrons to complete the design. The resulting conceptual thruster and the necessary power management and control requirements are described.
Design, engineering and evaluation of refractory liners for slagging gasifiers. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
deTineo, B J; Booth, G; Firestone, R F
1982-08-01
The contract for this program was awarded at the end of September 1978. Work was started on 1 October 1978, on Tasks A, B, and E. Task A, Conceptual Liner Designs, and Task B, Test System Design and Construction, were completed. Task C, Liner Tests, and Task D, Liner Design Evaluation, were to begin upon completion of Task B. Task E, Liner Model Development, is inactive after an initial data compilation and theoretical model development effort. It was to be activated as soon as data were available from Task D. Task F, Liner Design Handbook, was active along with Taskmore » A since the reports of both tasks were to use the same format. At this time, Tasks C, D, and F are not to be completed since funding of this project was phased out by DOE directive. The refractory text facility, which was constructed, was tested and found to perform satisfactorily. It is described in detail, including a hazard analysis which was performed. (LTN)« less
School Psychology as a Relational Enterprise: The Role and Process of Qualitative Methodology
ERIC Educational Resources Information Center
Newman, Daniel S.; Clare, Mary M.
2016-01-01
The purpose of this article is to explore the application of qualitative research to establishing a more complete understanding of relational processes inherent in school psychology practice. We identify the building blocks of rigorous qualitative research design through a conceptual overview of qualitative paradigms, methodologies, methods (i.e.,…
ERIC Educational Resources Information Center
Auerbach, Randy Patrick; Bigda-Peyton, Joseph S.; Eberhart, Nicole K.; Webb, Christian A.; Ho, Moon-Ho Ringo
2011-01-01
The goal of the current study is to examine the relationship amongst social support, stress, and depressive symptoms within a transactional and diathesis-stress framework using a multi-wave, longitudinal design. At the initial assessment, adolescents (n = 258) completed self-report measures assessing social support (peer, classmate, parent, and…
The Flipped MOOC: Using Gamification and Learning Analytics in MOOC Design--A Conceptual Approach
ERIC Educational Resources Information Center
Klemke, Roland; Eradze, Maka; Antonaci, Alessandra
2018-01-01
Recently, research has highlighted the potential of Massive Open Online Courses (MOOCs) for education, as well as their drawbacks, which are well known. Several studies state that the main limitations of the MOOCs are low completion and high dropout rates of participants. However, MOOCs suffer also from the lack of participant engagement,…
Lunar surface construction and assembly equipment study: Lunar Base Systems Study (LBSS) task 5.3
NASA Technical Reports Server (NTRS)
1988-01-01
A set of construction and assembly tasks required on the lunar surface was developed, different concepts for equipment applicable to the tasks determined, and leading candidate systems identified for future conceptual design. Data on surface construction and assembly equipment systems are necessary to facilitate an integrated review of a complete lunar scenario.
ERIC Educational Resources Information Center
Fominykh, Mikhail; Prasolova-Førland, Ekaterina; Stiles, Tore C.; Krogh, Anne Berit; Linde, Mattias
2018-01-01
This paper presents a concept for designing low-cost therapeutic training with biofeedback and virtual reality. We completed the first evaluation of a prototype--a mobile learning application for relaxation training, primarily for adolescents suffering from tension-type headaches. The system delivers visual experience on a head-mounted display. A…
ERIC Educational Resources Information Center
Chung, Gregory K. W. K.; Dionne, Gary B.; Kaiser, William J.
2006-01-01
Our research question was whether we could develop a feasible technique, using Bayesian networks, to diagnose gaps in student knowledge. Thirty-four college-age participants completed tasks designed to measure conceptual knowledge, procedural knowledge, and problem-solving skills related to circuit analysis. A Bayesian network was used to model…
Technical and conceptual considerations for using animated stimuli in studies of animal behavior.
Chouinard-Thuly, Laura; Gierszewski, Stefanie; Rosenthal, Gil G; Reader, Simon M; Rieucau, Guillaume; Woo, Kevin L; Gerlai, Robert; Tedore, Cynthia; Ingley, Spencer J; Stowers, John R; Frommen, Joachim G; Dolins, Francine L; Witte, Klaudia
2017-02-01
Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby "reducing" and "replacing" the animals used, and "refining" the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior.
Technical and conceptual considerations for using animated stimuli in studies of animal behavior
Rosenthal, Gil G.; Reader, Simon M.; Rieucau, Guillaume; Woo, Kevin L.; Gerlai, Robert; Tedore, Cynthia; Ingley, Spencer J.; Stowers, John R.; Frommen, Joachim G.; Dolins, Francine L.; Witte, Klaudia
2017-01-01
Abstract Rapid technical advances in the field of computer animation (CA) and virtual reality (VR) have opened new avenues in animal behavior research. Animated stimuli are powerful tools as they offer standardization, repeatability, and complete control over the stimulus presented, thereby “reducing” and “replacing” the animals used, and “refining” the experimental design in line with the 3Rs. However, appropriate use of these technologies raises conceptual and technical questions. In this review, we offer guidelines for common technical and conceptual considerations related to the use of animated stimuli in animal behavior research. Following the steps required to create an animated stimulus, we discuss (I) the creation, (II) the presentation, and (III) the validation of CAs and VRs. Although our review is geared toward computer-graphically designed stimuli, considerations on presentation and validation also apply to video playbacks. CA and VR allow both new behavioral questions to be addressed and existing questions to be addressed in new ways, thus we expect a rich future for these methods in both ultimate and proximate studies of animal behavior. PMID:29491958
An intervention study to test Locker's conceptual framework of oral health in edentulous elders.
Yamaga, Eijiro; Sato, Yusuke; Minakuchi, Shunsuke
2018-06-01
To test a previously described conceptual framework of oral health in edentulous elders using an intervention study that included complete denture replacement. Confirmatory factor analysis (CFA) was also conducted to substantiate construct validity. To date, the model proposed by Locker has been tested on edentulous elders using structural equation model (SEM) analysis. However, cross-sectional designs and the Short-Form Oral Health Impact Profile (OHIP-14) cannot adequately express cause-effect relationships and distribution in edentulous patients. Accordingly, the authors investigated Locker's model using an interventional design that included complete denture replacement using the OHIP for edentulous subjects (OHIP-EDENT). A total of 265 edentulous participants who visited the Dental Hospital of Tokyo Medical and Dental University (Tokyo, Japan) for new complete dentures were recruited. Locker's model was investigated, and CFA was performed using the change in subscale scores in the Japanese version of the OHIP-EDENT before and after complete denture replacement. CFA demonstrated an excellent model fit after adding several covariates. The Locker model also met the criteria of fit in all indices after 1 nonsignificant path was omitted. All path coefficients were significant. The findings of the present interventional study demonstrated an empirical fit to Locker's model in edentulous elders using SEM analysis, which included complete denture replacement. It is anticipated that clarification of causal mechanisms of oral health-related quality of life will lead to improvement of overall quality of life, thus maintaining or improving the activities of normal daily life for edentulous elders. © 2018 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Multiple-Purpose Subsonic Naval Aircraft (MPSNA): Multiple Application Propfan Study (MAPS)
NASA Technical Reports Server (NTRS)
Engelbeck, R. M.; Havey, C. T.; Klamka, A.; Mcneil, C. L.; Paige, M. A.
1986-01-01
Study requirements, assumptions and guidelines were identified regarding carrier suitability, aircraft missions, technology availability, and propulsion considerations. Conceptual designs were executed for two missions, a full multimission aircraft and a minimum mission aircraft using three different propulsion systems, the UnDucted Fan (UDF), the Propfan and an advanced Turbofan. Detailed aircraft optimization was completed on those configurations yielding gross weight performance and carrier spot factors. Propfan STOVL conceptual designs were exercised also to show the effects of STOVL on gross weight, spot factor and cost. An advanced technology research plan was generated to identify additional investigation opportunities from an airframe contractors standpoint. Life cycle cost analysis was accomplished yielding a comparison of the UDF and propfan configurations against each other as well as against a turbofan with equivalent state of the art turbo-machinery.
Butlin, B; Wilson, C
2018-04-04
How we conceptualize mental health conditions is important as it impacts on a wide range of mediators of treatment outcome. We do not know how children intuitively conceptualize obsessive-compulsive disorder (OCD), nor do we know the relative impact of biomedical or cognitive behavioural conceptual explanations, yet both are being widely used in psychoeducation for children with OCD. This study identified children's naive concepts of OCD, and the comparative impact of biomedical versus cognitive behavioural psychoeducation on perceived prognosis. A within- and between-subjects experimental design was used. After watching a video of a young person describing their OCD, 202 children completed a questionnaire examining their concepts of the condition. They repeated the questionnaire following a second equivalent video, this time preceded by either biomedical or cognitive behavioural psychoeducation. Participants' naive concepts of OCD reflected predominant models of OCD in healthcare. Even at the minimal dose of psychoeducation, participants' conceptualizations of OCD changed. Prior exposure to OCD resulted in a stronger alignment with the biomedical model. Exposure to biomedical psychoeducation resulted in participants predicting a slower recovery with less chance of complete remission. Psychoeducation for childhood OCD is impactful. Despite its wide use by clinicians and mental health services, biomedical psychoeducation appears to have deleterious effects. Children's concepts of OCD merit attention but caution should be applied in how they are targeted.
Free-piston Stirling engine conceptual design and technologies for space power, phase 1
NASA Technical Reports Server (NTRS)
Penswick, L. Barry; Beale, William T.; Wood, J. Gary
1990-01-01
As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis.
1976-11-11
exchange. The basis for this choice was derived from several factors . One was a timing analysis that was made for certain basic time-critical software...randidate 6jrstem designs were developed and _*xamined with respect to L their capability to demonstrate the workability of the basic concept and for factors ...algorithm recuires a bit time completion, while SOF production allows byte timing and the involved = SOF correlation procedure may be perfor-med during
Study of an engine flow diverter system for a large scale ejector powered aircraft model
NASA Technical Reports Server (NTRS)
Springer, R. J.; Langley, B.; Plant, T.; Hunter, L.; Brock, O.
1981-01-01
Requirements were established for a conceptual design study to analyze and design an engine flow diverter system and to include accommodations for an ejector system in an existing 3/4 scale fighter model equipped with YJ-79 engines. Model constraints were identified and cost-effective limited modification was proposed to accept the ejectors, ducting and flow diverter valves. Complete system performance was calculated and a versatile computer program capable of analyzing any ejector system was developed.
MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design
NASA Technical Reports Server (NTRS)
Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.
1988-01-01
The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community.
Instrument for Analysis of Organic Compounds on Other Planets
NASA Technical Reports Server (NTRS)
Daulton, Riley M.; Hintze, Paul E.
2016-01-01
The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.
NASA Technical Reports Server (NTRS)
1993-01-01
Satellite systems to date have been mainly scientific in nature. Only a few systems have been of direct use to the public such as for telephone or television transmission. Space enterprises have remained a mystery to the general public and beyond the reach of the small business community. The result is a less than supportive public when it comes to space activities. The purpose of the ISAT-1 program is to develop a small and relatively inexpensive satellite that will serve the State of Iowa, primarily for educational purposes. It will provide products, services, and activities that will be educational, practical, and useful for a large number for people. The emphasis is on public awareness, 'space literacy', and routine practical applications rather than high technology. The initial conceptual design phase was complete when the current team took over the project. Some areas of the conceptual design were taken a little farther, but for the most part this team started at the detailed design stage.
An advanced telerobotic system for shuttle payload changeout room processing applications
NASA Technical Reports Server (NTRS)
Sklar, M.; Wegerif, D.
1989-01-01
To potentially alleviate the inherent difficulties in the ground processing of the Space Shuttle and its associated payloads, a teleoperated, semi-autonomous robotic processing system for the Payload Changeout Room (PCR) is now in the conceptual stages. The complete PCR robotic system as currently conceived is described and critical design issues and the required technologies are discussed.
Conceptual Design of a Nano-Networking Device
Canovas-Carrasco, Sebastian; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan
2016-01-01
Nanotechnology is an emerging scientific area whose advances, among many others, have a positive direct impact on the miniaturization of electronics. This unique technology enables the possibility to design and build electronic components as well as complete devices (called nanomachines or nanodevices) at the nano scale. A nanodevice is expected to be an essential element able to operate in a nanonetwork, where a huge number of them would coordinate to acquire data, process the information gathered, and wirelessly transmit those data to end-points providing innovative services in many key scenarios, such as the human body or the environment. This paper is aimed at studying the feasibility of this type of device by carefully examining their main component parts, namely the nanoprocessor, nanomemory, nanoantenna, and nanogenerator. To this end, a thorough state-of-the-art review is conveyed to discuss, substantiate, and select the most suitable current technology (commercial or pre-commercial) for each component. Then, we further contribute by developing a complete conceptual nanodevice layout taking into consideration its ultra-small size (similar to a blood cell) and its very restricted capabilities (e.g., processing, memory storage, telecommunication, and energy management). The required resources as well as the power consumption are realistically estimated. PMID:27973430
Conceptual Design of a Nano-Networking Device.
Canovas-Carrasco, Sebastian; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan
2016-12-11
Nanotechnology is an emerging scientific area whose advances, among many others, have a positive direct impact on the miniaturization of electronics. This unique technology enables the possibility to design and build electronic components as well as complete devices (called nanomachines or nanodevices) at the nano scale. A nanodevice is expected to be an essential element able to operate in a nanonetwork, where a huge number of them would coordinate to acquire data, process the information gathered, and wirelessly transmit those data to end-points providing innovative services in many key scenarios, such as the human body or the environment. This paper is aimed at studying the feasibility of this type of device by carefully examining their main component parts, namely the nanoprocessor, nanomemory, nanoantenna, and nanogenerator. To this end, a thorough state-of-the-art review is conveyed to discuss, substantiate, and select the most suitable current technology (commercial or pre-commercial) for each component. Then, we further contribute by developing a complete conceptual nanodevice layout taking into consideration its ultra-small size (similar to a blood cell) and its very restricted capabilities (e.g., processing, memory storage, telecommunication, and energy management). The required resources as well as the power consumption are realistically estimated.
Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2011-01-01
A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.
Conceptual design of a 500 watt solar AMTEC space power system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenok, J.F. III; Sievers, R.K.; Harty, R.B.
1995-12-31
Numerous design studies have been completed on Radioisotope powered Alkali Metal Thermal to Electric Converter (RAMTEC) power systems demonstrating their substantial increase in performance. Prior to recent advances in AMTEC technology and Thermal Energy Storage (TES), coupling AMTEC converters with a solar concentrator did not increase the performance of solar powered space power systems. This paper describes a conceptual design of an innovative, low cost, reliable, low mass, long life 500 watt Solar AMTEC (SAMTEC) power system, and the predicted system performance. The concept uses innovative, high voltage AMTEC cells, each containing 7 to 9 small electrolyte tubes, integrated withmore » an individual TES unit. These multi-tube AMTEC cells are identical to the AMTEC cells designed for radioisotope powered systems. The TES used in this conceptual design is the LiF-22%CaF{sub 2} unit currently being developed at NASA Lewis Research Center (LeRC) for the Solar Dynamic Ground Test Demonstration (SDGTD) Program. The system was designed to provide 500 watts of electrical power at 28 volts to a payload in Low Earth Orbit (LEO, 800 km, 28.5{degree} inclination) for a minimum lifetime of 5 years. The SAMTEC power system is predicted to have a specific power k of 5.3 to 8.9 W(e)/kg (including the concentrator, receiver, AMTEC cells, gimbals and drives, structure, power processing and control, and a 30% mass contingency) at the 500 watt power level, and 12 to 17 W(e)/kg at the 5,000 watt power level. The SAMTEC system, including all of the components listed above, is anticipated to cost $1,000/W(e) once development is complete and production begins. The SAMTEC system provides 92% of its Beginning of Life (BOL) power after a 5 year period in LEO, and SAMTEC systems should provide 10 to 15 years of life in LEO. Current AMTEC cells have demonstrated 18% efficiency in the laboratory and have been heated radiatively, with propane flames and electrical resistance heaters.« less
Conceptual design of the 6 MW Mod-5A wind turbine generator
NASA Technical Reports Server (NTRS)
Barton, R. S.; Lucas, W. C.
1982-01-01
The General Electric Company, Advanced Energy Programs Department, is designing under DOE/NASA sponsorship the MOD-5A wind turbine system which must generate electricity for 3.75 cent/KWH (1980) or less. During the Conceptual Design Phase, completed in March, 1981, the MOD-5A WTG system size and features were established as a result of tradeoff and optimization studies driven by minimizing the system cost of energy (COE). This led to a 400' rotor diameter size. The MOD-5A system which resulted is defined in this paper along with the operational and environmental factors that drive various portions of the design. Development of weight and cost estimating relationships (WCER's) and their use in optimizing the MOD-5A are discussed. The results of major tradeoff studies are also presented. Subsystem COE contributions for the 100th unit are shown along with the method of computation. Detailed descriptions of the major subsystems are given, in order that the results of the various trade and optimization studies can be more readily visualized.
Advanced thermionic energy conversion
NASA Technical Reports Server (NTRS)
1979-01-01
Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.
Integrating O/S models during conceptual design, part 1
NASA Technical Reports Server (NTRS)
Ebeling, Charles E.
1994-01-01
The University of Dayton is pleased to submit this report to the National Aeronautics and Space Administration (NASA), Langley Research Center, which integrates a set of models for determining operational capabilities and support requirements during the conceptual design of proposed space systems. This research provides for the integration of the reliability and maintainability (R&M) model, both new and existing simulation models, and existing operations and support (O&S) costing equations in arriving at a complete analysis methodology. Details concerning the R&M model and the O&S costing model may be found in previous reports accomplished under this grant (NASA Research Grant NAG1-1327). In the process of developing this comprehensive analysis approach, significant enhancements were made to the R&M model, updates to the O&S costing model were accomplished, and a new simulation model developed. This is the 1st part of a 3 part technical report.
Saturno-Hernández, Pedro J; Gutiérrez-Reyes, Juan Pablo; Vieyra-Romero, Waldo Ivan; Romero-Martínez, Martín; O'Shea-Cuevas, Gabriel Jaime; Lozano-Herrera, Javier; Tavera-Martínez, Sonia; Hernández-Ávila, Mauricio
2016-01-01
To describe the conceptual framework and methods for implementation and analysis of the satisfaction survey of the Mexican System for Social Protection in Health. We analyze the methodological elements of the 2013, 2014 and 2015 surveys, including the instrument, sampling method and study design, conceptual framework, and characteristics and indicators of the analysis. The survey captures information on perceived quality and satisfaction. Sampling has national and State representation. Simple and composite indicators (index of satisfaction and rate of reported quality problems) are built and described. The analysis is completed using Pareto diagrams, correlation between indicators and association with satisfaction by means of multivariate models. The measurement of satisfaction and perceived quality is a complex but necessary process to comply with regulations and to identify strategies for improvement. The described survey presents a design and rigorous analysis focused on its utility for improving.
Lunar lander conceptual design
NASA Technical Reports Server (NTRS)
Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward
1989-01-01
A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.
Gabeza, R
1995-03-01
The dual nature of the Japanese writing system was used to investigate two assumptions of the processing view of memory transfer: (1) that both perceptual and conceptual processing can contribute to the same memory test (mixture assumption) and (2) that both can be broken into more specific processes (subdivision assumption). Supporting the mixture assumption, a word fragment completion test based on ideographic kanji characters (kanji fragment completion test) was affected by both perceptual (hiragana/kanji script shift) and conceptual (levels-of-processing) study manipulations kanji fragments, because it did not occur with the use of meaningless hiragana fragments. The mixture assumption is also supported by an effect of study script on an implicit conceptual test (sentence completion), and the subdivision assumption is supported by a crossover dissociation between hiragana and kanji fragment completion as a function of study script.
NASA Technical Reports Server (NTRS)
Gerberich, Matthew W.; Oleson, Steven R.
2013-01-01
The Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at Glenn Research Center has performed integrated system analysis of conceptual spacecraft mission designs since 2006 using a multidisciplinary concurrent engineering process. The set of completed designs was archived in a database, to allow for the study of relationships between design parameters. Although COMPASS uses a parametric spacecraft costing model, this research investigated the possibility of using a top-down approach to rapidly estimate the overall vehicle costs. This paper presents the relationships between significant design variables, including breakdowns of dry mass, wet mass, and cost. It also develops a model for a broad estimate of these parameters through basic mission characteristics, including the target location distance, the payload mass, the duration, the delta-v requirement, and the type of mission, propulsion, and electrical power. Finally, this paper examines the accuracy of this model in regards to past COMPASS designs, with an assessment of outlying spacecraft, and compares the results to historical data of completed NASA missions.
NASA Technical Reports Server (NTRS)
Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David
2010-01-01
The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, J.C.
1994-08-01
The Type B drum packages (TBD) are conceptualized as a family of containers in which a single 208 L or 114 L (55 gal or 30 gal) drum containing Type B quantities of radioactive material (RAM) can be packaged for shipment. The TBD containers are being developed to fill a void in the packaging and transportation capabilities of the U.S. Department of Energy as no container packaging single drums of Type B RAM exists offering double containment. Several multiple-drum containers currently exist, as well as a number of shielded casks, but the size and weight of these containers present manymore » operational challenges for single-drum shipments. As an alternative, the TBD containers will offer up to three shielded versions (light, medium, and heavy) and one unshielded version, each offering single or optional double containment for a single drum. To reduce operational complexity, all versions will share similar design and operational features where possible. The primary users of the TBD containers are envisioned to be any organization desiring to ship single drums of Type B RAM, such as laboratories, waste retrieval activities, emergency response teams, etc. Currently, the TBD conceptual design is being developed with the final design and analysis to be completed in 1995 to 1996. Testing and certification of the unshielded version are planned to be completed in 1996 to 1997 with production to begin in 1997 to 1998.« less
Executive functions predict conceptual learning of science.
Rhodes, Sinéad M; Booth, Josephine N; Palmer, Lorna Elise; Blythe, Richard A; Delibegovic, Mirela; Wheate, Nial J
2016-06-01
We examined the relationship between executive functions and both factual and conceptual learning of science, specifically chemistry, in early adolescence. Sixty-three pupils in their second year of secondary school (aged 12-13 years) participated. Pupils completed tasks of working memory (Spatial Working Memory), inhibition (Stop-Signal), attention set-shifting (ID/ED), and planning (Stockings of Cambridge), from the CANTAB. They also participated in a chemistry teaching session, practical, and assessment on the topic of acids and alkalis designed specifically for this study. Executive function data were related to (1) the chemistry assessment which included aspects of factual and conceptual learning and (2) a recent school science exam. Correlational analyses between executive functions and both the chemistry assessment and science grades revealed that science achievements were significantly correlated with working memory. Linear regression analysis revealed that visuospatial working memory ability was predictive of chemistry performance. Interestingly, this relationship was observed solely in relation to the conceptual learning condition of the assessment highlighting the role of executive functions in understanding and applying knowledge about what is learned within science teaching. © 2016 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Ülen, Simon; Gerlič, Ivan; Slavinec, Mitja; Repnik, Robert
2017-04-01
To provide a good understanding of many abstract concepts in the field of electricity above that of their students is often a major challenge for secondary school teachers. Many educational researchers promote conceptual learning as a teaching approach that can help teachers to achieve this goal. In this paper, we present Physlet-based materials for supporting conceptual learning about electricity. To conduct research into the effectiveness of these materials, we designed two different physics courses: one group of students, the experimental group, was taught using Physlet-based materials and the second group of students, the control group, was taught using expository instruction without using Physlets. After completion of the teaching, we assessed students' thinking skills and analysed the materials with an independent t test, multiple regression analyses and one-way analysis of covariance. The test scores were significantly higher in the experimental group than in the control group ( p < 0.05). The results of this study confirmed the effectiveness of conceptual learning about electricity with the help of Physlet-based materials.
Post-16 Students' Perceptions to Health and Healthy Eating in Welsh Secondary Schools
ERIC Educational Resources Information Center
Thomas, Malcolm
2005-01-01
Purpose: The aim of this study was to assess how post-16 students in Wales conceptualized health and healthy eating. Design/methodology/approach: A health survey questionnaire was completed by 297 post-16 students who were pursuing Biology at A level in year 12. The questionnaire was issued towards the end of the summer term in year 12 which…
L1 libration point manned space habitat
NASA Technical Reports Server (NTRS)
Luttges, Marvin; Johnson, Steve; Banks, Gary; Johnson, Richard; Meyer, Christian; Pepin, Scott; Macelroy, Robert
1989-01-01
Second generation stations or Manned Space Habitats (MSHs) are discussed for an Earth-Moon libration point and in lunar orbit. The conceptual design of such a station is outlined. Systems and subsystems described reflect anticipation of moderate technology growth. The evolution of the L1 environments is discussed, several selected subsystems are outlined, and how the L1 MSH will complete some of its activities is described.
NASA Astrophysics Data System (ADS)
Alao, Solomon
The need to identify factors that contribute to students' understanding of ecological concepts has been widely expressed in recent literature. The purpose of this study was to investigate the relationship between fifth grade students' prior knowledge, learning strategies, interest, and learning goals and their conceptual understanding of ecological science concepts. Subject were 72 students from three fifth grade classrooms located in a metropolitan area of the eastern United States. Students completed the goal commitment, interest, and strategy use questionnaire (GISQ), and a knowledge test designed to assess their prior knowledge and conceptual understanding of ecological science concepts. The learning goals scale assessed intentions to try to learn and understand ecological concepts. The interest scale assessed the feeling and value-related valences that students ascribed to science and ecological science concepts. The strategy use scale assessed the use of two cognitive strategies (monitoring and elaboration). The knowledge test assessed students' understanding of ecological concepts (the relationship between living organisms and their environment). Scores on all measures were examined for gender differences; no significant gender differences were observed. The motivational and cognitive variables contributed to students' understanding of ecological concepts. After accounting for interest, learning goals, and strategy use, prior knowledge accounted for 28% of the total variance in conceptual understanding. After accounting for prior knowledge, interest, learning goals, and strategy use explained 7%, 6%, and 4% of the total variance in conceptual understanding, respectively. More importantly, these variables were interrelated to each other and to conceptual understanding. After controlling for prior knowledge, learning goals, and strategy use, interest did not predict the variance in conceptual understanding. After controlling for prior knowledge, interest, and strategy use, learning goals did not predict the variance in conceptual understanding. And, after controlling for prior knowledge, interest, and learning goals, strategy use did not predict the variance in conceptual understanding. Results of this study indicated that prior knowledge, interest, learning goals, and strategy use should be included in theoretical models design to explain and to predict fifth grade students' understanding of ecological concepts. Results of this study further suggested that curriculum developers and science teachers need to take fifth grade students' prior knowledge of ecological concepts, interest in science and ecological concepts; intentions to learn and understand ecological concepts, and use of cognitive strategies into account when designing instructional contexts to support these students' understanding of ecological concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younger, F.C.
1986-08-01
A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept designmore » report, and the final report on the design and fabrication project. (LEW)« less
Design of Z-Pinch and Dense Plasma Focus Powered Vehicles
NASA Technical Reports Server (NTRS)
Polsgrove, Tara; Fincher, Sharon; Adams, Robert B.; Cassibry, Jason; Cortez, Ross; Turner, Matthew; Maples, C. Daphne; Miermik, Janie N.; Statham, Geoffrey N.; Fabisinski, Leo;
2011-01-01
Z-pinch and Dense Plasma Focus (DPF) are two promising techniques for bringing fusion power to the field of in-space propulsion. A design team comprising of engineers and scientists from UAHuntsville, NASA's George C. Marshall Space Flight Center and the University of Wisconsin developed concept vehicles for a crewed round trip mission to Mars and an interstellar precursor mission. Outlined in this paper are vehicle concepts, complete with conceptual analysis of the mission profile, operations, structural and thermal analysis and power/avionics design. Additionally engineering design of the thruster itself is included. The design efforts adds greatly to the fidelity of estimates for power density (alpha) and overall performance for these thruster concepts
Evaluating Flight Crew Operator Manual Documentation
NASA Technical Reports Server (NTRS)
Sherry, Lance; Feary, Michael
1998-01-01
Aviation and cognitive science researchers have identified situations in which the pilot s expectations for the behavior of the avionics are not matched by the actual behavior of the avionics. Researchers have attributed these "automation surprises" to the complexity of the avionics mode logic, the absence of complete training, limitations in cockpit displays, and ad-hoc conceptual models of the avionics. Complete canonical rule-based descriptions of the behavior of the autopilot provide the basis for understanding the perceived complexity of the autopilots, the differences between the pilot s and autopilot s conceptual models, and the limitations in training materials and cockpit displays. This paper compares the behavior of the autopilot Vertical Speed/Flight Path Angle (VS-FPA) mode as described in the Flight Crew Operators Manual (FCOM) and the actual behavior of the VS-FPA mode defined in the autopilot software. This example demonstrates the use of the Operational Procedure Model (OPM) as a method for using the requirements specification for the design of the software logic as information requirements for training.
A closed-loop air revitalization process technology demonstrator
NASA Astrophysics Data System (ADS)
Mulloth, Lila; Perry, Jay; Luna, Bernadette; Kliss, Mark
Demonstrating a sustainable, reliable life support system process design that possesses the capability to close the oxygen cycle to the greatest extent possible is required for extensive surface exploration of the Moon and Mars by humans. A conceptual closed-loop air revitalization system process technology demonstrator that combines the CO2 removal, recovery, and reduction and oxygen generation operations in a single compact envelope is described. NASA has developed, and in some cases flown, process technologies for capturing metabolic CO2 from air, reducing CO2 to H2O and CH4, electrolyzing H2O to O2, and electrolyzing CO2 to O2 and CO among a number of candidates. Traditionally, these processes either operate in parallel with one another or have not taken full benefit of a unit operation-based design approach to take complete advantage of the synergy between individual technologies. The appropriate combination of process technologies must capitalize on the advantageous aspects of individual technologies while eliminating or transforming the features that limit their feasibility when considered alone. Such a process technology integration approach also provides advantages of optimized mass, power and volume characteristics for the hardware embodiment. The conceptual air revitalization system process design is an ideal technology demonstrator for the critically needed closed-loop life support capabilities for long duration human exploration of the lunar surface and extending crewed space exploration toward Mars. The conceptual process design incorporates low power CO2 removal, process gas drying, and advanced engineered adsorbents being developed by NASA and industry.
Optimization of entry-vehicle shapes during conceptual design
NASA Astrophysics Data System (ADS)
Dirkx, D.; Mooij, E.
2014-01-01
During the conceptual design of a re-entry vehicle, the vehicle shape and geometry can be varied and its impact on performance can be evaluated. In this study, the shape optimization of two classes of vehicles has been studied: a capsule and a winged vehicle. Their aerodynamic characteristics were analyzed using local-inclination methods, automatically selected per vehicle segment. Entry trajectories down to Mach 3 were calculated assuming trimmed conditions. For the winged vehicle, which has both a body flap and elevons, a guidance algorithm to track a reference heat-rate was used. Multi-objective particle swarm optimization was used to optimize the shape using objectives related to mass, volume and range. The optimizations show a large variation in vehicle performance over the explored parameter space. Areas of very strong non-linearity are observed in the direct neighborhood of the two-dimensional Pareto fronts. This indicates the need for robust exploration of the influence of vehicle shapes on system performance during engineering trade-offs, which are performed during conceptual design. A number of important aspects of the influence of vehicle behavior on the Pareto fronts are observed and discussed. There is a nearly complete convergence to narrow-wing solutions for the winged vehicle. Also, it is found that imposing pitch-stability for the winged vehicle at all angles of attack results in vehicle shapes which require upward control surface deflections during the majority of the entry.
Conceptual design of an in-space cryogenic fluid management facility, executive summary
NASA Technical Reports Server (NTRS)
Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.
1981-01-01
The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.
Exploring Nurse Leaders' Policy Participation Within the Context of a Nursing Conceptual Framework.
