Direct observation of intermediate states in model membrane fusion
Keidel, Andrea; Bartsch, Tobias F.; Florin, Ernst-Ludwig
2016-01-01
We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead’s thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules. PMID:27029285
Direct observation of intermediate states in model membrane fusion.
Keidel, Andrea; Bartsch, Tobias F; Florin, Ernst-Ludwig
2016-03-31
We introduce a novel assay for membrane fusion of solid supported membranes on silica beads and on coverslips. Fusion of the lipid bilayers is induced by bringing an optically trapped bead in contact with the coverslip surface while observing the bead's thermal motion with microsecond temporal and nanometer spatial resolution using a three-dimensional position detector. The probability of fusion is controlled by the membrane tension on the particle. We show that the progression of fusion can be monitored by changes in the three-dimensional position histograms of the bead and in its rate of diffusion. We were able to observe all fusion intermediates including transient fusion, formation of a stalk, hemifusion and the completion of a fusion pore. Fusion intermediates are characterized by axial but not lateral confinement of the motion of the bead and independently by the change of its rate of diffusion due to the additional drag from the stalk-like connection between the two membranes. The detailed information provided by this assay makes it ideally suited for studies of early events in pure lipid bilayer fusion or fusion assisted by fusogenic molecules.
NASA Astrophysics Data System (ADS)
Wang, X. Y.; Dou, J. M.; Shen, H.; Li, J.; Yang, G. S.; Fan, R. Q.; Shen, Q.
2018-03-01
With the continuous strengthening of power grids, the network structure is becoming more and more complicated. An open and regional data modeling is used to complete the calculation of the protection fixed value based on the local region. At the same time, a high precision, quasi real-time boundary fusion technique is needed to seamlessly integrate the various regions so as to constitute an integrated fault computing platform which can conduct transient stability analysis of covering the whole network with high accuracy and multiple modes, deal with the impact results of non-single fault, interlocking fault and build “the first line of defense” of the power grid. The boundary fusion algorithm in this paper is an automatic fusion algorithm based on the boundary accurate coupling of the networking power grid partition, which takes the actual operation mode for qualification, complete the boundary coupling algorithm of various weak coupling partition based on open-loop mode, improving the fusion efficiency, truly reflecting its transient stability level, and effectively solving the problems of too much data, too many difficulties of partition fusion, and no effective fusion due to mutually exclusive conditions. In this paper, the basic principle of fusion process is introduced firstly, and then the method of boundary fusion customization is introduced by scene description. Finally, an example is given to illustrate the specific algorithm on how it effectively implements the boundary fusion after grid partition and to verify the accuracy and efficiency of the algorithm.
Familiades, J; Bousquet, M; Lafage-Pochitaloff, M; Béné, M-C; Beldjord, K; De Vos, J; Dastugue, N; Coyaud, E; Struski, S; Quelen, C; Prade-Houdellier, N; Dobbelstein, S; Cayuela, J-M; Soulier, J; Grardel, N; Preudhomme, C; Cavé, H; Blanchet, O; Lhéritier, V; Delannoy, A; Chalandon, Y; Ifrah, N; Pigneux, A; Brousset, P; Macintyre, E A; Huguet, F; Dombret, H; Broccardo, C; Delabesse, E
2009-11-01
Adult and child B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) differ in terms of incidence and prognosis. These disparities are mainly due to the molecular abnormalities associated with these two clinical entities. A genome-wide analysis using oligo SNP arrays recently demonstrated that PAX5 (paired-box domain 5) is the main target of somatic mutations in childhood BCP-ALL being altered in 38.9% of the cases. We report here the most extensive analysis of alterations of PAX5 coding sequence in 117 adult BCP-ALL patients in the unique clinical protocol GRAALL-2003/GRAAPH-2003. Our study demonstrates that PAX5 is mutated in 34% of adult BCP-ALL, mutations being partial or complete deletion, partial or complete amplification, point mutation or fusion gene. PAX5 alterations are heterogeneous consisting in complete loss in 17%, focal deletions in 10%, point mutations in 7% and translocations in 1% of the cases. PAX5 complete loss and PAX5 point mutations differ. PAX5 complete loss seems to be a secondary event and is significantly associated with BCR-ABL1 or TCF3-PBX1 fusion genes and a lower white blood cell count.
Wang, Yiping; Bartelt, Hartmut; Brueckner, Sven; Kobelke, Jens; Rothhardt, Manfred; Mörl, Klaus; Ecke, Wolfgang; Willsch, Reinhardt
2008-05-12
A novel technique for splicing a small core Ge-doped photonic crystal fiber (PCF) was demonstrated using a commercial fusion splicer with default discharge parameters for the splicing of two standard single mode fibers (SMFs). Additional discharge parameter adjustments are not required to splice the PCF to several different SMFs. A low splice loss of 1.0 approximately 1.4 dB is achieved. Low or no light reflection is expected at the splice joint due to the complete fusion of the two fiber ends. The splice joint has a high bending strength and does not break when the bending radius is decreased to 4 mm.
What perspectives for the synthesis of heavier superheavy nuclei? Results and comparison with models
NASA Astrophysics Data System (ADS)
Mandaglio, G.; Nasirov, A. K.; Curciarello, F.; De Leo, V.; Romaniuk, M.; Fazio, G.; Giardina, G.
2013-03-01
The possibility to synthesize heavier superheavy elements in massive nuclei reactions is strongly limited by the hindrance to complete fusion of reacting nuclei: due to the onset of the quasifission process in the entrance channel, which competes with complete fusion, and by strong increase of the fission yield along the de-excitation cascade of the compound nucleus in comparison to the evaporation residue formation. We present a wide and detailed procedure allowing us to describe the experimental results (evaporation residue nuclei and fissionlike products) in the mass asymmetric and symmetric reactions. Very reliable estimations and perspectives for the synthesis of superheavy elements in many massive nuclei reactions up to Z = 120 and eventually also for Z > 120 have been obtained.
NASA Astrophysics Data System (ADS)
Giardina, G.; Nasirov, A. K.; Mandaglio, G.; Curciarello, F.; De Leo, V.; Fazio, G.; Manganaro, M.; Romaniuk, M.; Saccá, C.
2011-02-01
The hindrance to complete fusion is a phenomenon presenting in the most part of the capture events in reactions with massive nuclei. This phenomenon is due to the onset of the quasifission process which competes with complete fusion during the evolution of the composed system formed at capture stage. The branching ratio between quasifission and complete fusion strongly depends from different characteristics of reacting nuclei in the entrance channel. The experimental and theoretical investigations of reaction dynamics connected with the formation of composed system is nowadays the main subject of the nuclear reactions. There is ambiguity in establishment of the reaction mechanism leading to the observed binary fissionlike fragments. The correct estimation of the fusion probability is important in planning experiments for the synthesis of superheavy elements. The experimental determination of evaporation residues only is not enough to restore the true reaction dynamics. The experimental observation of fissionlike fragments only cannot assure the correct distinguishing of products of the quasifission, fast fission, and fusion-fission processes which have overlapping in the mass (angular, kinetic energy) distributions of fragments. In this paper we consider a wide set of reactions (with different mass asymmetry and mass symmetry parameters) with the aim to explain the role played by many quantities on the reaction mechanisms. We also present the results of study of the 48Ca+249Bk reaction used to synthesize superheavy nuclei with Z = 117 by the determination of the evaporation residue cross sections and the effective fission barriers < Bf > of excited nuclei formed along the de-excitation cascade of the compound nucleus.
NASA Astrophysics Data System (ADS)
Cook, K. J.; Simpson, E. C.; Luong, D. H.; Kalkal, Sunil; Dasgupta, M.; Hinde, D. J.
2016-06-01
Background: Complete fusion cross sections in collisions of light weakly bound nuclei and high-Z targets show suppression of complete fusion at above-barrier energies. This has been interpreted as resulting from the breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete charge capture. Below-barrier studies of reactions of 9Be have found that the breakup of 8Be formed by neutron stripping dominates over direct breakup and that transfer-triggered breakup may account for the observed suppression of complete fusion. Purpose: This paper investigates how the above conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance (above the breakup threshold) is much longer than the fusion time scale, then its breakup (decay) cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work explicitly includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on model predictions of suppression of cross sections for complete fusion at above-barrier energies. Method: Previously performed coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb, and 209Bi at energies below the barrier have been reanalyzed using an improved efficiency determination of the BALiN detector array. Predictions of breakup observables and of complete and incomplete fusion at energies above the fusion barrier are then made using the classical dynamical simulation code platypus, modified to include the effect of lifetimes of resonant states. Results: The agreement of the breakup observables is much improved when lifetime effects are included explicitly. Sensitivity to subzeptosecond lifetime is observed. The predicted suppression of complete fusion owing to breakup is nearly independent of Z and has an average value of ˜9 % . This is below the experimentally determined fusion suppression, which is typically ˜30 % in these systems. Conclusions: Inclusion of resonance lifetimes is essential to correctly reproduce breakup observables. This results in a larger fraction of nuclei remaining intact at the fusion-barrier radius compared with calculations that do not explicitly include lifetime effects. The more realistic treatment of breakup followed in this work leads to the conclusion that the suppression of complete fusion cannot be fully explained by breakup prior to reaching the fusion barrier. Only one-third of the observed fusion suppression can be attributed to the competing process of breakup. Other mechanisms that can suppress complete fusion must therefore be investigated. One of the possible candidates is cluster transfer that produces the same heavy targetlike nuclei as those formed by incomplete fusion.
Effect of projectile on incomplete fusion reactions at low energies
NASA Astrophysics Data System (ADS)
Sharma, Vijay R.; Shuaib, Mohd.; Yadav, Abhishek; Singh, Pushpendra P.; Sharma, Manoj K.; Kumar, R.; Singh, Devendra P.; Singh, B. P.; Muralithar, S.; Singh, R. P.; Bhowmik, R. K.; Prasad, R.
2017-11-01
Present work deals with the experimental studies of incomplete fusion reaction dynamics at energies as low as ≈ 4 - 7 MeV/A. Excitation functions populated via complete fusion and/or incomplete fusion processes in 12C+175Lu, and 13C+169Tm systems have been measured within the framework of PACE4 code. Data of excitation function measurements on comparison with different projectile-target combinations suggest the existence of ICF even at slightly above barrier energies where complete fusion (CF) is supposed to be the sole contributor, and further demonstrates strong projectile structure dependence of ICF. The incomplete fusion strength functions for 12C+175Lu, and 13C+169Tm systems are analyzed as a function of various physical parameters at a constant vrel ≈ 0.053c. It has been found that one neutron (1n) excess projectile 13C (as compared to 12C) results in less incomplete fusion contribution due to its relatively large negative α-Q-value, hence, α Q-value seems to be a reliable parameter to understand the ICF dynamics at low energies. In order to explore the reaction modes on the basis of their entry state spin population, the spin distribution of residues populated via CF and/or ICF in 16O+159Tb system has been done using particle-γ coincidence technique. CF-α and ICF-α channels have been identified from backward (B) and forward (F) α-gated γspectra, respectively. Reaction dependent decay patterns have been observed in different α emitting channels. The CF channels are found to be fed over a broad spin range, however, ICF-α channels was observed only for high-spin states. Further, the existence of incomplete fusion at low bombarding energies indicates the possibility to populate high spin states
Fusion of single proteoliposomes with planar, cushioned bilayers in microfluidic flow cells
Karatekin, Erdem; Rothman, James E.
