Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.
Krenn, Mario; Gu, Xuemei; Zeilinger, Anton
2017-12-15
We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory-such as Hall's marriage problem-are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).
Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings
NASA Astrophysics Data System (ADS)
Krenn, Mario; Gu, Xuemei; Zeilinger, Anton
2017-12-01
We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory—such as Hall's marriage problem—are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).
Contactless ultrasonic device to measure surface acoustic wave velocities versus temperature.
Hubert, C; Nadal, M H; Ravel-Chapuis, G; Oltra, R
2007-02-01
A complete optical experimental setup for generating and detecting surface acoustic waves [Rayleigh waves (RWs)] in metals versus temperature up to the melting point is described. The RWs were excited by a pulsed Nd:YAG laser and detected by a high sensitivity subangstrom heterodyne interferometer. A special furnace was used to heat the sample using infrared radiation with a regulation of the sample temperature less than 0.1 K. First measurements on an aluminum alloy sample are presented to validate the setup.
Reducing numerical costs for core wide nuclear reactor CFD simulations by the Coarse-Grid-CFD
NASA Astrophysics Data System (ADS)
Viellieber, Mathias; Class, Andreas G.
2013-11-01
Traditionally complete nuclear reactor core simulations are performed with subchannel analysis codes, that rely on experimental and empirical input. The Coarse-Grid-CFD (CGCFD) intends to replace the experimental or empirical input with CFD data. The reactor core consists of repetitive flow patterns, allowing the general approach of creating a parametrized model for one segment and composing many of those to obtain the entire reactor simulation. The method is based on a detailed and well-resolved CFD simulation of one representative segment. From this simulation we extract so-called parametrized volumetric forces which close, an otherwise strongly under resolved, coarsely-meshed model of a complete reactor setup. While the formulation so far accounts for forces created internally in the fluid others e.g. obstruction and flow deviation through spacers and wire wraps, still need to be accounted for if the geometric details are not represented in the coarse mesh. These are modelled with an Anisotropic Porosity Formulation (APF). This work focuses on the application of the CGCFD to a complete reactor core setup and the accomplishment of the parametrization of the volumetric forces.
Integrated trimodal SSEP experimental setup for visual, auditory and tactile stimulation
NASA Astrophysics Data System (ADS)
Kuś, Rafał; Spustek, Tomasz; Zieleniewska, Magdalena; Duszyk, Anna; Rogowski, Piotr; Suffczyński, Piotr
2017-12-01
Objective. Steady-state evoked potentials (SSEPs), the brain responses to repetitive stimulation, are commonly used in both clinical practice and scientific research. Particular brain mechanisms underlying SSEPs in different modalities (i.e. visual, auditory and tactile) are very complex and still not completely understood. Each response has distinct resonant frequencies and exhibits a particular brain topography. Moreover, the topography can be frequency-dependent, as in case of auditory potentials. However, to study each modality separately and also to investigate multisensory interactions through multimodal experiments, a proper experimental setup appears to be of critical importance. The aim of this study was to design and evaluate a novel SSEP experimental setup providing a repetitive stimulation in three different modalities (visual, tactile and auditory) with a precise control of stimuli parameters. Results from a pilot study with a stimulation in a particular modality and in two modalities simultaneously prove the feasibility of the device to study SSEP phenomenon. Approach. We developed a setup of three separate stimulators that allows for a precise generation of repetitive stimuli. Besides sequential stimulation in a particular modality, parallel stimulation in up to three different modalities can be delivered. Stimulus in each modality is characterized by a stimulation frequency and a waveform (sine or square wave). We also present a novel methodology for the analysis of SSEPs. Main results. Apart from constructing the experimental setup, we conducted a pilot study with both sequential and simultaneous stimulation paradigms. EEG signals recorded during this study were analyzed with advanced methodology based on spatial filtering and adaptive approximation, followed by statistical evaluation. Significance. We developed a novel experimental setup for performing SSEP experiments. In this sense our study continues the ongoing research in this field. On the other hand, the described setup along with the presented methodology is a considerable improvement and an extension of methods constituting the state-of-the-art in the related field. Device flexibility both with developed analysis methodology can lead to further development of diagnostic methods and provide deeper insight into information processing in the human brain.
Life on rock. Scaling down biological weathering in a new experimental design at Biosphere-2
NASA Astrophysics Data System (ADS)
Zaharescu, D. G.; Dontsova, K.; Burghelea, C. I.; Chorover, J.; Maier, R.; Perdrial, J. N.
2012-12-01
Biological colonization and weathering of bedrock on Earth is a major driver of landscape and ecosystem development, its effects reaching out into other major systems such climate and geochemical cycles of elements. In order to understand how microbe-plant-mycorrhizae communities interact with bedrock in the first phases of mineral weathering we developed a novel experimental design in the Desert Biome at Biosphere-2, University of Arizona (U.S.A). This presentation will focus on the development of the experimental setup. Briefly, six enclosed modules were designed to hold 288 experimental columns that will accommodate 4 rock types and 6 biological treatments. Each module is developed on 3 levels. A lower volume, able to withstand the weight of both, rock material and the rest of the structure, accommodates the sampling elements. A middle volume, houses the experimental columns in a dark chamber. A clear, upper section forms the habitat exposed to sunlight. This volume is completely sealed form exterior and it allows a complete control of its air and water parameters. All modules are connected in parallel with a double air purification system that delivers a permanent air flow. This setup is expected to provide a model experiment, able to test important processes in the interaction rock-life at grain-to- molecular scale.
Experimental setup and procedure for the measurement of the 7Be(n,p)7Li reaction at n_TOF
NASA Astrophysics Data System (ADS)
Barbagallo, M.; Andrzejewski, J.; Mastromarco, M.; Perkowski, J.; Damone, L. A.; Gawlik, A.; Cosentino, L.; Finocchiaro, P.; Maugeri, E. A.; Mazzone, A.; Dressler, R.; Heinitz, S.; Kivel, N.; Schumann, D.; Colonna, N.; Aberle, O.; Amaducci, S.; Audouin, L.; Bacak, M.; Balibrea, J.; Bečvář, F.; Bellia, G.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cortés-Giraldo, M. A.; Cristallo, S.; Diakaki, M.; Dietz, M.; Domingo-Pardo, C.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Furman, V.; Göbel, K.; García, A. R.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Harada, H.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Johnston, K.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lerendegui-Marco, J.; Lo Meo, S.; Lonsdale, S. J.; Macina, D.; Manna, A.; Marganiec, J.; Martínez, T.; Martins-Correia, J. G.; Masi, A.; Massimi, C.; Mastinu, P.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Pappalardo, A. D.; Patronis, N.; Pavlik, A.; Piscopo, M.; Porras, I.; Praena, J.; Quesada, J. M.; Radeck, D.; Rauscher, T.; Reifarth, R.; Robles, M. S.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Saxena, A.; Schell, J.; Schillebeeckx, P.; Sedyshev, P.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Warren, S.; Weiss, C.; Woods, P. J.; Wright, T.; Žugec, P.
2018-04-01
Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the 7Be(n, α) α cross section, the 7Be(n,p)7Li reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.
Real-time local experimental monitoring of the bleaching process.
Rakic, Mario; Klaric, Eva; Sever, Ivan; Rakic, Iva Srut; Pichler, Goran; Tarle, Zrinka
2015-04-01
The purpose of this article was to investigate a new setup for tooth bleaching and monitoring of the same process in real time, so to prevent overbleaching and related sideeffects of the bleaching procedure. So far, known bleaching procedures cannot simultaneously monitor and perform the bleaching process or provide any local control over bleaching. The experimental setup was developed at the Institute of Physics, Zagreb. The setup consists of a camera, a controller, and optical fibers. The bleaching was performed with 25% hydrogen peroxide activated by ultraviolet light diodes, and the light for monitoring was emitted by white light diodes. The collected light was analyzed using a red-green-blue (RGB) index. A K-type thermocouple was used for temperature measurements. Pastilles made from hydroxylapatite powder as well as human teeth served as experimental objects. Optimal bleaching time substantially varied among differently stained specimens. To reach reference color (A1, Chromascop shade guide), measured as an RGB index, bleaching time for pastilles ranged from 8 to >20 min, whereas for teeth it ranged from 3.5 to >20 min. The reflected light intensity of each R, G, and B component at the end of bleaching process (after 20 min) had increased up to 56% of the baseline intensity. The presented experimental setup provides essential information about when to stop the bleaching process to achieve the desired optical results so that the bleaching process can be completely responsive to the characteristics of every individual, leading to more satisfying results.
Cortesi, Marilisa; Bandiera, Lucia; Pasini, Alice; Bevilacqua, Alessandro; Gherardi, Alessandro; Furini, Simone; Giordano, Emanuele
2017-01-01
Quantifying gene expression at single cell level is fundamental for the complete characterization of synthetic gene circuits, due to the significant impact of noise and inter-cellular variability on the system's functionality. Commercial set-ups that allow the acquisition of fluorescent signal at single cell level (flow cytometers or quantitative microscopes) are expensive apparatuses that are hardly affordable by small laboratories. A protocol that makes a standard optical microscope able to acquire quantitative, single cell, fluorescent data from a bacterial population transformed with synthetic gene circuitry is presented. Single cell fluorescence values, acquired with a microscope set-up and processed with custom-made software, are compared with results that were obtained with a flow cytometer in a bacterial population transformed with the same gene circuitry. The high correlation between data from the two experimental set-ups, with a correlation coefficient computed over the tested dynamic range > 0.99, proves that a standard optical microscope- when coupled with appropriate software for image processing- might be used for quantitative single-cell fluorescence measurements. The calibration of the set-up, together with its validation, is described. The experimental protocol described in this paper makes quantitative measurement of single cell fluorescence accessible to laboratories equipped with standard optical microscope set-ups. Our method allows for an affordable measurement/quantification of intercellular variability, whose better understanding of this phenomenon will improve our comprehension of cellular behaviors and the design of synthetic gene circuits. All the required software is freely available to the synthetic biology community (MUSIQ Microscope flUorescence SIngle cell Quantification).
Measurement-device-independent quantum key distribution for Scarani-Acin-Ribordy-Gisin 04 protocol
Mizutani, Akihiro; Tamaki, Kiyoshi; Ikuta, Rikizo; Yamamoto, Takashi; Imoto, Nobuyuki
2014-01-01
The measurement-device-independent quantum key distribution (MDI QKD) was proposed to make BB84 completely free from any side-channel in detectors. Like in prepare & measure QKD, the use of other protocols in MDI setting would be advantageous in some practical situations. In this paper, we consider SARG04 protocol in MDI setting. The prepare & measure SARG04 is proven to be able to generate a key up to two-photon emission events. In MDI setting we show that the key generation is possible from the event with single or two-photon emission by a party and single-photon emission by the other party, but the two-photon emission event by both parties cannot contribute to the key generation. On the contrary to prepare & measure SARG04 protocol where the experimental setup is exactly the same as BB84, the measurement setup for SARG04 in MDI setting cannot be the same as that for BB84 since the measurement setup for BB84 in MDI setting induces too many bit errors. To overcome this problem, we propose two alternative experimental setups, and we simulate the resulting key rate. Our study highlights the requirements that MDI QKD poses on us regarding with the implementation of a variety of QKD protocols. PMID:24913431
Experimental setup for investigation of two-phase (water-air) flows in a tube
NASA Astrophysics Data System (ADS)
Kazunin, D. V.; Lashkov, V. A.; Mashek, I. Ch.; Khoronzhuk, R. S.
2018-05-01
A special setup was designed and built at St. Petersburg State University for providing experimental research in flow dynamics of the of air-water mixtures in a pipeline. The test section of the setup allows simulating a wide range of flow regimes of a gas-liquid mixture. The parameters of the experimental setup are given; the initial test results are discussed.
Project-based physics labs using low-cost open-source hardware
NASA Astrophysics Data System (ADS)
Bouquet, F.; Bobroff, J.; Fuchs-Gallezot, M.; Maurines, L.
2017-03-01
We describe a project-based physics lab, which we proposed to third-year university students. These labs are based on new open-source low-cost equipment (Arduino microcontrollers and compatible sensors). Students are given complete autonomy: they develop their own experimental setup and study the physics topic of their choice. The goal of these projects is to let students to discover the reality of experimental physics. Technical specifications of the acquisition material and case studies are presented for practical implementation in other universities.
Convective flow effects on protein crystal growth
NASA Technical Reports Server (NTRS)
Rosenberger, Franz; Monaco, Lisa A.
1993-01-01
The experimental setup for the in-situ high resolution optical monitoring of protein crystal growth/dissolution morphologies was substantially improved. By augmenting the observation system with a temperature-controlled enclosure, laser illumination for the interferometric microscope, and software for pixel by pixel light intensity recording, a height resolution of about two unit cells for lysozyme can now be obtained. The repartitioning of Na(+) and Cl(-) ions between lysozyme solutions and crystals was studied. Quite unexpectedly, it was found that the longer crystals were in contact with their solution, the lower was their ion content. The development of a model for diffusive-convective transport and resulting distribution of the growth rate on facets was completed. Results obtained for a realistic growth cell geometry show interesting differences between 'growth runs' at 1g and 0g. The kinematic viscosity of lysozyme solutions of various supersaturations and salt concentrations was monitored over time. In contrast to the preliminary finding of other authors, no changes in viscosity were found over four days. The experimental setup for light scattering investigations of aggregation and nucleation in protein solutions was completed, and a computer program for the evaluation of multi-angle light scattering data was acquired.
Gandolla, Marta; Ferrante, Simona; Casellato, Claudia; Ferrigno, Giancarlo; Molteni, Franco; Martegani, Alberto; Frattini, Tiziano; Pedrocchi, Alessandra
2011-10-01
Functional Electrical Stimulation (FES) is a well known clinical rehabilitation procedure, however the neural mechanisms that underlie this treatment at Central Nervous System (CNS) level are still not completely understood. Functional magnetic resonance imaging (fMRI) is a suitable tool to investigate effects of rehabilitative treatments on brain plasticity. Moreover, monitoring the effective executed movement is needed to correctly interpret activation maps, most of all in neurological patients where required motor tasks could be only partially accomplished. The proposed experimental set-up includes a 1.5 T fMRI scanner, a motion capture system to acquire kinematic data, and an electro-stimulation device. The introduction of metallic devices and of stimulation current in the MRI room could affect fMRI acquisitions so as to prevent a reliable activation maps analysis. What we are interested in is that the Blood Oxygenation Level Dependent (BOLD) signal, marker of neural activity, could be detected within a given experimental condition and set-up. In this paper we assess temporal Signal to Noise Ratio (SNR) as image quality index. BOLD signal change is about 1-2% as revealed by a 1.5 T scanner. This work demonstrates that, with this innovative set-up, in the main cortical sensorimotor regions 1% BOLD signal change can be detected at least in the 93% of the sub-volumes, and almost 100% of the sub-volumes are suitable for 2% signal change detection. The integrated experimental set-up will therefore allows to detect FES induced movements fMRI maps simultaneously with kinematic acquisitions so as to investigate FES-based rehabilitation treatments contribution at CNS level. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
2015-12-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited DESIGN AND ANALYSIS...2. REPORT DATE December 2015 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE DESIGN AND ANALYSIS OF AN EXPERIMENTAL SETUP...Approved for public release; distribution is unlimited DESIGN AND ANALYSIS OF AN EXPERIMENTAL SETUP FOR DETERMINING THE BURST STRENGTH AND MATERIAL
Experimental validation of 2D uncertainty quantification for DIC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reu, Phillip L.
Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual testmore » images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.« less
Experimental validation of 2D uncertainty quantification for digital image correlation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reu, Phillip L.
Because digital image correlation (DIC) has become such an important and standard tool in the toolbox of experimental mechanicists, a complete uncertainty quantification of the method is needed. It should be remembered that each DIC setup and series of images will have a unique uncertainty based on the calibration quality and the image and speckle quality of the analyzed images. Any pretest work done with a calibrated DIC stereo-rig to quantify the errors using known shapes and translations, while useful, do not necessarily reveal the uncertainty of a later test. This is particularly true with high-speed applications where actual testmore » images are often less than ideal. Work has previously been completed on the mathematical underpinnings of DIC uncertainty quantification and is already published, this paper will present corresponding experimental work used to check the validity of the uncertainty equations.« less
New Experimental Results of Simulating Micrometeoroid Ablation in the Laboratory
NASA Astrophysics Data System (ADS)
Sternovsky, Zoltan; Thomas, Evan; DeLuca, Michael; Janches, Diego; Munsat, Tobin; Plane, John
2017-04-01
A facility is developed to simulate the ablation of micrometeoroids in laboratory conditions, which also allows measuring the ionization probability of the ablated material. An electrostatic dust accelerator is used to generate iron, aluminum and meteoric analog particles with velocities 10-50 km/s. The particles are then introduced into a cell filled with nitrogen, air or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where the partial or complete ablation of the particle occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path, allowing thus the study of the temporal resolution of the process. A new optical observation setup using a 64 channel PMT system was added to the setup to allow the observation of the ablating particle and deceleration of the particle from the neutral drag. A simple ablation model is used to match the observations. For completely ablated particles the total collected charge directly yields the ionization efficiency. The measurements using iron particles in N2 and air are in relatively good agreement with earlier data. The new experimental data using aluminum particles suggest that the neutral drag acting of the particle is smaller than expected.
NASA Astrophysics Data System (ADS)
Tomono, Dai; Fukuda, Mitsuhiro; Hatanaka, Kichiji; Higemoto, Wataru; Kawashima, Yoshitaka; Kojima, Kenji M.; Kuno, Yoshitaka; Matsuda, Yugo; Matsuzaki, Teiichiro; Miyake, Yasuhiro; Miyamoto, Koichiro; Morita, Yasuyuki; Motoishi, Takahiro; Nakazawa, Yu; Ninomiya, Kazuhiko; Nishikawa, Ryo; Ohta, Saki; Sato, Akira; Shimomura, Koichiro; Takahisa, Keiji; Weichao, Yao; Wong, Ming L.
At the new DC muon beamline MuSIC at Research Center for Nuclear Physics (RCNP), Osaka University, the beamline construction from the solenoid system of the muon production to the experimental port was completed. A beamline commissioning and a feasibility study for μSR are now in progress. With newly refurbished spectrometer installed at the experimental port, we succeeded in observing μSR spectra and μ-e decay asymmetry in a simple setup down to 4 K. We are still under development of other μSR appratuses.
BlackOPs: increasing confidence in variant detection through mappability filtering.
Cabanski, Christopher R; Wilkerson, Matthew D; Soloway, Matthew; Parker, Joel S; Liu, Jinze; Prins, Jan F; Marron, J S; Perou, Charles M; Hayes, D Neil
2013-10-01
Identifying variants using high-throughput sequencing data is currently a challenge because true biological variants can be indistinguishable from technical artifacts. One source of technical artifact results from incorrectly aligning experimentally observed sequences to their true genomic origin ('mismapping') and inferring differences in mismapped sequences to be true variants. We developed BlackOPs, an open-source tool that simulates experimental RNA-seq and DNA whole exome sequences derived from the reference genome, aligns these sequences by custom parameters, detects variants and outputs a blacklist of positions and alleles caused by mismapping. Blacklists contain thousands of artifact variants that are indistinguishable from true variants and, for a given sample, are expected to be almost completely false positives. We show that these blacklist positions are specific to the alignment algorithm and read length used, and BlackOPs allows users to generate a blacklist specific to their experimental setup. We queried the dbSNP and COSMIC variant databases and found numerous variants indistinguishable from mapping errors. We demonstrate how filtering against blacklist positions reduces the number of potential false variants using an RNA-seq glioblastoma cell line data set. In summary, accounting for mapping-caused variants tuned to experimental setups reduces false positives and, therefore, improves genome characterization by high-throughput sequencing.
ERIC Educational Resources Information Center
Birk, James P., Ed.
1989-01-01
Presented is a simple laboratory set-up for teaching microprocessor-controlled data acquisition as a part of an instrumental analysis course. Discussed are the experimental set-up, experimental procedures, and technical considerations for this technique. (CW)
Yoles-Frenkel, Michal; Cohen, Oksana; Bansal, Rohini; Horesh, Noa; Ben-Shaul, Yoram
2017-06-15
Achieving controlled stimulus delivery is a major challenge in the physiological analysis of the vomeronasal system (VNS). We provide a comprehensive description of a setup allowing controlled stimulus delivery into the vomeronasal organ (VNO) of anesthetized mice. VNO suction is achieved via electrical stimulation of the sympathetic nerve trunk (SNT) using cuff electrodes, followed by flushing of the nasal cavity. Successful application of this methodology depends on several aspects including the surgical preparation, fabrication of cuff electrodes, experimental setup modifications, and the stimulus delivery and flushing. Here, we describe all these aspects in sufficient detail to allow other researchers to readily adopt it. We also present a custom written MATLAB based software with a graphical user interface that controls all aspects of the actual experiment, including trial sequencing, hardware control, and data logging. The method allows measurement of stimulus evoked sensory responses in brain regions that receive vomeronasal inputs. An experienced investigator can complete the entire surgical procedure within thirty minutes. This is the only approach that allows repeated and controlled stimulus delivery to the intact VNO, employing the natural mode of stimulus uptake. The approach is economical with respect to stimuli, requiring stimulus volumes as low as 1-2μl. This comprehensive description will allow other investigators to adapt this setup to their own experimental needs and can thus promote our physiological understanding of this fascinating chemosensory system. With minor changes it can also be adapted for other rodent species. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular Weight Measurement of Biobased Furan Polyamides via Non-Aqueous Potentiometric Titration
2013-06-01
electromagnetic fields, all titrations were completed in a chemical hood, which acted as a Faraday cage (a shield used to blocks external static and...while using DMF as a solvent. Additionally, no Faraday cage was used in the experimental setup, so the titrations were conducted inside the chemical...monomer was becoming more soluble in glacial acetic acid and the amount of chlorobenzene had less of an effect on the solution properties (i.e
NASA Astrophysics Data System (ADS)
Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek
2013-12-01
Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.
NASA Astrophysics Data System (ADS)
Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Novoselov, A. S.; Oganessian, Yu. Ts.; Salamatin, V. S.; Stepantsov, S. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Krupa, L.; Granja, C.; Pospisil, S.; Kliman, J.; Motycak, S.; Sivacek, I.
2015-06-01
Radon and mercury isotopes were produced in multi nucleon transfer (48Ca + 232Th) and complete fusion (48Ca + naturalNd) reactions, respectively. The isotopes with given masses were detected using two detectors: a multi-strip detector of the well-type (made in CANBERRA) and a position-sensitive quantum counting hybrid pixel detector of the TIMEPIX type. The isotopes implanted into the detectors then emit alpha- and betaparticles until reaching the long lived isotopes. The position of the isotopes, the tracks, the time and energy of beta-particles were measured and analyzed. A new software for the particle recognition and data analysis of experimental results was developed and used. It was shown that MASHA+ TIMEPIX setup is a powerful instrument for investigation of neutron-rich isotopes far from stability limits.
Characterization of a neutron imaging setup at the INES facility
NASA Astrophysics Data System (ADS)
Durisi, E. A.; Visca, L.; Albertin, F.; Brancaccio, R.; Corsi, J.; Dughera, G.; Ferrarese, W.; Giovagnoli, A.; Grassi, N.; Grazzi, F.; Lo Giudice, A.; Mila, G.; Nervo, M.; Pastrone, N.; Prino, F.; Ramello, L.; Re, A.; Romero, A.; Sacchi, R.; Salvemini, F.; Scherillo, A.; Staiano, A.
2013-10-01
The Italian Neutron Experimental Station (INES) located at the ISIS pulsed neutron source (Didcot, United Kingdom) provides a thermal neutron beam mainly used for diffraction analysis. A neutron transmission imaging system was also developed for beam monitoring and for aligning the sample under investigation. Although the time-of-flight neutron diffraction is a consolidated technique, the neutron imaging setup is not yet completely characterized and optimized. In this paper the performance for neutron radiography and tomography at INES of two scintillator screens read out by two different commercial CCD cameras is compared in terms of linearity, signal-to-noise ratio, effective dynamic range and spatial resolution. In addition, the results of neutron radiographies and a tomography of metal alloy test structures are presented to better characterize the INES imaging capabilities of metal artifacts in the cultural heritage field.
NASA Astrophysics Data System (ADS)
Mussot, Arnaud; Naveau, Corentin; Szriftgiser, Pascal; Copie, François; Kudlinski, Alexandre; Conforti, Matteo; Trillo, Stefano
2018-02-01
We report a novel experimental setup to perform distributed characterization in intensity and phase of the nonlinear stage of modulation instability by means of a non-invasive experimental setup : a heterodyne time domain reflectometer.
Hollmann, M; Mönch, T; Mulla-Osman, S; Tempelmann, C; Stadler, J; Bernarding, J
2008-10-30
In functional MRI (fMRI) complex experiments and applications require increasingly complex parameter handling as the experimental setup usually consists of separated soft- and hardware systems. Advanced real-time applications such as neurofeedback-based training or brain computer interfaces (BCIs) may even require adaptive changes of the paradigms and experimental setup during the measurement. This would be facilitated by an automated management of the overall workflow and a control of the communication between all experimental components. We realized a concept based on an XML software framework called Experiment Description Language (EDL). All parameters relevant for real-time data acquisition, real-time fMRI (rtfMRI) statistical data analysis, stimulus presentation, and activation processing are stored in one central EDL file, and processed during the experiment. A usability study comparing the central EDL parameter management with traditional approaches showed an improvement of the complete experimental handling. Based on this concept, a feasibility study realizing a dynamic rtfMRI-based brain computer interface showed that the developed system in combination with EDL was able to reliably detect and evaluate activation patterns in real-time. The implementation of a centrally controlled communication between the subsystems involved in the rtfMRI experiments reduced potential inconsistencies, and will open new applications for adaptive BCIs.
Development of a sensitive setup for laser spectroscopy studies of very exotic calcium isotopes
NASA Astrophysics Data System (ADS)
Garcia Ruiz, R. F.; Gorges, C.; Bissell, M.; Blaum, K.; Gins, W.; Heylen, H.; Koenig, K.; Kaufmann, S.; Kowalska, M.; Krämer, J.; Lievens, P.; Malbrunot-Ettenauer, S.; Neugart, R.; Neyens, G.; Nörtershäuser, W.; Yordanov, D. T.; Yang, X. F.
2017-04-01
An experimental setup for sensitive high-resolution measurements of hyperfine structure spectra of exotic calcium isotopes has been developed and commissioned at the COLLAPS beam line at ISOLDE, CERN. The technique is based on the radioactive detection of decaying isotopes after optical pumping and state selective neutralization (ROC) (Vermeeren et al 1992 Phys. Rev. Lett. 68 1679). The improvements and developments necessary to extend the applicability of the experimental technique to calcium isotopes produced at rates as low as few ions s-1 are discussed. Numerical calculations of laser-ion interaction and ion-beam simulations were explored to obtain the optimum performance of the experimental setup. Among the implemented features are a multi-step optical pumping region for sensitive measurements of isotopes with hyperfine splitting, a high-voltage platform for adequate control of low-energy ion beams and simultaneous β-detection of neutralized and remaining ions. The commissioning of the experimental setup, and the first online results on neutron-rich calcium isotopes are presented.
National Ignition Facility Control and Information System Operational Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, C D; Beeler, R G; Bowers, G A
The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a {approx}2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint themore » size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.« less
NASA Astrophysics Data System (ADS)
Garcia-Molina, Rafael; del Mazo, Alejandro; Velasco, Santiago
2018-01-01
We present a simple and cheap experimental setup that clearly shows how the colors of the white light spectrum after passing a prism do not recombine when emerging from an identical second prism, as it is still found in many references.
ERIC Educational Resources Information Center
Garcia-Molina, Rafael; del Mazo, Alejandro; Velasco, Santiago
2018-01-01
We present a simple and cheap experimental setup that clearly shows how the colors of the white light spectrum after passing a prism do not recombine when emerging from an identical second prism, as it is still found in many references.
Huygens' inspired multi-pendulum setups: Experiments and stability analysis
NASA Astrophysics Data System (ADS)
Hoogeboom, F. N.; Pogromsky, A. Y.; Nijmeijer, H.
2016-11-01
This paper examines synchronization of a set of metronomes placed on a lightweight foam platform. Two configurations of the set of metronomes are considered: a row setup containing one-dimensional coupling and a cross setup containing two-dimensional coupling. Depending on the configuration and coupling between the metronomes, i.e., the platform parameters, in- and/or anti-phase synchronized behavior is observed in the experiments. To explain this behavior, mathematical models of a metronome and experimental setups have been derived and used in a local stability analysis. It is numerically and experimentally demonstrated that varying the coupling parameters for both configurations has a significant influence on the stability of the synchronized solutions.
Facility for Heavy Ion Collision Experiment at RAON
NASA Astrophysics Data System (ADS)
Kim, Young Jin; Kim, Do Gyun; Kim, Gi Dong; Kim, Yong Hak; Kim, Young-Jin; Kim, Yong Kyun; Kwon, Young Kwan; Yun, Chong Cheol; Hong, Byungsik; Sei Lee, Kyung; Kim, Eun Joo; Ahn, Jung Keun; Lee, Hyo Sang
2014-03-01
The Rare Isotope Science Project (RISP) was established in December 2011 in order to carry out the technical design and the establishment of the accelerator complex (RAON) for the rare isotope science in Korea. The rare isotope accelerator at RAON will provide both stable and rare isotope heavy-ion beams the energy range from a few MeV/nucleon to a few hundreds of MeV/nucleon for researches in fields of basic and applied science. Large Acceptance Multipurpose Spectrometer (LAMPS) at RAON is a heavy-ion collision experimental facility for studying nuclear symmetry energy by using rare isotope beams. Two different experimental setups of LAMPS are designed for covering entire energy range at RAON. One is for low energy (< 18.5 MeV/nucleon) heavy-ion collision experiment for day-1 experiments. This experimental setup consists of an array of ΔE-E Si-CsI detectors, a gamma array to cover backward polar angle, and a forward neutron wall. The other is for completing an event reconstruction by detecting all the particles produced in high energy heavy-ion collisions within a large acceptance angle to measure particle spectrum, yield, ratio and collective flow of pions, protons, neutrons, and intermediate fragments at the same time. The experimental setup consists of a superconducting spectrometer, a dipole spectrometer, and a forward neutron wall. A Time Projection Chamber (TPC) will be placed inside of superconducting solenoid magnet of 0.6 T for charged particle tracking. The dipole spectrometer will be located forward of the superconducting spectrometer and it will be composed of a combination of quadrupole, dipole magnets, focal plane detector, tracking stations, and Time-of-Flight (ToF) detector at the end. The neutron wall will be made of 10 layers of plastic scintillators for neutron tracking. In this presentation, the detail physics and design of LAMPS at RAON will be discussed.
Marschner, Julian A; Schäfer, Hannah; Holderied, Alexander; Anders, Hans-Joachim
2016-01-01
Body temperature affects outcomes of tissue injury. We hypothesized that online body core temperature recording and selective interventions help to standardize peri-interventional temperature control and the reliability of outcomes in experimental renal ischemia reperfusion injury (IRI). We recorded core temperature in up to seven mice in parallel using a Thermes USB recorder and ret-3-iso rectal probes with three different protocols. Setup A: Heating pad during ischemia time; Setup B: Heating pad from incision to wound closure; Setup C: A ventilated heating chamber before surgery and during ischemia time with surgeries performed on a heating pad. Temperature profile recording displayed significant declines upon installing anesthesia. The profile of the baseline experimental setup A revealed that <1% of the temperature readings were within the target range of 36.5 to 38.5°C. Setup B and C increased the target range readings to 34.6 ± 28.0% and 99.3 ± 1.5%, respectively. Setup C significantly increased S3 tubular necrosis, neutrophil influx, and mRNA expression of kidney injury markers. In addition, using setup C different ischemia times generated a linear correlation with acute tubular necrosis parameters at a low variability, which further correlated with the degree of kidney atrophy 5 weeks after surgery. Changing temperature control setup A to C was equivalent to 10 minutes more ischemia time. We conclude that body temperature drops quickly in mice upon initiating anesthesia. Immediate heat supply, e.g. in a ventilated heating chamber, and online core temperature monitoring can help to standardize and optimize experimental outcomes.
Modeling and analysis of a resonant nanosystem
NASA Astrophysics Data System (ADS)
Calvert, Scott L.
The majority of investigations into nanoelectromechanical resonators focus on a single area of the resonator's function. This focus varies from the development of a model for a beam's vibration, to the modeling of electrostatic forces, to a qualitative explanation of experimentally-obtained currents. Despite these efforts, there remains a gap between these works, and the level of sophistication needed to truly design nanoresonant systems for efficient commercial use. Towards this end, a comprehensive system model for both a nanobeam resonator and its related experimental setup is proposed. Furthermore, a simulation arrangement is suggested as a method for facilitating the study of the system-level behavior of these devices in a variety of cases that could not be easily obtained experimentally or analytically. The dynamics driving the nanoresonator's motion, as well as the electrical interactions influencing the forcing and output of the system, are modeled, experimentally validated, and studied. The model seeks to develop both a simple circuit representation of the nanoresonator, and to create a mathematical system that can be used to predict and interpret the observed behavior. Due to the assumptions used to simplify the model to a point of reasonable comprehension, the model is most accurate for small beam deflections near the first eigenmode of the beam. The process and results of an experimental investigation are documented, and compared with a circuit simulation modeling the full test system. The comparison qualitatively proves the functionality of the model, while a numerical analysis serves to validate the functionality and setup of the circuit simulation. The use of the simulation enables a much broader investigation of both the electrical behavior and the physical device's dynamics. It is used to complement an assessment of the tuning behavior of the system's linear natural frequency by demonstrating the tuning behavior of the full nonlinear response. The simulation is used to demonstrate the difficulties with the contemporary mixing approach to experimental data collection and to complete a variety of case studies investigating the use of the nanoresonator systems in practical applications, such as signal filtering. Many of these case studies would be difficult to complete analytically, but results are quickly achieved through the use of the simulation.
Computational fluid dynamics modeling of laboratory flames and an industrial flare.
Singh, Kanwar Devesh; Gangadharan, Preeti; Chen, Daniel H; Lou, Helen H; Li, Xianchang; Richmond, Peyton
2014-11-01
A computational fluid dynamics (CFD) methodology for simulating the combustion process has been validated with experimental results. Three different types of experimental setups were used to validate the CFD model. These setups include an industrial-scale flare setups and two lab-scale flames. The CFD study also involved three different fuels: C3H6/CH/Air/N2, C2H4/O2/Ar and CH4/Air. In the first setup, flare efficiency data from the Texas Commission on Environmental Quality (TCEQ) 2010 field tests were used to validate the CFD model. In the second setup, a McKenna burner with flat flames was simulated. Temperature and mass fractions of important species were compared with the experimental data. Finally, results of an experimental study done at Sandia National Laboratories to generate a lifted jet flame were used for the purpose of validation. The reduced 50 species mechanism, LU 1.1, the realizable k-epsilon turbulence model, and the EDC turbulence-chemistry interaction model were usedfor this work. Flare efficiency, axial profiles of temperature, and mass fractions of various intermediate species obtained in the simulation were compared with experimental data and a good agreement between the profiles was clearly observed. In particular the simulation match with the TCEQ 2010 flare tests has been significantly improved (within 5% of the data) compared to the results reported by Singh et al. in 2012. Validation of the speciated flat flame data supports the view that flares can be a primary source offormaldehyde emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sartipi, Sina, E-mail: S.Sartipi@tudelft.nl, E-mail: J.Gascon@tudelft.nl; Jansma, Harrie; Bosma, Duco
2013-12-15
Design and operation of a “six-flow fixed-bed microreactor” setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with highmore » productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.« less
Experimental setup for the measurement of induction motor cage currents
NASA Astrophysics Data System (ADS)
Bottauscio, Oriano; Chiampi, Mario; Donadio, Lorenzo; Zucca, Mauro
2005-04-01
An experimental setup for measurement of the currents flowing in the rotor bars of induction motors during synchronous no-load tests is described in the paper. The experimental verification of the high-frequency phenomena in the rotor cage is fundamental for a deep insight of the additional loss estimation by numerical methods. The attention is mainly focused on the analysis and design of the transducers developed for the cage current measurement.
Secretly asymmetric dark matter
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia
2017-01-01
We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.
Status and results from the OPERA experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ariga, Tomoko
2011-10-06
The OPERA experiment is aiming at the first direct detection of neutrino oscillations in appearance mode through the study of the v{sub {mu}}{yields}v{tau} channel. The OPERA detector is placed in the CNGS long baseline v{sub {mu}} beam 730 km away from the neutrino source. The analysis of a sub-sample of the data taken in the 2008-2009 runs was completed After a brief description of the beam and the experimental setup, we report on event analysis and on a first candidate event, its background estimation and statistical significance.
Length matters: Improved high field EEG-fMRI recordings using shorter EEG cables.
Assecondi, Sara; Lavallee, Christina; Ferrari, Paolo; Jovicich, Jorge
2016-08-30
The use of concurrent EEG-fMRI recordings has increased in recent years, allowing new avenues of medical and cognitive neuroscience research; however, currently used setups present problems with data quality and reproducibility. We propose a compact experimental setup for concurrent EEG-fMRI at 4T and compare it to a more standard reference setup. The compact setup uses short EEG cables connecting to the amplifiers, which are placed right at the back of the head RF coil on a form-fitting extension force-locked to the patient MR bed. We compare the two setups in terms of sensitivity to MR-room environmental noise, interferences between measuring devices (EEG or fMRI), and sensitivity to functional responses in a visual stimulation paradigm. The compact setup reduces the system sensitivity to both external noise and MR-induced artefacts by at least 60%, with negligible EEG noise induced from the mechanical vibrations of the cryogenic cooling compression pump. The compact setup improved EEG data quality and the overall performance of MR-artifact correction techniques. Both setups were similar in terms of the fMRI data, with higher reproducibility for cable placement within the scanner in the compact setup. This improved compact setup may be relevant to MR laboratories interested in reducing the sensitivity of their EEG-fMRI experimental setup to external noise sources, setting up an EEG-fMRI workplace for the first time, or for creating a more reproducible configuration of equipment and cables. Implications for safety and ergonomics are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Holderied, Alexander; Anders, Hans-Joachim
2016-01-01
Body temperature affects outcomes of tissue injury. We hypothesized that online body core temperature recording and selective interventions help to standardize peri-interventional temperature control and the reliability of outcomes in experimental renal ischemia reperfusion injury (IRI). We recorded core temperature in up to seven mice in parallel using a Thermes USB recorder and ret-3-iso rectal probes with three different protocols. Setup A: Heating pad during ischemia time; Setup B: Heating pad from incision to wound closure; Setup C: A ventilated heating chamber before surgery and during ischemia time with surgeries performed on a heating pad. Temperature profile recording displayed significant declines upon installing anesthesia. The profile of the baseline experimental setup A revealed that <1% of the temperature readings were within the target range of 36.5 to 38.5°C. Setup B and C increased the target range readings to 34.6 ± 28.0% and 99.3 ± 1.5%, respectively. Setup C significantly increased S3 tubular necrosis, neutrophil influx, and mRNA expression of kidney injury markers. In addition, using setup C different ischemia times generated a linear correlation with acute tubular necrosis parameters at a low variability, which further correlated with the degree of kidney atrophy 5 weeks after surgery. Changing temperature control setup A to C was equivalent to 10 minutes more ischemia time. We conclude that body temperature drops quickly in mice upon initiating anesthesia. Immediate heat supply, e.g. in a ventilated heating chamber, and online core temperature monitoring can help to standardize and optimize experimental outcomes. PMID:26890071
Experimental setup for Single Event Effects at the São Paulo 8UD Pelletron Accelerator
NASA Astrophysics Data System (ADS)
Aguiar, V. A. P.; Added, N.; Medina, N. H.; Macchione, E. L. A.; Tabacniks, M. H.; Aguirre, F. R.; Silveira, M. A. G.; Santos, R. B. B.; Seixas, L. E.
2014-08-01
In this work we present an experimental setup mounted in one of the beam lines at the São Paulo 8UD Pelletron Accelerator in order to study Single Event Effects in electronic devices. The basic idea is to use elastic scattering collisions to achieve a low-flux with a high-uniformity ion beam to irradiate several devices. 12C, 16O, 28Si, 35Cl and 63Cu beams were used to test the experimental setup. In this system it is possible to use efficiently LET values of 17 MeV/mg/cm2 for an external beam arrangement and up to 32 MeV/mg/cm2 for in-vacuum irradiation.
NASA Astrophysics Data System (ADS)
Mishonov, Todor M.; Varonov, Albert M.; Maksimovski, Dejan D.; Manolev, Stojan G.; Gourev, Vassil N.; Yordanov, Vasil G.
2017-03-01
An experimental set-up for electrostatic measurement of {\\varepsilon }0, separate magnetostatic measurement of {μ }0 and determination of the speed of light c=1/\\sqrt{{\\varepsilon }0{μ }0} according to Maxwell’s theory with percent accuracy is described. No forces are measured with the experimental set-up, therefore there is no need for a scale, and the experiment cost of less than £20 is mainly due to the batteries used. Multiplied 137 times, this experimental set-up was given at the Fourth Open International Experimental Physics Olympiad (EPO4) and a dozen high school students performed successful experiments. The experimental set-up actually contains two different pendula for electric and magnetic measurements. In the magnetic experiment the pendulum is constituted by a magnetic coil attracted to a fixed one. In the electrostatic pendulum when the distance between the plates becomes shorter than a critical value the suspended plate catastrophically sticks to the fixed one, while in the magnetic pendulum the same occurs when the current in the coils becomes greater than a certain critical value. The basic idea of the methodology is to use the loss of stability as a tool for the determination of fundamental constants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moura, Eduardo S., E-mail: emoura@wisc.edu; Micka, John A.; Hammer, Cliff G.
Purpose: This work presents the development of a phantom to verify the treatment planning system (TPS) algorithms used for high-dose-rate (HDR) brachytherapy. It is designed to measure the relative dose in a heterogeneous media. The experimental details used, simulation methods, and comparisons with a commercial TPS are also provided. Methods: To simulate heterogeneous conditions, four materials were used: Virtual Water™ (VM), BR50/50™, cork, and aluminum. The materials were arranged in 11 heterogeneity configurations. Three dosimeters were used to measure the relative response from a HDR {sup 192}Ir source: TLD-100™, Gafchromic{sup ®} EBT3 film, and an Exradin™ A1SL ionization chamber. Tomore » compare the results from the experimental measurements, the various configurations were modeled in the PENELOPE/penEasy Monte Carlo code. Images of each setup geometry were acquired from a CT scanner and imported into BrachyVision™ TPS software, which includes a grid-based Boltzmann solver Acuros™. The results of the measurements performed in the heterogeneous setups were normalized to the dose values measured in the homogeneous Virtual Water™ setup and the respective differences due to the heterogeneities were considered. Additionally, dose values calculated based on the American Association of Physicists in Medicine-Task Group 43 formalism were compared to dose values calculated with the Acuros™ algorithm in the phantom. Calculated doses were compared at the same points, where measurements have been performed. Results: Differences in the relative response as high as 11.5% were found from the homogeneous setup when the heterogeneous materials were inserted into the experimental phantom. The aluminum and cork materials produced larger differences than the plastic materials, with the BR50/50™ material producing results similar to the Virtual Water™ results. Our experimental methods agree with the PENELOPE/penEasy simulations for most setups and dosimeters. The TPS relative differences with the Acuros™ algorithm were similar in both experimental and simulated setups. The discrepancy between the BrachyVision™, Acuros™, and TG-43 dose responses in the phantom described by this work exceeded 12% for certain setups. Conclusions: The results derived from the phantom measurements show good agreement with the simulations and TPS calculations, using Acuros™ algorithm. Differences in the dose responses were evident in the experimental results when heterogeneous materials were introduced. These measurements prove the usefulness of the heterogeneous phantom for verification of HDR treatment planning systems based on model-based dose calculation algorithms.« less
NASA Astrophysics Data System (ADS)
Hirth, Michael; Kuhn, Jochen; Müller, Andreas
2015-02-01
Recent articles about smartphone experiments have described their applications as experimental tools in different physical contexts.1-4 They have established that smartphones facilitate experimental setups, thanks to the small size and diverse functions of mobile devices, in comparison to setups with computer-based measurements. In the experiment described in this article, the experimental setup is reduced to a minimum. The objective of the experiment is to determine the speed of sound with a high degree of accuracy using everyday tools. An article published recently proposes a time-of-flight method where sound or acoustic pulses are reflected at the ends of an open tube.5 In contrast, the following experiment idea is based on the harmonic resonant frequencies of such a tube, simultaneously triggered by a noise signal.
Spying on photons with photons: quantum interference and information
NASA Astrophysics Data System (ADS)
Ataman, Stefan
2016-07-01
The quest to have both which-path knowledge and interference fringes in a double-slit experiment dates back to the inception of quantum mechanics (QM) and to the famous Einstein-Bohr debates. In this paper we propose and discuss an experiment able to spy on one photon's path with another photon. We modify the quantum state inside the interferometer as opposed to the traditional physical modification of the "wave-like" or "particle-like" experimental setup. We are able to show that it is the ability to harvest or not which-path information that finally limits the visibility of the interference pattern and not the "wave-like" or "particle-like" experimental setups. Remarkably, a full "particle-like" experimental setup is able to show interference fringes with 100% visibility if the quantum state is carefully engineered.
Watanabe, Eri; Kuchta, Kenny; Kimura, Mari; Rauwald, Hans Wilhelm; Kamei, Tsutomu; Imanishi, Jiro
2015-01-01
Bergamot essential oil (BEO) is commonly used against psychological stress and anxiety in aromatherapy. The primary aim of the present study was to obtain first clinical evidence for these psychological and physiological effects. A secondary aim was to achieve some fundamental understanding of the relevant pharmacological processes. Endocrinological, physiological, and psychological effects of BEO vapor inhalation on 41 healthy females were tested using a random crossover study design. Volunteers were exposed to 3 experimental setups (rest (R), rest + water vapor (RW), rest + water vapor + bergamot essential oil (RWB)) for 15 min each. Immediately after each setup, saliva samples were collected and the volunteers rested for 10 min. Subsequently, they completed the Profile of Mood States, State-Trait Anxiety Inventory, and Fatigue Self-Check List. High-frequency (HF) heart rate values, an indicator for parasympathetic nervous system activity, were calculated from heart rate variability values measured both during the 15 min of the experiment and during the subsequent 10 min of rest. Salivary cortisol (CS) levels in the saliva samples were analyzed using ELISA. CS of all 3 conditions R, RW, and RWB were found to be significantly distinct (p = 0.003). In the subsequent multiple comparison test, the CS value of RWB was significantly lower when compared to the R setup. When comparing the HF values of the RWB setup during the 10 min of rest after the experiment to those of RW, this parameter was significantly increased (p = 0.026) in the RWB setup for which scores for negative emotions and fatigue were also improved. These results demonstrate that BEO inhaled together with water vapor exerts psychological and physiological effects in a relatively short time. © 2015 S. Karger GmbH, Freiburg.
A Novel Experimental Setup to Investigate Magnetized Dusty Plasmas
NASA Astrophysics Data System (ADS)
Romero-Talamas, C. A.; Larocque, P.; Alvarez, J.; Sardin, J.
2013-10-01
Progress on the design and construction of a novel experimental setup to investigate dusty plasmas at the University of Maryland, Baltimore County (UMBC) is presented. The setup includes separation adjustability of discharge electrodes and their orientation with respect to gravity without breaking vacuum, and a pair of water-cooled coils to produce magnetic fields with strengths of up to several Tesla. The coils' orientation is also designed to be adjustable with respect to gravity. A pulse-forming network to power the coils with flattop times of several seconds is under design. The setup is mounted inside a large glass bell jar to provide wide optical access to the dusty plasmas, and to minimize interference of chamber walls and mounts with imposed electric or magnetic fields. Planned experiments include crystallization and wave propagation under strong magnetic fields.
Novel Anaerobic Wastewater Treatment System for Energy Generation at Forward Operating Bases
2016-08-01
AnMBR) technology with clinoptilolite ion exchange and GreenBox™ ammonia electrolysis. The system generates both methane and hydrogen fuels...experimental setup. ................................................ 21 Figure 10. Methane phase semi batch experimental setup, a total of three reactors were...set up for PS + solid, Bioc and ADS methane phase reactors. .................... 21 Figure 11. Dried PS solid for the control, Bioc blend for the
Center for Hybrid Communications and Networks
2016-09-08
Transmission loop experimental setup to study coded modulation and turbo equalization for metro and long-haul networks, 3) Experimental setup for...undertaking fundamental studies of QKD systems that use ( hyper -) entangled photon pairs or weak coherent states (WCS) as the quantum resources...onlinelibrary.wiley.com/doi/10.1002/047134608X.W8291/abstract] The real-time scope and AWG are also used in fiber-optics transmission loop experiment we
Digital computer technique for setup and checkout of an analog computer
NASA Technical Reports Server (NTRS)
Ambaruch, R.
1968-01-01
Computer program technique, called Analog Computer Check-Out Routine Digitally /ACCORD/, generates complete setup and checkout data for an analog computer. In addition, the correctness of the analog program implementation is validated.
Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs
NASA Astrophysics Data System (ADS)
Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil
2011-10-01
Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper. A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.
Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil
2011-10-20
Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beammore » which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.« less
NASA Astrophysics Data System (ADS)
Wang, Li-Chih; Chen, Yin-Yann; Chen, Tzu-Li; Cheng, Chen-Yang; Chang, Chin-Wei
2014-10-01
This paper studies a solar cell industry scheduling problem, which is similar to traditional hybrid flowshop scheduling (HFS). In a typical HFS problem, the allocation of machine resources for each order should be scheduled in advance. However, the challenge in solar cell manufacturing is the number of machines that can be adjusted dynamically to complete the job. An optimal production scheduling model is developed to explore these issues, considering the practical characteristics, such as hybrid flowshop, parallel machine system, dedicated machines, sequence independent job setup times and sequence dependent job setup times. The objective of this model is to minimise the makespan and to decide the processing sequence of the orders/lots in each stage, lot-splitting decisions for the orders and the number of machines used to satisfy the demands in each stage. From the experimental results, lot-splitting has significant effect on shortening the makespan, and the improvement effect is influenced by the processing time and the setup time of orders. Therefore, the threshold point to improve the makespan can be identified. In addition, the model also indicates that more lot-splitting approaches, that is, the flexibility of allocating orders/lots to machines is larger, will result in a better scheduling performance.
NASA Astrophysics Data System (ADS)
Hakim Halim, Abdul; Ernawati; Hidayat, Nita P. A.
2018-03-01
This paper deals with a model of batch scheduling for a single batch processor on which a number of parts of a single items are to be processed. The process needs two kinds of setups, i. e., main setups required before processing any batches, and additional setups required repeatedly after the batch processor completes a certain number of batches. The parts to be processed arrive at the shop floor at the times coinciding with their respective starting times of processing, and the completed parts are to be delivered at multiple due dates. The objective adopted for the model is that of minimizing total inventory holding cost consisting of holding cost per unit time for a part in completed batches, and that in in-process batches. The formulation of total inventory holding cost is derived from the so-called actual flow time defined as the interval between arrival times of parts at the production line and delivery times of the completed parts. The actual flow time satisfies not only minimum inventory but also arrival and delivery just in times. An algorithm to solve the model is proposed and a numerical example is shown.
Observation of localized ground and excited orbitals in graphene photonic ribbons
NASA Astrophysics Data System (ADS)
Cantillano, C.; Mukherjee, S.; Morales-Inostroza, L.; Real, B.; Cáceres-Aravena, G.; Hermann-Avigliano, C.; Thomson, R. R.; Vicencio, R. A.
2018-03-01
We report on the experimental realization of a quasi-one-dimensional photonic graphene ribbon supporting four flat-bands (FBs). We study the dynamics of fundamental and dipolar modes, which are analogous to the s and p orbitals, respectively. In the experiment, both modes (orbitals) are effectively decoupled from each other, implying two sets of six bands, where two of them are completely flat (dispersionless). Using an image generator setup, we excite the s and p FB modes and demonstrate their non-diffracting propagation for the first time. Our results open an exciting route towards photonic emulation of higher orbital dynamics.
Polarimetric glucose sensing using Brewster reflection applying a rotating retarder analyzer
NASA Astrophysics Data System (ADS)
Boeckle, Stefan; Rovati, Luigi L.; Ansari, Rafat R.
2003-10-01
Previously, we proposed a polarimetric method, that exploits the Brewster-reflection with the final goal of application to the human eye (reflection off the eye lens) for non-invasive glucose sensing. The linearly polarized reflected light of this optical scheme is rotated by the glucose molecules present in the aqueous humor, thus carries the blood glucose concentration information. A proof-of-concept experimental bench-top setup is presented, applying a multi-wavelength true phase measurement approach and a rotating phase retarder as an analyzer to measure the very small rotation angles and the complete polarization state of the measurement light.
Status and Prospects of Hirfl Experiments on Nuclear Physics
NASA Astrophysics Data System (ADS)
Xu, H. S.; Zheng, C.; Xiao, G. Q.; Zhan, W. L.; Zhou, X. H.; Zhang, Y. H.; Sun, Z. Y.; Wang, J. S.; Gan, Z. G.; Huang, W. X.; Ma, X. W.
HIRFL is an accelerator complex consisting of 3 accelerators, 2 radioactive beams lines, 1 storage rings and a number of experimental setups. The research activities at HIRFL cover the fields of radio-biology, material science, atomic physics, and nuclear physics. This report mainly concentrates on the experiments of nuclear physics with the existing and planned experimental setups such as SHANS, RIBLL1, ETF, CSRe, PISA and HPLUS at HIRFL.
Including Finite Surface Span Effects in Empirical Jet-Surface Interaction Noise Models
NASA Technical Reports Server (NTRS)
Brown, Clifford A.
2016-01-01
The effect of finite span on the jet-surface interaction noise source and the jet mixing noise shielding and reflection effects is considered using recently acquired experimental data. First, the experimental setup and resulting data are presented with particular attention to the role of surface span on far-field noise. These effects are then included in existing empirical models that have previously assumed that all surfaces are semi-infinite. This extended abstract briefly describes the experimental setup and data leaving the empirical modeling aspects for the final paper.
NASA Astrophysics Data System (ADS)
Shahid, Abdullah Bin; Mashud, Mohammad
2017-06-01
This paper summarizes the experimental campaign and numerical analysis performed aimed to analyze the potential benefit available employing a trapping vortex cell system on a high thickness symmetric aero-foil without steady suction or injection mass flow. In this work, the behavior of a two dimensional model equipped with a span wise adjusted circular cavity has been researched. Pressure distribution on the model surface and inside and the complete flow field round the model have been measured. Experimental tests have been performed varying the wind tunnel speed and also the angle of attack. For numerical analysis the two dimensional model of the airfoil and the mesh is formed through ANSYS Meshing that is run in Fluent for numerical iterate solution. In the paper the performed test campaign, the airfoil design, the adopted experimental set-up, the numerical analysis, the data post process and the results description are reported, compared a discussed.
Can violations of Bell's inequalities be considered as a final proof of quantum physics?
NASA Astrophysics Data System (ADS)
Hénault, François
2013-10-01
Nowadays, it is commonly admitted that the experimental violation of Bell's inequalities that was successfully demonstrated in the last decades by many experimenters, are indeed the ultimate proof of quantum physics and of its ability to describe the whole microscopic world and beyond. But the historical and scientific story may not be envisioned so clearly: it starts with the original paper of Einstein, Podolsky and Rosen (EPR) aiming at demonstrating that the formalism of quantum theory is incomplete. It then goes through the works of D. Bohm, to finally proceed to the famous John Bell's relationships providing an experimental setup to solve the EPR paradox. In this communication is proposed an alternative reading of this history, showing that modern experiments based on correlations between light polarizations significantly deviate from the original spirit of the EPR paper. It is concluded that current experimental violations of Bell's inequalities cannot be considered as an ultimate proof of the completeness of quantum physics models.