Waddell, Ashley; Adams, Jeffrey M; Fawcett, Jacqueline
2017-11-01
This study was designed to describe and quantify the experiences of nurse leaders working to influence policy and to build consensus for priority skills and knowledge useful in policy efforts within the context of a nursing conceptual framework. The conceptual model for nursing and health policy and the Adams influence model were combined into a conceptual framework used to guide this two-round modified Delphi study. Twenty-two nurse leaders who were members of a state action coalition participated in the Round 1 focus group; 15 of these leaders completed the Round 2 electronic survey. Round 1 themes indicated the value of a passion for policy, the importance of clear communication, and an understanding the who and when of policy work. Round 2 data reinforced the importance of clear communication regarding policy engagement; knowing the who and when of policy closely followed, and having a passion for policy work was identified as least important. These themes inform learning objectives for nursing education and preparation for interactions with public officials because influencing policy requires knowledge, skills, and persistence. Study findings begin to describe how nurse leaders influence policy within the context of a nursing conceptual framework and generate implications for research, education, and professional practice.
The Interrelationship of Ego, Moral, and Conceptual Development in a College Group.
ERIC Educational Resources Information Center
Lutwak, Nita
1984-01-01
Compared three personality theories (ego development, moral development, and conceptual systems theory) in 102 college students who completed the Sentence Completion Test, This I Believe Test, and Defining Issues Test. Results indicated a significant relationship between all three pairs of theories. (JAC)
The engineering design of the Tokamak Physics Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, J.A.
A mission and supporting physics objectives have been developed, which establishes an important role for the Tokamak Physics Experiment (TPX) in developing the physic basis for a future fusion reactor. The design of TPX include advanced physics features, such as shaping and profile control, along with the capability of operating for very long pulses. The development of the superconducting magnets, actively cooled internal hardware, and remote maintenance will be an important technology contribution to future fusion projects, such as ITER. The Conceptual Design and Management Systems for TPX have been developed and reviewed, and the project is beginning Preliminary Design.more » If adequately funded the construction project should be completed in the year 2000.« less
Overview of Conceptual Design of Early VentureStar(TM) Configurations
NASA Technical Reports Server (NTRS)
Lockwood, M. K.
2000-01-01
One of NASA's goals is to enable commercial access to space at a cost of $1000/lb (an order of magnitude less than today's cost) by approximately 2010. Based on results from the 1994 Congressionally mandated, NASA led, Access-to-Space Study, an all rocket-powered single-stage-to-orbit reusable launch vehicle was, selected as the best option for meeting the goal. To address the technology development issues and the follow-on development of an operational vehicle, NASA initiated the X-33 program. The focus of this paper is on the contributions made by the NASA Langley Research Center (LaRC), from 1997-1998, to the conceptual design of the Lockheed Martin Skunk Work's (LMSW) operational reusable single-stage-to-orbit VentureStar(sup TM) vehicle. The LaRC effort has been in direct support of LMSW and NASA Marshall Space Flight Center (MSFC). The primary objectives have been to reduce vehicle dry weight and improve flyability of the VentureStar(sup TM) concepts. This paper will briefly describe the analysis methods used and will present several of the concepts analyzed and design trades completed.
ERIC Educational Resources Information Center
Cardenas-Claros, Monica Stella; Gruba, Paul A.
2013-01-01
This paper proposes a theoretical framework for the conceptualization and design of help options in computer-based second language (L2) listening. Based on four empirical studies, it aims at clarifying both conceptualization and design (CoDe) components. The elements of conceptualization consist of a novel four-part classification of help options:…
Multiparadigm Design Environments
1992-01-01
following results: 1. New methods for programming in terms of conceptual models 2. Design of object-oriented languages 3. Compiler optimization and...experimented with object-based methods for programming directly in terms of conceptual models, object-oriented language design, computer program...expect the3e results to have a strong influence on future ,,j :- ...... L ! . . • a mm ammmml ll Illlll • l I 1 Conceptual Programming Conceptual
NASA Technical Reports Server (NTRS)
1981-01-01
The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.
Open Vehicle Sketch Pad Aircraft Modeling Strategies
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2013-01-01
Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity, picking tools and methods with the appropriate balance of characteristics to achieve the goals of the study, while staying within the available resources. Identifying geometric details that are important, and those that are not, is critical to making modeling and methodology choices. This is true for both the low-order analysis methods traditionally used in Conceptual design as well as the highest-order analyses available. This paper will highlight some of Conceptual design's characteristics that drive the designer s choices as well as modeling examples for several aircraft configurations using the open source version of the Vehicle Sketch Pad (Open VSP) aircraft Conceptual design geometry modeler.
NASA Technical Reports Server (NTRS)
Fuller, John; Ali, Warsame; Willis, Danette
1989-01-01
In a continued effort to design a surface based factory on Mars for the production of oxygen and water, a preliminary study was made of the surface and atmospheric composition on Mars and determined the mass densities of the various gases in the Martian atmosphere. Based on the initial studies, oxygen and water were determined to be the two products that could be produced economically under the Martian conditions. Studies were also made on present production techniques to obtain water and oxygen. Analyses were made to evaluate the current methods of production that were adaptable to the Martian conditions. Even though the initial effort was the production of oxygen and water, it was found necessary to produce some diluted gases that can be mixed with the oxygen produced to constitute 'breathable' air. The conceptual design of a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use were completed. The design objective was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use.
NASA Astrophysics Data System (ADS)
Soni, Jigensh; Yadav, R. K.; Patel, A.; Gahlaut, A.; Mistry, H.; Parmar, K. G.; Mahesh, V.; Parmar, D.; Prajapati, B.; Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Pandya, K.; Chakraborty, A.
2013-02-01
Twin Source - An Inductively coupled two RF driver based 180 kW, 1 MHz negative ion source experimental setup is initiated at IPR, Gandhinagar, under Indian program, with the objective of understanding the physics and technology of multi-driver coupling. Twin Source [1] (TS) also provides an intermediate platform between operational ROBIN [2] [5] and eight RF drivers based Indian test facility -INTF [3]. A twin source experiment requires a central system to provide control, data acquisition and communication interface, referred as TS-CODAC, for which a software architecture similar to ITER CODAC core system has been decided for implementation. The Core System is a software suite for ITER plant system manufacturers to use as a template for the development of their interface with CODAC. The ITER approach, in terms of technology, has been adopted for the TS-CODAC so as to develop necessary expertise for developing and operating a control system based on the ITER guidelines as similar configuration needs to be implemented for the INTF. This cost effective approach will provide an opportunity to evaluate and learn ITER CODAC technology, documentation, information technology and control system processes, on an operational machine. Conceptual design of the TS-CODAC system has been completed. For complete control of the system, approximately 200 Nos. control signals and 152 acquisition signals are needed. In TS-CODAC, control loop time required is within the range of 5ms - 10 ms, therefore for the control system, PLC (Siemens S-7 400) has been chosen as suggested in the ITER slow controller catalog. For the data acquisition, the maximum sampling interval required is 100 micro second, and therefore National Instruments (NI) PXIe system and NI 6259 digitizer cards have been selected as suggested in the ITER fast controller catalog. This paper will present conceptual design of TS -CODAC system based on ITER CODAC Core software and applicable plant system integration processes.
Lessons Learned from Radioactive Waste Storage and Disposal Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, David W.; Bradford, Anna H.
2008-01-15
The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less
NASA Astrophysics Data System (ADS)
khawaldeh, Salem A. Al
2013-07-01
Background and purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of the same school located in an urban area. The three classes taught by the same biology teacher were randomly assigned as a prediction/discussion-based learning cycle class (n = 39), conceptual change text class (n = 37) and traditional class (n = 36). Design and method: A quasi-experimental research design of pre-test-post-test non-equivalent control group was adopted. Participants completed the Genetics Concept Test as pre-test-post-test, to examine the effects of instructional strategies on their genetics understanding. Pre-test scores and Test of Logical Thinking scores were used as covariates. Results: The analysis of covariance showed a statistically significant difference between the experimental and control groups in the favor of experimental groups after treatment. However, no statistically significant difference between the experimental groups (HPD-LC versus CCT instruction) was found. Conclusions: Overall, the findings of this study support the use of the prediction/discussion-based learning cycle and conceptual change text in both research and teaching. The findings may be useful for improving classroom practices in teaching science concepts and for the development of suitable materials promoting students' understanding of science.
Structural design of the Sandia 34-M Vertical Axis Wind Turbine
NASA Astrophysics Data System (ADS)
Berg, D. E.
Sandia National Laboratories, as the lead DOE laboratory for Vertical Axis Wind Turbine (VAWT) development, is currently designing a 34-meter diameter Darrieus-type VAWT. This turbine will be a research test bed which provides a focus for advancing technology and validating design and fabrication techniques in a size range suitable for utility use. Structural data from this machine will allow structural modeling to be refined and verified for a turbine on which the gravity effects and stochastic wind loading are significant. Performance data from it will allow aerodynamic modeling to be refined and verified. The design effort incorporates Sandia's state-of-the-art analysis tools in the design of a complete machine. The analytic tools used in this design are discussed and the conceptual design procedure is described.
NASA Astrophysics Data System (ADS)
Escalada, Lawrence T.; Moeller, Julia K.
2006-02-01
With the existing shortage of qualified high school physics teachers and the current mandate of the No Child Left Behind Act requiring teachers to be "highly qualified" in all subjects they teach, university physics departments must offer content courses and programs that would allow out-of-field high school physics teachers to meet this requirement. This paper will identify how the University of Northern Iowa Physics Department is attempting to address the needs of the high school physics teacher through its course offerings and professional development programs for teachers. The effectiveness of one such physics professional development program, the UNI Physics Institute (UNI-PI), on secondary science teachers' and their students' conceptual understanding of Newtonian mechanics, and the teachers' instructional practices was investigated. Twenty-one Iowa out-of-field high school physics teachers participating in the program were able to complete the physics coursework required to obtain the State of Iowa 7-12 Grade Physics Teaching endorsement. Twelve of the participants completed a two-year program during the 2002 and 2003 summers. Background information, pre- and post-test physics conceptual assessments and other data was collected from participants throughout the Institute. Participants collected pre and post-test conceptual assessment data from their students during the 2002-2003 and 2003-2004 academic years. This comprehensive assessment data revealed the Institute's influence on participants' and students' conceptual understanding of Newtonian Mechanics. The results of this investigation, the insights we have gained, and possible future directions for professional development will be shared.
Improvement of Automated POST Case Success Rate Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Zwack, Mathew R.; Dees, Patrick D.
2017-01-01
During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases.3 As noted in [4] work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points.
Development of low-level liquid-waste-treatment systems, October 1981 - March 1982
NASA Astrophysics Data System (ADS)
Williams, M. K.; Colvin, C. M.
1982-05-01
A plant design for a reverse osmosis (RO) membrane unit was completed. The design includes a conceptual diagram, specifications for a RO unit producing 40 gal/min of permeated product, a list of radioisotopes tested on RO units and the rejections achieved, a discussion of the principle of RO, a discussion of the upper limits of cation and anion concentrations (there are no lower limits), a discussion of membrane configurations and porosities, a discussion of factors affecting membranes, a section on calculating the membrane area needed for a particular application, and capital and operating cost calculations. The three factors found to affect the adsorption of cobalt on ion exchange resins were investigated in an interaction effects design experiment. These factors are solution pH, and sulfite and ammonium concentrations. Greater than 99% of the cobalt can usually be removed from solutions at a pH between 3 and 6. A design for an ion-exchange pilot plant was completed.
Conceptual design study of a Harrier V/STOL research aircraft
NASA Technical Reports Server (NTRS)
Bode, W. E.; Berger, R. L.; Elmore, G. A.; Lacey, T. R.
1978-01-01
MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed.
Conceptual Design of a New Damage Assessment Capability
1978-03-01
DDRES 0. ROetGRA ELEEN. RPRCT TAKN Decison -Scence pplictions1Inc 9 MONIORING ORAENCYI NAME ANDES~i ADiffREtoSS uto fte 10. SECURITY CLASSNT (Of ET...1_ . . -_ _- =.. = : -- L -_%_ ’_ The structure of the system makes it possible to evaluate the i variability and uncertainty in the damage...assumptions. The computational efficiency of ie system makes it possible to t use more detailed weapons-effects models and more accurate and complete
This technical memorandum briefly describes the site and proposed conceptual site plan, indicates conceptual design considerations, specifies recommended green and sustainable features, and offers other recommendations
Structural Analysis in a Conceptual Design Framework
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.
2012-01-01
Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.
NASA Technical Reports Server (NTRS)
Evertt, Shonn F.; Collins, Michael; Hahn, William
2008-01-01
The International Space Station (ISS) Configuration Analysis Modeling and Mass Properties (CAMMP) Team is presenting a demo of certain CAMMP capabilities at a Booz Allen Hamilton conference in San Antonio. The team will be showing pictures of low fidelity, simplified ISS models, but no dimensions or technical data. The presentation will include a brief description of the contract and task, description and picture of the Topology, description of Generic Ground Rules and Constraints (GGR&C), description of Stage Analysis with constraints applied, and wrap up with description of other tasks such as Special Studies, Cable Routing, etc. The models include conceptual Crew Exploration Vehicle (CEV) and Lunar Lander images and animations created for promotional purposes, which are based entirely on public domain conceptual images from public NASA web sites and publicly available magazine articles and are not based on any actual designs, measurements, or 3D models. Conceptual Mars rover and lander are completely conceptual and are not based on any NASA designs or data. The demonstration includes High Fidelity Computer Aided Design (CAD) models of ISS provided by the ISS 3D CAD Team which will be used in a visual display to demonstrate the capabilities of the Teamcenter Visualization software. The demonstration will include 3D views of the CAD models including random measurements that will be taken to demonstrate the measurement tool. A 3D PDF file will be demonstrated of the Blue Book fidelity assembly complete model with no vehicles attached. The 3D zoom and rotation will be displayed as well as random measurements from the measurement tool. The External Configuration Analysis and Tracking Tool (ExCATT) Microsoft Access Database will be demonstrated to show its capabilities to organize and track hardware on ISS. The data included will be part numbers, serial numbers, historical, current, and future locations, of external hardware components on station. It includes dates of all external ISS events and flights and the associated hardware changes for each event. The hardware location information does not always reveal the exact location of the hardware, only the general location. In some cases the location is a module or carrier, in other cases it is a WIF socket, handrail, or attach point. Only small portions of the data will be displayed for demonstration purposes.
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-04-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of municipal solid waste (MSW) feed material was procured. During this quarter (first quarter of 2001), shredding of the feed material was completedmore » and final feed conditioning was completed. Pilot facility hydrolysis production was completed to produce lignin for co-fire testing. Pilot facility modifications continued to improve facility operations and performance during the first quarter of 2001. Samples of the co-fire fuel material were sent to the co-fire facility for evaluation. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system is being developed.« less
Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3
NASA Technical Reports Server (NTRS)
Martinez, A.; Erickson, C.; Hines, B.
1986-01-01
Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.
Conceptual Model Learning Objects and Design Recommendations for Small Screens
ERIC Educational Resources Information Center
Churchill, Daniel
2011-01-01
This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…
Conceptual design of flapping-wing micro air vehicles.
Whitney, J P; Wood, R J
2012-09-01
Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.
Conceptual design optimization study
NASA Technical Reports Server (NTRS)
Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.
1990-01-01
The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.
High-temperature ceramic heat exchanger element for a solar thermal receiver
NASA Technical Reports Server (NTRS)
Strumpf, H. J.; Kotchick, D. M.; Coombs, M. G.
1982-01-01
A study has been completed on the development of a high-temperature ceramic heat exchanger element to be integrated into a solar reciver producing heated air. A number of conceptual designs were developed for heat exchanger elements of differing configuration. These were evaluated with respect to thermal performance, pressure drop, structural integrity, and fabricability. The final design selection identified a finned ceramic shell as the most favorable concept. The ceramic shell is surrounded by a larger metallic shell. The flanges of the two shells are sealed to provide a leak-tight pressure vessel. The ceramic shell is fabricated by an innovative combination of slip casting the receiver walls and precision casting the heat transfer finned plates. The fins are bonded to the shell during firing. Fabrication of a one-half scale demonstrator ceramic receiver has been completed.
QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study
NASA Astrophysics Data System (ADS)
Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa
2016-10-01
Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.
Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)
NASA Technical Reports Server (NTRS)
Monheiser, Jeff; Polk, Jay; Randolph, Tom
2004-01-01
In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.
Risk Evaluation in the Pre-Phase A Conceptual Design of Spacecraft
NASA Technical Reports Server (NTRS)
Fabisinski, Leo L., III; Maples, Charlotte Dauphne
2010-01-01
Typically, the most important decisions in the design of a spacecraft are made in the earliest stages of its conceptual design the Pre-Phase A stages. It is in these stages that the greatest number of design alternatives is considered, and the greatest number of alternatives is rejected. The focus of Pre-Phase A conceptual development is on the evaluation and comparison of whole concepts and the larger-scale systems comprising those concepts. This comparison typically uses general Figures of Merit (FOMs) to quantify the comparative benefits of designs and alternative design features. Along with mass, performance, and cost, risk should be one of the major FOMs in evaluating design decisions during the conceptual design phases. However, risk is often given inadequate consideration in conceptual design practice. The reasons frequently given for this lack of attention to risk include: inadequate mission definition, lack of rigorous design requirements in early concept phases, lack of fidelity in risk assessment methods, and under-evaluation of risk as a viable FOM for design evaluation. In this paper, the role of risk evaluation in early conceptual design is discussed. The various requirements of a viable risk evaluation tool at the Pre-Phase A level are considered in light of the needs of a typical spacecraft design study. A technique for risk identification and evaluation is presented. The application of the risk identification and evaluation approach to the conceptual design process is discussed. Finally, a computational tool for risk profiling is presented and applied to assess the risk for an existing Pre-Phase A proposal. The resulting profile is compared to the risks identified for the proposal by other means.
NASA Technical Reports Server (NTRS)
Mack, Robert J.; Needleman, Kathy E.
1990-01-01
A method for designing wind tunnel models of conceptual, low-boom, supersonic cruise aircraft is presented. Also included is a review of the procedures used to design the conceptual low-boom aircraft. In the discussion, problems unique to, and encountered during, the design of both the conceptual aircraft and the wind tunnel models are outlined. The sensitivity of low-boom characteristics in the aircraft design to control the volume and lift equivalent area distributions was emphasized. Solutions to these problems are reported; especially the two which led to the design of the wind tunnel model support stings.
Interplanetary propulsion using inertial fusion
NASA Technical Reports Server (NTRS)
Orth, C. D.; Hogan, W. J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F. C.
1987-01-01
Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed.
2017-05-25
the planning process. Current US Army doctrine links conceptual planning to the Army Design Methodology and detailed planning to the Military...Decision Making Process. By associating conceptual and detailed planning with doctrinal methodologies , it is easy to regard the transition as a set period...plans into detailed directives resulting in changes to the operational environment. 15. SUBJECT TERMS Design; Army Design Methodology ; Conceptual
Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.
2016-01-01
The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.
ERIC Educational Resources Information Center
Storberg-Walker, Julia; Chermack, Thomas J.
2007-01-01
The purpose of this article is to describe four methods for completing the conceptual development phase of theory building research for single or multiparadigm research. The four methods selected for this review are (1) Weick's method of "theorizing as disciplined imagination" (1989); (2) Whetten's method of "modeling as theorizing" (2002); (3)…
Multipurpose microcontroller design for PUGAS 2
NASA Technical Reports Server (NTRS)
Weber, David M.; Deckard, Todd W.
1987-01-01
This paper will report on the past year's work on the development of the microcontroller design for the second Purdue University small self-contained payload. A first report on this effort was given at last year's conference by Ritter (1985). At that time, the project was still at the conceptual stage. Now a specific design has been set, prototyping has begun, and layout of the two-sided circuit board using CAD-techniques is nearing completion. A redesign of the overall concept of the circuit board was done to take advantage of the facilities available to students. An additional controller has been added to take large quantities of data concerning the shuttle environment during takeoff. The importance of setting a design time-line is discussed along with the electrical design considerations given to the controllers.
Environmental interactions in space exploration: Environmental interactions working group
NASA Technical Reports Server (NTRS)
Kolecki, Joseph C.; Hillard, G. Barry
1992-01-01
With the advent of the Space Exploration Initiative, the possibility of designing and using systems on scales heretofore unattempted presents exciting new challenges in systems design and space science. The environments addressed by the Space Exploration Initiative include the surfaces of the Moon and Mars, as well as the varied plasma and field environments which will be encountered by humans and cargo enroute to these destinations. Systems designers will need to understand environmental interactions and be able to model these mechanisms from the earliest conceptual design stages through design completion. To the end of understanding environmental interactions and establishing robotic precursor mission requirements, an Environmental Interactions Working Group was established as part of the Robotic Missions Working Group. The working group is described, and its current activities are updated.
NASA Astrophysics Data System (ADS)
Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.
2014-11-01
Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.
Relevance in the science classroom: A multidimensional analysis
NASA Astrophysics Data System (ADS)
Hartwell, Matthew F.
While perceived relevance is considered a fundamental component of adaptive learning, the experience of relevance and its conceptual definition have not been well described. The mixed-methods research presented in this dissertation aimed to clarify the conceptual meaning of relevance by focusing on its phenomenological experience from the students' perspective. Following a critical literature review, I propose an identity-based model of perceived relevance that includes three components: a contextual target, an identity target, and a connection type, or lens. An empirical investigation of this model that consisted of two general phases was implemented in four 9th grade-biology classrooms. Participants in Phase 1 (N = 118) completed a series of four open-ended writing activities focused on eliciting perceived personal connections to academic content. Exploratory qualitative content analysis of a 25% random sample of the student responses was used to identify the main meaning-units of the proposed model as well as different dimensions of student relevance perceptions. These meaning-units and dimensions provided the basis for the construction of a conceptual mapping sentence capturing students' perceived relevance, which was then applied in a confirmatory analysis to all other student responses. Participants in Phase 2 (N = 139) completed a closed survey designed based on the mapping sentence to assess their perceived relevance of a biology unit. The survey also included scales assessing other domain-level motivational processes. Exploratory factor analysis and non-metric multidimensional scaling indicated a coherent conceptual structure, which included a primary interpretive relevance dimension. Comparison of the conceptual structure across various groups (randomly-split sample, gender, academic level, domain-general motivational profiles) provided support for its ubiquity and insight into variation in the experience of perceived relevance among students of different groups. The findings combine to support a multidimensional perspective of relevance in the 9th grade biology classroom; offering researchers a useful model for future investigation and educators with insights into the students' classroom experience.
NASA Technical Reports Server (NTRS)
Welstead, Jason; Crouse, Gilbert L., Jr.
2014-01-01
Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.
Newman Unit 1 advanced solar repowering advanced conceptual design. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-04-01
The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less
Life cycle cost modeling of conceptual space vehicles
NASA Technical Reports Server (NTRS)
Ebeling, Charles
1993-01-01
This paper documents progress to date by the University of Dayton on the development of a life cycle cost model for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of a life cycle cost model. Cost categories are initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. The focus will be on operations and maintenance costs and other recurring costs. Secondary tasks performed concurrent with the development of the life cycle costing model include continual support and upgrade of the R&M model. The primary result of the completed research will be a methodology and a computer implementation of the methodology to provide for timely cost analysis in support of the conceptual design activities. The major objectives of this research are: to obtain and to develop improved methods for estimating manpower, spares, software and hardware costs, facilities costs, and other cost categories as identified by NASA personnel; to construct a life cycle cost model of a space transportation system for budget exercises and performance-cost trade-off analysis during the conceptual and development stages; to continue to support modifications and enhancements to the R&M model; and to continue to assist in the development of a simulation model to provide an integrated view of the operations and support of the proposed system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.
1995-04-01
In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemicalmore » Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.« less
Lunar surface transportation systems conceptual design lunar base systems study Task 5.2
NASA Technical Reports Server (NTRS)
1988-01-01
Conceptual designs for three categories of lunar surface transportation were described. The level of understanding for the capabilities and design approach varies between the vehicles representing these categories. A summary of the vehicle categories and current state of conceptual design is provided. Finally, a brief evaluation and discussion is provided for a systematic comparison of transportation categories and effectiveness in supporting transportation objectives.
Preliminary design notes on a low F-number EMR
NASA Technical Reports Server (NTRS)
Mihora, D. J.
1982-01-01
Conceptual design studies were completed on a new Electrostatic Membrane Reflector, EMR. This new model incorporates both a preformed, curved membrane reflector and membrane control surface. This improved model is the second step toward a high precision large space antenna that could eventually exhibit a performance in terms of aperture diameter to surface quality exceeding 1,000,000. Design trades indicate that the goal of a low ratio of focal length to aperture diameter (f sub n) can be achieved while operating in a humid sea-level environment. A nominal surface quality of 1.0 mm (RMS) is possible using available off-the-shelf commercial membranes. Both the membrane reflector and control electrode surface are fabricated from 12 gore segments and attached to the available 12 sided, 4.88 m diameter rim. The preferred conceptual design has a f sub n = 1.0. The 4.88 m aperture is performed with a centerline displacement of 0.306 m. The nominal spacing between the membrane reflector and the electrode control surface is 50.8 mm. The centerline membrane displacement from its performed to its tensioned, smooth shape is about 3 mm. The membrane tensioning is achieved by application of an electrostatic pressure of 2.6 N/sq cm and a voltage of about 38 kV.
IDEAS: A multidisciplinary computer-aided conceptual design system for spacecraft
NASA Technical Reports Server (NTRS)
Ferebee, M. J., Jr.
1984-01-01
During the conceptual development of advanced aerospace vehicles, many compromises must be considered to balance economy and performance of the total system. Subsystem tradeoffs may need to be made in order to satisfy system-sensitive attributes. Due to the increasingly complex nature of aerospace systems, these trade studies have become more difficult and time-consuming to complete and involve interactions of ever-larger numbers of subsystems, components, and performance parameters. The current advances of computer-aided synthesis, modeling and analysis techniques have greatly helped in the evaluation of competing design concepts. Langley Research Center's Space Systems Division is currently engaged in trade studies for a variety of systems which include advanced ground-launched space transportation systems, space-based orbital transfer vehicles, large space antenna concepts and space stations. The need for engineering analysis tools to aid in the rapid synthesis and evaluation of spacecraft has led to the development of the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design system. The ADEAS system has been used to perform trade studies of competing technologies and requirements in order to pinpoint possible beneficial areas for research and development. IDEAS is presented as a multidisciplinary tool for the analysis of advanced space systems. Capabilities range from model generation and structural and thermal analysis to subsystem synthesis and performance analysis.
Mazurek Melnyk, Bernadette
2013-01-01
Abstract Background The transition to hospice care is a stressful experience for caregivers, who report high anxiety, unpreparedness, and lack of confidence. These sequelae are likely explained by the lack of an accurate cognitive schema, not knowing what to expect or how to help their loved one. Few interventions exist for this population and most do not measure preparedness, confidence, and anxiety using a schema building a conceptual framework for a new experience. Objective The purpose of this study was to test the feasibility and preliminary effects of an intervention program, Education and Skill building Intervention for Caregivers of Hospice patients (ESI-CH), using an innovative conceptual design that targets cognitive schema development and basic skill building for caregivers of loved ones newly admitted to hospice services. Design A pre-experimental one-group pre- and post-test study design was used. Eighteen caregivers caring for loved ones in their homes were recruited and twelve completed the pilot study. Depression, anxiety, activity restriction, preparedness, and beliefs/confidence were measured. Results Caregivers reported increased preparedness, more helpful beliefs, and more confidence about their ability to care for their loved one. Preliminary trends suggested decreased anxiety levels for the intervention group. Caregivers who completed the intervention program rated the program very good or excellent, thought the information was helpful and timely, and would recommend it to friends. Conclusions Results show promise that the ESI-CH program may assist as an evidence-based program to support caregivers in their role as a caregiver to a newly admitted hospice patient. PMID:23384244
Enabling Rapid Naval Architecture Design Space Exploration
NASA Technical Reports Server (NTRS)
Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri
2011-01-01
Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.
NASA Astrophysics Data System (ADS)
Rotjanakunnatam, Boonthida; Chayaburakul, Kanokporn
2018-01-01
The aims of this research study was to develop the conceptual instructional design with the Inquiry-Based Instruction Model (IBIM) of secondary students at the 10th grade level on Digestion System and Cellular Degradation issue using both oxygen and oxygen-degrading cellular nutrients were designed instructional model with a sample size of 45 secondary students at the 10th Grade level. Data were collected by asking students to do a questionnaire pre and post learning processes. The questionnaire consists of two main parts that composed of students' perception questionnaire and the questionnaire that asked the question answer concept for the selected questionnaire. The 10-item Conceptual Thinking Test (CTT) was assessed students' conceptual thinking evaluation that it was covered in two main concepts, namely; Oxygen degradation nutrients and degradation nutrients without oxygen. The data by classifying students' answers into 5 groups and measuring them in frequency and a percentage of students' performances of their learning pre and post activities with the Inquiry-Based Instruction Model were analyzed as a tutorial. The results of this research found that: After the learning activities with the IBIM, most students developed concepts of both oxygen and oxygen-degrading cellular nutrients in the correct, complete and correct concept, and there are a number of students who have conceptual ideas in the wrong concept, and no concept was clearly reduced. However, the results are still found that; some students have some misconceptions, such as; the concept of direction of electron motion and formation of the ATP of bioactivities of life. This cause may come from the nature of the content, the complexity, the continuity, the movement, and the time constraints only in the classroom. Based on this research, it is suggested that some students may take some time, and the limited time in the classroom to their learning activity with content creation content binding and dramatic storytelling increases in a relaxed classroom learning environment.
A taxometric study of hypochondriasis symptoms.
Longley, Susan L; Broman-Fulks, Joshua J; Calamari, John E; Noyes, Russell; Wade, Michael; Orlando, Carissa M
2010-12-01
Hypochondriasis has been conceptualized as both a distinct category that is characterized by a disabling illness preoccupation and as a continuum of health concerns. Empirical support for one of these theoretical models will clarify inconsistent assessment approaches and study designs that have impeded theory and research. To facilitate progress, taxometric analyses were conducted to determine whether hypochondriasis is best understood as a discrete category, consistent with the DSM, or as a dimensional entity, consistent with prevailing opinion and most self-report measures. Data from a large undergraduate sample that completed 3 hypochondriasis symptom measures were factor analyzed. The 4 factor analytically derived symptom indicators were then used in these taxometric analyses. Consistent with our hypotheses and existing theory, results supported a dimensional structure for hypochondriasis. Implications for the conceptualization of hypochondriasis and directions for future study are discussed. Copyright © 2010. Published by Elsevier Ltd.
Composing the theme of city to be diverse and sustainable
NASA Astrophysics Data System (ADS)
Wiranegara, H. W.
2018-01-01
To give a path for developing a city needs a theme. City’s goal stated in a document of a spatial plan were too broad and insufficient detail in giving a direction. To make more detail and precise, every city has to compose a city theme. It is developed based on the potential, the uniqueness, the excellence, and the sustainability of its human resources, natural resources, and man-made resources. An integration among the three of resources which have the highest score become a theme of the city. The aim of this research was to formulate the conceptual framework to compose a city theme. The research design was the interview survey in Banda Aceh, Banjarmasin, and Kupang. Informants were the government officials, academics, figures, the private sector and public who considered related to the intended information being collected. Having set the conceptual framework, the interview directed to check the implementation in realities. The result was that the conceptual framework could accommodate the phenomenon of composing the theme of the city. Yet, it was a preliminary in nature and needed more research to get a complete result.
ERIC Educational Resources Information Center
Echeverria, Alejandro; Barrios, Enrique; Nussbaum, Miguel; Amestica, Matias; Leclerc, Sandra
2012-01-01
Computer simulations combined with games have been successfully used to teach conceptual physics. However, there is no clear methodology for guiding the design of these types of games. To remedy this, we propose a structured methodology for the design of conceptual physics games that explicitly integrates the principles of the intrinsic…
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.
Propulsion requirements for reusable single-stage-to-orbit rocket vehicles
NASA Astrophysics Data System (ADS)
Stanley, Douglas O.; Engelund, Walter C.; Lepsch, Roger
1994-05-01
The conceptual design of a single-stage-to-orbit (SSTO) vehicle using a wide variety of evolutionary technologies has recently been completed as a part of NASA's Advanced Manned Launch System (AMLS) study. The employment of new propulsion system technologies is critical to the design of a reasonably sized, operationally efficient SSTO vehicle. This paper presents the propulsion system requirements identified for this near-term AMLS SSTO vehicle. Sensitivities of the vehicle to changes in specific impulse and sea-level thrust-to-weight ratio are examined. The results of a variety of vehicle/propulsion system trades performed on the near-term AMLS SSTO vehicle are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.E.