2013-01-01
Many biological processes rely on membrane fusion, therefore assays to study its mechanisms are necessary. Here we report an assay with sensitivity to single-vesicle, even to single-molecule events using fluorescently labeled vesicle-associated v-SNARE liposomes and target-membrane-associated t-SNARE-reconstituted planar, supported bilayers (SBLs). Docking and fusion events can be detected using conventional far-field epifluorescence or total internal reflection fluorsecence microscopy. Unlike most previous attempts, fusion here is dependent on SNAP25, one of the t-SNARE subunits that is required for fusion in vivo. The success of the assay is due to the use of (i) bilayers covered with a thin layer of poly(ethylene glycol) to control bilayer-bilayer and bilayer-substrate interactions, (ii) microfluidic flow channels which presents many advantages such as the removal of non-specifically bound liposomes by flow. The protocol takes 6–8 days to complete. Analysis can take up to two weeks. PMID:22517259
Magnetic Reconnection Driven by Thermonuclear Burning
NASA Astrophysics Data System (ADS)
Gatto, R.; Coppi, B.
2017-10-01
Considering that fusion reaction products (e.g. α-particles) deposit their energy on the electrons, the relevant thermal energy balance equation is characterized by a fusion source term, a relatively large longitudinal thermal conductivity and an appropriate transverse thermal conductivity. Then, looking for modes that are radially localized around rational surfaces, reconnected field configurations are found that can be sustained by the electron thermal energy source due to fusion reactions. Then this process can be included in the category of endogenous reconnection processes and may be viewed as a form of the thermonuclear instability that can develop in an ignited inhomogeneous plasma. A complete analysis of the equations supporting the relevant theory is reported. Sponsored in part by the U.S. DoE.
Gene Fusion: A Genome Wide Survey
NASA Technical Reports Server (NTRS)
Liang, Ping; Riley, Monica
2001-01-01
As a well known fact, organisms form larger and complex multimodular (composite or chimeric) and mostly multi-functional proteins through gene fusion of two or more individual genes which have independent evolution histories and functions. We call each of these components a module. The existence of multimodular proteins may improves the efficiency in gene regulation and in cellular functions, and thus may give the host organism advantages in adaptation to environments. Analysis of all gene fusions in present-day organisms should allow us to examine the patterns of gene fusion in context with cellular functions, to trace back the evolution processes from the ancient smaller and uni-functional proteins to the present-day larger and complex multi-functional proteins, and to estimate the minimal number of ancestor proteins that existed in the last common ancestor for all life on earth. Although many multimodular proteins have been experimentally known, identification of gene fusion events systematically at genome scale had not been possible until recently when large number of completed genome sequences have been becoming available. In addition, technical difficulties for such analysis also exist due to the complexity of this biological and evolutionary process. We report from this study a new strategy to computationally identify multimodular proteins using completed genome sequences and the results surveyed from 22 organisms with the data from over 40 organisms to be presented during the meeting. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Afzal Ansari, M.; Sathik, N. P. M.; Ali, Rahbar; Kumar, Rakesh; Muralithar, S.; Singh, R. P.
2017-11-01
Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle-γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with 'fast' α and 2α-emission channels are found to be entirely different from fusion-evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.
Individual dose due to radioactivity accidental release from fusion reactor.
Nie, Baojie; Ni, Muyi; Wei, Shiping
2017-04-05
As an important index shaping the design of fusion safety system, evaluation of public radiation consequences have risen as a hot topic on the way to develop fusion energy. In this work, the comprehensive public early dose was evaluated due to unit gram tritium (HT/HTO), activated dust, activated corrosion products (ACPs) and activated gases accidental release from ITER like fusion reactor. Meanwhile, considering that we cannot completely eliminate the occurrence likelihood of multi-failure of vacuum vessel and tokamak building, we conservatively evaluated the public radiation consequences and environment restoration after the worst hypothetical accident preliminarily. The comparison results show early dose of different unit radioactivity release under different conditions. After further performing the radiation consequences, we find it possible that the hypothetical accident for ITER like fusion reactor would result in a level 6 accident according to INES, not appear level 7 like Chernobyl or Fukushima accidents. And from the point of environment restoration, we need at least 69 years for case 1 (1kg HTO and 1000kg dust release) and 34-52years for case 2 (1kg HTO and 10kg-100kg dust release) to wait the contaminated zone drop below the general public safety limit (1mSv per year) before it is suitable for human habitation. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Parkar, V. V.; Sharma, Sushil K.; Palit, R.; Upadhyaya, S.; Shrivastava, A.; Pandit, S. K.; Mahata, K.; Jha, V.; Santra, S.; Ramachandran, K.; Nag, T. N.; Rath, P. K.; Kanagalekar, Bhushan; Trivedi, T.
2018-01-01
The complete and incomplete fusion cross sections for the 7Li+124Sn reaction were measured using online and offline characteristic γ -ray detection techniques. The complete fusion (CF) cross sections at energies above the Coulomb barrier were found to be suppressed by ˜26 % compared to the coupled channel calculations. This suppression observed in complete fusion cross sections is found to be commensurate with the measured total incomplete fusion (ICF) cross sections. There is a distinct feature observed in the ICF cross sections, i.e., t capture is found to be dominant compared to α capture at all the measured energies. A simultaneous explanation of complete, incomplete, and total fusion (TF) data was also obtained from the calculations based on the continuum discretized coupled channel method with short range imaginary potentials. The cross section ratios of CF/TF and ICF/TF obtained from the data as well as the calculations showed the dominance of ICF at below-barrier energies and CF at above-barrier energies.
CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm: effect of resonance states
NASA Astrophysics Data System (ADS)
Gómez Camacho, A.; Lubian, J.; Zhang, H. Q.; Zhou, Shan-Gui
2017-12-01
Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption potentials are chosen to be of different range. Couplings to low-lying excited states 2+, 3- of 144Sm and 2+, 4+ of 154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2, J π =3+,2+,1+ is also calculated. The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b) by omitting these states from the full discretized energy space. Among other things, it is found that both resonance and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered. A. Gómez Camacho from CONACYT, México, J. Lubian from CNPq, FAPERJ, Pronex, Brazil. S.G.Z was partly supported by the NSF of China (11120101005, 11275248, 11525524, 11621131001, 11647601, 11711540016), 973 Program of China (2013CB834400) and the Key Research Program of Frontier Sciences of CAS. H.Q.Z. from NSF China (11375266)
NASA Astrophysics Data System (ADS)
Mandaglio, G.; Nasirov, A. K.; Curciarello, F.; De Leo, V.; Romaniuk, M.; Fazio, G.; Giardina, G.
2012-12-01
By using the dinuclear system (DNS) model we determine the capture of reactants at the first stage of reaction, the competition between the DNS decay by the quasifission (QF) and the complete fusion (CF) process up to formation of the compound nucleus (CN) having compact shape. Further evolution of the CN is considered as its fission into two fragments or formation of evaporation residues (ER) by its cooling after emission of neutrons or/and charged light particles. Disappearance of the CN fission barrier due to its fast rotation leads to the fast fission (FF) by formation of fissionlike fragments. The results of calculations for the mass symmetric 136Xe+136Xe reaction, almost mass symmetric 108Mo+144Ba reaction, and mass asymmetric like 24Mg+238U and 34S+248Cm reactions are discussed. The fusion probability PCN calculated for many massive nuclei reactions leading to formation of superheavy nuclei have been analyzed. The reactions which can lead in perspective to the synthesis of superheavy elements in the Z = 120 - 126 range and, eventually, also to heaviest nuclei, are discussed.
NASA Astrophysics Data System (ADS)
Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Ansari, M. Afzal; Sathik, N. P. M.; Ali, Rahbar; Kumar, R.; Muralithar, S.; Singh, R. P.
2018-06-01
Spin distributions of nine evaporation residues 164Yb(x n ) , 163Tm(p x n ) , Er,167168(2 p x n ) , Ho-161163(α p x n ) , 164Dy(α 2 p x n ) , and 160Dy(2 α x n ) produced through complete- and incomplete-fusion reactions have been measured in the system 16O+154Sm at projectile energy =6.1 MeV /nucleon using the in-beam charged-particle (Z =1 ,2 )-γ-ray coincidence technique. The results indicate the occurrence of incomplete fusion involving the breakup of 16O into 4He+12C and/or 8Be+8Be followed by fusion of one of the fragments with target nucleus 154Sm. The pattern of measured spin distributions of the evaporation residues produced through complete and incomplete fusion are found to be entirely different from each other. It has been observed from these present results that the mean input angular momentum for the evaporation residues produced through complete fusion is relatively lower than that of evaporation residues produced through incomplete-fusion reactions. The pattern of feeding intensity of evaporation residues populated through complete- and incomplete-fusion reactions has also been studied. The evaporation residues populated through complete-fusion channels are strongly fed over a broad spin range and widely populated, while evaporation residues populated through incomplete-fusion reactions are found to have narrow range feeding only for high spin states. Comparison of present results with earlier data suggests that the value of mean input angular momentum is relatively higher for a deformed target and more mass asymmetric system than that of a spherical target and less mass asymmetric system by using the same projectile and the same energy. Thus, present results indicate that the incomplete-fusion reactions not only depend on the mass asymmetry of the system, but also depend on the deformation of the target.
Influence of incomplete fusion on complete fusion at energies above the Coulomb barrier
NASA Astrophysics Data System (ADS)
Shuaib, Mohd; Sharma, Vijay R.; Yadav, Abhishek; Sharma, Manoj Kumar; Singh, Pushpendra P.; Singh, Devendra P.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.
2017-10-01
In the present work, excitation functions of several reaction residues in the system 19F+169Tm, populated via the complete and incomplete fusion processes, have been measured using off-line γ-ray spectroscopy. The analysis of excitation functions has been done within the framework of statistical model code pace4. The excitation functions of residues populated via xn and pxn channels are found to be in good agreement with those estimated by the theoretical model code, which confirms the production of these residues solely via complete fusion process. However, a significant enhancement has been observed in the cross-sections of residues involving α-emitting channels as compared to the theoretical predictions. The observed enhancement in the cross-sections has been attributed to the incomplete fusion processes. In order to have a better insight into the onset and strength of incomplete fusion, the incomplete fusion strength function has been deduced. At present, there is no theoretical model available which can satisfactorily explain the incomplete fusion reaction data at energies ≈4-6 MeV/nucleon. In the present work, the influence of incomplete fusion on complete fusion in the 19F+169Tm system has also been studied. The measured cross-section data may be important for the development of reactor technology as well. It has been found that the incomplete fusion strength function strongly depends on the α-Q value of the projectile, which is found to be in good agreement with the existing literature data. The analysis strongly supports the projectile-dependent mass-asymmetry systematics. In order to study the influence of Coulomb effect ({Z}{{P}}{Z}{{T}}) on incomplete fusion, the deduced strength function for the present work is compared with the nearby projectile-target combinations. The incomplete fusion strength function is found to increase linearly with {Z}{{P}}{Z}{{T}}, indicating a strong influence of Coulomb effect in the incomplete fusion reactions.