Eye-in-Hand Manipulation for Remote Handling: Experimental Setup
NASA Astrophysics Data System (ADS)
Niu, Longchuan; Suominen, Olli; Aref, Mohammad M.; Mattila, Jouni; Ruiz, Emilio; Esque, Salvador
2018-03-01
A prototype for eye-in-hand manipulation in the context of remote handling in the International Thermonuclear Experimental Reactor (ITER)1 is presented in this paper. The setup consists of an industrial robot manipulator with a modified open control architecture and equipped with a pair of stereoscopic cameras, a force/torque sensor, and pneumatic tools. It is controlled through a haptic device in a mock-up environment. The industrial robot controller has been replaced by a single industrial PC running Xenomai that has a real-time connection to both the robot controller and another Linux PC running as the controller for the haptic device. The new remote handling control environment enables further development of advanced control schemes for autonomous and semi-autonomous manipulation tasks. This setup benefits from a stereovision system for accurate tracking of the target objects with irregular shapes. The overall environmental setup successfully demonstrates the required robustness and precision that remote handling tasks need.
Multipurpose setup for low-temperature conversion electron Mössbauer spectroscopy
NASA Astrophysics Data System (ADS)
Augustyns, V.; Trekels, M.; Gunnlaugsson, H. P.; Masenda, H.; Temst, K.; Vantomme, A.; Pereira, L. M. C.
2017-05-01
We describe an experimental setup for conversion electron Mössbauer spectroscopy (CEMS) at low temperature. The setup is composed of a continuous flow cryostat (temperature range of 4.2-500 K), detector housing, three channel electron multipliers, and corresponding electronics. We demonstrate the capabilities of the setup with CEMS measurements performed on a sample consisting of a thin enriched 57Fe film, with a thickness of 20 nm, deposited on a silicon substrate. We also describe exchangeable adaptations (lid and sample holder) which extend the applicability of the setup to emission Mössbauer spectroscopy as well as measurements under an applied magnetic field.
Xie, Qiyuan; Zhang, Heping; Ye, Ruibo
2009-07-30
The objective of this work is to quantitatively study the burning characteristics of thermoplastics. A new experimental setup with a T-shape trough is designed. Based on this setup, the loop mechanism between the wall fire and pool fires induced by the melting and dripping of thermoplastic can be well simulated and studied. Additionally, the flowing characteristics of pool fires can also be quantitatively analyzed. Experiments are conducted for PP and PE sheets with different thicknesses. The maximum distances of the induced flowing pool flame in the T-shape trough are recorded and analyzed. The typical fire parameters, such as heat release rates (HRRs), CO concentrations are also monitored. The results show that the softening and clinging of the thermoplastic sheets plays a considerable role for their vertical wall burning. It is illustrated that the clinging of burning thermoplastic sheet may be mainly related with the softening temperatures and the ignition temperatures of the thermoplastics, as well as their viscosity coefficients. Through comparing the maximum distances of flowing flame of induced pool fires in the T-shape trough for thermoplastic sheets with different thicknesses, it is indicated that the pool fires induced by PE materials are easier to flow away than that of PP materials. Therefore, PE materials may be more dangerous for their faster pool fire spread on the floor. These experimental results preliminarily illustrate that this new experimental setup is helpful for quantitatively studying the special burning feature of thermoplastics although further modifications is needed for this setup in the future.
A simple Lissajous curves experimental setup
NASA Astrophysics Data System (ADS)
Şahin Kızılcık, Hasan; Damlı, Volkan
2018-05-01
The aim of this study is to develop an experimental setup to produce Lissajous curves. The setup was made using a smartphone, a powered speaker (computer speaker), a balloon, a laser pointer and a piece of mirror. Lissajous curves are formed as follows: a piece of mirror is attached to a balloon. The balloon is vibrated with the sound signal provided by the speaker that is connected to a smartphone. The laser beam is reflected off the mirror and the reflection is shaped as a Lissajous curve. Because of the intersection of two frequencies (frequency of the sound signal and natural vibration frequency of the balloon), these curves are formed. They can be used to measure the ratio of frequencies.
Tripathi, T S; Bala, M; Asokan, K
2014-08-01
We report on an experimental setup for the simultaneous measurement of the thermoelectric power (TEP) of two samples in the temperature range from 77 K to 500 K using optimum electronic instruments. The setup consists of two rectangular copper bars in a bridge arrangement for sample mounting, two surface mount (SM) chip resistors for creating alternate temperature gradient, and a type E thermocouple in differential geometry for gradient temperature (ΔT) measurement across the samples. In addition, a diode arrangement has been made for the alternate heating of SM resistors using only one DC current source. The measurement accuracy of ΔT increases with the differential thermocouple arrangement. For the calibration of the setup, measurements of TEP on a high purity (99.99%) platinum wire and type K thermocouple wires Chromel and Alumel have been performed from 77 K to 500 K with respect to copper lead wires. Additionally, this setup can be utilized to calibrate an unknown sample against a sample of known absolute TEP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, T. S.; Bala, M.; Asokan, K.
2014-08-01
We report on an experimental setup for the simultaneous measurement of the thermoelectric power (TEP) of two samples in the temperature range from 77 K to 500 K using optimum electronic instruments. The setup consists of two rectangular copper bars in a bridge arrangement for sample mounting, two surface mount (SM) chip resistors for creating alternate temperature gradient, and a type E thermocouple in differential geometry for gradient temperature (ΔT) measurement across the samples. In addition, a diode arrangement has been made for the alternate heating of SM resistors using only one DC current source. The measurement accuracy of ΔTmore » increases with the differential thermocouple arrangement. For the calibration of the setup, measurements of TEP on a high purity (99.99%) platinum wire and type K thermocouple wires Chromel and Alumel have been performed from 77 K to 500 K with respect to copper lead wires. Additionally, this setup can be utilized to calibrate an unknown sample against a sample of known absolute TEP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loehle, Stefan; Lein, Sebastian
A revised scientific instrument to measure simultaneously kinetic temperatures of different atoms from their optical emission profile is reported. Emission lines are simultaneously detected using one single scanning Fabry-Perot-interferometer (FPI) for a combined spectroscopic setup to acquire different emission lines simultaneously. The setup consists in a commercial Czerny-Turner spectrometer configuration which is combined with a scanning Fabry-Perot interferometer. The fast image acquisition mode of an intensified charge coupled device camera allows the detection of a wavelength interval of interest continuously while acquiring the highly resolved line during the scan of the FPI ramp. Results using this new setup are presentedmore » for the simultaneous detection of atomic nitrogen and oxygen in a high enthalpy air plasma flow as used for atmospheric re-entry research and their respective kinetic temperatures derived from the measured line profiles. The paper presents the experimental setup, the calibration procedure, and an exemplary result. The determined temperatures are different, a finding that has been published so far as due to a drawback of the experimental setup of sequential measurements, and which has now to be investigated in more detail.« less
AC-Induced Bias Potential Effect on Corrosion of Steels
2009-02-05
induction, variable conduction Experimental Setup Super- martensitic stainless steel composition Analysis: C Mn Si Cr Ni Mo Cu N Typical 13 Cr ɘ.01 0.6... stainless steel used in pipelines. •Low carbon (ɘ.01): allows the formation of a “soft” martensite that is more resistant than standard martensitic ...Proposed AC Corrosion Models AC Simulated Corrosion testing Stainless steel pipe and coating Cathodic protection Experimental Setup Preliminary
NASA Astrophysics Data System (ADS)
Aktharuzzaman, Md; Sarker, Md. Samad; Safa, Wasiul; Sharah, Nahreen; Salam, Md. Abdus
2017-12-01
Magnus effect is a phenomenon where pressure difference is created according to Bernoulli's effect due to induced velocity changes caused by a rotating object in a fluid. Using this concept, the idea of delaying boundary layer separation on airfoil by providing moving surface boundary layer control has been developed. In order to analyze the influence of Magnus effect on the aerodynamic performance of an airfoil, there is no alternative of developing an experimental setup. This paper aims to develop such an experimental setup which will be capable of analyzing the influence of Magnus effect on both symmetric and asymmetric airfoils by placing a cylinder at the leading edge. To provide arrangements for a rotating cylinder at the leading edge of airfoil, necessary modifications and additions have been done in the test section of an AF100 subsonic wind tunnel.
Villa, Tomaso; La Barbera, Luigi; Galbusera, Fabio
2014-04-01
Preclinical evaluation of the long-term reliability of devices for lumbar fixation is a mandatory activity before they are put into market. The experimental setups are described in two different standards edited by the International Organization for Standardization (ISO) and the American Society for Testing Materials (ASTM), but the evaluation of the suitability of such tests to simulate the actual loading with in vivo situations has never been performed. To calculate through finite element (FE) simulations the stress in the rods of the fixator when subjected to ASTM and ISO standards. To compare the calculated stresses arising in the same fixator once it has been virtually mounted in a physiological environment and loaded with physiological forces and moments. FE simulations and validation experimental tests. FE models of the ISO and ASTM setups were created to conduct simulations of the tests prescribed by standards and calculate stresses in the rods. Validation of the simulations were performed through experimental tests; the same fixator was virtually mounted in an L2-L4 FE model of the lumbar spine and stresses in the rods were calculated when the spine was subjected to physiological forces and moments. The comparison between FE simulations and experimental tests showed good agreement between results obtained using the two methodologies, thus confirming the suitability of the FE method to evaluate stresses in the device in different loading situations. The usage of a physiological load with ASTM standard is impossible due to the extreme severity of the ASTM configuration; in this circumstance, the presence of an anterior support is suggested. Also, ISO prescriptions, although the choice of the setup correctly simulates the mechanical contribution of the discs, seem to overstress the device as compared with a physiological loading condition. Some daily activities, other than walking, can induce a further state of stress in the device that should be taken into account in setting up new experimental procedures. ISO standard loading prescriptions seems to be more severe than the expected physiological ones. The ASTM standard should be completed by including some anterior supporting device and declaring the value of the load to be imposed. Moreover, a further enhancement of standards would be simulating other movements representative of daily activities different from walking. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Stavinskiy, A. V.
2017-09-01
A possibility of studying cold nuclear matter on the Nuclotron-NICA facility at baryonic densities characteristic of and higher than at the center of a neutron star is considered based on the data from cumulative processes. A special rare-event kinematic trigger for collisions of relativistic ions is proposed for effective selection of events accompanied by production of dense baryonic systems. Possible manifestations of new matter states under these unusual conditions and an experimental program for their study are discussed. Various experimental setups are proposed for these studies, and a possibility of using experimental setups at the Nuclotron-NICA facility for this purpose is considered.
Nano-Ignition Torch Applied to Cryogenic H2/O2 Coaxial Jet
2016-01-04
developed and ignition of liquid fuel sprays by the torch has been achieved. In this report, we will describe the experimental procedure for producing...ignition that is induced by a compact Xe-flash, including the results for photoignition of a simple fuel spray in air as well as ignition of a coaxial...window. Experimental Setup for Fuel Spray Ignition Three different setups were utilized for the fuel ignition experiments. The first one was used
Pröller, Stephan; Moseguí González, Daniel; Zhu, Chenhuii; ...
2017-06-01
In order to tailor the assembling of polymers and organic molecules, a deeper understanding of the kinetics involved in thin film production is necessary. While post-production characterization only provides insight on the final film structure, more sophisticated experimental setups are needed to probe the structure formation processes in situ during deposition. The drying kinetics of a deposited organic thin film strongly influences the assembling process on the nanometer scale. Lastly, this work presents an experimental setup that enables fine control of the atmosphere composition surrounding the sample during slot die coating, while simultaneously probing the film formation kinetics using inmore » situ grazing incidence X-ray scattering and spectroscopy.« less
Active Optical Zoom for Tracking
2008-09-01
optical system. 2. Current Setup Deformable Flat Two Deformable Flat Figure 1. Zemax lens design layout and experimental layout on the...optical bench. Figure 1 is a ZEMAX design and setup on the optical bench of two Deformable Mirrors (DMs) from OKO technologies. These mirrors have
The COBRA demonstrator at the LNGS underground laboratory
NASA Astrophysics Data System (ADS)
Ebert, J.; Fritts, M.; Gehre, D.; Gößling, C.; Göpfert, T.; Hagner, C.; Heidrich, N.; Klingenberg, R.; Köttig, T.; Kröninger, K.; Michel, T.; Neddermann, T.; Nitsch, C.; Oldorf, C.; Quante, T.; Rajek, S.; Rebber, H.; Reinecke, O.; Rohatsch, K.; Schulz, O.; Sörensen, A.; Stekl, I.; Tebrügge, J.; Temminghoff, R.; Theinert, R.; Timm, J.; Wester, T.; Wonsak, B.; Zatschler, S.; Zuber, K.
2016-01-01
The COBRA demonstrator, a prototype for a large-scale experiment searching for neutrinoless double beta-decay, was built at the underground laboratory Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It consists of an array of 64 monolithic, calorimetric CdZnTe semiconductor detectors with a coplanar-grid design and a total mass of 380 g. It is used to investigate the experimental challenges faced when operating CdZnTe detectors in low-background mode, to identify potential background sources and to show the long-term stability of the detectors. The first data-taking period started in 2011 with a subset of the detectors, while the demonstrator was completed in November 2013. To date, more than 250 kg d of data have been collected. This paper describes the technical details of the experimental setup and the hardware components.
Active Noise Control Experiments using Sound Energy Flu
NASA Astrophysics Data System (ADS)
Krause, Uli
2015-03-01
This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.
Gouy Phase Radial Mode Sorter for Light: Concepts and Experiments.
Gu, Xuemei; Krenn, Mario; Erhard, Manuel; Zeilinger, Anton
2018-03-09
We present an in principle lossless sorter for radial modes of light, using accumulated Gouy phases. The experimental setups have been found by a computer algorithm, and can be intuitively understood in a geometric way. Together with the ability to sort angular-momentum modes, we now have access to the complete two-dimensional transverse plane of light. The device can readily be used in multiplexing classical information. On a quantum level, it is an analog of the Stern-Gerlach experiment-significant for the discussion of fundamental concepts in quantum physics. As such, it can be applied in high-dimensional and multiphotonic quantum experiments.
Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams
NASA Astrophysics Data System (ADS)
Woerdemann, Mike; Alpmann, Christina; Denz, Cornelia
2011-03-01
Ince-Gaussian (IG) beams are a third complete family of solutions of the paraxial Helmholtz equation. While many applications of Hermite-Gaussian and Laguerre-Gaussian beams have been demonstrated for manipulation of microparticles, the potential of the more general class of IG beams has not yet been exploited at all. We describe the unique properties of IG beams with respect to optical trapping applications, demonstrate a flexible experimental realization of arbitrary IG beams and prove the concept by creating two- and three-dimensional, highly ordered assemblies of typical microparticles. The concept is universal and can easily be integrated into existing holographic optical tweezers setups.
Gouy Phase Radial Mode Sorter for Light: Concepts and Experiments
NASA Astrophysics Data System (ADS)
Gu, Xuemei; Krenn, Mario; Erhard, Manuel; Zeilinger, Anton
2018-03-01
We present an in principle lossless sorter for radial modes of light, using accumulated Gouy phases. The experimental setups have been found by a computer algorithm, and can be intuitively understood in a geometric way. Together with the ability to sort angular-momentum modes, we now have access to the complete two-dimensional transverse plane of light. The device can readily be used in multiplexing classical information. On a quantum level, it is an analog of the Stern-Gerlach experiment—significant for the discussion of fundamental concepts in quantum physics. As such, it can be applied in high-dimensional and multiphotonic quantum experiments.
New high resolution Random Telegraph Noise (RTN) characterization method for resistive RAM
NASA Astrophysics Data System (ADS)
Maestro, M.; Diaz, J.; Crespo-Yepes, A.; Gonzalez, M. B.; Martin-Martinez, J.; Rodriguez, R.; Nafria, M.; Campabadal, F.; Aymerich, X.
2016-01-01
Random Telegraph Noise (RTN) is one of the main reliability problems of resistive switching-based memories. To understand the physics behind RTN, a complete and accurate RTN characterization is required. The standard equipment used to analyse RTN has a typical time resolution of ∼2 ms which prevents evaluating fast phenomena. In this work, a new RTN measurement procedure, which increases the measurement time resolution to 2 μs, is proposed. The experimental set-up, together with the recently proposed Weighted Time Lag (W-LT) method for the analysis of RTN signals, allows obtaining a more detailed and precise information about the RTN phenomenon.
Grützmacher, G; Bartel, H; Althoff, H W; Clemen, S
2007-03-01
A set-up for experiments in the flow-through mode was constructed in order to test the efficacy of substances used for disinfecting water during drinking water treatment. A flow-through mode - in contrast to experiments under stationary conditions (so-called batch experiments) - was chosen, because this experimental design allows experiments to be carried out under constant conditions for an extended time (up to one week) and because efficacy testing is possible repeatedly, simultaneously and under exactly the same conditions for short (about 0.5 min) and also longer (about 47 min) contact times. With this experimental design the effect of biofilms along the inner pipe surfaces can be included in the observations. The construction of the experimental set-up is based on experience with laboratory flow-through systems that were installed by the UBA's drinking water department (formerly Institute for Water-, Soil- and Air Hygiene (WaBoLu) Institute) for testing disinfection with chlorine. In the first step, a test pipe for the simulation of a water works situation was installed. Water of different qualities can be mixed in large volumes beforehand so that the experimental procedure can be run with constant water quality for a minimum of one week. The kinetics of the disinfection reaction can be observed by extracting samples from eight sampling ports situated along the test pipe. In order to assign exact residence times to each of the sampling ports, tracer experiments were performed prior to testing disinfectant efficacy. This paper gives the technical details of the experimental set-up and presents the results of the tracer experiments to provide an introduction with respect to its potential.
NASA Astrophysics Data System (ADS)
Björklund, Sebastian; Kocherbitov, Vitaly
2015-05-01
A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtone dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.
Test measurement on ion-molecule reactions in a ringelectrode ion trap
NASA Astrophysics Data System (ADS)
Savic, I.; Lukic, S. R.; Guth, I.; Gerlich, D.
2006-05-01
Very recently a new experimental setup has been developed allowing studies of astrophysically relevant collisions between neutral atoms and small pure carbon molecules from one side and ions from the other side and first results are obtained (Savić et al., 2005). The ions are stored in a radio- frequency (rf) ring-electrode trap and during reaction time exposed to the effusive carbon beam. In this paper, one of the final tests of the experimental setup is presented.
NASA Astrophysics Data System (ADS)
Chen, Tian-Yu; Chen, Yang; Yang, Hu-Jiang; Xiao, Jing-Hua; Hu, Gang
2018-03-01
Nowadays, massive amounts of data have been accumulated in various and wide fields, it has become today one of the central issues in interdisciplinary fields to analyze existing data and extract as much useful information as possible from data. It is often that the output data of systems are measurable while dynamic structures producing these data are hidden, and thus studies to reveal system structures by analyzing available data, i.e., reconstructions of systems become one of the most important tasks of information extractions. In the past, most of the works in this respect were based on theoretical analyses and numerical verifications. Direct analyses of experimental data are very rare. In physical science, most of the analyses of experimental setups were based on the first principles of physics laws, i.e., so-called top-down analyses. In this paper, we conducted an experiment of “Boer resonant instrument for forced vibration” (BRIFV) and inferred the dynamic structure of the experimental set purely from the analysis of the measurable experimental data, i.e., by applying the bottom-up strategy. Dynamics of the experimental set is strongly nonlinear and chaotic, and itʼs subjects to inevitable noises. We proposed to use high-order correlation computations to treat nonlinear dynamics; use two-time correlations to treat noise effects. By applying these approaches, we have successfully reconstructed the structure of the experimental setup, and the dynamic system reconstructed with the measured data reproduces good experimental results in a wide range of parameters.
Preliminary Study of Realistic Blast Impact on Cultured Brain Slices
2015-04-01
and/or multiple impacts in water. 3. Experimental Setup 3.1 The Aquarium Setup A 30.5-cm by 34.5- × 65-cm water-filled polymethylmethacrylate ...sodium bicarbonate PAGE polyacrylamide gel electrophoresis PMMA polymethylmethacrylate RDECOM U.S. Army Research Development and Engineering Command
NASA Astrophysics Data System (ADS)
Chadel, Meriem; Bouzaki, Mohammed Moustafa; Chadel, Asma; Petit, Pierre; Sawicki, Jean-Paul; Aillerie, Michel; Benyoucef, Boumediene
2017-02-01
We present and analyze experimental results obtained with a laboratory setup based on a hardware and smart instrumentation for the complete study of performance of PV panels using for illumination an artificial radiation source (Halogen lamps). Associated to an accurate analysis, this global experimental procedure allows the determination of effective performance under standard conditions thanks to a simulation process originally developed under Matlab software environment. The uniformity of the irradiated surface was checked by simulation of the light field. We studied the response of standard commercial photovoltaic panels under enlightenment measured by a spectrometer with different spectra for two sources, halogen lamps and sunlight. Then, we bring a special attention to the influence of the spectral distribution of light on the characteristics of photovoltaic panel, that we have performed as a function of temperature and for different illuminations with dedicated measurements and studies of the open circuit voltage and short-circuit current.
Shlyonsky, Vadim; Dupuis, Freddy; Gall, David
2014-01-01
Understanding the electrical biophysical properties of the cell membrane can be difficult for neuroscience students as it relies solely on lectures of theoretical models without practical hands on experiments. To address this issue, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences at the undergraduate level, dealing with the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. We provide a complete documentation allowing to build the amplifier and the experimental chamber. The students hand-out giving step-by step instructions to perform a recording is also included. Our experimental setup can be used in basic experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionic channels like gramicidin A dimers. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biophysics.
The OpenPicoAmp: An Open-Source Planar Lipid Bilayer Amplifier for Hands-On Learning of Neuroscience
Shlyonsky, Vadim; Dupuis, Freddy; Gall, David
2014-01-01
Understanding the electrical biophysical properties of the cell membrane can be difficult for neuroscience students as it relies solely on lectures of theoretical models without practical hands on experiments. To address this issue, we developed an open-source lipid bilayer amplifier, the OpenPicoAmp, which is appropriate for use in introductory courses in biophysics or neurosciences at the undergraduate level, dealing with the electrical properties of the cell membrane. The amplifier is designed using the common lithographic printed circuit board fabrication process and off-the-shelf electronic components. In addition, we propose a specific design for experimental chambers allowing the insertion of a commercially available polytetrafluoroethylene film. We provide a complete documentation allowing to build the amplifier and the experimental chamber. The students hand-out giving step-by step instructions to perform a recording is also included. Our experimental setup can be used in basic experiments in which students monitor the bilayer formation by capacitance measurement and record unitary currents produced by ionic channels like gramicidin A dimers. Used in combination with a low-cost data acquisition board this system provides a complete solution for hands-on lessons, therefore improving the effectiveness in teaching basic neurosciences or biophysics. PMID:25251830
NASA Astrophysics Data System (ADS)
Shrestha, K.; Gofryk, K.
2018-04-01
We have designed and developed a new experimental setup, based on the 3ω method, to measure thermal conductivity, heat capacity, and electrical resistivity of a variety of samples in a broad temperature range (2-550 K) and under magnetic fields up to 9 T. The validity of this method is tested by measuring various types of metallic (copper, platinum, and constantan) and insulating (SiO2) materials, which have a wide range of thermal conductivity values (1-400 W m-1 K-1). We have successfully employed this technique for measuring the thermal conductivity of two actinide single crystals: uranium dioxide and uranium nitride. This new experimental approach for studying nuclear materials will help us to advance reactor fuel development and understanding. We have also shown that this experimental setup can be adapted to the Physical Property Measurement System (Quantum Design) environment and/or other cryocooler systems.
Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)
Peters, W. A.; Ilyushkin, S.; Madurga, M.; ...
2016-08-26
The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom Geant4 simulation models aspectsmore » of the detector array and the experimental setups to determine efficiency and detector response. Lastly, a low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.« less
Experimental setup for evaluating an adaptive user interface for teleoperation control
NASA Astrophysics Data System (ADS)
Wijayasinghe, Indika B.; Peetha, Srikanth; Abubakar, Shamsudeen; Saadatzi, Mohammad Nasser; Cremer, Sven; Popa, Dan O.
2017-05-01
A vital part of human interactions with a machine is the control interface, which single-handedly could define the user satisfaction and the efficiency of performing a task. This paper elaborates the implementation of an experimental setup to study an adaptive algorithm that can help the user better tele-operate the robot. The formulation of the adaptive interface and associate learning algorithms are general enough to apply when the mapping between the user controls and the robot actuators is complex and/or ambiguous. The method uses a genetic algorithm to find the optimal parameters that produce the input-output mapping for teleoperation control. In this paper, we describe the experimental setup and associated results that was used to validate the adaptive interface to a differential drive robot from two different input devices; a joystick, and a Myo gesture control armband. Results show that after the learning phase, the interface converges to an intuitive mapping that can help even inexperienced users drive the system to a goal location.
Simulation of vortex-induced vibrations of a cylinder using ANSYS CFX rigid body solver
NASA Astrophysics Data System (ADS)
Izhar, Abubakar; Qureshi, Arshad Hussain; Khushnood, Shahab
2017-03-01
This article simulates the vortex-induced oscillations of a rigid circular cylinder with elastic support using the new ANSYS CFX rigid body solver. This solver requires no solid mesh to setup FSI (Fluid Structure Interaction) simulation. The two-way case was setup in CFX only. Specific mass of the cylinder and flow conditions were similar to previous experimental data with mass damping parameter equal to 0.04, specific mass of 1 and Reynolds number of 3800. Two dimensional simulations were setup. Both one-degree-of-freedom and two-degree-of-freedom cases were run and results were obtained for both cases with reasonable accuracy as compared with experimental results. Eight-figure XY trajectory and lock-in behavior were clearly captured. The obtained results were satisfactory.
LeBlanc, Serge Emile; Atanya, Monica; Burns, Kevin; Munger, Rejean
2011-04-21
It is well known that red blood cell scattering has an impact on whole blood oximetry as well as in vivo retinal oxygen saturation measurements. The goal of this study was to quantify the impact of small angle forward scatter on whole blood oximetry for scattering angles found in retinal oximetry light paths. Transmittance spectra of whole blood were measured in two different experimental setups: one that included small angle scatter in the transmitted signal and one that measured the transmitted signal only, at absorbance path lengths of 25, 50, 100, 250 and 500 µm. Oxygen saturation was determined by multiple linear regression in the 520-600 nm wavelength range and compared between path lengths and experimental setups. Mean calculated oxygen saturation differences between setups were greater than 10% at every absorbance path length. The deviations to the Beer-Lambert absorbance model had different spectral dependences between experimental setups, with the highest deviations found in the 520-540 nm range when scatter was added to the transmitted signal. These results are consistent with other models of forward scatter that predict different spectral dependences of the red blood cell scattering cross-section and haemoglobin extinction coefficients in this wavelength range.
Automatized set-up procedure for transcranial magnetic stimulation protocols.
Harquel, S; Diard, J; Raffin, E; Passera, B; Dall'Igna, G; Marendaz, C; David, O; Chauvin, A
2017-06-01
Transcranial Magnetic Stimulation (TMS) established itself as a powerful technique for probing and treating the human brain. Major technological evolutions, such as neuronavigation and robotized systems, have continuously increased the spatial reliability and reproducibility of TMS, by minimizing the influence of human and experimental factors. However, there is still a lack of efficient set-up procedure, which prevents the automation of TMS protocols. For example, the set-up procedure for defining the stimulation intensity specific to each subject is classically done manually by experienced practitioners, by assessing the motor cortical excitability level over the motor hotspot (HS) of a targeted muscle. This is time-consuming and introduces experimental variability. Therefore, we developed a probabilistic Bayesian model (AutoHS) that automatically identifies the HS position. Using virtual and real experiments, we compared the efficacy of the manual and automated procedures. AutoHS appeared to be more reproducible, faster, and at least as reliable as classical manual procedures. By combining AutoHS with robotized TMS and automated motor threshold estimation methods, our approach constitutes the first fully automated set-up procedure for TMS protocols. The use of this procedure decreases inter-experimenter variability while facilitating the handling of TMS protocols used for research and clinical routine. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Yun, Gunjin; Abdullah, A. B. M.; Binienda, Wieslaw; Krause, David L.; Kalluri, Sreeramesh
2014-01-01
A vibration-based testing methodology has been developed that will assess fatigue behavior of the metallic material of construction for the Advanced Stirling Convertor displacer (planar) spring component. To minimize the testing duration, the test setup is designed for base-excitation of a multiplespecimen arrangement, driven in a high-frequency resonant mode; this allows completion of fatigue testing in an accelerated period. A high performance electro-dynamic exciter (shaker) is used to generate harmonic oscillation of cantilever beam specimens, which are clasped on the shaker armature with specially-designed clamp fixtures. The shaker operates in closed-loop control with dynamic specimen response feedback provided by a scanning laser vibrometer. A test coordinator function synchronizes the shaker controller and the laser vibrometer to complete the closed-loop scheme. The test coordinator also monitors structural health of the test specimens throughout the test period, recognizing any change in specimen dynamic behavior. As this may be due to fatigue crack initiation, the test coordinator terminates test progression and then acquires test data in an orderly manner. Design of the specimen and fixture geometry was completed by finite element analysis such that peak stress does not occur at the clamping fixture attachment points. Experimental stress evaluation was conducted to verify the specimen stress predictions. A successful application of the experimental methodology was demonstrated by validation tests with carbon steel specimens subjected to fully-reversed bending stress; high-cycle fatigue failures were induced in such specimens using higher-than-prototypical stresses
Method and apparatus for checking the stability of a setup for making reflection type holograms
NASA Technical Reports Server (NTRS)
Lackner, H. G. (Inventor)
1974-01-01
A method and apparatus are described for checking the stability of a setup for recording reflection-type (white light) holograms. Two sets of interference fringes are simultaneously obtained, one giving information about coherence and stability of the setup alone and the other demonstrating coherence of the entire system, including the holographic recording plate. Special emphasis is given to the stability of the plate, due to the fact that any minute vibration might severely degrade or completely destroy the recording.
Application of Particle Swarm Optimization in Computer Aided Setup Planning
NASA Astrophysics Data System (ADS)
Kafashi, Sajad; Shakeri, Mohsen; Abedini, Vahid
2011-01-01
New researches are trying to integrate computer aided design (CAD) and computer aided manufacturing (CAM) environments. The role of process planning is to convert the design specification into manufacturing instructions. Setup planning has a basic role in computer aided process planning (CAPP) and significantly affects the overall cost and quality of machined part. This research focuses on the development for automatic generation of setups and finding the best setup plan in feasible condition. In order to computerize the setup planning process, three major steps are performed in the proposed system: a) Extraction of machining data of the part. b) Analyzing and generation of all possible setups c) Optimization to reach the best setup plan based on cost functions. Considering workshop resources such as machine tool, cutter and fixture, all feasible setups could be generated. Then the problem is adopted with technological constraints such as TAD (tool approach direction), tolerance relationship and feature precedence relationship to have a completely real and practical approach. The optimal setup plan is the result of applying the PSO (particle swarm optimization) algorithm into the system using cost functions. A real sample part is illustrated to demonstrate the performance and productivity of the system.
Super-resolution with an SLM and two intensity images
NASA Astrophysics Data System (ADS)
Alcalá Ochoa, Noé; de León, Y. Ponce
2018-06-01
It is reported a method which may simplify the optical setups used to achieve super-resolution through the amplitude multiplication of two waves. For this end we decompose a super-resolving pupil into two complex masks and with the aid of a Spatial Light Modulator (LCoS) we obtain two intensity images that are subtracted. With this proposal, the traditional experimental optical setups are considerably simplified, with the additional benefit that different masks can be utilized without needing to perform the setup alignment each time.
Commisso, Maria S; Martínez-Reina, Javier; Mayo, Juana; Domínguez, Jaime
2013-02-01
The main objectives of this work are: (a) to introduce an algorithm for adjusting the quasi-linear viscoelastic model to fit a material using a stress relaxation test and (b) to validate a protocol for performing such tests in temporomandibular joint discs. This algorithm is intended for fitting the Prony series coefficients and the hyperelastic constants of the quasi-linear viscoelastic model by considering that the relaxation test is performed with an initial ramp loading at a certain rate. This algorithm was validated before being applied to achieve the second objective. Generally, the complete three-dimensional formulation of the quasi-linear viscoelastic model is very complex. Therefore, it is necessary to design an experimental test to ensure a simple stress state, such as uniaxial compression to facilitate obtaining the viscoelastic properties. This work provides some recommendations about the experimental setup, which are important to follow, as an inadequate setup could produce a stress state far from uniaxial, thus, distorting the material constants determined from the experiment. The test considered is a stress relaxation test using unconfined compression performed in cylindrical specimens extracted from temporomandibular joint discs. To validate the experimental protocol, the test was numerically simulated using finite-element modelling. The disc was arbitrarily assigned a set of quasi-linear viscoelastic constants (c1) in the finite-element model. Another set of constants (c2) was obtained by fitting the results of the simulated test with the proposed algorithm. The deviation of constants c2 from constants c1 measures how far the stresses are from the uniaxial state. The effects of the following features of the experimental setup on this deviation have been analysed: (a) the friction coefficient between the compression plates and the specimen (which should be as low as possible); (b) the portion of the specimen glued to the compression plates (smaller areas glued are better); and (c) the variation in the thickness of the specimen. The specimen's faces should be parallel to ensure a uniaxial stress state. However, this is not possible in real specimens, and a criterion must be defined to accept the specimen in terms of the specimen's thickness variation and the deviation of the fitted constants arising from such a variation.
Presaddle and postsaddle dissipative effects in fission using complete kinematics measurements
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, J. L.; Benlliure, J.; Taïeb, J.; Alvarez-Pol, H.; Audouin, L.; Ayyad, Y.; Bélier, G.; Boutoux, G.; Casarejos, E.; Chatillon, A.; Cortina-Gil, D.; Gorbinet, T.; Heinz, A.; Kelić-Heil, A.; Laurent, B.; Martin, J.-F.; Paradela, C.; Pellereau, E.; Pietras, B.; Ramos, D.; Rodríguez-Tajes, C.; Rossi, D. M.; Simon, H.; Vargas, J.; Voss, B.
2016-12-01
A complete kinematics measurement of the two fission fragments was used for the first time to investigate fission dynamics at small and large deformations. Fissioning systems with high excitation energies, compact shapes, and low angular momenta were produced in inverse kinematics by using spallation reactions of lead projectiles. A new generation experimental setup allowed for the first full and unambiguous identification in mass and atomic number of both fission fragments. This measurement permitted us to accurately determine fission cross sections, the charge distribution, and the neutron excess of the fission fragments as a function of the atomic number of the fissioning system. These data are compared with different model calculations to extract information on the value of the dissipation parameter at small and large deformations. The present results do not show any sizable dependence of the nuclear dissipation parameter on temperature or deformation.
Design and development aspects of flexure mechanism for high precision application
NASA Astrophysics Data System (ADS)
Sollapur, Shrishail B.; Patil, M. S.; Deshmukh, S. P.
2018-04-01
Planer XY Flexurel Mechanisms has various applications in precision motion mechanisms. A flexural mechanism generates relative motion between fixed support and motion stage using flexibility of material. This mechanism offers zero backlash, frictionless motion and high order repeatability. It is relatively compact in design as compared to rigid link mechanism. The merits of using flexure is complete mechanism can be from single monolith. Modelling of flexural mechanism to provide accurate scanning of comparatively larger range at a higher speed. Static Analysis of mechanism is carried out on FEA tool to determine static deflection of motion stage. Further Mechanism is actuated with the help of weight pan and weights. The resultant displacement is measured on Dial Gauge Indicator. Experimental set-up consists of Flexural mechanism, Dial Gauge, Weight Pan and Weights, Pulley, String, Small metal strip, Optical Bread Board etc. Further experimental Results and Analytical Results are compared and minimum deviation is found.
Photoacoustic Spectroscopy Analysis of Traditional Chinese Medicine
NASA Astrophysics Data System (ADS)
Chen, Lu; Zhao, Bin-xing; Xiao, Hong-tao; Tong, Rong-sheng; Gao, Chun-ming
2013-09-01
Chinese medicine is a historic cultural legacy of China. It has made a significant contribution to medicine and healthcare for generations. The development of Chinese herbal medicine analysis is emphasized by the Chinese pharmaceutical industry. This study has carried out the experimental analysis of ten kinds of Chinese herbal powder including Fritillaria powder, etc., based on the photoacoustic spectroscopy (PAS) method. First, a photoacoustic spectroscopy system was designed and constructed, especially a highly sensitive solid photoacoustic cell was established. Second, the experimental setup was verified through the characteristic emission spectrum of the light source, obtained by using carbon as a sample in the photoacoustic cell. Finally, as the photoacoustic spectroscopy analysis of Fritillaria, etc., was completed, the specificity of the Chinese herb medicine analysis was verified. This study shows that the PAS can provide a valid, highly sensitive analytical method for the specificity of Chinese herb medicine without preparing and damaging samples.
Cryptographic salting for security enhancement of double random phase encryption schemes
NASA Astrophysics Data System (ADS)
Velez Zea, Alejandro; Fredy Barrera, John; Torroba, Roberto
2017-10-01
Security in optical encryption techniques is a subject of great importance, especially in light of recent reports of successful attacks. We propose a new procedure to reinforce the ciphertexts generated in double random phase encrypting experimental setups. This ciphertext is protected by multiplexing with a ‘salt’ ciphertext coded with the same setup. We present an experimental implementation of the ‘salting’ technique. Thereafter, we analyze the resistance of the ‘salted’ ciphertext under some of the commonly known attacks reported in the literature, demonstrating the validity of our proposal.
Sub-barrier fusion cross section measurements with STELLA
NASA Astrophysics Data System (ADS)
Heine, M.; Courtin, S.; Fruet, G.; Jenkins, D. G.; Montanari, D.; Adsley, P.; Beck, C.; Della Negra, S.; Dené, P.; Haas, F.; Hammache, F.; Heitz, G.; Kirsebom, O. S.; Krauth, M.; Lesrel, J.; Meyer, A.; Morris, L.; Regan, P. H.; Richer, M.; Rudigier, M.; de Séréville, N.; Stodel, C.
2018-01-01
The experimental setup STELLA (STELlar LAboratory) is designed for the measurement of deep sub-barrier light heavy ion fusion cross sections. For background suppression the γ-particle coincidence technique is used. In this project, LaBr3 detectors from the UK FATIMA (FAst TIMing Array) collaboration are combined with annular silicon strip detectors customized at IPHC-CNRS, Strasbourg, and the setup is located at Andromède, IPN, Orsay. The commissioning of the experimental approach as well as a sub-barrier 12C +12C → 24Mg∗ cross section measurement campaign are carried out.
Experimental investigation of environment-induced entanglement using an all-optical setup
NASA Astrophysics Data System (ADS)
Passos, M. H. M.; Balthazar, W. F.; Khoury, A. Z.; Hor-Meyll, M.; Davidovich, L.; Huguenin, J. A. O.
2018-02-01
We investigate the generation of entanglement between two noninteracting qubits coupled to a common reservoir. An experimental setup was conceived to encode one qubit on the polarization of an optical beam and another qubit on its transverse mode. The action of the reservoir is implemented as conditional operations on these two qubits, controlled by the longitudinal path as an ancillary degree of freedom. An entanglement witness and the two-qubit concurrence are easily evaluated from direct intensity measurements showing an excellent agreement with the theoretical prediction.
Zeng, Qiang; Li, Tao; Song, Xinbing; Zhang, Xiangdong
2016-04-18
We propose and experimentally demonstrate an optimized setup to implement quantum controlled-NOT operation using polarization and orbital angular momentum qubits. This device is more adaptive to inputs with various polarizations, and can work both in classical and quantum single-photon regime. The logic operations performed by such a setup not only possess high stability and polarization-free character, they can also be easily extended to deal with multi-qubit input states. As an example, the experimental implementation of generalized three-qubit Toffoli gate has been presented.
NASA Astrophysics Data System (ADS)
Trushlyakov, V. I.; Lesnyak, I. Y.; Galfetti, L.
2017-09-01
An evaporation of kerosene and water was investigated based on convective heat transfer in the experimental setup simulating a typical volume of the fuel tank of the launch vehicle. Basic criteria of similarity used in choosing the design parameters of the setup, parameters of the coolant and model liquids, were numbers of Reynolds, Prandtl, Biot, and Nusselt. The used coolants were gases, including air and nitrogen; in addition, at the stage of preliminary experiments, products of combustion of hydroxyl-terminated polybutadiene (HTPB) were considered. Boundary conditions were taken for the liquid located on the plate in the form of "drop" and at its uniform film spread in the experimental model setup. On the basis of experimental investigations, the temperature values were obtained for the system "gas-liquid-wall", and areas of mass transfer surface and heat transfer coefficients of "gas-liquid" and "gas-plate" were determined for coolants (air and nitrogen) and for liquids (water and kerosene). The comparative analysis of the obtained results and the known data was carried out. Proposals for experiments using coolants based on HTPB combustion products have been formulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Scott A; Catalfamo, Simone; Brake, Matthew R. W.
2017-01-01
In the study of the dynamics of nonlinear systems, experimental measurements often convolute the response of the nonlinearity of interest and the effects of the experimental setup. To reduce the influence of the experimental setup on the deduction of the parameters of the nonlinearity, the response of a mechanical joint is investigated under various experimental setups. These experiments first focus on quantifying how support structures and measurement techniques affect the natural frequency and damping of a linear system. The results indicate that support structures created from bungees have negligible influence on the system in terms of frequency and damping ratiomore » variations. The study then focuses on the effects of the excitation technique on the response for a linear system. The findings suggest that thinner stingers should not be used, because under the high force requirements the stinger bending modes are excited adding unwanted torsional coupling. The optimal configuration for testing the linear system is then applied to a nonlinear system in order to assess the robustness of the test configuration. Finally, recommendations are made for conducting experiments on nonlinear systems using conventional/linear testing techniques.« less
A DNA Melting Exercise for a Large Laboratory Class
ERIC Educational Resources Information Center
Levine, Lauren A.; Junker, Matthew; Stark, Myranda; Greenleaf, Dustin
2015-01-01
A simple and economical experimental setup is described that enables multiple individuals or groups within a laboratory class to measure the thermal melting of double stranded DNA simultaneously. The setup utilizes a basic spectrophotometer capable of measuring absorbance at 260 nm, UV plastic cuvettes, and a stirring hot plate. Students measure…
Use of microstrip patch antennas in grain permittivity measurement
El Sabbagh, M.A.; Ramahi, O.M.; Trabelsi, S.; Nelson, S.O.; Khan, L.
2003-01-01
In this paper, a compact size free-space setup is proposed for the measurement of complex permittivity of granular materials. The horn antennas in the conventional setup are replaced by microstrip patch antennas which is a step toward system miniaturization. The experimental results obtained are in good agreement with those obtained with horn antennas.
Validation of Magnetic Resonance Thermometry by Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Rydquist, Grant; Owkes, Mark; Verhulst, Claire M.; Benson, Michael J.; Vanpoppel, Bret P.; Burton, Sascha; Eaton, John K.; Elkins, Christopher P.
2016-11-01
Magnetic Resonance Thermometry (MRT) is a new experimental technique that can create fully three-dimensional temperature fields in a noninvasive manner. However, validation is still required to determine the accuracy of measured results. One method of examination is to compare data gathered experimentally to data computed with computational fluid dynamics (CFD). In this study, large-eddy simulations have been performed with the NGA computational platform to generate data for a comparison with previously run MRT experiments. The experimental setup consisted of a heated jet inclined at 30° injected into a larger channel. In the simulations, viscosity and density were scaled according to the local temperature to account for differences in buoyant and viscous forces. A mesh-independent study was performed with 5 mil-, 15 mil- and 45 mil-cell meshes. The program Star-CCM + was used to simulate the complete experimental geometry. This was compared to data generated from NGA. Overall, both programs show good agreement with the experimental data gathered with MRT. With this data, the validity of MRT as a diagnostic tool has been shown and the tool can be used to further our understanding of a range of flows with non-trivial temperature distributions.
WTO — a deterministic approach to 4-fermion physics
NASA Astrophysics Data System (ADS)
Passarino, Giampiero
1996-09-01
The program WTO, which is designed for computing cross sections and other relevant observables in the e+e- annihilation into four fermions, is described. The various quantities are computed over both a completely inclusive experimental set-up and a realistic one, i.e. with cuts on the final state energies, final state angles, scattering angles and final state invariant masses. Initial state QED corrections are included by means of the structure function approach while final state QCD corrections are applicable in their naive formulation. A gauge restoring mechanism is included according to the Fermion-Loop scheme. The program structure is highly modular and particular care has been devoted to computing efficiency and speed.
Coil-free active stabilisation of extended payloads with optical inertial sensors
NASA Astrophysics Data System (ADS)
Watchi, J.; Ding, B.; Tshilumba, D.; Artoos, K.; Collette, C.
2018-05-01
This paper presents a new active isolation strategy and system which is dedicated to extended payloads, and compatible with the particle accelerator environment. In comparison to the current isolation systems used in this environment, the system proposed does not contain any coil or elastomer, and the supporting frame is dedicated to isolating long payloads from seismic motion. The concept proposed has been tested numerically on 3 and 6 degrees of freedom (DOF) models, and validated experimentally on a 1-DOF scaled test set-up. An attenuation of 40 dB at 1 Hz has been reached with the stage built. The complete description of performance and a noise budgeting are included in this paper.
Towards interoperable and reproducible QSAR analyses: Exchange of datasets.
Spjuth, Ola; Willighagen, Egon L; Guha, Rajarshi; Eklund, Martin; Wikberg, Jarl Es
2010-06-30
QSAR is a widely used method to relate chemical structures to responses or properties based on experimental observations. Much effort has been made to evaluate and validate the statistical modeling in QSAR, but these analyses treat the dataset as fixed. An overlooked but highly important issue is the validation of the setup of the dataset, which comprises addition of chemical structures as well as selection of descriptors and software implementations prior to calculations. This process is hampered by the lack of standards and exchange formats in the field, making it virtually impossible to reproduce and validate analyses and drastically constrain collaborations and re-use of data. We present a step towards standardizing QSAR analyses by defining interoperable and reproducible QSAR datasets, consisting of an open XML format (QSAR-ML) which builds on an open and extensible descriptor ontology. The ontology provides an extensible way of uniquely defining descriptors for use in QSAR experiments, and the exchange format supports multiple versioned implementations of these descriptors. Hence, a dataset described by QSAR-ML makes its setup completely reproducible. We also provide a reference implementation as a set of plugins for Bioclipse which simplifies setup of QSAR datasets, and allows for exporting in QSAR-ML as well as old-fashioned CSV formats. The implementation facilitates addition of new descriptor implementations from locally installed software and remote Web services; the latter is demonstrated with REST and XMPP Web services. Standardized QSAR datasets open up new ways to store, query, and exchange data for subsequent analyses. QSAR-ML supports completely reproducible creation of datasets, solving the problems of defining which software components were used and their versions, and the descriptor ontology eliminates confusions regarding descriptors by defining them crisply. This makes is easy to join, extend, combine datasets and hence work collectively, but also allows for analyzing the effect descriptors have on the statistical model's performance. The presented Bioclipse plugins equip scientists with graphical tools that make QSAR-ML easily accessible for the community.
Towards interoperable and reproducible QSAR analyses: Exchange of datasets
2010-01-01
Background QSAR is a widely used method to relate chemical structures to responses or properties based on experimental observations. Much effort has been made to evaluate and validate the statistical modeling in QSAR, but these analyses treat the dataset as fixed. An overlooked but highly important issue is the validation of the setup of the dataset, which comprises addition of chemical structures as well as selection of descriptors and software implementations prior to calculations. This process is hampered by the lack of standards and exchange formats in the field, making it virtually impossible to reproduce and validate analyses and drastically constrain collaborations and re-use of data. Results We present a step towards standardizing QSAR analyses by defining interoperable and reproducible QSAR datasets, consisting of an open XML format (QSAR-ML) which builds on an open and extensible descriptor ontology. The ontology provides an extensible way of uniquely defining descriptors for use in QSAR experiments, and the exchange format supports multiple versioned implementations of these descriptors. Hence, a dataset described by QSAR-ML makes its setup completely reproducible. We also provide a reference implementation as a set of plugins for Bioclipse which simplifies setup of QSAR datasets, and allows for exporting in QSAR-ML as well as old-fashioned CSV formats. The implementation facilitates addition of new descriptor implementations from locally installed software and remote Web services; the latter is demonstrated with REST and XMPP Web services. Conclusions Standardized QSAR datasets open up new ways to store, query, and exchange data for subsequent analyses. QSAR-ML supports completely reproducible creation of datasets, solving the problems of defining which software components were used and their versions, and the descriptor ontology eliminates confusions regarding descriptors by defining them crisply. This makes is easy to join, extend, combine datasets and hence work collectively, but also allows for analyzing the effect descriptors have on the statistical model's performance. The presented Bioclipse plugins equip scientists with graphical tools that make QSAR-ML easily accessible for the community. PMID:20591161
Experimental Study of a Pulse Detonation Engine Driven Ejector
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh; Shehadeh, R.; Saretto, S.; Lee, S.-Y.
2005-01-01
Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen (O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results are in excellent agreement with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various detonation tube/ejector tube overlap distances. The results show that for the geometries studied here, a maximum thrust augmentation of 24% is achieved. Further increases are possible by tailoring the ejector geometry based on CFD predictions conducted elsewhere. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.
NASA Astrophysics Data System (ADS)
Brunet, V.; Molton, P.; Bézard, H.; Deck, S.; Jacquin, L.
2012-01-01
This paper describes the results obtained during the European Union JEDI (JEt Development Investigations) project carried out in cooperation between ONERA and Airbus. The aim of these studies was first to acquire a complete database of a modern-type engine jet installation set under a wall-to-wall swept wing in various transonic flow conditions. Interactions between the engine jet, the pylon, and the wing were studied thanks to ¤advanced¥ measurement techniques. In parallel, accurate Reynolds-averaged Navier Stokes (RANS) simulations were carried out from simple ones with the Spalart Allmaras model to more complex ones like the DRSM-SSG (Differential Reynolds Stress Modef of Speziale Sarkar Gatski) turbulence model. In the end, Zonal-Detached Eddy Simulations (Z-DES) were also performed to compare different simulation techniques. All numerical results are accurately validated thanks to the experimental database acquired in parallel. This complete and complex study of modern civil aircraft engine installation allowed many upgrades in understanding and simulation methods to be obtained. Furthermore, a setup for engine jet installation studies has been validated for possible future works in the S3Ch transonic research wind-tunnel. The main conclusions are summed up in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribezzi-Crivellari, M.; Huguet, J. M.; Ritort, F.
We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecularmore » hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.« less
ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis
2001-07-25
This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 4/03/2001 through 7/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Note that this version of the quarterly technical report is a revision to add the reports from subcontractors Montana State and Oak Ridge National Laboratories The significant accomplishments for this quarter include: Development of an experimental plan and initiation of experiments to create a calibration curve that correlates algal chlorophyll levels with carbon levels (to simplify future experimentalmore » procedures); Completion of debugging of the slug flow reactor system, and development of a plan for testing the pressure drop of the slug flow reactor; Design and development of a new bioreactor screen design which integrates the nutrient delivery drip system and the harvesting system; Development of an experimental setup for testing the new integrated drip system/harvesting system; Completion of model-scale bioreactor tests examining the effects of CO{sub 2} concentration levels and lighting levels on Nostoc 86-3 growth rates; Completion of the construction of a larger model-scale bioreactor to improve and expand testing capabilities and initiation of tests; Substantial progress on construction of a pilot-scale bioreactor; and Preliminary economic analysis of photobioreactor deployment. Plans for next quarter's work are included in the conclusions. A preliminary economic analysis is included as an appendix.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Melanie; Miller, Stuart; Tang, Katherine
Purpose: MANTIS is a Monte Carlo code developed for the detailed simulation of columnar CsI scintillator screens in x-ray imaging systems. Validation of this code is needed to provide a reliable and valuable tool for system optimization and accurate reconstructions for a variety of x-ray applications. Whereas previous validation efforts have focused on matching of summary statistics, in this work the authors examine the complete point response function (PRF) of the detector system in addition to relative light output values. Methods: Relative light output values and high-resolution PRFs have been experimentally measured with a custom setup. A corresponding set ofmore » simulated light output values and PRFs have also been produced, where detailed knowledge of the experimental setup and CsI:Tl screen structures are accounted for in the simulations. Four different screens were investigated with different thicknesses, column tilt angles, and substrate types. A quantitative comparison between the experimental and simulated PRFs was performed for four different incidence angles (0 deg., 15 deg., 30 deg., and 45 deg.) and two different x-ray spectra (40 and 70 kVp). The figure of merit (FOM) used measures the normalized differences between the simulated and experimental data averaged over a region of interest. Results: Experimental relative light output values ranged from 1.456 to 1.650 and were in approximate agreement for aluminum substrates, but poor agreement for graphite substrates. The FOMs for all screen types, incidence angles, and energies ranged from 0.1929 to 0.4775. To put these FOMs in context, the same FOM was computed for 2D symmetric Gaussians fit to the same experimental data. These FOMs ranged from 0.2068 to 0.8029. Our analysis demonstrates that MANTIS reproduces experimental PRFs with higher accuracy than a symmetric 2D Gaussian fit to the experimental data in the majority of cases. Examination of the spatial distribution of differences between the PRFs shows that the main reason for errors between MANTIS and the experimental data is that MANTIS-generated PRFs are sharper than the experimental PRFs. Conclusions: The experimental validation of MANTIS performed in this study demonstrates that MANTIS is able to reliably predict experimental PRFs, especially for thinner screens, and can reproduce the highly asymmetric shape seen in the experimental data. As a result, optimizations and reconstructions carried out using MANTIS should yield results indicative of actual detector performance. Better characterization of screen properties is necessary to reconcile the simulated light output values with experimental data.« less
Performance of velocity vector estimation using an improved dynamic beamforming setup
NASA Astrophysics Data System (ADS)
Munk, Peter; Jensen, Joergen A.
2001-05-01
Estimation of velocity vectors using transverse spatial modulation has previously been presented. Initially, the velocity estimation was improved using an approximated dynamic beamformer setup instead of a static combined with a new velocity estimation scheme. A new beamformer setup for dynamic control of the acoustic field, based on the Pulsed Plane Wave Decomposition (PPWD), is presented. The PPWD gives an unambiguous relation between a given acoustic field and the time functions needed on an array transducer for transmission. Applying this method for the receive beamformation results in a setup of the beamformer with different filters for each channel for each estimation depth. The method of the PPWD is illustrated by analytical expressions of the decomposed acoustic field and these results are used for simulation. Results of velocity estimates using the new setup are given on the basis of simulated and experimental data. The simulation setup is an attempt to approximate the situation present when performing a scanning of the carotid artery with a linear array. Measurement of the flow perpendicular to the emission direction is possible using the approach of transverse spatial modulation. This is most often the case in a scanning of the carotid artery, where the situation is handled by an angled Doppler setup in the present ultrasound scanners. The modulation period of 2 mm is controlled for a range of 20-40 mm which covers the typical range of the carotid artery. A 6 MHz array on a 128-channel system is simulated. The flow setup in the simulation is based on a vessel with a parabolic flow profile for a 60 and 90-degree flow angle. The experimental results are based on the backscattered signal from a sponge mounted in a stepping device. The bias and std. Dev. Of the velocity estimate are calculated for four different flow angles (50,60,75 and 90 degrees). The velocity vector is calculated using the improved 2D estimation approach at a range of depths.