Many robotic operations, e.g., mapping, scanning, feature following, etc., require accurate surface following of arbitrary targets. This paper presents a versatile surface following and mapping system designed to promote hardware, software and application independence, modular development, and upward expandability. These goals are met by: a full, a priori specification of the hardware and software interfaces; a modular system architecture; and a hierarchical surface-data analysis method, permitting application specific tuning at each conceptual level of topological abstraction. This surface following system was fully designed and independently of any specific robotic host, then successfully integrated with and demonstrated on a completely amore » priori unknown, real-time robotic system. 7 refs.« less
The status and road map of Turkish Accelerator Center (TAC)
NASA Astrophysics Data System (ADS)
Yavaş, Ö.
2012-02-01
Turkish Accelerator Center (TAC) project is supported by the State Planning Organization (SPO) of Turkey and coordinated by Ankara University. After having completed the Feasibility Report (FR) in 2000 and the Conceptual Design Report (CDR) in 2005, third phase of the project started in 2006 as an inter-universities project including ten Turkish Universities with the support of SPO. Third phase of the project has two main scientific goals: to prepare the Technical Design Report (TDR) of TAC and to establish an Infrared Free Electron Laser (IR FEL) facility, named as Turkish Accelerator and Radiation Laboratory at Ankara (TARLA) as a first step. The facility is planned to be completed in 2015 and will be based on 15-40 MeV superconducting linac. In this paper, main aims, national and regional importance, main parts main parameters, status and road map of Turkish Accelerator Center will be presented.
Occupational Injury and Illness Surveillance: Conceptual Filters Explain Underreporting
Azaroff, Lenore S.; Levenstein, Charles; Wegman, David H.
2002-01-01
Occupational health surveillance data are key to effective intervention. However, the US Bureau of Labor Statistics survey significantly underestimates the incidence of work-related injuries and illnesses. Researchers supplement these statistics with data from other systems not designed for surveillance. The authors apply the filter model of Webb et al. to underreporting by the Bureau of Labor Statistics, workers’ compensation wage-replacement documents, physician reporting systems, and medical records of treatment charged to workers’ compensation. Mechanisms are described for the loss of cases at successive steps of documentation. Empirical findings indicate that workers repeatedly risk adverse consequences for attempting to complete these steps, while systems for ensuring their completion are weak or absent. PMID:12197968
Data management in an object-oriented distributed aircraft conceptual design environment
NASA Astrophysics Data System (ADS)
Lu, Zhijie
In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the distributed object-oriented framework. By overcoming the shortcomings of the traditional approach of modeling aircraft conceptual design data, this data model makes it possible to capture specific detailed information of aircraft conceptual design without sacrificing generality, which is one of the most desired features of a data model for aircraft conceptual design. Based upon this data model, a prototype of the data management system, which is one of the fundamental building blocks of the NextADE, is implemented utilizing the state of the art information technologies. Using a general-purpose integration software package to demonstrate the efficacy of the proposed framework and the data management system, the NextADE is initially implemented by integrating the prototype of the data management system with other building blocks of the design environment, such as disciplinary analyses programs and mission analyses programs. As experiments, two case studies are conducted in the integrated design environments. One is based upon a simplified conceptual design of a notional conventional aircraft; the other is a simplified conceptual design of an unconventional aircraft. As a result of the experiments, the proposed framework and the data management approach are shown to be feasible solutions to the research problems.
30 CFR 250.294 - May I combine the Conceptual Plan and the DWOP?
Code of Federal Regulations, 2012 CFR
2012-07-01
... Information Deepwater Operations Plan (dwop) § 250.294 May I combine the Conceptual Plan and the DWOP? If your development project meets the following criteria, you may submit a combined Conceptual Plan/DWOP on or before... production or completion technology for which you have obtained approval previously. ...
30 CFR 250.294 - May I combine the Conceptual Plan and the DWOP?
Code of Federal Regulations, 2014 CFR
2014-07-01
... Information Deepwater Operations Plan (dwop) § 250.294 May I combine the Conceptual Plan and the DWOP? If your development project meets the following criteria, you may submit a combined Conceptual Plan/DWOP on or before... production or completion technology for which you have obtained approval previously. ...
30 CFR 250.294 - May I combine the Conceptual Plan and the DWOP?
Code of Federal Regulations, 2013 CFR
2013-07-01
... Information Deepwater Operations Plan (dwop) § 250.294 May I combine the Conceptual Plan and the DWOP? If your development project meets the following criteria, you may submit a combined Conceptual Plan/DWOP on or before... production or completion technology for which you have obtained approval previously. ...
Facilitating Students' Conceptual Change and Scientific Reasoning Involving the Unit of Combustion
ERIC Educational Resources Information Center
Lee, Chin-Quen; She, Hsiao-Ching
2010-01-01
This article reports research from a 3 year digital learning project to unite conceptual change and scientific reasoning in the learning unit of combustion. One group of students had completed the course combining conceptual change and scientific reasoning. The other group of students received conventional instruction. In addition to the…
NASA Technical Reports Server (NTRS)
1989-01-01
The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.
Study of aerodynamic technology for single-cruise-engine VSTOL fighter/attack aircraft, phase 1
NASA Technical Reports Server (NTRS)
Foley, W. H.; Sheridan, A. E.; Smith, C. W.
1982-01-01
A conceptual design and analysis on a single engine VSTOL fighter/attack aircraft is completed. The aircraft combines a NASA/deHavilland ejector with vectored thrust and is capable of accomplishing the mission and point performance of type Specification 169, and a flight demonstrator could be built with an existing F101/DFE engine. The aerodynamic, aero/propulsive, and propulsive uncertainties are identified, and a wind tunnel program is proposed to address those uncertainties associated with wing borne flight.
Thermal Modeling and Cryogenic Design of a Helical Superconducting Undulator Cryostat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiroyanagi, Y.; Fuerst, J.; Hasse, Q.
A conceptual design for a helical superconducting undulator (HSCU) for the Advanced Photon Source (APS) at Argonne National Laboratory (ANL) has been completed. The device differs sufficiently from the existing APS planar superconducting undulator (SCU) design to warrant development of a new cryostat based on value engineering and lessons learned from the existing planar SCU. Changes include optimization of the existing cryocooler-based refrigeration system and thermal shield as well as cost reduction through the use of standard vacuum hardware. The end result is a design that provides significantly larger 4.2 K refrigeration margin in a smaller package for greater installationmore » flexibility in the APS storage ring. This paper presents ANSYS-based thermal analysis of the cryostat, including estimated static and dynamic« less
Design for Safety - The Ares Launch Vehicles Paradigm Change
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Maggio, Gaspare
2010-01-01
The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.
ERIC Educational Resources Information Center
Taber, Keith S.; Bricheno, Pat
2009-01-01
The present paper discusses the conceptual demands of an apparently straightforward task set to secondary-level students--completing chemical word equations with a single omitted term. Chemical equations are of considerable importance in chemistry, and school students are expected to learn to be able to write and interpret them. However, it is…
Use of theoretical and conceptual frameworks in qualitative research.
Green, Helen Elise
2014-07-01
To debate the definition and use of theoretical and conceptual frameworks in qualitative research. There is a paucity of literature to help the novice researcher to understand what theoretical and conceptual frameworks are and how they should be used. This paper acknowledges the interchangeable usage of these terms and researchers' confusion about the differences between the two. It discusses how researchers have used theoretical and conceptual frameworks and the notion of conceptual models. Detail is given about how one researcher incorporated a conceptual framework throughout a research project, the purpose for doing so and how this led to a resultant conceptual model. Concepts from Abbott (1988) and Witz ( 1992 ) were used to provide a framework for research involving two case study sites. The framework was used to determine research questions and give direction to interviews and discussions to focus the research. Some research methods do not overtly use a theoretical framework or conceptual framework in their design, but this is implicit and underpins the method design, for example in grounded theory. Other qualitative methods use one or the other to frame the design of a research project or to explain the outcomes. An example is given of how a conceptual framework was used throughout a research project. Theoretical and conceptual frameworks are terms that are regularly used in research but rarely explained. Textbooks should discuss what they are and how they can be used, so novice researchers understand how they can help with research design. Theoretical and conceptual frameworks need to be more clearly understood by researchers and correct terminology used to ensure clarity for novice researchers.
NASA Astrophysics Data System (ADS)
Décamp, N.; Viennot, L.
2015-08-01
This research documents the impact of a teaching interview aimed at developing a critical attitude in students, and focused on a particular topic: radiocarbon dating. This teaching interview is designed to observe students' reaction to limited written explanations of the phenomenon under study, and their possible frustration or intellectual satisfaction in relation to these texts. We aim to document the possible link between students' developing conceptual understanding of a topic and their ability to express their frustration when presented with very incomplete explanations, or their intellectual satisfaction when presented with complete explanation. As a side product, we intend to observe some of their a priori ideas concerning this topic. Ten teaching interviews conducted with fourth-year University students were recorded, transcribed and coded. Beyond a series of results concerning students' a priori understanding of the domain, the analysis of the interviews suggests that, when students are presented with texts of increasing completeness and discuss these with the interviewer, their critical reactions evolve in time in a very specific way. We propose a tentative model for this co-evolution of student conceptual command and critical stance. The discussion bears on possible interpretations for the 'anesthesia of judgment' observed in most students at the beginning of the interview, and for a few of them throughout the discussion. Keeping in mind the 'competence vs concepts' current alternative, the conditions that seem to free students' critical potential are analyzed in relation to their evolving command of the topic and their degree of intellectual satisfaction.
Management of the Cs/Sr Capsule Project at the Hanford Site. Technology Readiness Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Federal Project Director (FPD) for the U.S. Department of Energy (DOE), Richland Operations Office (RL) Waste Management and D&D Division (WMD) requested a Technology Readiness Assessment (TRA) for the Management of the Cesium/Strontium Capsule Storage Project (MCSCP) at the Waste Encapsulation and Storage Facility (WESF) on the Hanford Site in Washington State. The MCSCP CD-1 TRA was performed by a team selected in collaboration between the Office of Environmental Management (EM) Chief Engineer (EM-3.3) and RL, WMD FPD. The TRA Team included subject matter and technical experts having experience in cask storage, process engineering, and system design who weremore » independent of the MCSCP, and the team was led by the Director of Operations and Processes from the EM Chief Engineer's Office (EM-3.32). Movement of the Cs/Sr capsules to dry storage, based on information from the conceptual design, involves (1) capsule packaging, (2) capsule transfer, and (3) capsule storage. The project has developed a conceptual process, described in 30059-R-02, "NAC Conceptual Design Report for the Management of the Cesium and Strontium Capsules Project", which identifies the five major activities in the process to complete the transfer from storage pool to pad-mounted cask storage. The process, shown schematically in Figure 1, is comprised of the following process steps: (1) loading capsules into the UCS; (2) UCS processing; (3) UCS insertion into the TSC Basket; (4) cask transport from WESF to CSA and (5) extended storage at the CSA.« less
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1990-01-01
Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1968-12-12
The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.
Lunar base launch and landing facility conceptual design, 2nd edition
NASA Technical Reports Server (NTRS)
1988-01-01
This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.
Handling Qualities Optimization for Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Theodore, Colin R.; Berger, Tom
2016-01-01
Over the past decade, NASA, under a succession of rotary-wing programs has been moving towards coupling multiple discipline analyses in a rigorous consistent manner to evaluate rotorcraft conceptual designs. Handling qualities is one of the component analyses to be included in a future NASA Multidisciplinary Analysis and Optimization framework for conceptual design of VTOL aircraft. Similarly, the future vision for the capability of the Concept Design and Assessment Technology Area (CD&A-TA) of the U.S Army Aviation Development Directorate also includes a handling qualities component. SIMPLI-FLYD is a tool jointly developed by NASA and the U.S. Army to perform modeling and analysis for the assessment of flight dynamics and control aspects of the handling qualities of rotorcraft conceptual designs. An exploration of handling qualities analysis has been carried out using SIMPLI-FLYD in illustrative scenarios of a tiltrotor in forward flight and single-main rotor helicopter at hover. Using SIMPLI-FLYD and the conceptual design tool NDARC integrated into a single process, the effects of variations of design parameters such as tail or rotor size were evaluated in the form of margins to fixed- and rotary-wing handling qualities metrics as well as the vehicle empty weight. The handling qualities design margins are shown to vary across the flight envelope due to both changing flight dynamic and control characteristics and changing handling qualities specification requirements. The current SIMPLI-FLYD capability and future developments are discussed in the context of an overall rotorcraft conceptual design process.
Zeng, Liang; Proctor, Robert W; Salvendy, Gavriel
2011-06-01
This research is intended to empirically validate a general model of creative product and service development proposed in the literature. A current research gap inspired construction of a conceptual model to capture fundamental phases and pertinent facilitating metacognitive strategies in the creative design process. The model also depicts the mechanism by which design creativity affects consumer behavior. The validity and assets of this model have not yet been investigated. Four laboratory studies were conducted to demonstrate the value of the proposed cognitive phases and associated metacognitive strategies in the conceptual model. Realistic product and service design problems were used in creativity assessment to ensure ecological validity. Design creativity was enhanced by explicit problem analysis, whereby one formulates problems from different perspectives and at different levels of abstraction. Remote association in conceptual combination spawned more design creativity than did near association. Abstraction led to greater creativity in conducting conceptual expansion than did specificity, which induced mental fixation. Domain-specific knowledge and experience enhanced design creativity, indicating that design can be of a domain-specific nature. Design creativity added integrated value to products and services and positively influenced customer behavior. The validity and value of the proposed conceptual model is supported by empirical findings. The conceptual model of creative design could underpin future theory development. Propositions advanced in this article should provide insights and approaches to facilitate organizations pursuing product and service creativity to gain competitive advantage.
NASA Technical Reports Server (NTRS)
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.
ERIC Educational Resources Information Center
Viennot, Laurence; Décamp, Nicolas
2016-01-01
This investigation is focused on possible links between the development of critical attitude and conceptual understanding. We conducted a fine grained analysis of five student teachers' critical and conceptual development during a one hour and a half interaction with an expert. This investigation completes a series of three previous studies…
Conceptual Design Oriented Wing Structural Analysis and Optimization
NASA Technical Reports Server (NTRS)
Lau, May Yuen
1996-01-01
Airplane optimization has always been the goal of airplane designers. In the conceptual design phase, a designer's goal could be tradeoffs between maximum structural integrity, minimum aerodynamic drag, or maximum stability and control, many times achieved separately. Bringing all of these factors into an iterative preliminary design procedure was time consuming, tedious, and not always accurate. For example, the final weight estimate would often be based upon statistical data from past airplanes. The new design would be classified based on gross characteristics, such as number of engines, wingspan, etc., to see which airplanes of the past most closely resembled the new design. This procedure works well for conventional airplane designs, but not very well for new innovative designs. With the computing power of today, new methods are emerging for the conceptual design phase of airplanes. Using finite element methods, computational fluid dynamics, and other computer techniques, designers can make very accurate disciplinary-analyses of an airplane design. These tools are computationally intensive, and when used repeatedly, they consume a great deal of computing time. In order to reduce the time required to analyze a design and still bring together all of the disciplines (such as structures, aerodynamics, and controls) into the analysis, simplified design computer analyses are linked together into one computer program. These design codes are very efficient for conceptual design. The work in this thesis is focused on a finite element based conceptual design oriented structural synthesis capability (CDOSS) tailored to be linked into ACSYNT.
Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps
ERIC Educational Resources Information Center
Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa
2013-01-01
Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…
Results from conceptual design study of potential early commercial MHD/steam power plants
NASA Technical Reports Server (NTRS)
Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.
1981-01-01
This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.
Woodward, Andrea; Beever, Erik A.
2011-01-01
More than 31 million hectares of land are protected and managed in 16 refuges by the U.S. Fish and Wildlife Service (USFWS) in Alaska. The vastness and isolation of Alaskan refuges give rise to relatively intact and complete ecosystems. The potential for these lands to provide habitat for trust species is likely to be altered, however, due to global climate change, which is having dramatic effects at high latitudes. The ability of USFWS to effectively manage these lands in the future will be enhanced by a regional inventory and monitoring program that integrates and supplements monitoring currently being implemented by individual refuges. Conceptual models inform monitoring programs in a number of ways, including summarizing important ecosystem components and processes as well as facilitating communication, discussion and debate about the nature of the system and important management issues. This process can lead to hypotheses regarding future changes, likely results of alternative management actions, identification of monitoring indicators, and ultimately, interpretation of monitoring results. As a first step towards developing a monitoring program, the 16 refuges in Alaska each created a conceptual model of their refuge and the landscape context. Models include prominent ecosystem components, drivers, and processes by which components are linked or altered. The Alaska refuge system also recognizes that designing and implementing monitoring at regional and ecoregional extents has numerous scientific, fiscal, logistical, and political advantages over monitoring conducted exclusively at refuge-specific scales. Broad-scale monitoring is particularly advantageous for examining phenomena such as climate change because effects are best interpreted at broader spatial extents. To enable an ecoregional perspective, a rationale was developed for deriving ecoregional boundaries for four ecoregions (Polar, Interior Alaska, Bering Coast, and North Pacific Coast) from the Unified Ecoregions of Alaska. Ecoregional models were then developed to illustrate resources and processes that operate at spatial scales larger than individual refuges within each ecoregion. Conceptual models also were developed for adjacent marine areas, designated as the North Pacific, Bering Sea, and Beaufort-Chukchi Sea Marine Ecoregions. Although many more conceptual models will be required to support development of a regional monitoring program, these definitions of ecoregions and associated conceptual models are an important foundation.
Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seokho H; Berry, Jan
U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclearmore » pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.« less
NASA Astrophysics Data System (ADS)
Torres, Y.; Escalante, M. P.
2009-04-01
This work illustrates the advantages of using a Geographic Information System in a cooperative project with researchers of different countries, such as the RESIS II project (financed by the Norwegian Government and managed by CEPREDENAC) for seismic hazard assessment of Central America. As input data present different formats, cover distinct geographical areas and are subjected to different interpretations, data inconsistencies may appear and their management get complicated. To achieve data homogenization and to integrate them in a GIS, it is required previously to develop a conceptual model. This is accomplished in two phases: requirements analysis and conceptualization. The Unified Modeling Language (UML) is used to compose the conceptual model of the GIS. UML complies with ISO 19100 norms and allows the designer defining model architecture and interoperability. The GIS provides a frame for the combination of large geographic-based data volumes, with an uniform geographic reference and avoiding duplications. All this information contains its own metadata following ISO 19115 normative. In this work, the integration in the same environment of active faults and subduction slabs geometries, combined with the epicentres location, has facilitated the definition of seismogenetic regions. This is a great support for national specialists of different countries to make easier their teamwork. The GIS capacity for making queries (by location and by attributes) and geostatistical analyses is used to interpolate discrete data resulting from seismic hazard calculations and to create continuous maps as well as to check and validate partial results of the study. GIS-based products, such as complete, homogenised databases and thematic cartography of the region, are distributed to all researchers, facilitating cross-national communication, the project execution and results dissemination.
NASA Astrophysics Data System (ADS)
Omoragbon, Amen
Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.
Conceptual Chemical Process Design for Sustainability.
This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyse...
Conceptual and perceptual encoding instructions differently affect event recall.
García-Bajos, Elvira; Migueles, Malen; Aizpurua, Alaitz
2014-11-01
When recalling an event, people usually retrieve the main facts and a reduced proportion of specific details. The objective of this experiment was to study the effects of conceptually and perceptually driven encoding in the recall of conceptual and perceptual information of an event. The materials selected for the experiment were two movie trailers. To enhance the encoding instructions, after watching the first trailer participants answered conceptual or perceptual questions about the event, while a control group answered general knowledge questions. After watching the second trailer, all of the participants completed a closed-ended recall task consisting of conceptual and perceptual items. Conceptual information was better recalled than perceptual details and participants made more perceptual than conceptual commission errors. Conceptually driven processing enhanced the recall of conceptual information, while perceptually driven processing not only did not improve the recall of descriptive details, but also damaged the standard conceptual/perceptual recall relationship.
NASA Astrophysics Data System (ADS)
Miyajima, Hiroyuki; Yuhara, Naohiro
Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, J.H.; Im, C.J.
Under the sponsorship of DOE/METC, UCC Research completed a program in 1984 concerned with the development, testing, and manufacture of an ultra-clean coal-water mixture fuel using the UCC two-stage physical beneficiation and coal-water mixture preparation process. Several gallons of ultra-clean coal-water slurry produced at the UCC Research pilot facility was supplied to DOE/METC for combustion testing. The finalization of this project resulted in the presentation of a conceptual design and economic analysis of an ultra-clean coal-water mixture processing facility sufficient in size to continuously supply fuel to a 100 MW turbine power generation system. Upon completion of the above program,more » it became evident that substantial technological and economic improvement could be realized through further laboratory and engineering investigation of the UCC two-stage physical beneficiation process. Therefore, as an extension to the previous work, the purpose of the present program was to define the relationship between the controlling technical parameters as related to coal-water slurry quality and product price, and to determine the areas of improvement in the existing flow-scheme, associated cost savings, and the overall effect of these savings on final coal-water slurry price. Contents of this report include: (1) introduction; (2) process refinement (improvement of coal beneficiation process, different source coals and related cleanability, dispersants and other additives); (3) coal beneficiation and cost parametrics summary; (4) revised conceptual design and economic analysis; (5) operating and capital cost reduction; (6) conclusion; and (7) appendices. 24 figs., 12 tabs.« less
Engineering design activities and conceptual change in middle school science
NASA Astrophysics Data System (ADS)
Schnittka, Christine G.
The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative groups. One eighth-grade physical science teacher and her students participated in a unit on heat transfer and thermal energy. One class served as the control while two others received variations of an engineering design treatment. Data were gathered from teacher and student entrance and exit interviews, audio recordings of student dialog during group work, video recordings and observations of all classes, pre- and posttests on science content and engineering attitudes, and artifacts and all assignments completed by students. Qualitative and quantitative data were collected concurrently, but analysis took place in two phases. Qualitative data were analyzed in an ongoing manner so that the researcher could explore emerging theories and trends as the study progressed. These results were compared to and combined with the results of the quantitative data analysis. Analysis of the data was carried out in the interpretive framework of analytic induction. Findings indicated that students overwhelmingly possessed alternative conceptions about heat transfer, thermal energy, and engineering prior to the interventions. While all three classes made statistically significant gains in their knowledge about heat and energy, students in the engineering design class with the targeted demonstrations made the most significant gains over the other two other classes. Engineering attitudes changed significantly in the two classes that received the engineering design intervention. Implications from this study can inform teachers' use of engineering design activities in science classrooms. These implications are: (1) Alternative conceptions will persist when not specifically addressed. (2) Engineering design activities are not enough to promote conceptual change. (3) A middle school teacher can successfully implement an engineering design-based curriculum in a science class. (4) Results may also be of interest to science curriculum developers and engineering educators involved in developing engineering outreach curricula for middle school students.
SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARRO CA
2010-03-09
This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysismore » is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.« less
Reeder, Blaine; Hills, Rebecca A.; Turner, Anne M.; Demiris, George
2014-01-01
Objectives The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. Design and Sample We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Measures Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Results Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Conclusion Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. PMID:24117760
The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...
Design and Validation of the Quantum Mechanics Conceptual Survey
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…
Conceptual design of a laser fusion power plant. Part I. An integrated facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be requiredmore » for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost.« less
Reeder, Blaine; Hills, Rebecca A; Turner, Anne M; Demiris, George
2014-01-01
The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Ucar, Sedat
The purpose of this mixed methods study was to describe and understand preservice teachers' conceptions of tides and to explore an instructional strategy that might promote the learning of scientific concepts. The participants were preservice teachers in three initial licensure programs. A total of 80 graduate students, in secondary, middle, and early childhood education programs completed a multiple choice assessment of their knowledge of tides-related concepts. Thirty of the 80 participants were interviewed before the instruction. Nineteen of the 30 students who were interviewed also participated in the instruction and were interviewed after the instruction. These 19 students also completed both the pre-test and 18 of them completed the post-test on tides and related content. Data regarding the participants' conceptual understandings of tides were collected before and after the instruction using both qualitative and quantitative data collection methods. A multiple choice pre-test was developed by the researcher. The same test was used before and after the instructional intervention. Structured interviews were conducted with participants before and after instruction. In addition to interviews, participants were asked to write a short journal after instruction. The constant comparative method was used to analyze the qualitative data. Preservice teachers' conceptual understandings of tides were categorized under six different types of conceptual understandings. Before the instruction, all preservice teachers held alternative or alternative fragments as their types of conceptual understandings of tides, and these preservice teachers who held alternative conceptions about tides were likely to indicate that there is one tidal bulge on Earth. They tried to explain this one tidal bulge using various alternative conceptions. After completing an inquiry-based and technology-enhanced instruction of tides, preservice teachers were more likely to hold a scientific conceptual understanding. Also, after completion of the inquiry-based and technology-enhanced instruction, some preservice teachers were likely to continue to hold the conception that the rotation of the moon around the Earth during one 24-hour period causes the tides to move with the moon. The findings of the study provide evidence that inquiry-based and technology-enhanced instruction utilizing Web-based archived data sources can be used to promoting conceptual change among preservice teachers.
The methodology of database design in organization management systems
NASA Astrophysics Data System (ADS)
Chudinov, I. L.; Osipova, V. V.; Bobrova, Y. V.
2017-01-01
The paper describes the unified methodology of database design for management information systems. Designing the conceptual information model for the domain area is the most important and labor-intensive stage in database design. Basing on the proposed integrated approach to design, the conceptual information model, the main principles of developing the relation databases are provided and user’s information needs are considered. According to the methodology, the process of designing the conceptual information model includes three basic stages, which are defined in detail. Finally, the article describes the process of performing the results of analyzing user’s information needs and the rationale for use of classifiers.
Conceptualizations of clinical leadership: a review of the literature
Mianda, Solange; Voce, Anna S
2017-01-01
Introduction Poor patient outcomes in South African maternal health settings have been associated with inadequately performing health care providers and poor clinical leadership at the point of care. While skill deficiencies among health care providers have been largely addressed, the provision of clinical leadership has been neglected. In order to develop and implement initiatives to ensure clinical leadership among frontline health care providers, a need was identified to understand the ways in which clinical leadership is conceptualized in the literature. Design Using the systematic quantitative literature review, papers published between 2004 and 2016 were obtained from search engines (Google Scholar and EBSCOhost). Electronic databases (CINHAL, PubMed, Medline, Academic Search Complete, Health Source: Consumer, Health Source: Nursing/Academic, ScienceDirect and Ovid®) and electronic journals (Contemporary Nurse, Journal of Research in Nursing, Australian Journal of Nursing and Midwifery, International Journal of Clinical Leadership) were also searched. Results Using preselected inclusion criteria, 7256 citations were identified. After screening 230 potentially relevant full-text papers for eligibility, 222 papers were excluded because they explored health care leadership or clinical leadership among health care providers other than frontline health care providers. Eight papers met the inclusion criteria for the review. Most studies were conducted in high-income settings. Conceptualizations of clinical leadership share similarities with the conceptualizations of service leadership but differ in focus, with the intent of improving direct patient care. Clinical leadership can be a shared responsibility, performed by every competent frontline health care provider, regardless of the position in the health care system. Conclusion Conceptualizations of clinical leadership among frontline health care providers arise mainly from high-income settings. Understanding the influence of context on conceptualizations of clinical leadership in middle- and low-income settings may be required. PMID:29355250
Design Studios in Instructional Design and Technology: What Are the Possibilities?
ERIC Educational Resources Information Center
Knowlton, Dave S.
2016-01-01
Design studios are an innovative way to educate Instructional Design and Technology (IDT) students. This article begins by addressing literature about IDT design studios. One conclusion from this literature is that IDT studios have been theoretically conceptualized. However, much of this conceptualization is insular to the field of IDT and only…
AI applications to conceptual aircraft design
NASA Technical Reports Server (NTRS)
Chalfan, Kathryn M.
1990-01-01
This paper presents in viewgraph form several applications of artificial intelligence (AI) to the conceptual design of aircraft, including: an access manager for automated data management, AI techniques applied to optimization, and virtual reality for scientific visualization of the design prototype.
NASA Technical Reports Server (NTRS)
Hansen, Jeff L.
2000-01-01
A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.
Model-based Systems Engineering: Creation and Implementation of Model Validation Rules for MOS 2.0
NASA Technical Reports Server (NTRS)
Schmidt, Conrad K.
2013-01-01
Model-based Systems Engineering (MBSE) is an emerging modeling application that is used to enhance the system development process. MBSE allows for the centralization of project and system information that would otherwise be stored in extraneous locations, yielding better communication, expedited document generation and increased knowledge capture. Based on MBSE concepts and the employment of the Systems Modeling Language (SysML), extremely large and complex systems can be modeled from conceptual design through all system lifecycles. The Operations Revitalization Initiative (OpsRev) seeks to leverage MBSE to modernize the aging Advanced Multi-Mission Operations Systems (AMMOS) into the Mission Operations System 2.0 (MOS 2.0). The MOS 2.0 will be delivered in a series of conceptual and design models and documents built using the modeling tool MagicDraw. To ensure model completeness and cohesiveness, it is imperative that the MOS 2.0 models adhere to the specifications, patterns and profiles of the Mission Service Architecture Framework, thus leading to the use of validation rules. This paper outlines the process by which validation rules are identified, designed, implemented and tested. Ultimately, these rules provide the ability to maintain model correctness and synchronization in a simple, quick and effective manner, thus allowing the continuation of project and system progress.
Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design
NASA Technical Reports Server (NTRS)
Wesley, R. W.; Waineo, D. K.; Barton, C. R.; Love, A. W.
1975-01-01
A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements.
NASA Astrophysics Data System (ADS)
Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team
2017-11-01
We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.
Advanced subsystems development
NASA Technical Reports Server (NTRS)
Livingston, F. R.
1978-01-01
The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15 kWe Stirling-cycle engine/alternator with constant power output; (2) 10 meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800 C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability.
Terrain following of arbitrary surfaces using a high intensity LED proximity sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.E.
1992-01-01
Many robotic operations, e.g., mapping, scanning, feature following, etc., require accurate surface following of arbitrary targets. This paper presents a versatile surface following and mapping system designed to promote hardware, software and application independence, modular development, and upward expandability. These goals are met by: a full, a priori specification of the hardware and software interfaces; a modular system architecture; and a hierarchical surface-data analysis method, permitting application specific tuning at each conceptual level of topological abstraction. This surface following system was fully designed and independently of any specific robotic host, then successfully integrated with and demonstrated on a completely amore » priori unknown, real-time robotic system. 7 refs.« less
NASA Technical Reports Server (NTRS)
Armstrong, Karem; Mcadams, Daniel A.; Norrell, Jeffery L.
1992-01-01
The National Aeronautics and Space Administration (NASA) in conjunction with Universities Space Research Association (USRA) has requested that the feasibility of a fleet of regolith tossing devices designed to cover a lunar habitat for radiation protection be demonstrated. The regolith, or lunar soil, protects the lunar habitat and its inhabitants from radiation. Ideally, the device will operate autonomously in the lunar environment. To prove the feasibility of throwing regolith on the Moon, throwing solutions were compared to traditional, Earth-based methods for moving soil. Various throwing configurations were investigated. A linear throwing motion combined with a spring and motor energizing system proved a superior solution. Three different overall configurations for the lunar device are presented. A single configuration is chosen and critical parameters such as operating procedure, system volume, mass, and power are developed. The report is divided into seven main sections. First, the Introduction section gives background information, defines the project requirements and the design criteria, and presents the methodology used for the completion of this design. Next, the Preliminary Analysis section presents background information on characteristics of lunar habitats and the lunar environment. Then, the Alternate Designs section presents alternate solutions to each of the critical functions of the device. Fourth, a detailed analysis of throwing the regolith is done to demonstrate its feasibility. Then, the three overall design configurations are presented. Next, a configuration is selected and the conceptual design is expanded to include system performance characteristics, size, and mass. Finally, the Conclusions and Recommendations for Future Work section evaluates the design, outlines the next step to be taken in the design process, and suggests possible goals for future design work.