Multispectral image fusion for illumination-invariant palmprint recognition
Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied. PMID:28558064
Multispectral image fusion for illumination-invariant palmprint recognition.
Lu, Longbin; Zhang, Xinman; Xu, Xuebin; Shang, Dongpeng
2017-01-01
Multispectral palmprint recognition has shown broad prospects for personal identification due to its high accuracy and great stability. In this paper, we develop a novel illumination-invariant multispectral palmprint recognition method. To combine the information from multiple spectral bands, an image-level fusion framework is completed based on a fast and adaptive bidimensional empirical mode decomposition (FABEMD) and a weighted Fisher criterion. The FABEMD technique decomposes the multispectral images into their bidimensional intrinsic mode functions (BIMFs), on which an illumination compensation operation is performed. The weighted Fisher criterion is to construct the fusion coefficients at the decomposition level, making the images be separated correctly in the fusion space. The image fusion framework has shown strong robustness against illumination variation. In addition, a tensor-based extreme learning machine (TELM) mechanism is presented for feature extraction and classification of two-dimensional (2D) images. In general, this method has fast learning speed and satisfying recognition accuracy. Comprehensive experiments conducted on the PolyU multispectral palmprint database illustrate that the proposed method can achieve favorable results. For the testing under ideal illumination, the recognition accuracy is as high as 99.93%, and the result is 99.50% when the lighting condition is unsatisfied.
Moscona, A; Peluso, R W
1991-01-01
Cells persistently infected with human parainfluenza virus type 3 (HPF3) exhibit a novel phenotype. They are completely resistant to fusion with each other but readily fuse with uninfected cells. We demonstrate that the inability of these cells to fuse with each other is due to a lack of cell surface neuraminic acid. Neuraminic acid is the receptor for the HPF3 hemagglutinin-neuraminidase (HN) glycoprotein, the molecule responsible for binding of the virus to cell surfaces. Uninfected CV-1 cells were treated with neuraminidase and then tested for their ability to fuse with the persistently infected (pi) cells. Neuraminidase treatment totally abolished cell fusion. To extend this result, we used a cell line deficient in sialic acid and demonstrated that these cells, like the neuraminidase-treated CV-1 cells, were unable to fuse with pi cells. We then tested whether mimicking the agglutinating function of the HN molecule with lectins would result in cell fusion. We added a panel of five lectins to the neuraminic acid-deficient cells and showed that binding of these cells to the pi cells did not result in fusion; the lectins could not substitute for interaction of neuraminic acid with the HN molecule in promoting membrane fusion. These results provide compelling evidence that the HN molecule of HPF3 and its interaction with neuraminic acid participate in membrane fusion and that cell fusion is mediated by an interaction more complex than mere juxtaposition of the cell membranes. Images PMID:1851852
Fusion and direct reactions around the barrier for the systems {sup 7,9}Be,{sup 7}Li+{sup 238}U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raabe, R.; Angulo, C.; Charvet, J. L.
2006-10-15
We present new cross section data for the complete fusion of the weakly bound systems {sup 7,9}Be and {sup 7}Li on {sup 238}U at energies around the Coulomb barrier. In the same measurement, yields for direct processes and incomplete fusion are detected. For all systems, a suppression of the complete fusion cross section around and above the barrier is observed. At energies below the barrier, the fusion of the {sup 7}Be+{sup 238}U system shows no enhancement with respect to simple model predictions.
Low-energy fusion dynamics of weakly bound nuclei: A time dependent perspective
NASA Astrophysics Data System (ADS)
Diaz-Torres, A.; Boselli, M.
2016-05-01
Recent dynamical fusion models for weakly bound nuclei at low incident energies, based on a time-dependent perspective, are briefly presented. The main features of both the PLATYPUS model and a new quantum approach are highlighted. In contrast to existing timedependent quantum models, the present quantum approach separates the complete and incomplete fusion from the total fusion. Calculations performed within a toy model for 6Li + 209Bi at near-barrier energies show that converged excitation functions for total, complete and incomplete fusion can be determined with the time-dependent wavepacket dynamics.
Lottering, Nicolene; MacGregor, Donna M; Alston, Clair L; Gregory, Laura S
2015-05-01
Due to disparity regarding the age at which skeletal maturation of the spheno-occipital synchondrosis occurs in forensic and biological literature, this study provides recalibrated multislice computed tomography (MSCT) age standards for the Australian (Queensland) population, using a Bayesian statistical approach. The sample comprises retrospective cranial/cervical MSCT scans obtained from 448 males and 416 females aged birth to 20 years from the Skeletal Biology and Forensic Anthropology Research Osteological Database. Fusion status of the synchondrosis was scored using a modified six-stage scoring tier on an MSCT platform, with negligible observer error (κ = 0.911 ± 0.04, intraclass correlation coefficient = 0.994). Bayesian transition analysis indicates that females are most likely to transition to complete fusion at 13.1 years and males at 15.6 years. Posterior densities were derived for each morphological stage, with complete fusion of the synchondrosis attained in all Queensland males over 16.3 years of age and females aged 13.8 years and older. The results demonstrate significant sexual dimorphism in synchondrosis fusion and are suggestive of intrapopulation variation between major geographic regions in Australia. This study contributes to the growing repository of contemporary anthropological standards calibrated for the Queensland milieu to improve the efficacy of the coronial process for medicolegal death investigation. As a stand-alone age indicator, the basicranial synchondrosis may be consulted as an exclusion criterion when determining the age of majority that constitutes 17 years in Queensland forensic practice. © 2014 Wiley Periodicals, Inc.
The Fusion Model of Intelligent Transportation Systems Based on the Urban Traffic Ontology
NASA Astrophysics Data System (ADS)
Yang, Wang-Dong; Wang, Tao
On these issues unified representation of urban transport information using urban transport ontology, it defines the statute and the algebraic operations of semantic fusion in ontology level in order to achieve the fusion of urban traffic information in the semantic completeness and consistency. Thus this paper takes advantage of the semantic completeness of the ontology to build urban traffic ontology model with which we resolve the problems as ontology mergence and equivalence verification in semantic fusion of traffic information integration. Information integration in urban transport can increase the function of semantic fusion, and reduce the amount of data integration of urban traffic information as well enhance the efficiency and integrity of traffic information query for the help, through the practical application of intelligent traffic information integration platform of Changde city, the paper has practically proved that the semantic fusion based on ontology increases the effect and efficiency of the urban traffic information integration, reduces the storage quantity, and improve query efficiency and information completeness.
Ultrafast-electron-diffraction studies of predamaged tungsten excited by femtosecond optical pulses
NASA Astrophysics Data System (ADS)
Mo, M.; Chen, Z.; Li, R.; Wang, Y.; Shen, X.; Dunning, M.; Weathersby, S.; Makasyuk, I.; Coffee, R.; Zhen, Q.; Kim, J.; Reid, A.; Jobe, K.; Hast, C.; Tsui, Y.; Wang, X.; Glenzer, S.
2016-10-01
Tungsten is considered as the main candidate material for use in the divertor of magnetic confinement fusion reactors. However, radiation damage is expected to occur because of its direct exposure to the high flux of hot plasma and energetic neutrons in fusion environment. Hence, understanding the material behaviors of W under these adverse conditions is central to the design of magnetic fusion reactors. To do that, we have recently developed an MeV ultrafast electron diffraction probe to resolve the structural evolution of optically excited tungsten. To simulate the radiation damage effect, the tungsten samples were bombarded with 500 keV Cu ions. The pre-damaged and pristine W's were excited by 130fs, 400nm laser pulses, and the subsequent heated system was probed with 3.2MeV electrons. The pump probe measurement shows that the ion bombardment to the W leads to larger decay in Bragg peak intensities as compared to pristine W, which may be due to a phonon softening effect. The measurement also shows that pre-damaged W transitions into complete liquid phase for conditions where pristine W stays solid. Our new capability is able to test the theories of structural dynamics of W under conditions relevant to fusion reactor environment. The research was funded by DOE Fusion Energy Science under FWP #100182.
Role of partial linear momentum transfer on incomplete fusion reaction
NASA Astrophysics Data System (ADS)
Ali, Sabir; Ahmad, Tauseef; Kumar, Kamal; Gull, Muntazir; Rizvi, I. A.; Agarwal, Avinash; Ghugre, S. S.; Sinha, A. K.; Chaubey, A. K.
2018-04-01
Measurements of forward recoil range distributions (FRRDs) of the evaporation residues, populated in the 20Ne+51V reaction at E_{lab}≈ 145 MeV, have been carried out using the offline characteristic γ-ray detection method. The observation does corroborate the presence of complete fusion (CF) process in the population of p xn channel residues and both complete as well as incomplete fusion (ICF) processes in the population of α emitting channel residues. The FRRDs of p xn channel residues comprise single peak only, whereas α emitting channel residues have multiple peaks in their FRRDs. CF cross section data were used to extract the fusion functions. Extracted fusion functions were found to be suppressed with respect to the universal fusion function which is used as a uniform standard reference. The observed contribution arising from the ICF process in the population of α emitting channel residues is explained in terms of breakup fusion model.
Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H
2007-08-15
Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.
Laser-induced fast fusion of gold nanoparticle-modified polyelectrolyte microcapsules.
Wu, Yingjie; Frueh, Johannes; Si, Tieyan; Möhwald, Helmuth; He, Qiang
2015-02-07
In this study we investigated the effect of laser-induced membrane fusion of polyelectrolyte multilayer (PEM) based microcapsules bearing surface-attached gold nanoparticles (AuNPs) in aqueous media. We demonstrate that a dense coating of the capsules with AuNPs leads to enhanced light absorption, causing an increase of local temperature. This enhances the migration of polyelectrolytes within the PEMs and thus enables a complete fusion of two or more capsules. The encapsulated substances can achieve complete merging upon short-term laser irradiation (30 s, 30 mW @ 650 nm). The whole fusion process is followed by optical microscopy and scanning electron microscopy. In control experiments, microcapsules without AuNPs do not show a significant capsule fusion upon irradiation. It was also found that the duration of capsule fusion is affected by the density of AuNPs on the shell - the higher the density of AuNPs the shorter the fusion time. All these findings confirm that laser-induced microcapsule fusion is a new type of membrane fusion. This effect helps to study the interior exchange reactions of functional microcapsules, micro-reactors and drug transport across multilayers.
Radiographic and Functional Outcomes following Knee Arthrodesis Using the Wichita Fusion Nail.