Interoperative efficiency in minimally invasive surgery suites.
van Det, M J; Meijerink, W J H J; Hoff, C; Pierie, J P E N
2009-10-01
Performing minimally invasive surgery (MIS) in a conventional operating room (OR) requires additional specialized equipment otherwise stored outside the OR. Before the procedure, the OR team must collect, prepare, and connect the equipment, then take it away afterward. These extra tasks pose a thread to OR efficiency and may lengthen turnover times. The dedicated MIS suite has permanently installed laparoscopic equipment that is operational on demand. This study presents two experiments that quantify the superior efficiency of the MIS suite in the interoperative period. Preoperative setup and postoperative breakdown times in the conventional OR and the MIS suite in an experimental setting and in daily practice were analyzed. In the experimental setting, randomly chosen OR teams simulated the setup and breakdown for a standard laparoscopic cholecystectomy (LC) and a complex laparoscopic sigmoid resection (LS). In the clinical setting, the interoperative period for 66 LCs randomly assigned to the conventional OR or the MIS suite were analyzed. In the experimental setting, the setup and breakdown times were significantly shorter in the MIS suite. The difference between the two types of OR increased for the complex procedure: 2:41 min for the LC (p < 0.001) and 10:47 min for the LS (p < 0.001). In the clinical setting, the setup and breakdown times as a whole were not reduced in the MIS suite. Laparoscopic setup and breakdown times were significantly shorter in the MIS suite (mean difference, 5:39 min; p < 0.001). Efficiency during the interoperative period is significantly improved in the MIS suite. The OR nurses' tasks are relieved, which may reduce mental and physical workload and improve job satisfaction and patient safety. Due to simultaneous tasks of other disciplines, an overall turnover time reduction could not be achieved.
Hijazi, Bilal; Cool, Simon; Vangeyte, Jürgen; Mertens, Koen C; Cointault, Frédéric; Paindavoine, Michel; Pieters, Jan G
2014-11-13
A 3D imaging technique using a high speed binocular stereovision system was developed in combination with corresponding image processing algorithms for accurate determination of the parameters of particles leaving the spinning disks of centrifugal fertilizer spreaders. Validation of the stereo-matching algorithm using a virtual 3D stereovision simulator indicated an error of less than 2 pixels for 90% of the particles. The setup was validated using the cylindrical spread pattern of an experimental spreader. A 2D correlation coefficient of 90% and a Relative Error of 27% was found between the experimental results and the (simulated) spread pattern obtained with the developed setup. In combination with a ballistic flight model, the developed image acquisition and processing algorithms can enable fast determination and evaluation of the spread pattern which can be used as a tool for spreader design and precise machine calibration.
NASA Astrophysics Data System (ADS)
Ortner, A.; Schumacher, D.; Cayzac, W.; Frank, A.; Basko, M. M.; Bedacht, S.; Blazevic, A.; Faik, S.; Kraus, D.; Rienecker, T.; Schaumann, G.; Tauschwitz, An.; Wagner, F.; Roth, M.
2016-03-01
We report on a new experimental setup for ion energy loss measurements in dense moderately coupled plasma which has recently been developed and tested at GSI Darmstadt. A partially ionized, moderately coupled carbon plasma (ne ≤ 0.8• 1022 cm-3, Te = 15 eV, z = 2.5, Γ = 0.5) is generated by volumetrical heating of two thin carbon foils with soft X-rays. This plasma is then probed by a bunched heavy ion beam. For that purpose, a special double gold hohlraum target of sub-millimeter size has been developed which efficiently converts intense laser light into thermal radiation and guarantees a gold-free interaction path for the ion beam traversing the carbon plasma. This setup allows to do precise energy loss measurements in non-ideal plasma at the level of 10 percent solid-state density.
Application of activation methods on the Dubna experimental transmutation set-ups.
Stoulos, S; Fragopoulou, M; Adloff, J C; Debeauvais, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Papastefanou, C; Zamani, M; Manolopoulou, M
2003-02-01
High spallation neutron fluxes were produced by irradiating massive heavy targets with proton beams in the GeV range. The experiments were performed at the Dubna High Energy Laboratory using the nuclotron accelerator. Two different experimental set-ups were used to produce neutron spectra convenient for transmutation of radioactive waste by (n,x) reactions. By a theoretical analysis neutron spectra can be reproduced from activation measurements. Thermal-epithermal and fast-super-fast neutron fluxes were estimated using the 197Au, 238U (n,gamma) and (n,2n) reactions, respectively. Depleted uranium transmutation rates were also studied in both experiments.
Development of an experimental setup for testing the properties of γ/γ' superalloys
NASA Astrophysics Data System (ADS)
Christophe, Siret; Bernard, Viguier; Claude, Salabura Jean; Eric, Andrieu; Sandrine, Lesterlin
2010-07-01
Certification tests on turboshaft engines for helicopters can expose components as high pressure turbine blades to very high temperature during short time periods. To simulate these complex temperature and mechanical stress loadings and to study dimensional and microstructural stability under severe testing conditions, an experimental set-up has been recently developed. In this paper, we first present this new device and describe its performances. Then, the device is used to study the effect of heating procedure on creep results at 1200°C and rafting during primary creep on the single crystal nickel-based superalloy MC2.
Millimeter- and submillimeter-wave characterization of various fabrics.
Dunayevskiy, Ilya; Bortnik, Bartosz; Geary, Kevin; Lombardo, Russell; Jack, Michael; Fetterman, Harold
2007-08-20
Transmission measurements of 14 fabrics are presented in the millimeter-wave and submillimeter-wave electromagnetic regions from 130 GHz to 1.2 THz. Three independent sources and experimental set-ups were used to obtain accurate results over a wide spectral range. Reflectivity, a useful parameter for imaging applications, was also measured for a subset of samples in the submillimeter-wave regime along with polarization sensitivity of the transmitted beam and transmission through doubled layers. All of the measurements were performed in free space. Details of these experimental set-ups along with their respective challenges are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klaja, P.; Janusz, M.; Jarczyk, L.
2005-10-26
The COSY-11 experimental setup is an internal facility installed at the COoler SYnchrotron COSY in Juelich. It allows to investigate meson production in free and quasi-free nucleon-nucleon collisions, eg. pp {yields} pp meson and pd {yields} pspnp meson reactions. Drift chambers and scintillators permit to measure outgoing protons, separated in the magnetic field of the COSY-11 dipole. Neutrons are registered in the neutron modular detector installed downstream from the target. Recently, the experimental setup has been extended with spectator detector, deuteron drift chamber and polarization monitoring system, and since then meson production can be investigated also as a function ofmore » spin and isospin of colliding nucleons.« less
NASA Astrophysics Data System (ADS)
Foucaud, Simon; Michon, Guilhem; Gourinat, Yves; Pelat, Adrien; Gautier, François
2014-07-01
An inhomogeneous fluid structure waveguide reproducing passive behaviour of the inner ear is modelled with the help of the Wentzel-Kramers-Brillouin method. A physical setup is designed and built. Experimental results are compared with a good correlation to theoretical ones. The experimental setup is a varying width plate immersed in fluid and terminated with an acoustic black hole. The varying width plate provides a spatial repartition of the vibration depending on the excitation frequency. The acoustic black hole is made by decreasing the plate's thickness with a quadratic profile and by covering this region with a thin film of viscoelastic material. Such a termination attenuates the flexural wave reflection at the end of the waveguide, turning standing waves into travelling waves.
NASA Astrophysics Data System (ADS)
Rachevski, Alexandre; Ahangarianabhari, Mahdi; Bellutti, Pierluigi; Bertuccio, Giuseppe; Brigo, Elena; Bufon, Jernej; Carrato, Sergio; Castoldi, Andrea; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Gianoncelli, Alessandra; Giuressi, Dario; Guazzoni, Chiara; Kourousias, George; Liu, Chang; Menk, Ralf Hendrik; Montemurro, Giuseppe Vito; Picciotto, Antonino; Piemonte, Claudio; Rashevskaya, Irina; Shi, Yongbiao; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola
2016-07-01
We developed a trapezoidal shaped matrix with 8 cells of Silicon Drift Detectors (SDD) featuring a very low leakage current (below 180 pA/cm2 at 20 °C) and a shallow uniformly implanted p+ entrance window that enables sensitivity down to few hundreds of eV. The matrix consists of a completely depleted volume of silicon wafer subdivided into 4 square cells and 4 half-size triangular cells. The energy resolution of a single square cell, readout by the ultra-low noise SIRIO charge sensitive preamplifier, is 158 eV FWHM at 5.9 keV and 0 °C. The total sensitive area of the matrix is 231 mm2 and the wafer thickness is 450 μm. The detector was developed in the frame of the INFN R&D project ReDSoX in collaboration with FBK, Trento. Its trapezoidal shape was chosen in order to optimize the detection geometry for the experimental requirements of low energy X-ray fluorescence (LEXRF) spectroscopy, aiming at achieving a large detection angle. We plan to exploit the complete detector at the TwinMic spectromicroscopy beamline at the Elettra Synchrotron (Trieste, Italy). The complete system, composed of 4 matrices, increases the solid angle coverage of the isotropic photoemission hemisphere about 4 times over the present detector configuration. We report on the layout of the SDD matrix and of the experimental set-up, as well as the spectroscopic performance measured both in the laboratory and at the experimental beamline.
GRAPhEME: a setup to measure (n, xn γ) reaction cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henning, Greg; Bacquias, A.; Capdevielle, O.
2015-07-01
Most of nuclear reactor developments are using evaluated data base for numerical simulations. However, the considered databases present still large uncertainties and disagreements. To improve their level of precision, new measurements are needed, in particular for (n, xn) reactions, which are of great importance as they modify the neutron spectrum, the neutron population, and produce radioactive species. The IPHC group started an experimental program to measure (n, xn gamma) reaction cross sections using prompt gamma spectroscopy and neutron energy determination by time of flight. Measurements of (n, xn gamma) cross section have been performed for {sup 235,238}U, {sup 232}Th, {supmore » nat,182,183,184,186}W, {sup nat}Zr. The experimental setup is installed at the neutron beam at GELINA (Geel, Belgium). The setup has recently been upgraded with the addition of a highly segmented 36 pixels planar HPGe detector. Significant efforts have been made to reduce radiation background and electromagnetic perturbations. The setup is equipped with a high rate digital acquisition system. The analysis of the segmented detector data requires a specific procedure to account for cross signals between pixels. An overall attention is paid to the precision of the measurement. The setup characteristic and the analysis procedure will be presented along with the acquisition and analysis challenges. Examples of results and their impact on models will be discussed. (authors)« less
Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions
NASA Astrophysics Data System (ADS)
Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun
2016-12-01
With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.
Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.
Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun
2016-12-01
With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO 2 (SC-CO 2 ) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO 2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO 2 generation system, pure SC-CO 2 jet system, abrasive SC-CO 2 jet system, CO 2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO 2 jet, and the results have proven the great perforating efficiency of SC-CO 2 jet and the applications of this setup.
Advanced setup for high-pressure and low-temperature neutron diffraction at hydrostatic conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lokshin, Konstantin A.; Zhao Yusheng
2005-06-15
We describe a design of the experimental setup for neutron diffraction studies at low temperatures and hydrostatic pressure. The significant benefit of the setup, compared to the previous methods, is that it makes possible the simultaneous collection of neutrons diffracted at the 30 deg. -150 deg. range with no contamination by the primary scattering from the sample surroundings and without cutting out the incident and diffracted beams. The suggested design is most useful for third-generation time-of-flight diffractometers and constant wavelength instruments. Application of the setup expands the capabilities of high-pressure neutron diffraction, allowing time-resolved kinetics and structural studies, multihistogram Rietveld,more » and pair distribution function and texture analyses. The high efficiency of the setup was proven for the HIPPO diffractometer at Los Alamos Neutron Science Center under pressures up to 10 kbar and temperatures from 4 to 300 K.« less
Intelligent Command and Control Demonstration Setup and Presentation Instructions
2017-12-01
and Control Demonstration Setup and Presentation Instructions by Laurel C Sadler and Somiya Metu Computational and Information Sciences...0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information . Send
Zahnert, Thomas; Metasch, Marie-Luise; Seidler, Hannes; Bornitz, Matthias; Lasurashvili, Nicoloz; Neudert, Marcus
2016-12-01
Electromagnetical excitation of ossicular vibration is suitable for middle ear transmission measurements in the experimental and clinical setting. Thereby, it can be used as a real-time monitoring system for quality control in ossiculoplasty. Positioning and coupling of middle ear prosthesis are a precondition for good postoperative hearing results, but at the same time completely dependent upon the surgeon's subjective judgment during surgery. We evaluated an electromagnetically driven measurement system that enables for in vitro and in vivo transmission measurements and thus can be used as a real-time monitoring tool in ossicular reconstruction. For electromagnetical excitation a magnet was placed on the umbo of the malleus handle and driven by a magnetic field. The induced stapes displacement was picked up by laser Doppler vibrometry on the footplate. Measurements were performed on the intact ossicular chain in five cadaveric temporal bones and during five cochlear implant surgeries. Additionally, two ossiculoplasties were performed under real-time transmission feedback with the monitoring system. Experimentally, the equivalent sound pressure level of the electromagnetic excitation was about 70 to 80 dB which is 10 to 20 dB less than the acoustic stimulation. In the intraoperative setup the generated stapes displacements were about 5 to 20 dB smaller compared with the temporal bone experiments. Applied as real-time feedback system, an improvement in the middle ear transfer function of 4.5 dB in total and 20 dB in partial ossicular reconstruction were achieved. The electromagnetical excitation and measurement system is comparable to the gold standard with acoustical stimulation in both, the experimental setup in temporal bones as well as in vivo. The technical feasibility of the electromagnetical excitation method has been proven and it is shown that it can be used as a real-time monitoring system for ossiculoplasty in the operation room.
NASA Astrophysics Data System (ADS)
Tolosa-Delgado, A.; Agramunt, J.; Ahn, D. S.; Algora, A.; Baba, H.; Bae, S.; Brewer, N. T.; Caballero Folch, R.; Calvino, F.; Coleman-Smith, P. J.; Cortes, G.; Davinson, T.; Dillmann, I.; Domingo-Pardo, C.; Estrade, A.; Fukuda, N.; Go, S.; Griffin, C. J.; Grzywacz, R.; Ha, J.; Hall, O.; Harkness-Brennan, L.; Isobe, T.; Kahl, D.; Kiss, G. G.; Kogimtzis, M.; Kubono, S.; Labiche, M.; Lazarus, I.; Lee, J.; Liu, J.; Lorusso, G.; Matsui, K.; Miernik, K.; Montes, F.; Moon, B.; Morales, A. I.; Nepal, N.; Nishimura, S.; Page, R. D.; Phong, V. H.; Podolyak, Z.; Pucknell, V. F. E.; Rasco, B. C.; Regan, P.; Riego, A.; Rubio, B.; Rykaczewski, K. P.; Saito, Y.; Sakurai, H.; Shimizu, Y.; Simpson, J.; Söderström, P.-A.; Stracener, D. W.; Sumikama, T.; Suzuki, H.; Tain, J. L.; Takechi, M.; Takeda, H.; Tarifeño-Saldivia, A.; Thomas, S. L.; Woods, P.
2018-01-01
The commissioning of a new setup for β-delayed neutron measurements was carried out successfully in November-2016, at the RIKEN Nishina Center in Japan. The β-decay half-lives and Pn branching ratios of several isotopes in the 78Ni region were measured. Details of the experimental setup and the first results are given.
Quantitative comparisons of analogue models of brittle wedge dynamics
NASA Astrophysics Data System (ADS)
Schreurs, Guido
2010-05-01
Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments, models accommodated initial shortening by a forward- and a backward-verging thrust. Further shortening was taken up by in-sequence formation of forward-verging thrusts. In all experiments, boundary stresses created significant drag of structures along the sidewalls. We therefore compared the surface slope and the location, dip angle and spacing of thrusts in sections through the central part of the model. All models show very similar cross-sectional evolutions demonstrating reproducibility of first-order experimental observations. Nevertheless, there are significant along-strike variations of structures in map view highlighting the limits of interpretations of analogue model results. These variations may be related to the human factor, differences in model width and/or differences in laboratory temperature and especially humidity affecting the mechanical properties of the granular materials. GeoMod2008 Analogue Team: Susanne Buiter, Caroline Burberry, Jean-Paul Callot, Cristian Cavozzi, Mariano Cerca, Ernesto Cristallini, Alexander Cruden, Jian-Hong Chen, Leonardo Cruz, Jean-Marc Daniel, Victor H. Garcia, Caroline Gomes, Céline Grall, Cecilia Guzmán, Triyani Nur Hidayah, George Hilley, Chia-Yu Lu, Matthias Klinkmüller, Hemin Koyi, Jenny Macauley, Bertrand Maillot, Catherine Meriaux, Faramarz Nilfouroushan, Chang-Chih Pan, Daniel Pillot, Rodrigo Portillo, Matthias Rosenau, Wouter P. Schellart, Roy Schlische, Andy Take, Bruno Vendeville, Matteo Vettori, M. Vergnaud, Shih-Hsien Wang, Martha Withjack, Daniel Yagupsky, Yasuhiro Yamada
NASA Astrophysics Data System (ADS)
Castelino, Roystan V.; Jana, Suman; Kumhar, Rajesh; Singh, Niraj K.
2018-04-01
The simulation and hardware based experiment in this presented paper shows a possibility of increasing the reliability of solar power under diffused condition by using super capacitor module. This experimental setup can be used in those areas where the sun light is intermittent and under the diffused radiation condition. Due to diffused radiation, solar PV cells operate very poorly, but by using this setup the power efficiency can be increased greatly. Sometimes dependent numerical models are used to measure the voltage and current response of the hardware setup in MATLAB Simulink based environment. To convert the scattered solar radiation to electricity using the conventional solar PV module, batteries have to be linked with the rapid charging or discharging device like super capacitor module. The conventional method consists of a charging circuit, which dumps the power if the voltage is below certain voltage level, but this circuit utilizes the entire power even if the voltage is low under diffused sun light conditions. There is no power dumped in this circuit. The efficiency and viability of this labscale experimental setup can be examined with further experiment and industrial model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, Catherine
2015-08-20
Ptychography is an advanced diffraction based imaging technique that can achieve resolution of 5nm and below. It is done by scanning a sample through a beam of focused x-rays using discrete yet overlapping scan steps. Scattering data is collected on a CCD camera, and the phase of the scattered light is reconstructed with sophisticated iterative algorithms. Because the experimental setup is similar, ptychography setups can be created by retrofitting existing STXM beam lines with new hardware. The other challenge comes in the reconstruction of the collected scattering images. Scattering data must be adjusted and packaged with experimental parameters to calibratemore » the reconstruction software. The necessary pre-processing of data prior to reconstruction is unique to each beamline setup, and even the optical alignments used on that particular day. Pre-processing software must be developed to be flexible and efficient in order to allow experiments appropriate control and freedom in the analysis of their hard-won data. This paper will describe the implementation of pre-processing software which successfully connects data collection steps to reconstruction steps, letting the user accomplish accurate and reliable ptychography.« less
Minati, Ludovico
2014-12-01
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes and in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.
A Multisensing Setup for the Intelligent Tire Monitoring.
Coppo, Francesco; Pepe, Gianluca; Roveri, Nicola; Carcaterra, Antonio
2017-03-12
The present paper offers the chance to experimentally measure, for the first time, the internal tire strain by optical fiber sensors during the tire rolling in real operating conditions. The phenomena that take place during the tire rolling are in fact far from being completely understood. Despite several models available in the technical literature, there is not a correspondently large set of experimental observations. The paper includes the detailed description of the new multi-sensing technology for an ongoing vehicle measurement, which the research group has developed in the context of the project OPTYRE. The experimental apparatus is mainly based on the use of optical fibers with embedded Fiber Bragg Gratings sensors for the acquisition of the circumferential tire strain. Other sensors are also installed on the tire, such as a phonic wheel, a uniaxial accelerometer, and a dynamic temperature sensor. The acquired information is used as input variables in dedicated algorithms that allow the identification of key parameters, such as the dynamic contact patch, instantaneous dissipation and instantaneous grip. The OPTYRE project brings a contribution into the field of experimental grip monitoring of wheeled vehicles, with implications both on passive and active safety characteristics of cars and motorbikes.
A Multisensing Setup for the Intelligent Tire Monitoring
Coppo, Francesco; Pepe, Gianluca; Roveri, Nicola; Carcaterra, Antonio
2017-01-01
The present paper offers the chance to experimentally measure, for the first time, the internal tire strain by optical fiber sensors during the tire rolling in real operating conditions. The phenomena that take place during the tire rolling are in fact far from being completely understood. Despite several models available in the technical literature, there is not a correspondently large set of experimental observations. The paper includes the detailed description of the new multi-sensing technology for an ongoing vehicle measurement, which the research group has developed in the context of the project OPTYRE. The experimental apparatus is mainly based on the use of optical fibers with embedded Fiber Bragg Gratings sensors for the acquisition of the circumferential tire strain. Other sensors are also installed on the tire, such as a phonic wheel, a uniaxial accelerometer, and a dynamic temperature sensor. The acquired information is used as input variables in dedicated algorithms that allow the identification of key parameters, such as the dynamic contact patch, instantaneous dissipation and instantaneous grip. The OPTYRE project brings a contribution into the field of experimental grip monitoring of wheeled vehicles, with implications both on passive and active safety characteristics of cars and motorbikes. PMID:28287503
Thrust Augmentation Measurements Using a Pulse Detonation Engine Ejector
NASA Technical Reports Server (NTRS)
Santoro, Robert J.; Pal, Sibtosh
2005-01-01
Results of an experimental effort on pulse detonation driven ejectors are presented and discussed. The experiments were conducted using a pulse detonation engine (PDE)/ejector setup that was specifically designed for the study and operated at frequencies up to 50 Hz. The results of various experiments designed to probe different aspects of the PDE/ejector setup are reported. The baseline PDE was operated using ethylene (C2H4) as the fuel and an oxygen/nitrogen O2 + N2) mixture at an equivalence ratio of one. The PDE only experiments included propellant mixture characterization using a laser absorption technique, high fidelity thrust measurements using an integrated spring-damper system, and shadowgraph imaging of the detonation/shock wave structure emanating from the tube. The baseline PDE thrust measurement results at each desired frequency agree with experimental and modeling results reported in the literature. These PDE setup results were then used as a basis for quantifying thrust augmentation for various PDE/ejector setups with constant diameter ejector tubes and various ejector lengths, the radius of curvature for the ejector inlets and various detonation tube/ejector tube overlap distances. For the studied experimental matrix, the results showed a maximum thrust augmentation of 106% at an operational frequency of 30 Hz. The thrust augmentation results are complemented by shadowgraph imaging of the flowfield in the ejector tube inlet area and high frequency pressure transducer measurements along the length of the ejector tube.
NASA Astrophysics Data System (ADS)
Rodriguez-Garcia, Jesus O.; Burguete, Javier
2017-11-01
A new experimental setup has been developed in order to study rotating flows. Our research is derived from the experiments carried out in our group relating to this kind of flows, and the setup is inspired by the simulations performed by Lopez & Gutierrez-Castillo using a split-cylinder flow. In their work they study the different bifurcations taking place into the flow, among others, finding inertial waves in different configurations of the movement of the split-cylinder. Our setup consists in a split-cylinder in which each half can move in co-rotation or in counter-rotation. Moreover, we can set the rotation velocity of each half independently in order to study these different configurations of the flow. The aspect ratio defined as Γ = H / R can be modified, where H is the internal length of the cylinder and R is its radius. With this setup, we study the flow developed inside the split-cylinder depending on the Reynolds number like the different symmetry-breaking that should appear according to Lopez & Gutierrez-Castillo. To obtain the experimental data we use both laser Doppler velocimetry (LDV) and particle image velocimetry (PIV) techniques. The firsts results got are in the co-rotation case rotating one half faster than the other. We acknowledge support from Spanish Government Grant FIS 2014-54101-P. Jesús O. Rodríguez-García acknowledge research Grant from Asociación de Amigos de la Universidad de Navarra.
Study of materials for space processing
NASA Technical Reports Server (NTRS)
Lal, R. B.
1975-01-01
Materials were selected for device applications and their commercial use. Experimental arrangements were also made for electrical characterization of single crystals using electrical resistivity and Hall effect measurements. The experimental set-up was tested with some standard samples.
Sheng, Xinzhi; Feng, Zhen; Li, Bing
2013-04-20
We proposed and experimentally demonstrated all-optical packet-level time slot assignment scheme with two optical buffers cascaded. The function of time-slot interchange (TSI) was successfully implemented on two and three optical packets at a data rate of 10 Gb/s. Therefore, the functions of TSI on N packets should be implemented easily by the use of N-1 stage optical buffer. On the basis of the above experiment, we carried out the TSI experiment on four packets with the same two-stage experimental setup. Furthermore, packets compression on three optical packets was also carried out with the same experimental setup. The shortest guard time of the packets compression can reach to 13 ns due to the limit of FPGA's control accuracy. Due to the use of the same optical buffer, the proposed scheme has the advantages of simple and scalable configuration, modularization, and easy integration.
Experimental demonstration of the anti-maser
NASA Astrophysics Data System (ADS)
Mazzocco, Anthony; Aviles, Michael; Andrews, Jim; Dawson, Nathan; Crescimanno, Michael
2012-10-01
We denote by ``anti-maser'' a coherent perfect absorption (CPA) process in the radio frequency domain. We demonstrate several experimental realizations of the anti-maser suitable for an advanced undergraduate laboratory. Students designed, assembled and tested these devices, as well as the inexpensive laboratory setup and experimental protocol for displaying various CPA phenomenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, P.A.; Sanz, L., E-mail: lsanz@infis.ufu.br
This work provides a complete description of entanglement properties between electrons inside coupled quantum molecules, nanoestructures which consist of two quantum dots. Each electron can tunnel between the two quantum dots inside the molecule, being also coupled by Coulomb interaction. First, it is shown that Bell states act as a natural basis for the description of this physical system, defining the characteristics of the energy spectrum and the eigenstates. Then, the entanglement properties of the eigenstates are discussed, shedding light on the roles of each physical parameters on experimental setup. Finally, a detailed analysis of the dynamics shows the pathmore » to generate states with a high degree of entanglement, as well as physical conditions associated with coherent oscillations between separable and Bell states.« less
Experimental tests of coherence and entanglement conservation under unitary evolutions
NASA Astrophysics Data System (ADS)
Černoch, Antonín; Bartkiewicz, Karol; Lemr, Karel; Soubusta, Jan
2018-04-01
We experimentally demonstrate the migration of coherence between composite quantum systems and their subsystems. The quantum systems are implemented using polarization states of photons in two experimental setups. The first setup is based on a linear optical controlled-phase quantum gate and the second scheme utilizes effects of nonlinear optics. Our experiment allows one to verify the relation between correlations of the subsystems and the coherence of the composite system, which was given in terms of a conservation law for maximal accessible coherence by Svozilík et al. [J. Svozilík et al., Phys. Rev. Lett. 115, 220501 (2015), 10.1103/PhysRevLett.115.220501]. We observe that the maximal accessible coherence is conserved for the implemented class of global evolutions of the composite system.
Experimental study of the density of the helium-nitrogen gas system at low temperatures.
NASA Astrophysics Data System (ADS)
Milyutin, V. A.
2017-11-01
At the Department of TOT, an experimental setup was created to measure the density of a binary gas system from 100 to 300 K and pressures up to 16 MPa and with any mixture compositions. Experimental density for the helium-nitrogen system were determined by the piezometer of constant volume method. The amount of substance in the piezometer was measured by volumetric method. In this setup, the mixture of He - N2 was prepared in a special mixer for a series of p-v-T experiments, the concentration was determined by calculation using the equations of state of pure components. In the experiment, mixtures were prepared with molar concentrations, lying close to the range: 0.2, 0.4, 0.6 and 0.8.
Bessel beams with spatial oscillating polarization
Fu, Shiyao; Zhang, Shikun; Gao, Chunqing
2016-01-01
Bessel beams are widely used in optical metrology mainly because of their large Rayleigh range (focal length). Radial/azimuthal polarization of such beams is of interest in the fields of material processing, plasma absorption or communication. In this paper an experimental set-up is presented, which generates a Bessel-type vector beam with a spatial polarization, oscillating along the optical axis, when propagating in free space. A first holographic axicon (HA) HA1 produces a normal, linearly polarized Bessel beam, which by a second HA2 is converted into the spatial oscillating polarized beam. The theory is briefly discussed, the set-up and the experimental results are presented in detail. PMID:27488174
Real-cinematographic visualization of droplet ejection in thermal ink jets
NASA Astrophysics Data System (ADS)
Rembe, Christian; Patzer, Joachim; Hofer, Eberhard P.; Krehl, Peter
1996-03-01
Although thermal ink jet printers have gained a high market share there are still open questions left in the understanding of the processes in ink jet firing chambers. The experimental investigation of these processes is difficult due to the extremely short time durations of the different phenomena. For example, the bubble life time amounts to approximately 20 microsecond(s) . A new experimental set-up is presented to record phenomena of very short time duration like the bubble nucleation process and the beginning of droplet ejection. This set-up allows realcinematographic visualization with a local resolution of less than 1 micrometers and a time resolution of 10 ns. This also offers the possibility to investigate transient processes like the droplet ejection at high printing frequencies. The essential part of the set-up is a new high speed camera. With an exact evaluation of the digitized images the locus, velocity, and acceleration distributions of the phase interface from liquid to vapor/air can be measured. In addition the results of a numerical model with realistic geometry of the firing chamber and the nozzle have been compared with the experimental results to draw conclusions for pressure propagation in the vapor bubble.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochalov, M. A., E-mail: postmaster@ifv.vniief.ru; Il’kaev, R. I.; Fortov, V. E.
We report on the experimental results on the quasi-isentropic compressibility of a strongly nonideal deuterium plasma that have been obtained on setups of cylindrical and spherical geometries in the pressure range of up to P ≈ 5500 GPa. We describe the characteristics of experimental setups, as well as the methods for the diagnostics and interpretation of the experimental results. The trajectory of metal shells that compress the deuterium plasma was detected using powerful pulsed X-ray sources with a maximal electron energy of up to 60 MeV. The values of the plasma density, which varied from ρ ≈ 0.8 g/cm{sup 3}more » to ρ ≈ 6 g/cm{sup 3}, which corresponds to pressure P ≈ 5500 GPa (55 Mbar), were determined from the measured value of the shell radius at the instant that it was stopped. The pressure of the compressed plasma was determined using gasdynamic calculations taking into account the actual characteristics of the experimental setups. We have obtained a strongly compressed deuterium plasma in which electron degeneracy effects under the conditions of strong interparticle interaction are significant. The experimental results have been compared with the theoretical models of a strongly nonideal partly degenerate plasma. We have obtained experimental confirmation of the plasma phase transition in the pressure range near 150 GPa (1.5 Mbar), which is in keeping with the conclusion concerning anomaly in the compressibility of the deuterium plasma drawn in [1].« less
Dosimetric challenges of small animal irradiation with a commercial X-ray unit.
Kuess, Peter; Bozsaky, Eva; Hopfgartner, Johannes; Seifritz, Gerhard; Dörr, Wolfgang; Georg, Dietmar
2014-12-01
A commercial X-ray unit was recently installed at the Medical University Vienna for partial and whole body irradiation of small experimental animals. For 200 kV X-rays the dose deviations with respect to the reference dose measured in the geometrical center of the potential available field size was investigated for various experimental setup plates used for mouse irradiations. Furthermore, the HVL was measured in mm Al and mm Cu at 200 kV for two types of filtration. Three different setup constructions for small animal irradiation were dosimetrically characterized, covering field sizes from 9×20 mm2 to 210×200 mm2. Different types of detectors were investigated. Additionally LiF:MG,Ti TLD chips were used for mouse in-vivo dosimetry. The use of an additional 0.5 mm Cu filter reduced the deviation of the dose between each irradiation position on the setup plates. Multiple animals were irradiated at the same time using an individual setup plate for each experimental purpose. The dose deviations of each irradiation position to the center was measured to be ±4% or better. The depth dose curve measured in a solid water phantom was more pronounced for smaller field sizes. The comparison between estimated dose and measured dose in a PMMA phantom regarding the dose decline yielded in a difference of 3.9% at 20 mm depth. In-vivo measurements in a mouse snouts irradiation model confirmed the reference dosimetry, accomplished in PMMA phantoms, in terms of administered dose and deviation within different points of measurement. The outlined experiments dealt with a wide variety of dosimetric challenges during the installation of a new X-ray unit in the laboratory. The depth dose profiles measured for different field sizes were in good agreement with literature data. Different field sizes and spatial arrangement of the animals (depending on each purpose) provide additional challenges for the dosimetric measurements. Thorough dosimetric commissioning has to be performed before a new experimental setup is approved for biological experiments. Copyright © 2014. Published by Elsevier GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiedler, D; Kuo, H; Bodner, W
2016-06-15
Purpose: To introduce a non-standard method of patient setup, using BellyBoard immobilization, to better utilize the localization and tracking potential of an RF-beacon system with EBRT for prostate cancer. Methods: An RF-beacon phantom was imaged using a wide bore CT scanner, both in a standard level position and with a known rotation (4° pitch and 7.5° yaw). A commercial treatment planning system (TPS) was used to determine positional coordinates of each beacon, and the centroid of the three beacons for both setups. For each setup at the Linac, kV AP and Rt Lateral images were obtained. A full characterization ofmore » the RF-beacon system in clinical mode was completed for various beacons’ array-to-centroid distances, which includes vertical, lateral, and longitudinal offset data, as well as pitch and yaw offset measurements for the tilted phantom. For the single patient who has been setup using the proposed BellyBoard method, a supine simulation was first obtained. When abdominal protrusion was found to be exceeding the limits of the RF-Beacon system through distance-based analysis in the TPS, the patient is re-simulated prone with the BellyBoard. Array to centroid distance is measured again in the TPS, and if found to be within the localization or tracking region it is applied. Results: Characterization of limitations for the RF-beacon system in clinical mode showed acceptable consistency of offset determination for phantom setup accuracy. The nonstandard patient setup method reduced the beacons’ centroid-to-array distance by 8.32cm, from 25.13cm to 16.81cm; completely out of tracking range (greater than 20cm) to within setup tracking range (less than 20cm). Conclusion: Using the RF-beacon system in combination with this novel patient setup can allow patients who would otherwise not be candidates for beacon enhanced EBRT to now be able to benefit from the reduced PTV margins of this treatment method.« less
NASA Astrophysics Data System (ADS)
Kim, Ji-Su; Park, Jung-Hyeon; Lee, Dong-Ho
2017-10-01
This study addresses a variant of job-shop scheduling in which jobs are grouped into job families, but they are processed individually. The problem can be found in various industrial systems, especially in reprocessing shops of remanufacturing systems. If the reprocessing shop is a job-shop type and has the component-matching requirements, it can be regarded as a job shop with job families since the components of a product constitute a job family. In particular, sequence-dependent set-ups in which set-up time depends on the job just completed and the next job to be processed are also considered. The objective is to minimize the total family flow time, i.e. the maximum among the completion times of the jobs within a job family. A mixed-integer programming model is developed and two iterated greedy algorithms with different local search methods are proposed. Computational experiments were conducted on modified benchmark instances and the results are reported.
Casagrande, Giustina; Arienti, Flavio; Mazzocchi, Arabella; Taverna, Francesca; Ravagnani, Fernando; Costantino, MariaLaura
2016-10-01
Human red blood cells (RBCs) have a remarkable capacity to undergo reversible membrane swelling. Resealed erythrocytes have been proposed as carriers and bioreactors to be used in the treatment of various diseases. This work is aimed at developing a setup allowing the encapsulation of test molecules into erythrocytes by inducing reversible pore formation on the RBC membrane through the application of controlled mechanical shear stresses. The designed setup consists of two reservoirs connected by a glass capillary. Each reservoir is connected to a compressor; during the tests, the reservoirs were in turn pressurized to promote erythrocyte flow through the capillary. The setup was filled with a suspension of erythrocytes, phosphate buffer, and FITC-dextran. Dextran was chosen as the diffusive molecule to check membrane pore dimensions. Samples of the suspension were withdrawn at scheduled times while the setup was operating. Flow cytometry and stereo-optical microscopy analyses were used to evaluate the erythrocyte dextran uptake. The setup was shown to be safe, well controlled, and adjustable. The outcomes of the experimental tests showed significant dextran uptake by RBCs up to 8%. Microscopy observations highlighted the formation of echinocytes in the analyzed samples. Erythrocytes from different donors showed different reactions to mechanical stresses. The experimental outcomes proved the possibility to encapsulate test molecules into erythrocytes by applying controlled mechanical shear stresses on the RBC membrane, encouraging further studies. Copyright © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Torque Loss After Miniscrew Placement: An In-Vitro Study Followed by a Clinical Trial.
Migliorati, Marco; Drago, Sara; Barberis, Fabrizio; Schiavetti, Irene; Dalessandri, Domenico; Benedicenti, Stefano; Biavati, Armando Silvestrini
2016-01-01
To evaluate torque loss a week after insertion, both in an in vivo and an in vitro experimental setup were designed. In the in vivo setup a total of 29 miniscrews were placed in 20 patients who underwent orthodontic treatment. Maximum insertion torque (MIT) was evaluated at insertion time (T1). A week later, insertion torque was measured again by applying a quarter turn (T2); no load was applied on the screw during the first week. In the in vitro setup a total of 20 miniscrews were placed in pig rib bone samples. MIT was evaluated at insertion time (T1). Bone samples were kept in saline solution and controlled environment for a week during which the solution was refreshed every day. Afterwards, torque was measured again by applying a quarter turn (T2). The comparison of MIT over time was done calculating the percentage difference of the torque values between pre- and post-treatment and using the parametric two independent samples t-test or the non-parametric Mann-Whitney test. After a week unloaded miniscrews showed a mean loss of rotational torque of 36.3% and 40.9% in in vitro and in in vivo conditions, respectively. No statistical differences were found between the two different setups. Torque loss was observed after the first week in both study models; in vitro experimental setup provided a reliable study model for studying torque variation during the first week after insertion.
Torque Loss After Miniscrew Placement: An In-Vitro Study Followed by a Clinical Trial
Migliorati, Marco; Drago, Sara; Barberis, Fabrizio; Schiavetti, Irene; Dalessandri, Domenico; Benedicenti, Stefano; Biavati, Armando Silvestrini
2016-01-01
To evaluate torque loss a week after insertion, both in an in vivo and an in vitro experimental setup were designed. In the in vivo setup a total of 29 miniscrews were placed in 20 patients who underwent orthodontic treatment. Maximum insertion torque (MIT) was evaluated at insertion time (T1). A week later, insertion torque was measured again by applying a quarter turn (T2); no load was applied on the screw during the first week. In the in vitro setup a total of 20 miniscrews were placed in pig rib bone samples. MIT was evaluated at insertion time (T1). Bone samples were kept in saline solution and controlled environment for a week during which the solution was refreshed every day. Afterwards, torque was measured again by applying a quarter turn (T2). The comparison of MIT over time was done calculating the percentage difference of the torque values between pre- and post-treatment and using the parametric two independent samples t-test or the non-parametric Mann–Whitney test. After a week unloaded miniscrews showed a mean loss of rotational torque of 36.3% and 40.9% in in vitro and in in vivo conditions, respectively. No statistical differences were found between the two different setups. Torque loss was observed after the first week in both study models; in vitro experimental setup provided a reliable study model for studying torque variation during the first week after insertion. PMID:27386011
NASA Astrophysics Data System (ADS)
Narenji, M.; Fatemi Ghomi, S. M. T.; Nooraie, S. V. R.
2011-03-01
This article examines a dynamic and discrete multi-item capacitated lot-sizing problem in a completely deterministic production or procurement environment with limited production/procurement capacity where lost sales (the loss of customer demand) are permitted. There is no inventory space capacity and the production activity incurs a fixed charge linear cost function. Similarly, the inventory holding cost and the cost of lost demand are both associated with a linear no-fixed charge function. For the sake of simplicity, a unit of each item is assumed to consume one unit of production/procurement capacity. We analyse a different version of setup costs incurred by a production or procurement activity in a given period of the planning horizon. In this version, called the joint and item-dependent setup cost, an additional item-dependent setup cost is incurred separately for each produced or ordered item on top of the joint setup cost.
Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system
Aronov, Dmitriy; Tank, David W.
2015-01-01
SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363
NASA Astrophysics Data System (ADS)
Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.
2018-03-01
We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.
Scaling of spectra in grid turbulence with a mean cross-stream temperature gradient
NASA Astrophysics Data System (ADS)
Bahri, Carla; Arwatz, Gilad; Mueller, Michael E.; George, William K.; Hultmark, Marcus
2014-11-01
Scaling of grid turbulence with a constant mean cross-stream temperature gradient is investigated using a combination of theoretical predictions, DNS, and experimental data. Conditions for self-similarity of the governing equations and the scalar spectrum are investigated, which reveals necessary conditions for self-similarity to exist. These conditions provide a theoretical framework for scaling of the temperature spectrum as well as the temperature flux spectrum. One necessary condition, predicted by the theory, is that the characteristic length scale describing the scalar spectrum must vary as √{ t} for a self-similar solution to exist. In order to investigate this, T-NSTAP sensors, specially designed for temperature measurements at high frequencies, were deployed in a heated passive grid turbulence setup together with conventional cold-wires, and complementary DNS calculations were performed to complement and complete the experimental data. These data are used to compare the behavior of different length scales and validate the theoretical predictions.
Rainfall estimation using microwave links. Results from an experimental setup in Luxembourg
NASA Astrophysics Data System (ADS)
Fenicia, Fabrizio; Matgen, Patrick; Pfister, Laurent
2010-05-01
Microwave links represent a valid alternative to traditional rainfall estimation methods. They are commonly used in mobile phone communication, and they constitute built-in widely distributed networks. Due to their ability of providing high temporal and spatial resolution measurements, their use is particularly suitable in urban settings. We here show results from an experimental setup in Luxembourg City, where two dual frequency links have been installed. The links cover a distance of about 4km, and measure power attenuation at 1 min. timestep. The links have been equipped with several recording raingauges, which measure rainfall in real-time communicating through a wireless connection. This set-up has been used to analyze in detail the mapping between attenuation and rainfall intensity, and gain insights into the potential accuracy of these instruments. In addition, we investigated the relation between rainfall and discharge response of the urban area of Luxembourg, which shows the potential utility of high frequency rainfall measurements for urban environments.
A new mechatronic set-up and technique for investigation of firearms
NASA Astrophysics Data System (ADS)
Lesenciuc, Ioan; Suciu, Cornel
2016-12-01
Since ancient times, mankind has manifested interest in the development and improvement of weapons, either for military or hunting purposes. Today, in competition with these legal practices, the number of those who commit crimes by non-compliance with the regime of weapons and ammunition has increased exponentially. This is why the technology and methods employed in the area of judicial ballistics, requires constant research and continuous learning. The present paper advances a new experimental set-up and its corresponding methodology, meant to measure the force deployed by the firing pin. The new experimental set-up and procedure consists of a mechatronic structure, based on a piezoelectric force transducer, which allows to measure, in-situ, the force produced by the firing pin when it is deployed. The obtained information can further be used to establish a correspondence between this force and the imprint left on the firing cap. This correspondence furthers the possibility of elaborating a model that would permit ballistic experts to correctly identify a smoothbore weapon.
A Simple Experimental Setup for Teaching Additive Colors with Arduino
NASA Astrophysics Data System (ADS)
Carvalho, Paulo Simeão; Hahn, Marcelo
2016-04-01
The result of additive colors is always fascinating to young students. When we teach this topic to 14- to 16-year-old students, they do not usually notice we use maximum light quantities of red (R), green (G), and blue (B) to obtain yellow, magenta, and cyan colors in order to build the well-known additive color diagram of Fig. 1. But how about using different light intensities for R, G, and B? What colors do we get? This problem of color mixing has been intensively discussed for decades by several authors, as pointed out by Ruiz's "Color Addition and Subtraction Apps" work and the references included therein. An early LED demonstrator for additive color mixing dates back to 1985, and apps to illustrate color mixing are available online. In this work, we describe an experimental setup making use of a microcontroller device: the Arduino Uno. This setup is designed as a game in order to improve students' understanding of color mixing.
NASA Astrophysics Data System (ADS)
Sharma, Rishi K.; Sunil, Saurav; Kumawat, B. K.; Singh, R. N.; Tewari, Asim; Kashyap, B. P.
2017-05-01
An experimental setup was designed, fabricated and used to form radial hydrides in Zr-2.5%Nb alloy pressure tube spool. The design of setup was based on ensuring a hoop stress in the spool greater than threshold stress for reorientation of hydrides in this alloy, which was achieved by manipulating the thermal expansion coefficient of the plunger and pressure tube material and diametral interference between them. The experimental setup was loaded on a universal testing machine (UTM) fitted with an environmental chamber and subjected to a temperature cycle for the stress reorientation treatment. The metallographic examination of the hydrogen charged spools subjected to stress re-orientation treatment using this set up revealed formation of predominantly radial hydrides. The variation of fracture toughness of material containing radial hydride with test temperature showed typical 'S' curve behavior with transition temperatures more than that of the material containing circumferential hydride.
Rimboud, M; Pocaznoi, D; Erable, B; Bergel, A
2014-08-21
Over about the last ten years, microbial anodes have been the subject of a huge number of fundamental studies dealing with an increasing variety of possible application domains. Out of several thousands of studies, only a minority have used 3-electrode set-ups to ensure well-controlled electroanalysis conditions. The present article reviews these electroanalytical studies with the admitted objective of promoting this type of investigation. A first recall of basics emphasises the advantages of the 3-electrode set-up compared to microbial fuel cell devices if analytical objectives are pursued. Experimental precautions specifically relating to microbial anodes are then noted and the existing experimental set-ups and procedures are reviewed. The state-of-the-art is described through three aspects: the effect of the polarisation potential on the characteristics of microbial anodes, the electroanalytical techniques, and the electrode. We hope that the final outlook will encourage researchers working with microbial anodes to strengthen their engagement along the multiple exciting paths of electroanalysis.
NASA Astrophysics Data System (ADS)
Dewalque, Florence; Schwartz, Cédric; Denoël, Vincent; Croisier, Jean-Louis; Forthomme, Bénédicte; Brüls, Olivier
2018-02-01
This paper studies the dynamics of tape springs which are characterised by a highly geometrical nonlinear behaviour including buckling, the formation of folds and hysteresis. An experimental set-up is designed to capture these complex nonlinear phenomena. The experimental data are acquired by the means of a 3D motion analysis system combined with a synchronised force plate. Deployment tests show that the motion can be divided into three phases characterised by different types of folds, frequencies of oscillation and damping behaviours. Furthermore, the reproducibility quality of the dynamic and quasi-static results is validated by performing a large number of tests. In parallel, a nonlinear finite element model is developed. The required model parameters are identified based on simple experimental tests such as static deformed configurations and small amplitude vibration tests. In the end, the model proves to be well correlated with the experimental results in opposite sense bending, while in equal sense, both the experimental set-up and the numerical model are particularly sensitive to the initial conditions.
Detection of fractional solitons in quantum spin Hall systems
NASA Astrophysics Data System (ADS)
Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B.
2018-03-01
We propose two experimental setups that allow for the implementation and the detection of fractional solitons of the Goldstone-Wilczek type. The first setup is based on two magnetic barriers at the edge of a quantum spin Hall system for generating the fractional soliton. If then a quantum point contact is created with the other edge, the linear conductance shows evidence of the fractional soliton. The second setup consists of a single magnetic barrier covering both edges and implementing a long quantum point contact. In this case, the fractional soliton can unambiguously be detected as a dip in the conductance without the need to control the magnetization of the barrier.
Room Temperature Erbium-Doped Yttrium Vanadate (Er:YVO4) Laser and Amplifier
2016-09-01
perpendicular to the laser cavity axis, was pumped in σ-polarization and lased in π-polarization. The laser operated in a quasi -continuous wave regime...laser, amplifier, quasi -continuous wave 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF...distribution unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Laser Experimental Setup and Results 2 3. Laser Amplifier Setup 6 4
Fourier Analysis of a Vibrating String through a Low-Cost Experimental Setup and a Smartphone
ERIC Educational Resources Information Center
Pereyra, C. J.; Osorio, M.; Laguarda, A.; Gau, D. L.
2018-01-01
In this work we present a simple and low-cost setup to illustrate the dependence of the behaviour of a standing wave in a guitar string with the initial conditions. To do so, we impose two kinds of initial conditions; in the first instance, the initial shape of the string is varied. Secondly, different nodes are imposed on the string. This…
Digital micromirror device as programmable rough particle in interferometric particle imaging.
Fromager, M; Aït Ameur, K; Brunel, M
2017-04-20
The 2D autocorrelation of the projection of an irregular rough particle can be estimated using the analysis of its interferometric out-of-focus image. We report the development of an experimental setup that creates speckle-like patterns generated by "programmable" rough particles of desired-shape. It should become an important tool for the development of new setups, configurations, and algorithms in interferometric particle imaging.
An experimental setup to characterize MR switched gradient-induced potentials.
Fokapu, Odette; El-Tatar, Aziz
2013-06-01
We have developed an experimental setup as an in vitro research tool for studying the contamination of electrophysiological signals (EPS) by MRI environment; particularly, when due to the switched gradient-induced potentials. The system is composed of: 1) a MRI compatible module for the transmission of the EPS into the MRI tunnel, 2) a gelatin-based tissue-mimicking phantom, placed inside the tunnel, in which EPS is injected, 3) a detection module composed of a five input channel MRI compatible transmitter placed inside the tunnel, allowing an on-site pre-amplification of the bio-potentials and their transmission, via an optical fiber cable, to a four filtered output per channel receiver (350 Hz, 160 Hz, 80 Hz, and 40 Hz, for a total of 20 channels) placed in the control room, and 4) a signal processing algorithm used to analyze the generated induced potentials. A set of tests were performed to validate the electronic performances of the setup. We also present in this work an interesting application of the setup, i.e., the acquisition and analysis of the induced potentials with respect of the slice orientation for a given MRI sequence. Significant modifications of the time and frequency characteristics were observed with respect to axial, coronal or sagittal orientations.
Moving bed reactor setup to study complex gas-solid reactions.
Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih
2007-08-01
A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.
NASA Astrophysics Data System (ADS)
Ismail, I.; Guillemin, R.; Marchenko, T.; Travnikova, O.; Ablett, J. M.; Rueff, J.-P.; Piancastelli, M.-N.; Simon, M.; Journel, L.
2018-06-01
A new setup has been designed and built to study organometallic complexes in gas phase at the third-generation Synchrotron radiation sources. This setup consists of a new homemade computer-controlled gas cell that allows us to sublimate solid samples by accurately controlling the temperature. This cell has been developed to be a part of the high-resolution X-ray emission spectrometer permanently installed at the GALAXIES beamline of the French National Synchrotron Facility SOLEIL. To illustrate the capabilities of the setup, the cell has been successfully used to record high-resolution Kα emission spectra of gas-phase ferrocene F e (C5H5) 2 and to characterize their dependence with the excitation energy. This will allow to extend resonant X-ray emission to different organometallic molecules.
Automated quantum operations in photonic qutrits
NASA Astrophysics Data System (ADS)
Borges, G. F.; Baldijão, R. D.; Condé, J. G. L.; Cabral, J. S.; Marques, B.; Terra Cunha, M.; Cabello, A.; Pádua, S.
2018-02-01
We report an experimental implementation of automated state transformations on spatial photonic qutrits following the theoretical proposal made by Baldijão et al. [Phys. Rev. A 96, 032329 (2017), 10.1103/PhysRevA.96.032329]. A qutrit state is simulated by using three Gaussian beams, and after some state operations, the transformed state is available in the end in terms of the basis state. The state transformation setup uses a spatial light modulator and a calcite-based interferometer. The results reveal the usefulness of the operation method. The experimental data show a good agreement with theoretical predictions, opening possibilities for explorations in higher dimensions and in a wide range of applications. This is a necessary step in qualifying spatial photonic qudits as a competitive setup for experimental research in the implementation of quantum algorithms which demand a large number of steps.
Simulation of a complete X-ray digital radiographic system for industrial applications.
Nazemi, E; Rokrok, B; Movafeghi, A; Choopan Dastjerdi, M H
2018-05-19
Simulating X-ray images is of great importance in industry and medicine. Using such simulation permits us to optimize parameters which affect image's quality without the limitations of an experimental procedure. This study revolves around a novel methodology to simulate a complete industrial X-ray digital radiographic system composed of an X-ray tube and a computed radiography (CR) image plate using Monte Carlo N Particle eXtended (MCNPX) code. In the process of our research, an industrial X-ray tube with maximum voltage of 300 kV and current of 5 mA was simulated. A 3-layer uniform plate including a polymer overcoat layer, a phosphor layer and a polycarbonate backing layer was also defined and simulated as the CR imaging plate. To model the image formation in the image plate, at first the absorbed dose was calculated in each pixel inside the phosphor layer of CR imaging plate using the mesh tally in MCNPX code and then was converted to gray value using a mathematical relationship determined in a separate procedure. To validate the simulation results, an experimental setup was designed and the images of two step wedges created out of aluminum and steel were captured by the experiments and compared with the simulations. The results show that the simulated images are in good agreement with the experimental ones demonstrating the ability of the proposed methodology for simulating an industrial X-ray imaging system. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mechanical Expansion of Steel Tubing as a Solution to Leaky Wellbores
Radonjic, Mileva; Kupresan, Darko
2014-01-01
Wellbore cement, a procedural component of wellbore completion operations, primarily provides zonal isolation and mechanical support of the metal pipe (casing), and protects metal components from corrosive fluids. These are essential for uncompromised wellbore integrity. Cements can undergo multiple forms of failure, such as debonding at the cement/rock and cement/metal interfaces, fracturing, and defects within the cement matrix. Failures and defects within the cement will ultimately lead to fluid migration, resulting in inter-zonal fluid migration and premature well abandonment. Currently, there are over 1.8 million operating wells worldwide and over one third of these wells have leak related problems defined as Sustained Casing Pressure (SCP)1. The focus of this research was to develop an experimental setup at bench-scale to explore the effect of mechanical manipulation of wellbore casing-cement composite samples as a potential technology for the remediation of gas leaks. The experimental methodology utilized in this study enabled formation of an impermeable seal at the pipe/cement interface in a simulated wellbore system. Successful nitrogen gas flow-through measurements demonstrated that an existing microannulus was sealed at laboratory experimental conditions and fluid flow prevented by mechanical manipulation of the metal/cement composite sample. Furthermore, this methodology can be applied not only for the remediation of leaky wellbores, but also in plugging and abandonment procedures as well as wellbore completions technology, and potentially preventing negative impacts of wellbores on subsurface and surface environments. PMID:25490436
Mechanical expansion of steel tubing as a solution to leaky wellbores.
Radonjic, Mileva; Kupresan, Darko
2014-11-20
Wellbore cement, a procedural component of wellbore completion operations, primarily provides zonal isolation and mechanical support of the metal pipe (casing), and protects metal components from corrosive fluids. These are essential for uncompromised wellbore integrity. Cements can undergo multiple forms of failure, such as debonding at the cement/rock and cement/metal interfaces, fracturing, and defects within the cement matrix. Failures and defects within the cement will ultimately lead to fluid migration, resulting in inter-zonal fluid migration and premature well abandonment. Currently, there are over 1.8 million operating wells worldwide and over one third of these wells have leak related problems defined as Sustained Casing Pressure (SCP). The focus of this research was to develop an experimental setup at bench-scale to explore the effect of mechanical manipulation of wellbore casing-cement composite samples as a potential technology for the remediation of gas leaks. The experimental methodology utilized in this study enabled formation of an impermeable seal at the pipe/cement interface in a simulated wellbore system. Successful nitrogen gas flow-through measurements demonstrated that an existing microannulus was sealed at laboratory experimental conditions and fluid flow prevented by mechanical manipulation of the metal/cement composite sample. Furthermore, this methodology can be applied not only for the remediation of leaky wellbores, but also in plugging and abandonment procedures as well as wellbore completions technology, and potentially preventing negative impacts of wellbores on subsurface and surface environments.
Omega Design and FEA Based Coriolis Mass Flow Sensor (CMFS) Analysis Using Titanium Material
NASA Astrophysics Data System (ADS)
Patil, Pravin P.; Kumar, Ashwani; Ahmad, Faraz
2018-02-01
The main highlight of this research work is evaluation of resonant frequency for titanium omega type coriolis mass flow sensor. Coriolis mass flow sensor is used for measuring direct mass flow in pipe useful for various industrial applications. It works on the principle of Coriolis effect. Finite Element Analysis (FEA) simulation of omega flow sensor was performed using Ansys 14.5 and Solid Edge, Pro-E was used for modelling of omega tube. Titanium was selected as omega tube material. Experimental setup was prepared for omega tube coriolis flow sensor for performing different test. Experimental setup was used for investigation of different parameters effect on CMFS and validation of simulation results.