NASA Astrophysics Data System (ADS)
Rebuffi, Luca; Sanchez del Rio, Manuel
2017-08-01
In the next years most of the major synchrotron radiation facilities around the world will upgrade to 4th-generation Diffraction Limited Storage Rings using multi-bend-achromat technology. Moreover, several Free Electron Lasers are ready-to-go or in phase of completion. These events represent a huge challenge for the optics physicists responsible of designing and calculating optical systems capable to exploit the revolutionary characteristics of the new photon beams. Reliable and robust beamline design is nowadays based on sophisticated computer simulations only possible by lumping together different simulation tools. The OASYS (OrAnge SYnchrotron Suite) suite drives several simulation tools providing new mechanisms of interoperability and communication within the same software environment. OASYS has been successfully used during the conceptual design of many beamline and optical designs for the ESRF and Elettra- Sincrotrone Trieste upgrades. Some examples are presented showing comparisons and benchmarking of simulations against calculated and experimental data.
Learning to Deflect: Conceptual Change in Physics during Digital Game Play
ERIC Educational Resources Information Center
Sengupta, Pratim; Krinks, Kara D.; Clark, Douglas B.
2015-01-01
How does deep conceptual change occur when students play well-designed educational games? To answer this question, we present a case study in the form of a microgenetic analysis of a student's processes of knowledge construction as he played a conceptually-integrated digital game (SURGE Next) designed to support learning about Newtonian mechanics.…
NASA Technical Reports Server (NTRS)
Sager, R. E.; Cox, D. W.
1983-01-01
Various conceptual designs for the secondary mirror actuator system to be used in the Shuttle Infrared Telescope Facility (SIRTF) were evaluated. In addition, a set of design concepts was developed to assist in the solution of problems crucial for optimum performance of the secondary mirror actuator system. A specific conceptual approach was presented along with a plan for developing that approach and identifying issues of critical importance in the developmental effort.
NASA Technical Reports Server (NTRS)
1986-01-01
The conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are highlighted. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or Follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSRF to the FOC LSRF.
Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 2
NASA Technical Reports Server (NTRS)
Magee, J. P.; Clark, R.; Alexander, H. R.
1974-01-01
Results of conceptual design studies of tilt rotor and tandem helicopter aircraft for a 200 nautical mile commercial short haul transport mission are presented. The trade study data used in selecting the design point aircraft and technology details necessary to support the design conclusions are included.
Development and fabrication of structural components for a scramjet engine
NASA Technical Reports Server (NTRS)
Buchmann, O. A.
1990-01-01
A program broadly directed toward design and development of long-life (100 hours and 1,000 cycles with a goal of 1,000 hours and 10,000 cycles) hydrogen-cooled structures for application to scramjets is presented. Previous phases of the program resulted in an overall engine design and analytical and experimental characterization of selected candidate materials and concepts. The latter efforts indicated that the basic life goals for the program can be reached with available means. The main objective of this effort was an integrated, experimental evaluation of the results of the previous program phases. The fuel injection strut was selected for this purpose, including fabrication development and fabrication of a full-scale strut. Testing of the completed strut was to be performed in a NASA-Langley wind tunnel. In addition, conceptual designs were formulated for a heat transfer test unit and a flat panel structural test unit. Tooling and fabrication procedures required to fabricate the strut were developed, and fabrication and delivery to NASA of all strut components, including major subassemblies, were completed.
The Iodine Spectrum: A New Look at an Old Topic
NASA Astrophysics Data System (ADS)
Long, George; Sauder, Deborah; Shalhoub, George M.; Stout, Roland; Hamby Towns, Marcy; Zielinski, Theresa Julia
1999-06-01
This paper describes a new approach to the traditional iodine gas absorption spectrum experiment often performed in undergraduate physical chemistry labs. The approach is student centered and designed to emphasize the conceptual richness in this classic experiment. It gives students the opportunity to examine the conceptual and mathematical connections between spectroscopic data and quantum models by organizing the material in conceptual chunks, which they work through sequentially. Students use symbolic mathematics software, Mathcad, to expedite the sophisticated numerical calculations required. The curricular chunks were specifically constructed to make the sophisticated concepts embedded in the project accessible. The focus activities remind the students of information they already know and require them to employ both paper and pencil and computer worksheets to complete calculations. Five Mathcad templates provide a rich mathematical treatment of the topics in this experiment. This paper describes how the documents MorsePotential.mcd, BirgeSponer.mcd, IodineSpectrum.mcd, FranckCondonBackground.mcd, and FranckCondonComputation.mcd are used during the three weeks in which this experiment can be performed by a typical physical chemistry student. Although originally designed to use the WWW to disseminate information and promote interaction among physical chemistry students at geographically dispersed institutions, this segmented focus-question approach to the iodine experiment has also been used by a physical chemistry class at a single campus. In both formats, faculty noticed decreased anxiety of the students towards the experiment and an increase in the quality of laboratory reports that indicated better understanding of the chemical concepts.
Modular biowaste monitoring system conceptual design
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-10-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysis production was completed tomore » produce lignin for co-fire testing and the lignin fuel was washed and dewatered. Both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation and co-firing. EERC has received coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio-based fuels is scheduled to begin in October of 2001. The TVA-Colbert facility has neared completion of the task to evaluate co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam.« less
Conceptual framework for behavioral and social science in HIV vaccine clinical research
Lau, Chuen-Yen; Swann, Edith M.; Singh, Sagri; Kafaar, Zuhayr; Meissner, Helen I.; Stansbury, James P.
2011-01-01
HIV vaccine clinical research occurs within a context where biomedical science and social issues are interlinked. Previous HIV vaccine research has considered behavioral and social issues, but often treated them as independent of clinical research processes. Systematic attention to the intersection of behavioral and social issues within a defined clinical research framework is needed to address gaps, such as those related to participation in trials, completion of trials, and the overall research experience. Rigorous attention to these issues at project inception can inform trial design and conduct by matching research approaches to the context in which trials are to be conducted. Conducting behavioral and social sciences research concurrent with vaccine clinical research is important because it can help identify potential barriers to trial implementation, as well as ultimate acceptance and dissemination of trial results. We therefore propose a conceptual framework for behavioral and social science in HIV vaccine clinical research and use examples from the behavioral and social science literature to demonstrate how the model can facilitate identification of significant areas meriting additional exploration. Standardized use of the conceptual framework could improve HIV vaccine clinical research efficiency and relevance. PMID:21821083
Conceptual framework for behavioral and social science in HIV vaccine clinical research.
Lau, Chuen-Yen; Swann, Edith M; Singh, Sagri; Kafaar, Zuhayr; Meissner, Helen I; Stansbury, James P
2011-10-13
HIV vaccine clinical research occurs within a context where biomedical science and social issues are interlinked. Previous HIV vaccine research has considered behavioral and social issues, but often treated them as independent of clinical research processes. Systematic attention to the intersection of behavioral and social issues within a defined clinical research framework is needed to address gaps, such as those related to participation in trials, completion of trials, and the overall research experience. Rigorous attention to these issues at project inception can inform trial design and conduct by matching research approaches to the context in which trials are to be conducted. Conducting behavioral and social sciences research concurrent with vaccine clinical research is important because it can help identify potential barriers to trial implementation, as well as ultimate acceptance and dissemination of trial results. We therefore propose a conceptual framework for behavioral and social science in HIV vaccine clinical research and use examples from the behavioral and social science literature to demonstrate how the model can facilitate identification of significant areas meriting additional exploration. Standardized use of the conceptual framework could improve HIV vaccine clinical research efficiency and relevance. Published by Elsevier Ltd.
Revising a conceptual model of partnership and sustainability in global health.
Upvall, Michele J; Leffers, Jeanne M
2018-05-01
Models to guide global health partnerships are rare in the nursing literature. The Conceptual Model for Partnership and Sustainability in Global Health while significant was based on Western perspectives. The purpose of this study was to revise the model to include the voice of nurses from low- and middle-resource countries. Grounded theory was used to maintain fidelity with the design in the original model. A purposive sample of 15 participants from a variety of countries in Africa, the Caribbean, and Southeast Asia and having extensive experience in global health partnerships were interviewed. Skype recordings and in-person interviews were audiotaped using the same questions as the original study. Theoretical coding and a comparison of results with the original study was completed independently by the researchers. The process of global health partnerships was expanded from the original model to include engagement processes and processes for ongoing partnership development. New concepts of Transparency, Expanded World View, and Accompaniment were included as well as three broad themes: Geopolitical Influence, Power differential/Inequities, and Collegial Friendships. The revised conceptual model embodies a more comprehensive model of global health partnerships with representation of nurses from low- and middle-resource countries. © 2018 Wiley Periodicals, Inc.
Block 2 Solid Rocket Motor (SRM) conceptual design study, volume 1
NASA Technical Reports Server (NTRS)
1986-01-01
Segmented and monolithic Solid Rocket Motor (SRM) design concepts were evaluated with emphasis on joints and seals. Particular attention was directed to eliminating deficiencies in the SRM High Performance Motor (HPM). The selected conceptual design is described and discussed.
Shuttle/tethered satellite system conceptual design study
NASA Technical Reports Server (NTRS)
1976-01-01
A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
ERIC Educational Resources Information Center
Lee, Heewon; Contento, Isobel R.; Koch, Pamela
2013-01-01
Objective: To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, "Choice, Control & Change", designed to promote dietary and physical activity behaviors that reduce obesity risk. Design: A process evaluation study based on a systematic conceptual model. Setting: Five…
Conceptual design of a synchronous Mars telecommunications satellite
NASA Technical Reports Server (NTRS)
Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.
1989-01-01
Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.
Prospective Teachers' Metaphorical Conceptualizations of Learner
ERIC Educational Resources Information Center
Saban, Ahmet
2010-01-01
This study investigated the metaphorical images that prospective teachers in Turkey formulated to describe learners. Participants (N = 2847) completed the prompt "A student is like ... because ..." to indicate their conceptualizations of learner. Data were analyzed both qualitatively and quantitatively. Altogether 98 well-articulated…
NASA Astrophysics Data System (ADS)
Javidi, Giti
2005-07-01
This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the qualitative research has uncovered several issues not explored by the quantitative research. It was concluded that incorporating the recommendations acquired from the qualitative research, especially elements of incorporating hardware experience to avoid lack of hands-on skills, into the laboratory pedagogy should help improve students' experience regardless of the environment in which the laboratory is conducted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, E.R.
1983-09-01
The solar central receiver technology, site, and specific unit for repowering were selected in prior analyses and studies. The objectives of this preliminary design study were to: develop a solar central receiver repowering design for Saguaro that (1) has potential to be economically competitive with fossil fueled plants in near and long term applications, (2) has the greatest chance for completion without further government funding, (3) will further define technical and economic feasibility of a 66 MWe gross size plant that is adequate to meet the requirements for utility and industrial process heat applications, (4) can potentially be constructed andmore » operated within the next five years, and (5) incorporates solar central receiver technology and represents state-of-the-art development. This volume on the preliminary design includes the following sections: executive summary; introduction; changes from advanced conceptual design; preliminary design; system characteristics; economic analysis; and development plan.« less
The Conceptual Design of the Magdalena Ridge Observatory Interferometer
NASA Astrophysics Data System (ADS)
Buscher, D. F.; Creech-Eakman, M.; Farris, A.; Haniff, C. A.; Young, J. S.
We describe the scientific motivation for and conceptual design of the Magdalena Ridge Observatory Interferometer, an imaging interferometer designed to operate at visible and near-infrared wavelengths. The rationale for the major technical decisions in the interferometer design is discussed, the success of the concept is appraised, and the implications of this analysis for the design of future arrays are drawn out.
Design considerations for fiber composite structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1972-01-01
An overview of the design methodology for designing structural components from fiber composites is presented. In particular, the need for new conceptual structural designs for the future is discussed and the evolution of conceptual design is illustrated. Sources of design data, analysis and design procedures, and the basic components of structural fiber composites are cited and described. Examples of tradeoff studies and optimum designs are discussed and a simple structure is described in some detail.
Shuttle mission simulator software conceptual design
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.
A CONCEPTUAL MODEL FOR MULTI-SCALAR ASSESSMENTS OF ESTUARINE ECOLOGICAL INTEGRITY
A conceptual model was developed that relates an estuarine system's anthropogenic inputs to it's ecological integrity. Ecological integrity is operationally defined as an emergent property of an ecosystem that exists when the structural components are complete and the functional ...
The Effects of Classic and Web-Designed Conceptual Change Texts on the Subject of Water Chemistry
ERIC Educational Resources Information Center
Tas, Erol; Gülen, Salih; Öner, Zeynep; Özyürek, Cengiz
2015-01-01
The purpose of this study is to research the effects of traditional and web-assisted conceptual change texts for the subject of water chemistry on the success, conceptual errors and permanent learning of students. A total of 37 8th graders in a secondary school of Samsun participated in this study which had a random experimental design with…
Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2013-01-01
Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.
Conceptual Learning in a Principled Design Problem Solving Environment
ERIC Educational Resources Information Center
Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.
2013-01-01
To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…
Designing Public Library Websites for Teens: A Conceptual Model
ERIC Educational Resources Information Center
Naughton, Robin Amanda
2012-01-01
The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in human-computer…
NASA Astrophysics Data System (ADS)
Prochaska, Travis; Sauseda, Marcus; Beck, James; Schmidt, Luke; Cook, Erika; DePoy, Darren L.; Marshall, Jennifer L.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Froning, Cynthia; Pak, Soojong; Mendes de Oliveira, Claudia; Papovich, Casey; Ji, Tae-Geun; Lee, Hye-In
2016-08-01
We describe a preliminary conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT). This paper describes the details of the GMACS optomechanical conceptual design, including the requirements and considerations leading to the design, mechanisms, optical mounts, and predicted flexure performance.
Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package
NASA Technical Reports Server (NTRS)
Smith, Brad; Williams, Neal; Miller, John; Ralston, Joe; Richardson, Jennifer; Moore, Walt; Doll, Dan; Maughan, Jeff; Hayes, Fred
1986-01-01
The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented.
Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.
The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are themore » MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.« less
Mars orbiter conceptual systems design study
NASA Technical Reports Server (NTRS)
Dixon, W.; Vogl, J.
1982-01-01
Spacecraft system and subsystem designs at the conceptual level to perform either of two Mars Orbiter missions, a Climatology Mission and an Aeronomy Mission were developed. The objectives of these missions are to obtain and return data.
Improvement of Automated POST Case Success Rate Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Zwack, Matthew R.; Dees, Patrick D.
2017-01-01
During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal [1]. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases [2]. Additional work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points [3]. The conclusion of the previous work illustrated the utility of the graph theory approach for completing a DOE through POST. However, this approach was still dependent upon the use of random repetitions to generate seed points for the graph. As noted in [3], only 8% of these random repetitions resulted in converged trajectories. This ultimately affects the ability of the random reps method to confidently approach the global optima for a given vehicle case in a reasonable amount of time. With only an 8% pass rate, tens or hundreds of thousands of reps may be needed to be confident that the best repetition is at least close to the global optima. However, typical design study time constraints require that fewer repetitions be attempted, sometimes resulting in seed points that have only a handful of successful completions. If a small number of successful repetitions are used to generate a seed point, the graph method may inherit some inaccuracies as it chains DOE cases from the non-global-optimal seed points. This creates inherent noise in the graph data, which can limit the accuracy of the resulting surrogate models. For this reason, the goal of this work is to improve the seed point generation method and ultimately the accuracy of the resulting POST surrogate model. The work focuses on increasing the case pass rate for seed point generation.
2013-04-01
demonstration test . 5.1 CONCEPTUAL EXPERIMENTAL DESIGN In concept, the active biobarrier approach involved the use of alternating extraction and injection...16 4.3 GROUNDWATER CHEMISTRY ....................................................................... 18 5.0 TEST DESIGN...20 5.1 CONCEPTUAL EXPERIMENTAL DESIGN
Conceptual designs study for a Personnel Launch System (PLS)
NASA Technical Reports Server (NTRS)
Wetzel, E. D.
1990-01-01
A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.
Design Oriented Structural Modeling for Airplane Conceptual Design Optimization
NASA Technical Reports Server (NTRS)
Livne, Eli
1999-01-01
The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.
Information Leakage from Logically Equivalent Frames
ERIC Educational Resources Information Center
Sher, Shlomi; McKenzie, Craig R. M.
2006-01-01
Framing effects are said to occur when equivalent frames lead to different choices. However, the equivalence in question has been incompletely conceptualized. In a new normative analysis of framing effects, we complete the conceptualization by introducing the notion of information equivalence. Information equivalence obtains when no…
Habit, identity, and repetitive action: a prospective study of binge-drinking in UK students.
Gardner, Benjamin; de Bruijn, Gert-Jan; Lally, Phillippa
2012-09-01
Repeated action can lead to the formation of habits and identification as 'the kind of person' that performs the behaviour. This has led to the suggestion that identity-relevance is a facet of habit. This study explores conceptual overlap between habit and identity, and examines where the two constructs fit into an extended Theory of Planned Behaviour (TPB) model of binge-drinking among university students. Prospective, questionnaire-based correlational design. A total of 167 UK university students completed baseline measures of past behaviour, self-identity, the Self-Report Habit Index (SRHI), and TPB constructs. One week later, 128 participants completed a follow-up behaviour measure. Factor analyses of the SRHI and four identity items revealed two correlated but distinct factors, relating to habit and identity, respectively. Hierarchical regression analyses of intention and behaviour showed that identity contributed over and above TPB constructs to the prediction of intention, whereas habit predicted behaviour directly, and interacted with intentions in predicting behaviour. Habits unexpectedly strengthened the intention-behaviour relation, such that strong intenders were more likely to binge-drink where they also had strong habits. Identity and habit are conceptually discrete and impact differently on binge-drinking. Findings have implications for habit theory and measurement. Recommendations for student alcohol consumption reduction initiatives are offered. ©2011 The British Psychological Society.
NASA Technical Reports Server (NTRS)
Morey, W. W.
1984-01-01
This report covers the development and testing of a prototype combustor viewing system. The system allows one to see and record images from the inside of an operating gas turbine combustor. The program proceeded through planned phases of conceptual design, preliminary testing to resolve problem areas, prototype design and fabrication, and rig testing. Successful tests were completed with the viewing system in the laboratory, in a high pressure combustor rig, and on a Pratt and Whitney PW20307 jet engine. Both film and video recordings were made during the tests. Digital image analysis techniques were used to enhance images and bring out special effects. The use of pulsed laser illumination was also demonstrated as a means for observing liner surfaces in the presence of luminous flame.
LH2 airport requirements study
NASA Technical Reports Server (NTRS)
Brewer, G. D. (Editor)
1976-01-01
A preliminary assessment of the facilities and equipment which will be required at a representative airport is provided so liquid hydrogen LH2 can be used as fuel in long range transport aircraft in 1995-2000. A complete facility was conceptually designed, sized to meet the projected air traffic requirement. The facility includes the liquefaction plant, LH2, storage capability, and LH2 fuel handling system. The requirements for ground support and maintenance for the LH2 fueled aircraft were analyzed. An estimate was made of capital and operating costs which might be expected for the facility. Recommendations were made for design modifications to the reference aircraft, reflecting results of the analysis of airport fuel handling requirements, and for a program of additional technology development for air terminal related items.
Enabling Rapid and Robust Structural Analysis During Conceptual Design
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu
2015-01-01
This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.
NASA Technical Reports Server (NTRS)
1985-01-01
The study was conducted in 3 parts over a 3 year period. The study schedule and the documentation associated with each study part is given. This document summarized selected study results from the conceptual design and programmatics segment of the effort. The objectives were: (1) to update requirements and tradeoffs and develop a detailed design and mission requirements document; (2) to develop conceptual designs and mission descriptions; and (3) to develop programmatic, i.e., work breakdown structure and work breakdown structure dictionary, estimated cost, and implementing plans and schedules.
Benoit, Richard; Mion, Lorraine
2012-08-01
This paper presents a proposed conceptual model to guide research on pressure ulcer risk in critically ill patients, who are at high risk for pressure ulcer development. However, no conceptual model exists that guides risk assessment in this population. Results from a review of prospective studies were evaluated for design quality and level of statistical reporting. Multivariate findings from studies having high or medium design quality by the National Institute of Health and Clinical Excellence standards were conceptually grouped. The conceptual groupings were integrated into Braden and Bergstrom's (Braden and Bergstrom [1987] Rehabilitation Nursing, 12, 8-12, 16) conceptual model, retaining their original constructs and augmenting their concept of intrinsic factors for tissue tolerance. The model could enhance consistency in research on pressure ulcer risk factors. Copyright © 2012 Wiley Periodicals, Inc.
The TMT instrumentation program
NASA Astrophysics Data System (ADS)
Simard, Luc; Crampton, David; Ellerbroek, Brent; Boyer, Corinne
2010-07-01
An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Conceptual designs for the three first light instruments (IRIS, WFOS and IRMS) are in progress, as well as feasibility studies of MIRES. Considerable effort is underway to understand the end-to-end performance of the complete telescopeadaptive optics-instrument system under realistic conditions on Mauna Kea. Highly efficient operation is being designed into the TMT system, based on a detailed investigation of the observation workflow to ensure very fast target acquisition and set up of all subsystems. Future TMT instruments will almost certainly involve contributions from institutions in many different locations in North America and partner nations. Coordinating and optimizing the design and construction of the instruments to ensure delivery of the best possible scientific capabilities is an interesting challenge. TMT welcomes involvement from all interested instrument teams.
CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-01-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates have been completed and issued for review. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter. Initial pilot facility shakedown was completed during the fourth quarter. During pilot plant shakedown operations, several production batch test runs were performed. These pilot tests were coupled with laboratory testing to confirm pilot results. In initial batches of operations, cellulose to glucose conversionsmore » of 62.5% and 64.8% were observed in laboratory hydrolysis. As part of this testing, lignin dewatering was tested using laboratory and vendor-supplied filtration equipment. Dewatering tests reported moisture contents in the lignin of between 50% and 60%. Dewatering parameters and options will continue to be investigated during lignin production. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. Shredding of the feed material was completed and final drying of the feed is expected to be completed by late January. Once feed drying is completed, pilot facility production will begin to produce lignin for co-fire testing. Facility modifications are expected to continue to improve facility operations and performance during the first quarter of 2001. The TVA-Colbert facility continues to make progress in evaluating the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system continues.« less
Guidelines for conceptual design and evaluation of aquifer thermal energy storage
NASA Astrophysics Data System (ADS)
Meyer, C. F.; Hauz, W.
1980-10-01
Guidelines are presented for use as a tool by those considering application of aquifer thermal energy storage (ATES) technology. The guidelines assist utilities, municipalities, industries, and other entities in the conceptual design and evaluation of systems employing ATES. The potential benefits of ATES are described, an overview is presented of the technology and its applications, and rules of thumb are provided for quickly judging whether a proposed project has sufficient promise to warrant detailed conceptual design and evaluation. The characteristics of sources and end uses of heat and chill which are seasonally mismatched and may benefit from ATES are discussed. Storage and transport subsystems and their expected performance and cost are described. A methodology is presented for conceptual design of an ATES system and evaluation of its technical and economic feasibility in terms of energy conservation, cost savings, fuel substitution, improved dependability of supply, and abatement of pollution.
Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Wells, Valana L.
1996-01-01
This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.
Conceptual design of single turbofan engine powered light aircraft
NASA Technical Reports Server (NTRS)
Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.
1977-01-01
The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.
NASA Technical Reports Server (NTRS)
Brice, R.; Mosley, J.; Willis, D.; Coleman, K.; Martin, C.; Shelby, L.; Kelley, U.; Renfro, E.; Griffith, G.; Warsame, A.
1989-01-01
In a continued effort to design a surface-based factory on Mars for the production of oxygen and water, the Design Group at Prairie View A&M University made a preliminary study of the surface and atmospheric composition on Mars and determined the mass densities of the various gases in the martian atmosphere. Based on the initial studies, the design group determined oxygen and water to be the two products that could be produced economically under the martian conditions. Studies were also made on present production techniques to obtain water and oxygen. Analyses were made to evaluate the current methods of production that were adaptable to the martian conditions. The detailed report was contained in an Interim Report submitted to NASA/USRA in Aug. of 1986. Even though the initial effort was the production of oxygen and water, we found it necessary to produce some diluted gases that can be mixed with oxygen to constitute 'breathable' air. In Phase 2--Task 1A, the Prairie View A&M University team completed the conceptual design of a breathable-air manufacturing system, a means of drilling for underground water, and storage of water for future use. The design objective of the team for the 1987-1988 academic year was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, and residential and industrial use. The design has also been completed. Phase 2--Task 1C is the present task for the Prairie View Design Team. This is a continuation of the previous task, and the continuation of this effort is the investigation into the extraction of water from beneath the surface and an alternative method of extraction from ice formations on the surface of Mars if accessible. In addition to investigation of water extraction, a system for computer control of extraction and treatment was developed with emphasis on fully automated control with robotic repair and maintenance. It is expected that oxygen- and water-producing plants on Mars will be limited in the amount of human control that will be available to operate large and/or isolated plants. Therefore, it is imperative that computers be integrated into plant operation with the capability to maintain life support systems and analyze and replace defective parts or systems with no human interface.
NASA Astrophysics Data System (ADS)
Hernández, María Isabel; Couso, Digna; Pintó, Roser
2015-04-01
The study we have carried out aims to characterize 15- to 16-year-old students' learning progressions throughout the implementation of a teaching-learning sequence on the acoustic properties of materials. Our purpose is to better understand students' modeling processes about this topic and to identify how the instructional design and actual enactment influences students' learning progressions. This article presents the design principles which elicit the structure and types of modeling and inquiry activities designed to promote students' development of three conceptual models. Some of these activities are enhanced by the use of ICT such as sound level meters connected to data capture systems, which facilitate the measurement of the intensity level of sound emitted by a sound source and transmitted through different materials. Framing this study within the design-based research paradigm, it consists of the experimentation of the designed teaching sequence with two groups of students ( n = 29) in their science classes. The analysis of students' written productions together with classroom observations of the implementation of the teaching sequence allowed characterizing students' development of the conceptual models. Moreover, we could evidence the influence of different modeling and inquiry activities on students' development of the conceptual models, identifying those that have a major impact on students' modeling processes. Having evidenced different levels of development of each conceptual model, our results have been interpreted in terms of the attributes of each conceptual model, the distance between students' preliminary mental models and the intended conceptual models, and the instructional design and enactment.
ERIC Educational Resources Information Center
Westermeyer, Juan Carlos Briede; Ortuno, Bernabe Hernandis
2011-01-01
This study describes the application of a new product concurrent design methodologies in the context in the education of industrial design. The use of the sketch has been utilized many times as a tool of creative expression especially in the conceptual design stage, in an intuitive way and a little out of the context of the reality needs that the…
Context and Deep Learning Design
ERIC Educational Resources Information Center
Boyle, Tom; Ravenscroft, Andrew
2012-01-01
Conceptual clarification is essential if we are to establish a stable and deep discipline of technology enhanced learning. The technology is alluring; this can distract from deep design in a surface rush to exploit the affordances of the new technology. We need a basis for design, and a conceptual unit of organization, that are applicable across…
Update on the Solar Power Satellite transmitter design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W.C.
1986-01-01
A number of remaining problems in the conceptual design of the transmitting antenna for the Solar Power Satellite have been solved as a result of additional technology development. Much of the technology was derived from the conceptual design of a ground-based transmitting antenna for beaming power to a high altitude airship or airplane.
Building a Framework for Engineering Design Experiences in High School
ERIC Educational Resources Information Center
Denson, Cameron D.; Lammi, Matthew
2014-01-01
In this article, Denson and Lammi put forth a conceptual framework that will help promote the successful infusion of engineering design experiences into high school settings. When considering a conceptual framework of engineering design in high school settings, it is important to consider the complex issue at hand. For the purposes of this…
Adult age differences in perceptually based, but not conceptually based implicit tests of memory.
Small, B J; Hultsch, D F; Masson, M E
1995-05-01
Implicit tests of memory assess the influence of recent experience without requiring awareness of remembering. Evidence concerning age differences on implicit tests of memory suggests small age differences in favor of younger adults. However, the majority of research examining this issue has relied upon perceptually based implicit tests. Recently, a second type of implicit test, one that relies upon conceptually based processes, has been identified. The pattern of age differences on this second type of implicit test is less clear. In the present study, we examined the pattern of age differences on one conceptually based (fact completion) and one perceptually based (stem completion) implicit test of memory, as well as two explicit tests of memory (fact and word recall). Tasks were administered to 403 adults from three age groups (19-34 years, 58-73 years, 74-89 years). Significant age differences in favor of the young were found on stem completion but not fact completion. Age differences were present for both word and fast recall. Correlational analyses examining the relationship of memory performance to other cognitive variables indicated that the implicit tests were supported by different components than the explicit tests, as well as being different from each other.
Conceptual design study for a teleoperator visual system, phase 1
NASA Technical Reports Server (NTRS)
Adams, D.; Grant, C.; Johnson, C.; Meirick, R.; Polhemus, C.; Ray, A.; Rittenhouse, D.; Skidmore, R.
1972-01-01
Results are reported for work performed during the first phase of the conceptual design study for a teleoperator visual system. This phase consists of four tasks: General requirements, concept development, subsystem requirements and analysis, and concept evaluation.
Liu, Ping; Salvi, Ashwin
2018-01-16
With more than 250 conceptual designs submitted, we are pleased to highlight the winners of the LIghtweighting Technologies Enabling Comprehensive Automotive Redesign (LITECAR) Challenge. These innovative conceptual designs seek to lightweight a vehicle while maintaining or exceeding current U.S. automotive safety standards.
Conceptual design of liquid droplet radiator shuttle-attached experiment
NASA Technical Reports Server (NTRS)
Pfeiffer, Shlomo L.
1989-01-01
The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.
NASA Technical Reports Server (NTRS)
Magee, J. P.; Clark, R. D.; Widdison, C. A.
1975-01-01
Conceptual design studies are summarized of tandem-rotor helicopter and tilt-rotor aircraft for a short haul transport mission in the 1985 time frame. Vertical takeoff designs of both configurations are discussed, and the impact of external noise criteria on the vehicle designs, performance, and costs are shown. A STOL design for the tilt-rotor configuration is reported, and the effect of removing the vertical takeoff design constraints on the design parameters, fuel economy, and operating cost is discussed.
Innovating Method of Existing Mechanical Product Based on TRIZ Theory
NASA Astrophysics Data System (ADS)
Zhao, Cunyou; Shi, Dongyan; Wu, Han
Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.
Government conceptual estimating for contracting and management
NASA Technical Reports Server (NTRS)
Brown, J. A.
1986-01-01
The use of the Aerospace Price Book, a cost index, and conceptual cost estimating for cost-effective design and construction of space facilities is discussed. The price book consists of over 200 commonly used conceptual elements and 100 systems summaries of projects such as launch pads, processing facilities, and air locks. The cost index is composed of three divisions: (1) bid summaries of major Shuttle projects, (2) budget cost data sheets, and (3) cost management summaries; each of these divisions is described. Conceptual estimates of facilities and ground support equipment are required to provide the most probable project cost for budget, funding, and project approval purposes. Similar buildings, systems, and elements already designed are located in the cost index in order to make the best rough order of magnitude conceptual estimates for development of Space Shuttle facilities. An example displaying the applicability of the conceptual cost estimating procedure for the development of the KSC facilities is presented.
Evaluating Management Information Systems, A Protocol for Automated Peer Review Systems
Black, Gordon C.
1980-01-01
This paper discusses key issues in evaluating an automated Peer Review System. Included are the conceptual base, design, steps in planning structural components, operation parameters, criteria, costs and a detailed outline or protocol for use in the evaluation. At the heart of the Peer Review System is the criteria utilized for measuring quality. Criteria evaluation should embrace, as a minimum, appropriateness, validity and reliability, and completemess or comprehensiveness of content. Such an evaluation is not complete without determining the impact (clinical outcome) of the service system or the patient and the population served.
Effective Web and Desktop Retrieval with Enhanced Semantic Spaces
NASA Astrophysics Data System (ADS)
Daoud, Amjad M.
We describe the design and implementation of the NETBOOK prototype system for collecting, structuring and efficiently creating semantic vectors for concepts, noun phrases, and documents from a corpus of free full text ebooks available on the World Wide Web. Automatic generation of concept maps from correlated index terms and extracted noun phrases are used to build a powerful conceptual index of individual pages. To ensure scalabilty of our system, dimension reduction is performed using Random Projection [13]. Furthermore, we present a complete evaluation of the relative effectiveness of the NETBOOK system versus the Google Desktop [8].
Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan
NASA Astrophysics Data System (ADS)
Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.
2007-12-01
The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.