McQuail, Paula; McCartney, Ben; Baker, Joseph; Green, James; Keogh, Peter; Kenny, Patrick
2018-05-01
The purpose of this study was to report both the radiographic and functional outcomes of patients undergoing knee arthrodesis with the Wichita Fusion Nail (WFN) within the Republic of Ireland and compare the results to existing literature. Patient charts and radiographs were reviewed on all patients who had a WFN implanted in Ireland to date. Patients were invited to complete a Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score as a functional assessment. Twenty-three patients were identified. Patients had an average of 8 (range: 0-26) knee surgeries prior to arthrodesis. The most common indication was failed arthroplasty due to recalcitrant infection (69.5%). Successful fusion occurred in 60.8% of patients. The mean time to fusion was 9.21 months. The mean WOMAC score was 58.55 with a range of 31 to 96. We found a rate of arthrodesis lower than that reported in other published series. However, the rate of major complications was comparable to those published previously, reflecting the often-challenging patient cohort. Our study shows that the WFN should not be viewed as a near-universally successful option to salvage an unreconstructable knee. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Vacuum fusion bonding of glass plates
Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.
2001-01-01
An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.
Vacuum fusion bonding of glass plates
Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.
2000-01-01
An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.
Vacuum fusion bonded glass plates having microstructures thereon
Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.
2001-01-01
An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.
Gerszten, Peter C; Tobler, William; Raley, Thomas J; Miller, Larry E; Block, Jon E; Nasca, Richard J
2012-04-01
Case series. To describe a minimally invasive surgical technique for treatment of lumbosacral spondylolisthesis. Traditional surgical management of lumbosacral spondylolisthesis is technically challenging and associated with significant complications. Minimally invasive surgical techniques offer patients treatment alternatives with lower operative morbidity risk. The combination of percutaneous pedicle screw reduction and an axial presacral approach for lumbosacral discectomy and fusion is an option for the surgical management of low-grade lumbosacral spondylolisthesis. Twenty-six consecutive patients with symptomatic L5-S1 level isthmic spondylolisthesis (grade 1 or grade 2) underwent axial presacral lumbar interbody fusion and percutaneous posterior fixation. Study outcomes included visual analogue scale for axial pain severity, Odom criteria, and radiographic fusion. The procedure was successfully completed in all patients with no intraoperative complications reported. Intraoperative blood loss was minimal (range, 20-150 mL). Median hospital stay was 1 day (range, <1-2 d). Spondylolisthesis grade was improved after axial lumbar interbody fusion (P<0.001) with 50% (13 of 26) of patients showing a reduction of at least 1 grade. Axial pain severity improved from 8.1±1.4 at baseline to 2.8±2.3 after axial lumbar interbody fusion, representing a 66% reduction from baseline (95% confidence interval, 54.3%-77.9%). At 2-year posttreatment, all patients showed solid fusion. Using Odom criteria, 81% of patients were judged as excellent or good (16 excellent, 5 good, 3 fair, and 2 poor). There were no perioperative procedure-related complications including infection or bowel perforation. During postoperative follow-up, 4 patients required reintervention due to recurrent radicular (n=2) or screw-related (n=2) pain. The minimally invasive presacral axial interbody fusion and posterior instrumentation technique is a safe and effective treatment for low-grade isthmic spondylolisthesis.
NASA Astrophysics Data System (ADS)
Wang, Zhuozheng; Deller, J. R.; Fleet, Blair D.
2016-01-01
Acquired digital images are often corrupted by a lack of camera focus, faulty illumination, or missing data. An algorithm is presented for fusion of multiple corrupted images of a scene using the lifting wavelet transform. The method employs adaptive fusion arithmetic based on matrix completion and self-adaptive regional variance estimation. Characteristics of the wavelet coefficients are used to adaptively select fusion rules. Robust principal component analysis is applied to low-frequency image components, and regional variance estimation is applied to high-frequency components. Experiments reveal that the method is effective for multifocus, visible-light, and infrared image fusion. Compared with traditional algorithms, the new algorithm not only increases the amount of preserved information and clarity but also improves robustness.
Zhang, Chong; Liu, Min-Sheng; Xing, Xin-Hui
2009-09-01
By constructing the expression system for fusion protein of GFPmut1 (a green fluorescent protein mutant) with the hyperthermophilic xylanase obtained from Dictyoglomus thermophilum Rt46B.1, the effects of temperature on the fluorescence of GFP and its relationship with the activities of GFP-fused xylanase have been studied. The fluorescence intensities of both GFP and GFP-xylanase have proved to be thermally sensitive, with the thermal sensitivity of the fluorescence intensity of GFP-xylanase being 15% higher than that of GFP. The lost fluorescence intensity of GFP inactivated at high temperature of below 60 degrees C in either single or fusion form can be completely recovered by treatment at 0 degrees C. By the fluorescence recovery of GFP domain at low temperature, the ratios of fluorescence intensity to xylanase activity (Rgfp/Axyl) at 15 degrees C and 37 degrees C have been compared. Even though the numbers of molecules of GFP and xylanase are equivalent, the Rgfp/Axyl ratio at 15 degrees C is ten times of that at 37 degrees C. This is mainly due to the fact that lower temperature is more conducive to the correct folding of GFP than the hyperthermophilic xylanase during the expression. This study has indicated that the ratio of GFP fluorescence to the thermophilic enzyme activity for the fusion proteins expressed at different temperatures could be helpful in understanding the folding properties of the two fusion partners and in design of the fusion proteins.
Reaction dynamics near the barrier
NASA Astrophysics Data System (ADS)
Loveland, W.
2011-10-01
The availability of modest intensity (103-107 p/s) radioactive nuclear beams has had a significant impact on the study of nuclear reactions near the interaction barrier. The role of isospin in capture reactions is a case in point. Using heavy elements as a laboratory to explore these effects, we note that the cross section for producing an evaporation residue is σEVR(Ec . m .) = ∑ J = 0 JmaxσCN(Ec . m . , J) Wsur(Ec . m . , J) where σCN is the complete fusion cross section and Wsur is the survival probability of the completely fused system. The complete fusion cross section can be written as, σCN(Ec . m .) = ∑ J = 0 Jmaxσcapture(Ec . m .) PCN(Ec . m . , J) where σcapture(Ec.m.,J) is the ``capture'' cross section at center-of mass energy Ec.m. and spin J and PCN is the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than re-separating (quasi-fission). The systematics of the isospin dependence of the capture cross sections has been developed and the deduced interaction barriers for all known studies of capture cross sections with radioactive beams are in good agreement with recent predictions of an improved QMD model and semi-empirical models. The deduced barriers for these n-rich systems are lower than one would expect from the Bass or proximity potentials. In addition to the barrier lowering, there is an enhanced sub-barrier cross section in these n-rich systems that is of advantage in the synthesis of new heavy nuclei. Recent studies of the ``inverse fission'' of uranium (124,132Sn + 100Mo) have yielded unexpectedly low upper limits for this process due apparently to low values of the fusion probability, PCN. The fusion of halo nuclei, like 11Li with heavy nuclei, like 208Pb, promises to give new information about these and related nuclei and has led/may lead to unusual reaction mechanisms. This work was sponsored, in part, by the USDOE Office of Nuclear Physics.
Real causes of apparent abnormal results in heavy ion reactions
NASA Astrophysics Data System (ADS)
Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; De Leo, V.; Fazio, G.; Giardina, G.
2015-06-01
We study the effect of the static characteristics of nuclei and dynamics of the nucleus-nucleus interaction in the capture stage of reaction, in the competition between quasifission and complete fusion processes, as well as the angular momentum dependence of the competition between fission and evaporation processes along the de-excitation cascade of the compound nucleus. The results calculated for the mass-asymmetric and less mass-asymmetric reactions in the entrance channel are analyzed in order to investigate the role of the dynamical effects on the yields of the evaporation residue nuclei. We also discuss about uncertainties at the extraction of such relevant physical quantities as Γn/Γtot ratio or also excitation functions from the experimental results due to the not always realistic assumptions in the treatment and analysis of the detected events. This procedure can lead to large ambiguity when the complete fusion process is strongly hindered or when the fast fission contribution is large. We emphasize that a refined multiparameter model of the reaction dynamics as well as a more detailed and checked data analysis are strongly needed in heavy-ion collisions.
Improving Planetary Rover Attitude Estimation via MEMS Sensor Characterization
Hidalgo, Javier; Poulakis, Pantelis; Köhler, Johan; Del-Cerro, Jaime; Barrientos, Antonio
2012-01-01
Micro Electro-Mechanical Systems (MEMS) are currently being considered in the space sector due to its suitable level of performance for spacecrafts in terms of mechanical robustness with low power consumption, small mass and size, and significant advantage in system design and accommodation. However, there is still a lack of understanding regarding the performance and testing of these new sensors, especially in planetary robotics. This paper presents what is missing in the field: a complete methodology regarding the characterization and modeling of MEMS sensors with direct application. A reproducible and complete approach including all the intermediate steps, tools and laboratory equipment is described. The process of sensor error characterization and modeling through to the final integration in the sensor fusion scheme is explained with detail. Although the concept of fusion is relatively easy to comprehend, carefully characterizing and filtering sensor information is not an easy task and is essential for good performance. The strength of the approach has been verified with representative tests of novel high-grade MEMS inertia sensors and exemplary planetary rover platforms with promising results. PMID:22438761
Line-Tension Controlled Mechanism for Influenza Fusion
Risselada, Herre Jelger; Smirnova, Yuliya G.; Grubmüller, Helmut; Marrink, Siewert Jan; Müller, Marcus
2012-01-01
Our molecular simulations reveal that wild-type influenza fusion peptides are able to stabilize a highly fusogenic pre-fusion structure, i.e. a peptide bundle formed by four or more trans-membrane arranged fusion peptides. We rationalize that the lipid rim around such bundle has a non-vanishing rim energy (line-tension), which is essential to (i) stabilize the initial contact point between the fusing bilayers, i.e. the stalk, and (ii) drive its subsequent evolution. Such line-tension controlled fusion event does not proceed along the hypothesized standard stalk-hemifusion pathway. In modeled influenza fusion, single point mutations in the influenza fusion peptide either completely inhibit fusion (mutants G1V and W14A) or, intriguingly, specifically arrest fusion at a hemifusion state (mutant G1S). Our simulations demonstrate that, within a line-tension controlled fusion mechanism, these known point mutations either completely inhibit fusion by impairing the peptide’s ability to stabilize the required peptide bundle (G1V and W14A) or stabilize a persistent bundle that leads to a kinetically trapped hemifusion state (G1S). In addition, our results further suggest that the recently discovered leaky fusion mutant G13A, which is known to facilitate a pronounced leakage of the target membrane prior to lipid mixing, reduces the membrane integrity by forming a ‘super’ bundle. Our simulations offer a new interpretation for a number of experimentally observed features of the fusion reaction mediated by the prototypical fusion protein, influenza hemagglutinin, and might bring new insights into mechanisms of other viral fusion reactions. PMID:22761674
Zhu, Qiyun; Biering, Scott B.; Mirza, Anne M.; Grasseschi, Brittany A.; Mahon, Paul J.; Lee, Benhur; Aguilar, Hector C.