NASA Astrophysics Data System (ADS)
Cárdenas-Soto, M., Sr.; Hussain, Y.; Martinez-Carvajal, H., Sr.; Martino, S., Sr.; Rocha, M., Sr.
2016-12-01
Understanding the dynamics of stress relief mechanisms that lead to complete material collapse of unstable slopes is challenging. This research is focused on the novel use of Passive Ambient Noise Interferometry (PANI), a new technique that has revolutionized the seismology. In this technique the impulse response or Green function between two sensors is calculated by cross-correlation of the noise rescored at these stations. We applied PANI to monitor the deformational behavior of a prototype field experiment under semi controlled conditions for their use in landsliding early warning systems.The experimental setup consists of a 2 m engineering-scaled excavation,where induced failure was monitored by ambient vibrations propagating in tropical clayey deposits. The experimental setup consisted of dense network of 20 three components short period seismometers (Sercel L4C-3D) installed in three circular arrays with their distances from face of normal slope as 10, 20 and 30 meters, respectively.The frequency response of these seismometers is in range of 2-100 Hz. Recording was done in continuous mode at sampling rate of 1000 Hz with datalogger (RefTek DAS-130/3). Sensors were time synchronized by twenty 130 GPS/01. In this stage, the stress was applied on the one flank of this normal slope dug in the experimental field of University of Brasilia, by a hydraulic jack through a metallic plate. This incremental loading was kept on rising until the slope failure took place. This loading mechanism provided an opportunity to monitoring the changes in Rayleigh wave velocity before, during and after the complete failure. After initial processing, the green function (GF) or impulse response was calculated between each pair of sensors by cross correlation at time step of 4 second. All individual GFs, for entire monitoring period (30 minutes) were stacked to obtained a single reference GF. Stretching (dt/t) in waveform is calculated by subtracting individual GF from average GF, that gave Rayleigh wave velocity changes (dv/v=-dt/t). These changes correlated well with initiation and propagation of fracture at the face of this normal slope. It is concluded that cost effective technique, PANI has a good potential for the monitoring of time lapse changes of evolving fractures.
ERIC Educational Resources Information Center
Silva-Ortigoza, R.; Silva-Ortigoza, G.; Hernandez-Guzman, V. M.; Saldana-Gonzalez, G.; Marcelino-Aranda, M.; Marciano-Melchor, M.
2012-01-01
We introduce a dc/dc boost power converter as a didactic prototype intended to support courses on electric circuit analysis experimentally. The corresponding mathematical model is obtained, the converter is designed and an experimental setup is described, constructed and tested. Simplicity of construction as well as low cost of components renders…
1988-02-12
experimentally , a pulsed power system com- prising separate anode and cathode pulsers was designed and assembled. A double diode was developed to produce...be closed. To initiate this assessment, Mission Research Corporation (MRC) performed a two-year primarily experimental investigation of non - neutral...through from the cathode nad to be designed . Experimentation with several materials and setups produced a workable design , using nylon stocking hose
The ultimatum game: Discrete vs. continuous offers
NASA Astrophysics Data System (ADS)
Dishon-Berkovits, Miriam; Berkovits, Richard
2014-09-01
In many experimental setups in social-sciences, psychology and economy the subjects are requested to accept or dispense monetary compensation which is usually given in discrete units. Using computer and mathematical modeling we show that in the framework of studying the dynamics of acceptance of proposals in the ultimatum game, the long time dynamics of acceptance of offers in the game are completely different for discrete vs. continuous offers. For discrete values the dynamics follow an exponential behavior. However, for continuous offers the dynamics are described by a power-law. This is shown using an agent based computer simulation as well as by utilizing an analytical solution of a mean-field equation describing the model. These findings have implications to the design and interpretation of socio-economical experiments beyond the ultimatum game.
Global analysis of a renewable micro hydro power generation plant
NASA Astrophysics Data System (ADS)
Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul
2017-12-01
Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.
An off-the-shelf, authentic, and versatile undergraduate molecular biology practical course.
Whitworth, David E
2015-01-01
We provide a prepackaged molecular biology course, which has a broad context and is scalable to large numbers of students. It is provided complete with technical setup guidance, a reliable assessment regime, and can be readily implemented without any development necessary. Framed as a forensic examination of blue/white cloning plasmids, the course is a versatile workbench, adaptable to different degree subjects, and can be easily modified to undertake novel research as part of its teaching activities. Course activities include DNA extraction, RFLP, PCR, DNA sequencing, gel electrophoresis, and transformation, alongside a range of basic microbiology techniques. Students particularly appreciated the relevance of the practical to professional practice and the authenticity of the experimental work. © 2015 The International Union of Biochemistry and Molecular Biology.
Sub-aperture switching based ptychographic iterative engine (sasPIE) method for quantitative imaging
NASA Astrophysics Data System (ADS)
Sun, Aihui; Kong, Yan; Jiang, Zhilong; Yu, Wei; Liu, Fei; Xue, Liang; Wang, Shouyu; Liu, Cheng
2018-03-01
Though ptychographic iterative engine (PIE) has been widely adopted in the quantitative micro-imaging with various illuminations as visible light, X-ray and electron beam, the mechanical inaccuracy in the raster scanning of the sample relative to the illumination always degrades the reconstruction quality seriously and makes the resolution reached much lower than that determined by the numerical aperture of the optical system. To overcome this disadvantage, the sub-aperture switching based PIE method is proposed: the mechanical scanning in the common PIE is replaced by the sub-aperture switching, and the reconstruction error related to the positioning inaccuracy is completely avoided. The proposed technique remarkably improves the reconstruction quality, reduces the complexity of the experimental setup and fundamentally accelerates the data acquisition and reconstruction.
Thomann, J M; Gasser, P; Bres, E F; Voegel, J C; Gramain, P
1990-02-01
An ion-selective electrode and microcomputer-based experimental setup for the study of ionic-exchange kinetics between a powdered solid and the solution is described. The equipment is composed of easily available commercial devices and a data acquisition and regularization computer program is presented. The system, especially developed to investigate the ionic adsorption, equilibrium attainment and dissolution of hard mineralized tissues, provides good reliable results by taking into account the volume changes of the reacting solution and the electrode behaviour under different experimental conditions, and by avoiding carbonation of the solution. A second computer program, using the regularized data and the experimental parameters, calculates the quantities of protons consumed and calcium released in the case of equilibrium attainment and dissolution of apatite-like compounds. Finally, typical examples of ion-exchange and dissolution kinetics under constant pH of enamel and synthetic hydroxyapatite are examined.
Gust wind tunnel study on ballast pick-up by high-speed trains
NASA Astrophysics Data System (ADS)
Navarro-Medina, F.; Sanz-Andres, A.; Perez-Grande, I.
2012-01-01
This paper describes the experimental setup, procedure, and results obtained, concerning the dynamics of a body lying on a floor, attached to a hinge, and exposed to an unsteady flow, which is a model of the initiation of rotational motion of ballast stones due to the wind generated by the passing of a high-speed train. The idea is to obtain experimental data to support the theoretical model developed in Sanz-Andres and Navarro-Medina (J Wind Eng Ind Aerodyn 98, 772-783, (2010), aimed at analyzing the initial phase of the ballast train-induced-wind erosion (BATIWE) phenomenon. The experimental setup is based on an open circuit, closed test section, low-speed wind tunnel, with a new sinusoidal gust generator mechanism concept, designed and built at the IDR/UPM. The tunnel's main characteristic is the ability to generate a flow with a uniform velocity profile and sinusoidal time fluctuation of the speed. Experimental results and theoretical model predictions are in good agreement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, S., E-mail: maoshunghost@tamu.edu; Meraki, A.; McColgan, P. T.
2014-07-15
We present the design and performance of an experimental setup for simultaneous electron spin resonance (ESR) and optical studies of nanoclusters with stabilized free radicals at cryogenic temperatures. A gas mixture of impurities and helium after passing through a RF discharge for dissociation of molecules is directed onto the surface of superfluid helium to form the nanoclusters of impurities. A specially designed ESR cavity operated in the TE{sub 011} mode allows optical access to the sample. The cavity is incorporated into a homemade insert which is placed inside a variable temperature insert of a Janis {sup 4}He cryostat. The temperaturemore » range for sample investigation is 1.25–300 K. A Bruker EPR 300E and Andor 500i optical spectrograph incorporated with a Newton EMCCD camera are used for ESR and optical registration, respectively. The current experimental system makes it possible to study the ESR and optical spectra of impurity-helium condensates simultaneously. The setup allows a broad range of research at low temperatures including optically detected magnetic resonance, studies of chemical processes of the active species produced by photolysis in solid matrices, and investigations of nanoclusters produced by laser ablation in superfluid helium.« less
NASA Astrophysics Data System (ADS)
Dekterev, D.; Maslennikova, A.; Abramov, A.
2017-09-01
The operation modes of the hydraulic power plant water turbine with the formation of a precessing vortex core were studied on the hydrodynamic set-up with the model of hydraulic unit. The dependence of low-frequency vibrations on flow pressure pulsations in the hydraulic unit was established. The results of the air injection effect on the vibrational parameters of the hydrodynamic set-up were presented.
Experiments and Simulations of Exploding Aluminum Wires: Validation of ALEGRA-MHD
2010-09-01
ii REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 ...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1 . REPORT DATE (DD-MM-YYYY) September 2010 2. REPORT TYPE Final...List of Tables vi Acknowledgements vii 1 . Introduction 1 2. Experimental Setup 2 3. Computational Setup 5 3.1 Description of ALEGRA
Numerical modelling of distributed vibration sensor based on phase-sensitive OTDR
NASA Astrophysics Data System (ADS)
Masoudi, A.; Newson, T. P.
2017-04-01
A Distributed Vibration Sensor Based on Phase-Sensitive OTDR is numerically modeled. The advantage of modeling the building blocks of the sensor individually and combining the blocks to analyse the behavior of the sensing system is discussed. It is shown that the numerical model can accurately imitate the response of the experimental setup to dynamic perturbations a signal processing procedure similar to that used to extract the phase information from sensing setup.
Current-limiting and ultrafast system for the characterization of resistive random access memories.
Diaz-Fortuny, J; Maestro, M; Martin-Martinez, J; Crespo-Yepes, A; Rodriguez, R; Nafria, M; Aymerich, X
2016-06-01
A new system for the ultrafast characterization of resistive switching phenomenon is developed to acquire the current during the Set and Reset process in a microsecond time scale. A new electronic circuit has been developed as a part of the main setup system, which is capable of (i) applying a hardware current limit ranging from nanoampers up to miliampers and (ii) converting the Set and Reset exponential gate current range into an equivalent linear voltage. The complete system setup allows measuring with a microsecond resolution. Some examples demonstrate that, with the developed setup, an in-depth analysis of resistive switching phenomenon and random telegraph noise can be made.
Testing Iodine as a New Fuel for Cathodes
NASA Astrophysics Data System (ADS)
Glad, Harley; Branam, Richard; Rogers, Jim; Warren, Matthew; Burleson, Connor; Siy, Grace
2017-11-01
The objective of this research is to demonstrate the viability of using iodine as an alternative space propulsion propellant. The demonstration requires the testing of a cathode with xenon and then the desired element iodine. Currently, cathodes run on noble gases such as xenon which must be stored in high pressure canisters and is very expensive. These shortcomings have led to researching possible substitutes. Iodine was decided as a suitable candidate because it's cheaper, can be stored as a solid, and has similar mass properties as xenon. In this research, cathodes will be placed in a vacuum chamber and operated on both gases to observe their performance, allowing us to gain a better understanding of iodine's behavior. Several planned projects depend on the knowledge gained from this project, such as larger scaled tests and iodine fed hall thrusters. The tasks of this project included protecting the stainless-steel vacuum chamber by gold plating and Teflon® coating, building a stand to hold the cathode, creating an anode resistant to iodine, and testing the cathode once setup was complete. The successful operation of the cathode was demonstrated. However, the experimental setup proved ineffective at controlling the iodine flow. Current efforts are focused on this problem. REU Site: Fluid Mechanics with Analysis using Computations and Experiments NSF Grant EEC 1659710.
Experimental Study of under-platform Damper Kinematics in Presence of Blade Dynamics
NASA Astrophysics Data System (ADS)
Botto, D.; Gastaldi, C.; Gola, M. M.; Umer, M.
2018-01-01
Among the different devices used in the aerospace industries under-platform dampers are widely used in turbo engines to mitigate the blade vibration. Nevertheless, the damper behaviour is not easy to simulate and engineers have been working in order to improve the accuracy with which theoretical contact models predict the damper behaviour. Majority of the experimental setups collect experimental data in terms of blade amplitude reduction which do not increase the knowledge about the damper dynamics and therefore the uncertainty on the damper behaviour remains a big issue. In this paper, a novel test rig has been purposely designed to accommodate a single blade and two under-platform dampers to deeply investigate the damper-blade interactions. In this test bench, a contact force measuring system was designed to extensively measure the damper contact forces. Damper kinematics is rebuilt by using the relative displacement measured between damper and blade. This paper describes the concept behind the new approach, shows the details of new test rig and discusses experimental results by comparing with previously measured results on an old experimental setup.
Ballarini, E; Bauer, S; Eberhardt, C; Beyer, C
2012-06-01
Transverse dispersion represents an important mixing process for transport of contaminants in groundwater and constitutes an essential prerequisite for geochemical and biodegradation reactions. Within this context, this work describes the detailed numerical simulation of highly controlled laboratory experiments using uranine, bromide and oxygen depleted water as conservative tracers for the quantification of transverse mixing in porous media. Synthetic numerical experiments reproducing an existing laboratory experimental set-up of quasi two-dimensional flow through tank were performed to assess the applicability of an analytical solution of the 2D advection-dispersion equation for the estimation of transverse dispersivity as fitting parameter. The fitted dispersivities were compared to the "true" values introduced in the numerical simulations and the associated error could be precisely estimated. A sensitivity analysis was performed on the experimental set-up in order to evaluate the sensitivities of the measurements taken at the tank experiment on the individual hydraulic and transport parameters. From the results, an improved experimental set-up as well as a numerical evaluation procedure could be developed, which allow for a precise and reliable determination of dispersivities. The improved tank set-up was used for new laboratory experiments, performed at advective velocities of 4.9 m d(-1) and 10.5 m d(-1). Numerical evaluation of these experiments yielded a unique and reliable parameter set, which closely fits the measured tracer concentration data. For the porous medium with a grain size of 0.25-0.30 mm, the fitted longitudinal and transverse dispersivities were 3.49×10(-4) m and 1.48×10(-5) m, respectively. The procedures developed in this paper for the synthetic and rigorous design and evaluation of the experiments can be generalized and transferred to comparable applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Critical overview of all available animal models for abdominal wall hernia research.
Vogels, R R M; Kaufmann, R; van den Hil, L C L; van Steensel, S; Schreinemacher, M H F; Lange, J F; Bouvy, N D
2017-10-01
Since the introduction of the first prosthetic mesh for abdominal hernia repair, there has been a search for the "ideal mesh." The use of preclinical or animal models for assessment of necessary characteristics of new and existing meshes is an indispensable part of hernia research. Unfortunately, in our experience there is a lack of consensus among different research groups on which model to use. Therefore, we hypothesized that there is a lack of comparability within published animal research on hernia surgery due to wide range in experimental setup among different research groups. A systematic search of the literature was performed to provide a complete overview of all animal models published between 2000 and 2014. Relevant parameters on model characteristics and outcome measurement were scored on a standardized scoring sheet. Due to the wide range in different animals used, ranging from large animal models like pigs to rodents, we decided to limit the study to 168 articles concerning rat models. Within these rat models, we found wide range of baseline animal characteristics, operation techniques, and outcome measurements. Making reliable comparison of results among these studies is impossible. There is a lack of comparability among experimental hernia research, limiting the impact of this experimental research. We therefore propose the establishment of guidelines for experimental hernia research by the EHS.
a Study on 4 Reactions Forming 46Ti*
NASA Astrophysics Data System (ADS)
Cicerchia, M.; Marchi, T.; Gramegna, F.; Cinausero, M.; Fabris, D.; Mantovani, G.; Degerlier, M.; Morelli, L.; Bruno, M.; DAgostino, M.; Frosin, C.; Barlini, S.; Piantelli, S.; Valdrè, S.; Bini, M.; Pasquali, G.; Casini, G.; Pastore, G.; Gruyer, D.; Ottanelli, P.; Camaiani, A.; Gelli, N.; Olmi, A.; Poggi, G.; Lombardo, I.; Dell'Aquila, D.; Cieplicka-Orynczak, N.
2018-02-01
The NUCL-EX collaboration is carrying out an extensive research program on preequilibrium emission of light charged particles from hot nuclei. The ultimate goal is to study how cluster structures affect nuclear reactions [1,2,3,4]. Indeed, a strong correlation between nuclear structure and reaction dynamics emerges when some nucleons or clusters of nucleons are emitted or captured [5]. At this purpose, the four reactions 16O+30Si, 16O+30Si, 18O+28Si and 19F +27Al have been measured at about 120 MeV projectile energy. Experimental data were collected at Legnaro National Laboratories, using the GARFIELD+RCo array, fully equipped with digital electronics [6]. Following an initial identification of particles and the energy calibration procedures, the complete analysis is being performed on an event-by-event basis. Experimental data are then compared to the theoretical predictions where events are generated by numerical codes based on pre-equilibrium and statistical models and then filtered through a software replica of the setup. Differences between the experimental data and the predicted data put into evidence effects related to the entrance channel and to the cluster nature of the colliding ions. After a general introduction on the experimental campaign, this contribution will focus on the preliminary results obtained so far.
Refractive Index Compensation in Over-Determined Interferometric Systems
Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk
2012-01-01
We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup. PMID:23202037
Refractive index compensation in over-determined interferometric systems.
Lazar, Josef; Holá, Miroslava; Číp, Ondřej; Čížek, Martin; Hrabina, Jan; Buchta, Zdeněk
2012-10-19
We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.
Revised Robertson's test theory of special relativity
NASA Astrophysics Data System (ADS)
Vargas, José G.
1984-07-01
The only test theory used by workers in the field of testing special relativity to analyze the significance of their experiments is the proof by H. P. Robertson [ Rev. Mod. Phys. 21, 378 (1949)] of the Lorentz transformations from the results of the experimental evidence. Some researchers would argue that the proof contains an unwarranted assumption disguised as a convention about synchronization procedures. Others would say that alternative conventions are possible. In the present paper, no convention is used, but the Lorentz transformations are still obtained using only the results of the experiments in Robertson's proof, namely the Michelson-Morley, Kennedy-Thorndike, and Ives-Stilwell experiments. Thus the revised proof is a valid test theory which is independent of any conventions, since one appeals only to the experimental evidence. The analysis of that evidence shows the directions in which efforts to test special relativity should go. Finally it is shown how the resulting test theory still has to be improved for consistency in the analysis of experiments with complicated experimental setups, how it can be simplified for expediency as to what should be tested, and how it should be completed for a missing step not considered by Robertson.
NASA Astrophysics Data System (ADS)
Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.
2018-07-01
This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.
NASA Astrophysics Data System (ADS)
Gildfind, D. E.; Jacobs, P. A.; Morgan, R. G.; Chan, W. Y. K.; Gollan, R. J.
2017-11-01
This paper presents the second part of a study aiming to accurately characterise a Mach 10 scramjet test flow generated using a large free-piston-driven expansion tube. Part 1 described the experimental set-up, the quasi-one-dimensional simulation of the full facility, and the hybrid analysis technique used to compute the nozzle exit test flow properties. The second stage of the hybrid analysis applies the computed 1-D shock tube flow history as an inflow to a high-fidelity two-dimensional-axisymmetric analysis of the acceleration tube. The acceleration tube exit flow history is then applied as an inflow to a further refined axisymmetric nozzle model, providing the final nozzle exit test flow properties and thereby completing the analysis. This paper presents the results of the axisymmetric analyses. These simulations are shown to closely reproduce experimentally measured shock speeds and acceleration tube static pressure histories, as well as nozzle centreline static and impact pressure histories. The hybrid scheme less successfully predicts the diameter of the core test flow; however, this property is readily measured through experimental pitot surveys. In combination, the full test flow history can be accurately determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minati, Ludovico, E-mail: lminati@ieee.org, E-mail: ludovico.minati@unitn.it
In this paper, experimental evidence of multiple synchronization phenomena in a large (n = 30) ring of chaotic oscillators is presented. Each node consists of an elementary circuit, generating spikes of irregular amplitude and comprising one bipolar junction transistor, one capacitor, two inductors, and one biasing resistor. The nodes are mutually coupled to their neighbours via additional variable resistors. As coupling resistance is decreased, phase synchronization followed by complete synchronization is observed, and onset of synchronization is associated with partial synchronization, i.e., emergence of communities (clusters). While component tolerances affect community structure, the general synchronization properties are maintained across three prototypes andmore » in numerical simulations. The clusters are destroyed by adding long distance connections with distant notes, but are otherwise relatively stable with respect to structural connectivity changes. The study provides evidence that several fundamental synchronization phenomena can be reliably observed in a network of elementary single-transistor oscillators, demonstrating their generative potential and opening way to potential applications of this undemanding setup in experimental modelling of the relationship between network structure, synchronization, and dynamical properties.« less
Zhang, Fan; Liu, Ming; Harper, Stephen; Lee, Michael; Huang, He
2014-07-22
To enable intuitive operation of powered artificial legs, an interface between user and prosthesis that can recognize the user's movement intent is desired. A novel neural-machine interface (NMI) based on neuromuscular-mechanical fusion developed in our previous study has demonstrated a great potential to accurately identify the intended movement of transfemoral amputees. However, this interface has not yet been integrated with a powered prosthetic leg for true neural control. This study aimed to report (1) a flexible platform to implement and optimize neural control of powered lower limb prosthesis and (2) an experimental setup and protocol to evaluate neural prosthesis control on patients with lower limb amputations. First a platform based on a PC and a visual programming environment were developed to implement the prosthesis control algorithms, including NMI training algorithm, NMI online testing algorithm, and intrinsic control algorithm. To demonstrate the function of this platform, in this study the NMI based on neuromuscular-mechanical fusion was hierarchically integrated with intrinsic control of a prototypical transfemoral prosthesis. One patient with a unilateral transfemoral amputation was recruited to evaluate our implemented neural controller when performing activities, such as standing, level-ground walking, ramp ascent, and ramp descent continuously in the laboratory. A novel experimental setup and protocol were developed in order to test the new prosthesis control safely and efficiently. The presented proof-of-concept platform and experimental setup and protocol could aid the future development and application of neurally-controlled powered artificial legs.
Korucu, M Kemal; Kaplan, Özgür; Büyük, Osman; Güllü, M Kemal
2016-10-01
In this study, we investigate the usability of sound recognition for source separation of packaging wastes in reverse vending machines (RVMs). For this purpose, an experimental setup equipped with a sound recording mechanism was prepared. Packaging waste sounds generated by three physical impacts such as free falling, pneumatic hitting and hydraulic crushing were separately recorded using two different microphones. To classify the waste types and sizes based on sound features of the wastes, a support vector machine (SVM) and a hidden Markov model (HMM) based sound classification systems were developed. In the basic experimental setup in which only free falling impact type was considered, SVM and HMM systems provided 100% classification accuracy for both microphones. In the expanded experimental setup which includes all three impact types, material type classification accuracies were 96.5% for dynamic microphone and 97.7% for condenser microphone. When both the material type and the size of the wastes were classified, the accuracy was 88.6% for the microphones. The modeling studies indicated that hydraulic crushing impact type recordings were very noisy for an effective sound recognition application. In the detailed analysis of the recognition errors, it was observed that most of the errors occurred in the hitting impact type. According to the experimental results, it can be said that the proposed novel approach for the separation of packaging wastes could provide a high classification performance for RVMs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laboratory grown subaerial biofilms on granite: application to the study of bioreceptivity.
Vázquez-Nion, Daniel; Silva, Benita; Troiano, Federica; Prieto, Beatriz
2017-01-01
Simulated environmental colonisation of granite was induced under laboratory conditions in order to develop an experimental protocol for studying bioreceptivity. The experimental set-up proved suitable for producing subaerial biofilms by inoculating granite blocks with planktonic multi-species phototrophic cultures derived from natural biofilms. The ability of four different cultures to form biofilms was monitored over a three-month growth period via colour measurements, quantification of photosynthetic pigments and EPS, and CLSM observations. One of the cultures under study, which comprised several taxa including Bryophyta, Charophyta, Chlorophyta and Cyanobacteria, was particularly suitable as an inoculum, mainly because of its microbial richness, its rapid adaptability to the substratum and its high colonisation capacity. The use of this culture as an inoculum in the proposed experimental set-up to produce subaerial biofilms under laboratory conditions will contribute to standardising the protocols involved, thus enabling more objective assessment of the bioreceptivity of granite in further experiments.
An introduction to photocatalysis through methylene blue photodegradation
NASA Astrophysics Data System (ADS)
Petit, Matthieu; Michez, Lisa; Raimundo, Jean-Manuel; Malinowski, Tuhiti; Dumas, Philippe
2016-11-01
We described a simple experimental set-up for lab work on the photocatalytic degradation of methylene blue by TiO2 nanoparticles. The photocatalysis process can be used for many applications. Treatments for diluted wastewater industries, air purifying in underground car parks, and preventing fouling on glass surfaces, are some of the potential applications of this phenomenon. The described experiment is easy to perform and the interpretation can be easily adapted to different levels of students, from high school students demonstrating their interest in sustainable development, to students obtaining a Masters in science departments who want to propose a full explanation for all phenomena of the photocatalytic process. Starting with a description of the experimental set-up, we analysed the photocatalyst nanoparticles and applied the Langmuir-Hinshelwood model to our experimental data. Finally we briefly discussed the respective energetic levels of the photocatalyst semiconductor and methylene blue.
Generation of a tunable environment for electrical oscillator systems.
León-Montiel, R de J; Svozilík, J; Torres, Juan P
2014-07-01
Many physical, chemical, and biological systems can be modeled by means of random-frequency harmonic oscillator systems. Even though the noise-free evolution of harmonic oscillator systems can be easily implemented, the way to experimentally introduce, and control, noise effects due to a surrounding environment remains a subject of lively interest. Here, we experimentally demonstrate a setup that provides a unique tool to generate a fully tunable environment for classical electrical oscillator systems. We illustrate the operation of the setup by implementing the case of a damped random-frequency harmonic oscillator. The high degree of tunability and control of our scheme is demonstrated by gradually modifying the statistics of the oscillator's frequency fluctuations. This tunable system can readily be used to experimentally study interesting noise effects, such as noise-induced transitions in systems driven by multiplicative noise, and noise-induced transport, a phenomenon that takes place in quantum and classical coupled oscillator networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, F; Bronk, L; Kerr, M
Purpose: To investigate the dependence of biologic effect (BE) of therapeutic protons on LET spectra by comparing BEs with equal dose-averaged LET (LETd) derived from different LET spectra using high-throughput in vitro clonogenic survival assays. Methods: We used Geant4 to design the relevant experimental setups and perform the dose, LETd, and LET spectra calculations for spot-scanning protons. The clonogenic assay was performed using the H460 lung cancer cell line cultured in 96-well plates. In the first experimental setup (S1), cells were irradiated using 127.4 MeV protons with a 93.22 mm Lucite buildup resulting in a LETd value of 3.4 keV/µmmore » in the cell layer. In the second experimental setup (S2), cells were irradiated by a combination of 127.4 MeV and 136.4 MeV protons with a 96.61 mm Lucite buildup. The LETd values in the cell layer were 11.4 keV/µm and 1.5 keV/µm respectively, but an average LETd of 3.4 keV/µm was obtained by adjusting the relative fluence of each beam. Ten discrete dose levels with 0.5 Gy increments were delivered. Results: In the two setups, the energies or LET spectra were different but resulted in identical LETd values. We quantified the dose contributions from high-LET (≥10 keV/µm, threshold determined by previous experiments) events in the LET spectra separately for these two setups as 3.2% and 10.5%. The biologic effects at each identical dose level yielded statistically significant different survival curves (extra sum-of-squares F-test, P<0.0001). The second setup with a higher contribution from high-LET events exhibited the higher biologic effect with a dose enhancement factor of 1.17±0.03 at 0.10 surviving fraction. Conclusion: The dose-averaged LET may not be an accurate indicator of the biological effects of protons. Detailed LET spectra may need to be considered explicitly to accurately quantify the biologic effects of protons. Funding Support: U19 CA021239-35, R21 CA187484-01 and MDACC-IRG.« less
NASA Astrophysics Data System (ADS)
Bhattacharyya, Kaustuve; den Boef, Arie; Noot, Marc; Adam, Omer; Grzela, Grzegorz; Fuchs, Andreas; Jak, Martin; Liao, Sax; Chang, Ken; Couraudon, Vincent; Su, Eason; Tzeng, Wilson; Wang, Cathy; Fouquet, Christophe; Huang, Guo-Tsai; Chen, Kai-Hsiung; Wang, Y. C.; Cheng, Kevin; Ke, Chih-Ming; Terng, L. G.
2017-03-01
The optical coupling between gratings in diffraction-based overlay triggers a swing-curve1,6 like response of the target's signal contrast and overlay sensitivity through measurement wavelengths and polarizations. This means there are distinct measurement recipes (wavelength and polarization combinations) for a given target where signal contrast and overlay sensitivity are located at the optimal parts of the swing-curve that can provide accurate and robust measurements. Some of these optimal recipes can be the ideal choices of settings for production. The user has to stay away from the non-optimal recipe choices (that are located on the undesirable parts of the swing-curve) to avoid possibilities to make overlay measurement error that can be sometimes (depending on the amount of asymmetry and stack) in the order of several "nm". To accurately identify these optimum operating areas of the swing-curve during an experimental setup, one needs to have full-flexibility in wavelength and polarization choices. In this technical publication, a diffraction-based overlay (DBO) measurement tool with many choices of wavelengths and polarizations is utilized on advanced production stacks to study swing-curves. Results show that depending on the stack and the presence of asymmetry, the swing behavior can significantly vary and a solid procedure is needed to identify a recipe during setup that is robust against variations in stack and grating asymmetry. An approach is discussed on how to use this knowledge of swing-curve to identify recipe that is not only accurate at setup, but also robust over the wafer, and wafer-to-wafer. KPIs are reported in run-time to ensure the quality / accuracy of the reading (basically acting as an error bar to overlay measurement).
The range of attraction for light traps catching Culicoides biting midges (Diptera: Ceratopogonidae)
2013-01-01
Background Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Methods Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. Conclusions The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts. PMID:23497628
TU-EF-304-09: Quantifying the Biological Effects of Therapeutic Protons by LET Spectrum Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, F; Bronk, L; Kerr, M
2015-06-15
Purpose: To correlate in vitro cell kill with linear energy transfer (LET) spectra using Monte Carlo simulations and knowledge obtained from previous high-throughput in vitro proton relative biological effectiveness (RBE) measurements. Methods: The Monte Carlo simulation toolkit Geant4 was used to design the experimental setups and perform the dose, dose-averaged LET, and LET spectra calculations. The clonogenic assay was performed using the H460 lung cancer cell line in standard 6-well plates. Using two different experimental setups, the same dose and dose-averaged LET (12.6 keV/µm) was delivered to the cell layer; however, each respective energy or LET spectrum was different. Wemore » quantified the dose contributions from high-LET (≥10 keV/µm, threshold determined by previous RBE measurements) events in the LET spectra separately for these two setups as 39% and 53%. 8 dose levels with 1 Gy increments were delivered. The photon reference irradiation was performed using 6 MV x-rays from a LINAC. Results: The survival curves showed that both proton irradiations demonstrated an increased RBE compared to the reference photon irradiation. Within the proton-irradiated cells, the setup with 53% dose contribution from high-LET events exhibited the higher biological effectiveness. Conclusion: The experimental results indicate that the dose-averaged LET may not be an appropriate indicator to quantify the biological effects of protons when the LET spectrum is broad enough to contain both low- and high-LET events. Incorporating the LET spectrum distribution into robust intensity-modulated proton therapy optimization planning may provide more accurate biological dose distribution than using the dose-averaged LET. NIH Program Project Grant 2U19CA021239-35.« less
Kirkeby, Carsten; Græsbøll, Kaare; Stockmarr, Anders; Christiansen, Lasse E; Bødker, René
2013-03-15
Culicoides are vectors of e.g. bluetongue virus and Schmallenberg virus in northern Europe. Light trapping is an important tool for detecting the presence and quantifying the abundance of vectors in the field. Until now, few studies have investigated the range of attraction of light traps. Here we test a previously described mathematical model (Model I) and two novel models for the attraction of vectors to light traps (Model II and III). In Model I, Culicoides fly to the nearest trap from within a fixed range of attraction. In Model II Culicoides fly towards areas with greater light intensity, and in Model III Culicoides evaluate light sources in the field of view and fly towards the strongest. Model II and III incorporated the directionally dependent light field created around light traps with fluorescent light tubes. All three models were fitted to light trap collections obtained from two novel experimental setups in the field where traps were placed in different configurations. Results showed that overlapping ranges of attraction of neighboring traps extended the shared range of attraction. Model I did not fit data from any of the experimental setups. Model II could only fit data from one of the setups, while Model III fitted data from both experimental setups. The model with the best fit, Model III, indicates that Culicoides continuously evaluate the light source direction and intensity. The maximum range of attraction of a single 4W CDC light trap was estimated to be approximately 15.25 meters. The attraction towards light traps is different from the attraction to host animals and thus light trap catches may not represent the vector species and numbers attracted to hosts.
NASA Astrophysics Data System (ADS)
Panchal, Arun; Bano, Anees; Ghate, Mahesh; Raj, Piyush; Pradhan, Subrata
2017-04-01
An indigenously developed bending strain setup to examine the effect of pure bending on critical current of superconducting tapes and strands has been presented in this paper. This set up is capable of applying various bending radius in situ at cryogenic temperature with rack and pinion gear mechanism. The bending strain applied on samples can be controlled externally by rotational input which is transferred in the form of bending radius during experiments. The working principle, design and optimization of this set up have been discussed. The performance and validation of this setup has been done on various HTS tapes and copper strands at 77 K in actual experimental facility. Effect of bending radius (15.5 mm - 48 mm) i.e. strains and ramp rate (2 A/s - 8 A/s) is observed on current capability of various HTS Tapes. It is observed that in uniform bending condition, degradation in current carrying capacity BSCCO and Di-BSCCO (˜ 30 %) is more as compare to YBCO (˜ 2.75 %) at 77 K. The effect of pure mechanical strain has been experimentally observed and presented.
Chromophore Poling in Thin Films of Organic Glasses. 2. Two-Electrode Corona Discharge Setup
NASA Astrophysics Data System (ADS)
Vilitis, O.; Muzikante, I.; Rutkis, M.; Vembris, A.
2012-01-01
In Part 1 of the article we provided description of the corona discharge physics and overview of the methods used for corona poling in thin organic films. Subsequent sections describe comparatively simple technical methods for poling the organic nonlinear optical polymers using a two-electrode (point-to-plate or wire-to-plate) technique. The polarization build-up was studied by the DC positive corona method for poling the nonlinear optical (NLO) polymers. The experimental setup provides the corona discharge current from 0.5 μA up to 3 μA by applying 3 kV - 12 kV voltage to the corona electrode and makes possible selection among the types of corona electrodes (needle, multi-needle, wire, etc.). The results of experimental testing of the poling setup show that at fixed optimal operational parameters of poling - the sample orientation temperature and the discharge current - the corona charging of polymeric materials can successfully be performed applying the two-electrode technique. To study the dynamics of both poling and charge transport processes the three-electrode charging system - a corona triode - should be applied.
Note: 4-bounce neutron polarizer for reflectometry applications
NASA Astrophysics Data System (ADS)
Nagy, B.; Merkel, D. G.; Jakab, L.; Füzi, J.; Veres, T.; Bottyán, L.
2018-05-01
A neutron polarizer using four successive reflections on m = 2.5 supermirrors was built and installed at the GINA neutron reflectometer at the Budapest Neutron Centre. This simple setup exhibits 99.6% polarizing efficiency with 80% transmitted intensity of the selected polarization state. Due to the geometry, the higher harmonics in the incident beam are filtered out, while the optical axis of the beam remains intact for easy mounting and dismounting the device in an existing experimental setup.
Røn, Troels; Jacobsen, Kristina Pilgaard; Lee, Seunghwan
2018-04-24
In this study, we introduce a new experimental approach to characterize the forces emerging from simulated catherization. This setup allows for a linear translation of urinary catheters in vertical direction as controlled by an actuator. By employing silicone-based elastomer with a duct of comparable diameter with catheters as urethra model, sliding contacts during the translation of catheters along the duct is generated. A most unique design and operation feature of this setup is that a digital balance was employed as the sensor to detect emerging forces from simulated catherization. Moreover, the possibility to give a variation in environment (ambient air vs. water), clearance, elasticity, and curvature of silicone-based urethra model allows for the detection of forces arising from diverse simulated catherization conditions. Two types of commercially available catheters varying in tubing materials and surface coatings were tested together with their respective uncoated catheter tubing. The first set of testing on the catheter samples showed that this setup can probe the combined effect from flexural strain of bulk tubing materials and slipperiness of surface coatings, both of which are expected to affect the comfort and smooth gliding in clinical catherization. We argue that this new experimental setup can provide unique and valuable information in preclinical friction testing of urinary catheters. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuzhakov, AD; Nosarev, AV; Aleinik, AN
2017-11-01
This article describes the development of the experimental setup for measuring the cell membrane electrical potential by Double -Sucrose-Gap Technique. The double-gap isolation method allows the simultaneous measurement of electrical activity and tension output from contracting segments of muscle fibers. This technique has been widely used as a convenient tool for recording of the membrane activities from myelinated or unmyelinated nerves and muscle preparations. This device can be an effective way to provide undergraduate biomedical engineering students with invaluable experiences in neurophysiology. The installation design and its main characteristics are described. The advantages of the described device are the simplicity of the experiment, relatively low cost, the possibility of long-term experiment.
Stable thermophoretic trapping of generic particles at low pressures
NASA Astrophysics Data System (ADS)
Fung, Long Fung Frankie
2017-04-01
We demonstrate levitation and three-dimensionally stable trapping of a wide variety of particles in medium vacuum through thermophoresis. Typical sizes of the trapped particles are between 10 μm and 1 mm; air pressure is between 1 and 10 Torr. We describe the experimental setup used to produce the temperature gradient, as well as our procedure for introducing particles into the experimental setup. To determine the levitation force and test various theoretical models, we examine the levitation heights of spherical polyethylene spheres under various conditions. A good agreement with two theoretical models is concluded. Our system offers a platform to discover various thermophoretic phenomena and to simulate dynamics of interacting many-body systems in a microgravity environment. NSF MRSEC Grant No. DMR-1420709.
Velocity Measurements in Nasal Cavities by Means of Stereoscopic Piv - Preliminary Tests
NASA Astrophysics Data System (ADS)
Cozzi, Fabio; Felisati, Giovanni; Quadrio, Maurizio
2017-08-01
The prediction of detailed flow patterns in human nasal cavities using computational fluid dynamics (CFD) can provide essential information on the potential relationship between patient-specific geometrical characteristics of the nasal anatomy and health problems, and ultimately led to improved surgery. The complex flow structure and the intricate geometry of the nasal cavities make achieving such goals a challenge for CFD specialists. The need for experimental data to validate and improve the numerical simulations is particularly crucial. To this aim an experimental set-up based on Stereo PIV and a silicon phantom of nasal cavities have been designed and realized at Politecnico di Milano. This work describes the main features and challenges of the set-up along with some preliminary results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahena, A.; Villasenor, L.
We describe a simple experimental setup to measure the rate of arrival of muons at the surface of the Earth by using a single water Cerenkov detector and home-made electronics. We find a strong anti-correlation between the muon rates averaged over one-hour periods and the atmospheric pressure, with a measured correlation coefficient of -0.67% per hPa. After applying this correction we achieve sufficient sensitivity to observe long term (hours) variations in the averaged muon rates which are greater than 2%. Forbush decreases as big as 4% have been observed with muon detectors located at similar magnetic rigidities compared to Morelia,more » therefore our experimental setup will detect Forbush decreases as soon as the Sun enters into a more active phase.« less
Calibration of a Background Oriented Schlieren (BOS) Set-up
NASA Astrophysics Data System (ADS)
Porta, David; Echeverría, Carlos; Cardoso, Hiroki; Aguayo, Alejandro; Stern, Catalina
2014-11-01
We use two materials with different known indexes of refraction to calibrate a Background Oriented Schlieren (BOS) experimental set-up, and to validate the Lorenz-Lorentz equation. BOS is used in our experiments to determine local changes of density in the shock pattern of an axisymmetric supersonic air jet. It is important to validate, in particular, the Gladstone Dale approximation (index of refraction close to one) in our experimental conditions and determine the uncertainty of our density measurements. In some cases, the index of refraction of the material is well known, but in others the density is measured and related to the displacement field. We acknowledge support from UNAM through DGAPA PAPIIT IN117712 and the Graduate Program in Mechanical Engineering.
NASA Astrophysics Data System (ADS)
Zhu, Yanbin; Ma, Junfu; Guo, Zhouyi
2001-10-01
In the paper the research status and viewpoints about the coherent of the ultra-weak photon emission from biological system (UPE) were simply introduced. For proving the biophotons indeed have coherent from another side, an experimental setup for testing UPE in different spectral region was designed. Using the experimental setup the test data of different several spectral regions from 300nm to 1060nm has been got. These test results show that UPE of living biological system exists in wide spectra region from UV-visible to infrared. Using the test data, we also can obtain the important conclusion of UPE has coherence. In the end of this paper, the UPE's application in medicine was discussed.
Detecting technology of biophotons
NASA Astrophysics Data System (ADS)
Ma, Junfu; Zhu, Zhaohui; Zhu, Yanbin
2002-03-01
A key technique of detecting the ultra-weak photon emission from biological system (UPE) is to change the light signal of an extremely weak level into electric signal of a considerable level when the photo-electric detecting system were be applied. This paper analyzed the difficult for detecting the ultra-weak photon emission from biological system (UPE) mainly is in the absence of high sensitivity detector in UV-visible-infra spectra region. An experimental setup for testing UPE in different spectral region was designed. Using the experimental setup the test data of different several spectral regions from 300 nm to 1060 nm has were tested. The test result show the UPE of living biological system exists in wide spectra region from UV- visible to infrared.
Design and calibration of zero-additional-phase SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, Peter; Riedle, Eberhard
2005-09-01
Zero-additional-phase spectral phase interferometry for direct electric field reconstruction (ZAP-SPIDER) is a novel technique for measuring the temporal shape and phase of ultrashort optical pulses directly at the interaction point of a spectroscopic experiment. The scheme is suitable for an extremely wide wavelength region from the ultraviolet to the near infrared. We present a comprehensive description of the experimental setup and design guidelines to effectively apply the technique to various wavelengths and pulse durations. The calibration of the setup and procedures to check the consistency of the measurement are discussed in detail. We show experimental data for various center wavelengthsmore » and pulse durations down to 7 fs to verify the applicability to a wide range of pulse parameters.« less
Study on the quality and stability of compost through a Demo Compost Plant.
Hasan, K M M; Sarkar, G; Alamgir, M; Bari, Q H; Haedrich, G
2012-11-01
This study is concerned with the performance of a Demo Compost Plant for the development of acceptable composting technology in Bangladesh. The Demo Compost Plant was setup at the adjacent area of an existing compost plant located at Khulna city in Bangladesh. Four different composting technologies were considered, where Municipal Solid Waste (MSW) were used as a raw material for composting, collected from the adjacent areas of the plant. Initially the whole composting system was conducted through two experimental setups. In the 1st setup three different types of aerators (horizontal and vertical passively aerator and forced aerator) were selected. For a necessary observation four piles, using only MSW as the input materials in the first three compost pile, the fourth one was the existing Samadhan's compost pile. Based on the analysis of the experimental findings, the horizontal passively aerated composting technique is suitable for Bangladesh as it had better performance for reducing composting period than that of the others. It was being observed from the quality parameters of compost in the both 1st and 2nd setup that as the waste directly come from kitchen, degradation rate of waste shows a positive result for reducing this waste and there is no possibility of toxic contamination, when it would be used as a soil conditioner. Though there is no significant improvement in the quality of the final product in the 2nd setup as comparing with the 1st setup but it fulfills one of the main objectives of this study is to reduce the whole composting period as well as immediate management of the increasing amount of waste and reducing load on landfill. Selfheating tests reveal that degree of stability of compost with respect to maturation period was remained in the acceptable level, which was further accelerated due to the use of organic additives. Copyright © 2012 Elsevier Ltd. All rights reserved.
Greven, Marcus; Wismeijer, Daniel
2017-01-01
PURPOSE To integrate extra-oral facial scanning information with CAD/CAM complete dentures to immediately rehabilitate terminal dentition. MATERIALS AND METHODS Ten patients with terminal dentition scheduled for total extraction and immediate denture placement were recruited for this study. The patients were submitted to a facial scanning procedure using the in-office PritiMirror scanner with bite registration records in-situ. Definitive stone cast models and bite records were subsequently submitted to a lab scanning procedure using the lab scanner (iSeries DWOS; Dental Wings). The scanned models were used to create a virtual teeth setup of a complete denture. Using the intra-oral bite records as a reference, the virtual setup was incorporated in the facial scan thereby facilitating a virtual clinical evaluation (teeth try-in) phase. After applying necessary adjustments, the virtual setup was submitted to a CAM procedure where a 5-axis industrial milling machine (M7 CNC; Darton AG General) was used to fabricate a full-milled PMMA immediate provisional prosthesis. RESULTS Total extractions were performed, the dentures were immediately inserted, and subjective clinical fit was evaluated. The immediate provisional prostheses were inserted and clinical fit, occlusion/articulation, and esthetics were subjectively assessed; the results were deemed satisfactory. All provisional prostheses remained three months in function with no notable technical complications. CONCLUSION Ten patients with terminal dentition were treated using a complete digital approach to fabricate complete dentures using CAD/CAM technology. The proposed technique has the potential to accelerate the rehabilitation procedure starting from immediate denture to final implant-supported prosthesis leading to more predictable functional and aesthetics outcomes. PMID:29142646
Networked Experiments and Scientific Resource Sharing in Cooperative Knowledge Spaces
ERIC Educational Resources Information Center
Cikic, Sabine; Jeschke, Sabina; Ludwig, Nadine; Sinha, Uwe; Thomsen, Christian
2007-01-01
Cooperative knowledge spaces create new potentials for the experimental fields in natural sciences and engineering because they enhance the accessibility of experimental setups through virtual laboratories and remote technology, opening them for collaborative and distributed usage. A concept for extending existing virtual knowledge spaces for the…
Getting Shocks: Teaching Secondary School Physics through History.
ERIC Educational Resources Information Center
Heering, Peter
2000-01-01
Uses several replicas of experimental set-ups that were originally used in electrostatic research in teaching electrostatics through history on secondary school level. Makes visible the change of the style of electrostatic experimentation that took place at the end of the 18th century. (Contains 25 references.) (ASK)
Meta-analysis as a tool to study crop productivity response to poultry litter application
USDA-ARS?s Scientific Manuscript database
Extensive research on the use of poultry litter (PL) under different agricultural practices in the USA has shown both negative and positive effects on crop productivity (either yield or aboveground biomass). However, these experimental results are substantially dependent on the experimental set-up, ...
NASA Astrophysics Data System (ADS)
Guignot, N.; Itié, J.; Zerbino, P.; Delmotte, A.; Moreno, T.
2013-12-01
The PSICHE beamline (for 'Pressure, Structure and Imaging by Contrast at High Energy') is a new facility opened for high pressure experiments at synchrotron SOLEIL (St-Aubin, France). With its source, optics, detectors and 3 experimental stations, it can handle a large variety of experimental setups. High energy photons are produced with an in-vacuum wiggler. The white beam obtained, with photons energy ranging continuously from 15 to 80 keV (from a 2.75 GeV machine), is used on the first experimental station for energy dispersive X-ray diffraction (EDX) measurements using different pressure cells. The main setup is a 1200 tons load capacity multi-anvil press featuring a (100) DIA compression module with a 15° horizontal aperture, allowing measurements up to 30° in 2theta by rotating the press. Other setups are a Paris-Edinburgh (PE) large volume press and diamond anvil cells (DACs). On the detection side we have a rotating Ge detector, based on the CAESAR design described by Wang et al. (2004) (combination of EDX and angular dispersive X-ray diffraction, ADX). One of the difficulties when building such setups is the rotation mechanism which cannot be physically attached to the rotation axis, potentially leading to large circle of confusions on the horizontal position of this axis. Thanks to translation corrections done at each angle step, the circle of confusion is minimized to 3x6 μm2 along the 35° travel, making possible measurements on very small objects. Combining EDX and ADX has a lot of advantages and we will present our first results obtained using this setup. The PSICHE focusing optics and monochromator are also used to focus monochromatic beams (up to 52 keV) on 2 different experimental stations. The first focal point at 31 m gives a beam size of 100x50 μm2 (HxV) and is useful for low pressure experiments and experiments done with the PE press associated with Soller slits. A PerkinElmer flatpanel detector can be precisely scanned in 3 directions, making ADX measurements at the highest possible resolution on this beamline. This station will also be used for diffraction tomography experiments. The second focal point at 37.6 m is located behind KB mirrors on the third experimental station. 10x10 μm2 beam sizes (full width) are expected. This station will be used for DAC experiments, with or without our future laser heating setup. Finally, parallel beams can be produced with sizes up to 15x5 mm2 (HxV) for tomography experiments, in pink (filtered white) beam or monochromatic beam. We plan to use rotating anvils presses such as the rotoPEc (J. Philippe et al., 2013) to take full advantage of this beam mode, but it can be opened to other techniques. The PSICHE beamline is opened for users since July 2013. Some stations are not available yet, and will be opened through 2014 and 2015. References X. Dong et al., Ray tracing application in hard x-ray optical development: Soleil first wiggler beamline (PSICHÉ) case" (2011), Proc. SPIE 8141, 814113 Y. Wang et al., A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation (2004), J. Appl. Cryst. 37, 947-956 J. Philippe, Y. Le Godec, F. Bergame et M. Morand, Patent INPI 11 62335 (2013)
Abadlia, L; Gasser, F; Khalouk, K; Mayoufi, M; Gasser, J G
2014-09-01
In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abadlia, L.; Mayoufi, M.; Gasser, F.
2014-09-15
In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in thismore » paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.« less
Lytton, William W; Neymotin, Samuel A; Hines, Michael L
2008-06-30
In an effort to design a simulation environment that is more similar to that of neurophysiology, we introduce a virtual slice setup in the NEURON simulator. The virtual slice setup runs continuously and permits parameter changes, including changes to synaptic weights and time course and to intrinsic cell properties. The virtual slice setup permits shocks to be applied at chosen locations and activity to be sampled intra- or extracellularly from chosen locations. By default, a summed population display is shown during a run to indicate the level of activity and no states are saved. Simulations can run for hours of model time, therefore it is not practical to save all of the state variables. These, in any case, are primarily of interest at discrete times when experiments are being run: the simulation can be stopped momentarily at such times to save activity patterns. The virtual slice setup maintains an automated notebook showing shocks and parameter changes as well as user comments. We demonstrate how interaction with a continuously running simulation encourages experimental prototyping and can suggest additional dynamical features such as ligand wash-in and wash-out-alternatives to typical instantaneous parameter change. The virtual slice setup currently uses event-driven cells and runs at approximately 2 min/h on a laptop.
2017-10-01
Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT We are currently completing the set-up phase for this study . We have hired and trained all...Hospital and University of Maryland Medical Center/Shock Trauma). The final step with regards to study set up prior to beginning recruitment will be...to receive HRPO approval. 15. SUBJECT TERMS IRB, FDA IND exemption, HRPO, study set-up phase 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Laboratory measurements of on-board subsystems
NASA Technical Reports Server (NTRS)
Nuspl, P. P.; Dong, G.; Seran, H. C.
1991-01-01
Good progress was achieved on the test bed for on-board subsystems for future satellites. The test bed is for subsystems developed previously. Four test setups were configured in the INTELSAT technical labs: (1) TDMA on-board modem; (2) multicarrier demultiplexer demodulator; (3) IBS/IDR baseband processor; and (4) baseband switch matrix. The first three series of tests are completed and the tests on the BSM are in progress. Descriptions of test setups and major test results are included; the format of the presentation is outlined.
Detection prospects for the Cosmic Neutrino Background using laser interferometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domcke, Valerie; Spinrath, Martin, E-mail: valerie.domcke@apc.univ-paris7.fr, E-mail: martin.spinrath@cts.nthu.edu.tw
The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup couldmore » also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.« less
Kröger, Niklas; Schlobohm, Jochen; Pösch, Andreas; Reithmeier, Eduard
2017-09-01
In Michelson interferometer setups the standard way to generate different optical path lengths between a measurement arm and a reference arm relies on expensive high precision linear stages such as piezo actuators. We present an alternative approach based on the refraction of light at optical interfaces using a cheap stepper motor with high gearing ratio to control the rotation of a glass plate. The beam path is examined and a relation between angle of rotation and change in optical path length is devised. As verification, an experimental setup is presented, and reconstruction results from a measurement standard are shown. The reconstructed step height from this setup lies within 1.25% of the expected value.
Note: Near infrared spectral and transient measurements of PbS quantum dots luminescence.
Parfenov, P S; Litvin, A P; Ushakova, E V; Fedorov, A V; Baranov, A V; Berwick, K
2013-11-01
We describe an experimental setup for the characterization of luminescence from nanostructures. The setup is intended for steady-state and time-resolved luminescence measurements in the near-infrared region. The setup allows us to study spectral luminescence properties in the spectral range of 0.8-2.0 μm with high spectral resolution and kinetic luminescence properties between 0.8 and 1.7 μm with a time resolution of 3 ns. The capabilities of the system are illustrated by taking luminescence measurements from PbS quantum dots. We established the size dependencies of the optical properties of the PbS quantum dots over a wide spectral range. Finally, the energy transfer process was studied with a high temporal and spectral resolution.
Search for hybrid baryons with CLAS12 experimental setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanza, Lucille
It is crucial to study the meson electroproduction in the kinematic region dominated by the formation of resonances. CLAS12 setup in Hall B at Jefferson Lab is particularly suitable for this task, since it is able to detect scattered electrons at low polar angles thanks to the Forward Tagger (FT) component. The process that we propose to study is ep → e'K +Λ, where the electron beam will be provided by the CEBAF accelerator with energies of 6.6, 8.8, and 11 GeV. This thesis work describes the setup and calibration of the FT calorimeter and the studies related to themore » search of hybrid baryons through the measurement of the K + Λ electroproduction cross section.« less
An electron energy loss spectrometer based streak camera for time resolved TEM measurements.
Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus
2017-05-01
We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.
Detection prospects for the Cosmic Neutrino Background using laser interferometers
NASA Astrophysics Data System (ADS)
Domcke, Valerie; Spinrath, Martin
2017-06-01
The cosmic neutrino background is a key prediction of Big Bang cosmology which has not been observed yet. The movement of the earth through this neutrino bath creates a force on a pendulum, as if it were exposed to a cosmic wind. We revise here estimates for the resulting pendulum acceleration and compare it to the theoretical sensitivity of an experimental setup where the pendulum position is measured using current laser interferometer technology as employed in gravitational wave detectors. We discuss how a significant improvement of this setup can be envisaged in a micro gravity environment. The proposed setup could also function as a dark matter detector in the sub-MeV range, which currently eludes direct detection constraints.
Assessment of the Tensile Properties for Single Fibers
2018-02-01
Approved for public release; distribution is unlimited. 14. ABSTRACT A novel experimental test method is presented to assess the tensile properties...distribution is unlimited. iii Contents List of Figures iv List of Tables v Acknowledgments vi 1. Introduction 1 2. Experimental Procedure 2 2.1 Test...fiber diameter measurements .............................. 7 Fig. 5 The coordinate system defining the experimental setup with the x- direction along
Experimental Study of the Moment of Inertia of a Cone--Angular Variation and Inertia Ellipsoid
ERIC Educational Resources Information Center
Pintao, Carlos A. F.; de Souza Filho, Moacir P.; Usida, Wesley F.; Xavier, Jose A.