30 CFR 250.294 - May I combine the Conceptual Plan and the DWOP?
Code of Federal Regulations, 2011 CFR
2011-07-01
... SHELF Plans and Information Deepwater Operations Plans (dwop) § 250.294 May I combine the Conceptual Plan and the DWOP? If your development project meets the following criteria, you may submit a combined... involving non-conventional production or completion technology for which you have obtained approval...
Development of a Conceptual Structure for Architectural Solar Energy Systems.
ERIC Educational Resources Information Center
Ringel, Robert F.
Solar subsystems and components were identified and conceptual structure was developed for architectural solar energy heating and cooling systems. Recent literature related to solar energy systems was reviewed and analyzed. Solar heating and cooling system, subsystem, and component data were compared for agreement and completeness. Significant…
Analyzing Learning in Professional Learning Communities: A Conceptual Framework
ERIC Educational Resources Information Center
Van Lare, Michelle D.; Brazer, S. David
2013-01-01
The purpose of this article is to build a conceptual framework that informs current understanding of how professional learning communities (PLCs) function in conjunction with organizational learning. The combination of sociocultural learning theories and organizational learning theories presents a more complete picture of PLC processes that has…
Dionne-Odom, J. Nicholas; Willis, Danny G.; Bakitas, Marie; Crandall, Beth; Grace, Pamela J.
2014-01-01
Background Surrogate decision-makers (SDMs) face difficult decisions at end of life (EOL) for decisionally incapacitated intensive care unit (ICU) patients. Purpose Identify and describe the underlying psychological processes of surrogate decision-making for adults at EOL in the ICU. Method Qualitative case study design using a cognitive task analysis (CTA) interviewing approach. Participants were recruited from October 2012 to June 2013 from an academic tertiary medical center’s ICU located in the rural Northeastern United States. Nineteen SDMs for patients who had died in the ICU completed in-depth semi-structured CTA interviews. Discussion The conceptual framework formulated from data analysis reveals that three underlying, iterative, psychological dimensions: gist impressions, distressing emotions, and moral intuitions impact a SDM’s judgment about the acceptability of either the patient’s medical treatments or his or her condition. Conclusion The framework offers initial insights about the underlying psychological processes of surrogate decision-making and may facilitate enhanced decision support for SDMs. PMID:25982772
Dionne-Odom, J Nicholas; Willis, Danny G; Bakitas, Marie; Crandall, Beth; Grace, Pamela J
2015-01-01
Surrogate decision makers (SDMs) face difficult decisions at end of life (EOL) for decisionally incapacitated intensive care unit (ICU) patients. To identify and describe the underlying psychological processes of surrogate decision making for adults at EOL in the ICU. Qualitative case study design using a cognitive task analysis interviewing approach. Participants were recruited from October 2012 to June 2013 from an academic tertiary medical center's ICU located in the rural Northeastern United States. Nineteen SDMs for patients who had died in the ICU completed in-depth semistructured cognitive task analysis interviews. The conceptual framework formulated from data analysis reveals that three underlying, iterative, psychological dimensions (gist impressions, distressing emotions, and moral intuitions) impact an SDM's judgment about the acceptability of either the patient's medical treatments or his or her condition. The framework offers initial insights about the underlying psychological processes of surrogate decision making and may facilitate enhanced decision support for SDMs. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1986-01-01
Lockheed Missiles and Space Company's conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are presented. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSFR to the FOC LSFR. The IOC and FOC LSFRs correspond to missions SAAX0307 and SAAX0302 of the Space Station Mission Requirements Database, respectively.
Components for digitally controlled aircraft engines
NASA Technical Reports Server (NTRS)
Meador, J. D.
1981-01-01
Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.
Conceptual design of the AE481 Demon Remotely Piloted Vehicle (RPV)
NASA Technical Reports Server (NTRS)
Hailes, Chris; Kolver, Jill; Nestor, Julie; Patterson, Mike; Selow, Jan; Sagdeo, Pradip; Katz, Kenneth
1994-01-01
This project report presents a conceptual design for a high speed remotely piloted vehicle (RPV). The AE481 Demon RPV is capable of performing video reconnaissance missions and electronic jamming over hostile territory. The RPV cruises at a speed of Mach 0.8 and an altitude of 300 feet above the ground throughout its mission. It incorporates a rocket assisted takeoff and a parachute-airbag landing. Missions are preprogrammed, but in-flight changes are possible. The Demon is the answer to a military need for a high speed, low altitude RPV. The design methods, onboard systems, and avionics payload are discussed in this conceptual design report along with economic viability.
Parametric study of a canard-configured transport using conceptual design optimization
NASA Technical Reports Server (NTRS)
Arbuckle, P. D.; Sliwa, S. M.
1985-01-01
Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.
Expert recommendations for implementing change (ERIC): protocol for a mixed methods study
2014-01-01
Background Identifying feasible and effective implementation strategies that are contextually appropriate is a challenge for researchers and implementers, exacerbated by the lack of conceptual clarity surrounding terms and definitions for implementation strategies, as well as a literature that provides imperfect guidance regarding how one might select strategies for a given healthcare quality improvement effort. In this study, we will engage an Expert Panel comprising implementation scientists and mental health clinical managers to: establish consensus on a common nomenclature for implementation strategy terms, definitions and categories; and develop recommendations to enhance the match between implementation strategies selected to facilitate the use of evidence-based programs and the context of certain service settings, in this case the U.S. Department of Veterans Affairs (VA) mental health services. Methods/Design This study will use purposive sampling to recruit an Expert Panel comprising implementation science experts and VA mental health clinical managers. A novel, four-stage sequential mixed methods design will be employed. During Stage 1, the Expert Panel will participate in a modified Delphi process in which a published taxonomy of implementation strategies will be used to establish consensus on terms and definitions for implementation strategies. In Stage 2, the panelists will complete a concept mapping task, which will yield conceptually distinct categories of implementation strategies as well as ratings of the feasibility and effectiveness of each strategy. Utilizing the common nomenclature developed in Stages 1 and 2, panelists will complete an innovative menu-based choice task in Stage 3 that involves matching implementation strategies to hypothetical implementation scenarios with varying contexts. This allows for quantitative characterizations of the relative necessity of each implementation strategy for a given scenario. In Stage 4, a live web-based facilitated expert recommendation process will be employed to establish expert recommendations about which implementations strategies are essential for each phase of implementation in each scenario. Discussion Using a novel method of selecting implementation strategies for use within specific contexts, this study contributes to our understanding of implementation science and practice by sharpening conceptual distinctions among a comprehensive collection of implementation strategies. PMID:24669765
Status of ITER Cryodistribution and Cryoline project
NASA Astrophysics Data System (ADS)
Sarkar, B.; Vaghela, H.; Shah, N.; Bhattacharya, R.; Choukekar, K.; Patel, P.; Kapoor, H.; Srinivasa, M.; Chang, H. S.; Badgujar, S.; Monneret, E.
2017-02-01
The system of ITER Cryodistribution (CD) and Cryolines (CLs) is an integral interface between the Cryoplant systems and the superconducting (SC) magnets as well as Cryopumps (CPs). The project has progressed from the conceptual stage to the industrial stage. The subsystems are at various stages of design as defined by the project, namely, preliminary design, final design and formal reviews. Significant progresses have been made in the prototypes studies and design validations, such as the CL and cold circulators. While one of the prototype CL is already tested, the other one is in manufacturing phase. Performance test of two cold circulators have been completed. Design requirements are unique due the complexity arising from load specifications, layout constraints, regulatory compliance, operating conditions as well as several hundred interfaces. The present status of the project in terms of technical achievements, implications of the changes and the technical management as well as the risk assessment and its mitigation including path forward towards realization is described.
The development of a digital logic concept inventory
NASA Astrophysics Data System (ADS)
Herman, Geoffrey Lindsay
Instructors in electrical and computer engineering and in computer science have developed innovative methods to teach digital logic circuits. These methods attempt to increase student learning, satisfaction, and retention. Although there are readily accessible and accepted means for measuring satisfaction and retention, there are no widely accepted means for assessing student learning. Rigorous assessment of learning is elusive because differences in topic coverage, curriculum and course goals, and exam content prevent direct comparison of two teaching methods when using tools such as final exam scores or course grades. Because of these difficulties, computing educators have issued a general call for the adoption of assessment tools to critically evaluate and compare the various teaching methods. Science, Technology, Engineering, and Mathematics (STEM) education researchers commonly measure students' conceptual learning to compare how much different pedagogies improve learning. Conceptual knowledge is often preferred because all engineering courses should teach a fundamental set of concepts even if they emphasize design or analysis to different degrees. Increasing conceptual learning is also important, because students who can organize facts and ideas within a consistent conceptual framework are able to learn new information quickly and can apply what they know in new situations. If instructors can accurately assess their students' conceptual knowledge, they can target instructional interventions to remedy common problems. To properly assess conceptual learning, several researchers have developed concept inventories (CIs) for core subjects in engineering sciences. CIs are multiple-choice assessment tools that evaluate how well a student's conceptual framework matches the accepted conceptual framework of a discipline or common faulty conceptual frameworks. We present how we created and evaluated the digital logic concept inventory (DLCI).We used a Delphi process to identify the important and difficult concepts to include on the DLCI. To discover and describe common student misconceptions, we interviewed students who had completed a digital logic course. Students vocalized their thoughts as they solved digital logic problems. We analyzed the interview data using a qualitative grounded theory approach. We have administered the DLCI at several institutions and have checked the validity, reliability, and bias of the DLCI with classical testing theory procedures. These procedures consisted of follow-up interviews with students, analysis of administration results with statistical procedures, and expert feedback. We discuss these results and present the DLCI's potential for providing a meaningful tool for comparing student learning at different institutions.
Designing and Evaluating a Context-Based Lesson Sequence Promoting Conceptual Coherence in Biology
ERIC Educational Resources Information Center
Ummels, M. H. J.; Kamp, M. J. A.; de Kroon, H.; Boersma, K. Th.
2015-01-01
Context-based education, in which students deal with biological concepts in a meaningful way, is showing promise in promoting the development of students' conceptual coherence. However, literature gives little guidance about how this kind of education should be designed. Therefore, our study aims at designing and evaluating the practicability of a…
ERIC Educational Resources Information Center
Klebansky, Anna; Fraser, Sharon P.
2013-01-01
This paper details a conceptual framework that situates curriculum design for information literacy and lifelong learning, through a cohesive developmental information literacy based model for learning, at the core of teacher education courses at UTAS. The implementation of the framework facilitates curriculum design that systematically,…
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.; Olariu, Stephen
1995-01-01
The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.
Types and patterns of safety concerns in home care: client and family caregiver perspectives
Tong, Catherine E.; Sims-Gould, Joanie; Martin-Matthews, Anne
2016-01-01
Objective Drawing on interviews with home care clients and their family caregivers, we sought to understand how these individuals conceptualize safety in the provision and receipt of home care, how they promote safety in the home space and how their safety concerns differ from those of home support workers. Design In-depth, semi-structured interviews were conducted with clients and family caregivers. The analysis included topic and analytical coding of participants' verbatim accounts. Setting Interviews were completed in British Columbia, Canada. Participants Totally 82 clients and 55 caregivers participated. Results Clients and family caregivers identified three types of safety concerns: physical, spatial and interpersonal. These concerns are largely multi-dimensional and intersectional. We present a conceptual model of client and caregiver safety concerns. We also examine the factors that intensify and mitigate safety concerns in the home. Conclusions In spite of safety concerns, clients and family caregivers overwhelmingly prefer to receive care in the home setting. Spatial and physical concerns are the most salient. The financial burden of creating a safe care space should not be the client's alone to bear. The conceptualization and promotion of safety in home care must recognize the roles, responsibilities and perspectives of all of the actors involved, including workers, clients and their caregivers. PMID:26832159
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berglund, T.; Ranney, J.T.; Babb, C.L.
2000-10-01
The initial design criteria of the MSW to ethanol facility have been completed along with preliminary site identification and layouts for the processing facility. These items are the first step in evaluating the feasibility of this co-located facility. Pilot facility design and modification are underway for the production and dewatering of the lignin fuel. Major process equipment identification has been completed and several key unit operations will be accomplished on rental equipment. Equipment not available for rental or at TVA has been ordered and facility modification and shakedown will begin in October. The study of the interface and resulting impactsmore » on the TVA Colbert facility are underway. The TVA Colbert fossil plant is fully capable of providing a reliable steam supply for the proposed Masada waste processing facility. The preferred supply location in the Colbert steam cycle has been identified as have possible steam pipeline routes to the Colbert boundary. Additional analysis is underway to fully predict the impact of the steam supply on Colbert plant performance and to select a final steam pipeline route.« less
Conceptual Change Texts in Chemistry Teaching: A Study on the Particle Model of Matter
ERIC Educational Resources Information Center
Beerenwinkel, Anne; Parchmann, Ilka; Grasel, Cornelia
2011-01-01
This study explores the effect of a conceptual change text on students' awareness of common misconceptions on the particle model of matter. The conceptual change text was designed based on principles of text comprehensibility, of conceptual change instruction and of instructional approaches how to introduce the particle model. It was evaluated in…
NASA Technical Reports Server (NTRS)
Staveland, Lowell
1994-01-01
This is the experimental and software detailed design report for the prototype task loading model (TLM) developed as part of the man-machine integration design and analysis system (MIDAS), as implemented and tested in phase 6 of the Army-NASA Aircrew/Aircraft Integration (A3I) Program. The A3I program is an exploratory development effort to advance the capabilities and use of computational representations of human performance and behavior in the design, synthesis, and analysis of manned systems. The MIDAS TLM computationally models the demands designs impose on operators to aide engineers in the conceptual design of aircraft crewstations. This report describes TLM and the results of a series of experiments which were run this phase to test its capabilities as a predictive task demand modeling tool. Specifically, it includes discussions of: the inputs and outputs of TLM, the theories underlying it, the results of the test experiments, the use of the TLM as both stand alone tool and part of a complete human operator simulation, and a brief introduction to the TLM software design.
NASA Technical Reports Server (NTRS)
1993-01-01
The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.
NASA Astrophysics Data System (ADS)
1993-07-01
The University Space Research Association (USRA) requested the University of Minnesota Spacecraft Design Team to design a lunar transportation infrastructure. This task was a year long design effort culminating in a complete conceptual design and presentation at Johnson Space Center. The mission objective of the design group was to design a system of vehicles to bring a habitation module, cargo, and crew to the lunar surface from LEO and return either or both crew and cargo safely to LEO while emphasizing component commonality, reusability, and cost effectiveness. During the course of the design, the lunar transportation system (LTS) has taken on many forms. The final design of the system is composed of two vehicles, a lunar transfer vehicle (LTV) and a lunar excursion vehicle (LEV). The LTV serves as an efficient orbital transfer vehicle between the earth and the moon while the LEV carries crew and cargo to the lunar surface. Presented in the report are the mission analysis, systems layout, orbital mechanics, propulsion systems, structural and thermal analysis, and crew systems, avionics, and power systems for this lunar transportation concept.
Personalizing knowledge delivery services: a conceptual framework
NASA Technical Reports Server (NTRS)
Majchrzak, Ann; Chelleppa, Ramnath K.; Cooper, Lynne P.; Hars, Alexander
2003-01-01
Consistent with the call of the Minnesota Symposium for new theory in knowledge management, we offer a new conceptualization of Knowledge Management Systems (KMS) as a portfolio of personalized knowledge delivery services. Borrowing from research on online consumer behavior, we describe the challenges imposed by personalized knowledge delivery services, and suggest design parameters that can help to overcome these challenges. We develop our design constructs through a set of hypotheses and discuss the research implications of our new conceptualization. Finally, we describe practical implications suggested by our conceptualization - practical suggestions that we hope to gain some experience with as part of an ongoing action research project at our partner organization.
Development of the biology card sorting task to measure conceptual expertise in biology.
Smith, Julia I; Combs, Elijah D; Nagami, Paul H; Alto, Valerie M; Goh, Henry G; Gourdet, Muryam A A; Hough, Christina M; Nickell, Ashley E; Peer, Adrian G; Coley, John D; Tanner, Kimberly D
2013-01-01
There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non-biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non-biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise.
Conceptual Design and Performance Analysis for a Large Civil Compound Helicopter
NASA Technical Reports Server (NTRS)
Russell, Carl; Johnson, Wayne
2012-01-01
A conceptual design study of a large civil compound helicopter is presented. The objective is to determine how a compound helicopter performs when compared to both a conventional helicopter and a tiltrotor using a design mission that is shorter than optimal for a tiltrotor and longer than optimal for a helicopter. The designs are generated and analyzed using conceptual design software and are further evaluated with a comprehensive rotorcraft analysis code. Multiple metrics are used to determine the suitability of each design for the given mission. Plots of various trade studies and parameter sweeps as well as comprehensive analysis results are presented. The results suggest that the compound helicopter examined for this study would not be competitive with a tiltrotor or conventional helicopter, but multiple possibilities are identified for improving the performance of the compound helicopter in future research.
Data base architecture for instrument characteristics critical to spacecraft conceptual design
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Allen, Cheryl L.
1990-01-01
Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.
Advanced turbocharger design study program
NASA Technical Reports Server (NTRS)
Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.
1984-01-01
The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
Commonality between Reduced Gravity and Microgravity Habitats for Long Duration Missions
NASA Technical Reports Server (NTRS)
Howard, Robert
2014-01-01
Many conceptual studies for long duration missions beyond Earth orbit have assumed unique habitat designs for each destination and for transit habitation. This may not be the most effective approach. A variable gravity habitat, one designed for use in microgravity, lunar, Martian, and terrestrial environments may provide savings that offset the loss of environment-specific optimization. However, a brief analysis of selected flown spacecraft and Constellation-era conceptual habitat designs suggests that one cannot simply lift a habitat from one environment and place it in another that it was not designed for without incurring significant human performance compromises. By comparison, a conceptual habitat based on the Skylab II framework but designed specifically to accommodate variable gravity environments can be shown to yield significant advantages while incurring only minimal human performance compromises.
NASA Astrophysics Data System (ADS)
Engelman, Jonathan
Changing student conceptions in physics is a difficult process and has been a topic of research for many years. The purpose of this study was to understand what prompted students to change or not change their incorrect conceptions of Newtons Second or Third Laws in response to an intervention, Interactive Video Vignettes (IVVs), designed to overcome them. This study is based on prior research reported in the literature which has found that a curricular framework of elicit, confront, resolve, and reflect (ECRR) is important for changing student conceptions (McDermott, 2001). This framework includes four essential parts such that during an instructional event student conceptions should be elicited, incorrect conceptions confronted, these conflicts resolved, and then students should be prompted to reflect on their learning. Twenty-two undergraduate student participants who completed either or both IVVs were studied to determine whether or not they experienced components of the ECRR framework at multiple points within the IVVs. A fully integrated, mixed methods design was used to address the study purpose. Both quantitative and qualitative data were collected iteratively for each participant. Successive data collections were informed by previous data collections. All data were analyzed concurrently. The quantitative strand included a pre/post test that participants took before and after completing a given IVV and was used to measure the effect of each IVV on learning. The qualitative strand included video of each participant completing the IVV as well as an audio-recorded video elicitation interview after the post-test. The qualitative data collection was designed to describe student experiences with each IVV as well as to observe how the ECRR framework was experienced. Collecting and analyzing data using this mixed methods approach helped develop a more complete understanding of how student conceptions of Newtons Second and Third Laws changed through completion of IVVs and how the ECRR framework was experienced. In answering the research questions, two major conclusions were reached: (1) while the ECRR framework was experienced in both the Newtons 2nd Law and Newtons 3rd Law IVVs, these experiences were qualitatively different from each other and these differences help support the differences in gain scores on the post-tests for the participants; and (2) both IVVs were able to change certain misconceptions associated with either Newtons 2nd or 3rd laws more than others. Therefore, in researching student experiences while completing the Newtons 2nd Law and Newtons 3rd Law IVVs, I determined that a complete, sequential experience of the elicit, confront, resolve, reflect framework led to the greatest change in student conceptions. This dissertation adds to the field of physics education through finding the positive impact of the ECRR framework, as IVVs are still being created and disseminated. Physics educators and researchers interested in conceptual change can use these findings to provide evidence on what students think when interacting with videos designed to change their conceptions. Finally, this dissertation supports the conceptual change literature in that the full, sequential experience involving each component of the ECRR framework led to a change in student conceptions.
NASA Astrophysics Data System (ADS)
MacGowan, Catherine Elizabeth
The overall objective of this research project was to provide an insight into students' conceptual understanding of acid/base principles as it relates to the comprehension and correct application of scientific concepts during a problem-solving activity. The difficulties experienced learning science and in developing appropriate problem-solving strategies most likely are predetermined by students' existing conceptual and procedural knowledge constructs; with the assimilation of newly acquired knowledge hindering or aiding the learning process. Learning chemistry requires a restructuring of content knowledge which will allow the individual to assemble and to integrate his/her own perception of science with instructional knowledge. The epistemology of constructivism, the theoretical grounding for this research project, recognizes the student's role as an active participant in the learning process. The study's design was exploratory in nature and descriptive in design. The problem-solving activity, the preparation of a chemical buffer solution at pH of 9, was selected and modified to reflect and meet the study's objective. Qualitative research methods (i.e., think aloud protocols, retrospective interviews, survey questionnaires such as the Scale of Intellectual Development (SID), and archival data sources) were used in the collection and assessment of data. Given its constructivist grounding, simplicity, and interpretative view of knowledge acquisition and learning of collegiate aged individuals, the Perry Intellectual and Ethical Development Model (1970) was chosen as the applied model for evaluation student cognition. The study's participants were twelve traditional college age students from a small, private liberal arts college. All participants volunteered for the project and had completed or were completing a general college chemistry course at the time of the project. Upon analysis of the data the following observations and results were noted: (1) students' overall comprehension level of key acid/base principles was at the misconception/miscued level of understanding; (2) the level of a student's conceptual knowledge effected their problem-solving performance and influenced their use of problem-solving tactics; (3) students casual use of the terms "acid" and/or "base" played a significant role in the misuse and misunderstanding of the principles of acid/base chemistry; (4) as assessed from their think aloud protocols and described by the Perry Scheme positions of intellect the study's participants' overall level of cognition were ranked as dualistic/relativistic thinkers; and (5) the SID questionnaire survey rankings did not seem to assess or reflect the participants' cognitive ability to learn or correctly use acid/base concepts as they preformed the study's problem-solving activity--the preparation of buffer solution having a pH of 9.
Goodyear aerospace conceptual design maritime patrol airship ZP3G. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, N.D.
1979-04-01
A Conceptual design of a modern technology airship with precision hover capability for use in maritime patrol is described. The size and major characteristics are established by a series of United States Coast Guard missions set forth by the contracting agency.
Developing and Applying Synthesis Models of Emerging Space Systems
2016-03-01
enables the exploration of small satellite physical trade -offs early in the conceptual design phase of the DOD space acquisition process. Early...provide trade space insights that can assist DOD space acquisition professionals in making better decisions in the conceptual design phase. More informed
ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft
NASA Technical Reports Server (NTRS)
Jayaram, S.; Myklebust, A.; Gelhausen, P.
1992-01-01
A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.
Adaptive compliant structures for flow regulation
Brinkmeyer, Alex; Theunissen, Raf; M. Weaver, Paul; Pirrera, Alberto
2017-01-01
This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli—i.e. the aerodynamic loads imposed by different operating conditions—the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices. PMID:28878567
Adaptive compliant structures for flow regulation.
Arena, Gaetano; M J Groh, Rainer; Brinkmeyer, Alex; Theunissen, Raf; M Weaver, Paul; Pirrera, Alberto
2017-08-01
This paper introduces conceptual design principles for a novel class of adaptive structures that provide both flow regulation and control. While of general applicability, these design principles, which revolve around the idea of using the instabilities and elastically nonlinear behaviour of post-buckled panels, are exemplified through a case study: the design of a shape-adaptive air inlet. The inlet comprises a deformable post-buckled member that changes shape depending on the pressure field applied by the surrounding fluid, thereby regulating the inlet aperture. By tailoring the stress field in the post-buckled state and the geometry of the initial, stress-free configuration, the deformable section can snap through to close or open the inlet completely. Owing to its inherent ability to change shape in response to external stimuli-i.e. the aerodynamic loads imposed by different operating conditions-the inlet does not have to rely on linkages and mechanisms for actuation, unlike conventional flow-controlling devices.
Achieving Space Shuttle ATO Using the Five-Segment Booster (FSB)
NASA Technical Reports Server (NTRS)
Sauvageau, Donald R.; McCool, Alex (Technical Monitor)
2001-01-01
As part of the continuing effort to identify approaches to improve the safety and reliability of the Space Shuttle system, a Five-Segment Booster (FSB) design was conceptualized as a replacement for the current Space Shuttle boosters. The FSB offers a simple, unique approach to improve astronaut safety and increase performance margin. To determine the feasibility of the FSB, a Phase A study effort was sponsored by NASA and directed by the Marshall Space Flight Center. This study was initiated in March of 1999 and completed in December of 2000. The basic objective of this study was to assess the feasibility of the FSB design concept and also estimate the cost and scope of a full-scale development program for the FSB. In order to ensure an effective and thorough evaluation of the FSB concept, four team members were put on contract to support various areas of importance in assessing the overall feasibility of the design approach.
Boudry, Maarten; Blancke, Stefaan; Braeckman, Johan
2010-12-01
The concept of Irreducible Complexity (IC) has played a pivotal role in the resurgence of the creationist movement over the past two decades. Evolutionary biologists and philosophers have unambiguously rejected the purported demonstration of "intelligent design" in nature, but there have been several, apparently contradictory, lines of criticism. We argue that this is in fact due to Michael Behe's own incoherent definition and use of IC. This paper offers an analysis of several equivocations inherent in the concept of Irreducible Complexity and discusses the way in which advocates of the Intelligent Design Creationism (IDC) have conveniently turned IC into a moving target. An analysis of these rhetorical strategies helps us to understand why IC has gained such prominence in the IDC movement, and why, despite its complete lack of scientific merits, it has even convinced some knowledgeable persons of the impending demise of evolutionary theory.
Conceptual Change in Psychology Students' Acceptance of the Scientific Foundation of the Discipline
ERIC Educational Resources Information Center
Amsel, Eric; Ashley, Aaron; Baird, Todd; Johnston, Adam
2014-01-01
Two studies explored conceptual change in undergraduate psychology students' acceptance of the scientific foundations of the discipline. In Study 1, Introductory Psychology students completed the Psychology as Science questionnaire (PAS) at the beginning and end of the semester and did so from their own (Self Condition) and their instructors'…
ERIC Educational Resources Information Center
Bascoe, Sonnette M.; Davies, Patrick T.; Cummings, E. Mark
2012-01-01
Translating relationship boundaries conceptualizations to the study of sibling relationships, this study examined the utility of sibling enmeshment and disengagement in predicting child adjustment difficulties in a sample of 282 mothers and adolescents (mean age = 12.7 years). Mothers completed a semistructured interview at the first measurement…
ERIC Educational Resources Information Center
Ogbuehi, Philip I.; Fraser, Barry J.
2007-01-01
This study of middle-school students in California focused on the effectiveness of using innovative teaching strategies for enhancing the classroom environment, students' attitudes and conceptual development. A sample of 661 students from 22 classrooms in four inner city schools completed modified forms of the Constructivist Learning Environment…
Shuttle mission simulator hardware conceptual design report
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
The detailed shuttle mission simulator hardware requirements are discussed. The conceptual design methods, or existing technology, whereby those requirements will be fulfilled are described. Information of a general nature on the total design problem plus specific details on how these requirements are to be satisfied are reported. The configuration of the simulator is described and the capabilities for various types of training are identified.
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.
1988-06-01
James McKelvy and Harold Tinsley *," . CONCEPTUAL DESIGN OF A SPACE STATION DYNAMIC SCALE MODEL ............. 87 Robert Letchworth, Paul E... CONCEPTUAL SYSTEM DESIGN FOR ANTENNA THERMAL AND DYNAMIC DISTORTION COMPENSATION USING A PHASED ARRAY FEED ................... 145 G. R. Sharp, R. J...to achieve somne desired state or trajectory. For conceptual purposes, however, an alternate view is useful in which the measurement reference against
ERIC Educational Resources Information Center
Rea-Ramirez, Mary Anne; Ramirez, Tina M.
2017-01-01
Purpose: The purpose is to demonstrate that conceptual change theory and strategies can be applied to areas of the social science, such as human rights education on FORB. Design/methodology/approach: The theoretical scope of this paper is conceptual change theory and is intended to introduce the theory and practice of conceptual change in teaching…
Research on conceptual/innovative design for the life cycle
NASA Technical Reports Server (NTRS)
Cagan, Jonathan; Agogino, Alice M.
1990-01-01
The goal of this research is developing and integrating qualitative and quantitative methods for life cycle design. The definition of the problem includes formal computer-based methods limited to final detailing stages of design; CAD data bases do not capture design intent or design history; and life cycle issues were ignored during early stages of design. Viewgraphs outline research in conceptual design; the SYMON (SYmbolic MONotonicity analyzer) algorithm; multistart vector quantization optimization algorithm; intelligent manufacturing: IDES - Influence Diagram Architecture; and 1st PRINCE (FIRST PRINciple Computational Evaluator).
Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument
NASA Astrophysics Data System (ADS)
Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.
2012-09-01
We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.
Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2
NASA Technical Reports Server (NTRS)
1988-01-01
The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.
An advanced technology space station for the year 2025, study and concepts
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Garn, P. A.
1987-01-01
A survey was made of potential space station missions that might exist in the 2020 to 2030 time period. Also, a brief study of the current state-of-the-art of the major subsystems was undertaken, and trends in technologies that could impact the subsystems were reviewed. The results of the survey and study were then used to arrive at a conceptual design of a space station for the year 2025. Factors addressed in the conceptual design included requirements for artificial gravity, synergies between subsystems, and the use of robotics. Suggestions are made relative to more in-depth studies concerning the conceptual design and alternative configurations.
NASA Astrophysics Data System (ADS)
Barniol, Pablo; Zavala, Genaro
2016-06-01
In this article we present several modifications of the mechanical waves conceptual survey, the most important test to date that has been designed to evaluate university students' understanding of four main topics in mechanical waves: propagation, superposition, reflection, and standing waves. The most significant changes are (i) modification of several test questions that had some problems in their original design, (ii) standardization of the number of options for each question to five, (iii) conversion of the two-tier questions to multiple-choice questions, and (iv) modification of some questions to make them independent of others. To obtain a final version of the test, we administered both the original and modified versions several times to students at a large private university in Mexico. These students were completing a course that covers the topics tested by the survey. The final modified version of the test was administered to 234 students. In this study we present the modifications for each question, and discuss the reasons behind them. We also analyze the results obtained by the final modified version and offer a comparison between the original and modified versions. In the Supplemental Material we present the final modified version of the test. It can be used by teachers and researchers to assess students' understanding of, and learning about, mechanical waves.
National Ignition Facility: Experimental plan
NASA Astrophysics Data System (ADS)
1994-05-01
As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.
Conceptualizing Youth Empowerment within Tobacco Control
ERIC Educational Resources Information Center
Holden, Debra J.; Messeri, Peter; Evans, W. Douglas; Crankshaw, Erik; Ben-Davies, Maureen
2004-01-01
This article presents a conceptual framework that was developed to guide a national evaluation of the American Legacy Foundation's (Legacy) Statewide Youth Movement Against Tobacco Use (SYMATU) program. This program was designed to develop youth-led, youth-directed initiatives within local communities. Two evaluation studies were designed and…
Belosludov, Rodion V; Rhoda, Hannah M; Zhdanov, Ravil K; Belosludov, Vladimir R; Kawazoe, Yoshiyuki; Nemykin, Victor N
2017-08-02
Correction for 'Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities' by Rodion V. Belosludov et al., Phys. Chem. Chem. Phys., 2016, 18, 13503-13518.
FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT
The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....
Conceptual design of the MHD Engineering Test Facility
NASA Technical Reports Server (NTRS)
Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.
1981-01-01
The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.
Conceptual design considerations and neutronics of lithium fall laser fusion target chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, W.R.; Thomson, W.B.
1978-05-31
Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage.
A reliability and mass perspective of SP-100 Stirling cycle lunar-base powerplant designs
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey S.