2013-01-01
The promotion of membrane fusion by most paramyxoviruses requires an interaction between the viral attachment and fusion (F) proteins to enable receptor binding by the former to trigger the activation of the latter for fusion. Numerous studies demonstrate that the F-interactive sites on the Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) and measles virus (MV) hemagglutinin (H) proteins reside entirely within the stalk regions of those proteins. Indeed, stalk residues of NDV HN and MV H that likely mediate the F interaction have been identified. However, despite extensive efforts, the F-interactive site(s) on the Nipah virus (NiV) G attachment glycoprotein has not been identified. In this study, we have introduced individual N-linked glycosylation sites at several positions spaced at intervals along the stalk of the NiV G protein. Five of the seven introduced sites are utilized as established by a retardation of electrophoretic mobility. Despite surface expression, ephrinB2 binding, and oligomerization comparable to those of the wild-type protein, four of the five added N-glycans completely eliminate the ability of the G protein to complement the homologous F protein in the promotion of fusion. The most membrane-proximal added N-glycan reduces fusion by 80%. However, unlike similar NDV HN and MV H mutants, the NiV G glycosylation stalk mutants retain the ability to bind F, indicating that the fusion deficiency of these mutants is not due to prevention of the G-F interaction. These findings suggest that the G-F interaction is not mediated entirely by the stalk domain of G and may be more complex than that of HN/H-F. PMID:23283956
Ma, Yufan; Wang, Zhao; Zhao, Wen; Lu, Tingli; Wang, Rutao; Mei, Qibing; Chen, Tao
2013-01-01
Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG), 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS), 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion. Furthermore, the fluid liposomal encapsulated tobramycin was prepared, and the bactericidal effect occurred more quickly when bacteria were cultured with liposomal encapsulated tobramycin. The bactericidal potency of fluid liposomes is dramatically enhanced with respect to fusion ability when the fusogenic lipid, DOPE, is included. Regardless of changes in liposome composition, fluid liposomes-bacterium fusion is universally enhanced by calcium ions. The information obtained in this study will increase our understanding of fluid liposomal action mechanisms, and help in optimizing the new generation of fluid liposomal formulations for the treatment of pulmonary bacterial infections.
Ma, Yufan; Wang, Zhao; Zhao, Wen; Lu, Tingli; Wang, Rutao; Mei, Qibing; Chen, Tao
2013-01-01
Background Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE), and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG), 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS), 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA), nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the amount of negative charges in fluid liposomes reduces fluid liposomes-bacteria fusion when tested without calcium cations due to electric repulsion, but addition of calcium cations brings the fusion level of fluid liposomes to similar or higher levels. Among the negative phospholipids examined, DMPA gave the highest degree of fusion, DMPS and DMPG had intermediate fusion levels, and PI resulted in the lowest degree of fusion. Furthermore, the fluid liposomal encapsulated tobramycin was prepared, and the bactericidal effect occurred more quickly when bacteria were cultured with liposomal encapsulated tobramycin. Conclusion The bactericidal potency of fluid liposomes is dramatically enhanced with respect to fusion ability when the fusogenic lipid, DOPE, is included. Regardless of changes in liposome composition, fluid liposomes-bacterium fusion is universally enhanced by calcium ions. The information obtained in this study will increase our understanding of fluid liposomal action mechanisms, and help in optimizing the new generation of fluid liposomal formulations for the treatment of pulmonary bacterial infections. PMID:23847417
Mass Producing Targets for Nuclear Fusion
NASA Technical Reports Server (NTRS)
Wang, T. G.; Elleman, D. D.; Kendall, J. M.
1983-01-01
Metal-encapsulating technique advances prospects of controlling nuclear fusion. Prefilled fusion targets form at nozzle as molten metal such as tin flows through outer channel and pressurized deuterium/tritium gas flows through inner channel. Molten metal completely encloses gas charge as it drops off nozzle.
Wang, Nanxiang; Xie, Huanxin; Xi, Chunyang; Zhang, Han; Yan, Jinglong
2017-03-09
The benefits of posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps are well established. However, the problem of non-union due to mechanical support is not completely resolved. The aim of the study was to compare the efficacy of polyether ether ketone (PEEK) rod device with conventional titanium devices in the posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps. This was a randomized controlled study with an experimental animal model. Thirty-two mongrel dogs were randomly divided into two groups-control group (n = 16), which received the titanium device and the treatment group (n = 16), which received PEEK rods. The animals were sacrificed 8 or 16 weeks after surgery. Lumbar spines of dogs in both groups were removed, harvested, and assessed for radiographic, biomechanical, and histological changes. Results in the current study indicated that there was no significant difference in the lumbar spine of the control and treatment groups in terms of radiographic, manual palpation, and gross examination. However, certain parameters of biomechanical testing showed significant differences (p < 0.05) in stiffness and displacement, revealing a better fusion (treatment group showed decreased stiffness with decreased displacement) of the bone graft. Similarly, the histological analysis also revealed a significant fusion mass in both treatment and control groups (p < 0.05). These findings revealed that fixation using PEEK connecting rod could improve the union of the bone graft in the posterior lumbar spine fusion surgery compared with that of the titanium rod fixation.
NASA Astrophysics Data System (ADS)
McIntire, John P.; Wright, Steve T.; Harrington, Lawrence K.; Havig, Paul R.; Watamaniuk, Scott N. J.; Heft, Eric L.
2014-06-01
Twelve participants were tested on a simple virtual object precision placement task while viewing a stereoscopic three-dimensional (S3-D) display. Inclusion criteria included uncorrected or best corrected vision of 20/20 or better in each eye and stereopsis of at least 40 arc sec using the Titmus stereotest. Additionally, binocular function was assessed, including measurements of distant and near phoria (horizontal and vertical) and distant and near horizontal fusion ranges using standard optometric clinical techniques. Before each of six 30 min experimental sessions, measurements of phoria and fusion ranges were repeated using a Keystone View Telebinocular and an S3-D display, respectively. All participants completed experimental sessions in which the task required the precision placement of a virtual object in depth at the same location as a target object. Subjective discomfort was assessed using the simulator sickness questionnaire. Individual placement accuracy in S3-D trials was significantly correlated with several of the binocular screening outcomes: viewers with larger convergent fusion ranges (measured at near distance), larger total fusion ranges (convergent plus divergent ranges, measured at near distance), and/or lower (better) stereoscopic acuity thresholds were more accurate on the placement task. No screening measures were predictive of subjective discomfort, perhaps due to the low levels of discomfort induced.
Embedding the results of focussed Bayesian fusion into a global context
NASA Astrophysics Data System (ADS)
Sander, Jennifer; Heizmann, Michael
2014-05-01
Bayesian statistics offers a well-founded and powerful fusion methodology also for the fusion of heterogeneous information sources. However, except in special cases, the needed posterior distribution is not analytically derivable. As consequence, Bayesian fusion may cause unacceptably high computational and storage costs in practice. Local Bayesian fusion approaches aim at reducing the complexity of the Bayesian fusion methodology significantly. This is done by concentrating the actual Bayesian fusion on the potentially most task relevant parts of the domain of the Properties of Interest. Our research on these approaches is motivated by an analogy to criminal investigations where criminalists pursue clues also only locally. This publication follows previous publications on a special local Bayesian fusion technique called focussed Bayesian fusion. Here, the actual calculation of the posterior distribution gets completely restricted to a suitably chosen local context. By this, the global posterior distribution is not completely determined. Strategies for using the results of a focussed Bayesian analysis appropriately are needed. In this publication, we primarily contrast different ways of embedding the results of focussed Bayesian fusion explicitly into a global context. To obtain a unique global posterior distribution, we analyze the application of the Maximum Entropy Principle that has been shown to be successfully applicable in metrology and in different other areas. To address the special need for making further decisions subsequently to the actual fusion task, we further analyze criteria for decision making under partial information.
Breakup and n -transfer effects on the fusion reactions Li,76+Sn,119120 around the Coulomb barrier
NASA Astrophysics Data System (ADS)
Fisichella, M.; Shotter, A. C.; Figuera, P.; Lubian, J.; Di Pietro, A.; Fernandez-Garcia, J. P.; Ferreira, J. L.; Lattuada, M.; Lotti, P.; Musumarra, A.; Pellegriti, M. G.; Ruiz, C.; Scuderi, V.; Strano, E.; Torresi, D.; Zadro, M.
2017-03-01
This paper presents values of complete fusion cross sections deduced from activation measurements for the reactions 6Li+120Sn and 7Li+119Sn , and for a projectile energy range from 17.5 to 28 MeV in the center-of-mass system. A new deconvolution analysis technique is used to link the basic activation data to the actual fusion excitation function. The complete fusion cross sections above the barrier are suppressed by about 70 % and 85 % with respect to the universal fusion function, used as a standard reference, in the 6Li and 7Li induced reactions, respectively. From a comparison of the excitation functions of the two systems at energies below the barrier, no significant differences can be observed, despite the two systems have different n -transfer Q values. This observation is supported by the results of coupled reaction channels (CRC) calculations.
NASA Astrophysics Data System (ADS)
Grover, Neha; Sandhu, Kirandeep; Sharma, Manoj K.
2018-06-01
The dynamics of 17F + 58Ni reaction induced via a loosely bound projectile (17F) is examined using the collective clusterization approach of the dynamical cluster decay model (DCM) with respect to the recent experimental data available at beam energies Ebeam = 54.1 and 58.5 MeV. The calculations are done for quadrupole deformations of fragments using the optimum orientation approach. In view of the loosely bound nature of 17F, the main focus of the present work is on the comparison of complete and incomplete fusion. It is studied using various components such as fragmentation potential, mass distribution, and barrier modification. Different decay modes (ER, IMF, HMF, and fission) are also compared to determine the complete fusion and incomplete fusion paths. Additionally, the decay paths of the nucleus formed from loosely bound (17F) and tightly bound (16O) projectiles are compared. Furthermore, the role of temperature-dependent pairing strength is analyzed in terms of the binary fragmentation of the compound system formed.
NASA Astrophysics Data System (ADS)
Hong, Juhee; Adamian, G. G.; Antonenko, N. V.
2017-07-01
The possibilities of direct production of new isotopes of transfermium nuclei 261,263,264No, 264Lr263, 263,264,266,268Rf, 265Db264, and 267,268,270,272Sg are studied in various asymmetric hot fusion-evaporation reactions with radioactive beams. The optimal reaction partners and conditions for the synthesis of new isotopes are suggested. The products of the suggested reactions can fill a gap of unknown isotopes between the isotopes of heaviest nuclei obtained in the x n evaporation channels of the cold and hot complete fusion reactions with the stable beams.
Working with Fusion in Lesbian Couples.
ERIC Educational Resources Information Center
Roth, Nicki F.
The phenomena of fusion within a lesbian relationship is described in a six-phased model. Fusion in relationships is defined as two incomplete people coming together in an attempt to make one more complete whole, the merging of two ego boundaries. The six phases discussed include ecstacy, getting married, the routine, depression/withdrawal,…
Fusion Rates of Different Anterior Grafts in Thoracolumbar Fractures.