2007-01-01
In this paper, an experimental set-up which differs from the traditional ones is established in order to determine the moment of inertia of a right circular cone. Its angular variation and inertia ellipsoid are determined by means of an experimental study. In addition, a system that allows for the evaluation of the angular acceleration and torque…
Can We Falsify the Consciousness-Causes-Collapse Hypothesis in Quantum Mechanics?
NASA Astrophysics Data System (ADS)
de Barros, J. Acacio; Oas, Gary
2017-10-01
In this paper we examine some proposals to disprove the hypothesis that the interaction between mind and matter causes the collapse of the wave function, showing that such proposals are fundamentally flawed. We then describe a general experimental setup retaining the key features of the ones examined, and show that even a more general case is inadequate to disprove the mind-matter collapse hypothesis. Finally, we use our setup provided to argue that, under some reasonable assumptions about consciousness, such hypothesis is unfalsifiable.
A microprocessor-based table lookup approach for magnetic bearing linearization
NASA Technical Reports Server (NTRS)
Groom, N. J.; Miller, J. B.
1981-01-01
An approach for producing a linear transfer characteristic between force command and force output of a magnetic bearing actuator without flux biasing is presented. The approach is microprocessor based and uses a table lookup to generate drive signals for the magnetic bearing power driver. An experimental test setup used to demonstrate the feasibility of the approach is described, and test results are presented. The test setup contains bearing elements similar to those used in a laboratory model annular momentum control device.
Simulating interfering fringe displacements by lateral shifts of a camera for educational purposes
NASA Astrophysics Data System (ADS)
Rivera-Ortega, Uriel
2018-07-01
In this manuscript we propose a simple method to emulate fringe displacements in a fringe pattern, due to the interference of two plane waves, by using lateral shifts of a CMOS detector under the scheme of a Twyman–Green interferometric setup, avoiding unwanted vibrations and the need for specific and expensive devices in order to accomplish the task. The simplicity of the proposed experimental setup allows it to be easily replicated and used for teaching or demonstrative purposes, essentially for undergraduate students.
Gratkowski, Maciej; Storzer, Lena; Butz, Markus; Schnitzler, Alfons; Saupe, Dietmar; Dalal, Sarang S
2016-01-01
Recently, it has been demonstrated that bicycling ability remains surprisingly preserved in Parkinson's disease (PD) patients who suffer from freezing of gait. Cycling has been also proposed as a therapeutic means of treating PD symptoms, with some preliminary success. The neural mechanisms behind these phenomena are however not yet understood. One of the reasons is that the investigations of neuronal activity during pedaling have been up to now limited to PET and fMRI studies, which restrict the temporal resolution of analysis, and to scalp EEG focused on cortical activation. However, deeper brain structures like the basal ganglia are also associated with control of voluntary motor movements like cycling and are affected by PD. Deep brain stimulation (DBS) electrodes implanted for therapy in PD patients provide rare and unique access to directly record basal ganglia activity with a very high temporal resolution. In this paper we present an experimental setup allowing combined investigation of basal ganglia local field potentials (LFPs) and scalp EEG underlying bicycling in PD patients. The main part of the setup is a bike simulator consisting of a classic Dutch-style bicycle frame mounted on a commercially available ergometer. The pedal resistance is controllable in real-time by custom software and the pedal position is continuously tracked by custom Arduino-based electronics using optical and magnetic sensors. A portable bioamplifier records the pedal position signal, the angle of the knee, and the foot pressure together with EEG, EMG, and basal ganglia LFPs. A handlebar-mounted display provides additional information for patients riding the bike simulator, including the current and target pedaling rate. In order to demonstrate the utility of the setup, example data from pilot recordings are shown. The presented experimental setup provides means to directly record basal ganglia activity not only during cycling but also during other movement tasks in patients who have undergone DBS treatment. Thus, it can facilitate studies comparing bicycling and walking, to elucidate why PD patients often retain the ability to bicycle despite severe freezing of gait. Moreover it can help clarifying the mechanism through which cycling may have therapeutic benefits.
Gratkowski, Maciej; Storzer, Lena; Butz, Markus; Schnitzler, Alfons; Saupe, Dietmar; Dalal, Sarang S.
2017-01-01
Recently, it has been demonstrated that bicycling ability remains surprisingly preserved in Parkinson's disease (PD) patients who suffer from freezing of gait. Cycling has been also proposed as a therapeutic means of treating PD symptoms, with some preliminary success. The neural mechanisms behind these phenomena are however not yet understood. One of the reasons is that the investigations of neuronal activity during pedaling have been up to now limited to PET and fMRI studies, which restrict the temporal resolution of analysis, and to scalp EEG focused on cortical activation. However, deeper brain structures like the basal ganglia are also associated with control of voluntary motor movements like cycling and are affected by PD. Deep brain stimulation (DBS) electrodes implanted for therapy in PD patients provide rare and unique access to directly record basal ganglia activity with a very high temporal resolution. In this paper we present an experimental setup allowing combined investigation of basal ganglia local field potentials (LFPs) and scalp EEG underlying bicycling in PD patients. The main part of the setup is a bike simulator consisting of a classic Dutch-style bicycle frame mounted on a commercially available ergometer. The pedal resistance is controllable in real-time by custom software and the pedal position is continuously tracked by custom Arduino-based electronics using optical and magnetic sensors. A portable bioamplifier records the pedal position signal, the angle of the knee, and the foot pressure together with EEG, EMG, and basal ganglia LFPs. A handlebar-mounted display provides additional information for patients riding the bike simulator, including the current and target pedaling rate. In order to demonstrate the utility of the setup, example data from pilot recordings are shown. The presented experimental setup provides means to directly record basal ganglia activity not only during cycling but also during other movement tasks in patients who have undergone DBS treatment. Thus, it can facilitate studies comparing bicycling and walking, to elucidate why PD patients often retain the ability to bicycle despite severe freezing of gait. Moreover it can help clarifying the mechanism through which cycling may have therapeutic benefits. PMID:28119591
Remote laboratories for optical metrology: from the lab to the cloud
NASA Astrophysics Data System (ADS)
Osten, W.; Wilke, M.; Pedrini, G.
2012-10-01
The idea of remote and virtual metrology has been reported already in 2000 with a conceptual illustration by use of comparative digital holography, aimed at the comparison of two nominally identical but physically different objects, e.g., master and sample, in industrial inspection processes. However, the concept of remote and virtual metrology can be extended far beyond this. For example, it does not only allow for the transmission of static holograms over the Internet, but also provides an opportunity to communicate with and eventually control the physical set-up of a remote metrology system. Furthermore, the metrology system can be modeled in the environment of a 3D virtual reality using CAD or similar technology, providing a more intuitive interface to the physical setup within the virtual world. An engineer or scientist who would like to access the remote real world system can log on to the virtual system, moving and manipulating the setup through an avatar and take the desired measurements. The real metrology system responds to the interaction between the avatar and the 3D virtual representation, providing a more intuitive interface to the physical setup within the virtual world. The measurement data are stored and interpreted automatically for appropriate display within the virtual world, providing the necessary feedback to the experimenter. Such a system opens up many novel opportunities in industrial inspection such as the remote master-sample-comparison and the virtual assembling of parts that are fabricated at different places. Moreover, a multitude of new techniques can be envisaged. To them belong modern ways for documenting, efficient methods for metadata storage, the possibility for remote reviewing of experimental results, the adding of real experiments to publications by providing remote access to the metadata and to the experimental setup via Internet, the presentation of complex experiments in classrooms and lecture halls, the sharing of expensive and complex infrastructure within international collaborations, the implementation of new ways for the remote test of new devices, for their maintenance and service, and many more. The paper describes the idea of remote laboratories and illustrates the potential of the approach on selected examples with special attention to optical metrology.
Mulier, Stefaan; Jiang, Yansheng; Jamart, Jacques; Wang, Chong; Feng, Yuanbo; Marchal, Guy; Michel, Luc; Ni, Yicheng
2015-01-01
Size and geometry of the ablation zone obtained by currently available radiofrequency (RF) electrodes is highly variable. Reliability might be improved by matrix radiofrequency ablation (MRFA), in which the whole tumour volume is contained within a cage of x × y parallel electrodes. The aim of this study was to optimise the smallest building block for matrix radiofrequency ablation: a recently developed bipolar 2 × 2 electrode system. In ex vivo bovine liver, the parameters of the experimental set-up were changed one by one. In a second step, a finite element method (FEM) modelling of the experiment was performed to better understand the experimental findings. The optimal power to obtain complete ablation in the shortest time was 50-60 W. Performing an ablation until impedance rise was superior to ablation for a fixed duration. Increasing electrode diameter improved completeness of ablation due to lower temperature along the electrodes. A chessboard pattern of electrode polarity was inferior to a row pattern due to an electric field void in between the electrodes. Variability of ablation size was limited. The FEM correctly simulated and explained the findings in ex vivo liver. These experiments and FEM modelling allowed a better insight in the factors influencing the ablation zone in a bipolar 2 × 2 electrode RF system. With optimal parameters, complete ablation was obtained quickly and with limited variability. This knowledge will be useful to build a larger system with x × y electrodes for MRFA.
Optical implementation of (3, 3, 2) regular rectangular CC-Banyan optical network
NASA Astrophysics Data System (ADS)
Yang, Junbo; Su, Xianyu
2007-07-01
CC-Banyan network plays an important role in the optical interconnection network. Based on previous reports of (2, 2, 3) the CC-Banyan network, another rectangular-Banyan network, i.e. (3, 3, 2) rectangular CC-Banyan network, has been discussed. First, according to its construction principle, the topological graph and the routing rule of (3, 3, 2) rectangular CC-Banyan network have been proposed. Then, the optically experimental setup of (3, 3, 2) rectangular CC-Banyan network has been designed and achieved. Each stage of node switch consists of phase spatial light modulator (PSLM) and polarizing beam-splitter (PBS), and fiber has been used to perform connection between adjacent stages. PBS features that s-component (perpendicular to the incident plane) of the incident light beam is reflected, and p-component (parallel to the incident plane) passes through it. According to switching logic, under the control of external electrical signals, PSLM functions to control routing paths of the signal beams, i.e. the polarization of each optical signal is rotated or not rotated 90° by a programmable PSLM. Finally, the discussion and analysis show that the experimental setup designed here can realize many functions such as optical signal switch and permutation. It has advantages of large number of input/output-ports, compact in structure, and low energy loss. Hence, the experimental setup can be used in optical communication and optical information processing.
Frequency domain fluorescence diffuse tomography of small animals
NASA Astrophysics Data System (ADS)
Orlova, Anna G.; Turchin, Ilya V.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Balalaeva, Irina V.; Sergeeva, Ekaterina A.; Shirmanova, Marina V.; Kleshnin, Michail S.
2007-05-01
Fluorescent compounds for selective cancer cell marking are used for development of novel medical diagnostic methods, investigation of the influence of external factors on tumor growth, regress and metastasis. Only special tools for turbid media imaging, such as optical diffusion tomography permit noninvasive monitoring of fluorescent-labeled tumor alterations deep in animal tissue. In this work, the results of preliminary experiments utilizing frequency-domain fluorescent diffusion tomography (FD FDT) experimental setup in small animal are presented. Low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the wavelength of 532 nm was used in the setup. The transilluminative planar configuration was used in the setup. A series of model experiments has been conducted and show good agreement between theoretical and experimental fluorescence intensity. Models of deep tumors were created by two methods: (1) glass capsules containing fluorophore solution were inserted into esophagus of small animals to simulate marked tumors; (2) a suspension of transfected HEΚ293-Turbo-RFP cells was subcutaneously injected to small animal. The conducted experiments have shown that FD FDT allows one to detect the presence of labeled tumor cells in small animals, to determine the volume of an experimental tumor, to perform 3D tumor reconstruction, as well as to conduct monitoring investigations. The obtained results demonstrate the potential capability of the FD FDT method for noninvasive whole-body imaging in cancer studies, diagnostics and therapy.
NASA Astrophysics Data System (ADS)
Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.
2014-12-01
Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the 2013 Roosevelt Island Climate Evolution (RICE) ice core processing campaign achieved high precision measurements, in particular for δD, with high temporal resolution for the upper part of the core, where a seasonally resolved isotopic signal is preserved.
Oscillating-flow regenerator test rig
NASA Technical Reports Server (NTRS)
Wood, J. G.; Gedeon, D. R.
1994-01-01
This report summarizes work performed in setting up and performing tests on a regenerator test rig. An earlier status report presented test results, together with heat transfer correlations, for four regenerator samples (two woven screen samples and two felt metal samples). Lessons learned from this testing led to improvements to the experimental setup, mainly instrumentation as well as to the test procedure. Given funding and time constraints for this project it was decided to complete as much testing as possible while the rig was set up and operational, and to forego final data reduction and analysis until later. Additional testing was performed on several of the previously tested samples as well an on five newly fabricated samples. The following report is a summary of the work performed at OU, with many of the final test results included in raw data form.
Analysis Of FEL Optical Systems With Grazing Incidence Mirrors
NASA Astrophysics Data System (ADS)
Knapp, C. E.; Viswanathan, V. K.; Bender, S. C.; Appert, Q. D.; Lawrence, G.; Barnard, C.
1986-11-01
The use of grazing incidence optics in resonators alleviates the problem of damage to the optical elements and permits higher powers in cavities of reasonable dimensions for a free electron laser (FEL). The design and manufacture of a grazing incidence beam expander for the Los Alamos FEL mock up has been completed. In this paper, we describe the analysis of a bare cavity, grazing incidence optical beam expander for an FEL system. Since the existing geometrical and physical optics codes were inadequate for such an analysis, the GLAD code was modified to include global coordinates, exact conic representation, raytracing, and exact aberration features to determine the alignment sensitivities of laser resonators. A resonator cavity has been manufactured and experimentally setup in the Optical Evaluation Laboratory at Los Alamos. Calculated performance is compared with the laboratory measurements obtained so far.
NASA Astrophysics Data System (ADS)
Patkar, Rajul S.; Ashwin, Mamta; Rao, V. Ramgopal
2017-12-01
Monitoring of soil nutrients is very important in precision agriculture. In this paper, we have demonstrated a micro electro mechanical system based lab-on-a-chip system for detection of various soil macronutrients which are available in ionic form K+, NO3-, and H2PO4-. These sensors are highly sensitive piezoresistive silicon microcantilevers coated with a polymer matrix containing methyltridodecylammonium nitrate ionophore/ nitrate ionophore VI for nitrate sensing, 18-crown-6 ether for potassium sensing and Tributyltin chloride for phosphate detection. A complete lab-on-a-chip system integrating a highly sensitive current excited Wheatstone's bridge based portable electronic setup along with arrays of microcantilever devices mounted on a printed circuit board with a liquid flow cell for on the site experimentation for soil test has been demonstrated.
Effect of Metallic Li on the Behavior of Metals in Molten Salts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chidambaram, Dev; Phillips, William; Merwin, Augustus
The deleterious effect of Li0 on the reactor container materials has not been studied. Exposure to liquid Li 0 results in material degradation primarily through lithium intercalation, leaching of specific alloying elements, and decarburization. The objective of this research is to understand how the presence of Li 0 in molten LiCl-Li 2O affects the degradation of two classes of alloys by correlating their accelerated and long term electrochemical behavior to the surface chemistry of the alloys and the chemistry of the electrolyte. This study has completed all the proposed tasks. The project led to the design and development of uniquemore » experimental setups and protocols. Several groundbreaking findings resulted from this study. The project had several products in terms of student education, thesis and dissertation, publications and presentations.« less
Experiments of draining and filling processes in a collapsible tube at high external pressure
NASA Astrophysics Data System (ADS)
Flaud, P.; Guesdon, P.; Fullana, J.-M.
2012-02-01
The venous circulation in the lower limb is mainly controlled by the muscular action of the calf. To study the mechanisms governing the venous draining and filling process in such a situation, an experimental setup, composed by a collapsible tube under external pressure, has been built. A valve preventing back flows is inserted at the bottom of the tube and allows to model two different configurations: physiological when the fluid flow is uni-directional and pathological when the fluid flows in both directions. Pressure and flow rate measurements are carried out at the inlet and outlet of the tube and an original optical device with three cameras is proposed to measure the instantaneous cross-sectional area. The experimental results (draining and filling with physiological or pathological valves) are confronted to a simple one-dimensional numerical model which completes the physical interpretation. One major observation is that the muscular contraction induces a fast emptying phase followed by a slow one controlled by viscous effects, and that a defect of the valve decreases, as expected, the ejected volume.
Procedures for cryogenic X-ray ptychographic imaging of biological samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusuf, M.; Zhang, F.; Chen, B.
Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This paper describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.
Cultures of Experimental Practice--An Approach in a Museum.
ERIC Educational Resources Information Center
Heering, Peter; Muller, Falk
2002-01-01
Describes generations and experiences of an exhibition presented in Spring 1998 at the Oldenburg Museum of Natural History and Pre-History. Discusses the thematic leitmotiv of this exhibition which was to present experiments from the history of physics as a cultural activity. Describes how reconstructions of historical experimental set-ups were…
Procedures for cryogenic X-ray ptychographic imaging of biological samples
Yusuf, M.; Zhang, F.; Chen, B.; ...
2017-01-12
Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This paper describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.
The fluid mechanics of channel fracturing flows: experiment
NASA Astrophysics Data System (ADS)
Rashedi, Ahmadreza; Tucker, Zachery; Ovarlez, Guillaume; Hormozi, Sarah
2017-11-01
We show our preliminary experimental results on the role of fluid mechanics in channel fracturing flows, particularly yield stress fracturing fluids. Recent trends in the oil industry have included the use of cyclic pumping of a proppant slurry interspersed with a yield stress fracturing fluid, which is found to increase wells productivity, if particles disperse in a certain fashion. Our experimental study aims to investigate the physical mechanisms responsible for dispersing the particles (proppant) within a yield stress carrier fluid, and to measure the dispersion of proppant slugs in various fracturing regimes. To this end we have designed and built a unique experimental setup that resembles a fracture configuration coupled with a particle image/tracking velocimetry setup operating at micro to macro dimensions. Moreover, we have designed optically engineered suspensions of complex fluids with tunable yield stress and consistency, well controlled density match-mismatch properties and refractive indices for both X-rays and visible lights. We present our experimental system and preliminary results. NSF (Grant No. CBET-1554044- CAREER), ACS PRF (Grant No. 55661-DNI9).
NASA Astrophysics Data System (ADS)
Di Capua, R.; Offi, F.; Fontana, F.
2014-07-01
Exponential decay is a prototypical functional behaviour for many physical phenomena, and therefore it deserves great attention in physics courses at an academic level. The absorption of the electromagnetic radiation that propagates in a dissipative medium provides an example of the decay of light intensity, as stated by the law of Lambert-Beer-Bourguer. We devised a very simple experiment to check this law. The experimental setup, its realization, and the data analysis of the experiment are definitely simple. Our main goal was to create an experiment that is accessible to all students, including those in their first year of academic courses and those with poorly equipped laboratories. As illustrated in this paper, our proposal allowed us to develop a deep discussion about some general mathematical and numerical features of exponential decay. Furthermore, the special setup of the absorbing medium (sliced in finite thickness slabs) and the experimental outcomes allow students to understand the transition from the discrete to the continuum approach in experimental physics.
Photonic crystal enhanced silicon cell based thermophotovoltaic systems
Yeng, Yi Xiang; Chan, Walker R.; Rinnerbauer, Veronika; ...
2015-01-30
We report the design, optimization, and experimental results of large area commercial silicon solar cell based thermophotovoltaic (TPV) energy conversion systems. Using global non-linear optimization tools, we demonstrate theoretically a maximum radiative heat-to-electricity efficiency of 6.4% and a corresponding output electrical power density of 0.39 W cm⁻² at temperature T = 1660 K when implementing both the optimized two-dimensional (2D) tantalum photonic crystal (PhC) selective emitter, and the optimized 1D tantalum pentoxide – silicon dioxide PhC cold-side selective filter. In addition, we have developed an experimental large area TPV test setup that enables accurate measurement of radiative heat-to-electricity efficiency formore » any emitter-filter-TPV cell combination of interest. In fact, the experimental results match extremely well with predictions of our numerical models. Our experimental setup achieved a maximum output electrical power density of 0.10W cm⁻² and radiative heat-to-electricity efficiency of 1.18% at T = 1380 K using commercial wafer size back-contacted silicon solar cells.« less
Experimental setups for FEL-based four-wave mixing experiments at FERMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian
2016-01-01
The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less
Experimental setups for FEL-based four-wave mixing experiments at FERMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bencivenga, Filippo; Zangrando, Marco; Svetina, Cristian
The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor themore » dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs–nm time–length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.« less
Low-cost laser speckle contrast imaging of blood flow using a webcam.
Richards, Lisa M; Kazmi, S M Shams; Davis, Janel L; Olin, Katherine E; Dunn, Andrew K
2013-01-01
Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion.
Low-cost laser speckle contrast imaging of blood flow using a webcam
Richards, Lisa M.; Kazmi, S. M. Shams; Davis, Janel L.; Olin, Katherine E.; Dunn, Andrew K.
2013-01-01
Laser speckle contrast imaging has become a widely used tool for dynamic imaging of blood flow, both in animal models and in the clinic. Typically, laser speckle contrast imaging is performed using scientific-grade instrumentation. However, due to recent advances in camera technology, these expensive components may not be necessary to produce accurate images. In this paper, we demonstrate that a consumer-grade webcam can be used to visualize changes in flow, both in a microfluidic flow phantom and in vivo in a mouse model. A two-camera setup was used to simultaneously image with a high performance monochrome CCD camera and the webcam for direct comparison. The webcam was also tested with inexpensive aspheric lenses and a laser pointer for a complete low-cost, compact setup ($90, 5.6 cm length, 25 g). The CCD and webcam showed excellent agreement with the two-camera setup, and the inexpensive setup was used to image dynamic blood flow changes before and after a targeted cerebral occlusion. PMID:24156082
NASA Astrophysics Data System (ADS)
Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.
2015-07-01
Here we present an experimental setup for water stable isotope (δ18O and δD) continuous-flow measurements and provide metrics defining the performance of the setup during a major ice core measurement campaign (Roosevelt Island Climate Evolution; RICE). We also use the metrics to compare alternate systems. Our setup is the first continuous-flow laser spectroscopy system that is using off-axis integrated cavity output spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research, LGR) in combination with an evaporation unit to continuously analyze water samples from an ice core. A Water Vapor Isotope Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to (1) enable measurements on several water standards, (2) increase the temporal resolution by reducing the response time and (3) reduce the influence from memory effects. While this setup was designed for the continuous-flow analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The custom setups provide a shorter response time (~ 54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~ 62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the custom setups have a reduced memory effect. Stability tests comparing the custom and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the custom 2013 setup the precision after integration times of 103 s is 0.060 and 0.070 ‰ for δ18O and δD, respectively. The corresponding σAllan values for the custom 2014 setup are 0.030, 0.060 and 0.043 ‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042 ‰ after 103 s for δ18O, δD and δ17O, respectively. Both the custom setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O are 0.30 and 0.18 ‰ for the custom 2013 and WVISS setup, respectively, after averaging times of 104 s (2.78 h). Using response time tests and stability tests, we show that the custom setups are more responsive (shorter response time), whereas the University of Copenhagen (UC) setup is more stable. More broadly, comparisons of different setups address the challenge of integrating vaporizer/spectrometer isotope measurement systems into a CFA campaign with many other analytical instruments.
Optical differential reflectance spectroscopy for photochromic molecules on solid surfaces
NASA Astrophysics Data System (ADS)
Nickel, Fabian; Bernien, Matthias; Lipowski, Uwe; Kuch, Wolfgang
2018-03-01
Optical reflectance of thin adsorbates on solid surfaces is able to reveal fundamental changes of molecular properties compared to bulk systems. The detection of very small changes in the optical reflectance required several technical improvements in the past decades. We present an experimental setup that is capable of high-quality measurements of submonolayers and ultrathin layers of photochromic molecules on surfaces as well as quantifying their isomerization kinetics. By using photomultipliers as detectors, an enhancement of the signal-to-noise ratio by a factor of three with a total reduction of light exposure on the sample by at least four orders of magnitude is achieved. The potential of the experimental setup is demonstrated by a characterization of the photoswitching and thermal switching of a spirooxazine derivate on a bismuth surface.
Cell optoporation with a sub-15 fs and a 250-fs laser
NASA Astrophysics Data System (ADS)
Breunig, Hans Georg; Batista, Ana; Uchugonova, Aisada; König, Karsten
2016-06-01
We employed two commercially available femtosecond lasers, a Ti:sapphire and a ytterbium-based oscillator, to directly compare from a user's practical point-of-view in one common experimental setup the efficiencies of transient laser-induced cell membrane permeabilization, i.e., of so-called optoporation. The experimental setup consisted of a modified multiphoton laser-scanning microscope employing high-NA focusing optics. An automatic cell irradiation procedure was realized with custom-made software that identified cell positions and controlled relevant hardware components. The Ti:sapphire and ytterbium-based oscillators generated broadband sub-15-fs pulses around 800 nm and 250-fs pulses at 1044 nm, respectively. A higher optoporation rate and posttreatment viability were observed for the shorter fs pulses, confirming the importance of multiphoton effects for efficient optoporation.
JANUS - A setup for low-energy Coulomb excitation at ReA3
NASA Astrophysics Data System (ADS)
Lunderberg, E.; Belarge, J.; Bender, P. C.; Bucher, B.; Cline, D.; Elman, B.; Gade, A.; Liddick, S. N.; Longfellow, B.; Prokop, C.; Weisshaar, D.; Wu, C. Y.
2018-03-01
A new experimental setup for low-energy Coulomb excitation experiments was constructed in a collaboration between the National Superconducting Cyclotron Laboratory (NSCL), Lawrence Livermore National Laboratory (LLNL), and the University of Rochester and was commissioned at the general purpose beam line of NSCL's ReA3 reaccelerator facility. The so-called JANUS setup combines γ-ray detection with the Segmented Ge Array (SeGA) and scattered particle detection using a pair of segmented double-sided Si detectors (Bambino 2). The low-energy Coulomb excitation program that JANUS enables will complement intermediate-energy Coulomb excitation studies that have long been performed at NSCL by providing access to observables that quantify collectivity beyond the first excited state, including the sign and magnitude of excited-state quadrupole moments. In this work, the setup and its performance will be described based on the commissioning run that used stable 78Kr impinging onto a 1.09 mg/cm2208Pb target at a beam energy of 3.9 MeV/u.
Biogas from mesophilic digestion of cow dung using charcoal and gelatin as additives
NASA Astrophysics Data System (ADS)
Islam, Md Rashedul; Salam, Bodius; Rahman, Md Mizanur; Mamun, Abdullah Al
2017-06-01
Biogas, a source of renewable energy is produced from bacteria in the process of biodegradation of organic matter under anaerobic conditions. A research work was performed to find out the production of biogas from cow dung using charcoal and gelatin as additives. Five laboatory scale experimental set-up were constructed using 0, 0.2, 0.4, 0.6 and 0.8% gelatin with cow dung as additive to perform the research work. For all the set-up 0.5% charcoal was also added. All the set-ups were made from 1-liter capacity conical flask. The amount of water and cow dung was used respectively 382 gm. and 318 gm. in every set-up. Total solid content was maintained 8% throughout all set-ups. The digesters were operated at ambient temperature of 26°-32°C. The total gas yield without using gelatin additive was found to be 12 L/kg cow dung. The maximum gas yield was found from 0.2% gelatin additive and 23% more as compared to without gelatin gas production. The retention time varied from 28 to 79 days for the experiments.
NASA Technical Reports Server (NTRS)
Garcia, J.
1984-01-01
Tool with stepped shoulders alines tubes for machining in preparation for welding. Alinement with machine tool axis accurate to within 5 mils (0.13mm) and completed much faster than visual setup by machinist.
Very low noise AC/DC power supply systems for large detector arrays.
Arnaboldi, C; Baù, A; Carniti, P; Cassina, L; Giachero, A; Gotti, C; Maino, M; Passerini, A; Pessina, G
2015-12-01
In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μV(RMS) (CUORE setup) and 90 μV(RMS) (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled).
Speed of light demonstration using Doppler beat
NASA Astrophysics Data System (ADS)
Bernal, Luis; Bilbao, Luis
2018-05-01
From an apparatus previously designed for measuring the Doppler shift using a rotating mirror, an improved, versatile version was developed for speed of light demonstrations in a classroom or a teaching laboratory. By adding a second detector and adequate beam-splitter and mirrors, three different configurations are easily assembled. One configuration is used for time-of-flight measurements between a near and a far detector, allowing one to measure the speed of light provided that the path length between detectors is known. Another variation is the interferometric method obtained by superposing the far and near signals in such a way that a minimum of the combined signal is obtained when the time delay makes the signals arrive out of phase by π radians. Finally, the standard Doppler configuration allows the measurement of the frequency beat as a function of the rotation frequency. The main advantages of the apparatus are (a) the experimental setup is simple and completely accessible to undergraduate students, (b) the light is visible, students can see the rays, which, with the use of appropriate screens, can be blocked at any point along their paths, (c) the experiment can take place entirely within the teaching laboratory or demonstration room (using the interferometric method, the shortest distance to the far mirror was as small as 0.5 m), and (d) different configurations can be built, including some economical setups within the budget of teaching laboratories.
Zhou, Haoyan; Goss, Monika; Hernandez, Christopher; Mansour, Joseph M; Exner, Agata
2016-05-01
Ultrasound elastography (UE) has been widely used as a "digital palpation" tool to characterize tissue mechanical properties in the clinic. UE benefits from the capability of noninvasively generating 2-D elasticity encoded maps. This spatial distribution of elasticity can be especially useful in the in vivo assessment of tissue engineering scaffolds and implantable drug delivery platforms. However, the detection limitations have not been fully characterized and thus its true potential has not been completely discovered. Characterization studies have focused primarily on the range of moduli corresponding to soft tissues, 20-600 kPa. However, polymeric biomaterials used in biomedical applications such as tissue scaffolds, stents, and implantable drug delivery devices can be much stiffer. In order to explore UE's potential to assess mechanical properties of biomaterials in a broader range of applications, this work investigated the detection limit of UE strain imaging beyond soft tissue range. To determine the detection limit, measurements using standard mechanical testing and UE on the same polydimethylsiloxane samples were compared and statistically evaluated. The broadest detection range found based on the current optimized setup is between 47 kPa and 4 MPa which exceeds the modulus of normal soft tissue suggesting the possibility of using this technique for stiffer materials' mechanical characterization. The detectable difference was found to be as low as 157 kPa depending on sample stiffness and experimental setup.
Designing the detection system for the CORUS project
NASA Astrophysics Data System (ADS)
Kalogirou, A.
2013-05-01
CORUS (Cosmic Rays in UK Schools) will be a network of muon detectors based in schools across the UK. Networks similar to CORUS already exist in other countries, such as the Netherlands and USA. The main aim of the project is to teach high schools students about cosmic rays and experimental physics as well as to motivate them to pursue studies in science. A set of muon detectors will be used for this purpose and the objective of this study is to complete the design of the detectors, construct them and test their capabilities and limitations. The most important component of the muon detector is the electronic card used to collect, analyse and output data. A DAQ card used by QuarkNet, a network of detectors in the USA, has been used in the design of the CORUS detectors. Some readily available photomultiplier tubes have also been used, along with an interface board which connects them to the DAQ board. In this study, I tested whether these two components work well together by conducting a series of experiments, intended to be performed by the students, with the nal detector set-up. The end result is that although a number of improvements is needed before the detectors serve their purpose, this particular set-up does not impose any limitations to the experiments that it is intended to be used for.
Computer-intensive simulation of solid-state NMR experiments using SIMPSON.
Tošner, Zdeněk; Andersen, Rasmus; Stevensson, Baltzar; Edén, Mattias; Nielsen, Niels Chr; Vosegaard, Thomas
2014-09-01
Conducting large-scale solid-state NMR simulations requires fast computer software potentially in combination with efficient computational resources to complete within a reasonable time frame. Such simulations may involve large spin systems, multiple-parameter fitting of experimental spectra, or multiple-pulse experiment design using parameter scan, non-linear optimization, or optimal control procedures. To efficiently accommodate such simulations, we here present an improved version of the widely distributed open-source SIMPSON NMR simulation software package adapted to contemporary high performance hardware setups. The software is optimized for fast performance on standard stand-alone computers, multi-core processors, and large clusters of identical nodes. We describe the novel features for fast computation including internal matrix manipulations, propagator setups and acquisition strategies. For efficient calculation of powder averages, we implemented interpolation method of Alderman, Solum, and Grant, as well as recently introduced fast Wigner transform interpolation technique. The potential of the optimal control toolbox is greatly enhanced by higher precision gradients in combination with the efficient optimization algorithm known as limited memory Broyden-Fletcher-Goldfarb-Shanno. In addition, advanced parallelization can be used in all types of calculations, providing significant time reductions. SIMPSON is thus reflecting current knowledge in the field of numerical simulations of solid-state NMR experiments. The efficiency and novel features are demonstrated on the representative simulations. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Björklund, Sebastian, E-mail: sebastianbjorklund@gmail.com; Kocherbitov, Vitaly; Biofilms—Research Center for Biointerfaces, Malmö University, Malmö
A new method to determine water sorption-desorption isotherms with high resolution in the complete range of water activities (relative humidities) is presented. The method is based on quartz crystal microbalance with dissipation monitoring (QCM-D). The QCM-D is equipped with a humidity module in which the sample film is kept in air with controlled humidity. The experimental setup allows for continuous scanning of the relative humidity from either dry to humid conditions or vice versa. The amount of water sorbed or desorbed from the sample is determined from the resonance frequencies of the coated quartz sensor, via analysis of the overtonemore » dependence. In addition, the method allows for characterization of hydration induced changes of the rheological properties from the dissipation data, which is closely connected to the viscoelasticity of the film. The accuracy of the humidity scanning setup is confirmed in control experiments. Sorption-desorption isotherms of pig gastric mucin and lysozyme, obtained by the new method, show good agreement with previous results. Finally, we show that the deposition technique used to coat the quartz sensor influences the QCM-D data and how this issue can be used to obtain further information on the effect of hydration. In particular, we demonstrate that spin-coating represents an attractive alternative to obtain sorption-desorption isotherms, while drop-coating provides additional information on changes of the rheological properties during hydration.« less
Investigation of the γ-decay behavior of 52Cr with the γ 3 setup at HIγS
NASA Astrophysics Data System (ADS)
Wilhelmy, J.; Erbacher, P.; Gayer, U.; Isaak, J.; Löher, B.; Müscher, M.; Pickstone, S. G.; Pietralla, N.; Ries, P.; Romig, C.; Savran, D.; Spieker, M.; Tornow, W.; Werner, V.; Zilges, A.; Zweidinger, M.
2018-02-01
The γ-ray strength function is an important input parameter for the calculation of nucleosynthesis processes. To study the dipole response in more detail, the γ-decay behavior of the fp shell nucleus 52Cr was investigated with the high-efficiency γ 3 setup at the High Intensity γ-ray Source facility at TUNL in Durham, USA. The highly intense quasi mono-energetic γ-ray beam allows for excitations selective in multipolarity (J=1 and J=2) and energy. The γ 3 setup is a multi-detector array consisting of HPGe and LaBr3 detectors with high efficiency and enables the measurement of γ-γ coincidences. Experimental results of 52Cr will be presented and discussed in this contribution.
Interactive Internet Based Pendulum for Learning Mechatronics
NASA Astrophysics Data System (ADS)
Sethson, Magnus R.
2003-01-01
This paper describes an Internet based remote experimental setup of a double lined pendulum mechanism for students experiments at the M. Sc. Level. Some of the first year experience using this web-based setup in classes is referred. In most of the courses given at the division of mechanical engineering systems at Linkoeping Institute of Technology we provide experimental setups to enhance the teaching Of M.Sc. students. Many of these experimental setups involve mechatronical systems. Disciplines like fluid power, electronics, and mechanics and also software technologies are used in each experiment. As our campus has recently been split into two different cities some new concepts for distance learning have been studied. The one described here tries to implement remotely controlled mechatronic setups for teaching basic programming of real-time operating systems and analysis of the dynamics of mechanical systems. The students control the regulators for the pendulum through a web interface and get measurement results and a movie back through their email. The present setup uses a double linked pendulum that is controlled by a DC-motor and monitored through both camera and angular position sensors. All software needed is hosted on a double-processor PC running the RedHat 7.1. distribution complemented with real-time scheduling using DIAPM-RTAI 1.7. The Internet site is presented to the students using PHP, Apache and MySQL. All of the used software originates from the open source domain. The experience from integrating these technologies and security issues is discussed together with the web-camera interface. One of the important experiences from this project so far is the need for a good visual feedback. This is both in terms of video speed but also in resolution. It has been noticed that when the students makes misstates and wants to search the failure they want clear, large images with high resolution to support their personal believes in the cause of the failure. Even if the student does not need a high resolution image to get the idea of the mechanics and the function of the pendulum, they need such high quality images to get confidence in the hardware. It is important to support this when the ability to direct hand-on contact with the hardware is taken away. Some of the experiences in combining open source software; real-time scheduling and measurement hardware into a cost efficient way is also discussed. The pendulum has been available publicly on the Internet but has now been removed due to security issues.
3D analysis of vortical structures in an abdominal aortic aneurysm by stereoscopic PIV
NASA Astrophysics Data System (ADS)
Deplano, Valérie; Guivier-Curien, Carine; Bertrand, Eric
2016-11-01
The present work presents an experimental in vitro three-dimensional analysis of the flow dynamics in an abdominal aortic aneurysm (AAA) through stereoscopic particle image velocimetry (SPIV) measurements. The experimental set-up mimics the pathophysiological context involving a shear thinning blood analogue fluid, compliant AAA and aorto-iliac bifurcation walls and controlled inlet and outlet flow rate and pressure waveforms as well as working fluid temperature. SPIV was carefully calibrated and conducted to assess the three velocity components in the AAA volume. For the first time in the literature, the 3D vortex ring genesis, propagation, and vanishing in the AAA bulge are experimentally described and quantified. In comparison with classical 2-component PIV measurements (2C PIV), the third component of the velocity vector was shown to be of importance in such a geometry, especially, during the deceleration phase of the flow rate. The 3D velocity magnitude reached up more than 20 % of the 2D one showing that 2C PIV are definitively not accurate enough to provide a complete description of flow behaviour in an AAA. In addition to potential clinical implications of a full 3D vortex ring description in AAA evolution, the 3D in vitro experimental quantification of the flow dynamics carried out in the present study offers an interesting tool for the validation of fluid-structure interaction numerical studies dealing with AAA.
Thermographic measurements of high-speed metal cutting
NASA Astrophysics Data System (ADS)
Mueller, Bernhard; Renz, Ulrich
2002-03-01
Thermographic measurements of a high-speed cutting process have been performed with an infrared camera. To realize images without motion blur the integration times were reduced to a few microseconds. Since the high tool wear influences the measured temperatures a set-up has been realized which enables small cutting lengths. Only single images have been recorded because the process is too fast to acquire a sequence of images even with the frame rate of the very fast infrared camera which has been used. To expose the camera when the rotating tool is in the middle of the camera image an experimental set-up with a light barrier and a digital delay generator with a time resolution of 1 ns has been realized. This enables a very exact triggering of the camera at the desired position of the tool in the image. Since the cutting depth is between 0.1 and 0.2 mm a high spatial resolution was also necessary which was obtained by a special close-up lens allowing a resolution of app. 45 microns. The experimental set-up will be described and infrared images and evaluated temperatures of a titanium alloy and a carbon steel will be presented for cutting speeds up to 42 m/s.
Comparative evaluation of user interfaces for robot-assisted laser phonomicrosurgery.
Dagnino, Giulio; Mattos, Leonardo S; Becattini, Gabriele; Dellepiane, Massimo; Caldwell, Darwin G
2011-01-01
This research investigates the impact of three different control devices and two visualization methods on the precision, safety and ergonomics of a new medical robotic system prototype for assistive laser phonomicrosurgery. This system allows the user to remotely control the surgical laser beam using either a flight simulator type joystick, a joypad, or a pen display system in order to improve the traditional surgical setup composed by a mechanical micromanipulator coupled with a surgical microscope. The experimental setup and protocol followed to obtain quantitative performance data from the control devices tested are fully described here. This includes sets of path following evaluation experiments conducted with ten subjects with different skills, for a total of 700 trials. The data analysis method and experimental results are also presented, demonstrating an average 45% error reduction when using the joypad and up to 60% error reduction when using the pen display system versus the standard phonomicrosurgery setup. These results demonstrate the new system can provide important improvements in terms of surgical precision, ergonomics and safety. In addition, the evaluation method presented here is shown to support an objective selection of control devices for this application.
Impact of uncertainties in free stream conditions on the aerodynamics of a rectangular cylinder
NASA Astrophysics Data System (ADS)
Mariotti, Alessandro; Shoeibi Omrani, Pejman; Witteveen, Jeroen; Salvetti, Maria Vittoria
2015-11-01
The BARC benchmark deals with the flow around a rectangular cylinder with chord-to-depth ratio equal to 5. This flow configuration is of practical interest for civil and industrial structures and it is characterized by massively separated flow and unsteadiness. In a recent review of BARC results, significant dispersion was observed both in experimental and numerical predictions of some flow quantities, which are extremely sensitive to various uncertainties, which may be present in experiments and simulations. Besides modeling and numerical errors, in simulations it is difficult to exactly reproduce the experimental conditions due to uncertainties in the set-up parameters, which sometimes cannot be exactly controlled or characterized. Probabilistic methods and URANS simulations are used to investigate the impact of the uncertainties in the following set-up parameters: the angle of incidence, the free stream longitudinal turbulence intensity and length scale. Stochastic collocation is employed to perform the probabilistic propagation of the uncertainty. The discretization and modeling errors are estimated by repeating the same analysis for different grids and turbulence models. The results obtained for different assumed PDF of the set-up parameters are also compared.
Model Based Inference for Wire Chafe Diagnostics
NASA Technical Reports Server (NTRS)
Schuet, Stefan R.; Wheeler, Kevin R.; Timucin, Dogan A.; Wysocki, Philip F.; Kowalski, Marc Edward
2009-01-01
Presentation for Aging Aircraft conference covering chafing fault diagnostics using Time Domain Reflectometry. Laboratory setup and experimental methods are presented, along with initial results that summarize fault modeling and detection capabilities.
Development of a fatigue testing setup for dielectric elastomer membrane actuators
NASA Astrophysics Data System (ADS)
Hill, M.; Rizzello, G.; Seelecke, S.
2017-04-01
Dielectric elastomers (DE's) represent a transduction technology with high potential in many fields, including industries, due to their low weight, flexibility, and small energy consumption. For industrial applications, it is of fundamental importance to quantify the lifetime of DE technology, in terms of electrical and mechanical fatigue, when operating in realistic environmental conditions. This work contributes toward this direction, by presenting the development of an experimental setup which permits systematic fatigue testing of DE membranes. The setup permits to apply both mechanical and electrical stimuli to several membranes simultaneously, while measuring at the same time their mechanical (force, deformation) and electrical response (capacitance, resistance). In its final state, the setup will allow to test up to 15 DE membranes at the same time for several thousands of cycles. Control of the modules, monitoring of the actuators, and data acquisition are realized on a cRio FPGA-system running with LabVIEW. The setup is located in a climate chamber, in order to investigate the fatigue mechanisms at different environmental conditions, i.e., in terms of temperature and humidity. The setup consists of two main parts, namely a fatigue group and a measurement group. The fatigue group stays permanently in the climate chamber, while the measurement group is assembled to the fatigue group and allows to perform measurements at 20°C.
Multicolour LEDs in educational demonstrations of physics and optometry
NASA Astrophysics Data System (ADS)
Paulins, Paulis; Ozolinsh, Maris
2014-07-01
LED light sources are used to design experimental setup for university courses teaching human color vision. The setup allows to demonstrate various vision characteristics and to apply for student practical exercises to study eye spectral sensitivity in different spectral range using heterochromatic flicker photometry. Technique can be used in laboratory works for students to acquire knowledge in visual perception, basics of electronics and measuring, or it can be applied as fully computer control experiment. Besides studies of the eye spectral sensitivity students can practice in trichromatic color matching and other visual perception tasks
Torsion sensing setup based on a Mach-Zehnder interferometer with photonics crystal fiber
NASA Astrophysics Data System (ADS)
Pacheco-Chacon, Eliana I.; Gallegos-Arellano, E.; Sierra-Hernandez, Juan M.; Rojas-Laguna, Roberto; Estudillo-Ayala, Julian M.; Hernandez, Emmanuel; Jauregui-Vazquez, D.; Hernandez-Garcia, J. C.
2017-02-01
A torsion experimental sensing setup based on a Mach-Zehnder interferometer (MZI) with photonics crystal fiber is presented. The MZI was fabricated by fusion splicing a piece of photonic crystal fiber (PCF) between two segments of a single-mode fiber (SMF). Here, a spectral MZI fringe shifting is induced by applying torsion over the SMF-PCF-SMF. As a result a torsion sensitivity of 35.79 pm/ and a high visibility of 10 dB were achieved. Finally, it is shown that the sensing arrangement is compact and robust.
Measurement of the {sup 214}Po half-life by the DEVIS track setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belov, V. A.; Brakhman, E. V.; Zeldovich, O. Ya.
2013-04-15
Measurement of the {sup 214}Po half-life with the DEVIS track setup at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) by means of a procedure based on determining lifetimes of individual nuclei is described. The value obtained for the {sup 214}Po half-life is 163.8 {+-} 3.0 Micro-Sign s. The possibility of reaching the accuracy of the measurements that is required for testing the statement that the decay of some nuclei has a nonexponential character and the source intensity necessary for this are discussed.
Self-powered electrospinning apparatus based on a hand-operated Wimshurst generator
NASA Astrophysics Data System (ADS)
Han, Wen-Peng; Huang, Yuan-Yuan; Yu, Miao; Zhang, Jun-Cheng; Yan, Xu; Yu, Gui-Feng; Zhang, Hong-Di; Yan, Shi-Ying; Long, Yun-Ze
2015-03-01
A conventional electrospinning setup cannot work without a plug (electricity supply). In this article, we report a self-powered electrospinning setup based on a hand-operated Wimshurst generator. The new device has better applicability and portability than a typical conventional electrospinning setup because it is lightweight and can work without an external power supply. Experimental parameters of the apparatus such as the minimum number of handle turns to generate enough energy to spin, rotation speed of the handle and electrospinning distance were investigated. Different polymers such as polystyrene (PS), poly(vinylidene fluoride) (PVDF), polycaprolactone (PCL) and polylactic acid (PLA) were electrospun into ultrathin fibers successfully by this apparatus. The stability, reliability, and repeatability of the new apparatus demonstrate that it can be used as not only a demonstrator for an electrospinning process, but also a beneficial complement to conventional electrospinning especially where or when without a power supply, and may be used in wound healing and rapid hemostasis, etc.A conventional electrospinning setup cannot work without a plug (electricity supply). In this article, we report a self-powered electrospinning setup based on a hand-operated Wimshurst generator. The new device has better applicability and portability than a typical conventional electrospinning setup because it is lightweight and can work without an external power supply. Experimental parameters of the apparatus such as the minimum number of handle turns to generate enough energy to spin, rotation speed of the handle and electrospinning distance were investigated. Different polymers such as polystyrene (PS), poly(vinylidene fluoride) (PVDF), polycaprolactone (PCL) and polylactic acid (PLA) were electrospun into ultrathin fibers successfully by this apparatus. The stability, reliability, and repeatability of the new apparatus demonstrate that it can be used as not only a demonstrator for an electrospinning process, but also a beneficial complement to conventional electrospinning especially where or when without a power supply, and may be used in wound healing and rapid hemostasis, etc. Electronic supplementary information (ESI) available: The video of the electrospinning process by this new self-powered electrospinning apparatus and the vivid details were recorded by a high-speed digital video camera. See DOI: 10.1039/c5nr00387c
NASA Astrophysics Data System (ADS)
Qin, Chong-Chong; Duan, Xiao-Peng; Wang, Le; Zhang, Li-Hua; Yu, Miao; Dong, Rui-Hua; Yan, Xu; He, Hong-Wei; Long, Yun-Ze
2015-10-01
A conventional melt electrospinning setup usually needs a large, heavy high-voltage power supply and cannot work without a plug (electricity supply). In this article, we report a new melt electrospinning setup based on a small hand-operated Wimshurst generator, which can avoid electrical interference between the high-voltage spinning system and the heating system, and make the setup very portable and safe. Poly(lactic acid) (PLA) and polycaprolactone (PCL) fibers with diameters of 15-45 μm were fabricated successfully by using this apparatus. Experimental parameters such as the rotational speed of the generator handle (a half turn to two turns per second) and the spinning distance (2-14 cm) were investigated. In addition, PLA and PCL fibers were directly melt-electrospun onto a pork liver, and the temperature and adhesiveness of the deposited fibers were studied. The results indicate that the apparatus and melt-electrospun polymer microfibers may be used in dressing for wound healing.A conventional melt electrospinning setup usually needs a large, heavy high-voltage power supply and cannot work without a plug (electricity supply). In this article, we report a new melt electrospinning setup based on a small hand-operated Wimshurst generator, which can avoid electrical interference between the high-voltage spinning system and the heating system, and make the setup very portable and safe. Poly(lactic acid) (PLA) and polycaprolactone (PCL) fibers with diameters of 15-45 μm were fabricated successfully by using this apparatus. Experimental parameters such as the rotational speed of the generator handle (a half turn to two turns per second) and the spinning distance (2-14 cm) were investigated. In addition, PLA and PCL fibers were directly melt-electrospun onto a pork liver, and the temperature and adhesiveness of the deposited fibers were studied. The results indicate that the apparatus and melt-electrospun polymer microfibers may be used in dressing for wound healing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05367f
Generation of low-temperature air plasma for food processing
NASA Astrophysics Data System (ADS)
Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya
2015-11-01
The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.
Grassi, Angela; Di Camillo, Barbara; Ciccarese, Francesco; Agnusdei, Valentina; Zanovello, Paola; Amadori, Alberto; Finesso, Lorenzo; Indraccolo, Stefano; Toffolo, Gianna Maria
2016-03-12
Inference of gene regulation from expression data may help to unravel regulatory mechanisms involved in complex diseases or in the action of specific drugs. A challenging task for many researchers working in the field of systems biology is to build up an experiment with a limited budget and produce a dataset suitable to reconstruct putative regulatory modules worth of biological validation. Here, we focus on small-scale gene expression screens and we introduce a novel experimental set-up and a customized method of analysis to make inference on regulatory modules starting from genetic perturbation data, e.g. knockdown and overexpression data. To illustrate the utility of our strategy, it was applied to produce and analyze a dataset of quantitative real-time RT-PCR data, in which interferon-α (IFN-α) transcriptional response in endothelial cells is investigated by RNA silencing of two candidate IFN-α modulators, STAT1 and IFIH1. A putative regulatory module was reconstructed by our method, revealing an intriguing feed-forward loop, in which STAT1 regulates IFIH1 and they both negatively regulate IFNAR1. STAT1 regulation on IFNAR1 was object of experimental validation at the protein level. Detailed description of the experimental set-up and of the analysis procedure is reported, with the intent to be of inspiration for other scientists who want to realize similar experiments to reconstruct gene regulatory modules starting from perturbations of possible regulators. Application of our approach to the study of IFN-α transcriptional response modulators in endothelial cells has led to many interesting novel findings and new biological hypotheses worth of validation.
The experimental set-up of the RIB in-flight facility EXOTIC
NASA Astrophysics Data System (ADS)
Pierroutsakou, D.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Mazzocco, M.; Nicoletto, M.; Parascandolo, C.; Signorini, C.; Soramel, F.; Strano, E.; Toniolo, N.; Torresi, D.; Tortone, G.; Anastasio, A.; Bettini, M.; Cassese, C.; Castellani, L.; Corti, D.; Costa, L.; De Fazio, B.; Galet, G.; Glodariu, T.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Pontoriere, G.; Rocco, R.; Romoli, M.; Roscilli, L.; Sandoli, M.; Stroe, L.; Tessaro, M.; Zatti, P. G.
2016-10-01
We describe the experimental set-up of the Radioactive Ion Beam (RIB) in-flight facility EXOTIC consisting of: (a) two position-sensitive Parallel Plate Avalanche Counters (PPACs), dedicated to the event-by-event tracking of the produced RIBs and to time of flight measurements and (b) the new high-granularity compact telescope array EXPADES (EXotic PArticle DEtection System), designed for nuclear physics and nuclear astrophysics experiments employing low-energy light RIBs. EXPADES consists of eight ΔE -Eres telescopes arranged in a cylindrical configuration around the target. Each telescope is made up of two Double Sided Silicon Strip Detectors (DSSSDs) with a thickness of 40/60 μm and 300 μm for the ΔE and Eres layer, respectively. Additionally, eight ionization chambers were constructed to be used as an alternative ΔE stage or, in conjunction with the entire DSSSD array, to build up more complex triple telescopes. New low-noise multi-channel charge-sensitive preamplifiers and spectroscopy amplifiers, associated with constant fraction discriminators, peak-and-hold and Time to Amplitude Converter circuits were developed for the electronic readout of the ΔE stage. Application Specific Integrated Circuit-based electronics was employed for the treatment of the Eres signals. An 8-channel, 12-bit multi-sampling 50 MHz Analog to Digital Converter, a Trigger Supervisor Board for handling the trigger signals of the whole experimental set-up and an ad hoc data acquisition system were also developed. The performance of the PPACs, EXPADES and of the associated electronics was obtained offline with standard α calibration sources and in-beam by measuring the scattering process for the systems 17O+58Ni and 17O+208Pb at incident energies around their respective Coulomb barriers and, successively, during the first experimental runs with the RIBs of the EXOTIC facility.
Geometric Limitations Of Ultrasonic Measurements
NASA Astrophysics Data System (ADS)
von Nicolai, C.; Schilling, F.
2006-12-01
Laboratory experiments are a key for interpreting seismic field observations. Due to their potential in many experimental set-ups, the determination of elastic properties of minerals and rocks by ultrasonic measurements is common in Geosciences. The quality and thus use of ultrasonic data, however, strongly depends on the sample geometry and wavelength of the sound wave. Two factors, the diameter-to-wavelength- ratio and the diameter-to-length-ratio, are believed to be the essential parameters to affect ultrasonic signal quality. In this study, we determined under well defined conditions the restricting dimensional parameters to test the validity of published assumptions. By the use of commercial ultrasonic transducers a number of experiments were conducted on aluminium, alumina, and acrylic glass rods of varying diameter (30-10 mm) and constant length. At each diameter compressional wave travel times were measured by pulse- transmission method. From the observed travel times ultrasonic wave velocities were calculated. One additional experiment was performed with a series of square-shaped aluminium blocks in order to investigate the effect of the geometry of the samples cross-sectional area. The experimental results show that the simple diameter-to-wavelength ratios are not valid even under idealized experimental conditions and more complex relation has to be talen into account. As diameter decreases the P-waves direct phase is increasingly interfered and weakened by sidewall reflections. At very small diameters compressional waves are replaced by bar waves and P-wave signals become non resolvable. Considering the suppression of both effects, a critical D/ë-ratio was determined and compared to experimental set-ups from various publications. These tests indicate that some published and cited data derived from small diameter set-ups are out off the range of physical possibility.