1991-01-01
The purpose was to obtain reliability and mass perspectives on selection of space power system conceptual designs based on SP-100 reactor and Stirling cycle power-generation subsystems. The approach taken was to: (1) develop a criterion for an acceptable overall reliability risk as a function of the expected range of emerging technology subsystem unit reliabilities; (2) conduct reliability and mass analyses for a diverse matrix of 800-kWe lunar-base design configurations employing single and multiple powerplants with both full and partial subsystem redundancy combinations; and (3) derive reliability and mass perspectives on selection of conceptual design configurations that meet an acceptable reliability criterion with the minimum system mass increase relative to reference powerplant design. The developed perspectives provided valuable insight into the considerations required to identify and characterize high-reliability and low-mass lunar-base powerplant conceptual design.
Move-tecture: A Conceptual Framework for Designing Movement in Architecture
NASA Astrophysics Data System (ADS)
Yilmaz, Irem
2017-10-01
Along with the technological improvements in our age, it is now possible for the movement to become one of the basic components of the architectural space. Accordingly, architectural construction of movement changes both our architectural production practices and our understanding of architectural space. However, existing design concepts and approaches are insufficient to discuss and understand this change. In this respect, this study aims to form a conceptual framework on the relationship of architecture and movement. In this sense, the conceptualization of move-tecture is developed to research on the architectural construction of movement and the potentials of spatial creation through architecturally constructed movement. Move-tecture, is a conceptualization that treats movement as a basic component of spatial creation. It presents the framework of a qualitative categorization on the design of moving architectural structures. However, this categorization is a flexible one that can evolve in the direction of the expanding possibilities of the architectural design and the changing living conditions. With this understanding, six categories have been defined within the context of the article: Topological Organization, Choreographic Formation, Kinetic Structuring, Corporeal Constitution, Technological Configuration and Interactional Patterning. In line with these categories, a multifaceted perspective on the moving architectural structures is promoted. It is aimed that such an understanding constitutes a new initiative in the design practices carried out in this area and provides a conceptual basis for the discussions to be developed.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 1
NASA Technical Reports Server (NTRS)
Magee, J. P.; Clark, R. D.; Alexander, H. R.
1974-01-01
Results of conceptual design studies of commercial rotary wing transport aircraft for the 1985 time period are presented. Two aircraft configurations, a tandem helicopter and a tilt rotor, were designed for a 200 nautical mile short haul mission with an upper limit of 100 passengers. In addition to the baseline aircraft two further designs of each configuration are included to assess the impact of external noise design criteria on the aircraft size, weight, and cost.
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
NASA Astrophysics Data System (ADS)
Havu-Nuutinen, Sari
2005-03-01
This paper presents a case study of the process of conceptual change in six-year-old children. The process of conceptual change in learning about floating and sinking is described from two different viewpoints: how the children's conceptions change during the instructional process, and how the social discussion during the experimental exploration can be seen in terms of the cognitive changes in the children. Based on qualitative analysis of verbal data, changes in the children's conceptions were mostly epistemological and the children's theories of flotation became more complete with respect to the scientific view. From the viewpoint of the conceptual change, conceptually orientated teacher-child interactions seemed to support the children's cognitive progress in cognitive skills and guided the children to consider the reasons for the flotation.
AFB/open cycle gas turbine conceptual design study
NASA Technical Reports Server (NTRS)
Dickinson, T. W.; Tashjian, R.
1983-01-01
Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.
AFB/open cycle gas turbine conceptual design study
NASA Astrophysics Data System (ADS)
Dickinson, T. W.; Tashjian, R.
1983-09-01
Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.
OTEC riser cable system, Phase II: conceptual design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
Studies are summarized of conceptual designs of riser cable systems for OTEC pilot plants of both the spar and plantship configurations located at sites off the southeast coast of Puerto Rico. The studies utilize a baseline pilot plant riser cable, the design of which has been developed and reported on in other reports. Baseline riser cable systems for OTEC pilot plants are identified, system hardware consistent with these designs are conceptualized, and comparisons of the various system concepts are provided. It is concluded that there are three riser cable systems feasible for a spar pilot plant platform at the Puntamore » Yeguas site, and two riser cable systems feasible at the plantship pilot plant at the Punta Tuna site. Recommendations for further investigations in the areas of materials, hardware design and pre-installation site surveys are also addressed.« less
A Conceptual Design Study of a High Temperature Solar Thermal Receiver
NASA Technical Reports Server (NTRS)
Robertson, C. S.; Ehde, C. L.; Stacy, L. E.; Abujawdeh, S. S.; Narayanan, R.; Mccreight, L. R.; Gatti, A.; Rauch, H. W., Sr.
1980-01-01
A conceptual design was made for a solar thermal receiver capable of operation in the 1095 to 1650 C (2000 to 3000 F) temperature range. This receiver is designed for use with a two-axis paraboloidal concentrator in the 25 to 150 kW sub t power range, and is intended for industrial process heat, Brayton engines, or chemical/fuels reactions. Three concepts were analyzed parametrically. One was selected for conceptual design. Its key feature is a helical coiled tube of sintered silicon nitride which serves as the heat exchanger between the incident solar radiation and the working fluid. A mechanical design of this concept was prepared, and both thermal and stress analysis performed. The analysis showed good performance, low potential cost in mass production, and adaptability to both Brayton cycle engines and chemical/fuels production.
Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv
2009-01-01
This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.
Automating Structural Analysis of Spacecraft Vehicles
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2004-01-01
A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.
Dyer, Joseph-Omer; Hudon, Anne; Montpetit-Tourangeau, Katherine; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara
2015-03-07
Example-based learning using worked examples can foster clinical reasoning. Worked examples are instructional tools that learners can use to study the steps needed to solve a problem. Studying worked examples paired with completion examples promotes acquisition of problem-solving skills more than studying worked examples alone. Completion examples are worked examples in which some of the solution steps remain unsolved for learners to complete. Providing learners engaged in example-based learning with self-explanation prompts has been shown to foster increased meaningful learning compared to providing no self-explanation prompts. Concept mapping and concept map study are other instructional activities known to promote meaningful learning. This study compares the effects of self-explaining, completing a concept map and studying a concept map on conceptual knowledge and problem-solving skills among novice learners engaged in example-based learning. Ninety-one physiotherapy students were randomized into three conditions. They performed a pre-test and a post-test to evaluate their gains in conceptual knowledge and problem-solving skills (transfer performance) in intervention selection. They studied three pairs of worked/completion examples in a digital learning environment. Worked examples consisted of a written reasoning process for selecting an optimal physiotherapy intervention for a patient. The completion examples were partially worked out, with the last few problem-solving steps left blank for students to complete. The students then had to engage in additional self-explanation, concept map completion or model concept map study in order to synthesize and deepen their knowledge of the key concepts and problem-solving steps. Pre-test performance did not differ among conditions. Post-test conceptual knowledge was higher (P < .001) in the concept map study condition (68.8 ± 21.8%) compared to the concept map completion (52.8 ± 17.0%) and self-explanation (52.2 ± 21.7%) conditions. Post-test problem-solving performance was higher (P < .05) in the self-explanation (63.2 ± 16.0%) condition compared to the concept map study (53.3 ± 16.4%) and concept map completion (51.0 ± 13.6%) conditions. Students in the self-explanation condition also invested less mental effort in the post-test. Studying model concept maps led to greater conceptual knowledge, whereas self-explanation led to higher transfer performance. Self-explanation and concept map study can be combined with worked example and completion example strategies to foster intervention selection.
NASA Astrophysics Data System (ADS)
Franco, Gina M.
The purpose of this study was to investigate the role of epistemic beliefs and knowledge representations in cognitive and metacognitive processing and conceptual change when learning about physics concepts through text. Specifically, I manipulated the representation of physics concepts in texts about Newtonian mechanics and explored how these texts interacted with individuals' epistemic beliefs to facilitate or constrain learning. In accordance with definitions from Royce's (1983) framework of psychological epistemology, texts were developed to present Newtonian concepts in either a rational or a metaphorical format. Seventy-five undergraduate students completed questionnaires designed to measure their epistemic beliefs and their misconceptions about Newton's laws of motion. Participants then read the first of two instructional texts (in either a rational or metaphorical format), and were asked to think aloud while reading. After reading the text, participants completed a recall task and a post-test of selected items regarding Newtonian concepts. These steps were repeated with a second instructional text (in either a rational or metaphorical format, depending on which format was assigned previously). Participants' think-aloud sessions were audio-recorded, transcribed, and then blindly coded, and their recalls were scored for total number of correctly recalled ideas from the text. Changes in misconceptions were analyzed by examining changes in participants' responses to selected questions about Newtonian concepts from pretest to posttest. Results revealed that when individuals' epistemic beliefs were congruent with the knowledge representations in their assigned texts, they performed better on both online measures of learning (e.g., use of processing strategies) and offline products of learning (e.g., text recall, changes in misconceptions) than when their epistemic beliefs were incongruent with the knowledge representations. These results have implications for how researchers conceptualize epistemic beliefs and are in line with contemporary views regarding the context sensitivity of individuals' epistemic beliefs. Moreover, the findings from this study not only support current theory about the dynamic and interactive nature of conceptual change, but also advance empirical work in this area by identifying knowledge representations as a text characteristic that may play an important role in the change process.
A Proposed Conceptual Framework for Curriculum Design in Physical Fitness.
ERIC Educational Resources Information Center
Miller, Peter V.; Beauchamp, Larry S.
A physical fitness curriculum, designed to provide cumulative benefits in a sequential pattern, is based upon a framework of a conceptual structure. The curriculum's ultimate goal is the achievement of greater physiological efficiency through a holistic approach that would strengthen circulatory-respiratory, mechanical, and neuro-muscular…
NASA Astrophysics Data System (ADS)
Slykhuis, David A.
This research project examined the efficacy of an online microcomputer-based laboratory based (MBL) physics unit. One hundred and fifty physics students from five high schools in North Carolina were divided into online and classroom groups. The classroom group completed the MBL unit in small groups with assistance from their teachers. The online groups completed the MBL unit in small groups using a website designed for this project for guidance. Pre- and post-unit content specific tests and surveys were given. Statistical analysis of the content tests showed significant development of conceptual understanding by the online group over the course of the unit. There was not a significant difference between the classroom and online group with relation to the amount of conceptual understanding developed. Correlations with post-test achievement showed that pre-test scores and math background were the most significant correlates with success. Computer related variables, such as computer comfort and online access, were only mildly correlated with the online group. Students' views about the nature of physics were not well developed prior to the unit and did not significantly change over the course of the unit. Examination of the students' physics conceptions after instruction revealed common alternative conceptions such as confusing position and velocity variables and incorrect interpretations of graphical features such as slope.
Research on Product Conceptual Design Based on Integrated of TRIZ and HOQ
NASA Astrophysics Data System (ADS)
Xie, Jianmin; Tang, Xiaowo; Shao, Yunfei
The conceptual design determines the success of the final product quality and competition of market. The determination of design parameters and the effective method to resolve parameters contradiction are the key to success. In this paper, the concept of HOQ products designed to determine the parameters, then using the TRIZ contradiction matrix and inventive principles of design parameters to solve the problem of contradictions. Facts have proved that the effective method is to obtain the product concept design parameters and to resolve contradictions line parameters.
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1988-01-01
The Rubber Airplane program, which combines two symbolic processing techniques with a component-based database of design knowledge, is proposed as a computer aid for conceptual design. Using object-oriented programming, programs are organized around the objects and behavior to be simulated, and using constraint propagation, declarative statements designate mathematical relationships among all the equation variables. It is found that the additional level of organizational structure resulting from the arrangement of the design information in terms of design components provides greater flexibility and convenience.
The potential of genetic algorithms for conceptual design of rotor systems
NASA Technical Reports Server (NTRS)
Crossley, William A.; Wells, Valana L.; Laananen, David H.
1993-01-01
The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.
Conceptual design of a two stage to orbit spacecraft
NASA Technical Reports Server (NTRS)
Armiger, Scott C.; Kwarta, Jennifer S.; Horsley, Kevin B.; Snow, Glenn A.; Koe, Eric C.; Single, Thomas G.
1993-01-01
This project, undertaken through the Advanced Space Design Program, developed a 'Conceptual Design of a Two Stage To Orbit Spacecraft (TSTO).' The design developed utilizes a combination of air breathing and rocket propulsion systems and is fully reusable, with horizontal takeoff and landing capability. The orbiter is carried in an aerodynamically designed bay in the aft section of the booster vehicle to the staging altitude. This TSTO Spacecraft design meets the requirements of replacing the aging Space Shuttle system with a more easily maintained vehicle with more flexible mission capability.
NASA Astrophysics Data System (ADS)
Droui, Mohamed
The educational innovation itself is sometimes debatable but it is justified when the teachers confront the learning difficulties of their students. In particular, some notions of physics are notoriously hard for students to understand, as is the case for the photoelectric effect which is not often comprehended by the students at the college level. This research tries to determine if, as part of a physics course, the simulation of the photoelectric effect and the use of mobile devices in collaborative situations facilitate an evolution of the student's conceptions about the concept of light. We have proceeded to develop a scenario of collaborative learning by integrating a simulation of the photoelectric effect on handheld devices (Pocket PC). The design of scenario was first influenced by our socioconstructivist vision of learning. We conducted two preliminary studies to complete our scenario of learning and to validate the platform " MobileSim " and the interface of the simulator used in our experiment. The first studies were completed with a simulation on computers and the second with a simulation on Pocket PC. After that, we carried out the experimentation with two groups of students. The control group was assigned to the traditional approach of teaching and the experimental group was assigned to the approach based on the developed scenario of collaborative learning. We have conducted a test twice to assess a conceptual change about the nature of light and about the phenomenon of the photoelectric effect and related concepts. The first test (pre-test) before the students are involved in the course and the second (post-test) after completion of experiments. Our results in the pre-test and post-test were completed by conducting semi-structured individual interviews with all students, by video recordings and recovered traces (on log files or on paper). Students in the experimental group obtained good results in the test compared to those of the control group. We noted an average gain of learning qualified at a moderate level according to Hake (1998). Interview results were used to identify some conceptual difficulties of student learning. Analysis of collected data from video sequences, questionnaires and recovered tracks allowed us to better understand the process of collaborative learning and has revealed that the number and the time of interactions between students are strongly correlated with the gain of learning. At first, this research project is a success in the designing of a learning scenario of a phenomenon as complex as the photoelectric effect and respects many criteria (collaboration, simulation, mobile devices, etc.) that it seemed for us extremely utopian to combine them in an effective learning situation in the classroom. For instance, this scenario could be adapted to the learning of other concepts in physics. It could also be considered for the design of collaborative environments for innovative mobile learning focused on the needs of learners that integrate the technologies at the right time and for the right activity. Keywords : collaborative learning, simulation, mobile learning, conceptual change, photoelectric effect.
ERIC Educational Resources Information Center
Tosho, Abdulrauf; Mutalib, Ariffin Abdul; Abdul-Salam, Sobihatun Nur
2016-01-01
This paper describes an ongoing study related to a conceptual design model, which is specific to instructional interface design to enhance courseware usage. It was found that most of the existing courseware applications focus on the needs of certain target with most of the courseware offer too little to inclusive learners. In addition, the use of…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strait, James; McCluskey, Elaine; Lundin, Tracy
2016-01-21
This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.
Conceptual Design Study of Nb(3)Sn Low-beta Quadrupoles for 2nd Generation LHC IRs
NASA Astrophysics Data System (ADS)
Zlobin, A. V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.
2002-10-01
Conceptual designs of 90-mm aperture high gradient quadrupoles based on the Nb3Sn superconductor, are being developed at Fermilab for possible 2nd generation IRs with the similar optics as in the current low-beta insertions. Magnet designs and results of magnetic, mechanical, thermal and quench protection analysis for these magnets are presented and discussed.
Investigation of the feasibility of optical diagnostic measurements at the exit of the SSME
NASA Technical Reports Server (NTRS)
Shirley, John A.; Boedeker, Laurence R.
1993-01-01
Under Contract NAS8-36861 sponsored by NASA Marshall Space Flight Center, the United Technologies Research Center is conducting an investigation of the feasibility of remote optical diagnostics to measure temperature, species concentration and velocity at the exit of the Space Shuttle Main Engine (SSME). This is a two phase study consisting of a conceptual design phase followed by a laboratory experimental investigation. The first task of the conceptual design studies is to screen and evaluate the techniques which can be used for the measurements. The second task is to select the most promising technique or techniques, if as expected, more than one type of measurement must be used to measure all the flow variables of interest. The third task is to examine in detail analytically the capabilities and limitations of the selected technique(s). The results of this study are described in the section of this report entitled Conceptual Design Investigations. The conceptual design studies identified spontaneous Raman scattering and photodissociative flow-tagging for measurements respectively of gas temperature and major species concentration and for velocity. These techniques and others that were considered are described in the section describing the conceptual design. The objective of the second phase of investigations was to investigate experimentally the techniques identified in the first phase. The first task of the experimental feasibility study is to design and assemble laboratory scale experimental apparatus to evaluate the best approaches for SSME exit optical diagnostics for temperature, species concentrations and velocity, as selected in the Phase I conceptual design study. The second task is to evaluate performance, investigate limitations, and establish actual diagnostic capabilities, accuracies and precision for the selected optical systems. The third task is to evaluate design requirements and system trade-offs of conceptual instruments. Spontaneous Raman scattering excited by a KrF excimer laser pulse was investigated for SSME exit plane temperature and major species concentration measurements. The relative concentrations of molecular hydrogen and water vapor would be determined by measuring the integrated Q-branch scattering signals through narrow bandpass filters in front of photomultipliers. The temperature would be determined by comparing the signal from a single hydrogen rotational Raman line to the total hydrogen Q-branch signal. The rotational Raman line would be isolated by a monochromator and detected with a PMT.
Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology
Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.
2013-01-01
There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non–biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non–biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise. PMID:24297290
Lunar Contour Crafting: A Novel Technique for ISRU-Based Habitat Development
NASA Technical Reports Server (NTRS)
Khoshnevis, Behrokh; Bodiford, Melanie P.; Burks, Kevin H.; Ethridge, Ed; Tucker, Dennis; Kim, Won; Toutanji, Houssam; Fiske, Michael R.
2004-01-01
As the nation prepares to return to the Moon, it is apparent that the viability of long duration visits with appropriate radiation shielding/crew protection, hinges on the development of Lunar structures, preferably in advance of a manned landing, and preferably utilizing in-situ resources. Contour Crafting is a USC-patented technique for automated development of terrestrial concrete-based structures. The process is relatively fast, completely automated, and supports the incorporation of various infrastructure elements such as plumbing and electrical wiring. This paper will present a conceptual design of a Lunar Contour Crafting system designed to autonomously fabricate integrated structures on the Lunar surface using high-strength concrete based on Lunar regolith, including glass reinforcement rods or fibers fabricated from melted regolith. Design concepts will be presented, as well as results of initial tests aimed at concrete and glass production using Lunar regolith simulant. Key issues and concerns will be presented, along with design concepts for an LCC testbed to be developed at MSFC's Prototype Development Laboratory (PDL).
NASA Astrophysics Data System (ADS)
Westfall, Catherine
2018-03-01
This is the second in a three-part article describing the development of the Thomas Jefferson National Accelerator Facility's experimental program, from the first dreams of incisive electromagnetic probes into the structure of the nucleus through the era in which equipment was designed and constructed and a program crafted so that the long-desired experiments could begin. These developments unfolded against the backdrop of the rise of the more bureaucratic New Big Science and the intellectual tumult that grew from increasing understanding and interest in quark-level physics. Part 2, presented here, focuses on the period from 1986 to 1990. During this period of revolutionary change, laboratory personnel, potential users, and DOE officials labored to proceed from the 1986 laboratory design report, which included detailed accelerator plans and very preliminary experimental equipment sketches, to an approved 1990 experimental equipment conceptual design report, which provided designs complete enough for the onset of experimental equipment construction.
Progress in FMIT test assembly development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Opperman, E.K.; Vogel, M.A.; Shen, E.J.
Research and development supporting the completed design of the Fusion Materials Irradiation Test (FMIT) Facility is continuing at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington. The FMIT, a deuteron accelerator based (d + Li) neutron source, will produce an intense flux of high energy neutrons for use in radiation damage studies of fusion reactor materials. The most intense flux magnitude of greater than 10/sup 15/ n/cm/sup 2/-s is located close to the neutron producing lithium target and is distributed within a volume about the size of an American football. The conceptual design and development of FMIT experiments calledmore » Test Assemblies has progressed over the past five years in parallel with the design of the FMIT. The paper will describe the recent accomplishments made in developing test assemblies appropriate for use in the limited volume close to the FMIT target where high neutron flux and heating rates and the associated spacial gradients significantly impact design considerations.« less
NASA Technical Reports Server (NTRS)
Donahue, Benjamin
1994-01-01
Recently, one of the most comprehensive design studies of conceptual manned Mars vehicles, conducted since the Apollo era Mars mission studies of the 1960's, was completed. One of the tasks of the study involved the analysis of nuclear thermal propulsion spacecraft for Manned Mars exploration missions. This paper describes the specific effort aimed at vehicle configuration design. Over the course of the four year study, three configuration baselines were developed, each reflecting trade study cycle results of sequential phases of the study. Favorable attributes incorporated into the final concept, including a capability for on-orbit self-assembly and ease of launch vehicle packability, represent design solutions to configuration deficiencies plaguing nuclear propulsion Mars spacecraft design since the vehicle archetype originated in the 1950's. This paper contains a narrative summary of significant milestones in the effort, describes the evolution to the preferred configuration, and set forth the benefits derived from its utilization.
APS deposition facility upgrades and future plans
NASA Astrophysics Data System (ADS)
Conley, Ray; Shi, Bing; Erdmann, Mark; Izzo, Scott; Assoufid, Lahsen; Goetze, Kurt; Mooney, Tim; Lauer, Kenneth
2014-09-01
The Advanced Photon Source (APS) has recently invested resources to upgrade or replace aging deposition systems with modern equipment. Of the three existing deposition systems, one will receive an upgrade, while two are being replaced. A design which adds a three-substrate planetary for the APS rotary deposition system is almost complete. The replacement for the APS large deposition system, dubbed the "Modular Deposition System", has been conceptually designed and is in the procurement process. Eight cathodes will sputter horizontally on mirrors up to 1.5 meters in length. This new instrument is designed to interface with ion-milling instruments and various metrology equipment for ion-beam figuring. A third linear machine, called the APS Profile Coating System, has two cathodes and is designed to accept substrates up to 200mm in length. While this machine is primarily intended for fabrication of figured KB mirrors using the profile-coating technique, it has also been used to produce multilayer monochromators for beamline use.
NASA Technical Reports Server (NTRS)
Anderson, R. D.
1985-01-01
Single-rotation propfan-powered regional transport aircraft were studied to identify key technology development issues and programs. The need for improved thrust specific fuel consumption to reduce fuel burned and aircraft direct operating cost is the dominant factor. Typical cycle trends for minimizing fuel consumption are reviewed, and two 10,000 shp class engine configurations for propfan propulsion systems for the 1990's are presented. Recommended engine configurations are both three-spool design with dual spool compressors and free power turbines. The benefits of these new propulsion system concepts were evaluated using an advanced airframe, and results are compared for single-rotation propfan and turbofan advanced technology propulsion systems. The single-rotation gearbox is compared to a similar design with current technology to establish the benefits of the advanced gearbox technology. The conceptual design of the advanced pitch change mechanism identified a high pressure hydraulic system that is superior to the other contenders and completely external to the gearboxes.
Confronting Conceptual Challenges in Thermodynamics by Use of Self-Generated Analogies
ERIC Educational Resources Information Center
Haglund, Jesper; Jeppsson, Fredrik
2014-01-01
Use of self-generated analogies has been proposed as a method for students to learn about a new subject by reference to what they previously know, in line with a constructivist perspective on learning and a resource perspective on conceptual change. We report on a group exercise on using completion problems in combination with self-generated…
The Effect of Perspective on Misconceptions in Psychology: A Test of Conceptual Change Theory
ERIC Educational Resources Information Center
Amsel, Eric; Johnston, Adam; Alvarado, Elly; Kettering, Jack; Rankin, Lauren; Ward, Melissa
2009-01-01
To test whether students' knowledge about psychology undergoes a conceptual change when learning about the discipline, 227 Introductory Psychology students from six different classes were given the Psychology as a Science (PAS) Scale in one of two conditions. Students were randomly assigned to complete the questionnaire from their own (Self…
ERIC Educational Resources Information Center
Saunders, Ruth P.; Pfeiffer, Karin; Brown, William H.; Howie, Erin K.; Dowda, Marsha; O'Neill, Jennifer R.; McIver, Kerry; Pate, Russell R.
2017-01-01
This study investigated the utility of the Study of Health and Activity in Preschool Environments (SHAPES) conceptual model, which targeted physical activity (PA) behavior in preschool children, by examining the relationship between implementation monitoring data and child PA during the school day. We monitored implementation completeness and…
Air Brayton Solar Receiver, phase 1
NASA Technical Reports Server (NTRS)
Zimmerman, D. K.
1979-01-01
A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.
Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction
NASA Technical Reports Server (NTRS)
Olson, Erik D.; Mavris, Dimitri N.
2006-01-01
An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.
Nature-based supportive care opportunities: a conceptual framework.
Blaschke, Sarah; O'Callaghan, Clare C; Schofield, Penelope
2018-03-22
Given preliminary evidence for positive health outcomes related to contact with nature for cancer populations, research is warranted to ascertain possible strategies for incorporating nature-based care opportunities into oncology contexts as additional strategies for addressing multidimensional aspects of cancer patients' health and recovery needs. The objective of this study was to consolidate existing research related to nature-based supportive care opportunities and generate a conceptual framework for discerning relevant applications in the supportive care setting. Drawing on research investigating nature-based engagement in oncology contexts, a two-step analytic process was used to construct a conceptual framework for guiding nature-based supportive care design and future research. Concept analysis methodology generated new representations of understanding by extracting and synthesising salient concepts. Newly formulated concepts were transposed to findings from related research about patient-reported and healthcare expert-developed recommendations for nature-based supportive care in oncology. Five theoretical concepts (themes) were formulated describing patients' reasons for engaging with nature and the underlying needs these interactions address. These included: connecting with what is genuinely valued, distancing from the cancer experience, meaning-making and reframing the cancer experience, finding comfort and safety, and vital nurturance. Eight shared patient and expert recommendations were compiled, which address the identified needs through nature-based initiatives. Eleven additional patient-reported recommendations attend to beneficial and adverse experiential qualities of patients' nature-based engagement and complete the framework. The framework outlines salient findings about helpful nature-based supportive care opportunities for ready access by healthcare practitioners, designers, researchers and patients themselves. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kisner, Roger A; Melin, Alexander M; Burress, Timothy A
The overall project objective is to demonstrate improved reliability and increased performance made possible by deeply embedding instrumentation and controls (I&C) in nuclear power plant components. The project is employing a highly instrumented canned rotor, magnetic bearing, fluoride salt pump as its I&C technology demonstration vehicle. The project s focus is not primarily on pump design, but instead is on methods to deeply embed I&C within a pump system. However, because the I&C is intimately part of the basic millisecond-by-millisecond functioning of the pump, the I&C design cannot proceed in isolation from the other aspects of the pump. The pumpmore » will not function if the characteristics of the I&C are not embedded within the design because the I&C enables performance of the basic function rather than merely monitoring quasi-stable performance. Traditionally, I&C has been incorporated in nuclear power plant (NPP) components after their design is nearly complete; adequate performance was obtained through over-design. This report describes the progress and status of the project and provides a conceptual design overview for the embedded I&C pump.« less
Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results
NASA Astrophysics Data System (ADS)
Hals, F. A.
1981-03-01
The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.
Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems
NASA Technical Reports Server (NTRS)
Williams, Craig H.
2004-01-01
An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.
Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results
NASA Technical Reports Server (NTRS)
Hals, F. A.
1981-01-01
The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.
Conceptual Design of an In-Space Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.
1981-01-01
The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.
A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate
NASA Astrophysics Data System (ADS)
El Dallal, Norhan; Visser, Florentine
2017-09-01
In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.
Overview of NASA's Integrated Design and Engineering Analysis (IDEA)Environment
NASA Technical Reports Server (NTRS)
Robinson, Jeffrey S.; Martin John G.
2008-01-01
Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures) each of which performs their design and analysis in relative isolation from others. This is possible in most cases either because the amount of interdisciplinary coupling is minimal or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA s X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design & Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary launch vehicle configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, configuration, propulsion, aerodynamics, aerothermodynamics, trajectory, closure and structural analysis into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics Research Mission Directorate. The environment is currently focused around a two-stage-to-orbit configuration with a turbine based combined cycle (TBCC) first stage and reusable rocket second stage. This paper provides an overview of the development of the IDEA environment, a description of the current status and detail of future plans.
NOSS flight segment concept study
NASA Technical Reports Server (NTRS)
1979-01-01
An 11 ft wide by 26.5 ft long flat structure weighing almost 14,469 pounds evolved during a low level, inhouse conceptual design study for a national oceanic satellite system spacecraft that would stow directly in the space shuttle. Following STS launch to a 300 Km mission orbit inclination, transfer will be effected to a 800 Km Sun synchronous circular orbit. The instrument completement includes 2 altimeters, 1 scatterometer, 1 large antenna multichannel microwave radiometer, and a coastal zone scanner. The spacecraft, its instruments, and interfaces with STS and TDRSS are described. The mission timeline, potential problem areas, system drivers, and recommended study areas are discussed. Drawings and system block diagrams are included.
ARTEMIS Mission Overview: From Concept to Operations
NASA Technical Reports Server (NTRS)
Folta, David; Sweetser, Theodore
2011-01-01
ARTEMIS (Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun) repurposed two spacecraft to extend their useful science (Angelopoulos, 2010) by moving them via lunar gravity assists from elliptical Earth orbits to L1 and L2 Earth-Moon libration orbits and then to lunar orbits by exploiting the Earth-Moon-Sun dynamical environment. This paper describes the complete design from conceptual plans using weak stability transfer options and lunar gravity assist to the implementation and operational support of the Earth-Moon libration and lunar orbits. The two spacecraft of the ARTEMIS mission will have just entered lunar orbit at this paper's presentation.
Prenatal yoga in late pregnancy and optimism, power, and well-being.
Reis, Pamela J; Alligood, Martha R
2014-01-01
The study reported here explored changes in optimism, power, and well-being over time in women who participated in a six-week prenatal yoga program during their second and third trimesters of pregnancy. The study was conceptualized from the perspective of Rogers' science of unitary human beings. A correlational, one-group, pre-post-assessment survey design with a convenience sample was conducted. Increases in mean scores for optimism, power, and well-being were statistically significant from baseline to completion of the prenatal yoga program. Findings from this study suggested that yoga as a self-care practice that nurses might recommend to promote well-being in pregnant women.
Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, Peter P.; Wagner, Katie A.
A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affectingmore » the public.« less
Solar Stirling system development
NASA Technical Reports Server (NTRS)
Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.
1979-01-01
A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.
NASA Technical Reports Server (NTRS)
Weinstein, H.; Lavan, Z.
1975-01-01
Analytical investigations of fluid dynamics problems of relevance to the gaseous core nuclear reactor program are presented. The vortex type flow which appears in the nuclear light bulb concept is analyzed along with the fluid flow in the fuel inlet region for the coaxial flow gaseous core nuclear reactor concept. The development of numerical methods for the solution of the Navier-Stokes equations for appropriate geometries is extended to the case of rotating flows and almost completes the gas core program requirements in this area. The investigations demonstrate that the conceptual design of the coaxial flow reactor needs further development.
Priming Effects Associated with the Hierarchical Levels of Classification Systems
ERIC Educational Resources Information Center
Loehrlein, Aaron J.
2012-01-01
The act of categorization produces conceptual representations in memory while knowledge organization (KO) systems provide conceptual representations that are used in information storage and retrieval systems. Previous research has explored how KO systems can be designed to resemble the user's internal conceptual structures. However, the more…
Conceptual Understanding of Multiplicative Properties through Endogenous Digital Game Play
ERIC Educational Resources Information Center
Denham, Andre
2012-01-01
This study purposed to determine the effect of an endogenously designed instructional game on conceptual understanding of the associative and distributive properties of multiplication. Additional this study sought to investigate if performance on measures of conceptual understanding taken prior to and after game play could serve as predictors of…
From the School Health Education Study to the National Health Education Standards: Concepts Endure
ERIC Educational Resources Information Center
Nobiling, Brandye D.; Lyde, Adrian R.