Antoni, Maxime; Charles, Yann Philippe; Walter, Axel; Schuller, Sébastien; Steib, Jean-Paul
2015-11-01
Retrospective CT analysis of anterior fusion in thoracolumbar trauma. The aim of this study was to compare fusion rates of different bone grafts and to analyze risk factors for pseudarthrosis. Interbody fusion is indicated in anterior column defects. Different grafts are used: autologous iliac crest, titanium mesh cages filled with cancellous bone, and autologous ribs. It is not clear which graft offers the most reliable fusion. Radiologic data of 116 patients (71 men, 45 women) operated for type A2, A3, B, or C fractures were analyzed. The average age was 44.6 years (range, 16-75 y) and follow-up was 2.7 years (range, 1-9 y). All patients were treated by posterior instrumentation followed by an anterior graft: 53 cases with iliac crest, 43 cases with mesh cages, and 20 with rib grafts. Fusion was evaluated on CT and classified into complete fusion, partial fusion, unipolar pseudarthrosis, and bipolar pseudarthrosis. Iliac crest fused in 66%, cages in 98%, and rib grafts in 90%. The fusion rate of cages filled with bone was significantly higher as the iliac graft fusion rate (P=0.002). The same was applied to rib grafts compared with iliac crest (P=0.041). Additional bone formation around the main graft, bridging both vertebral bodies, was observed in 31 of the 53 iliac crests grafts. Pseudarthrosis occurred more often in smokers (P=0.042). A relationship between fracture or instrumentation types, sex, age, BMI, and fusion could not be determined. Tricortical iliac crest grafts showed an unexpected high pseudarthrosis rate in thoracolumbar injuries. Their cortical bone is dense and their fusion surface is small. Rib grafts led to a better fusion when used in combination with the cancellous bone from the fractured vertebral body. Titanium mesh cages filled with cancellous bone led to the highest fusion rate and built a complete bony bridge between vertebral bodies. Smoking seemed to influence fusion. Case control study, Level III.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurilenkov, Yu. K.; Skowronek, M.
2010-12-15
Properties of an aerosol substance with a high power density in the interelectrode space of a nano- second vacuum discharge are studied. The possibilities of emission and/or trapping of fast ions and hard X-rays by ensembles of clusters and microparticles are analyzed. The possibility of simultaneous partial trapping (diffusion) of X-rays and complete trapping of fast ions by a cluster ensemble is demonstrated experimentally. Due to such trapping, the aerosol ensemble transforms into a 'dusty' microreactor that can be used to investigate a certain class of nuclear processes, including collisional DD microfusion. Operating regimes of such a microreactor and theirmore » reproducibility were studied. On the whole, the generation efficiency of hard X-rays and neutrons in the proposed vacuum discharge with a hollow cathode can be higher by two orders of magnitude than that in a system 'high-power laser pulse-cluster cloud.' Multiply repeated nuclear fusion accompanied by pulsating DD neutron emission was reproducibly detected in experiment. Ion acceleration mechanisms in the interelectrode space and the fundamental role of the virtual cathode in observed nuclear fusion processes are discussed.« less
Paramyxovirus fusion: Real-time measurement of parainfluenza virus 5 virus-cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, Sarah A.; Lamb, Robert A.
2006-11-25
Although cell-cell fusion assays are useful surrogate methods for studying virus fusion, differences between cell-cell and virus-cell fusion exist. To examine paramyxovirus fusion in real time, we labeled viruses with fluorescent lipid probes and monitored virus-cell fusion by fluorimetry. Two parainfluenza virus 5 (PIV5) isolates (W3A and SER) and PIV5 containing mutations within the fusion protein (F) were studied. Fusion was specific and temperature-dependent. Compared to many low pH-dependent viruses, the kinetics of PIV5 fusion was slow, approaching completion within several minutes. As predicted from cell-cell fusion assays, virus containing an F protein with an extended cytoplasmic tail (rSV5 F551)more » had reduced fusion compared to wild-type virus (W3A). In contrast, virus-cell fusion for SER occurred at near wild-type levels, despite the fact that this isolate exhibits a severely reduced cell-cell fusion phenotype. These results support the notion that virus-cell and cell-cell fusion have significant differences.« less
Regulation of exocytotic fusion by cell inflation.
Solsona, C; Innocenti, B; Fernández, J M
1998-01-01
We have inflated patch-clamped mast cells by 3.8 +/- 1.6 times their volume by applying a hydrostatic pressure of 5-15 cm H2O to the interior of the patch pipette. Inflation did not cause changes in the cell membrane conductance and caused only a small reversible change in the cell membrane capacitance (36 +/- 5 fF/cm H2O). The specific cell membrane capacitance of inflated cells was found to be 0.5 microF/cm2. High-resolution capacitance recordings showed that inflation reduced the frequency of exocytotic fusion events by approximately 70-fold, with the remaining fusion events showing an unusual time course. Shortly after the pressure was returned to 0 cm H2O, mast cells regained their normal size and appearance and degranulated completely, even after remaining inflated for up to 60 min. We interpret these observations as an indication that inflated mast cells reversibly disassemble the structures that regulate exocytotic fusion. Upon returning to its normal size, the cell cytosol reassembles the fusion pore scaffolds and allows exocytosis to proceed, suggesting that exocytotic fusion does not require soluble proteins. Reassembly of the fusion pore can be prevented by inflating the cells with solutions containing the protease pronase, which completely blocked exocytosis. We also interpret these results as evidence that the activity of the fusion pore is sensitive to the tension of the plasma membrane. PMID:9533718
Observations of sacrocaudal fusion in Greyhounds and other dogs.
Oheida, Aiman H; Philip, Christopher J; Yen, Hung-Hsun; Davies, Helen M S
2016-01-01
To describe the incidence and forms of nonpathological sacrocaudal fusion in racing Greyhounds and compare them with those in a variety of other domestic dog breeds. This retrospective observational study used archived anatomical specimens from 81 racing Greyhounds and 10 Beagles, and archived clinical radiographs from 81 non-Greyhound dogs representing 37 other breeds. Dogs less than two years of age and dogs with evidence of soft tissue or osseous pathology involving the sacrocaudal region were excluded. The incidence of osseous sacrocaudal fusion (any type and complete fusion) was compared between Greyhounds and all of the other dogs combined, using the Fisher's exact test. Sacrocaudal fusion of some type was found in 33 (41%) of 81 Greyhounds but in only 14 (15%) of 91 non-Greyhound dogs (p <0.01). Complete fusion (osseous fusion of vertebral bodies and both transverse and articular processes) between the sacrum and the first caudal vertebra was the most common form in Greyhounds, found in 27 (33%) of 81 Greyhounds, but in only three (3.3%) of 91 non-Greyhound dogs (p <0.01). Sacrocaudal fusion appears to be more prevalent in Greyhounds than in other domestic dog breeds and may be attributable to selection pressure for speed on a region of the spine that is naturally prone to variation. Its significance for performance and soundness requires further study.
A Remote Sensing Image Fusion Method based on adaptive dictionary learning
NASA Astrophysics Data System (ADS)
He, Tongdi; Che, Zongxi
2018-01-01
This paper discusses using a remote sensing fusion method, based on' adaptive sparse representation (ASP)', to provide improved spectral information, reduce data redundancy and decrease system complexity. First, the training sample set is formed by taking random blocks from the images to be fused, the dictionary is then constructed using the training samples, and the remaining terms are clustered to obtain the complete dictionary by iterated processing at each step. Second, the self-adaptive weighted coefficient rule of regional energy is used to select the feature fusion coefficients and complete the reconstruction of the image blocks. Finally, the reconstructed image blocks are rearranged and an average is taken to obtain the final fused images. Experimental results show that the proposed method is superior to other traditional remote sensing image fusion methods in both spectral information preservation and spatial resolution.
Method for creating ideal tissue fusion in soft-tissue structures using radio frequency (RF) energy.
Shields, Chelsea A; Schechter, David A; Tetzlaff, Phillip; Baily, Ali L; Dycus, Sean; Cosgriff, Ned
2004-01-01
Bipolar radiofrequency (RF) energy can successfully seal vascular structures up to 7 mm by fusing collagen and elastin in the lumen. Valleylab has created a system to expand this technology beyond vessel sealing with the development of a closed-loop, feedback-control RF generator that closely monitors tissue fusion. This generator, operating with a loop time of approximately 250 micros, continuously adjusts energy output, creating optimized soft-tissue fusion through structural protein amalgamation. In the first study, RF energy was applied to canine lung using the new-generation generator and lung-prototype device. A lobectomy was completed, sealing the lobar bronchus, parenchyma, and pulmonary vasculature. Chronic performance of the seals was evaluated at necropsy on postoperative days 7 and 14. In a second study, RF energy was applied to porcine small intestine using the same closed-loop generator and anastomosis prototype device. Acute tissue fusion was assessed qualitatively for hemostasis and seal quality. Terminal tissue evaluation was completed on postoperative day 7 and analyzed histopathologically. Histopathology confirmed acute and chronic tissue fusion in both the lung and intestine. Normal pathological healing was substantiated by angiogenesis, granulation, and proliferation of fibroblasts. Preliminary studies using canine lung and porcine small intestine demonstrate the potential of this closed-loop generator for soft-tissue amalgamation. Advanced monitoring capabilities make this fusion system applicable in many soft-tissue structures with adequate collagen and elastin. Further investigation of potential surgical applications needs to be completed.
Complete occipitalization of the atlas with bilateral external auditory canal atresia.
Dolenšek, Janez; Cvetko, Erika; Snoj, Žiga; Meznaric, Marija
2017-09-01
Fusion of the atlas with the occipital bone is a rare congenital dysplasia known as occipitalization of the atlas, occipitocervical synostosis, assimilation of the atlas, or atlanto-occipital fusion. It is a component of the paraxial mesodermal maldevelopment and commonly associated with other dysplasias of the craniovertebral junction. External auditory canal atresia or external aural atresia is a rare congenital absence of the external auditory canal. It occurs as the consequence of the maldevelopment of the first pharyngeal cleft due to defects of cranial neural crest cells migration and/or differentiation. It is commonly associated with the dysplasias of the structures derived from the first and second pharyngeal arches including microtia. We present the coexistence of the occipitalization of the atlas and congenital aural atresia, an uncommon combination of the paraxial mesodermal maldevelopment, and defects of cranial neural crest cells. The association is most probably syndromic as minimal diagnostic criteria for the oculoariculovertebral spectrum are fulfilled. From the clinical point of view, it is important to be aware that patients with microtia must obtain also appropriate diagnostic imaging studies of the craniovetebral junction due to eventual concomitant occipitalization of the atlas and frequently associated C1-C2 instability.
NASA Astrophysics Data System (ADS)
Kharab, Rajesh; Chahal, Rajiv; Kumar, Rajiv
2017-04-01
We have analyzed the complete and incomplete fusion excitation function for 9Be +169Tm, 187Re reactions at around barrier energies using the code PLATYPUS based on classical dynamical model. The quantum mechanical tunnelling correction is incorporated at near and sub barrier energies which significantly improves the matching between the data and prediction.
Quantification of spheno-occipital synchondrosis fusion in a contemporary Malaysian population.