Gallas, Raya R; Arico, Giulia; Burigo, Lucas N; Gehrke, Tim; Jakůbek, Jan; Granja, Carlos; Tureček, Daniel; Martišíková, Maria
2017-10-01
Radiotherapy with protons and carbon ions enables to deliver dose distributions of high conformation to the target. Treatment with helium ions has been suggested due to their physical and biological advantages. A reliable benchmarking of the employed physics models with experimental data is required for treatment planning. However, experimental data for helium interactions is limited, in part due to the complexity and large size of conventional experimental setups. We present a novel method for the investigation of helium interactions with matter using miniaturized instrumentation based on highly integrated pixel detectors. The versatile setup consisted of a monitoring detector in front of the PMMA phantom of varying thickness and a detector stack for investigation of outgoing particles. The ion type downstream from the phantom was determined by high-resolution pattern recognition analysis of the single particle signals in the pixelated detectors. The fractions of helium and hydrogen ions behind the used targets were determined. As expected for the stable helium nucleus, only a minor decrease of the primary ion fluence along the target depth was found. E.g. the detected fraction of hydrogen ions on axis of a 220MeV/u 4 He beam was below 6% behind 24.5cm of PMMA. Monte-Carlo simulations using Geant4 reproduce the experimental data on helium attenuation and yield of helium fragments qualitatively, but significant deviations were found for some combinations of target thickness and beam energy. The presented method is promising to contribute to the reduction of the uncertainty of treatment planning for helium ion radiotherapy. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Multigeneration effects of insect growth regulators on the springtail Folsomia candida.
Campiche, Sophie; L'Ambert, Grégory; Tarradellas, Joseph; Becker-van Slooten, Kristin
2007-06-01
Multigeneration tests are very useful for the assessment of long term toxicity of pollutants such as endocrine disruptor compounds. In this study, multigeneration reproduction tests adapted from the ISO standard 11267 were conducted with the Collembola Folsomia candida. Springtails were exposed to artificial soil contaminated with four insect growth regulators (methoprene, fenoxycarb, teflubenzuron, and precocene II) according to two different experimental set-ups. In the first set-up, the parental generation (F(0)) of Collembola was exposed to a pollutant for 28 days. Juveniles from the F(1) generation were transferred to uncontaminated soil for another 28-day period to generate the F(2) generation. In the second set-up, the F(0) generation was exposed to a pollutant for 10 days before being transferred to uncontaminated soil to reproduce. After 18-28 days, juveniles from the F(1) were transferred to clean soil to generate the F(2) generation. An effect on the number of hatched juveniles of the F(2) generation was observed for methoprene after exposure of the F(0) for 28 days and hatching of F(1) in contaminated soil. For methoprene and teflubenzuron, significant effects were even observed on the F(2) generation with the second experimental set-up, when only the F(0) generation was exposed for 10 days. This shows that the impact of these substances is transgenerational, which can have important consequences for the population of these or other organisms. No effect on the F(2) generation was observed with fenoxycarb and precocene II with the 10-day exposure experiment. Our results show that the developed experimental procedures are appropriate to assess the long term effects of endocrine disrupting compounds on the reproduction of the non-target species F. candida. Another important finding is that two substances with the same predicted mode of action (i.e., the two juvenile hormone analogues fenoxycarb and methoprene) do not necessarily affect the same endpoints in F. candida.
The Drop Tower Bremen -Experiment Operation
NASA Astrophysics Data System (ADS)
Könemann, Thorben; von Kampen, Peter; Rath, Hans J.
The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a microgravity project at the Drop Tower Bremen, interesting experimentalists should keep in mind generally reducing dimensions and masses of their common laboratory setups to meet the capsule constraints: overall payload height 980mm/1730mm (short/long drop capsule) and 950mm (catapult capsule); area of each capsule platform 0,359sqm; maximum payload mass 274kg/234kg (short/long drop capsule) and 163,8kg (catapult capsule). The base equipments of each capsule are the Capsule Control System (CCS) to remote control the experiment and the rechargeable battery pack (24V/40A) for the experiment operation. Moreover, the exper-iment components must be able to withstand maximum decelerations of 50g while the short capsule impact of about 200ms, and maximum accelerations of 30g while catapult launch with a duration of about 300ms. In our second talk concerning ZARM`s drop tower facility we will go on with detailed infor-mations about the technical base setups of the drop and the catapult capsule structure to completely handle a freely falling experiment. Furthermore, we will summarize interesting current drop tower projects as an outlook to present you the range of opportunities at the ground-based short-term microgravity laboratory of ZARM.
Winter, York; Schaefers, Andrea T U
2011-03-30
Behavioral experiments based on operant procedures can be time-consuming for small amounts of data. While individual testing and handling of animals can influence attention, emotion, and behavior, and interfere with experimental outcome, many operant protocols require individual testing. We developed an RFID-technology- and transponder-based sorting system that allows removing the human factor for longer-term experiments. Identity detectors and automated gates route mice individually from their social home cage to an adjacent operant compartment with 24/7 operation. CD1-mice learnt quickly to individually pass through the sorting system. At no time did more than a single mouse enter the operant compartment. After 3 days of adjusting to the sorting system, groups of 4 mice completed about 50 experimental trials per day in the operant compartment without experimenter intervention. The automated sorting system eliminates handling, isolation, and disturbance of the animals, eliminates experimenter-induced variability, saves experimenter time, and is financially economical. It makes possible a new approach for high-throughput experimentation, and is a viable tool for increasing quality and efficiency of many behavioral and neurobiological investigations. It can connect a social home cage, through individual sorting automation, to diverse setups including classical operant chambers, mazes, or arenas with video-based behavior classification. Such highly automated systems will permit efficient high-throughput screening even for transgenic animals with only subtle neurological or psychiatric symptoms where elaborate or longer-term protocols are required for behavioral diagnosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Isothermal titration calorimetry for measuring macromolecule-ligand affinity.
Duff, Michael R; Grubbs, Jordan; Howell, Elizabeth E
2011-09-07
Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given.
Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity
Duff,, Michael R.; Grubbs, Jordan; Howell, Elizabeth E.
2011-01-01
Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given. PMID:21931288
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Xu; Islam, Ahmad E.; Seabron, Eric
2015-04-07
Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that includemore » thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups.« less
Four Beam Generation for Simultaneous Four-Hall Operation at CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazimi, Reza; Grames, Joseph M.; Hansknecht, John C.
As part of the CEBAF 12 GeV upgrade at Jefferson Lab, a new experimental hall was added to the existing three halls. To deliver beam to all four halls simultaneous-ly, a new timing pattern for electron bunches is needed at the injector. This pattern change has consequences for the frequency of the lasers at the photogun, beam behavior in the chopping system, beam optics due to space charge, and setup procedures. We have successfully demonstrated this new pattern using the three existing drive lasers. The implementation of the full system will occur when the fourth laser is added and upgradesmore » to the Low Level RF (LLRF) are complete. In this paper we explain the new bunch pattern, the challenges for setting and measuring the pattern such as 180° RF phase ambiguity, addition of the fourth laser to the laser table and LLRF upgrade.« less
Imaging the beating heart in the mouse using intravital microscopy techniques
Vinegoni, Claudio; Aguirre, Aaron D; Lee, Sungon; Weissleder, Ralph
2017-01-01
Real-time microscopic imaging of moving organs at single-cell resolution represents a major challenge in studying complex biology in living systems. Motion of the tissue from the cardiac and respiratory cycles severely limits intravital microscopy by compromising ultimate spatial and temporal imaging resolution. However, significant recent advances have enabled single-cell resolution imaging to be achieved in vivo. In this protocol, we describe experimental procedures for intravital microscopy based on a combination of thoracic surgery, tissue stabilizers and acquisition gating methods, which enable imaging at the single-cell level in the beating heart in the mouse. Setup of the model is typically completed in 1 h, which allows 2 h or more of continuous cardiac imaging. This protocol can be readily adapted for the imaging of other moving organs, and it will therefore broadly facilitate in vivo high-resolution microscopy studies. PMID:26492138
Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces
Yallapragada, Venkata Jayasurya; Ravishankar, Ajith P.; Mulay, Gajendra L.; Agarwal, Girish S.; Achanta, Venu Gopal
2016-01-01
Metasurfaces with sub-wavelength features are useful in modulating the phase, amplitude or polarization of electromagnetic fields. While several applications are reported for light manipulation and control, the sharp phase changes would be useful in enhancing the beam shifts at reflection from a metasurface. In designed periodic patterns on metal film, at surface plasmon resonance, we demonstrate Goos-Hanchen shift of the order of 70 times the incident wavelength and the angular shifts of several hundred microradians. We have designed the patterns using rigorous coupled wave analysis (RCWA) together with S-matrices and have used a complete vector theory to calculate the shifts as well as demonstrate a versatile experimental setup to directly measure the shifts. The giant shifts demonstrated could prove to be useful in enhancing the sensitivity of experiments ranging from atomic force microscopy to gravitational wave detection. PMID:26758471
Waldbaur, Ansgar; Kittelmann, Jörg; Radtke, Carsten P; Hubbuch, Jürgen; Rapp, Bastian E
2013-06-21
We describe a generic microfluidic interface design that allows the connection of microfluidic chips to established industrial liquid handling stations (LHS). A molding tool has been designed that allows fabrication of low-cost disposable polydimethylsiloxane (PDMS) chips with interfaces that provide convenient and reversible connection of the microfluidic chip to industrial LHS. The concept allows complete freedom of design for the microfluidic chip itself. In this setup all peripheral fluidic components (such as valves and pumps) usually required for microfluidic experiments are provided by the LHS. Experiments (including readout) can be carried out fully automated using the hardware and software provided by LHS manufacturer. Our approach uses a chip interface that is compatible with widely used and industrially established LHS which is a significant advancement towards near-industrial experimental design in microfluidics and will greatly facilitate the acceptance and translation of microfluidics technology in industry.
Real-time real-sky dual-conjugate adaptive optics experiment
NASA Astrophysics Data System (ADS)
Knutsson, Per; Owner-Petersen, Mette
2006-06-01
The current status of a real-time real-sky dual-conjugate adaptive optics experiment is presented. This experiment is a follow-up on a lab experiment at Lund Observatory that demonstrated dual-conjugate adaptive optics on a static atmosphere. The setup is to be placed at Lund Observatory. This means that the setup will be available 24h a day and does not have to share time with other instruments. The optical design of the experiment is finalized. A siderostat will be used to track the guide object and all other optical components are placed on an optical table. A small telescope, 35 cm aperture, is used and following this a tip-tilt mirror and two deformable mirrors are placed. The wave-front sensor is a Shack-Hartmann sensor using a SciMeasure Li'l Joe CCD39 camera system. The maximum update rate of the setup will be 0.5 kHz and the control system will be running under Linux. The effective wavelength will be 750 nm. All components in the setup have been acquired and the completion of the setup is underway. Collaborating partners in this project are the Applied Optics Group at National University of Ireland, Galway and the Swedish Defense Research Agency.
Spatial encoding using the nonlinear field perturbations from magnetic materials.
Karimi, Hirad; Dominguez-Viqueira, William; Cunningham, Charles H
2014-08-01
A proof-of-concept study was performed to assess the technical feasibility of using magnetic materials to generate spatial encoding fields. Spatially varying magnetic fields were generated by the placement of markers with different volume susceptibilities within the imaging volume. No linear gradients were used for spatial encoding during the signal acquisition. A signal-encoding model is described for reconstructing the images encoded with these field perturbations. Simulation and proof-of-concept experimental results are presented. Experiments were performed using field perturbations from a cylindrical marker as an example of the new encoding fields. Based on this experimental setup, annular rings were reconstructed from signals encoded with the new fields. Simulation results were presented for different acquisition parameters. Proof-of-concept was supported by the correspondence of regions in an image reconstructed from experimental data compared to those in a conventional gradient-echo image. Experimental results showed that inclusions of dimensions 1.5 mm in size could be resolved with the experimental setup. This study shows the technical feasibility of using magnetic markers to produce encoding fields. Magnetic materials will allow generating spatial encoding fields, which can be tailored to an imaging application with less complexity and at lower cost compared to the use of gradient inserts. Copyright © 2013 Wiley Periodicals, Inc.
Contact Angle Measurements Using a Simplified Experimental Setup
ERIC Educational Resources Information Center
Lamour, Guillaume; Hamraoui, Ahmed; Buvailo, Andrii; Xing, Yangjun; Keuleyan, Sean; Prakash, Vivek; Eftekhari-Bafrooei, Ali; Borguet, Eric
2010-01-01
A basic and affordable experimental apparatus is described that measures the static contact angle of a liquid drop in contact with a solid. The image of the drop is made with a simple digital camera by taking a picture that is magnified by an optical lens. The profile of the drop is then processed with ImageJ free software. The ImageJ contact…
Control of the collapse distance in atmospheric propagation
NASA Astrophysics Data System (ADS)
Fibich, Gadi; Sivan, Yonatan; Ehrlich, Yosi; Louzon, Einat; Fraenkel, Moshe; Eisenmann, Shmuel; Katzir, Yiftach; Zigler, Arie
2006-06-01
We show experimentally for ultrashort laser pulses propagating in air, that the collapse/filamentation distance of intense laser pulses in the atmosphere can be extended and controlled with a simple double-lens setup. We derive a simple formula for the filamentation distance, and confirm its agreement with the experimental results. We also observe that delaying the onset of filamentation increases the filament length.
Femtosecond-laser assisted cell reprogramming
NASA Astrophysics Data System (ADS)
Breunig, Hans Georg; Uchugonova, Aisada; Batista, Ana; König, Karsten
2017-02-01
Femtosecond-laser pulses can assist to transfect cells by creating transient holes in the cell membrane, thus making them temporarily permeable for extraneous genetic material. This procedure offers the advantage of being completely "virus free" since no viruses are used for the delivery and integration of gene factors into the host genome and, thereby, avoiding serious side effects which so far prevent clinical application. Unfortunately, focusing of the laser radiation onto individual cell membranes is quite elaborate and time consuming. Regarding these obstacles, we briefly review two optical setups for fast, efficient and high throughput laser-assisted cell transfection based on femtosecond laser pulse excitation. The first setup aims at assisting the transfection of adherent cells. It comprises of a modified laser-scanning microscope with beamshaping optics as well as home-made software to automate the detection, targeting and laser-irradiation process. The second setup aims at laser-assisted transfection of non-adherent cells in suspension which move in a continuous flow through the laser focus region. The setup allows to address a large number of cells, however, with much lower transfection efficiency than the individual-cell targeting approach.
Recent developments in heterodyne laser interferometry at Harbin Institute of Technology
NASA Astrophysics Data System (ADS)
Hu, P. C.; Tan, J. B. B.; Yang, H. X. X.; Fu, H. J. J.; Wang, Q.
2013-01-01
In order to fulfill the requirements for high-resolution and high-precision heterodyne interferometric technologies and instruments, the laser interferometry group of HIT has developed some novel techniques for high-resolution and high-precision heterodyne interferometers, such as high accuracy laser frequency stabilization, dynamic sub-nanometer resolution phase interpolation and dynamic nonlinearity measurement. Based on a novel lock point correction method and an asymmetric thermal structure, the frequency stabilized laser achieves a long term stability of 1.2×10-8, and it can be steadily stabilized even in the air flowing up to 1 m/s. In order to achieve dynamic sub-nanometer resolution of laser heterodyne interferometers, a novel phase interpolation method based on digital delay line is proposed. Experimental results show that, the proposed 0.62 nm, phase interpolator built with a 64 multiple PLL and an 8-tap digital delay line achieves a static accuracy better than 0.31nm and a dynamic accuracy better than 0.62 nm over the velocity ranging from -2 m/s to 2 m/s. Meanwhile, an accuracy beam polarization measuring setup is proposed to check and ensure the light's polarization state of the dual frequency laser head, and a dynamic optical nonlinearity measuring setup is built to measure the optical nonlinearity of the heterodyne system accurately and quickly. Analysis and experimental results show that, the beam polarization measuring setup can achieve an accuracy of 0.03° in ellipticity angles and an accuracy of 0.04° in the non-orthogonality angle respectively, and the optical nonlinearity measuring setup can achieve an accuracy of 0.13°.
NASA Astrophysics Data System (ADS)
Tauro, Flavia; Olivieri, Giorgio; Porfiri, Maurizio; Grimaldi, Salvatore
2014-05-01
Large Scale Particle Image Velocimetry (LSPIV) is a powerful methodology to nonintrusively monitor surface flows. Its use has been beneficial to the development of rating curves in riverine environments and to map geomorphic features in natural waterways. Typical LSPIV experimental setups rely on the use of mast-mounted cameras for the acquisition of natural stream reaches. Such cameras are installed on stream banks and are angled with respect to the water surface to capture large scale fields of view. Despite its promise and the simplicity of the setup, the practical implementation of LSPIV is affected by several challenges, including the acquisition of ground reference points for image calibration and time-consuming and highly user-assisted procedures to orthorectify images. In this work, we perform LSPIV studies on stream sections in the Aniene and Tiber basins, Italy. To alleviate the limitations of traditional LSPIV implementations, we propose an improved video acquisition setup comprising a telescopic, an inexpensive GoPro Hero 3 video camera, and a system of two lasers. The setup allows for maintaining the camera axis perpendicular to the water surface, thus mitigating uncertainties related to image orthorectification. Further, the mast encases a laser system for remote image calibration, thus allowing for nonintrusively calibrating videos without acquiring ground reference points. We conduct measurements on two different water bodies to outline the performance of the methodology in case of varying flow regimes, illumination conditions, and distribution of surface tracers. Specifically, the Aniene river is characterized by high surface flow velocity, the presence of abundant, homogeneously distributed ripples and water reflections, and a meagre number of buoyant tracers. On the other hand, the Tiber river presents lower surface flows, isolated reflections, and several floating objects. Videos are processed through image-based analyses to correct for lens distortions and analyzed with a commercially available PIV software. Surface flow velocity estimates are compared to supervised measurements performed by visually tracking objects floating on the stream surface and to rating curves developed by the Ufficio Idrografico e Mareografico (UIM) at Regione Lazio, Italy. Experimental findings demonstrate that the presence of tracers is crucial for surface flow velocity estimates. Further, considering surface ripples and patterns may lead to underestimations in LSPIV analyses.
Experimental verification of Pyragas-Schöll-Fiedler control.
von Loewenich, Clemens; Benner, Hartmut; Just, Wolfram
2010-09-01
We present an experimental realization of time-delayed feedback control proposed by Schöll and Fiedler. The scheme enables us to stabilize torsion-free periodic orbits in autonomous systems, and to overcome the so-called odd number limitation. The experimental control performance is in quantitative agreement with the bifurcation analysis of simple model systems. The results uncover some general features of the control scheme which are deemed to be relevant for a large class of setups.
The collaboration of grouping laws in vision.
Grompone von Gioi, Rafael; Delon, Julie; Morel, Jean-Michel
2012-01-01
Gestalt theory gives a list of geometric grouping laws that could in principle give a complete account of human image perception. Based on an extensive thesaurus of clever graphical images, this theory discusses how grouping laws collaborate, and conflict toward a global image understanding. Unfortunately, as shown in the bibliographical analysis herewith, the attempts to formalize the grouping laws in computer vision and psychophysics have at best succeeded to compute individual partial structures (or partial gestalts), such as alignments or symmetries. Nevertheless, we show here that a never formalized clever Gestalt experimental procedure, the Nachzeichnung suggests a numerical set up to implement and test the collaboration of partial gestalts. The new computational procedure proposed here analyzes a digital image, and performs a numerical simulation that we call Nachtanz or Gestaltic dance. In this dance, the analyzed digital image is gradually deformed in a random way, but maintaining the detected partial gestalts. The resulting dancing images should be perceptually indistinguishable if and only if the grouping process was complete. Like the Nachzeichnung, the Nachtanz permits a visual exploration of the degrees of freedom still available to a figure after all partial groups (or gestalts) have been detected. In the new proposed procedure, instead of drawing themselves, subjects will be shown samples of the automatic Gestalt dances and required to evaluate if the figures are similar. Several numerical preliminary results with this new Gestaltic experimental setup are thoroughly discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Configuration and Sizing of a Test Fixture for Panels Under Combined Loads
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.
2006-01-01
Future air and space structures are expected to utilize composite panels that are subjected to combined mechanical loads, such as bi-axial compression/tension, shear and pressure. Therefore, the ability to accurately predict the buckling and strength failures of such panels is important. While computational analysis can provide tremendous insight into panel response, experimental results are necessary to verify predicted performances of these panels to judge the accuracy of computational methods. However, application of combined loads is an extremely difficult task due to the complex test fixtures and set-up required. Presented herein is a comparison of several test set-ups capable of testing panels under combined loads. Configurations compared include a D-box, a segmented cylinder and a single panel set-up. The study primarily focuses on the preliminary sizing of a single panel test configuration capable of testing flat panels under combined in-plane mechanical loads. This single panel set-up appears to be best suited to the testing of both strength critical and buckling critical panels. Required actuator loads and strokes are provided for various square, flat panels.
Investigating and understanding fouling in a planar setup using ultrasonic methods.
Wallhäusser, E; Hussein, M A; Becker, T
2012-09-01
Fouling is an unwanted deposit on heat transfer surfaces and occurs regularly in foodstuff heat exchangers. Fouling causes high costs because cleaning of heat exchangers has to be carried out and cleaning success cannot easily be monitored. Thus, used cleaning cycles in foodstuff industry are usually too long leading to high costs. In this paper, a setup is described with which it is possible, first, to produce dairy protein fouling similar to the one found in industrial heat exchangers and, second, to detect the presence and absence of such fouling using an ultrasonic based measuring method. The developed setup resembles a planar heat exchanger in which fouling can be made and cleaned reproducible. Fouling presence, absence, and cleaning progress can be monitored by using an ultrasonic detection unit. The setup is described theoretically based on electrical and mechanical lumped circuits to derive the wave equation and the transfer function to perform a sensitivity analysis. Sensitivity analysis was done to determine influencing quantities and showed that fouling is measurable. Also, first experimental results are compared with results from sensitivity analysis.
Determination of the magnetocaloric entropy change by field sweep using a heat flux setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monteiro, J. C. B., E-mail: jolmiui@gmail.com; Reis, R. D. dos; Mansanares, A. M.
2014-08-18
We report on a simple setup using a heat flux sensor adapted to a Quantum Design Physical Property Measurement System to determine the magnetocaloric entropy change (ΔS). The major differences for the existing setups are the simplicity of this assembly and the ease to obtain the isothermal entropy change either by a field sweep or a temperature sweep process. We discuss the use of these two processes applied to Gd and Gd{sub 5}Ge{sub 2}Si{sub 2} samples. The results are compared to the temperature sweep measurements and they show the advantages of this setup and of the field sweep procedure. Wemore » found a significant reduction of ΔS and on the refrigerating cooling power (RCP) at low field changes in a field sweep process when the sample is not driven to the same initial state for each temperature. We show that the field sweep process without any measuring protocol is the only correct way to experimentally determine ΔS and RCP for a practical regenerative refrigerator.« less
JANUS — A setup for low-energy Coulomb excitation at ReA3
Lunderberg, E.; Belarge, J.; Bender, P. C.; ...
2017-12-21
We report that a new experimental setup for low-energy Coulomb excitation experiments was constructed in a collaboration between the National Superconducting Cyclotron Laboratory (NSCL), Lawrence Livermore National Laboratory (LLNL), and the University of Rochester and was commissioned at the general purpose beam line of NSCL's ReA3 reaccelerator facility. The so-called JANUS setup combines γ-ray detection with the Segmented Ge Array (SeGA) and scattered particle detection using a pair of segmented double-sided Si detectors (Bambino 2). The low-energy Coulomb excitation program that JANUS enables will complement intermediate-energy Coulomb excitation studies that have long been performed at NSCL by providing access tomore » observables that quantify collectivity beyond the first excited state, including the sign and magnitude of excited-state quadrupole moments. Here, in this work, the setup and its performance will be described based on the commissioning run that used stable 78Kr impinging onto a 1.09 mg/cm 2 208Pb target at a beam energy of 3.9 MeV/u.« less
A novel setup for femtosecond pump-repump-probe IR spectroscopy with few cycle CEP stable pulses.
Bradler, Maximilian; Werhahn, Jasper C; Hutzler, Daniel; Fuhrmann, Simon; Heider, Rupert; Riedle, Eberhard; Iglev, Hristo; Kienberger, Reinhard
2013-08-26
We present a three-color mid-IR setup for vibrational pump-repump-probe experiments with a temporal resolution well below 100 fs and a freely selectable spectral resolution of 20 to 360 cm(-1) for the pump and repump. The usable probe range without optical realignment is 900 cm(-1). The experimental design employed is greatly simplified compared to the widely used setups, highly robust and includes a novel means for generation of tunable few-cycle pulses with stable carrier-envelope phase. A Ti:sapphire pump system operating with 1 kHz and a modest 150 fs pulse duration supplies the total pump energy of just 0.6 mJ. The good signal-to-noise ratio of the setup allows the determination of spectrally resolved transient probe changes smaller than 6·10(-5) OD at 130 time delays in just 45 minutes. The performance of the spectrometer is demonstrated with transient IR spectra and decay curves of HDO molecules in lithium nitrate trihydrate and ice and a first all MIR pump-repump-probe measurement.
Experimental generation of partially coherent beams with different complex degrees of coherence.
Wang, Fei; Liu, Xianlong; Yuan, Yangsheng; Cai, Yangjian
2013-06-01
We established an experimental setup for generating partially coherent beams with different complex degrees of coherence, and we report experimental generation of an elliptical Gaussian Schell-model (GSM) beam and a Laguerre-GSM beam for the first time. It has been demonstrated experimentally that an elliptical GSM beam and a Laguerre-GSM beam produce an elliptical beam spot and a dark hollow beam spot in the focal plane (or in the far field), respectively, which agrees with theoretical predictions. Our results are useful for beam shaping and particle trapping.
A Direct Method for Viewing Ferromagnetic Phase Transition.
ERIC Educational Resources Information Center
Lue, Chin-Shan
1994-01-01
Provides a method, using the Rowland ring as a specimen, to observe the phase transition process directly on the oscilloscope and even extract the critical exponent of ferromagnetic transition. Includes theory, experimental setup, and results. (MVL)
Scintillator Detector Development at Central Michigan University
NASA Astrophysics Data System (ADS)
McClain, David; Estrade, Alfredo; Neupane, Shree
2017-09-01
Experimental nuclear physics relies both on the accuracy and precision of the instruments for radiation detection used in experimental setups. At Central Michigan University we have setup a lab to work with scintillator detectors for radioactive ion beam experiments, using a Picosecond Laser and radioactive sources for testing. We have tested the resolution for prototypes of large area scintillators that could be used for fast timing measurements in the focal plane of spectrometers, such as the future High Rigidity Spectrometer at the Facility for Rare Isotope Beams (FRIB). We measured the resolution as a function of the length of the detector, and also the position of the beam along the scintillator. We have also designed a scintillating detector to veto light ion background in beta-decay experiments with the Advanced Implantation Detector Array (AIDA) at RIKEN in Japan. We tested different configurations of Silicon Photomultipliers and scintillating fiber optics to find the best detection efficiency.
Modeling and analysis of wet friction clutch engagement dynamics
NASA Astrophysics Data System (ADS)
Iqbal, Shoaib; Al-Bender, Farid; Ompusunggu, Agusmian P.; Pluymers, Bert; Desmet, Wim
2015-08-01
In recent years, there has been a significant increase in the usage of wet-friction clutches. Presently researchers across the globe are involved in improving the performance and lifetime of clutches through testing and simulation. To understand the clutch vibrational and dynamical behavior, an SAE#2 test setup mathematical model based on extended reset-integrator friction model is developed in this paper. In order to take into account the different phases of fluid lubrication during engagement cycle, the model includes the experimentally determined Stribeck function. In addition the model considers the viscous effect and the delay in the actuation pressure signal. The model is validated with the experiments performed on the SAE#2 test setup in both time and frequency domains. By analyzing the set of experimental results, we confirmed that the amplitude of shudder vibration is independent of the amplitude of applied contact pressure fluctuation.
Fission Fragment characterization with FALSTAFF at NFS
NASA Astrophysics Data System (ADS)
Doré, D.; Farget, F.; Lecolley, F.-R.; Ledoux, X.; Lehaut, G.; Materna, T.; Pancin, J.; Panebianco, S.
2013-03-01
The Neutrons for Science (NFS) facility will be one of the first installations of the SPIRAL2 facility. NFS will be composed of a time-of-flight baseline and irradiation stations and will allow studying neutron-induced reactions for energies going from some hundreds of keV up to 40 MeV. Continuous and quasi-monoenergetic energy neutron beams will be available. Taking advantage of this new installation, the development of an experimental setup for a full characterization of actinide fission fragments in this energy domain has been undertaken. To achieve this goal a new detection system called FALSTAFF (Four Arm cLover for the STudy of Actinide Fission Fragments) in under development. In this paper, the characteristics of the NFS facility will be exposed and the motivations for the FALSTAFF experiment will be presented. The experimental setup will be described and the expected resolutions based on realistic GEANT4 simulations will be discussed.
Object recognition through a multi-mode fiber
NASA Astrophysics Data System (ADS)
Takagi, Ryosuke; Horisaki, Ryoichi; Tanida, Jun
2017-04-01
We present a method of recognizing an object through a multi-mode fiber. A number of speckle patterns transmitted through a multi-mode fiber are provided to a classifier based on machine learning. We experimentally demonstrated binary classification of face and non-face targets based on the method. The measurement process of the experimental setup was random and nonlinear because a multi-mode fiber is a typical strongly scattering medium and any reference light was not used in our setup. Comparisons between three supervised learning methods, support vector machine, adaptive boosting, and neural network, are also provided. All of those learning methods achieved high accuracy rates at about 90% for the classification. The approach presented here can realize a compact and smart optical sensor. It is practically useful for medical applications, such as endoscopy. Also our study indicated a promising utilization of artificial intelligence, which has rapidly progressed, for reducing optical and computational costs in optical sensing systems.
Digital image compression for a 2f multiplexing optical setup
NASA Astrophysics Data System (ADS)
Vargas, J.; Amaya, D.; Rueda, E.
2016-07-01
In this work a virtual 2f multiplexing system was implemented in combination with digital image compression techniques and redundant information elimination. Depending on the image type to be multiplexed, a memory-usage saving of as much as 99% was obtained. The feasibility of the system was tested using three types of images, binary characters, QR codes, and grey level images. A multiplexing step was implemented digitally, while a demultiplexing step was implemented in a virtual 2f optical setup following real experimental parameters. To avoid cross-talk noise, each image was codified with a specially designed phase diffraction carrier that would allow the separation and relocation of the multiplexed images on the observation plane by simple light propagation. A description of the system is presented together with simulations that corroborate the method. The present work may allow future experimental implementations that will make use of all the parallel processing capabilities of optical systems.
Using smartphones and tablet PCs for β--spectroscopy in an educational experimental setup
NASA Astrophysics Data System (ADS)
Gröber, Sebastian; Molz, Alexander; Kuhn, Jochen
2014-11-01
A magnetic spectrometer is used to gather the β--spectrum of 90 Sr /Y with a focus on two aspects. (1) The intensity of β--radiation is measured by the camera sensor module of a tablet PC together with the RadioactivityCounter app and by a Geiger-Müller tube. We evaluate the quality of mobile devices as radioactive radiation detectors by using polyenergetic β--radiation as an example and by comparing the spectra measured with the two detector types. (2) For educational purposes we implement a simple experimental setup, which consists of separate devices for measuring the electron’s kinetic energy and intensity, which are available in laboratories in educational settings. Comparison of the measured β--spectra published in the literature should encourage students to think about the energy resolution power of the β--spectrometer. Theoretical considerations show the low, yet sufficient energy resolution power of this spectrometer, especially for low energy levels.
Quantitative evaluation of statistical errors in small-angle X-ray scattering measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedlak, Steffen M.; Bruetzel, Linda K.; Lipfert, Jan
A new model is proposed for the measurement errors incurred in typical small-angle X-ray scattering (SAXS) experiments, which takes into account the setup geometry and physics of the measurement process. The model accurately captures the experimentally determined errors from a large range of synchrotron and in-house anode-based measurements. Its most general formulation gives for the variance of the buffer-subtracted SAXS intensity σ 2(q) = [I(q) + const.]/(kq), whereI(q) is the scattering intensity as a function of the momentum transferq;kand const. are fitting parameters that are characteristic of the experimental setup. The model gives a concrete procedure for calculating realistic measurementmore » errors for simulated SAXS profiles. In addition, the results provide guidelines for optimizing SAXS measurements, which are in line with established procedures for SAXS experiments, and enable a quantitative evaluation of measurement errors.« less
Microwave-mediated magneto-optical trap for polar molecules
NASA Astrophysics Data System (ADS)
Dizhou, Xie; Wenhao, Bu; Bo, Yan
2016-05-01
Realizing a molecular magneto-optical trap has been a dream for cold molecular physicists for a long time. However, due to the complex energy levels and the small effective Lande g-factor of the excited states, the traditional magneto-optical trap (MOT) scheme does not work very well for polar molecules. One way to overcome this problem is the switching MOT, which requires very fast switching of both the magnetic field and the laser polarizations. Switching laser polarizations is relatively easy, but fast switching of the magnetic field is experimentally challenging. Here we propose an alternative approach, the microwave-mediated MOT, which requires a slight change of the current experimental setup to solve the problem. We calculate the MOT force and compare it with the traditional MOT and the switching MOT scheme. The results show that we can operate a good MOT with this simple setup. Project supported by the Fundamental Research Funds for the Central Universities of China.
Granqvist, Pehr; Larsson, Marcus
2006-07-01
M. A. Persinger (2002) claimed that transcranial magnetic stimulation with weak, complex magnetic fields evokes mystical experiences. However, in a double-blind experiment, P. Granqvist, M. Fredrikson, P. Unge, A. Hagenfeldt, S. Valind., et al. (2005) found no effects of field exposure on mystical experiences (N = 89), though a minority of participants reported spontaneous mystical experiences. Following the conclusion of null effects from magnetic field exposure, the setup of this experiment, including pre-experimental assessments of religiousness and sensory deprivation, can be viewed as a prime/setting for such experiences. The authors analyzed subsets of experimental data from P. Granqvist and colleagues with emphasis on the contribution of religiousness in the prediction and interpretation of mystical experiences. They found that a higher degree of religiousness predicted a higher occurrence of mystical experiences with a religious quality, but not of mystical experiences without such a quality. The authors discuss findings in terms of the experimental setup serving as a prime/setting activating the religious schemas of religious participants.
Getting a grip on the transverse motion in a Zeeman decelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dulitz, Katrin; Softley, Timothy P., E-mail: tim.softley@chem.ox.ac.uk; Motsch, Michael
2014-03-14
Zeeman deceleration is an experimental technique in which inhomogeneous, time-dependent magnetic fields generated inside an array of solenoid coils are used to manipulate the velocity of a supersonic beam. A 12-stage Zeeman decelerator has been built and characterized using hydrogen atoms as a test system. The instrument has several original features including the possibility to replace each deceleration coil individually. In this article, we give a detailed description of the experimental setup, and illustrate its performance. We demonstrate that the overall acceptance in a Zeeman decelerator can be significantly increased with only minor changes to the setup itself. This ismore » achieved by applying a rather low, anti-parallel magnetic field in one of the solenoid coils that forms a temporally varying quadrupole field, and improves particle confinement in the transverse direction. The results are reproduced by three-dimensional numerical particle trajectory simulations thus allowing for a rigorous analysis of the experimental data. The findings suggest the use of a modified coil configuration to improve transverse focusing during the deceleration process.« less
Drücker, Sven; Krautstrunk, Isabell; Paulick, Maria; Saleh, Khashayar; Morgeneyer, Martin; Kwade, Arno
2016-01-01
The Discrete Element Method is used for the simulation of particulate systems to describe and analyze them, to predict and afterwards optimize their behavior for single stages of a process or even an entire process. For the simulation with occurring particle-particle and particle-wall contacts, the value of the coefficient of restitution is required. It can be determined experimentally. The coefficient of restitution depends on several parameters like the impact velocity. Especially for fine particles the impact velocity depends on the air pressure and under atmospheric pressure high impact velocities cannot be reached. For this, a new experimental setup for free-fall tests under vacuum conditions is developed. The coefficient of restitution is determined with the impact and rebound velocity which are detected by a high-speed camera. To not hinder the view, the vacuum chamber is made of glass. Also a new release mechanism to drop one single particle under vacuum conditions is constructed. Due to that, all properties of the particle can be characterized beforehand. PMID:27077671
NASA Astrophysics Data System (ADS)
Nguyen, Dinh-Liem; Klibanov, Michael V.; Nguyen, Loc H.; Kolesov, Aleksandr E.; Fiddy, Michael A.; Liu, Hui
2017-09-01
We analyze in this paper the performance of a newly developed globally convergent numerical method for a coefficient inverse problem for the case of multi-frequency experimental backscatter data associated to a single incident wave. These data were collected using a microwave scattering facility at the University of North Carolina at Charlotte. The challenges for the inverse problem under the consideration are not only from its high nonlinearity and severe ill-posedness but also from the facts that the amount of the measured data is minimal and that these raw data are contaminated by a significant amount of noise, due to a non-ideal experimental setup. This setup is motivated by our target application in detecting and identifying explosives. We show in this paper how the raw data can be preprocessed and successfully inverted using our inversion method. More precisely, we are able to reconstruct the dielectric constants and the locations of the scattering objects with a good accuracy, without using any advanced a priori knowledge of their physical and geometrical properties.
Drücker, Sven; Krautstrunk, Isabell; Paulick, Maria; Saleh, Khashayar; Morgeneyer, Martin; Kwade, Arno
2016-03-29
The Discrete Element Method is used for the simulation of particulate systems to describe and analyze them, to predict and afterwards optimize their behavior for single stages of a process or even an entire process. For the simulation with occurring particle-particle and particle-wall contacts, the value of the coefficient of restitution is required. It can be determined experimentally. The coefficient of restitution depends on several parameters like the impact velocity. Especially for fine particles the impact velocity depends on the air pressure and under atmospheric pressure high impact velocities cannot be reached. For this, a new experimental setup for free-fall tests under vacuum conditions is developed. The coefficient of restitution is determined with the impact and rebound velocity which are detected by a high-speed camera. To not hinder the view, the vacuum chamber is made of glass. Also a new release mechanism to drop one single particle under vacuum conditions is constructed. Due to that, all properties of the particle can be characterized beforehand.
Kalman filter based control for Adaptive Optics
NASA Astrophysics Data System (ADS)
Petit, Cyril; Quiros-Pacheco, Fernando; Conan, Jean-Marc; Kulcsár, Caroline; Raynaud, Henri-François; Fusco, Thierry
2004-12-01
Classical Adaptive Optics suffer from a limitation of the corrected Field Of View. This drawback has lead to the development of MultiConjugated Adaptive Optics. While the first MCAO experimental set-ups are presently under construction, little attention has been paid to the control loop. This is however a key element in the optimization process especially for MCAO systems. Different approaches have been proposed in recent articles for astronomical applications : simple integrator, Optimized Modal Gain Integrator and Kalman filtering. We study here Kalman filtering which seems a very promising solution. Following the work of Brice Leroux, we focus on a frequential characterization of kalman filters, computing a transfer matrix. The result brings much information about their behaviour and allows comparisons with classical controllers. It also appears that straightforward improvements of the system models can lead to static aberrations and vibrations filtering. Simulation results are proposed and analysed thanks to our frequential characterization. Related problems such as model errors, aliasing effect reduction or experimental implementation and testing of Kalman filter control loop on a simplified MCAO experimental set-up could be then discussed.
The Moment of Inertia of a Rectangular Rod
NASA Astrophysics Data System (ADS)
Takeuchi, Takao
2007-11-01
Recently an inexpensive setup to obtain the moment of inertia of a rotating system was proposed by Peter E. Banks. An equally simple and inexpensive experiment to obtain the moment of inertia of a uniform rod is proposed in this paper. A rectangular rod with a hole somewhere in the rod was used for this purpose. The moment of inertia of a rectangular rod around the hole location was attempted. The experimental setup is shown in Fig. 1. Various supporting rods, clamps, and rubber stoppers to hold the rectangular rod in place at point p are not shown.
Large atom number Bose-Einstein condensate machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streed, Erik W.; Chikkatur, Ananth P.; Gustavson, Todd L.
2006-02-15
We describe experimental setups for producing large Bose-Einstein condensates of {sup 23}Na and {sup 87}Rb. In both, a high-flux thermal atomic beam is decelerated by a Zeeman slower and is then captured and cooled in a magneto-optical trap. The atoms are then transferred into a cloverleaf-style Ioffe-Pritchard magnetic trap and cooled to quantum degeneracy with radio-frequency-induced forced evaporation. Typical condensates contain 20x10{sup 6} atoms. We discuss the similarities and differences between the techniques used for producing large {sup 87}Rb and {sup 23}Na condensates in the context of nearly identical setups.
Isolated heart models: cardiovascular system studies and technological advances.
Olejnickova, Veronika; Novakova, Marie; Provaznik, Ivo
2015-07-01
Isolated heart model is a relevant tool for cardiovascular system studies. It represents a highly reproducible model for studying broad spectrum of biochemical, physiological, morphological, and pharmaceutical parameters, including analysis of intrinsic heart mechanics, metabolism, and coronary vascular response. Results obtained in this model are under no influence of other organ systems, plasma concentration of hormones or ions and influence of autonomic nervous system. The review describes various isolated heart models, the modes of heart perfusion, and advantages and limitations of various experimental setups. It reports the improvements of perfusion setup according to Langendorff introduced by the authors.
NASA Astrophysics Data System (ADS)
Tarrío, Diego; Prokofiev, Alexander V.; Gustavsson, Cecilia; Jansson, Kaj; Andersson-Sundén, Erik; Al-Adili, Ali; Pomp, Stephan
2017-09-01
Neutron-induced fission cross sections of 235U and 238U are widely used as standards for monitoring of neutron beams and fields. An absolute measurement of these cross sections at an absolute scale, i.e., versus the H(n,p) scattering cross section, is planned with the white neutron beam under construction at the Neutrons For Science (NFS) facility in GANIL. The experimental setup, based on PPACs and ΔE-ΔE-E telescopes containing Silicon and CsI(Tl) detectors, is described. The expected uncertainties are discussed.
NASA Astrophysics Data System (ADS)
Rothleitner, Christian; Francis, Olivier
2014-04-01
An original setup is presented to measure the Newtonian Constant of Gravitation G. It is based on the same principle as used in ballistic absolute gravimeters. The differential acceleration of three simultaneously freely falling test masses is measured in order to determine G. In this paper, a description of the experimental setup is presented. A detailed uncertainty budget estimates the relative uncertainty to be of the order of 5.3 × 10-4, however with some improvements a relative uncertainty in G of one part in 104 could be feasible.
a New Set-Up for Total Reaction Cross Section Measuring
NASA Astrophysics Data System (ADS)
Sobolev, Yu. G.; Ivanov, M. P.; Kugler, A.; Penionzhkevich, Yu. E.
2013-06-01
The experimental method and set-up based on 4 n-Υ-technique for direct and modelindependent measuring of the total reaction cross section σR have been presented. The excitation function σR(E) for 6He+197Au reaction at the Coulomb barrier energy region has been measured. The measured data are compared with the summarized cross section which has been prepared by summing of measured cross sections of main reaction channels: 1n-transfer and 197Au(6He, xn)203-xnT1 with x = 2÷7 evaporation reaction channels.
Development of a grinding-specific performance test set-up.
Olesen, C G; Larsen, B H; Andresen, E L; de Zee, M
2015-01-01
The aim of this study was to develop a performance test set-up for America's Cup grinders. The test set-up had to mimic the on-boat grinding activity and be capable of collecting data for analysis and evaluation of grinding performance. This study included a literature-based analysis of grinding demands and a test protocol developed to accommodate the necessary physiological loads. This study resulted in a test protocol consisting of 10 intervals of 20 revolutions each interspersed with active resting periods of 50 s. The 20 revolutions are a combination of both forward and backward grinding and an exponentially rising resistance. A custom-made grinding ergometer was developed with computer-controlled resistance and capable of collecting data during the test. The data collected can be used to find measures of grinding performance such as peak power, time to complete and the decline in repeated grinding performance.
Wang, Jianguo; Wang, Guangqiang; Wang, Dongyang; Li, Shuang; Zeng, Peng
2018-05-03
High power vacuum electronic devices of millimeter wave to terahertz regime are attracting extensive interests due to their potential applications in science and technologies. In this paper, the design and experimental results of a powerful compact oversized surface wave oscillator (SWO) in Y-band are presented. The cylindrical slow wave structure (SWS) with rectangular corrugations and large diameter about 6.8 times the radiation wavelength is proposed to support the surface wave interacting with annular relativistic electron beam. By choosing appropriate beam parameters, the beam-wave interaction takes place near the π-point of TM 01 mode dispersion curve, giving high coupling impedance and temporal growth rate compared with higher TM 0n modes. The fundamental mode operation of the device is verified by the particle-in-cell (PIC) simulation results, which also indicate its capability of tens of megawatts power output in the Y-band. Finally, a compact experimental setup is completed to validate our design. Measurement results show that a terahertz pulse with frequency in the range of 0.319-0.349 THz, duration of about 2 ns and radiation power of about 2.1 MW has been generated.
Fernández, Roemi; Salinas, Carlota; Montes, Héctor; Sarria, Javier
2014-01-01
The motivation of this research was to explore the feasibility of detecting and locating fruits from different kinds of crops in natural scenarios. To this end, a unique, modular and easily adaptable multisensory system and a set of associated pre-processing algorithms are proposed. The offered multisensory rig combines a high resolution colour camera and a multispectral system for the detection of fruits, as well as for the discrimination of the different elements of the plants, and a Time-Of-Flight (TOF) camera that provides fast acquisition of distances enabling the localisation of the targets in the coordinate space. A controlled lighting system completes the set-up, increasing its flexibility for being used in different working conditions. The pre-processing algorithms designed for the proposed multisensory system include a pixel-based classification algorithm that labels areas of interest that belong to fruits and a registration algorithm that combines the results of the aforementioned classification algorithm with the data provided by the TOF camera for the 3D reconstruction of the desired regions. Several experimental tests have been carried out in outdoors conditions in order to validate the capabilities of the proposed system. PMID:25615730
Kusko, Mihaela; Craciunoiu, Florea; Amuzescu, Bogdan; Halitzchi, Ferdinand; Selescu, Tudor; Radoi, Antonio; Popescu, Marian; Simion, Monica; Bragaru, Adina; Ignat, Teodora
2012-01-01
Recent progress in patterned microelectrode manufacturing technology and microfluidics has opened the way to a large variety of cellular and molecular biosensor-based applications. In this extremely diverse and rapidly expanding landscape, silicon-based technologies occupy a special position, given their statute of mature, consolidated, and highly accessible areas of development. Within the present work we report microfabrication procedures and workflows for 3D patterned gold-plated microelectrode arrays (MEA) of different shapes (pyramidal, conical and high aspect ratio), and we provide a detailed characterization of their physical features during all the fabrication steps to have in the end a reliable technology. Moreover, the electrical performances of MEA silicon chips mounted on standardized connector boards via ultrasound wire-bonding have been tested using non-destructive electrochemical methods: linear sweep and cyclic voltammetry, impedance spectroscopy. Further, an experimental recording chamber package suitable for in vitro electrophysiology experiments has been realized using custom-design electronics for electrical stimulus delivery and local field potential recording, included in a complete electrophysiology setup, and the experimental structures have been tested on newborn rat hippocampal slices, yielding similar performance compared to commercially available MEA equipments. PMID:23208555
Facility for assessing spectral normal emittance of solid materials at high temperature.
Mercatelli, Luca; Meucci, Marco; Sani, Elisa
2015-10-10
Spectral emittance is a key topic in the study of new compositions, depositions, and mechanical machining of materials for solar absorption and for renewable energies in general. The present work reports on the realization and testing of a new experimental facility for the measurement of directional spectral emittance in the range of 2.5-20 μm. Our setup provides emittance spectral information in a completely controlled environment at medium-high temperatures up to 1200 K. We describe the layout and first tests on the device, comparing the results obtained for hafnium carbide and tantalum diboride ultrarefractory ceramic samples to previous quasi-monochromatic measurements carried out in the PROMES-CNRS (PROcedes, Materiaux et Energie Solaire- Centre National de la Recherche Scientifique, France) solar furnace, obtaining a good agreement. Finally, to assess the reliability of the widely used approach of estimating the spectral emittance from room-temperature reflectance spectrum, we compared the calculation in the 2.5-17 μm spectral range to the experimental high-temperature spectral emittance, obtaining that the spectral trend of calculated and measured curves is similar but the calculated emittance underestimates the measured value.
Forward hadron calorimeter at MPD/NICA
NASA Astrophysics Data System (ADS)
Golubeva, M.; Guber, F.; Ivashkin, A.; Izvestnyy, A.; Kurepin, A.; Morozov, S.; Parfenov, P.; Petukhov, O.; Taranenko, A.; Selyuzhenkov, I.; Svintsov, I.
2017-01-01
Forward hadron calorimeter (FHCAL) at MPD/NICA experimental setup is described. The main purpose of the FHCAL is to provide an experimental measurement of a heavy-ion collision centrality (impact parameter) and orientation of its reaction plane. Precise event-by-event estimate of these basic observables is crucial for many physics phenomena studies to be performed by the MPD experiment. The simulation results of FHCAL performance are presented.
Coplanar waveguide discontinuities for P-I-N diode switches and filter applications
NASA Technical Reports Server (NTRS)
Dib, N. I.; Katehi, P. B.; Ponchak, George E.; Simons, Rainee N.
1990-01-01
A full wave space domain integral equation (SDIE) analysis of coplanar waveguide (CPW) two port discontinuities is presented. An experimental setup to measure the S-parameters of such discontinuities is described. Experimental and theoretical results for CPW realizations of pass-band and stop-band filters are presented. The S-parameters of such structures are plotted in the frequency range 5 to 25 GHz.
The First Static and Dynamic Analysis of 3-D Printed Sintered Ceramics for Body Armor Applications
2016-09-01
evaluate sintered alumina tiles produced by 3-D printing methodology. This report examines the static and quasi -static parameters (including density...Figures iv List of Tables iv Acknowledgments v 1. Introduction 1 2. Processing and Experimental Procedures 1 3. Results and Discussion 7 4...6 Fig. 8 Experimental setup for recording fracture .............................................7 Fig. 9 Rod projectile
Optical Microwave Interactions in Semiconductor Devices.
1980-11-01
geometry can be used in microwave-optical analog T signal processing systems. A theoretical and experimental study of mode locking in (GaAI)As injection... STUDY OF MODE-LOCKING IN (GaAl)As INJECTION LASER .......... ......................... ... 55 A. Experimental Set-Up and DC Characteristics...modulation and 4 detection of optical beams at microwave frequencies. Our approach for modulating the optical beam has been to study the modulation capability
D'Ariano, G M; Lo Presti, P
2001-05-07
Quantum operations describe any state change allowed in quantum mechanics, including the evolution of an open system or the state change due to a measurement. We present a general method based on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. As input the method needs only a single entangled state. The feasibility of the technique for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne tomography of a twin beam.
Experimental and Theoretical Probing of Molecular Dynamics at Catalytic and Ionic Liquid Interfaces
2014-04-01
15. SUBJECT TERMS Surface, interface, photocatalysis , fluorescence yield, ionic liquid, reactive force field 16. SECURITY CLASSIFICATION OF: 17...2, 3 which are promising photocatalysts for hydrogen production via photocatalytic water splitting. 1. Experimental The new experimental setup...Wang, G. Liu, G. Q. Lu, H.-M. Cheng, Int. J. of Hydrogen Energ., 2010, 35, 8199- 8205. 3. F. Xu, Y. Yuan, H. Han, D. Wu, Z. Gao, K. Jiang, CrystEngComm
Miernik, Arkadiusz; Eilers, Yvan; Nuese, Christoph; Bolwien, Carsten; Lambrecht, Armin; Hesse, Albrecht; Rassweiler, Jens J; Schlager, Daniel; Wilhelm, Konrad; Wetterauer, Ulrich; Schoenthaler, Martin
2015-10-01
Raman spectroscopy allows immediate analysis of stone composition. In vivo stone analysis during endoscopic treatment may offer advantages concerning surgical strategy and metaphylaxis. Urinary stone components were evaluated utilizing an experimental setup of a Raman system coupled to commercial laser fibers. Samples of paracetamol (acetaminophen) and human urinary stones with known Raman spectra were analyzed using an experimental Raman system coupled to common commercial lithotripsy laser fibers (200 and 940 µm). Two different excitation lasers were used at wavelengths of 532 and 785 nm. Numerical aperture of the fibers, proportion of reflected light reaching the CCD chip, and integration times were calculated. Mathematical signal correction was performed. Both the laser beam profile and the quality of light reflected by the specimens were impaired significantly when used with commercial fibers. Acquired spectra could no longer be assigned to a specific stone composition. Subsequent measurements revealed a strong intrinsic fluorescence of the fibers and poor light acquisition properties leading to a significant decrease in the Raman signal in comparison with a free-beam setup. This was true for both investigated fiber diameters and both wavelengths. Microscopic examination showed highly irregular fiber tip surfaces (both new and used fibers). Our results propose that laser excitation and light acquisition properties of commercial lithotripsy fibers impair detectable Raman signals significantly in a fiber-coupled setting. This study provides essential physical and technological information for the development of an advanced fiber-coupled system able to be used for immediate stone analysis during endoscopic stone therapy.
A Simple and Reliable Setup for Monitoring Corrosion Rate of Steel Rebars in Concrete
Jibran, Mohammed Abdul Azeem; Azad, Abul Kalam
2014-01-01
The accuracy in the measurement of the rate of corrosion of steel in concrete depends on many factors. The high resistivity of concrete makes the polarization data erroneous due to the Ohmic drop. The other source of error is the use of an arbitrarily assumed value of the Stern-Geary constant for calculating corrosion current density. This paper presents the outcomes of a research work conducted to develop a reliable and low-cost experimental setup and a simple calculation procedure that can be utilised to calculate the corrosion current density considering the Ohmic drop compensation and the actual value of the Stern-Geary constants calculated using the polarization data. The measurements conducted on specimens corroded to different levels indicate the usefulness of the developed setup to determine the corrosion current density with and without Ohmic drop compensation. PMID:24526907
NASA Astrophysics Data System (ADS)
Volz, Pierre; Brodwolf, Robert; Zoschke, Christian; Haag, Rainer; Schäfer-Korting, Monika; Alexiev, Ulrike
2018-05-01
We report here on a custom-built time-correlated single photon-counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) setup with a continuously tunable white-light supercontinuum laser combined with acousto-optical tunable filters (AOTF) as an excitation source for simultaneous excitation of multiple spectrally separated fluorophores. We characterized the wavelength dependence of the white-light supercontinuum laser pulse properties and demonstrated the performance of the FLIM setup, aiming to show the experimental setup in depth together with a biomedical application. We herein summarize the physical-technical parameters as well as our approach to map the skin uptake of nanocarriers using FLIM with a resolution compared to spectroscopy. As an example, we focus on the penetration study of indocarbocyanine-labeled dendritic core-multishell nanocarriers (CMS-ICC) into reconstructed human epidermis. Unique fluorescence lifetime signatures of indocarbocyanine-labeled nanocarriers indicate nanocarrier-tissue interactions within reconstructed human epidermis, bringing FLIM close to spectroscopic analysis.
Bentrup, Ursula
2010-12-01
Several in situ techniques are known which allow investigations of catalysts and catalytic reactions under real reaction conditions using different spectroscopic and X-ray methods. In recent years, specific set-ups have been established which combine two or more in situ methods in order to get a more detailed understanding of catalytic systems. This tutorial review will give a summary of currently available set-ups equipped with multiple techniques for in situ catalyst characterization, catalyst preparation, and reaction monitoring. Besides experimental and technical aspects of method coupling including X-ray techniques, spectroscopic methods (Raman, UV-vis, FTIR), and magnetic resonance spectroscopies (NMR, EPR), essential results will be presented to demonstrate the added value of multitechnique in situ approaches. A special section is focussed on selected examples of use which show new developments and application fields.
Broadband interferometric characterisation of nano-positioning stages with sub-10 pm resolution
NASA Astrophysics Data System (ADS)
Li, Zhi; Brand, Uwe; Wolff, Helmut; Koenders, Ludger; Yacoot, Andrew; Puranto, Prabowo
2017-06-01
A traceable calibration setup for investigation of the quasi-static and the dynamic performance of nano-positioning stages is detailed, which utilizes a differential plane-mirror interferometer with double-pass configuration from the National Physical Laboratory (NPL). An NPL-developed FPGA-based interferometric data acquisition and decoding system has been used to enable traceable quasi-static calibration of nano-positioning stages with high resolution. A lockin based modulation technique is further introduced to quantitatively calibrate the dynamic response of moving stages with a bandwidth up to 100 kHz and picometer resolution. First experimental results have proven that the calibration setup can achieve under nearly open-air conditions a noise floor lower than 10 pm/sqrt(Hz). A pico-positioning stage, that is used for nanoindentation with indentation depths down to a few picometers, has been characterized with this calibration setup.