2015-01-01
Background: The landmark School Health Education Study (SHES) project influenced by the conceptual approach to teaching and learning provides perspective on modern school health instruction. Conceptual education, the cornerstone of the SHES curriculum framework (CF), "Health Education: A Conceptual Approach to Curriculum Design," fosters…
The Instrumental Value of Conceptual Frameworks in Educational Technology Research
ERIC Educational Resources Information Center
Antonenko, Pavlo D.
2015-01-01
Scholars from diverse fields and research traditions agree that the conceptual framework is a critically important component of disciplined inquiry. Yet, there is a pronounced lack of shared understanding regarding the definition and functions of conceptual frameworks, which impedes our ability to design effective research and mentor novice…
Parity in Designing, Conducting, and Evaluating Teacher Education Programs: A Conceptual Definition.
ERIC Educational Resources Information Center
Caruso, Joseph J.
Individuals, agencies, and institutions involved in the education and employment of teachers conceptually defined parity relevant to the decision-making process in planning, conducting, and evaluating teacher education programs and translated the conceptual definition into an instrument for describing parity in consortium-centered teacher…
Conceptualizations of Professional Competencies in School Health Promotion
ERIC Educational Resources Information Center
Carlsson, Monica
2016-01-01
Purpose: The purpose of the paper is to contribute to the conceptualization and discussion of professional competencies needed for supporting the development of the whole-school approach in school health promotion (SHP). Design/methodology/approach: The paper is based on a conceptual synthesis of literature, guided by a theoretical perspective on…
An Expert System-Driven Method for Parametric Trajectory Optimization During Conceptual Design
NASA Technical Reports Server (NTRS)
Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen; Diaz, Manuel J.; Holt, James B.
2015-01-01
During the early phases of engineering design, the costs committed are high, costs incurred are low, and the design freedom is high. It is well documented that decisions made in these early design phases drive the entire design's life cycle cost. In a traditional paradigm, key design decisions are made when little is known about the design. As the design matures, design changes become more difficult in both cost and schedule to enact. The current capability-based paradigm, which has emerged because of the constrained economic environment, calls for the infusion of knowledge usually acquired during later design phases into earlier design phases, i.e. bringing knowledge acquired during preliminary and detailed design into pre-conceptual and conceptual design. An area of critical importance to launch vehicle design is the optimization of its ascent trajectory, as the optimal trajectory will be able to take full advantage of the launch vehicle's capability to deliver a maximum amount of payload into orbit. Hence, the optimal ascent trajectory plays an important role in the vehicle's affordability posture yet little of the information required to successfully optimize a trajectory is known early in the design phase. Thus, the current paradigm of optimizing ascent trajectories involves generating point solutions for every change in a vehicle's design parameters. This is often a very tedious, manual, and time-consuming task for the analysts. Moreover, the trajectory design space is highly non-linear and multi-modal due to the interaction of various constraints. When these obstacles are coupled with the Program to Optimize Simulated Trajectories (POST), an industry standard program to optimize ascent trajectories that is difficult to use, expert trajectory analysts are required to effectively optimize a vehicle's ascent trajectory. Over the course of this paper, the authors discuss a methodology developed at NASA Marshall's Advanced Concepts Office to address these issues. The methodology is two-fold: first, capture the heuristics developed by human analysts over their many years of experience; and secondly, leverage the power of modern computing to evaluate multiple trajectories simultaneously and therefore enable the exploration of the trajectory's design space early during the pre- conceptual and conceptual phases of design. This methodology is coupled with design of experiments in order to train surrogate models, which enables trajectory design space visualization and parametric optimal ascent trajectory information to be available when early design decisions are being made.
NASA Technical Reports Server (NTRS)
Polites, M. E.; Carrington, C. K.
1995-01-01
This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (Ml) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly-ellipdcal polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.
Spent nuclear fuel canister storage building conceptual design report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, C.E.
This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.
NASA Astrophysics Data System (ADS)
Catur Wibowo, Firmanul; Suhandi, Andi; Rusdiana, Dadi; Samsudin, Achmad; Rahmi Darman, Dina; Faizin, M. Noor; Wiyanto; Supriyatman; Permanasari, Anna; Kaniawati, Ida; Setiawan, Wawan; Karyanto, Yudi; Linuwih, Suharto; Fatah, Abdul; Subali, Bambang; Hasani, Aceng; Hidayat, Sholeh
2017-07-01
Electricity is a concept that is abstract and difficult to see by eye directly, one example electric shock, but cannot see the movement of electric current so that students have difficulty by students. A computer simulation designed to improve the understanding of the concept of the workings of the dry cell (battery). This study was conducted to 82 students (aged 18-20 years) in the experimental group by learning to use the Dry Cell Microscopic Simulation (DCMS). The result shows the improving of students’ conceptual understanding scores from post test were statistically significantly of the workings of batteries. The implication using computer simulations designed to overcome the difficulties of conceptual understanding, can effectively help students in facilitating conceptual change.
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
Using Concept Maps to Reveal Conceptual Typologies
ERIC Educational Resources Information Center
Hay, David B.; Kinchin, Ian M.
2006-01-01
Purpose: The purpose of this paper is to explain and develop a classification of cognitive structures (or typologies of thought), previously designated as spoke, chain and network thinking by Kinchin "et al." Design/methodology/approach: The paper shows how concept mapping can be used to reveal these conceptual typologies and endeavours to place…
Conceptual design study of a 1985 commercial STOL tilt rotor transport
NASA Technical Reports Server (NTRS)
Widdison, C. A.; Magee, J. P.; Alexander, H. R.
1974-01-01
Results of conceptual engineering design studies of a STOL tilt rotor commercial aircraft for the 1985 time frame are presented. The details of aircraft size, performance, flying qualities, noise, and cost are included. The savings in terms of fuel economy resulting from STOL operations compared with VTOL vehicles are determined.
A Conceptual Design Model for CBT Development: A NATO Case Study
ERIC Educational Resources Information Center
Kok, Ayse
2014-01-01
CBT (computer-based training) can benefit from the modern multimedia tools combined with network capabilities to overcame traditional education. The objective of this paper is focused on CBT development to improve strategic decision-making with regard to air command and control system for NATO staff in virtual environment. A conceptual design for…
ERIC Educational Resources Information Center
Adolphus, Telima; Omeodu, Doris
2016-01-01
The study investigates the effect of gender and collaborative learning approach on students' conceptual understanding of electromagnetic induction in Secondary Schools in Nigeria. Three research questions and 2 hypotheses were formulated to guide the research. The research design adopted for this study is the quasi-experimental design. In…
ERIC Educational Resources Information Center
Wells, John G.
2016-01-01
The PIRPOSAL model is both a conceptual and pedagogical framework intended for use as a pragmatic guide to classroom implementation of Integrative STEM Education. Designerly questioning prompted by a "need to know" serves as the basis for transitioning student designers within and among multiple phases while they progress toward an…
Engineering Design Activities and Conceptual Change in Middle School Science
ERIC Educational Resources Information Center
Schnittka, Christine G.
2009-01-01
The purpose of this research was to investigate the impact of engineering design classroom activities on conceptual change in science, and on attitudes toward and knowledge about engineering. Students were given a situated learning context and a rationale for learning science in an active, inquiry-based method, and worked in small collaborative…
A Novel CAI System for Space Conceptualization Training in Perspective Sketching
ERIC Educational Resources Information Center
Luh, Ding-Bang; Chen, Shao-Nung
2013-01-01
For many designers, freehand sketching is the primary tool for conceptualization in the early stage of the design process. However, current education on concept presentation techniques rarely emphasizes the construction of the most fundamental spatial unit, the cube. Incorrect construction of spatial units leads to disproportions that deviate from…
Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft
NASA Astrophysics Data System (ADS)
Xue, Hui; Khawaja, H.; Moatamedi, M.
2014-12-01
The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.
Conceptual Design and Structural Analysis of an Open Rotor Hybrid Wing Body Aircraft
NASA Technical Reports Server (NTRS)
Gern, Frank H.
2013-01-01
Through a recent NASA contract, Boeing Research and Technology in Huntington Beach, CA developed and optimized a conceptual design of an open rotor hybrid wing body aircraft (HWB). Open rotor engines offer a significant potential for fuel burn savings over turbofan engines, while the HWB configuration potentially allows to offset noise penalties through possible engine shielding. Researchers at NASA Langley converted the Boeing design to a FLOPS model which will be used to develop take-off and landing trajectories for community noise analyses. The FLOPS model was calibrated using Boeing data and shows good agreement with the original Boeing design. To complement Boeing s detailed aerodynamics and propulsion airframe integration work, a newly developed and validated conceptual structural analysis and optimization tool was used for a conceptual loads analysis and structural weights estimate. Structural optimization and weight calculation are based on a Nastran finite element model of the primary HWB structure, featuring centerbody, mid section, outboard wing, and aft body. Results for flight loads, deformations, wing weight, and centerbody weight are presented and compared to Boeing and FLOPS analyses.
Magnetic liquefier for hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1992-12-31
This document summarizes work done at the Astronautics Technology Center of the Astronautics Corporation of America (ACA) in Phase 1 of a four phase program leading to the development of a magnetic liquefier for hydrogen. The project involves the design, fabrication, installation, and operation of a hydrogen liquefier providing significantly reduced capital and operating costs, compared to present liquefiers. To achieve this goal, magnetic refrigeration, a recently developed, highly efficient refrigeration technology, will be used for the liquefaction process. Phase 1 project tasks included liquefier conceptual design and analysis, preliminary design of promising configurations, design selection, and detailed design ofmore » the selected design. Fabrication drawings and vendor specifications for the selected design were completed during detailed design. The design of a subscale, demonstration magnetic hydrogen liquefier represents a significant advance in liquefaction technology. The cost reductions that can be realized in hydrogen liquefaction in both the subscale and, more importantly, in the full-scale device are expected to have considerable impact on the use of liquid hydrogen in transportation, chemical, and electronic industries. The benefits to the nation from this technological advance will continue to have importance well into the 21st century.« less
Diagnosis and hypnotic treatment of an unusual case of hysterical amnesia.
Iglesias, Alex; Iglesias, Adam
2009-10-01
This article reports on the use of hypnosis to facilitate the diagnostic process and the treatment of an unusual case of adult psychogenic amnesia. An Iraqi citizen living in the U.S. developed an atypical case of Dissociative Amnesia, Systematized type, post-automotive collision. The amnesia presented with features encompassing complete loss of the patient's native language. Dissociation theory as a conceptualization of hysterical reactions was employed as the basis in the formulation of this case. The differential diagnosis was facilitated by the Hypnotic Diagnostic Interview for Hysterical Disorders (HDIHD) Adult Form, an interview tool specifically designed for cases such as this. Treatment consisted exclusively of ego strengthening and time projection approaches in hypnosis. It was hypothesized that, as the coping capacities became more viable, the dissociative symptoms would remiss. After 6 weekly visits the patient regained complete command of his native language. Follow-up at 6 months indicated that the patient remained devoid of symptoms.
Stirling Laboratory Research Engine: Preprototype configuration report
NASA Technical Reports Server (NTRS)
Hoehn, F. W.
1982-01-01
The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.
Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors
NASA Technical Reports Server (NTRS)
Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.
1975-01-01
The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.
Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT
NASA Technical Reports Server (NTRS)
Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.
1988-01-01
A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.
A method for scenario-based risk assessment for robust aerospace systems
NASA Astrophysics Data System (ADS)
Thomas, Victoria Katherine
In years past, aircraft conceptual design centered around creating a feasible aircraft that could be built and could fly the required missions. More recently, aircraft viability entered into conceptual design, allowing that the product's potential to be profitable should also be examined early in the design process. While examining an aerospace system's feasibility and viability early in the design process is extremely important, it is also important to examine system risk. In traditional aerospace systems risk analysis, risk is examined from the perspective of performance, schedule, and cost. Recently, safety and reliability analysis have been brought forward in the design process to also be examined during late conceptual and early preliminary design. While these analyses work as designed, existing risk analysis methods and techniques are not designed to examine an aerospace system's external operating environment and the risks present there. A new method has been developed here to examine, during the early part of concept design, the risk associated with not meeting assumptions about the system's external operating environment. The risks are examined in five categories: employment, culture, government and politics, economics, and technology. The risks are examined over a long time-period, up to the system's entire life cycle. The method consists of eight steps over three focus areas. The first focus area is Problem Setup. During problem setup, the problem is defined and understood to the best of the decision maker's ability. There are four steps in this area, in the following order: Establish the Need, Scenario Development, Identify Solution Alternatives, and Uncertainty and Risk Identification. There is significant iteration between steps two through four. Focus area two is Modeling and Simulation. In this area the solution alternatives and risks are modeled, and a numerical value for risk is calculated. A risk mitigation model is also created. The four steps involved in completing the modeling and simulation are: Alternative Solution Modeling, Uncertainty Quantification, Risk Assessment, and Risk Mitigation. Focus area three consists of Decision Support. In this area a decision support interface is created that allows for game playing between solution alternatives and risk mitigation. A multi-attribute decision making process is also implemented to aid in decision making. A demonstration problem inspired by Airbus' mid 1980s decision to break into the widebody long-range market was developed to illustrate the use of this method. The results showed that the method is able to capture additional types of risk than previous analysis methods, particularly at the early stages of aircraft design. It was also shown that the method can be used to help create a system that is robust to external environmental factors. The addition of an external environment risk analysis in the early stages of conceptual design can add another dimension to the analysis of feasibility and viability. The ability to take risk into account during the early stages of the design process can allow for the elimination of potentially feasible and viable but too-risky alternatives. The addition of a scenario-based analysis instead of a traditional probabilistic analysis enabled uncertainty to be effectively bound and examined over a variety of potential futures instead of only a single future. There is also potential for a product to be groomed for a specific future that one believes is likely to happen, or for a product to be steered during design as the future unfolds.
MASCOT - MATLAB Stability and Control Toolbox
NASA Technical Reports Server (NTRS)
Kenny, Sean; Crespo, Luis
2011-01-01
MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability and trim constraints in the conceptual design loop. The unique graphical interface developed for this tool presents the stability data in a format that is understandable by the conceptual designer, yet also provides the detailed quantitative results if desired.
Issues and Design Drivers for Deep Space Habitats
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Anderson, Molly
2012-01-01
A cross-disciplinary team of scientists and engineers applied expertise gained in Lunar Lander development to the conceptual design of a long-duration, deep space habitat for Near Earth Asteroid (NEA) missions. The design reference mission involved two launches to assemble 5-modules for a 380-day round trip mission carrying 4 crew members. The conceptual design process yielded a number of interesting debates, some of which could be significant design drivers in a detailed Deep Space Habitat (DSH) design. These issues included: Design to minimize crew radiation exposure, launch loads, communications challenges, docking system and hatch commonality, pointing and visibility, consumables, and design for contingency operations.
ERIC Educational Resources Information Center
Nyachwaya, James M.
2016-01-01
The objective of this study was to examine college general chemistry students' conceptual understanding and language fluency in the context of the topic of acids and bases. 115 students worked in groups of 2-4 to complete an activity on conductometry, where they were given a scenario in which a titration of sodium hydroxide solution and dilute…
Conceptual design study of improved automotives gas turbine powertrain
NASA Technical Reports Server (NTRS)
1979-01-01
Twenty-two candidate engine concepts and nineteen transmission concepts. Screening of these concepts, predominantly for fuel economy, cost and technical risk, resulted in a recommended powertrain consisting of a single-shaft engine, with a ceramic radial turbine rotor, connected through a differential split-power transmission utilizing a variable stator torque converter and a four speed automatic gearbox. Vehicle fuel economy and performance projections, preliminary design analyses and installation studies in a were completed. A cost comparison with the conventional spark ignited gasoline engine showed that the turbine engine would be more expensive initially, however, lifetime cost of ownership is in favor of the gas turbine. A powertrain research and development plan was constructed to gain information on timing and costs to achieve the required level of technology and demonstrate the engine in a vehicle by the year 1983.
Toward Right-Fidelity Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Sinsay, Jeffrey D.; Johnson, Wayne
2010-01-01
The aviation Advanced Design Office (ADO) of the US Army Aeroflightdynamics Directorate (AMRDEC) performs conceptual design of advanced Vertical Takeoff and Landing (VTOL) concepts in support of the Army's development and acquisition of new aviation systems. In particular, ADO engages in system synthesis to assess the impact of new technologies and their application to satisfy emerging warfighter needs and requirements. Fundamental to ADO being successful in accomplishing its role; is the ability to evaluate a wide array of proposed air vehicle concepts, and independently synthesize new concepts to inform Army and DoD decision makers about the tradespace in which decisions will be made (Figure 1). ADO utilizes a conceptual design (CD) process in the execution of its role. Benefiting from colocation with NASA rotorcraft researchers at the Ames Research Center, ADO and NASA have engaged in a survey of the current rotorcraft PD practices and begun the process of improving those capabilities to enable effective design and development of the next generation of VTOL systems. A unique aspect of CD in ADO is the fact that actual designs developed in-house are not intended to move forward in the development process. Rather, they are used as reference points in discussions about requirements development and technology impact. The ultimate products of ADO CD efforts are technology impact assessments and specifications which guide industry design activity. The fact that both the requirement and design are variables in the tradespace adds to the complexity of the CD process. A frequent need is ability to assess the relative "cost" of variations in requirement for a diverse set of VTOL configurations. Each of these configurations may have fundamentally different response characteristics to this requirement variation, and such insight into how different requirements drive different designs is a critical insight ADO attempts to provide decision makers. The processes and tools utilized are driven by the timeline in which questions must be answered. This can range from quick "back-of-the-envelope" assessments of a configuration made in an afternoon, to more detailed tradespace explorations that can take upwards of a year to complete. A variety of spreadsheet based tools and conceptual design codes are currently in use. The in-house developed conceptual sizing code RC (Rotorcraft) has been the preferred tool of choice for CD activity for a number of years. Figure 2 illustrates the long standing coupling between RC and solid modeling tools for layout, as well as a number of ad-hoc interfaces with external analyses. RC contains a sizing routine that is built around the use of momentum theory for rotors, classic finite wing theory, a referred parameter engine model, and semi-emperical weight estimation techniques. These methods lend themselves to rapid solutions, measured in seconds and minutes. The successful use of RC, however requires careful consideration of model input parameters and judicious comparison with existing aircraft to avoid unjustified extrapolation of results. RC is in fact a legacy of a series of codes whose development started in the early 1970s, and is best suited to the study of conventional helicopters and XV-15 style tiltrotors. Other concepts have been analyzed with RC, but typically it became necessary to modify the source code and methods for each unique configuration. Recent activity has lead to the development of a new code, NASA Design and Analysis of Rotorcraft (NDARC). NDARC uses a similar level of analytical fidelity as RC, but is built on a new framework intended to improve modularity and ability to rapidly model a wider array of concepts. Critical to achieving this capability is the decomposition of the aircraft system into a series of fundamental components which can then be assembled to form a wide-array of configurations. The paper will provide an overview of NDARC and its capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
During the second half of fiscal year 1996, activities at the Yucca Mountain Site Characterization Project (Project) supported the objectives of the revised Program Plan released this period by the Office of Civilian Radioactive Waste Management of the US Department of Energy (Department). Outlined in the revised plan is a focused, integrated program of site characterization, design, engineering, environmental, and performance assessment activities that will achieve key Program and statutory objectives. The plan will result in the development of a license application for repository construction at Yucca Mountain, if the site is found suitable. Activities this period focused on twomore » of the three near-term objectives of the revised plan: updating in 1997 the regulatory framework for determining the suitability of the site for the proposed repository concept and providing information for a 1998 viability assessment of continuing toward the licensing of a repository. The Project has also developed a new design approach that uses the advanced conceptual design published during the last reporting period as a base for developing a design that will support the viability assessment. The initial construction phase of the Thermal Testing Facility was completed and the first phase of the in situ heater tests began on schedule. In addition, phase-one construction was completed for the first of two alcoves that will provide access to the Ghost Dance fault.« less
Secondary School Students' Conceptual Understanding of Physical and Chemical Changes
ERIC Educational Resources Information Center
Hanson, R.; Twumasi, A. K.; Aryeetey, C.; Sam, A.; Adukpo, G.
2016-01-01
In recent years, researchers have shown an interest in understanding students' own ideas about basic chemical principles and guiding them through innovative ways to gain conceptual understanding where necessary. This research was a case study designed to assess 50 first year high school students' conceptual understanding about changes in matter,…
A Conceptual Framework for Responsive Global Engagement in Communication Sciences and Disorders
ERIC Educational Resources Information Center
Hyter, Yvette D.
2014-01-01
The field of speech-language pathology needs a conceptual framework to guide the provision of services in a globalized world. Proposed in this article is a conceptual framework designed to facilitate responsive global engagement for professionals such as speech-language pathologists, who are increasingly serving diverse populations around the…
Space station System Engineering and Integration (SE and I). Volume 2: Study results
NASA Technical Reports Server (NTRS)
1987-01-01
A summary of significant study results that are products of the Phase B conceptual design task are contained. Major elements are addressed. Study results applicable to each major element or area of design are summarized and included where appropriate. Areas addressed include: system engineering and integration; customer accommodations; test and program verification; product assurance; conceptual design; operations and planning; technical and management information system (TMIS); and advanced development.
NASA Technical Reports Server (NTRS)
1972-01-01
The conceptual designs of four useful tilt-rotor aircraft for the 1975 to 1980 time period are presented. Parametric studies leading to design point selection are described, and the characteristics and capabilities of each configuration are presented. An assessment is made of current technology status, and additional tilt-rotor research programs are recommended to minimize the time, cost, and risk of development of these vehicles.
The use of COSMIC NASTRAN in an integrated conceptual design environment
NASA Technical Reports Server (NTRS)
White, Gil
1989-01-01
Changes in both software and hardware are rapidly bringing conceptual engineering tools like finite element analysis into mainstream mechanical design. Systems that integrate all phases of the manufacturing process provide the most cost benefits. The application of programming concepts like object oriented programming allow for the encapsulation of intelligent data within the design geometry. This combined with declining cost in per seat hardware bring new alternatives to the user.
NASA Astrophysics Data System (ADS)
Yilmaz, Diba; Tekkaya, Ceren; Sungur, Semra
2011-03-01
The present study examined the comparative effects of a prediction/discussion-based learning cycle, conceptual change text (CCT), and traditional instructions on students' understanding of genetics concepts. A quasi-experimental research design of the pre-test-post-test non-equivalent control group was adopted. The three intact classes, taught by the same science teacher, were randomly assigned as prediction/discussion-based learning cycle class (N = 30), CCT class (N = 25), and traditional class (N = 26). Participants completed the genetics concept test as pre-test, post-test, and delayed post-test to examine the effects of instructional strategies on their genetics understanding and retention. While the dependent variable of this study was students' understanding of genetics, the independent variables were time (Time 1, Time 2, and Time 3) and mode of instruction. The mixed between-within subjects analysis of variance revealed that students in both prediction/discussion-based learning cycle and CCT groups understood the genetics concepts and retained their knowledge significantly better than students in the traditional instruction group.
Lim, Kyung-Choon; Waters, Catherine M; Froelicher, Erika S; Kayser-Jones, Jeanie S
2008-01-01
People can live longer and healthier lives by engaging in physical activity (PA). The purpose of this article is to assess the social cognitive theory (SCT) in relation to its relevance to produce cultural-specific directions for gerontological nursing practice in order to guide the design of PA interventions for Korean-American elders. SCT is compared to the Korean cultural, social, and health belief system and is analyzed and evaluated based on 3 criteria: assumptions of the theory, completeness and consistency, and essence of nursing. Within the Korean culture, as presumed in the SCT and the nursing paradigm, health-promoting behavior, such as PA, is conceptualized as the desire for a higher level of health rather than a fear of disease as is proposed by other health behavior theories. SCT with the integration of Korean culture recognizes cultural, developmental, societal, and other external constraints that may help in formulating interventions and better understanding of the limits faced by older Korean-Americans (OKAs) in their pursuit of routine PA.
THE CONCEPTUAL DESIGN ASSESSMENT FOR THE CO-FIRING OF BIO-REFINERY SUPPLIED LIGNIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ted Berglund; Jeffrey T. Ranney; Carol L. Babb
2001-07-01
The major aspects of this project are proceeding toward completion. Prior to this quarter, design criteria, tentative site selection, facility layout, and preliminary facility cost estimates were completed and issued. Processing of bio-solids was completed, providing material for the pilot operations. Pilot facility design, equipment selection, and modification were completed during the fourth quarter of 2000. Initial pilot facility shakedown was completed during the fourth quarter. After some unavoidable delays, a suitable representative supply of MSW feed material was procured. During this first quarter of 2001, shredding of the feed material and final feed conditioning were completed. Pilot facility hydrolysismore » production was completed to produce lignin for co-fire testing. During this quarter, TVA completed the washing and dewatering of the lignin material produced from the MSW hydrolysis. Seven drums of lignin material were washed to recover the acid and sugar from the lignin and provide an improved fuel for steam generation. Samples of both the lignin and bio-solids fuel materials for co-fire testing were sent to the co-fire facility (EERC) for evaluation. After sample evaluation, EERC approved sending the material and all of the necessary fuel for testing was shipped to EERC. EERC has requested and will receive coal typical of the fuel to the TVA-Colbert boilers. This material will be used at EERC as baseline material and for mixing with the bio-fuel for combustion testing. EERC combustion testing of the bio based fuels is scheduled to begin in August of 2001. The TVA-Colbert facility has neared completion of the task to evaluate the co-location of the Masada facility on the operation of the power generation facility. The TVA-Colbert fossil plant is fully capable of providing a reliable steam supply. The preferred steam supply connection points and steam pipeline routing have been identified. The environmental review of the pipeline routing has been completed and no major impacts have been identified. Detailed assessment of steam export impacts on the Colbert boiler system have been completed and a cost estimate for steam supply system was completed. The cost estimate and the output and heat rate impacts will be used to determine a preliminary price for the exported steam. The preliminary steam price will be determined in the next quarter.« less
NASA Technical Reports Server (NTRS)
Kolecki, Joseph C.; Hillard, G. Barry
1991-01-01
With the advent of the Space Exploration Initiative, the possibility of designing and using systems on scales not heretofore attempted presents exciting new challenges in systems design and space science. The environments addressed by the Space Exploration Initiative include the surfaces of the Moon and Mars, as well as the varied plasma and field environments which will be encountered by humans and cargo enroute to these destinations. Systems designers will need to understand environmental interactions and be able to model these mechanisms from the earliest conceptual design stages through design completion. To the end of understanding environmental interactions and establishing robotic precursor mission requirements, an Environmental Interactions Working Group has been established as part of the Robotic Missions Working Group. The current paper describes the working group and gives an update of its current activities. Working group charter and operation are reviewed, background information on the environmental interactions and their characteristics is offered, and the current status of the group's activities is presented along with anticipations for the future.
Conceptual design of equipment to excavate and transport regolith from the lunar maria
NASA Technical Reports Server (NTRS)
Detwiler, Mark; Foong, Chee Seng; Stocklin, Catherine
1990-01-01
NASA hopes to have a manned lunar outpost completed by 2005. In order to establish the base, regolith must be excavated from the lunar surface. Regolith will be used as a source for life-supporting elements and as radiation shielding for the lunar outpost. The design team from the University of Texas at Austin designed excavation and transportation equipment for initial operations of the lunar base. The design team also characterized the elements to be found in the regolith and determined the power required to excavate regolith. The characterization of the soil was based on a literature review of lunar geography. Power requirements for excavation were developed by adapting terrestrial equations for excavation power requirements and adapting them to lunar soil conditions. The design of the excavation and transportation equipment was broken into three functions: loosing, collecting, and transporting. A scarifier was selected to loosen, a bucket was selected to collect, and a load-haul system was selected to transport. The functions are powered by a modular fuel cell powered vehicle that provides power for motion of the equipment.
Lunar landing and launch facilities and operations
NASA Technical Reports Server (NTRS)
1988-01-01
A preliminary design of a lunar landing and launch facility for a Phase 3 lunar base is formulated. A single multipurpose vehicle for the lunar module is assumed. Three traffic levels are envisioned: 6, 12, and 24 landings/launches per year. The facility is broken down into nine major design items. A conceptual description of each of these items is included. Preliminary sizes, capacities, and/or other relevant design data for some of these items are obtained. A quonset hut tent-like structure constructed of aluminum rods and aluminized mylar panels is proposed. This structure is used to provide a constant thermal environment for the lunar modules. A structural design and thermal analysis is presented. Two independent designs for a bridge crane to unload/load heavy cargo from the lunar module are included. Preliminary investigations into cryogenic propellant storage and handling, landing/launch guidance and control, and lunar module maintenance requirements are performed. Also, an initial study into advanced concepts for application to Phase 4 or 5 lunar bases has been completed in a report on capturing, condensing, and recycling the exhaust plume from a lunar launch.
ERIC Educational Resources Information Center
Bobos, Georgeana; Sierpinska, Anna
2017-01-01
In this paper, we present a design experiment in a "Teaching Mathematics" course for prospective elementary teachers where we sought to develop a "measurement approach" to fractions. We focus on the conceptualization of the mathematical content of the approach. We attribute our progress in the conceptualization to our efforts…
ERIC Educational Resources Information Center
Spears, Janine L.; Parrish, James L., Jr.
2013-01-01
This teaching case introduces students to a relatively simple approach to identifying and documenting security requirements within conceptual models that are commonly taught in systems analysis and design courses. An introduction to information security is provided, followed by a classroom example of a fictitious company, "Fun &…
ERIC Educational Resources Information Center
Richards, Kari
2017-01-01
This study reports the findings of a qualitative case study that examined how elements of design and organization were conceptualized and enacted in two graduate level online courses, and, how these conceptualizations and enactments evolved. Data was collected through interviews and "think-alouds" with the course instructors and through…
The report discusses Phase I (a conceptual design, preliminary cost, and evaluation study) of a program to demonstrate the recovery of energy from waste methane produced by anaerobic digestion of waste water treatment sludge. The fuel cell is being used for this application becau...
A Conceptual Physical Education Course and College Freshmen's Health-Related Fitness
ERIC Educational Resources Information Center
Liu, Jingwen; Shangguan, Rulan; Keating, Xiaofen D.; Leitner, Jessica; Wu, Yigang
2017-01-01
Purpose: Conceptual physical education (CPE) classes have been widely offered to promote a healthy lifestyle in higher education settings. The purpose of this paper is to examine the effects of a CPE course on health-related fitness (HRF) levels among college freshmen. Design/methodology/approach: A pre- and post-test research design was used. In…
ERIC Educational Resources Information Center
Pöhler, Birte; Prediger, Susanne
2015-01-01
Monolingual or multilingual students with low academic language proficiency need to acquire conceptual understanding for percentages and the language to communicate about them. The design research study explores how these two learning goals can be fostered by a macro-scaffolding approach for seventh grade students. The dual hypothetical learning…
Design in Context: A Conceptual Framework for the Study of Computer Software in Higher Education.
ERIC Educational Resources Information Center
Kozma, Robert B.; Bangert-Drowns, Robert L.
The conceptual groundwork needed to examine the impact of technology, primarily microcomputers, on student learning is presented. Medium, method, and context are tied with a science of design. In section I, research on technology in higher education is reviewed, medium and method are defined, and interaction with context is discussed. Taxonomies…
ERIC Educational Resources Information Center
Corni, Federico; Fuchs, Hans U.; Savino, Giovanni
2018-01-01
This is a description of the conceptual foundations used for designing a novel learning environment for mechanics implemented as an "Industrial Educational Laboratory"--called Fisica in Moto (FiM)--at the Ducati Foundation in Bologna. In this paper, we will describe the motivation for and design of the conceptual approach to mechanics…
Cultivating the Ineffable: The Role of Contemplative Practice in Enactivist Learning
ERIC Educational Resources Information Center
Morgan, Patricia; Abrahamson, Dor
2016-01-01
We consider designs for conceptual learning where students first engage in pre-symbolic problem solving and then articulate their solutions formally. An enduring problem in these designs has been to support students in accessing their pre-conceptual situated process, so that they can reflect on it and couch it in mathematical form. Contemplative…
NASA Technical Reports Server (NTRS)
Lin, C. H.; Meyer, M. S.
1983-01-01
The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.