Hisham, Salina; Flavel, Ambika; Abdullah, Nurliza; Noor, Mohamad Helmee Mohamad; Franklin, Daniel
2018-03-01
Timing of fusion of the spheno-occipital synchondrosis (SOS) is correlated with age. Previous research, however, has demonstrated variation in the timing of closure among different global populations. The present study aims to quantify the timing of SOS fusion in Malaysian individuals as visualised in multi-detector computed tomography (CT) scans and to thereafter formulate age estimation models based on fusion status. Anonymised cranial CT scans of 336 males and 164 females, aged 5-25 years, were acquired from the National Institute of Forensic Medicine, Hospital Kuala Lumpur and Department of Diagnostic Imaging, Hospital Sultanah Aminah. The scans were received in DICOM format and reconstructed into three-dimensional images using OsiriX. The SOS is scored as open, fusing endocranially, fusing ectocranially or completely fused. Statistical analyses are performed using IBM SPSS Statistics version 24. Transition analysis (Nphases2) is then utilised to calculate age ranges for each stage. To assess the reliability of an observation, intra- and inter-observer agreement is quantified using Fleiss Kappa and was found to be excellent (κ=0.785-0.907 and 0.812). The mean (SD) age for complete fusion is 20.84 (2.84) years in males and 19.78 (3.35) years in females. Transition ages between Stages 0 and 1, 1 and 2, and 2 and 3 in males are 12.52, 13.98 and 15.52 years, respectively (SD 1.37); in females, the corresponding data are 10.47, 12.26 and 13.80 years (SD 1.72). Complete fusion of the SOS was observed in all individuals above the age of 18 years. SOS fusion status provides upper and lower age boundaries for forensic age estimation in the Malaysian sample. Copyright © 2018 Elsevier B.V. All rights reserved.
Extrusion of transmitter, water and ions generates forces to close fusion pore.
Tajparast, M; Glavinović, M I
2009-05-01
During exocytosis the fusion pore opens rapidly, then dilates gradually, and may subsequently close completely, but what controls its dynamics is not well understood. In this study we focus our attention on forces acting on the pore wall, and which are generated solely by the passage of transmitter, ions and water through the open fusion pore. The transport through the charged cylindrical nano-size pore is simulated using a coupled system of Poisson-Nernst-Planck and Navier-Stokes equations and the forces that act radially on the wall of the fusion pore are then estimated. Four forces are considered: a) inertial force, b) pressure, c) viscotic force, and d) electrostatic force. The inertial and viscotic forces are small, but the electrostatic force and the pressure are typically significant. High vesicular pressure tends to open the fusion pore, but the pressure induced by the transport of charged particles (glutamate, ions), which is predominant when the pore wall charge density is high tends to close the pore. The electrostatic force, which also depends on the charge density on the pore wall, is weakly repulsive before the pore dilates, but becomes attractive and pronounced as the pore dilates. Given that the vesicular concentration of free transmitter can change rapidly due to the release, or owing to the dissociation from the gel matrix, we evaluated how much and how rapidly a change of the vesicular K(+)-glutamate(-) concentration affects the concentration of glutamate(-) and ions in the pore and how such changes alter the radial force on the wall of the fusion pore. A step-like rise of the vesicular K(+)-glutamate(-) concentration leads to a chain of events. Pore concentration (and efflux) of both K(+) and glutamate(-) rise reaching their new steady-state values in less than 100 ns. Interestingly within a similar time interval the pore concentration of Na(+) also rises, whereas that of Cl(-) diminishes, although their extra-cellular concentration does not change. Finally such changes affect also the water movement. Water efflux changes bi-phasically, first increasing before decreasing to a new, but lower steady-state value. Nevertheless, even under such conditions an overall approximate neutrality of the pore is maintained remarkably well, and the electrostatic, but also inertial, viscotic and pressure forces acting on the pore wall remain constant. In conclusion the extrusion of the vesicular content generates forces, primarily the force due to the electro-kinetically induced pressure and electrostatic force (both influenced by the pore radius and even more by the charge density on the pore wall), which tend to close the fusion pore.
Dynamics of complete and incomplete fusion in heavy ion collisions
NASA Astrophysics Data System (ADS)
Bao, Xiao Jun; Guo, Shu Qing; Zhang, Hong Fei; Li, Jun Qing
2018-02-01
In order to study the influence of the strong Coulomb and nuclear interactions on the dynamics of complete and incomplete fusion, we construct a new four-variable master equation (ME) so that the deformations as well as the nucleon transfer are viewed as consistently governed by MEs in the potential energy surface of the system. The calculated yields of quasifission fragments and evaporation residue cross section (ERCS) are in agreement with experimental data of hot fusion reactions. Comparing cross sections by theoretical results and experimental data, we find the improved dinuclear sysytem model also describes the transfer cross sections reasonably. The production cross sections of new neutron-rich isotopes are estimated by the multinucleon transfer reactions.
Suess, Olaf; Schomaker, Martin; Cabraja, Mario; Danne, Marco; Kombos, Theodoros; Hanna, Michael
2017-01-01
Anterior cervical diskectomy and fusion (ACDF) is a well-established surgical treatment for radiculopathy and myelopathy. Previous studies showed that empty PEEK cages have lower radiographic fusion rates, but the clinical relevance remains unclear. This paper's aim is to provide high-quality evidence on the outcomes of ACDF with empty PEEK cages and on the relevance of radiographic fusion for clinical outcomes. This large prospective multicenter clinical trial performed single-level ACDF with empty PEEK cages on patients with cervical radiculopathy or myelopathy. The main clinical outcomes were VAS (0-10) for pain and NDI (0-100) for functioning. Radiographic fusion was evaluated by two investigators for three different aspects. The median (range) improvement of the VAS pain score was: 3 (1-6) at 6 months, 3 (2-8) at 12 months, and 4 (2-8) at 18 months. The median (range) improvement of the NDI score was: 12 (2-34) at 6 months, 18 (4-46) at 12 months, and 22 (2-44) at 18 months. Complete radiographic fusion was reached by 126 patients (43%) at 6 months, 214 patients (73%) at 12 months, and 241 patients (83%) at 18 months. Radiographic fusion was a highly significant ( p < 0.001) predictor of the improvement of VAS and NDI scores. This study provides strong evidence that ACDF is effective treatment, but the overall rate of radiographic fusion with empty PEEK cages is slow and insufficient. Lack of complete radiographic fusion leads to less improvement of pain and disability. We recommend against using empty uncoated pure PEEK cages in ACDF. ISRCTN42774128. Retrospectively registered 14 April 2009.
Extracellular annexins and dynamin are important for sequential steps in myoblast fusion
Leikina, Evgenia; Melikov, Kamran; Sanyal, Sarmistha; Verma, Santosh K.; Eun, Bokkee; Gebert, Claudia; Pfeifer, Karl; Lizunov, Vladimir A.; Kozlov, Michael M.
2013-01-01
Myoblast fusion into multinucleated myotubes is a crucial step in skeletal muscle development and regeneration. Here, we accumulated murine myoblasts at the ready-to-fuse stage by blocking formation of early fusion intermediates with lysophosphatidylcholine. Lifting the block allowed us to explore a largely synchronized fusion. We found that initial merger of two cell membranes detected as lipid mixing involved extracellular annexins A1 and A5 acting in a functionally redundant manner. Subsequent stages of myoblast fusion depended on dynamin activity, phosphatidylinositol(4,5)bisphosphate content, and cell metabolism. Uncoupling fusion from preceding stages of myogenesis will help in the analysis of the interplay between protein machines that initiate and complete cell unification and in the identification of additional protein players controlling different fusion stages. PMID:23277424
Study on Latent Heat of Fusion of Ice in Aqueous Solutions
NASA Astrophysics Data System (ADS)
Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji
In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.
Information fusion for diabetic retinopathy CAD in digital color fundus photographs.
Niemeijer, Meindert; Abramoff, Michael D; van Ginneken, Bram
2009-05-01
The purpose of computer-aided detection or diagnosis (CAD) technology has so far been to serve as a second reader. If, however, all relevant lesions in an image can be detected by CAD algorithms, use of CAD for automatic reading or prescreening may become feasible. This work addresses the question how to fuse information from multiple CAD algorithms, operating on multiple images that comprise an exam, to determine a likelihood that the exam is normal and would not require further inspection by human operators. We focus on retinal image screening for diabetic retinopathy, a common complication of diabetes. Current CAD systems are not designed to automatically evaluate complete exams consisting of multiple images for which several detection algorithm output sets are available. Information fusion will potentially play a crucial role in enabling the application of CAD technology to the automatic screening problem. Several different fusion methods are proposed and their effect on the performance of a complete comprehensive automatic diabetic retinopathy screening system is evaluated. Experiments show that the choice of fusion method can have a large impact on system performance. The complete system was evaluated on a set of 15,000 exams (60,000 images). The best performing fusion method obtained an area under the receiver operator characteristic curve of 0.881. This indicates that automated prescreening could be applied in diabetic retinopathy screening programs.
Propagation of nuclear data uncertainties for fusion power measurements
NASA Astrophysics Data System (ADS)
Sjöstrand, Henrik; Conroy, Sean; Helgesson, Petter; Hernandez, Solis Augusto; Koning, Arjan; Pomp, Stephan; Rochman, Dimitri
2017-09-01
Neutron measurements using neutron activation systems are an essential part of the diagnostic system at large fusion machines such as JET and ITER. Nuclear data is used to infer the neutron yield. Consequently, high-quality nuclear data is essential for the proper determination of the neutron yield and fusion power. However, uncertainties due to nuclear data are not fully taken into account in uncertainty analysis for neutron yield calibrations using activation foils. This paper investigates the neutron yield uncertainty due to nuclear data using the so-called Total Monte Carlo Method. The work is performed using a detailed MCNP model of the JET fusion machine; the uncertainties due to the cross-sections and angular distributions in JET structural materials, as well as the activation cross-sections in the activation foils, are analysed. It is found that a significant contribution to the neutron yield uncertainty can come from uncertainties in the nuclear data.
Elhamdani, Abdeladim; Azizi, Fouad; Artalejo, Cristina R
2006-03-15
Transient fusion ("kiss-and-run") is accepted as a mode of transmitter release both in central neurons and neuroendocrine cells, but the prevalence of this mechanism compared with full fusion is still in doubt. Using a novel double patch-clamp method (whole cell/cell attached), permitting the recording of unitary capacitance events while stimulating under a variety of conditions including action potentials, we show that transient fusion is the predominant (>90%) mode of secretion in calf adrenal chromaffin cells. Raising intracellular Ca2+ concentration ([Ca]i) from 10 to 200 microM increases the incidence of full fusion events at the expense of transient fusion. Blocking rapid endocytosis that normally terminates transient fusion events also promotes full fusion events. Thus, [Ca]i controls the transition between transient and full fusion, each of which is coupled to different modes of endocytosis.
Mathematical Fundamentals of Probabilistic Semantics for High-Level Fusion
2013-12-02
understanding of the fundamental aspects of uncertainty representation and reasoning that a theory of hard and soft high-level fusion must encompass...representation and reasoning that a theory of hard and soft high-level fusion must encompass. Successful completion requires an unbiased, in-depth...and soft information is the lack of a fundamental HLIF theory , backed by a consistent mathematical framework and supporting algorithms. Although there
Engineering workstation: Sensor modeling
NASA Technical Reports Server (NTRS)
Pavel, M; Sweet, B.