Pixel detectors in double beta decay experiments, a new approach for background reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jose, J. M.; Čermák, P.; Štekl, I.
Double beta decay (ββ) experiments are challenging frontiers in contemporary physics. These experiments have the potential to investigate more about neutrinos (eg. nature and mass). The main challenge for these experiments is the reduction of background. The group at IEAP, CTU in Prague is investigating a new approach using pixel detectors Timepix. Pixel detector offer background reduction capabilities with its ability to identify the particle interaction (from the 2D signature it generates). However, use of pixel detectors has some challenges such as the presence of readout electronics near the sensing medium and heat dissipation. Different aspects of pixel setup (identificationmore » of radio-impurities, selection of radio-pure materials) and proposed experimental setup are presented. Also, results of preliminary background measurements (performed on the surface and in the underground laboratories) using the prototype setups are presented.« less
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; López, V. M. Rodríguez; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
2010-10-01
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e,e'K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-11B will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
Hypernuclear Spectroscopy with Electron Beam at JLab Hall C
NASA Astrophysics Data System (ADS)
Fujii, Y.; Chiba, A.; Doi, D.; Gogami, T.; Hashimoto, O.; Kanda, H.; Kaneta, M.; Kawama, D.; Maeda, K.; Maruta, T.; Matsumura, A.; Nagao, S.; Nakamura, S. N.; Shichijo, A.; Tamura, H.; Taniya, N.; Yamamoto, T.; Yokota, K.; Kato, S.; Sato, Y.; Takahashi, T.; Noumi, H.; Motoba, T.; Hiyama, E.; Albayrak, I.; Ates, O.; Chen, C.; Christy, M.; Keppel, C.; Kohl, M.; Li, Y.; Liyanage, A.; Tang, L.; Walton, T.; Ye, Z.; Yuan, L.; Zhu, L.; Baturin, P.; Boeglin, W.; Dhamija, S.; Markowitz, P.; Raue, B.; Reinhold, J.; Hungerford, Ed. V.; Ent, R.; Fenker, H.; Gaskell, D.; Horn, T.; Jones, M.; Smith, G.; Vulcan, W.; Wood, S. A.; Johnston, C.; Simicevic, N.; Wells, S.; Samanta, C.; Hu, B.; Shen, J.; Wang, W.; Zhang, X.; Zhang, Y.; Feng, J.; Fu, Y.; Zhou, J.; Zhou, S.; Jiang, Y.; Lu, H.; Yan, X.; Ye, Y.; Gan, L.; Ahmidouch, A.; Danagoulian, S.; Gasparian, A.; Elaasar, M.; Wesselmann, F. R.; Asaturyan, A.; Margaryan, A.; Mkrtchyan, A.; Mkrtchyan, H.; Tadevosyan, V.; Androic, D.; Furic, M.; Petkovic, T.; Seva, T.; Niculescu, G.; Niculescu, I.; Rodríguez López, V. M.; Cisbani, E.; Cusanno, F.; Garibaldi, F.; Uuciuoli, G. M.; de Leo, R.; Maronne, S.
Hypernuclear spectroscopy with electron beam at JLab Hall C has been studied since 2000. The first experiment, JLab E89-009, demonstrated the possibility of the (e, e‧ K+) reaction for hypernuclear spectroscopy by achieving an energy resolution of better than 1 MeV (FWHM). The second experiment, JLab E01-011 employed a newly constructed high resolution kaon spectrometer and introduced a vertically tilted electron arm setup to avoid electrons from bremsstrahlung and Moeller scattering. The setup allowed us to have 10 times yield rate and 4 times better signal to accidental ratio with expected energy resolution of 400 keV (FWHM). The third experiment, JLab E05-115 will be performed in 2009 with employing newly constructed high resolution electron spectrometer and a new charge-separation magnet. With the fully customized third generation experimental setup, we can study a variety of targets up to medium-heavy ones such as 52Cr.
Analysis of the Accuracy and Robustness of the Leap Motion Controller
Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis
2013-01-01
The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction. PMID:23673678
Analysis of the accuracy and robustness of the leap motion controller.
Weichert, Frank; Bachmann, Daniel; Rudak, Bartholomäus; Fisseler, Denis
2013-05-14
The Leap Motion Controller is a new device for hand gesture controlled user interfaces with declared sub-millimeter accuracy. However, up to this point its capabilities in real environments have not been analyzed. Therefore, this paper presents a first study of a Leap Motion Controller. The main focus of attention is on the evaluation of the accuracy and repeatability. For an appropriate evaluation, a novel experimental setup was developed making use of an industrial robot with a reference pen allowing a position accuracy of 0.2 mm. Thereby, a deviation between a desired 3D position and the average measured positions below 0.2 mm has been obtained for static setups and of 1.2 mm for dynamic setups. Using the conclusion of this analysis can improve the development of applications for the Leap Motion controller in the field of Human-Computer Interaction.
Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doerscher, Soeren; Thobe, Alexander; Hundt, Bastian
2013-04-15
We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong {sup 1}S{sub 0}{yields}{sup 1}P{sub 1} transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow {sup 1}S{sub 0}{yields}{sup 3}P{sub 1} intercombination transition. Subsequently, atoms are transferred to a crossed opticalmore » dipole trap and cooled evaporatively to quantum degeneracy.« less
Culvert roughness elements for native Utah fish passage : phase I.
DOT National Transportation Integrated Search
2011-01-01
Laboratory flume testing of native Utah non-salmonid fish was performed to observe how : they use altered flow around obstacles to swim upstream. Three experimental setups included : a bare Plexiglas flume, vertical cylinders, and natural substrate p...
Large-scale laboratory observations of wave forces on a highway bridge superstructure.
DOT National Transportation Integrated Search
2011-10-01
The experimental setup and data are presented for a laboratory experiment conducted to examine realistic wave forcing on a highway bridge : superstructure. The experiments measure wave conditions along with the resulting forces, pressures, and struct...
Noncontact 3-D Speckle Contrast Diffuse Correlation Tomography of Tissue Blood Flow Distribution.
Huang, Chong; Irwin, Daniel; Zhao, Mingjun; Shang, Yu; Agochukwu, Nneamaka; Wong, Lesley; Yu, Guoqiang
2017-10-01
Recent advancements in near-infrared diffuse correlation techniques and instrumentation have opened the path for versatile deep tissue microvasculature blood flow imaging systems. Despite this progress there remains a need for a completely noncontact, noninvasive device with high translatability from small/testing (animal) to large/target (human) subjects with trivial application on both. Accordingly, we discuss our newly developed setup which meets this demand, termed noncontact speckle contrast diffuse correlation tomography (nc_scDCT). The nc_scDCT provides fast, continuous, portable, noninvasive, and inexpensive acquisition of 3-D tomographic deep (up to 10 mm) tissue blood flow distributions with straightforward design and customization. The features presented include a finite-element-method implementation for incorporating complex tissue boundaries, fully noncontact hardware for avoiding tissue compression and interactions, rapid data collection with a diffuse speckle contrast method, reflectance-based design promoting experimental translation, extensibility to related techniques, and robust adjustable source and detector patterns and density for high resolution measurement with flexible regions of interest enabling unique application-specific setups. Validation is shown in the detection and characterization of both high and low contrasts in flow relative to the background using tissue phantoms with a pump-connected tube (high) and phantom spheres (low). Furthermore, in vivo validation of extracting spatiotemporal 3-D blood flow distributions and hyperemic response during forearm cuff occlusion is demonstrated. Finally, the success of instrument feasibility in clinical use is examined through the intraoperative imaging of mastectomy skin flap.
NASA Astrophysics Data System (ADS)
Putzeys, T.; Wübbenhorst, M.; van der Veen, M. A.
2015-06-01
Bio-organic materials such as bones, teeth, and tendon generally show nonlinear optical (Masters and So in Handbook of Biomedical Nonlinear Optical Microscopy, 2008), pyro- and piezoelectric (Fukada and Yasuda in J Phys Soc Jpn 12:1158, 1957) properties, implying a permanent polarization, the presence of which can be rationalized by describing the growth of the sample and the creation of a polar axis according to Markov's theory of stochastic processes (Hulliger in Biophys J 84:3501, 2003; Batagiannis et al. in Curr Opin Solid State Mater Sci 17:107, 2010). Two proven, versatile techniques for probing spontaneous polarization distributions in solids are scanning pyroelectric microscopy (SPEM) and second harmonic generation microscopy (SHGM). The combination of pyroelectric scanning with SHG-microscopy in a single experimental setup leading to complementary pyroelectric and nonlinear optical data is demonstrated, providing us with a more complete image of the polarization in organic materials. Crystals consisting of a known polar and hyperpolarizable material, CNS (4-chloro-4-nitrostilbene) are used as a reference sample, to verify the functionality of the setup, with both SPEM and SHGM images revealing the same polarization domain information. In contrast, feline and human nails exhibit a pyroelectric response, but a second harmonic response is absent for both keratin containing materials, implying that there may be symmetry-allowed SHG, but with very inefficient second harmonophores. This new approach to polarity detection provides additional information on the polar and hyperpolar nature in a variety of (bio) materials.
Production of Ultra-Light Normal Incidence Mirrors
NASA Technical Reports Server (NTRS)
Jones, Ruth; Muntele, Iulia; Muntele, Claudiu; Zimmerman, Robert L.; Ila, Daryush; Burdine, Robert V. (Technical Monitor)
2002-01-01
Mirrors fabrication for large aperture telescopes is an important aspect in space exploration programs. One of the cost effective techniques to obtain such mirrors is electroplating of Ni-Co alloys from sulfamate solution. The Center for Irradiation of Materials at Alabama A&M University - Research Institute has been involved in a NASA-MSFC project for producing ultra-light Ni-Co alloy mirrors since the summer of year 2000. The goal of this project is to obtain ultra-light, high strength electroformed large aperture normal incidence replicated mirrors, (weighting less than 5 kg/m2), free of stress, with a good figure and reproducible thickness variation. In order to simplify the control of parameters such as temperature gradient, concentration gradient, distribution of the electric field lines and flow control, the proposed geometry involves a cylindrical main tank contained in another cylindrical tank, which plays the role of a weir. Designs were created to accommodate the new horizontal position of the mandrel and the pipes fitting through the outer tank's lid. The inner tank contains the working electrodes and a series of sensors for monitoring temperature, flow, stress and pH. The outer tank holds the electric heaters, the filters and a part of the piping system. Another two tanks complete the setup and serve for rinsing/preheating and equilibrating the electroplating bath. This paper will describe advantages of the new experimental setup and the parameters achieved in the electroplating bath for the proposed geometry.
NASA Astrophysics Data System (ADS)
Alam, Imtiaz; Waqar, Asad; Aamir, Muhammad; Hassan, Shahzad; Shah, Syed Asim Ali
2018-03-01
Anomalous waves propagation is severely affected due to almost always present variations in refractivity under various environmental conditions at different time, location and frequency. These conditions, representing different state of the atmosphere including e.g. foggy, rainy and cloudy etc., not only degrade the quality of the signal but sometimes completely eradicate the communication link. Such severe impact on propagation cannot be ignored by the designers of communication systems. The aim of this research is to present correlation between experimental and modelled link losses for variations in refractivity values recommended by International Telecommunication Union-Recommendations (ITU-R) as well as that of standard profiles. To do so, a communication setup of 50 km over the Sea operating experimentally over a period of a year at 240 MHz is analyzed for different refractivity profiles and their impact on propagation. A median value is taken for every set of 6000 values taken from the recorded data set of more than 48 million experimental link losses. This reduces the huge data set of the experimental link losses to 8000 values only. This reduced data set of experimental and modelled link losses were correlated and investigated for different evaporation duct heights throughout the year. For the considered link, the ITU-R refractivity profile was found to perform better than the standard refractivity profile. However, the new findings as observed in this research, which may be helpful for the recommendations authorities, is the existing of evaporation duct up to 10 m height.
Kirby, Anna M; Lee, Steven F; Bartlett, Freddie; Titmarsh, Kumud; Donovan, Ellen; Griffin, Clare L; Gothard, Lone; Locke, Imogen; McNair, Helen A
2016-01-01
Objective: The purpose of this UK study was to evaluate interfraction reproducibility and body image score when using ultraviolet (UV) tattoos (not visible in ambient lighting) for external references during breast/chest wall radiotherapy and compare with conventional dark ink. Methods: In this non-blinded, single-centre, parallel group, randomized control trial, patients were allocated to receive either conventional dark ink or UV ink tattoos using computer-generated random blocks. Participant assignment was not masked. Systematic (∑) and random (σ) setup errors were determined using electronic portal images. Body image questionnaires were completed at pre-treatment, 1 month and 6 months to determine the impact of tattoo type on body image. The primary end point was to determine that UV tattoo random error (σsetup) was no less accurate than with conventional dark ink tattoos, i.e. <2.8 mm. Results: 46 patients were randomized to receive conventional dark or UV ink tattoos. 45 patients completed treatment (UV: n = 23, dark: n = 22). σsetup for the UV tattoo group was <2.8 mm in the u and v directions (p = 0.001 and p = 0.009, respectively). A larger proportion of patients reported improvement in body image score in the UV tattoo group compared with the dark ink group at 1 month [56% (13/23) vs 14% (3/22), respectively] and 6 months [52% (11/21) vs 38% (8/21), respectively]. Conclusion: UV tattoos were associated with interfraction setup reproducibility comparable with conventional dark ink. Patients reported a more favourable change in body image score up to 6 months following treatment. Advances in knowledge: This study is the first to evaluate UV tattoo external references in a randomized control trial. PMID:27710100
Landeg, Steven J; Kirby, Anna M; Lee, Steven F; Bartlett, Freddie; Titmarsh, Kumud; Donovan, Ellen; Griffin, Clare L; Gothard, Lone; Locke, Imogen; McNair, Helen A
2016-12-01
The purpose of this UK study was to evaluate interfraction reproducibility and body image score when using ultraviolet (UV) tattoos (not visible in ambient lighting) for external references during breast/chest wall radiotherapy and compare with conventional dark ink. In this non-blinded, single-centre, parallel group, randomized control trial, patients were allocated to receive either conventional dark ink or UV ink tattoos using computer-generated random blocks. Participant assignment was not masked. Systematic (∑) and random (σ) setup errors were determined using electronic portal images. Body image questionnaires were completed at pre-treatment, 1 month and 6 months to determine the impact of tattoo type on body image. The primary end point was to determine that UV tattoo random error (σ setup ) was no less accurate than with conventional dark ink tattoos, i.e. <2.8 mm. 46 patients were randomized to receive conventional dark or UV ink tattoos. 45 patients completed treatment (UV: n = 23, dark: n = 22). σ setup for the UV tattoo group was <2.8 mm in the u and v directions (p = 0.001 and p = 0.009, respectively). A larger proportion of patients reported improvement in body image score in the UV tattoo group compared with the dark ink group at 1 month [56% (13/23) vs 14% (3/22), respectively] and 6 months [52% (11/21) vs 38% (8/21), respectively]. UV tattoos were associated with interfraction setup reproducibility comparable with conventional dark ink. Patients reported a more favourable change in body image score up to 6 months following treatment. Advances in knowledge: This study is the first to evaluate UV tattoo external references in a randomized control trial.
TEMPO Software Modifications for SEVER Evaluation
2009-09-01
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding...115 COMPACT DISC. TEMPO VERSION 3 AND ASSOCIATED DATA …..ENCLOSED ix LIST...Setup..........................................................46 Figure 16. TEMPO Version 3 Startup Dialog Box
Evaluation of an exposure setup for studying effects of diesel exhaust in humans.
Rudell, B; Sandström, T; Hammarström, U; Ledin, M L; Hörstedt, P; Stjernberg, N
1994-01-01
Diesel exhaust is a common air pollutant and work exposure has been reported to cause discomfort and affect lung function. The aim of this study was to develop an experimental setup which would allow investigation of acute effects on symptoms and lung function in humans exposed to diluted diesel exhaust. Diluted diesel exhaust was fed from an idling lorry through heated tubes into an exposure chamber. During evaluations of the setup we found the size and the shape of the exhaust particles to appear unchanged during the transport from the tail pipe to the exposure chamber. The composition of the diesel exhaust expressed as the ratios CO/NO, total hydrocarbons/NO, particles/NO, NO2/NO, and formaldehyde/NO were almost constant at different dilutions. The concentrations of NO2 and particles in the exposure chamber showed no obvious gradients. New steady state concentrations in the exposure chamber were obtained within 5-7 min. In a separate experiment eight healthy nonsmoking subjects were exposed to diluted exhaust at a median steady state concentration of 1.6 ppm NO2 for the duration of 1 h in the exposure chamber. All subjects experienced unpleasant smell, eye irritation, and nasal irritation. Throat irritation, headache, dizziness, nausea, tiredness, and coughing were experienced by some subjects. Lung function was not found to be affected during the exposure. The experimental setup was found to be appropriate for creating different predetermined steady state concentrations in the exposure chamber of diluted exhaust from a continuously idling vehicle. The acute symptoms reported by the subjects were relatively similar to what patients reported at different workplaces.
Characterisation of the responsive properties of two running-specific prosthetic models.
Grobler, Lara; Ferreira, Suzanne; Vanwanseele, Benedicte; Terblanche, Elmarie E
2017-04-01
The need for information regarding running-specific prosthetic properties has previously been voiced. Such information is necessary to assist in athletes' prostheses selection. This study aimed to describe the characteristics of two commercially available running-specific prostheses. The running-specific prostheses were tested (in an experimental setup) without the external interference of athlete performance variations. Four stiffness categories of each running-specific prosthetic model (Xtend ™ and Xtreme ™ ) were tested at seven alignment setups and three drop masses (28, 38 and 48 kg). Results for peak ground reaction force (GRF peak ), contact time ( t c ), flight time ( t f ), reactive strength index (RSI) and maximal compression (Δ L) were determined during controlled dropping of running-specific prostheses onto a force platform with different masses attached to the experimental setup. No statistically significant differences were found between the different setups of the running-specific prostheses. Statistically significant differences were found between the two models for all outcome variables (GRF peak , Xtend > Xtreme; t c , Xtreme > Xtend; t f , Xtreme > Xtend; RSI, Xtend > Xtreme; Δ L, Xtreme > Xtend; p < 0.05). These findings suggest that the Xtreme stores more elastic energy than the Xtend, leading to a greater performance response. The specific responsive features of blades could guide sprint athletes in their choice of running-specific prostheses. Clinical relevance Insights into the running-specific prosthesis (RSP) properties and an understanding of its responsive characteristics have implications for athletes' prosthetic choice. Physiologically and metabolically, a short sprint event (i.e. 100 m) places different demands on the athlete than a long sprint event (i.e. 400 m), and the RSP should match these performance demands.
Frequency domain fluorescent diffuse tomography of small animals with DsRed2-expressed tumors
NASA Astrophysics Data System (ADS)
Turchin, Ilya V.; Savitsky, Alexander P.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Orlova, Anna G.; Sergeeva, Ekaterina A.; Kleshnin, Mikhail S.; Shirmanova, Marina V.
2006-02-01
The main applications of fluorescent proteins (FPs) are monitoring tumor growth, angiogenesis, metastases formation and effects of new classes of drugs. Different types of tomography allow fluorescence imaging of tumors located deep in human or animal tissue. These techniques were used for investigation of the distribution of near-infrared fluorescent probes, but only a few works are devoted to fluorescence tomography in visible light. In this work, preliminary results of the frequency domain fluorescent diffuse tomography (FD FDT) method in application to DsRed2 protein as a fluorescent agent are presented. For the first step of our experiments we utilized second harmonic generation of Nd:YAG laser (532 nm) modulated by low frequency (1 kHz) in the experimental setup. The transilluminative planar configuration was used in the setup. A series of model experiments has been conducted and show good agreement between theoretical and experimental fluorescence intensity. Post mortem experiments with capsules containing DsRed2 and scattering solution introduced into esophagus of rats to simulate tumor formation have been conducted. The results of these experiments show that sensitivity of the setup is sufficient to detect DsRed2 in concentrations similar to those in FP-expressed tumor, but the contrast is not enough high to separate fluorescence of DsRed2 and surrounding tissues. The setup can be significantly improved by utilizing high-frequency modulation (110 MHz using acousto-optical modulator) of the excitation light and precise phase measurements due to difference in fluorescence life-time of FPs and surrounding tissues. An algorithm of processing a fluorescent image based on calculating zero of maximum curvature was employed for detection of fluorescent inclusions boundaries in the image.
Jones, Cynthia G; Silverman, Joseph; Al-Sheikhly, Mohamad; Neta, Pedatsur; Poster, Dianne L
2003-12-15
Used electrical transformer oils containing low or high concentrations of polychlorinated biphenyls (PCBs) were treated using electron, gamma, and ultraviolet radiation, and the conditions for complete dechlorination were developed. Dechlorination was determined by analysis of the inorganic chloride formed and the concentrations of remaining PCBs. Transformer oil containing approximately 95 microg g(-1) PCB (approximately 3.5 mmol L(-1) Cl) is completely dechlorinated by irradiation with 600 kGy after the addition of 10% triethylamine (TEA). Transformer oil containing >800,000 microg g(-1) PCB (17.7 mol L(-1) Cl) requires an additional solvent to prevent solidification. When this oil is diluted with 2-propanol (2-PrOH) and TEA (v/v/v, 1/79/20), complete dechlorination is achieved with a dose of 2500 kGy. Ultraviolet photolysis of the same oil/2-PrOH/TEA solutions led to 90% dechlorination after exposure for 120 h in our experimental setup. Such yields were obtained by radiolysis with a dose of 2000 kGy (300 h in our Gammacell). Replacing TEA with KOH in 2-PrOH solutions greatly increases the yield of dechlorination in both the radiolytic and the photolytic experiments, demonstrating that a chain reaction plays a role in both of these treatment methods and suggesting that both methods deserve further consideration for large-scale application.
NASA Astrophysics Data System (ADS)
Vaz, R.; May, P. W.; Fox, N. A.; Harwood, C. J.; Chatterjee, V.; Smith, J. A.; Horsfield, C. J.; Lapington, J. S.; Osbourne, S.
2015-03-01
Diamond-based photomultipliers have the potential to provide a significant improvement over existing devices due to diamond's high secondary electron yield and narrow energy distribution of secondary electrons which improves energy resolution creating extremely fast response times. In this paper we describe an experimental apparatus designed to study secondary electron emission from diamond membranes only 400 nm thick, observed in reflection and transmission configurations. The setup consists of a system of calibrated P22 green phosphor screens acting as radiation converters which are used in combination with photomultiplier tubes to acquire secondary emission yield data from the diamond samples. The superior signal voltage sampling of the phosphor screen setup compared with traditional Faraday Cup detection allows the variation in the secondary electron yield across the sample to be visualised, allowing spatial distributions to be obtained. Preliminary reflection and transmission yield data are presented as a function of primary electron energy for selected CVD diamond films and membranes. Reflection data were also obtained from the same sample set using a Faraday Cup detector setup. In general, the curves for secondary electron yield versus primary energy for both measurement setups were comparable. On average a 15-20% lower signal was recorded on our setup compared to the Faraday Cup, which was attributed to the lower photoluminescent efficiency of the P22 phosphor screens when operated at sub-kilovolt bias voltages.
NASA Astrophysics Data System (ADS)
Vasilyan, Suren; Rivero, Michel; Schleichert, Jan; Halbedel, Bernd; Fröhlich, Thomas
2016-04-01
In this paper, we present an application for realizing high-precision horizontally directed force measurements in the order of several tens of nN in combination with high dead loads of about 10 N. The set-up is developed on the basis of two identical state-of-the-art electromagnetic force compensation (EMFC) high precision balances. The measurement resolution of horizontally directed single-axis quasi-dynamic forces is 20 nN over the working range of ±100 μN. The set-up operates in two different measurement modes: in the open-loop mode the mechanical deflection of the proportional lever is an indication of the acting force, whereas in the closed-loop mode it is the applied electric current to the coil inside the EMFC balance that compensates deflection of the lever to the offset zero position. The estimated loading frequency (cutoff frequency) of the set-up in the open-loop mode is about 0.18 Hz, in the closed-loop mode it is 0.7 Hz. One of the practical applications that the set-up is suitable for is the flow rate measurements of low electrically conducting electrolytes by applying the contactless technique of Lorentz force velocimetry. Based on a previously developed set-up which uses a single EMFC balance, experimental, theoretical and numerical analyses of the thermo-mechanical properties of the supporting structure are presented.
A low-cost, computer-controlled robotic flower system for behavioral experiments.
Kuusela, Erno; Lämsä, Juho
2016-04-01
Human observations during behavioral studies are expensive, time-consuming, and error prone. For this reason, automatization of experiments is highly desirable, as it reduces the risk of human errors and workload. The robotic system we developed is simple and cheap to build and handles feeding and data collection automatically. The system was built using mostly off-the-shelf components and has a novel feeding mechanism that uses servos to perform refill operations. We used the robotic system in two separate behavioral studies with bumblebees (Bombus terrestris): The system was used both for training of the bees and for the experimental data collection. The robotic system was reliable, with no flight in our studies failing due to a technical malfunction. The data recorded were easy to apply for further analysis. The software and the hardware design are open source. The development of cheap open-source prototyping platforms during the recent years has opened up many possibilities in designing of experiments. Automatization not only reduces workload, but also potentially allows experimental designs never done before, such as dynamic experiments, where the system responds to, for example, learning of the animal. We present a complete system with hardware and software, and it can be used as such in various experiments requiring feeders and collection of visitation data. Use of the system is not limited to any particular experimental setup or even species.
Simple Apparatus for Measuring the Critical Properties of Gases
ERIC Educational Resources Information Center
Donaldson, G. B.
1973-01-01
Describes the construction and operational procedures of a simple setup which enables undergraduate students to conduct experiments on critical phenomena in gases. Indicates that the experimental features are proved comparable to those of the Reamer and Sage apparatus. (CC)
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory; Eustace, John G.
1990-01-01
Techniques for the quantitative determination of shock position in supersonic flows using direct and indirect methods is presented. A description of an experimental setup is also presented, different configurations of shock position sensing systems are explained, and some experimental results are given. All of the methods discussed are analyzed to determine the ease of technology transfer from the laboratory to in-flight operation.
1979-12-01
team progranming in reducing software dleveloup- ment costs relative to ad hoc approaches and improving software product quality relative to...are interpreted as demonstrating the advantages of disciplined team programming in reducing software development costs relative to ad hoc approaches...is due oartialty to the cost and imoracticality of a valiI experimental setup within a oroauct ion environment. Thus the question remains, are
Comparative Analysis of THOR-NT ATD vs. Hybrid III ATD in Laboratory Vertical Shock Testing
2013-09-01
were taken both pretest and post - test for each test event (figure 5). Figure 5. Rigid fixture placed on the drop table with ATD seated: Hybrid III...6 3. Experimental Procedure 6 3.1 Test Setup...frames per second and with a Vision Research Phantom V9.1 (Wayne, NJ) high-speed video camera, sampling 1000 frames per second. 3. Experimental
Bocian, Mateusz; Macdonald, John H G; Burn, Jeremy F; Redmill, David
2015-12-15
Modelling pedestrian loading on lively structures such as bridges remains a challenge. This is because pedestrians have the capacity to interact with vibrating structures which can lead to amplification of the structural response. Current design guidelines are often inaccurate and limiting as they do not sufficiently acknowledge this effect. This originates in scarcity of data on pedestrian behaviour on vibrating ground and uncertainty as to the accuracy of results from previous experimental campaigns aiming to quantify pedestrian behaviour in this case. To this end, this paper presents a novel experimental setup developed to evaluate pedestrian actions on laterally oscillating ground in the laboratory environment while avoiding the implications of artificiality and allowing for unconstrained gait. A biologically-inspired approach was adopted in its development, relying on appreciation of operational complexities of biological systems, in particular their adaptability and control requirements. In determination of pedestrian forces to the structure consideration was given to signal processing issues which have been neglected in past studies. The results from tests conducted on the setup are related to results from previous experimental investigations and outputs of the inverted pendulum pedestrian model for walking on laterally oscillating ground, which is capable of generating self-excited forces.
Time-dependent sorption of two novel fungicides in soils within a regulatory framework.
Gulkowska, Anna; Buerge, Ignaz J; Poiger, Thomas; Kasteel, Roy
2016-12-01
Convincing experimental evidence suggests increased sorption of pesticides on soil over time, which, so far, has not been considered in the regulatory assessment of leaching to groundwater. Recently, Beulke and van Beinum (2012) proposed a guidance on how to conduct, analyse and use time-dependent sorption studies in pesticide registration. The applicability of the recommended experimental set-up and fitting procedure was examined for two fungicides, penflufen and fluxapyroxad, in four soils during a 170 day incubation experiment. The apparent distribution coefficient increased by a factor of 2.5-4.5 for penflufen and by a factor of 2.5-2.8 for fluxapyroxad. The recommended two-site, one-rate sorption model adequately described measurements of total mass and liquid phase concentration in the calcium chloride suspension and the calculated apparent distribution coefficient, passing all prescribed quality criteria for model fit and parameter reliability. The guidance is technically mature regarding the experimental set-up and parameterisation of the sorption model for the two moderately mobile and relatively persistent fungicides under investigation. These parameters can be used for transport modelling in soil, thereby recognising the existence of the experimentally observed, but in the regulatory leaching assessment of pesticides not yet routinely considered phenomenon of time-dependent sorption. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Mixing behavior of a model cellulosic biomass slurry during settling and resuspension
Crawford, Nathan C.; Sprague, Michael A.; Stickel, Jonathan J.
2016-01-29
Thorough mixing during biochemical deconstruction of biomass is crucial for achieving maximum process yields and economic success. However, due to the complex morphology and surface chemistry of biomass particles, biomass mixing is challenging and currently it is not well understood. This study investigates the bulk rheology of negatively buoyant, non-Brownian α-cellulose particles during settling and resuspension. The torque signal of a vane mixer across two distinct experimental setups (vane-in-cup and vane-in-beaker) was used to understand how mixing conditions affect the distribution of biomass particles. During experimentation, a bifurcated torque response as a function of vane speed was observed, indicating thatmore » the slurry transitions from a “settling-dominant” regime to a “suspension-dominant” regime. The torque response of well-characterized fluids (i.e., DI water) were then used to empirically identify when sufficient mixing turbulence was established in each experimental setup. The predicted critical mixing speeds were in agreement with measured values, suggesting that secondary flows are required in order to keep the cellulose particles fully suspended. In addition, a simple scaling relationship was developed to model the entire torque signal of the slurry throughout settling and resuspension. Furthermore, qualitative and semi-quantitative agreement between the model and experimental results was observed.« less
NASA Astrophysics Data System (ADS)
Röhrig, C.; Scheffer, T.; Diebels, S.
2017-09-01
Composite materials are of great interest for industrial applications because of their outstanding properties. Each composite material has its own characteristics due to the large number of possible combinations of matrix and filler. As a result of their compounding, composites usually show a complex material behavior. This work is focused on the experimental testing of a short fiber-reinforced thermoplastic composite at room temperature. The characteristic behavior of this material class is often based on a superposition of typical material effects. The predicted characteristic material properties such as elasto-plasticity, damage and anisotropy of the investigated material are obtained from results of cyclic uniaxial tensile tests at constant strain rate. Concerning the manufacturing process as well as industrial applications, the experimental investigations are extended to multiaxial loading situations. Therefore, the composite material is examined with a setup close to a deep-drawing process, the Nakajima test (Nakazima et al. in Study on the formability of steel sheets. Yawate Technical Report No. 264, pp 8517-8530, 1968). The evaluation of the experimental investigations is provided by an optical analysis system using a digital image correlation software. Finally, based on the results of the uniaxial tensile tests, a one-dimensional macroscopic model is introduced and first results of the simulation are provided.
Experimental data for the slug two-phase flow characteristics in horizontal pipeline.
Mohmmed, Abdalellah O; Nasif, Mohammad S; Al-Kayiem, Hussain H
2018-02-01
The data presented in this article were the basis for the study reported in the research articles entitled "Statistical assessment of experimental observation on the slug body length and slug translational velocity in a horizontal pipe" (Al-Kayiem et al., 2017) [1] which presents an experimental investigation of the slug velocity and slug body length for air-water tow phase flow in horizontal pipe. Here, in this article, the experimental set-up and the major instruments used for obtaining the computed data were explained in details. This data will be presented in the form of tables and videos.
Experimental study of the robust global synchronization of Brockett oscillators
NASA Astrophysics Data System (ADS)
Ahmed, Hafiz; Ushirobira, Rosane; Efimov, Denis
2017-12-01
This article studies the experimental synchronization of a family of a recently proposed oscillator model, i.e. the Brockett oscillator [R. Brockett, Synchronization without periodicity, in Mathematical Systems Theory, A Volume in Honor of U. Helmke, edited by K. Huper, J. Trumpf (CreateSpace, Seattle, USA, 2013), pp. 65-74]. Due to its structural property, Brockett oscillator can be considered as a promising benchmark nonlinear model for investigating synchronization and the consensus phenomena. Our experimental setup consists of analog circuit realizations of a network of Brockett oscillators. Experimental results obtained in this work correspond to the prior theoretical findings.
A far-field radio-frequency experimental exposure system with unrestrained mice.
Hansen, Jared W; Asif, Sajid; Singelmann, Lauren; Khan, Muhammad Saeed; Ghosh, Sumit; Gustad, Tom; Doetkott, Curt; Braaten, Benjamin D; Ewert, Daniel L
2015-01-01
Many studies have been performed on exploring the effects of radio-frequency (RF) energy on biological function in vivo. In particular, gene expression results have been inconclusive due, in part, to a lack of a standardized experimental procedure. This research describes a new far field RF exposure system for unrestrained murine models that reduces experimental error. The experimental procedure includes the materials used, the creation of a patch antenna, the uncertainty analysis of the equipment, characterization of the test room, experimental equipment used and setup, power density and specific absorption rate experiment, and discussion. The result of this research is an experimental exposure system to be applied to future biological studies.
Design and Fabrication of a Magnetic System to Investigate Magnetized Dusty Plasmas
NASA Astrophysics Data System (ADS)
Bates, Evan M.; Romero-Talamas, Carlos A.
2013-10-01
The interest in researching the dynamics and equilibrium of magnetized dusty plasma crystallization has led to the design and fabrication of a novel experimental setup at UMBC. The proposed magnets will be an important subsystem of this setup, and will produce a uniform magnetic field of several tesla for a duration of several seconds. The magnets will be arranged in the Helmholtz configuration and will have a cooling system for temperature compensation of the coils, as well as the ability to adjust the orientation of the magnetic field with respect to gravity. Planned experiments include propagation of magnetized waves in dusty plasma crystals under various boundary conditions.
Study of heating capacity of focused IR light soldering systems.
Anguiano, C; Félix, M; Medel, A; Bravo, M; Salazar, D; Márquez, H
2013-10-07
An experimental study about four optical setups used for developing a Focused IR Light Soldering System (FILSS) for Surface Mount Technology (SMT) lead-free electronic devices specifically for Ball Grid Arrays (BGA) is presented. An analysis of irradiance and infrared thermography at BGA surface is presented, as well as heat transfer by radiation and conduction process from the surface of the BGA to the solder balls. The results of this work show that the heating provided by our proposed optical setups, measured at the BGA under soldering process, meets the high temperature and uniform thermal distribution requirements, which are defined by the reflow solder method for SMT devices.
Column experiments on organic micropollutants - applications and limitations
NASA Astrophysics Data System (ADS)
Banzhaf, Stefan; Hebig, Klaus
2016-04-01
As organic micropollutants become more and more ubiquitous in the aquatic environment, a sound understanding of their fate and transport behaviour is needed. This is to assure both safe and clean drinking water supply for mankind in the future and to protect the aquatic environment from pollution and negative consequences caused by manmade contamination. Apart from countless field studies, column experiments were and are frequently used to study transport of organic micropollutants. As the transport of (organic) solutes in groundwater is controlled by the chemical and physical properties of the compounds, the solvent (the groundwater including all solutes), and the substrate (the aquifer material), the adjustment and control of these boundary conditions allow to study a multitude of different experimental setups and to address specific research questions. The main purpose, however, remains to study the transport of a specific compound and its sorption and degradation behaviour in a specific sediment or substrate. Apart from the effective control of the individual boundary conditions, the main advantage of columns studies compared to other experimental setups (such as field studies, batch/microcosm studies), is that conservative and reactive solute breakthrough curves are obtained, which represent the sum of the transport processes. The analysis of these curves is well-developed and established. Additionally, limitations of this experimental method are presented here: the effects observed in column studies are often a result of dynamic, non-equilibrium processes. Time (or flow velocity) plays a major role in contrast to batch experiments, in which all processes will be observed until equilibrium is reached in the substrate-solution-system. Slightly modifying boundary conditions in different experiments have a strong influence on transport and degradation behaviour of organic micropollutants. This is a significant severe issue when it comes to general findings on the transport behaviour of a specific organic compound that are transferable to any given hydrogeochemical environment. Unfortunately, results of most column experiments therefore remain restricted to their specific setup. Column experiments can provide good estimates of all relevant transport parameters. However, the obtained results will almost always be limited to the scale they were obtained from. This means that direct application to field scale studies is infeasible as too many parameters are exclusive for the laboratory column setup. The remaining future challenge is to develop standard column experiments on organic micropollutants that overcome this issue. Here, we present a review of column experiments on organic micropollutants. We present different setups and discuss weaknesses, problems and advantages and provide ideas how to obtain more comparable results on the transport of organic micropollutants in the future.
Fate and transport of manure-borne microorganisms
USDA-ARS?s Scientific Manuscript database
This lecture presents the overview of the recent research results on the environmental microbial fate and transport in the Environmental Microbial and Food Safety Laboratory. The overview of experimental sites in Maryland and Pennsylvania, and laboratory setups will be given. The emphasis on envir...
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A; Munsat, Tobin; Plane, John M C; Sternovsky, Zoltan
2017-03-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N 2 , air, CO 2 , and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.
NASA Astrophysics Data System (ADS)
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan
2017-03-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.
NASA Technical Reports Server (NTRS)
Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan
2017-01-01
A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 kilometers. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 centimeters along the ablating particles path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities greater than 20 kilometers per second, and are reported by Thomas et al. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 centimeters and 90 nanoseconds. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.
Viswanathan, Karthickeyan
2018-05-01
In the present study, non-edible seed oil namely raw neem oil was converted into biodiesel using transesterification process. In the experimentation, two biodiesel blends were prepared namely B25 (25% neem oil methyl ester with 75% of diesel) and B50 (50% neem oil methyl ester with 50% diesel). Urea-based selective catalytic reduction (SCR) technique with catalytic converter (CC) was fixed in the exhaust tail pipe of the engine for the reduction of engine exhaust emissions. Initially, the engine was operated with diesel as a working fluid and followed by refilling of biodiesel blends B25 and B50 to obtain the baseline readings without SCR and CC. Then, the same procedure was repeated with SCR and CC technique for emission reduction measurement in diesel, B25 and B50 sample. The experimental results revealed that the B25 blend showed higher break thermal efficiency (BTE) and exhaust gas temperature (EGT) with lower break-specific fuel consumption (BSFC) than B50 blend at all loads. On comparing with biodiesel blends, diesel experiences increased BTE of 31.9% with reduced BSFC of 0.29 kg/kWh at full load. A notable emission reduction was noticed for all test fuels in SCR and CC setup. At full load, B25 showed lower carbon monoxide (CO) of 0.09% volume, hydrocarbon (HC) of 24 ppm, and smoke of 14 HSU and oxides of nitrogen (NOx) of 735 ppm than diesel and B50 in SCR and CC setup. On the whole, the engine with SCR and CC setup showed better performance and emission characteristics than standard engine operation.
Gebremikael, Mesfin Tsegaye; Steel, Hanne; Bert, Wim; Maenhout, Peter; Sleutel, Steven; De Neve, Stefaan
2015-01-01
To understand the roles of nematodes in organic matter (OM) decomposition, experimental setups should include the entire nematode community, the native soil microflora, and their food sources. Yet, published studies are often based on either simplified experimental setups, using only a few selected species of nematode and their respective prey, despite the multitude of species present in natural soil, or on indirect estimation of the mineralization process using O2 consumption and the fresh weight of nematodes. We set up a six-month incubation experiment to quantify the contribution of the entire free living nematode community to carbon (C) mineralization under realistic conditions. The following treatments were compared with and without grass-clover amendment: defaunated soil reinoculated with the entire free living nematode communities (+Nem) and defaunated soil that was not reinoculated (-Nem). We also included untreated fresh soil as a control (CTR). Nematode abundances and diversity in +Nem was comparable to the CTR showing the success of the reinoculation. No significant differences in C mineralization were found between +Nem and -Nem treatments of the amended and unamended samples at the end of incubation. Other related parameters such as microbial biomass C and enzymatic activities did not show significant differences between +Nem and -Nem treatments in both amended and unamended samples. These findings show that the collective contribution of the entire nematode community to C mineralization is small. Previous reports in literature based on simplified experimental setups and indirect estimations are contrasting with the findings of the current study and further investigations are needed to elucidate the extent and the mechanisms of nematode involvement in C mineralization. PMID:26393517
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera, O.; Lascola, R.; Fessler, K.
The overall objective of this project is to optics procurement and instrumental setup completed in Robert Lascola’s laboratory. An Ondax THz-Raman probe was installed in order to obtain Raman terahertz spectra of commercially available Zeolites.
Development of a PET cyclotron based irradiation setup for proton radiobiology
NASA Astrophysics Data System (ADS)
Ghithan, Sharif; Crespo, Paulo; do Carmo, S. J. C.; Ferreira Marques, Rui; Fraga, F. A. F.; Simões, Hugo; Alves, Francisco; Rachinhas, P. J. B. M.
2015-02-01
An out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinary produces radioisotopes for positron emission tomography (PET) has been developed, characterized, calibrated and validated. The current from a 20 μm thick aluminum transmission foil is readout by home-made transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setup can be computer-controlled with a shutter. In this work, we report on experimental results and Geant4 simulations of a setup which exploits for the first time the 18 MeV proton beam from a PET cyclotron to irradiate a selected region of a target using the developed irradiation system. By using this system, we are able to deliver a homogeneous beam on targets with 18 mm diameter, allowing to achieve the controlled irradiation of cell cultures located in biological multi-well dishes of 16 mm diameter. We found that the magnetic field applied inside the cyclotron plays a major role for achieving the referred to homogeneity. The quasi-Gaussian curve obtained by scanning the magnet current and measuring the corresponding dose rate must be measured before any irradiation procedure, with the shutter closed. At the optimum magnet current, which corresponds to the center of the Gaussian, a homogenous dose is observed over the whole target area. Making use of a rotating disk with a slit of 0.5 mm at a radius of 150 mm, we could measure dose rates on target ranging from 500 mGy/s down to 5 mGy/s. For validating the developed irradiation setup, several Gafchromic® EBT2 films were exposed to different values of dose. The absolute dose in the irradiated films were assessed in the 2D film dosimetry system of the Department of Radiotherapy of Coimbra University Hospital Center with a precision better than 2%. In the future, we plan to irradiate small animals, cell cultures, or other materials or samples.
Investigation of the flow turning loss in unstable solid propellant rocket motors
NASA Astrophysics Data System (ADS)
Matta, Lawrence Mark
The goal of this study was to improve the understanding of the flow turning loss, which contributes to the damping of axial acoustic instabilities in solid propellant rocket motors. This understanding is needed to develop practical methods for designing motors that do not exhibit such instabilities. The flow turning loss results from the interaction of the flow of combustion products leaving the surface of the propellant with the acoustic field in an unstable motor. While state of the art solid rocket stability models generally account for the flow turning loss, its magnitude and characteristics have never been fully investigated. This thesis describes a combined theoretical, numerical, and experimental investigation of the flow turning loss and its dependence upon various motor design and operating parameters. First, a one dimensional acoustic stability equation that verifies the existence of the flow turning loss was derived for a chamber with constant mean pressure and temperature. The theoretical development was then extended to include the effects of mean temperature gradients to accommodate combustion systems in which mean temperature gradients and heat losses are significant. These analyses provided the background and expressions necessary to guide an experimental study. The relevant equations were then solved for the developed experimental setup to predict the behavior of the flow turning loss and the other terms of the developed acoustic stability equation. This was followed by and experimental study in which the flow turning region of an unstable solid propellant rocket motor was simulated. The setup was used, with and without combustion, to determine the dependence of the flow turning loss upon operating conditions. These studies showed that the flow turning loss strongly depends upon the gas velocity at the propellant surface and the location of the flow turning region relative to the standing acoustic wave. The flow turning loss measured in the experiment was found to be small relative to other mechanisms. This, however, was characteristic of the experimental setup and is not representative of actual rocket motors, in which the flow turning loss is often a significant part of the overall stability.
Commissioning and initial experimental program of the BGO-OD experiment at ELSA
NASA Astrophysics Data System (ADS)
Alef, S.; Bauer, P.; Bayadilov, D.; Beck, R.; Becker, M.; Bella, A.; Bielefeldt, P.; Böse, S.; Braghieri, A.; Brinkmann, K.; Cole, P.; Di Salvo, R.; Dutz, H.; Elsner, D.; Fantini, A.; Freyermuth, O.; Friedrich, S.; Frommberger, F.; Ganenko, V.; Geffers, D.; Gervino, G.; Ghio, F.; Görtz, S.; Gridnev, A.; Gutz, E.; Hammann, D.; Hannappel, J.; Hillert, W.; Ignatov, A.; Jahn, R.; Joosten, R.; Jude, T. C.; Klein, F.; Knaust, J.; Kohl, K.; Koop, K.; Krusche, B.; Lapik, A.; Levi Sandri, P.; Lopatin, I. V.; Mandaglio, G.; Messi, F.; Messi, R.; Metag, V.; Moricciani, D.; Mushkarenkov, A.; Nanova, M.; Nedorezov, V.; Novinskiy, D.; Pedroni, P.; Reitz, B.; Romaniuk, M.; Rostomyan, T.; Rudnev, N.; Schaerf, C.; Scheluchin, G.; Schmieden, H.; Stugelev, A.; Sumachev, V.; Tarakanov, V.; Vegna, V.; Walther, D.; Watts, D.; Zaunick, H.; Zimmermann, T.
2016-11-01
BGO-OD is a new meson photoproduction experiment at the ELSA facility of Bonn University. It aims at the investigation of non strange and strange baryon excitations, and is especially designed to be able to detect weekly bound meson-baryon type structures. The setup for the BGO-OD experiment is presented, the characteristics of the photon beam and the detector performances are shown and the initial experimental program is discussed.
2017-08-01
obtained from Salzgitter Mannesmann Forschung, a German steel manufacturing concern. The steel samples were subjected to microstructural and quasi ... Experimental Procedures 4 4. Results and Discussion 7 4.1 Microstructural and Mechanical Properties 7 4.2 Ballistic Testing 14 5. Summary and Conclusions...austenitic steels. Reprinted with permission. ................................................................... 2 Fig. 2 Experimental setup. A
Experimental aspects of the thermochemical conversion of solar energy - Decarbonation of CaCO3
NASA Astrophysics Data System (ADS)
Flamant, G.; Hernandez, D.; Bonet, C.; Traverse, J.-P.
1980-01-01
The feasibility of thermochemical conversion of concentrated solar energy is investigated. Consideration is given to heterogeneous systems in the range 500-1500 C. A reaction volume is on a laboratory scale about 30 cu cm. An experimental set-up selected is a fluid bed and a rotary kiln. An endothermal reaction, namely, decarbonation of CaCO3, is selected as a possible application for solar power plants.
NASA Technical Reports Server (NTRS)
Saripalli, K. R.; Simpson, R. L.
1979-01-01
The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed.
How to Evaluate and Synthesize Literature Data on Physical Properties.
1980-09-01
experimental set-up, refined technique for fabri - cating and installing the specimen heater so as to minimize heat leakage, technique for installing...Conductivity of Gadolinium Figure 3 shows another type of disagreement in experimental data from the literature. Here the two sets of thermal conductivity data...for gadolinium are for the same one piece of specimen measured in the same laboratory which S-" is one of the best known internationally, and published
An optimized adaptive optics experimental setup for in vivo retinal imaging
NASA Astrophysics Data System (ADS)
Balderas-Mata, S. E.; Valdivieso González, L. G.; Ramírez Zavaleta, G.; López Olazagasti, E.; Tepichin Rodriguez, E.
2012-10-01
The use of Adaptive Optics (AO) in ophthalmologic instruments to image human retinas has been probed to improve the imaging lateral resolution, by correcting both static and dynamic aberrations inherent in human eyes. Typically, the configuration of the AO arm uses an infrared beam from a superluminescent diode (SLD), which is focused on the retina, acting as a point source. The back reflected light emerges through the eye optical system bringing with it the aberrations of the cornea. The aberrated wavefront is measured with a Shack - Hartmann wavefront sensor (SHWFS). However, the aberrations in the optical imaging system can reduced the performance of the wave front correction. The aim of this work is to present an optimized first stage AO experimental setup for in vivo retinal imaging. In our proposal, the imaging optical system has been designed in order to reduce spherical aberrations due to the lenses. The ANSI Standard is followed assuring the safety power levels. The performance of the system will be compared with a commercial aberrometer. This system will be used as the AO arm of a flood-illuminated fundus camera system for retinal imaging. We present preliminary experimental results showing the enhancement.
A polychromatic adaption of the Beer-Lambert model for spectral decomposition
NASA Astrophysics Data System (ADS)
Sellerer, Thorsten; Ehn, Sebastian; Mechlem, Korbinian; Pfeiffer, Franz; Herzen, Julia; Noël, Peter B.
2017-03-01
We present a semi-empirical forward-model for spectral photon-counting CT which is fully compatible with state-of-the-art maximum-likelihood estimators (MLE) for basis material line integrals. The model relies on a minimum calibration effort to make the method applicable in routine clinical set-ups with the need for periodic re-calibration. In this work we present an experimental verifcation of our proposed method. The proposed method uses an adapted Beer-Lambert model, describing the energy dependent attenuation of a polychromatic x-ray spectrum using additional exponential terms. In an experimental dual-energy photon-counting CT setup based on a CdTe detector, the model demonstrates an accurate prediction of the registered counts for an attenuated polychromatic spectrum. Thereby deviations between model and measurement data lie within the Poisson statistical limit of the performed acquisitions, providing an effectively unbiased forward-model. The experimental data also shows that the model is capable of handling possible spectral distortions introduced by the photon-counting detector and CdTe sensor. The simplicity and high accuracy of the proposed model provides a viable forward-model for MLE-based spectral decomposition methods without the need of costly and time-consuming characterization of the system response.
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Gottlieb, Herbert H., Ed.
1980-01-01
Presents two experimental set-ups. The first demonstrates the law of Malus using a pair of Polaroid polarizers and a monochromatic light source with an interference filter. The second describes a modification of Hilton's apparatus to demonstrate the effects of the magnetic hysteresis on an overhead projector. (CS)
Contributions to the problem of piezoelectric accelerometer calibration. [using lock-in voltmeter
NASA Technical Reports Server (NTRS)
Jakab, I.; Bordas, A.
1974-01-01
After discussing the principal calibration methods for piezoelectric accelerometers, an experimental setup for accelerometer calibration by the reciprocity method is described It is shown how the use of a lock-in voltmeter eliminates errors due to viscous damping and electrical loading.
Experiment in the Bragg Reflection of Light for the Undergraduate Using Cholesteric Liquid Crystals
ERIC Educational Resources Information Center
Olah, A.; Doane, J. W.
1977-01-01
Describes a simple experimental setup in which the student can detect and record light spectra, study and test the concept of Bragg reflection, and measure the anisotropy of the index of refraction in a cholesteric liquid crystal. (MLH)
Apparatus for Teaching Physics.
ERIC Educational Resources Information Center
Connolly, Walter, Ed.
1990-01-01
Provides the apparatus setup, experimental method, necessary formulas, and references for three measurement experiments: (1) "Determine the Magnetic Induction of a Coil with a Hall Element"; (2) "Measuring Magnetic Force and Magnetic Field of Small Permanent Magnets"; and (3) "Measurements of Sound Velocity by Means of PZT" (piezoelectric…
The Power of Aircraft Engines at Altitude
NASA Technical Reports Server (NTRS)
Ragazzi, Paolo
1939-01-01
The subject of the present paper is confined to the investigations and methods employed by the Fiat company in their studies on the altitude performance of an air-cooled engine of the production type. The experimental set-up as well as test engine data are provided.
Decay Time of Cathodoluminescence
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2009-01-01
Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…
Evaluation of thermal gradients in longitudinal spin Seebeck effect measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sola, A., E-mail: a.sola@inrim.it; Kuepferling, M.; Basso, V.
2015-05-07
In the framework of the longitudinal spin Seebeck effect (LSSE), we developed an experimental setup for the characterization of LSSE devices. This class of device consists in a layered structure formed by a substrate, a ferrimagnetic insulator (YIG) where the spin current is thermally generated, and a paramagnetic metal (Pt) for the detection of the spin current via the inverse spin-Hall effect. In this kind of experiments, the evaluation of a thermal gradient through the thin YIG layer is a crucial point. In this work, we perform an indirect determination of the thermal gradient through the measurement of the heatmore » flux. We developed an experimental setup using Peltier cells that allow us to measure the heat flux through a given sample. In order to test the technique, a standard LSSE device produced at Tohoku University was measured. We find a spin Seebeck S{sub SSE} coefficient of 2.8×10{sup −7} V K{sup −1}.« less
Co-culture systems and technologies: taking synthetic biology to the next level
Goers, Lisa; Freemont, Paul; Polizzi, Karen M.
2014-01-01
Co-culture techniques find myriad applications in biology for studying natural or synthetic interactions between cell populations. Such techniques are of great importance in synthetic biology, as multi-species cell consortia and other natural or synthetic ecology systems are widely seen to hold enormous potential for foundational research as well as novel industrial, medical and environmental applications with many proof-of-principle studies in recent years. What is needed for co-cultures to fulfil their potential? Cell–cell interactions in co-cultures are strongly influenced by the extracellular environment, which is determined by the experimental set-up, which therefore needs to be given careful consideration. An overview of existing experimental and theoretical co-culture set-ups in synthetic biology and adjacent fields is given here, and challenges and opportunities involved in such experiments are discussed. Greater focus on foundational technology developments for co-cultures is needed for many synthetic biology systems to realize their potential in both applications and answering biological questions. PMID:24829281
Wideband THz Time Domain Spectroscopy based on Optical Rectification and Electro-Optic Sampling
Tomasino, A.; Parisi, A.; Stivala, S.; Livreri, P.; Cino, A. C.; Busacca, A. C.; Peccianti, M.; Morandotti, R.
2013-01-01
We present an analytical model describing the full electromagnetic propagation in a THz time-domain spectroscopy (THz-TDS) system, from the THz pulses via Optical Rectification to the detection via Electro Optic-Sampling. While several investigations deal singularly with the many elements that constitute a THz-TDS, in our work we pay particular attention to the modelling of the time-frequency behaviour of all the stages which compose the experimental set-up. Therefore, our model considers the following main aspects: (i) pump beam focusing into the generation crystal; (ii) phase-matching inside both the generation and detection crystals; (iii) chromatic dispersion and absorption inside the crystals; (iv) Fabry-Perot effect; (v) diffraction outside, i.e. along the propagation, (vi) focalization and overlapping between THz and probe beams, (vii) electro-optic sampling. In order to validate our model, we report on the comparison between the simulations and the experimental data obtained from the same set-up, showing their good agreement. PMID:24173583
Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai
2012-01-01
This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.
New laser power sensor using weighing method
NASA Astrophysics Data System (ADS)
Pinot, P.; Silvestri, Z.