Asher, Yvonne M; Kemler Nelson, Deborah G
2008-01-01
Do young children who seek the conceptual kind of an artifact weigh the plausibility that a current function constitutes the function intended by the object designer? Three- and four-year-olds were encouraged to question adults about novel artifacts. After inquiring about what an object was, some children were shown a function that plausibly accounted for the structural features of the object; others were shown a possible, but implausible function. Children given implausible functions were less satisfied with these responses than those given plausible functions, as shown by their more persistent attempts to ask follow-up questions about function. Accordingly, preschoolers appear to take into account matters of intentional design when assigning artifacts to conceptual kinds.
NASA Astrophysics Data System (ADS)
Samsudin, A.; Suhandi, A.; Rusdiana, D.; Kaniawati, I.
2016-08-01
Interactive Conceptual Instruction (ICI) based Multimedia has been developed to represent the electric concepts turn into more real and meaningful learning. The initial design of ICI based multimedia is a multimedia computer that allows users to explore the entire electric concepts in terms of the existing conceptual and practical. Pre-service physics teachers should be provided with the learning that could optimize the conceptions held by re-conceptualizing concepts in Basic Physics II, especially the concepts about electricity. To collect and to analyze the data genuinely and comprehensively, researchers utilized a developing method of ADDIE which has comprehensive steps: analyzing, design, development, implementation, and evaluation. The ADDIE developing steps has been utilized to describe comprehensively from the phase of analysis program up until the evaluation program. Based on data analysis, it can be concluded that ICI-based multimedia could effectively increase the pre-service physics teachers’ understanding on electric conceptions for re-conceptualizing electric conceptions at Universitas Pendidikan Indonesia.
A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2003-01-01
An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.
Westman, A S; Kamoo, R L
1990-04-01
The study explored whether more frequent use of conceptual comprehension of academic material generalized to greater use of abstract thinking about global life issues, such as death, goal in life, marriage, AIDS, etc. Undergraduate and graduate students (28 men and 61 women) voluntarily completed a questionnaire which assessed their conceptualizations using three indices. These were an intelligence scale and two learning style indices, namely, Deep Processing and Elaborative Processing of R. R. Schmeck. Also assessed were their levels of abstract thinking about Death Issues and about Other Real Life Issues, and their Denial of Death and their Denial of Dying. All three indices of conceptualization correlated with thinking more abstractly about Other Real Life Issues, but only Elaborative Processing correlated with thinking more abstractly about Death Issues. None of the three indices correlated with Denial of Death or Denial of Dying. It appears conceptualization skills were selectively generalized.
NASA Astrophysics Data System (ADS)
McKnight, Holly Nicole
The purpose of this study was to examine the effects of Peer Instruction (PI) in a state college biology classroom. Students discussed biological concepts in the area of genetics among their peers during class time. Conceptual questions were delivered to the student in the form of ConcepTests, conceptual questions designed to uncover students' misconceptions in the material. Students first answered a question projected from the computer to an overhead screen on their own. Depending on the percentage of students that answered correctly, students then discussed their answers with their peers (PI). These discussions allowed students to uncover their misunderstandings in the material by asking them to think about what they know and what they don't know. Students' initial and secondary responses to the related questions gave the instructor a real time instant view of the collective class' conceptual understanding of concepts being covered. This study was a quasi-experimental, pretest-posttest, control group design. The sample consisted of 134 students enrolled in General Biology (BSCC 1010) a Eastern Florida State College (EFSC) in Palm Bay, Florida. Both control N = 62 and experimental groups N = 72 were comprised of whole intact classes during the Fall 2014 semester. The control groups received traditional lecture content during the course of the study. They had access to conceptual questions but they were not used in a Peer Instruction format during class time. A statistical analysis was conducted after the completion of pre-tests and posttests during the Fall 2014 semester. Although there was an increase in test scores in the experimental group compared to the control, the results were not significant with p = 0.0687 at an alpha level of .05. No significant difference was found in retention p= 0.5954, gender p = 0.4487 or past science coursework p = 0.6695 between classes that engaged in PI and classes that were taught in traditional lecture-based classes. There were, however, significant differences in correct answers on the individual ConcepTests between the first and second time they answered questions after participating in Peer Instruction, p = .0008.
ERIC Educational Resources Information Center
Alkhateeb, Omar
2015-01-01
The study aimed that the impact of using model of Marzano gain students the ability to configure an integrated conceptual structure in Islamic concepts the Sample included studious (120) student students the first year where of college of the educational sciences study in, two branches be organized in their choice was complete random among seven…
Planning for a data base system to support satellite conceptual design
NASA Technical Reports Server (NTRS)
Claydon, C. R.
1976-01-01
The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.
Rotorcraft Conceptual Design Environment
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Sinsay, Jeffrey
2009-01-01
Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.
Rotorcraft Conceptual Design Environment
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Sinsay, Jeffrey D.
2010-01-01
Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.
ERIC Educational Resources Information Center
Yuruk, Nejla; Geban, Omer
The main purpose of the study was to investigate the effectiveness of conceptual change text (CCT) oriented instruction over traditionally designed instruction on students' understanding of electrochemical (galvanic and electrolytic) cell concepts. The subjects of the study consisted of 64 students from the two classes of a high school in Turkey.…
Variables to Consider in Planning Research for Effective Instruction: A Conceptual Framework.
ERIC Educational Resources Information Center
Uprichard, A. Edward
In this paper the belief is stated that researchers need to develop some type of conceptual frame for improving continuity of studies and specificity of treatment. This paper describes such a conceptual frame and its implications for research. The paper states that the framework was designed to help researchers identify, classify, and/or quantify…
ERIC Educational Resources Information Center
Bissonnette, Sarah A.; Combs, Elijah D.; Nagami, Paul H.; Byers, Victor; Fernandez, Juliana; Le, Dinh; Realin, Jared; Woodham, Selina; Smith, Julia I.; Tanner, Kimberly D.
2017-01-01
While there have been concerted efforts to reform undergraduate biology toward teaching students to organize their conceptual knowledge like experts, there are few tools that attempt to measure this. We previously developed the Biology Card Sorting Task (BCST), designed to probe how individuals organize their conceptual biological knowledge.…
Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology
ERIC Educational Resources Information Center
Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.
2013-01-01
There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task,…
Applying a Conceptual Model in Sport Sector Work- Integrated Learning Contexts
ERIC Educational Resources Information Center
Agnew, Deborah; Pill, Shane; Orrell, Janice
2017-01-01
This paper applies a conceptual model for work-integrated learning (WIL) in a multidisciplinary sports degree program. Two examples of WIL in sport will be used to illustrate how the conceptual WIL model is being operationalized. The implications for practice are that curriculum design must recognize a highly flexible approach to the nature of…
Languaging and Visualisation Method for Grammar Teaching: A Conceptual Change Theory Perspective
ERIC Educational Resources Information Center
Rattya, Kaisu
2013-01-01
Conceptual grammatical knowledge is an area which causes problems at different levels of education. This article examines the ideas of conceptual change theory as a basis for establishing a new grammar teaching method. The research strategy which I use is educational design research and the research data have been collected from teacher students…
Multiple Perspectives of Conceptual Change in Science and the Challenges Ahead
ERIC Educational Resources Information Center
Treagust, David F.; Duit, Reinders
2009-01-01
Conceptual change views of teaching and learning processes in science, and also in various other content domains, have played a significant role in research on teaching and learning as well as in instructional design since the late 1970s. Conceptual change can be interpreted from different individual perspectives or from multiple perspectives. In…
ERIC Educational Resources Information Center
Gurbuz, Ramazan
2010-01-01
The purpose of this study is to investigate and compare the effects of activity-based and traditional instructions on students' conceptual development of certain probability concepts. The study was conducted using a pretest-posttest control group design with 80 seventh graders. A developed "Conceptual Development Test" comprising 12…
Conceptual design studies of lift/cruise fans for military transports
NASA Technical Reports Server (NTRS)
1974-01-01
A study program for conceptual design studies of remote lift and lift/cruise fan systems to meet the requirements of military V/STOL aircraft was conducted. Parametric performance and design data are presented for fans covering a range of pressure ratios, including both single and two stage fan concepts. The gas generator selected for these fan systems was the J101-GE-100 engine. Noise generation and transient response were determined for selected fan systems.
1988-01-01
system requirements, design guidelines, and interface requirements has been prepared and included as Volume II of this Task 1 topical report. The Volume ...WAESD-TR-88-0002 Conceptual Design Of A Space-Based Multimegawatt MHD Power System ffA«kjjjjjTfc Task 1 Topical Report Volume I: Technical...Space-Based Multimegawatt MHD Power System: Task 1 Topical Report, Volume I: Technical Discussion Personal Author: Dana, RA. Corporate Author Or
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader
Kang, Byungjeon; Kojcev, Risto; Sinibaldi, Edoardo
2016-01-01
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader. PMID:26914328
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader.
Kang, Byungjeon; Kojcev, Risto; Sinibaldi, Edoardo
2016-01-01
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader.
NASA Technical Reports Server (NTRS)
Sinacori, J. B.
1980-01-01
A conceptual design of a visual system for a rotorcraft flight simulator is presented. Also, drive logic elements for a coupled motion base for such a simulator are given. The design is the result of an assessment of many potential arrangements of electro-optical elements and is a concept considered feasible for the application. The motion drive elements represent an example logic for a coupled motion base and is essentially an appeal to the designers of such logic to combine their washout and braking functions.
NASA Technical Reports Server (NTRS)
Morris, Shelby J., Jr.; Geiselhart, Karl A.; Coen, Peter G.
1989-01-01
The performance of an advanced technology conceptual turbojet optimized for a high-speed civil aircraft is presented. This information represents an estimate of performance of a Mach 3 Brayton (gas turbine) cycle engine optimized for minimum fuel burned at supersonic cruise. This conceptual engine had no noise or environmental constraints imposed upon it. The purpose of this data is to define an upper boundary on the propulsion performance for a conceptual commercial Mach 3 transport design. A comparison is presented demonstrating the impact of the technology proposed for this conceptual engine on the weight and other characteristics of a proposed high-speed civil transport. This comparison indicates that the advanced technology turbojet described could reduce the gross weight of a hypothetical Mach 3 high-speed civil transport design from about 714,000 pounds to about 545,000 pounds. The aircraft with the baseline engine and the aircraft with the advanced technology engine are described.
Conceptual design for a lunar-base CELSS
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Cullingford, Hatice S.
1990-01-01
Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.
Light and optics conceptual evaluation findings from first year optometry students
NASA Astrophysics Data System (ADS)
Thapa, Damber; Lakshminarayanan, Vasudevan
2014-07-01
The Light and Optics Conceptual Evaluation (LOCE) was developed to examine conceptual understanding of basic geometric and physical optics for the Active Learning in Optics and Photonics program administered by UNESCO. This 50 item test (46 multiple choice, 4 ray-tracing short answer) was administered to entering students in the Optometry professional degree (OD) program. We wanted to determine how much of the physics/optics concepts from undergraduate physics courses (a pre-requisite for entry to the OD program) were retained. In addition, the test was administered after the first year students had taken a required course in geometric and visual optics as part of their first semester courses. The LOCE was completed by two consecutive classes to the program in 2010 (n=89) and 2011 (n=84). The tests were administered the first week of the term and the test was given without any prior notice. In addition, the test was administered to the class of 2010 students after they had completed the course in geometric and visual optics. The means of the test were 22.1 (SD=4.5; range: 12-35) and 21.3(SD=5.1; range: 11-35) for the two entering classes. There was no statistical significance between the two classes (t-test, p<0.05). Similarly there was no difference between the scores in terms of gender. The post-course test (administered during the first week of the second term) showed a statistically significant improvement (mean score went from 22.1 to 31.1, a 35% improvement). It should be noted that both groups of students performed worse in questions related to physical optics as well as lens imaging, while scoring best in questions related to refraction and reflection. These data should be taken into consideration when designing optics curricula for optometry (and other allied health programs such as opticianry or ophthalmology).
Conceptual Design of an APT Reusable Spaceplane
NASA Astrophysics Data System (ADS)
Corpino, S.; Viola, N.
This paper concerns the conceptual design of an Aerial Propellant Transfer reusable spaceplane carried out during our PhD course under the supervision of prof. Chiesa. The new conceptual design methodology employed in order to develop the APT concept and the main characteristics of the spaceplane itself will be presented and discussed. The methodology for conceptual design has been worked out during the last three years. It was originally thought for atmospheric vehicle design but, thanks to its modular structure which makes it very flexible, it has been possible to convert it to space transportation systems design by adding and/or modifying a few modules. One of the major improvements has been for example the conception and development of the mission simulation and trajectory optimisation module. The methodology includes as main characteristics and innovations the latest techniques of geometric modelling and logistic, operational and cost aspects since the first stages of the project. Computer aided design techniques are used to obtain a better definition of the product at the end of the conceptual design phase and virtual reality concepts are employed to visualise three-dimensional installation and operational aspects, at least in part replacing full-scale mock- ups. The introduction of parametric three-dimensional CAD software integrated into the conceptual design methodology represents a great improvement because it allows to carry out different layouts and to assess them immediately. It is also possible to link the CAD system to a digital prototyping software which combines 3D visualisation and assembly analysis, useful to define the so-called Digital Mock-Up at Conceptual Level (DMUCL) which studies the integration between the on board systems, sized with simulation algorithms, and the airframe. DMUCL represents a very good means to integrate the conceptual design with a methodology turned towards dealing with Reliability, Availability, Maintainability and Safety characteristics. Several applications of this conceptual design methodology have been carried out in order to validate it. Here we will show one of the most challenging case studies: the APT73 spaceplane. Today the demand for getting access to space is increasing and fully reusable launch vehicles are likely to play a key role in future space activities, but up until now this kind of space system has not been successfully developed. The ideal reusable launcher should be a vehicle able to maintain physical integrity during its mission, to takeoff and land at any conventional airport, to be operated with a minimum maintenance effort and to guarantee an adequate safety level. Thanks to its flexibility it should be able to enter the desired orbital plane and to abort its mission any time in case of mishap. Moreover considerable cost reduction could be expected only by having extremely high launch rates comparable to today's aircraft fleets in the commercial airlines business. In our opinion the solution which better meets these specifications is the Aerial Propellant Transfer spaceplane concept, the so called "one stage and a half" space vehicle, which takes off and climbs to meet a tanker aircraft to be aerially re-fuelled and then, after disconnecting from the tanker, it flies to reach the orbit. The APT73 has been designed to reach the Low Earth Orbit to perform two kinds of mission: 1) to release payloads; 2) to be flown as crew return vehicle from the ISS. The concept has emerged from a set of preliminary choices established at the beginning of the project: Possible variants to the basic plan have been investigated and a trade off analysis has been carried out in order to obtain the optimum configuration. Listed below are the options that have been evaluated: This paper provides a technical description of the APT73 and illustrates the design challenges encountered in the development of the project.
ERIC Educational Resources Information Center
Gauthier, Andrea; Jenkinson, Jodie
2017-01-01
We designed a serious game, MolWorlds, to facilitate conceptual change about molecular emergence by using game mechanics (resource management, immersed 3rd person character, sequential level progression, and 3-star scoring system) to encourage cycles of productive negativity. We tested the value-added effect of game design by comparing and…
ERIC Educational Resources Information Center
Manurung, Sondang R.; Mihardi, Satria
2016-01-01
The purpose of this study was to determine the effectiveness of hypertext media based kinematic learning and formal thinking ability to improve the conceptual understanding of physic prospective students. The research design used is the one-group pretest-posttest experimental design is carried out in the research by taking 36 students on from…
ERIC Educational Resources Information Center
Asher, Yvonne M.; Kemler Nelson, Deborah G.
2008-01-01
Do young children who seek the conceptual kind of an artifact weigh the plausibility that a current function constitutes the function intended by the object designer? Three- and four-year-olds were encouraged to question adults about novel artifacts. After inquiring about what an object was, some children were shown a function that plausibly…
NASA Technical Reports Server (NTRS)
Hilbert, E. E.; Carl, C.; Goss, W.; Hansen, G. R.; Olsasky, M. J.; Johnston, A. R.
1978-01-01
An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis.
A Conceptual Framework for Educational Design at Modular Level to Promote Transfer of Learning
ERIC Educational Resources Information Center
Botma, Yvonne; Van Rensburg, G. H.; Coetzee, I. M.; Heyns, T.
2015-01-01
Students bridge the theory-practice gap when they apply in practice what they have learned in class. A conceptual framework was developed that can serve as foundation to design for learning transfer at modular level. The framework is based on an adopted and adapted systemic model of transfer of learning, existing learning theories, constructive…
Using conceptual work products of health care to design health IT.
Berry, Andrew B L; Butler, Keith A; Harrington, Craig; Braxton, Melissa O; Walker, Amy J; Pete, Nikki; Johnson, Trevor; Oberle, Mark W; Haselkorn, Jodie; Paul Nichol, W; Haselkorn, Mark
2016-02-01
This paper introduces a new, model-based design method for interactive health information technology (IT) systems. This method extends workflow models with models of conceptual work products. When the health care work being modeled is substantially cognitive, tacit, and complex in nature, graphical workflow models can become too complex to be useful to designers. Conceptual models complement and simplify workflows by providing an explicit specification for the information product they must produce. We illustrate how conceptual work products can be modeled using standard software modeling language, which allows them to provide fundamental requirements for what the workflow must accomplish and the information that a new system should provide. Developers can use these specifications to envision how health IT could enable an effective cognitive strategy as a workflow with precise information requirements. We illustrate the new method with a study conducted in an outpatient multiple sclerosis (MS) clinic. This study shows specifically how the different phases of the method can be carried out, how the method allows for iteration across phases, and how the method generated a health IT design for case management of MS that is efficient and easy to use. Copyright © 2015 Elsevier Inc. All rights reserved.
Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben
2014-01-01
This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.
NASA Technical Reports Server (NTRS)
Olds, John R.; Marcus, Leland
2002-01-01
This paper is written in support of the on-going research into conceptual space vehicle design conducted at the Space Systems Design Laboratory (SSDL) at the Georgia Institute of Technology. Research at the SSDL follows a sequence of a number of the traditional aerospace disciplines. The sequence of disciplines and interrelationship among them is shown in the Design Structure Matrix (DSM). The discipline of Weights and Sizing occupies a central location in the design of a new space vehicle. Weights and Sizing interact, either in a feed forward or feed back manner, with every other discipline in the DSM. Because of this principle location, accuracy in Weights and Sizing is integral to producing an accurate model of a space vehicle concept. Instead of using conceptual level techniques, a simplified Finite Element Analysis (FEA) technique is described as applied to the problem of the Liquid Oxygen (LOX) tank bending loads applied to the forward Liquid Hydrogen (LH2) tank of the Georgia Tech Air Breathing Launch Vehicle (ABLV).
Scrutinizing UML Activity Diagrams
NASA Astrophysics Data System (ADS)
Al-Fedaghi, Sabah
Building an information system involves two processes: conceptual modeling of the “real world domain” and designing the software system. Object-oriented methods and languages (e.g., UML) are typically used for describing the software system. For the system analysis process that produces the conceptual description, object-oriented techniques or semantics extensions are utilized. Specifically, UML activity diagrams are the “flow charts” of object-oriented conceptualization tools. This chapter proposes an alternative to UML activity diagrams through the development of a conceptual modeling methodology based on the notion of flow.
Inquiry-based Instruction with Archived, Online Data: An Intervention Study with Preservice Teachers
NASA Astrophysics Data System (ADS)
Ucar, Sedat; Trundle, Kathy Cabe; Krissek, Lawrence
2011-03-01
This mixed methods study described preservice teachers' conceptions of tides and explored the efficacy of integrating online data into inquiry-based instruction. Data sources included a multiple-choice assessment and in-depth interviews. A total of 79 participants in secondary, middle, and early childhood teacher education programs completed the multiple-choice assessment of their baseline knowledge of tides-related concepts. A sub-group of 29 participants also was interviewed to explore their understanding of tides in more detail before instruction. Eighteen of those 29 teachers participated in the instruction, were interviewed again after the instruction, and completed the multiple-choice assessment as a posttest. The interview data sets were analyzed via a constant comparative method in order to produce profiles of each participant's pre- and post-instruction conceptual understandings of tides. Additional quantitative analysis consisted of a paired-sample t-test, which investigated the changes in scores before and after the instructional intervention. Before instruction, all participants held alternative or alternative fragments as their conceptual understandings of tides. After completing the inquiry-based instruction that integrated online tidal data, participants were more likely to hold a scientific conceptual understanding. After instruction, some preservice teachers continued to hold on to the conception that the rotation of the moon around the Earth during one 24-hour period causes the tides to move with the moon. The quantitative results, however, indicated that pre- to post-instruction gains were significant. The findings of this study provide evidence that integrating Web-based archived data into inquiry-based instruction can be used to effectively promote conceptual change among preservice teachers.
NASA Astrophysics Data System (ADS)
Whyte, D. G.; Bonoli, P.; Barnard, H.; Haakonsen, C.; Hartwig, Z.; Kasten, C.; Palmer, T.; Sung, C.; Sutherland, D.; Bromberg, L.; Mangiarotti, F.; Goh, J.; Sorbom, B.; Sierchio, J.; Ball, J.; Greenwald, M.; Olynyk, G.; Minervini, J.
2012-10-01
Two of the greatest challenges to tokamak reactors are 1) large single-unit cost of each reactor's construction and 2) their susceptibility to disruptions from operation at or above operational limits. We present an attractive tokamak reactor design that substantially lessens these issues by exploiting recent advancements in superconductor (SC) tapes allowing peak field on SC coil > 20 Tesla. A R˜3.3 m, B˜9.2 T, ˜ 500 MW fusion power tokamak provides high fusion gain while avoiding all disruptive operating boundaries (no-wall beta, kink, and density limits). Robust steady-state core scenarios are obtained by exploiting the synergy of high field, compact size and ideal efficiency current drive using high-field side launch of Lower Hybrid waves. The design features a completely modular replacement of internal solid components enabled by the demountability of the coils/tapes and the use of an immersion liquid blanket. This modularity opens up the possibility of using the device as a nuclear component test facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrada, Juan J; Reiersen, Wayne T
U.S.-ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). TCWS is designed to provide cooling and baking for client systems that include the first wall/blanket, vacuum vessel, divertor, and neutral beam injector. Additional operations that support these primary functions include chemical control of water provided to client systems, draining and drying for maintenance, and leak detection/localization. TCWS interfaces with 27 systems including the secondary cooling system, which rejects this heat to the environment. TCWS transfers heat generated in the Tokamak during nominal pulsed operation - 850 MW at up to 150 C andmore » 4.2 MPa water pressure. Impurities are diffused from in-vessel components and the vacuum vessel by water baking at 200-240 C at up to 4.4 MPa. TCWS is complex because it serves vital functions for four primary clients whose performance is critical to ITER's success and interfaces with more than 20 additional ITER systems. Conceptual design of this one-of-a-kind cooling system has been completed; however, several issues remain that must be resolved before moving to the next stage of the design process. The 2004 baseline design indicated cooling loops that have no fault tolerance for component failures. During plasma operation, each cooling loop relies on a single pump, a single pressurizer, and one heat exchanger. Consequently, failure of any of these would render TCWS inoperable, resulting in plasma shutdown. The application of reliability, availability, maintainability, and inspectability (RAMI) tools during the different stages of TCWS design is crucial for optimization purposes and for maintaining compliance with project requirements. RAMI analysis will indicate appropriate equipment redundancy that provides graceful degradation in the event of an equipment failure. This analysis helps demonstrate that using proven, commercially available equipment is better than using custom-designed equipment with no field experience and lowers specific costs while providing higher reliability. This paper presents a brief description of the TCWS conceptual design and the application of RAMI tools to optimize the design at different stages during the project.« less
A Summary of the NASA Design Environment for Novel Vertical Lift Vehicles (DELIVER) Project
NASA Technical Reports Server (NTRS)
Theodore, Colin R.
2018-01-01
The number of new markets and use cases being developed for vertical take-off and landing vehicles continues to explode, including the highly publicized urban air taxi and package deliver applications. There is an equally exploding variety of novel vehicle configurations and sizes that are being proposed to fill these new market applications. The challenge for vehicle designers is that there is currently no easy and consistent way to go from a compelling mission or use case to a vehicle that is best configured and sized for the particular mission. This is because the availability of accurate and validated conceptual design tools for these novel types and sizes of vehicles have not kept pace with the new markets and vehicles themselves. The Design Environment for Novel Vertical Lift Vehicles (DELIVER) project was formulated to address this vehicle design challenge by demonstrating the use of current conceptual design tools, that have been used for decades to design and size conventional rotorcraft, applied to these novel vehicle types, configurations and sizes. In addition to demonstrating the applicability of current design and sizing tools to novel vehicle configurations and sizes, DELIVER also demonstrated the addition of key transformational technologies of noise, autonomy, and hybrid-electric and all-electric propulsion into the vehicle conceptual design process. Noise is key for community acceptance, autonomy and the need to operate autonomously are key for efficient, reliable and safe operations, and electrification of the propulsion system is a key enabler for these new vehicle types and sizes. This paper provides a summary of the DELIVER project and shows the applicability of current conceptual design and sizing tools novel vehicle configurations and sizes that are being proposed for urban air taxi and package delivery type applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Oscar
The objectives of this project are to increase system storage capacity by improving hydrogen generation from concentrated sodium borohydride, with emphasis on reactor and system engineering; to complete a conceptual system design based on sodium borohydride that will include key technology improvements to enable a hydrogen fuel system that will meet the systembased storage capacity of 1.2 kWh/L (36 g H2/L) and 1.5 kWh/kg (45 g H2/kg), by the end of FY 2007; and to utilize engineering expertise to guide Center research in both off-board chemical hydride regeneration and on-board hydrogen generation systems.
A model for closing the inviscid form of the average-passage equation system
NASA Technical Reports Server (NTRS)
Adamczyk, J. J.; Mulac, R. A.; Celestina, M. L.
1985-01-01
A mathematical model is proposed for closing or mathematically completing the system of equations which describes the time average flow field through the blade passages of multistage turbomachinery. These equations referred to as the average passage equation system govern a conceptual model which has proven useful in turbomachinery aerodynamic design and analysis. The closure model is developed so as to insure a consistency between these equations and the axisymmetric through flow equations. The closure model was incorporated into a computer code for use in simulating the flow field about a high speed counter rotating propeller and a high speed fan stage. Results from these simulations are presented.
NASA Technical Reports Server (NTRS)
1974-01-01
An experiment was conducted to measure and map the man-made radio frequency emanations which exist at earth orbital altitudes. The major objectives of the program are to develop a complete conceptual experiment and developmental hardware for the collection and processing of data required to produce meaningful statistics on man-made noise level variations as functions of time, frequency, and geographic location. A wide dispersion measurement receiver mounted in a spacecraft operating in a specialized orbit is used to obtain the data. A summary of the experiment designs goals and constraints is provided. The recommended orbit for the spacecraft is defined. The characteristics of the receiver and the antennas are analyzed.
Processing subject-verb agreement in a second language depends on proficiency
Hoshino, Noriko; Dussias, Paola E.; Kroll, Judith F.
2010-01-01
Subject-verb agreement is a computation that is often difficult to execute perfectly in the first language (L1) and even more difficult to produce skillfully in a second language (L2). In this study, we examined the way in which bilingual speakers complete sentence fragments in a manner that reflects access to both grammatical and conceptual number. In two experiments, we show that bilingual speakers are sensitive to both grammatical and conceptual number in the L1 and grammatical number agreement in the L2. However, only highly proficient bilinguals are also sensitive to conceptual number in the L2. The results suggest that the extent to which speakers are able to exploit conceptual information during speech planning depends on the level of language proficiency. PMID:20640178
The effect of conceptual metaphors through guided inquiry on student's conceptual change
NASA Astrophysics Data System (ADS)
Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana
2017-05-01
The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.
ERIC Educational Resources Information Center
Reeder, Kevin
2005-01-01
In order to facilitate the selection/prioritization process and bridge the gap of design research to design conceptualization, students need to visualize the big picture that describes how the research categories such as "user," "marketing," "functional/mechanical research" are related. This is achieved through the use of a visual storyboard. The…
Conceptual design of a piloted Mars sprint life support system
NASA Technical Reports Server (NTRS)
Cullingford, H. S.; Novara, M.
1988-01-01
This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse.
Conceptual design study of a V/STOL lift fan commercial short haul transport
NASA Technical Reports Server (NTRS)
Knight, R. G.; Powell, W. V., Jr.; Prizlow, J. A.
1973-01-01
Conceptual designs of V/STOL lift fan commercial short haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. The engine concepts included both integral and remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, mass properties, cruise performance, noise and ride qualities evaluation. Economic evaluation was also studied on the basis of direct-operating costs and route structure.
Modular biowaste monitoring system
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1975-01-01
The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.
NASA Technical Reports Server (NTRS)
1978-01-01
Low energy conceptual stage designs and adaptations to existing/planned shuttle upper stages were developed and their performance established. Selected propulsion modes and subsystems were used as a basis to develop airborne support equipment (ASE) design concepts. Orbiter installation and integration (both physical and electrical interfaces) were defined. Low energy stages were adapted to the orbiter and ASE interfaces. Selected low energy stages were then used to define and describe typical ground and flight operations.
Conceptual design of a V/STOL lift fan commercial short haul transport
NASA Technical Reports Server (NTRS)
1973-01-01
Conceptual designs of V/STOL lift-fan commercial short-haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. Engine concepts studied included both integral remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, aircraft mass properties, cruise performance noise, and ride qualities evaluation. Economic evaluation was also studied on a basis of direct operating cost and route structure.
Cookbook Procedures in MBL Physics Exercises.
ERIC Educational Resources Information Center
Royuk, Brent; Brooks, David W.
2003-01-01
Presents results of a controlled experiment comparing the conceptual mechanics learning gains as measured by the Force Concept Inventory (FCI) between two laboratory groups. One group completed cookbook labs while the other completed Interactive-Engagement (IE) labs in RealTime Physics. Suggests that laboratory activities should engage students in…
A nursing-specific model of EPR documentation: organizational and professional requirements.
von Krogh, Gunn; Nåden, Dagfinn
2008-01-01
To present the Norwegian documentation KPO model (quality assurance, problem solving, and caring). To present the requirements and multiple electronic patient record (EPR) functions the model is designed to address. The model's professional substance, a conceptual framework for nursing practice is developed by examining, reorganizing, and completing existing frameworks. The model's methodology, an information management system, is developed using an expert group. Both model elements were clinically tested over a period of 1 year. The model is designed for nursing documentation in step with statutory, organizational, and professional requirements. Complete documentation is arranged for by incorporating the Nursing Minimum Data Set. A systematic and comprehensive documentation is arranged for by establishing categories as provided in the model's framework domains. Consistent documentation is arranged for by incorporating NANDA-I Nursing Diagnoses, Nursing Intervention Classification, and Nursing Outcome Classification. The model can be used as a tool in cooperation with vendors to ensure the interests of the nursing profession is met when developing EPR solutions in healthcare. The model can provide clinicians with a framework for documentation in step with legal and organizational requirements and at the same time retain the ability to record all aspects of clinical nursing.
Fiber-reinforced ceramic composites for Earth-to-orbit rocket engine turbines
NASA Technical Reports Server (NTRS)
Brockmeyer, Jerry W.; Schnittgrund, Gary D.
1990-01-01
Fiber reinforced ceramic matrix composites (FRCMC) are emerging materials systems that offer potential for use in liquid rocket engines. Advantages of these materials in rocket engine turbomachinery include performance gain due to higher turbine inlet temperature, reduced launch costs, reduced maintenance with associated cost benefits, and reduced weight. This program was initiated to assess the state of FRCMC development and to propose a plan for their implementation into liquid rocket engine turbomachinery. A complete range of FRCMC materials was investigated relative to their development status and feasibility for use in the hot gas path of earth-to-orbit rocket engine turbomachinery. Of the candidate systems, carbon fiber-reinforced silicon carbide (C/SiC) offers the greatest near-term potential. Critical hot gas path components were identified, and the first stage inlet nozzle and turbine rotor of the fuel turbopump for the liquid oxygen/hydrogen Space Transportation Main Engine (STME) were selected for conceptual design and analysis. The critical issues associated with the use of FRCMC were identified. Turbine blades were designed, analyzed and fabricated. The Technology Development Plan, completed as Task 5 of this program, provides a course of action for resolution of these issues.