2018-01-01
We present a set-up using a piece of pyrolytic carbon (PyC) to measure laser power in the range from a few milliwatts to a few watts. The experimental configuration consists in measuring the magnetic repulsion force acting between a piece of PyC placed on a weighing pan and in a magnetic induction generated by a magnet array in a fixed position above the PyC sheet. This involves a repulsion force on the PyC piece which is expressed in terms of mass by the balance display. The quantities affecting the measurement results have been identified. An example of metrological characterization in terms of accuracy, linearity and sensitivity is given. A relative uncertainty of optical power measurement for the first experimental set-up is around 1%. The wavelength and power density dependence on power response of this device has been demonstrated. This PyC-based device presented here in weighing configuration and the other one previously studied in levitation configuration offer a new technique for measuring optical power.
A technique for searching for the 2 K capture in 124Xe with a copper proportional counter
NASA Astrophysics Data System (ADS)
Gavrilyuk, Yu. M.; Gangapshev, A. M.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.
2015-12-01
An experimental technique for searching for the 2 K capture in 124Xe with a large low-background copper proportional counter is described. Such an experiment is conducted at the Baksan Neutrino Observatory of the Institute for Nuclear Research of the Russian Academy of Sciences. The experimental setup is located in the Low-Background Deep-Level Laboratory at a depth of 4900 m.w.e., where the flux of muons of cosmic rays is suppressed by a factor of 107 relative to that at the Earth's surface. The setup incorporates a proportional counter and low-background shielding (18 cm of copper, 15 cm of lead, and 8 cm of borated polyethylene). The results of processing the data obtained in 5 months of live measurement time are presented. A new limit on the half-life of 124Xe with respect to the 2 K capture is set at the level of 2.5 × 1021 years.
Polymer mobilization and drug release during tablet swelling. A 1H NMR and NMR microimaging study.
Dahlberg, Carina; Fureby, Anna; Schuleit, Michael; Dvinskikh, Sergey V; Furó, István
2007-09-26
The objective of this study was to investigate the swelling characteristics of a hydroxypropyl methylcellulose (HPMC) matrix incorporating the hydrophilic drug antipyrine. We have used this matrix to introduce a novel analytical method, which allows us to obtain within one experimental setup information about the molecular processes of the polymer carrier and its impact on drug release. Nuclear magnetic resonance (NMR) imaging revealed in situ the swelling behavior of tablets when exposed to water. By using deuterated water, the spatial distribution and molecular dynamics of HPMC and their kinetics during swelling could be observed selectively. In parallel, NMR spectroscopy provided the concentration of the drug released into the aqueous phase. We find that both swelling and release are diffusion controlled. The ability of monitoring those two processes using the same experimental setup enables mapping their interconnection, which points on the importance and potential of this analytical technique for further application in other drug delivery forms.
Supercritical Water Experimental Setup for µSR
NASA Astrophysics Data System (ADS)
Liu, Guangdong; Chen, Yanggang; Morrison, Alexander H.; Koda, Akihiro; Percival, Paul W.; Ghandi, Khashayar
The Canadian design for Generation IV nuclear reactors uses supercritical water (SCW, water above its critical point of 374 °C, 221 bar (1 bar = 100 kPa)) as the coolant. Supercritical water-cooled reactors (SCWRs) are designed towards sustainability, economic benefits, improved safety, and longer lifespan. Despite the potential advantages of SCWRs, we know very little about the kinetics of radiolysis products that are formed in them because of the limitations of experimental instruments under the extreme conditions of SCW. The radiolysis products can accumulate over time and create a very corrosive environment. Our group has developed and tested an apparatus suitable for muon spin rotation (µSR) studies of water and aqueous solutions up to 550 °C and 250 bar, close to the conditions at the reactor outlet of the proposed Canadian SCWR design (625 °C and 250 bar). The reaction kinetics information obtained from our setup, together with computer simulations, will aid us in developing chemical control strategies to minimize corrosion in SCWRs.
NASA Astrophysics Data System (ADS)
Kanagaraj, S.; Pattanayak, S.
2004-06-01
The applications of fibre reinforced plastic (FRP) materials in cryogenic engineering have stimulated keen interest in the investigation of its properties. The reliable design data generated by a precisely controlled setup at identical environment of its applications are extremely important. This paper describes an apparatus based on a GM refrigerator for the simultaneous measurements of thermal conductivity, thermal expansion and thermal diffusivity using a double-specimen guarded-hotplate, 3-terminal capacitance technique and Angstrom method respectively in the temperature range from 30 K to 300 K. An integrated and perfectly insulated sample holder is designed and fabricated in such a way that the simultaneous measurements of the above properties are conveniently and accurately carried out at different temperatures. A set of stability criteria has been followed during the measurements to ensure the accuracy of the experimental data. The setup is calibrated with stainless steel and copper and the experimental results are within 10 % of the published results given in the literatures.
Al-Ahmad, Ali; Zou, Peng; Solarte, Diana Lorena Guevara; Hellwig, Elmar; Steinberg, Thorsten; Lienkamp, Karen
2014-01-01
Bacterial infection of biomaterials is a major concern in medicine, and different kinds of antimicrobial biomaterial have been developed to deal with this problem. To test the antimicrobial performance of these biomaterials, the airborne bacterial assay is used, which involves the formation of biohazardous bacterial aerosols. We here describe a new experimental set-up which allows safe handling of such pathogenic aerosols, and standardizes critical parameters of this otherwise intractable and strongly user-dependent assay. With this new method, reproducible, thorough antimicrobial data (number of colony forming units and live-dead-stain) was obtained. Poly(oxonorbornene)-based Synthetic Mimics of Antimicrobial Peptides (SMAMPs) were used as antimicrobial test samples. The assay was able to differentiate even between subtle sample differences, such as different sample thicknesses. With this new set-up, the airborne bacterial assay was thus established as a useful, reliable, and realistic experimental method to simulate the contamination of biomaterials with bacteria, for example in an intraoperative setting.
NASA Astrophysics Data System (ADS)
Ezerskaia, Anna; Pereira, S. F.; Urbach, H. P.; Varghese, Babu
2016-05-01
Skin health characterized by a system of water and lipids in Stratum Corneum provide protection from harmful external elements and prevent trans-epidermal water loss. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of skin health and plays a central role in protecting and preserving skin integrity. In this manuscript we present an infrared spectroscopic method for simultaneous and quantitative measurement of skin hydration and sebum levels utilizing differential detection with three wavelengths 1720, 1750, and 1770 nm, corresponding to the lipid vibrational bands that lie "in between" the prominent water absorption bands. The skin sebum and hydration values on the forehead under natural conditions and its variations to external stimuli were measured using our experimental set-up. The experimental results obtained with the optical set-up show good correlation with the results obtained with the commercially available instruments Corneometer and Sebumeter.
Microchannel plate cross-talk mitigation for spatial autocorrelation measurements
NASA Astrophysics Data System (ADS)
Lipka, Michał; Parniak, Michał; Wasilewski, Wojciech
2018-05-01
Microchannel plates (MCP) are the basis for many spatially resolved single-particle detectors such as ICCD or I-sCMOS cameras employing image intensifiers (II), MCPs with delay-line anodes for the detection of cold gas particles or Cherenkov radiation detectors. However, the spatial characterization provided by an MCP is severely limited by cross-talk between its microchannels, rendering MCP and II ill-suited for autocorrelation measurements. Here, we present a cross-talk subtraction method experimentally exemplified for an I-sCMOS based measurement of pseudo-thermal light second-order intensity autocorrelation function at the single-photon level. The method merely requires a dark counts measurement for calibration. A reference cross-correlation measurement certifies the cross-talk subtraction. While remaining universal for MCP applications, the presented cross-talk subtraction, in particular, simplifies quantum optical setups. With the possibility of autocorrelation measurements, the signal needs no longer to be divided into two camera regions for a cross-correlation measurement, reducing the experimental setup complexity and increasing at least twofold the simultaneously employable camera sensor region.
Modeling flow for modified concentric cylinder rheometer geometry
NASA Astrophysics Data System (ADS)
Ekeruche, Karen; Connelly, Kelly; Kavehpour, H. Pirouz
2016-11-01
Rheology experiments on biological fluids can be difficult when samples are limited in volume, sensitive to degradation, and delicate to extract from tissues. A probe-like geometry has been developed to perform shear creep experiments on biological fluids and to use the creep response to characterize fluid material properties. This probe geometry is a modified concentric cylinder setup, where the gap is large and we assume the inner cylinder rotates in an infinite fluid. To validate this assumption we perform shear creep tests with the designed probe on Newtonian and non-Newtonian fluids and vary the outer cylinder container diameter. We have also created a numerical model based on the probe geometry setup to compare with experimental results at different outer cylinder diameters. A creep test is modeled by applying rotation to the inner cylinder and solving for the deformation of the fluid throughout the gap. Steady state viscosity values are calculated from creep compliance curves and compared between experimental and numerical results.
NASA Astrophysics Data System (ADS)
Aurelius, O.; Duman, R.; El Omari, K.; Mykhaylyk, V.; Wagner, A.
2017-11-01
Phasing of novel macromolecular crystal structures has been challenging since the start of structural biology. Making use of anomalous diffraction of natively present elements, such as sulfur and phosphorus, for phasing has been possible for some systems, but hindered by the necessity to access longer X-ray wavelengths in order to make most use of the anomalous scattering contributions of these elements. Presented here are the results from a first successful experimental phasing study of a macromolecular crystal structure at a wavelength close to the sulfur K edge. This has been made possible by the in-vacuum setup and the long-wavelength optimised experimental setup at the I23 beamline at Diamond Light Source. In these early commissioning experiments only standard data collection and processing procedures have been applied, in particular no dedicated absorption correction has been used. Nevertheless the success of the experiment demonstrates that the capability to extract phase information can be even further improved once data collection protocols and data processing have been optimised.
Recent progress of the Laser-driven Ion-beam Trace Probe
NASA Astrophysics Data System (ADS)
Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The Laser-driven Ion-beam Trace Probe (LITP) is a new method to diagnose the poloidal magnetic field and radial electric field in tokamaks. Recently significant progresses have been made as follows. 1) The experimental system has been set up on the PKU Plasma Test (PPT) linear device and begun to validate the principle of LITP, including the ion source, the ion detector and the poloidal magnetic field cable. Preliminary experimental results matched the theoretical prediction well. 2) The reconstruction principle has been improved including the nonlinear effect. 3) Tomography methods have been applied in the reconstruction codes. Now the laser-driven ion-beam accelerator has been setup on the PPT device, and further test of LITP will start soon. After that a prototype of LITP system will be designed and setup on the HL-2A tokamak device. This work was supported by the CHINA MOST under 2012YQ030142, ITER-CHINA program 2015GB120001 and National Natural Science Foundation of China under 11575014 and 11375053.
Körzendörfer, Adrian; Temme, Philipp; Nöbel, Stefan; Schlücker, Eberhard; Hinrichs, Jörg
2016-07-01
The aim of the study was to investigate the effects of vibrations during yogurt fermentation. Machinery such as pumps and switching valves generate vibrations that may disturb the gelation by inducing large particles. Oscillation measurements on an industrial yogurt production line showed that oscillations are transferred from pumps right up to the fermentation tanks. An experimental setup (20L) was developed to study the effect of vibrations systematically. The fermenters were decoupled with air springs to enable reference fermentations under idle conditions. A vibration exciter was used to stimulate the fermenters. Frequency sweeps (25-1005Hz, periodic time 10s) for 20min from pH5.4 induced large particles. The number of visible particles was significantly increased from 35±4 (reference) to 89±9 particles per 100g yogurt. Rheological parameters of the stirred yogurt samples were not influenced by vibrations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Buja, Oana-M; Gordan, Ovidiu D; Leopold, Nicolae; Morschhauser, Andreas; Nestler, Jörg; Zahn, Dietrich R T
2017-01-01
A microfluidic setup which enables on-line monitoring of residues of malachite green (MG) using surface-enhanced Raman scattering (SERS) is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10 -7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.
Guo, Xiao-Zhi; Luo, Yan-Hong; Zhang, Yi-Duo; Huang, Xiao-Chun; Li, Dong-Mei; Meng, Qing-Bo
2010-10-01
An experimental setup is built for the measurement of monochromatic incident photon-to-electron conversion efficiency (IPCE) of solar cells. With this setup, three kinds of IPCE measuring methods as well as the convenient switching between them are achieved. The setup can also measure the response time and waveform of the short-circuit current of solar cell. Using this setup, IPCE results of dye-sensitized solar cells (DSCs) are determined and compared under different illumination conditions with each method. It is found that the IPCE values measured by AC method involving the lock-in technique are sincerely influenced by modulation frequency and bias illumination. Measurements of the response time and waveform of short-circuit current have revealed that this effect can be explained by the slow response of DSCs. To get accurate IPCE values by this method, the measurement should be carried out with a low modulation frequency and under bias illumination. The IPCE values measured by DC method under the bias light illumination will be disturbed since the short-circuit current increased with time continuously due to the temperature rise of DSC. Therefore, temperature control of DSC is considered necessary for IPCE measurement especially in DC method with bias light illumination. Additionally, high bias light intensity (>2 sun) is found to decrease the IPCE values due to the ion transport limitation of the electrolyte.
PILOT-SCALE EVALUATION OF ENGINEERED BARIER SYSTEMS FOR THE YUCCA MOUNTAIN PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.W. Webb; J.T. George; R.E. Finley
This paper describes two quarter-scale experiments (1.4 m diameter) and associated numerical analyses on granular backfill engineered barrier systems in support of the Yucca Mountain Project for the potential repository. The two configurations include a sloped capillary barrier and a plain backfill. The tests involve application of dyed water as a constant line infiltration source along the top of the test set-up, monitoring water movement through the test, and measuring water exiting the experiments. A complete water balance estimate is made for each test, and observed water movement is compared with (1) detailed numerical analyses conducted using the TOUGH2 codemore » for unsaturated flow in porous media and (2) posttest observations. The results of the testing and analyses show that for the injection rates and configuration applied, the capillary barrier design diverts a significant amount of all injected water and the TOUGH2 pretest predictions show qualitative and quantitative agreement with the experimental data.« less
NASA Astrophysics Data System (ADS)
Miorelli, Roberto; Reboud, Christophe
2018-04-01
Pulsed Eddy Current Testing (PECT) is a popular NonDestructive Testing (NDT) technique for some applications like corrosion monitoring in the oil and gas industry, or rivet inspection in the aeronautic area. Its particularity is to use a transient excitation, which allows to retrieve more information from the piece than conventional harmonic ECT, in a simpler and cheaper way than multi-frequency ECT setups. Efficient modeling tools prove, as usual, very useful to optimize experimental sensors and devices or evaluate their performance, for instance. This paper proposes an efficient simulation of PECT signals based on standard time harmonic solvers and use of an Adaptive Sparse Grid (ASG) algorithm. An adaptive sampling of the ECT signal spectrum is performed with this algorithm, then the complete spectrum is interpolated from this sparse representation and PECT signals are finally synthesized by means of inverse Fourier transform. Simulation results corresponding to existing industrial configurations are presented and the performance of the strategy is discussed by comparison to reference results.
NASA Astrophysics Data System (ADS)
Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing
2018-04-01
We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.
Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing.
Baumgartl, Martin; Gottschall, Thomas; Abreu-Afonso, Javier; Díez, Antonio; Meyer, Tobias; Dietzek, Benjamin; Rothhardt, Manfred; Popp, Jürgen; Limpert, Jens; Tünnermann, Andreas
2012-09-10
An environmentally-stable low-repetition rate fiber oscillator is developed to produce narrow-bandwidth pulses with several tens of picoseconds duration. Based on this oscillator an alignment-free all-fiber laser for multi-photon microscopy is realized using in-fiber frequency conversion based on four-wave-mixing. Both pump and Stokes pulses for coherent anti-Stokes Raman scattering (CARS) microscopy are readily available from one fiber end, intrinsically overlapped in space and time, which drastically simplifies the experimental handling for the user. The complete laser setup is mounted on a home-built laser scanning microscope with small footprint. High-quality multimodal microscope images of biological tissue are presented probing the CH-stretching resonance of lipids at an anti-Stokes Raman-shift of 2845 cm(-1) and second-harmonic generation of collagen. Due to its simplicity, compactness, maintenance-free operation, and ease-of-use the presented low-cost laser is an ideal source for bio-medical applications outside laser laboratories and in particular inside clinics.
Soft matter dynamics: Accelerated fluid squeeze-out during slip
NASA Astrophysics Data System (ADS)
Hutt, W.; Persson, B. N. J.
2016-03-01
Using a Leonardo da Vinci experimental setup (constant driving force), we study the dependency of lubricated rubber friction on the time of stationary contact and on the sliding distance. We slide rectangular rubber blocks on smooth polymer surfaces lubricated by glycerol or by a grease. We observe a remarkable effect: during stationary contact the lubricant is only very slowly removed from the rubber-polymer interface, while during slip it is very rapidly removed resulting (for the grease lubricated surface) in complete stop of motion after a short time period, corresponding to a slip distance typically of order only a few times the length of the rubber block in the sliding direction. For an elastically stiff material, poly(methyl methacrylate), we observe the opposite effect: the sliding speed increases with time (acceleration), and the lubricant film thickness appears to increase. We propose an explanation for the observed effect based on transient elastohydrodynamics, which may be relevant also for other soft contacts.
Shin, Gunchul; Gomez, Adrian M; Al-Hasani, Ream; Jeong, Yu Ra; Kim, Jeonghyun; Xie, Zhaoqian; Banks, Anthony; Lee, Seung Min; Han, Sang Youn; Yoo, Chul Jong; Lee, Jong-Lam; Lee, Seung Hee; Kurniawan, Jonas; Tureb, Jacob; Guo, Zhongzhu; Yoon, Jangyeol; Park, Sung-Il; Bang, Sang Yun; Nam, Yoonho; Walicki, Marie C; Samineni, Vijay K; Mickle, Aaron D; Lee, Kunhyuk; Heo, Seung Yun; McCall, Jordan G; Pan, Taisong; Wang, Liang; Feng, Xue; Kim, Tae-Il; Kim, Jong Kyu; Li, Yuhang; Huang, Yonggang; Gereau, Robert W; Ha, Jeong Sook; Bruchas, Michael R; Rogers, John A
2017-02-08
In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source, limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin, flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable light-emitting diodes (LEDs), with the ability to operate at wavelengths ranging from UV to blue, green-yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Shin, Gunchul; Gomez, Adrian M.; Al-Hasani, Ream; Jeong, Yu Ra; Kim, Jeonghyun; Xie, Zhaoqian; Banks, Anthony; Lee, Seung Min; Han, Sang Youn; Yoo, Chul Jong; Lee, Jong-Lam; Lee, Seung Hee; Kurniawan, Jonas; Tureb, Jacob; Guo, Zhongzhu; Yoon, Jangyeol; Park, Sung-Il; Bang, Sang Yun; Nam, Yoonho; Walicki, Marie C.; Samineni, Vijay K.; Mickle, Aaron D.; Lee, Kunhyuk; Heo, Seung Yun; McCall, Jordan G.; Pan, Taisong; Wang, Liang; Feng, Xue; Kim, Taeil; Kim, Jong Kyu; Li, Yuhang; Huang, Yonggang; Gereau, Robert W.; Ha, Jeong Sook; Bruchas, Michael R.; Rogers, John A.
2017-01-01
Summary In vivo optogenetics provides unique, powerful capabilities in the dissection of neural circuits implicated in neuropsychiatric disorders. Conventional hardware for such studies, however, physically tethers the experimental animal to an external light source limiting the range of possible experiments. Emerging wireless options offer important capabilities that avoid some of these limitations, but the current size, bulk, weight, and wireless area of coverage is often disadvantageous. Here, we present a simple but powerful setup based on wireless, near-field power transfer and miniaturized, thin flexible optoelectronic implants, for complete optical control in a variety of behavioral paradigms. The devices combine subdermal magnetic coil antennas connected to microscale, injectable LEDs, with the ability to operate at wavelengths ranging from ultraviolet to blue, green/yellow, and red. An external loop antenna allows robust, straightforward application in a multitude of behavioral apparatuses. The result is a readily mass-producible, user-friendly technology with broad potential for optogenetics applications. PMID:28132830
SpaceBuoy: A University Nanosat Space Weather Mission
2012-03-26
for all four-side panels. One design and one machine set-up allows a CNC mill to build them almost automatically. Lessons learned from components...in a dual probe configuration, for in situ plasma density) and interfacing with the spacecraft has been completed. Engineering development is
New Directions: Understanding Interactions of Air Quality and Climate Change at Regional Scales
The estimates of the short-lived climate forcers’ (SLCFs) impacts and mitigation effects on the radiation balance have large uncertainty because the current global model set-ups and simulations contain simplified parameterizations and do not completely cover the full range of air...
Self-powered electrospinning apparatus based on a hand-operated Wimshurst generator.
Han, Wen-Peng; Huang, Yuan-Yuan; Yu, Miao; Zhang, Jun-Cheng; Yan, Xu; Yu, Gui-Feng; Zhang, Hong-Di; Yan, Shi-Ying; Long, Yun-Ze
2015-03-19
A conventional electrospinning setup cannot work without a plug (electricity supply). In this article, we report a self-powered electrospinning setup based on a hand-operated Wimshurst generator. The new device has better applicability and portability than a typical conventional electrospinning setup because it is lightweight and can work without an external power supply. Experimental parameters of the apparatus such as the minimum number of handle turns to generate enough energy to spin, rotation speed of the handle and electrospinning distance were investigated. Different polymers such as polystyrene (PS), poly(vinylidene fluoride) (PVDF), polycaprolactone (PCL) and polylactic acid (PLA) were electrospun into ultrathin fibers successfully by this apparatus. The stability, reliability, and repeatability of the new apparatus demonstrate that it can be used as not only a demonstrator for an electrospinning process, but also a beneficial complement to conventional electrospinning especially where or when without a power supply, and may be used in wound healing and rapid hemostasis, etc.
Hinken, David; Schinke, Carsten; Herlufsen, Sandra; Schmidt, Arne; Bothe, Karsten; Brendel, Rolf
2011-03-01
We report in detail on the luminescence imaging setup developed within the last years in our laboratory. In this setup, the luminescence emission of silicon solar cells or silicon wafers is analyzed quantitatively. Charge carriers are excited electrically (electroluminescence) using a power supply for carrier injection or optically (photoluminescence) using a laser as illumination source. The luminescence emission arising from the radiative recombination of the stimulated charge carriers is measured spatially resolved using a camera. We give details of the various components including cameras, optical filters for electro- and photo-luminescence, the semiconductor laser and the four-quadrant power supply. We compare a silicon charged-coupled device (CCD) camera with a back-illuminated silicon CCD camera comprising an electron multiplier gain and a complementary metal oxide semiconductor indium gallium arsenide camera. For the detection of the luminescence emission of silicon we analyze the dominant noise sources along with the signal-to-noise ratio of all three cameras at different operation conditions.
NASA Astrophysics Data System (ADS)
Mirabi, Mohammad; Fatemi Ghomi, S. M. T.; Jolai, F.
2014-04-01
Flow-shop scheduling problem (FSP) deals with the scheduling of a set of n jobs that visit a set of m machines in the same order. As the FSP is NP-hard, there is no efficient algorithm to reach the optimal solution of the problem. To minimize the holding, delay and setup costs of large permutation flow-shop scheduling problems with sequence-dependent setup times on each machine, this paper develops a novel hybrid genetic algorithm (HGA) with three genetic operators. Proposed HGA applies a modified approach to generate a pool of initial solutions, and also uses an improved heuristic called the iterated swap procedure to improve the initial solutions. We consider the make-to-order production approach that some sequences between jobs are assumed as tabu based on maximum allowable setup cost. In addition, the results are compared to some recently developed heuristics and computational experimental results show that the proposed HGA performs very competitively with respect to accuracy and efficiency of solution.
A reaction cell for ambient pressure soft x-ray absorption spectroscopy
NASA Astrophysics Data System (ADS)
Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.
2018-05-01
We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.
NASA Astrophysics Data System (ADS)
Antognini, Luca M.; Assenza, Salvatore; Speziale, Chiara; Mezzenga, Raffaele
2016-08-01
Lyotropic Liquid Crystals (LLCs) are a class of lipid-based membranes with a strong potential for drug-delivery employment. The characterization and control of their transport properties is a central issue in this regard, and has recently prompted a notable volume of research on the topic. A promising experimental approach is provided by the so-called diffusion setup, where the drug molecules diffuse from a feeding chamber filled with water to a receiving one passing through a LLC. In the present work we provide a theoretical framework for the proper description of this setup, and validate it by means of targeted experiments. Due to the inhomogeneity of the system, a rich palette of different diffusion dynamics emerges from the interplay of the different time- and lengthscales thereby present. Our work paves the way to the employment of diffusion experiments to quantitatively characterize the transport properties of LLCs, and provides the basic tools for device diffusion setups with controlled kinetic properties.
On the measurement of airborne, angular-dependent sound transmission through supercritical bars.
Shaw, Matthew D; Anderson, Brian E
2012-10-01
The coincidence effect is manifested by maximal sound transmission at angles at which trace wave number matching occurs. Coincidence effect theory is well-defined for unbounded thin plates using plane-wave excitation. However, experimental results for finite bars are known to diverge from theory near grazing angles. Prior experimental work has focused on pulse excitation. An experimental setup has been developed to observe coincidence using continuous- wave excitation and phased-array methods. Experimental results with an aluminum bar exhibit maxima at the predicted angles, showing that coincidence is observable using continuous waves. Transmission near grazing angles is seen to diverge from infinite plate theory.
Simple Demonstration of the Seebeck Effect
ERIC Educational Resources Information Center
Molki, Arman
2010-01-01
In this article we propose a simple and low-cost experimental set-up through which science educators can demonstrate the Seebeck effect using a thermocouple and an instrumentation amplifier. The experiment can be set up and conducted during a 1-hour laboratory session. (Contains 3 tables and 3 figures.)
A Student Experiment to Demonstrate the Energy Loss and Straggling of Electrons in Matter.
ERIC Educational Resources Information Center
de Bruin, M.; Huijgen, F. W. J.
1990-01-01
Described is an introductory experiment that allows students to directly observe and measure the linear energy transfer in matter. Illustrated are the experimental setup including the radioactive source, electronic equipment, and the detector; measurement and calculations; and the results. (CW)
Monitoring contaminant strategies: tools, techniques, methodologies and model approaches
USDA-ARS?s Scientific Manuscript database
A century-long history of experiments on solute transport in soils has resulted in a wide range of experimental setups and procedures, as well as methods for interpreting observations which has led to considerable ambiguity regarding monitoring approaches. This presentation will focus on results an...
Improved perceptual-motor performance measurement system
NASA Technical Reports Server (NTRS)
Parker, J. F., Jr.; Reilly, R. E.
1969-01-01
Battery of tests determines the primary dimensions of perceptual-motor performance. Eighteen basic measures range from simple tests to sophisticated electronic devices. Improved system has one unit for the subject containing test display and response elements, and one for the experimenter where test setups, programming, and scoring are accomplished.
Ehinger, Benedikt V.; Fischer, Petra; Gert, Anna L.; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter
2014-01-01
In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation. PMID:24616681
Ehinger, Benedikt V; Fischer, Petra; Gert, Anna L; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter
2014-01-01
In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation.
Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christie, W.B. Jr.
This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS ismore » that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.« less
Siddiqui, Mohd Farhan; Kim, Soocheol; Jeon, Hyoil; Kim, Taeho; Joo, Chulmin; Park, Seungkyung
2018-03-04
Conventional methods for analyzing heavy metal contamination in soil and water generally require laboratory equipped instruments, complex procedures, skilled personnel and a significant amount of time. With the advancement in computing and multitasking performances, smartphone-based sensors potentially allow the transition of the laboratory-based analytical processes to field applicable, simple methods. In the present work, we demonstrate the novel miniaturized setup for simultaneous sample preparation and smartphone-based optical sensing of arsenic As(III) in the contaminated soil. Colorimetric detection protocol utilizing aptamers, gold nanoparticles and NaCl have been optimized and tested on the PDMS-chip to obtain the high sensitivity with the limit of detection of 0.71 ppm (in the sample) and a correlation coefficient of 0.98. The performance of the device is further demonstrated through the comparative analysis of arsenic-spiked soil samples with standard laboratory method, and a good agreement with a correlation coefficient of 0.9917 and the average difference of 0.37 ppm, are experimentally achieved. With the android application on the device to run the experiment, the whole process from sample preparation to detection is completed within 3 hours without the necessity of skilled personnel. The approximate cost of setup is estimated around 1 USD, weight 55 g. Therefore, the presented method offers the simple, rapid, portable and cost-effective means for onsite sensing of arsenic in soil. Combined with the geometric information inside the smartphones, the system will allow the monitoring of the contamination status of soils in a nation-wide manner.
Preclinical cadaveric study of transanal endoscopic da Vinci® surgery.
Hompes, R; Rauh, S M; Hagen, M E; Mortensen, N J
2012-08-01
Single-port platforms are increasingly being used for transanal surgery and may be associated with a shorter learning curve than transanal endoscopic microsurgery. However, these procedures remain technically challenging, and robotic technology could overcome some of the limitations and increase intraluminal manoeuvrability. An initial experimental experience with transanal endoscopic da Vinci(®) surgery (TEdS) using a glove port on human cadavers is reported. After initial dry laboratory experiments, the feasibility of TEdS and ideal set-up were further evaluated in human cadavers. For transanal access a glove port was constructed on-table by using a circular anal dilator, a standard wound retractor and a surgical glove. A da Vinci(®) Si HD system was used in combination with the glove port for transanal endoscopic resections. It was possible to perform all necessary tasks to complete a full-thickness excision and closure of the rectal wall, with cadavers in both prone and supine positions. The stable magnified view, combined with the EndoWrist(®) technology of the robotic instruments, made every task straightforward. Intraluminal manoeuvrability could be improved further by intersecting the robotic instruments. The glove port proved to be very reliable and the inherent flexibility of the glove facilitated docking of the robotic arms in a narrow confined space. Using a reliable and universally available glove port, TEdS was feasible and a preferred set-up was determined. Further clinical trials will be necessary to assess the safety and efficacy of this technique. Copyright © 2012 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.
Spiske, M.; Jaffe, B.E.
2009-01-01
Storms and associated surges are major coast-shaping processes. Nevertheless, no typical sequences for storm surge deposits in different coastal settings have been established. This study interprets a coarse-grained hurricane ridge deposit on the island of Bonaire, Netherlands Antilles. The sequence was deposited during Hurricane Lenny in November 1999. Insight is gained into the hydrodynamics of surge flow by interpreting textural trends, particle imbrication, and deposit geometry. Vertical textural variations, caused by time-dependent hydrodynamic changes, were used to subdivide the deposit into depositional units that correspond to different stages of the surge, such as setup, peak, and return flow. Particle size and imbrication trends and geometry of the units reflect landward bed-load transport of components during the setup, a nondirectional flow with sediment falling out of suspension during the peak, and a seaward bedload transport during the return flow. Formation of a ridge during setup affected the texture of the return flow unit. Changing angles of imbrication reflect alternating flow velocities during each phase. Normal grading during setup and inverse grading during return flow are caused by decelerating and accelerating flow, respectively. Hence, the interpreted deposit seems to represent the first described complete hurricane surge sequence from a carbonate environment. ?? 2009 Geological Society of America.
Wang, Yang; Zekveld, Adriana A; Wendt, Dorothea; Lunner, Thomas; Naylor, Graham; Kramer, Sophia E
2018-01-01
Pupil light reflex (PLR) has been widely used as a method for evaluating parasympathetic activity. The first aim of the present study is to develop a PLR measurement using a computer screen set-up and compare its results with the PLR generated by a more conventional setup using light-emitting diode (LED). The parasympathetic nervous system, which is known to control the 'rest and digest' response of the human body, is considered to be associated with daily life fatigue. However, only few studies have attempted to test the relationship between self-reported daily fatigue and physiological measurement of the parasympathetic nervous system. Therefore, the second aim of this study was to investigate the relationship between daily-life fatigue, assessed using the Need for Recovery scale, and parasympathetic activity, as indicated by the PLR parameters. A pilot study was conducted first to develop a PLR measurement set-up using a computer screen. PLRs evoked by light stimuli with different characteristics were recorded to confirm the influence of light intensity, flash duration, and color on the PLRs evoked by the system. In the subsequent experimental study, we recorded the PLR of 25 adult participants to light flashes generated by the screen set-up as well as by a conventional LED set-up. PLR parameters relating to parasympathetic and sympathetic activity were calculated from the pupil responses. We tested the split-half reliability across two consecutive blocks of trials, and the relationships between the parameters of PLRs evoked by the two set-ups. Participants rated their need for recovery prior to the PLR recordings. PLR parameters acquired in the screen and LED set-ups showed good reliability for amplitude related parameters. The PLRs evoked by both set-ups were consistent, but showed systematic differences in absolute values of all parameters. Additionally, higher need for recovery was associated with faster and larger constriction of the PLR. This study assessed the PLR generated by a computer screen and the PLR generated by a LED. The good reliability within set-ups and the consistency between the PLRs evoked by the set-ups indicate that both systems provides a valid way to evoke the PLR. A higher need for recovery was associated with faster and larger constricting PLRs, suggesting increased levels of parasympathetic nervous system activity in people experiencing higher levels of need for recovery on a daily basis.
Fresnel diffraction by spherical obstacles
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1989-01-01
Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.
All-optical signal processing using dynamic Brillouin gratings
Santagiustina, Marco; Chin, Sanghoon; Primerov, Nicolay; Ursini, Leonora; Thévenaz, Luc
2013-01-01
The manipulation of dynamic Brillouin gratings in optical fibers is demonstrated to be an extremely flexible technique to achieve, with a single experimental setup, several all-optical signal processing functions. In particular, all-optical time differentiation, time integration and true time reversal are theoretically predicted, and then numerically and experimentally demonstrated. The technique can be exploited to process both photonic and ultra-wide band microwave signals, so enabling many applications in photonics and in radio science. PMID:23549159
Network complexity and synchronous behavior--an experimental approach.
Neefs, P J; Steur, E; Nijmeijer, H
2010-06-01
We discuss synchronization in networks of Hindmarsh-Rose neurons that are interconnected via gap junctions, also known as electrical synapses. We present theoretical results for interactions without time-delay. These results are supported by experiments with a setup consisting of sixteen electronic equivalents of the Hindmarsh-Rose neuron. We show experimental results of networks where time-delay on the interaction is taken into account. We discuss in particular the influence of the network topology on the synchronization.
Mangalam, Madhur; Karve, Shraddha Madhav
2015-06-26
Rugani et al. (Reports, 30 January 3015, p. 534) tested 3-day-old domestic chicks using an innovative experimental setup and demonstrate the presence of the mental number line. We raise concerns regarding this conclusion by highlighting the possible loopholes in the experimental design and the data analysis procedures. We further suggest auxiliary experiments that can substantiate the authors' claim. Copyright © 2015, American Association for the Advancement of Science.
g-factor measurements of isomeric states in 174W
NASA Astrophysics Data System (ADS)
Rocchini, M.; Nannini, A.; Benzoni, G.; Melon, B.; John, P. R.; Ur, C. A.; Avigo, R.; Bazzacco, D.; Blasi, N.; Bocchi, G.; Bottoni, S.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; Georgiev, G.; Giaz, A.; Gottardo, A.; Leoni, S.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Million, B.; Modamio, V.; Morales, A. I.; Napoli, D. R.; Ottanelli, M.; Pellegri, L.; Perego, A.; Valiente-Dobon, J. J.; Wieland, O.
2016-05-01
The experimental setup GAMIPE used for gyro magnetic factor measurements at Laboratori Nazionali di Legnaro and a recent experimental work regarding K-isomers in 174W are described. Aim of the experiment is to study the detailed structure of the isomeric states wave functions, by the measurement of the magnetic dipole moments. This piece of information can provide interesting hints for theoretical models. Preliminary results concerning the population of the isomers of interest and half-lives are presented.
Heat transfer augmentation of a car radiator using nanofluids
NASA Astrophysics Data System (ADS)
Hussein, Adnan M.; Bakar, R. A.; Kadirgama, K.; Sharma, K. V.
2014-05-01
The car radiator heat transfer enhancement by using TiO2 and SiO2 nanoparticles dispersed in water as a base fluid was studied experimentally. The test rig is setup as a car radiator with tubes and container. The range of Reynolds number and volume fraction are (250-1,750) and (1.0-2.5 %) respectively. Results showed that the heat transfer increases with increasing of nanofluid volume fraction. The experimental data is agreed with other investigator.
2009-05-07
energies down to 60 eV, obtained with a QCM deposition sensor [5-7, 9-11]. In Section II we discuss the experimental apparatus and procedures used for...logging. Detailed discussion of the QCM sensor is provided in Section IIF. Figure 1. Left: Schematic diagram of experimental set-up. Right...above assumptions (this equation applies for both differential and total yields). F. QCM Sensor and Measurement Proceedure We use a Sigma
On the experimental prediction of the stability threshold speed caused by rotating damping
NASA Astrophysics Data System (ADS)
Vervisch, B.; Derammelaere, S.; Stockman, K.; De Baets, P.; Loccufier, M.
2016-08-01
An ever increasing demand for lighter rotating machinery and higher operating speeds results in a raised probability of instabilities. Rotating damping is one of the reasons, instability occurs. Rotating damping, or rotor internal damping, is the damping related to all rotating parts while non-rotating damping appearing in the non-rotating parts. The present study describes a rotating setup, designed to investigate rotating damping experimentally. An efficient experimental procedure is presented to predict the stability threshold of a rotating machine. The setup consists of a long thin shaft with a disk in the middle and clamped boundary conditions. The goal is to extract the system poles as a function of the rotating speed. The real parts of these poles are used to construct the decay rate plot, which is an indication for the stability. The efficiency of the experimental procedure relies on the model chosen for the rotating shaft. It is shown that the shaft behavior can be approximated by a single degree of freedom model that incorporates a speed dependent damping. As such low measurement effort and only one randomly chosen measurement location are needed to construct the decay rate plot. As an excitation, an automated impact hammer is used and the response is measured by eddy current probes. The proposed method yields a reliable prediction of the stability threshold speed which is validated through measurements.
NASA Astrophysics Data System (ADS)
McIntyre, Gregory; Neureuther, Andrew; Slonaker, Steve; Vellanki, Venu; Reynolds, Patrick
2006-03-01
The initial experimental verification of a polarization monitoring technique is presented. A series of phase shifting mask patterns produce polarization dependent signals in photoresist and are capable of monitoring the Stokes parameters of any arbitrary illumination scheme. Experiments on two test reticles have been conducted. The first reticle consisted of a series of radial phase gratings (RPG) and employed special apertures to select particular illumination angles. Measurement sensitivities of about 0.3 percent of the clear field per percent change in polarization state were observed. The second test reticle employed the more sensitive proximity effect polarization analyzers (PEPA), a more robust experimental setup, and a backside pinhole layer for illumination angle selection and to enable characterization of the full illuminator. Despite an initial complication with the backside pinhole alignment, the results correlate with theory. Theory suggests that, once the pinhole alignment is corrected in the near future, the second reticle should achieve a measurement sensitivity of about 1 percent of the clear field per percent change in polarization state. This corresponds to a measurement of the Stokes parameters after test mask calibration, to within about 0.02 to 0.03. Various potential improvements to the design, fabrication of the mask, and experimental setup are discussed. Additionally, to decrease measurement time, a design modification and double exposure technique is proposed to enable electrical detection of the measurement signal.
Why do aged fluorescent tubes flicker?
NASA Astrophysics Data System (ADS)
Plihon, Nicolas; Ferrand, Jérémy; Guyomar, Tristan; Museur, Flavien; Taberlet, Nicolas
2017-11-01
Our everyday experience of aged and defective fluorescent tubes or bulbs informs us that they may flicker and emit a clicking sound while struggling to light up. In this article, the physical mechanisms controlling the initial illumination of a functioning fluorescent tube are investigated using a simple and affordable experimental setup. Thermionic emission from the electrodes of the tube controls the startup of fluorescent tubes. The origin of the faulty startup of aged fluorescent tubes is discussed and flickering regimes using functional tubes are artificially produced using a dedicated setup that decreases electron emission by the thermionic effect in a controlled manner. The physical parameters controlling the occurrence of flickering light are discussed, and their temporal statistics are reported.
NASA Astrophysics Data System (ADS)
Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.
2015-06-01
We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.
Baier, S; Rochet, A; Hofmann, G; Kraut, M; Grunwaldt, J-D
2015-06-01
We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.
Virtual reality systems for rodents
Ayaz, Aslı
2017-01-01
Abstract Over the last decade virtual reality (VR) setups for rodents have been developed and utilized to investigate the neural foundations of behavior. Such VR systems became very popular since they allow the use of state-of-the-art techniques to measure neural activity in behaving rodents that cannot be easily used with classical behavior setups. Here, we provide an overview of rodent VR technologies and review recent results from related research. We discuss commonalities and differences as well as merits and issues of different approaches. A special focus is given to experimental (behavioral) paradigms in use. Finally we comment on possible use cases that may further exploit the potential of VR in rodent research and hence inspire future studies. PMID:29491968
Loop Mirror Laser Neural Network with a Fast Liquid-Crystal Display
NASA Astrophysics Data System (ADS)
Mos, Evert C.; Schleipen, Jean J. H. B.; de Waardt, Huug; Khoe, Djan G. D.
1999-07-01
In our laser neural network (LNN) all-optical threshold action is obtained by application of controlled optical feedback to a laser diode. Here an extended experimental LNN is presented with as many as 32 neurons and 12 inputs. In the setup we use a fast liquid-crystal display to implement an optical matrix vector multiplier. This display, based on ferroelectric liquid-crystal material, enables us to present 125 training examples s to the LNN. To maximize the optical feedback efficiency of the setup, a loop mirror is introduced. We use a -rule learning algorithm to train the network to perform a number of functions toward the application area of telecommunication data switching.
Study of Light Neutron-Rich Nuclei Using a Multilayer Semiconductor Setup
NASA Astrophysics Data System (ADS)
Gurov, Yu. B.; Lapushkin, S. V.; Sandukovsky, V. G.; Chernyshev, B. A.
2017-12-01
The characteristics of two modifications of the semiconductor (s.c.d.) setup consisting of telescopes on the basis of silicon detectors are presented. These settings allow performing a precision measurement of energy in a large dynamic range (from a few to hundreds of MeV) and particle identification in a wide range of masses. The issues of measurement of the characteristics of s.c.d. telescopes and their impact on the quality of the obtained experimental data are considered. Considerable attention is paid to the use of created semiconductor devices for the search for and spectroscopy of light exotic nuclei on the accelerators of PNPI (Gatchina) and LANL (Los Alamos).
Trusov, K K
1994-02-20
A new experimental setup of a Rhodamine 6G dye laser with a transverse-discharge flash-lamp-pumping system is presented. It differs from a previous setup [Sov. J. Quantum Electron. 16, 468-471 (1989)] in that it has a larger laser beam aperture (32 mm) and higher pumping energy (1 kJ), which made it possible to test the scalability and reach near diffraction-limited laser beam divergence of 3 × 10(-5) rad FWHM at beam energy 1.4 J. The effect of spectral dispersion in the active medium and of other optical elements on the beam divergence is also discussed.
Avazmohammadi, Reza; Li, David S; Leahy, Thomas; Shih, Elizabeth; Soares, João S; Gorman, Joseph H; Gorman, Robert C; Sacks, Michael S
2018-02-01
Knowledge of the complete three-dimensional (3D) mechanical behavior of soft tissues is essential in understanding their pathophysiology and in developing novel therapies. Despite significant progress made in experimentation and modeling, a complete approach for the full characterization of soft tissue 3D behavior remains elusive. A major challenge is the complex architecture of soft tissues, such as myocardium, which endows them with strongly anisotropic and heterogeneous mechanical properties. Available experimental approaches for quantifying the 3D mechanical behavior of myocardium are limited to preselected planar biaxial and 3D cuboidal shear tests. These approaches fall short in pursuing a model-driven approach that operates over the full kinematic space. To address these limitations, we took the following approach. First, based on a kinematical analysis and using a given strain energy density function (SEDF), we obtained an optimal set of displacement paths based on the full 3D deformation gradient tensor. We then applied this optimal set to obtain novel experimental data from a 1-cm cube of post-infarcted left ventricular myocardium. Next, we developed an inverse finite element (FE) simulation of the experimental configuration embedded in a parameter optimization scheme for estimation of the SEDF parameters. Notable features of this approach include: (i) enhanced determinability and predictive capability of the estimated parameters following an optimal design of experiments, (ii) accurate simulation of the experimental setup and transmural variation of local fiber directions in the FE environment, and (iii) application of all displacement paths to a single specimen to minimize testing time so that tissue viability could be maintained. Our results indicated that, in contrast to the common approach of conducting preselected tests and choosing an SEDF a posteriori, the optimal design of experiments, integrated with a chosen SEDF and full 3D kinematics, leads to a more robust characterization of the mechanical behavior of myocardium and higher predictive capabilities of the SEDF. The methodology proposed and demonstrated herein will ultimately provide a means to reliably predict tissue-level behaviors, thus facilitating organ-level simulations for efficient diagnosis and evaluation of potential treatments. While applied to myocardium, such developments are also applicable to characterization of other types of soft tissues.
NASA Astrophysics Data System (ADS)
Ghiassian, Susan; Pevzner, Sam; Rolland, Thomas; Tassan, Murat; Barabasi, Albert Laszlo; Vidal, Mark; CCNR, Northeastern University Collaboration; Dana Farber Cancer Institute Collaboration
2014-03-01
Protein-protein interaction maps and interactomes are the blueprint of Network Medicine and systems biology and are being experimentally studied by different groups. Despite the wide usage of Literature Curated Interactome (LCI), these sources are biased towards different parameters such as highly studied proteins. Yeast two hybrid method is a high throughput experimental setup which screens proteins in an unbiased fashion. Current knowledge of protein interactions is far from complete. In fact the previous offered data from Y2H method (2005), is estimated to offer only 5% of all potential protein interactions. Currently this coverage has increased to 20% of what is known as reference HI In this work we study the topological properties of Y2H protein-protein interactions network with LCI and show although they both agree on some properties, LCI shows a clear unbiased nature of interaction selections. Most importantly, we assess the properties of PPI as it evolves with increasing the coverage. We show that, the newly discovered interactions tend to connect proteins that have been closer than average in the previous PPI release. reinforcing the modular structure of PPI. Furthermore, we show, some unseen effects on PPI (as opposed to LCI) can be explained by its incompleteness.
Photon-number correlation for quantum enhanced imaging and sensing
NASA Astrophysics Data System (ADS)
Meda, A.; Losero, E.; Samantaray, N.; Scafirimuto, F.; Pradyumna, S.; Avella, A.; Ruo-Berchera, I.; Genovese, M.
2017-09-01
In this review we present the potentialities and the achievements of the use of non-classical photon-number correlations in twin-beam states for many applications, ranging from imaging to metrology. Photon-number correlations in the quantum regime are easily produced and are rather robust against unavoidable experimental losses, and noise in some cases, if compared to the entanglement, where losing one photon can completely compromise the state and its exploitable advantages. Here, we will focus on quantum enhanced protocols in which only phase-insensitive intensity measurements (photon-number counting) are performed, which allow probing the transmission/absorption properties of a system, leading, for example, to innovative target detection schemes in a strong background. In this framework, one of the advantages is that the sources experimentally available emit a wide number of pair-wise correlated modes, which can be intercepted and exploited separately, for example by many pixels of a camera, providing a parallelism, essential in several applications, such as wide-field sub-shot-noise imaging and quantum enhanced ghost imaging. Finally, non-classical correlation enables new possibilities in quantum radiometry, e.g. the possibility of absolute calibration of a spatial resolving detector from the on-off single-photon regime to the linear regime in the same setup.
Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications
NASA Astrophysics Data System (ADS)
Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.
2013-08-01
The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.
Drilling Precise Orifices and Slots
NASA Technical Reports Server (NTRS)
Richards, C. W.; Seidler, J. E.
1983-01-01
Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.
NASA Astrophysics Data System (ADS)
Nijkerk, David; van Venrooy, Bart; Van Doorn, Peter; Henselmans, Rens; Draaisma, Folkert; Hoogstrate, André
2017-11-01
In this paper, we discuss the two-mirror pushbroom telescope for TROPOMI. Using freeform optics, it has unprecedented resolution. The complete cycle of freeform optical design, analysis, manufacturing, metrology and functional test on a breadboard setup is described, focusing on the specific complexities concerning freeforms. The TROPOMI flight telescope will be manufactured in summer 2012.
Automated qualification and analysis of protective spark gaps for DC accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Srutarshi; Rajan, Rehim N.; Dewangan, S.
2014-07-01
Protective spark gaps are used in the high voltage multiplier column of a 3 MeV DC Accelerator to prevent excessive voltage build-ups. Precise gap of 5 mm is maintained between the electrodes in these spark gaps for obtaining 120 kV± 5 kV in 6 kg/cm{sup 2} SF{sub 6} environment which is the dielectric medium. There are 74 such spark gaps used in the multiplier. Each spark gap has to be qualified for electrical performance before fitting in the accelerator to ensure reliable operation. As the breakdown voltage stabilizes after a large number of sparks between the electrodes, the qualification processmore » becomes time consuming and cumbersome. For qualifying large number of spark gaps an automatic breakdown analysis setup has been developed. This setup operates in air, a dielectric medium. The setup consists of a flyback topology based high voltage power supply with maximum rating of 25 kV. This setup works in conjunction with spark detection and automated shutdown circuit. The breakdown voltage is sensed using a peak detector circuit. The voltage breakdown data is recorded and statistical distribution of the breakdown voltage has been analyzed. This paper describes details of the diagnostics and the spark gap qualification process based on the experimental data. (author)« less
NASA Astrophysics Data System (ADS)
Pathak, Shashank; Robatjazi, Seyyed Javad; Wright Lee, Pearson; Raju Pandiri, Kanaka; Rolles, Daniel; Rudenko, Artem
2017-04-01
J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan KS, USA We report on the development of a versatile experimental setup for XUV-IR pump-probe experiments using a 10 kHz high-harmonic generation (HHG) source and two different charged-particle momentum imaging spectrometers. The HHG source, based on a commercial KM Labs eXtreme Ultraviolet Ultrafast Source, is capable of delivering XUV radiation of less than 30 fs pulse duration in the photon energy range of 17 eV to 100 eV. It can be coupled either to a conventional velocity map imaging (VMI) setup with an atomic, molecular, or nanoparticle target; or to a novel double-sided VMI spectrometer equipped with two delay-line detectors for coincidence studies. An overview of the setup and results of first pump-probe experiments including studies of two-color double ionization of Xe and time-resolved dynamics of photoionized CO2 molecule will be presented. This project is supported in part by National Science Foundation (NSF-EPSCOR) Award No. IIA-1430493 and in part by the Chemical science, Geosciences, and Bio-Science division, Office of Basic Energy Science, Office of science, U.S. Department of Energy. K.
Photocathode Optimization for a Dynamic Transmission Electron Microscope: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P; Flom, Z; Heinselman, K
2011-08-04
The Dynamic Transmission Electron Microscope (DTEM) team at Harvey Mudd College has been sponsored by LLNL to design and build a test setup for optimizing the performance of the DTEM's electron source. Unlike a traditional TEM, the DTEM achieves much faster exposure times by using photoemission from a photocathode to produce electrons for imaging. The DTEM team's work is motivated by the need to improve the coherence and current density of the electron cloud produced by the electron gun in order to increase the image resolution and contrast achievable by DTEM. The photoemission test setup is nearly complete and themore » team will soon complete baseline tests of electron gun performance. The photoemission laser and high voltage power supply have been repaired; the optics path for relaying the laser to the photocathode has been finalized, assembled, and aligned; the internal setup of the vacuum chamber has been finalized and mostly implemented; and system control, synchronization, and data acquisition has been implemented in LabVIEW. Immediate future work includes determining a consistent alignment procedure to place the laser waist on the photocathode, and taking baseline performance measurements of the tantalum photocathode. Future research will examine the performance of the electron gun as a function of the photoemission laser profile, the photocathode material, and the geometry and voltages of the accelerating and focusing components in the electron gun. This report presents the team's progress and outlines the work that remains.« less
Imaging on a Shoestring: Cost-Effective Technologies for Probing Vadose Zone Transport Processes
NASA Astrophysics Data System (ADS)
Corkhill, C.; Bridge, J. W.; Barns, G.; Fraser, R.; Romero-Gonzalez, M.; Wilson, R.; Banwart, S.
2010-12-01
Key barriers to the widespread uptake of imaging technology for high spatial resolution monitoring of porous media systems are cost and accessibility. X-ray tomography, magnetic resonance imaging (MRI), gamma and neutron radiography require highly specialised equipment, controlled laboratory environments and/or access to large synchrotron facilities. Here we present results from visible light, fluorescence and autoradiographic imaging techniques developed at low cost and applied in standard analytical laboratories, adapted where necessary at minimal capital expense. UV-visible time lapse fluorescence imaging (UV-vis TLFI) in a transparent thin bed chamber enabled microspheres labelled with fluorescent dye and a conservative fluorophore solute (disodium fluorescein) to be measured simultaneously in saturated, partially-saturated and actively draining quartz sand to elucidate empirical values for colloid transport and deposition parameters distributed throughout the flow field, independently of theoretical approximations. Key results include the first experimental quantification of the effects of ionic strength and air-water interfacial area on colloid deposition above a capillary fringe, and the first direct observations of particle mobilisation and redeposition by moving saturation gradients during drainage. UV-vis imaging was also used to study biodegradation and reactive transport in a variety of saturated conditions, applying fluorescence as a probe for oxygen and nitrate concentration gradients, pH, solute transport parameters, reduction of uranium, and mapping of two-dimensional flow fields around a model dipole flow borehole system to validate numerical models. Costs are low: LED excitation sources (< US 50), flow chambers (US 200) and detectors (although a complete scientific-grade CCD set-up costs around US$ 8000, robust datasets can be obtained using a commercial digital SLR camera) mean that set-ups can be flexible to meet changing experimental requirements. The critical limitations of UV-vis fluorescence imaging are the need for reliable fluorescent probes suited to the experimental objective, and the reliance on thin-bed (2D) transparent porous media. Autoradiographic techniques address some of these limitations permit imaging of key biogeochemical processes in opaque media using radioactive probes, without the need for specialised radiation sources. We present initial calibration data for the use of autoradiography to monitor transport parameters for radionuclides (99-technetium), and a novel application of a radioactive salt tracer as a probe for pore water content, in model porous media systems.
Laser-Based Measurement of Refractive Index Changes: Kinetics of 2,3-Epoxy-1-propanol Hydrolysis.
ERIC Educational Resources Information Center
Spencer, Bert; Zare, Richard N.
1988-01-01
Describes an experiment in which a simple laser-based apparatus is used for measuring the change in refractive index during the acid-catalyzed hydrolysis of glycidol into glycerine. Gives a schematic of the experimental setup and discusses the kinetic analysis. (MVL)
How-to-Do-It: Further Improvements to the Steucek & Hill Assay of Photosynthesis.
ERIC Educational Resources Information Center
Juliao, Fernando; Butcher, Henry C., IV
1989-01-01
Several modifications that improve upon the assay of photosynthesis are suggested. Described are the apparatus, materials, light intensity and photosynthesis measurements, and results. A table of the average light intensity values versus the screen number and a sketch of the experimental set-up is included. (RT)
A Laboratory Exercise with Related Rates.
ERIC Educational Resources Information Center
Sworder, Steven C.
A laboratory experiment, based on a simple electric circuit that can be used to demonstrate the existence of real-world "related rates" problems, is outlined and an equation for voltage across the capacitor terminals during discharge is derived. The necessary materials, setup methods, and experimental problems are described. A student laboratory…
Pulse propagation in granular chains
NASA Astrophysics Data System (ADS)
Rosas, Alexandre; Lindenberg, Katja
2018-03-01
In this comprehensive review we present, discuss, and compare a number of theoretical approaches to the propagation of impulses in granular chains found in the literature, emphasizing the strengths and weaknesses of each. Experimental and numerical results are compared, and common features of the dynamics of pulse propagation for distinct chain setups are highlighted.