1993-01-01
The purpose of the engineering workstation is to provide an environment for rapid prototyping and evaluation of fusion and image processing algorithms. Ideally, the algorithms are designed to optimize the extraction of information that is useful to a pilot for all phases of flight operations. Successful design of effective fusion algorithms depends on the ability to characterize both the information available from the sensors and the information useful to a pilot. The workstation is comprised of subsystems for simulation of sensor-generated images, image processing, image enhancement, and fusion algorithms. As such, the workstation can be used to implement and evaluate both short-term solutions and long-term solutions. The short-term solutions are being developed to enhance a pilot's situational awareness by providing information in addition to his direct vision. The long term solutions are aimed at the development of complete synthetic vision systems. One of the important functions of the engineering workstation is to simulate the images that would be generated by the sensors. The simulation system is designed to use the graphics modeling and rendering capabilities of various workstations manufactured by Silicon Graphics Inc. The workstation simulates various aspects of the sensor-generated images arising from phenomenology of the sensors. In addition, the workstation can be used to simulate a variety of impairments due to mechanical limitations of the sensor placement and due to the motion of the airplane. Although the simulation is currently not performed in real-time, sequences of individual frames can be processed, stored, and recorded in a video format. In that way, it is possible to examine the appearance of different dynamic sensor-generated and fused images.
In vitro comparison of endplate preparation between four mini-open interbody fusion approaches.
Tatsumi, Robert; Lee, Yu-Po; Khajavi, Kaveh; Taylor, William; Chen, Foster; Bae, Hyun
2015-04-01
Discectomy and endplate preparation are important steps in interbody fusion for ensuring sufficient arthrodesis. While modern less-invasive approaches for lumbar interbody fusion have gained in popularity, concerns exist regarding their ability to allow for adequate disc space and endplate preparation. Thus, the purpose of this study was to quantitatively and qualitatively evaluate and compare disc space and endplate preparation achieved with four less-invasive approaches for lumbar interbody fusion in cadaveric spines. A total of 24 disc spaces (48 endplates) from L2 to L5 were prepared in eight cadaveric torsos using mini-open anterior lumbar interbody fusion (mini-ALIF), minimally invasive posterior lumbar interbody fusion (MAS PLIF), minimally invasive transforaminal lumbar interbody fusion (MAS TLIF) or minimally invasive lateral, transpsoas interbody fusion (XLIF) on two specimens each, for a total of six levels and 12 endplates prepared per procedure type. Following complete discectomy and endplate preparation, spines were excised and split axially at the interbody disc spaces. Endplates were digitally photographed and evaluated using image analysis software. Area of endplate preparation was measured and qualitative evaluation was also performed to grade the quality of preparation. The XLIF approach resulted in the greatest relative area of endplate preparation (58.3 %) while mini-ALIF resulted in the lowest at 35.0 %. Overall, there were no differences in percentage of preparation between cranial and caudal endplates, though this was significantly different in the XLIF group (65 vs 52 %, respectively). ALL damage was observed in 3 MAS TLIF levels. Percentage of endplate that was deemed to have complete disc removal was highest in XLIF group with 90 % compared to 65 % in MAS TLIF group, 43 % in MAS PLIF, and 40 % in mini-ALIF group. Endplate damage area was highest in the MAS TLIF group at 48 % and lowest in XLIF group at 4 %. These results demonstrate that adequate endplate preparation for interbody fusion can be achieved utilizing various minimally invasive approach techniques (mini-ALIF, MAS TLIF, MAS PLIF, XLIF), however, XLIF appears to provide a greater area of and more complete endplate preparation.
The fusion of MBB with VFW finally brought to completion
NASA Technical Reports Server (NTRS)
1981-01-01
Two newspaper type articles describing the final, long awaited unification of the two German Air and Space companies, MBB and VFW are presented. Government participation in this "fusion" arrangement and the advantages expected to accrue are discussed.
Beutler, William J; Peppelman, Walter C; DiMarco, Luciano A
2013-02-15
Technique development to use the da Vince Robotic Surgical System for anterior lumbar interbody fusion at L5-S1 is detailed. A case report is also presented. To evaluate and develop the da Vinci robotic assisted laparoscopic anterior lumbar stand-alone interbody fusion procedure. Anterior lumbar interbody fusion is a common procedure associated with potential morbidity related to the surgical approach. The da Vinci robot provides intra-abdominal dissection and visualization advantages compared with the traditional open and laparoscopic approach. The surgical techniques for approach to the anterior lumbar spine using the da Vinci robot were developed and modified progressively beginning with operative models followed by placement of an interbody fusion cage in the living porcine model. Development continued to progress with placement of fusion cage in a human cadaver, completed first in the laboratory setting and then in the operating room. Finally, the first patient with fusion completed using the da Vinci robot-assisted approach is presented. The anterior transperitoneal approach to the lumbar spine is accomplished with enhanced visualization and dissection capability, with maintenance of pneumoperitoneum using the da Vinci robot. Blood loss is minimal. The visualization inside the disc space and surrounding structures was considered better than current open and laparoscopic techniques. The da Vinci robot Surgical System technique continues to develop and is now described for the transperitoneal approach to the anterior lumbar spine. 4.
Ohana, Nissim; Benharroch, Daniel; Sheinis, Dimitri
2018-04-13
A 26-year-old man, who was paraplegic for 6 years due to a motor vehicle accident, presented to the authors' clinic following his incapacity to withstand a sitting posture, the frequent sensation of "clicks" in his back, and a complaint of back pain while in his wheelchair. On imaging, his dorsal spine showed a complete arthrodesis of the primarily fused vertebrae. However, distal to this segment, a Charcot spinal arthropathy with subluxation of T12-L1 was evident. Repair of this complex, uncommon, late complication of his paraplegia by the frequently used fusion techniques was shown to be inappropriate. A novel and elaborate surgical procedure is presented by which a complete fusion of the affected spine was secured. A left retrodiaphragmatic approach was used. Complete corpectomy of both the T-12 and L-1 vertebrae to the preserved endplates was performed. Most of the patient's fibula was resected and shaped for engrafting. The segment of the fibula was introduced into a mesh cage, before its intramedullary implantation into the T-12 and L-1 vertebrae. This 2-step procedure combined the hybrid use of a fibular autograft and an expandable mesh cage, incorporated one into the other, in an innovative intramedullary position. This intervention allowed the patient to resume his former condition as an extremely physically active patient with paraplegia. Nine years later, an asymptomatic early-stage Charcot spine was found at L5-S1, but no treatment is planned at this point.
Brophy, Carl M; Hoh, Daniel J
2018-06-01
Cervical disc arthroplasty (CDA) has received widespread attention as an alternative to anterior fusion due to its similar neurological and functional improvement, with the advantage of preservation of segmental motion. As CDA becomes more widely implemented, the potential for unexpected device-related adverse events may be identified. The authors report on a 48-year-old man who presented with progressive neurological deficits 3 years after 2-level CDA was performed. Imaging demonstrated periprosthetic osteolysis of the vertebral endplates at the CDA levels, with a heterogeneously enhancing ventral epidural mass compressing the spinal cord. Diagnostic workup for infectious and neoplastic processes was negative. The presumptive diagnosis was an inflammatory pannus formation secondary to abnormal motion at the CDA levels. Posterior cervical decompression and instrumented fusion was performed without removal of the arthroplasty devices or the ventral epidural mass. Postoperative imaging at 2 months demonstrated complete resolution of the compressive pannus, with associated improvement in clinical symptoms. Follow-up MRI at > 6 months showed no recurrence of the pannus. At 1 year postoperatively, CT scanning revealed improvement in periprosthetic osteolysis. Inflammatory pannus formation may be an unexpected complication of abnormal segmental motion after CDA. This rare etiology of an epidural mass associated with an arthroplasty device should be considered, in addition to workup for other potential infectious or neoplastic mass lesions. In symptomatic individuals, compressive pannus lesions can be effectively treated with fusion across the involved segment without removal of the device.
Monte Carlo simulation of ion-material interactions in nuclear fusion devices
NASA Astrophysics Data System (ADS)
Nieto Perez, M.; Avalos-Zuñiga, R.; Ramos, G.
2017-06-01
One of the key aspects regarding the technological development of nuclear fusion reactors is the understanding of the interaction between high-energy ions coming from the confined plasma and the materials that the plasma-facing components are made of. Among the multiple issues important to plasma-wall interactions in fusion devices, physical erosion and composition changes induced by energetic particle bombardment are considered critical due to possible material flaking, changes to surface roughness, impurity transport and the alteration of physicochemical properties of the near surface region due to phenomena such as redeposition or implantation. A Monte Carlo code named MATILDA (Modeling of Atomic Transport in Layered Dynamic Arrays) has been developed over the years to study phenomena related to ion beam bombardment such as erosion rate, composition changes, interphase mixing and material redeposition, which are relevant issues to plasma-aided manufacturing of microelectronics, components on object exposed to intense solar wind, fusion reactor technology and other important industrial fields. In the present work, the code is applied to study three cases of plasma material interactions relevant to fusion devices in order to highlight the code's capabilities: (1) the Be redeposition process on the ITER divertor, (2) physical erosion enhancement in castellated surfaces and (3) damage to multilayer mirrors used on EUV diagnostics in fusion devices due to particle bombardment.
Keller, Glenda
2012-01-01
Spinal fusion and decompression surgery of the lumbar spine are common procedures for problems such as disc herniations. Various studies for postoperative interventions have been conducted; however, no massage therapy studies have been completed. The objective of this study is to determine if massage therapy can beneficially treat pain and dysfunction associated with lumbar spinal decompression and fusion surgery. Client is a 47-year-old female who underwent spinal decompression and fusion surgery of L4/L5 due to chronic disc herniation symptoms. The research design was a case study in a private clinic involving the applications of seven, 30-minute treatments conducted over eight weeks. Common Swedish massage and myofascial techniques were applied to the back, shoulders, posterior hips, and posterior legs. Outcomes were assessed using the following measures: VAS pain scale, Hamstring Length Test, Oswestry Disability Index, and the Roland-Morris Disability Questionnaire. Hamstring length improved (in degrees of extension) from pretreatment measurements in the right leg of 40° and left leg 65° to post-treatment measurement at the final visit, when the results were right 50° and left 70°. The Oswestry Disability Index improved 14%, from 50% to 36% disability. Roland-Morris Disability decreased 1 point, from 3/24 to 2/24. The VAS pain score decreased by 2 points after most treatments, and for three of the seven treatments, client had a post-treatment score of 0/10. Massage for pain had short-term effects. Massage therapy seemed to lengthen the hamstrings bilaterally. Massage therapy does appear to have positive effects in the reduction of disability. This study is beneficial for understanding the relationship between massage therapy and clients who have undergone spinal decompression and fusion. Further research is warranted.
Fusion of classifiers for REIS-based detection of suspicious breast lesions
NASA Astrophysics Data System (ADS)
Lederman, Dror; Wang, Xingwei; Zheng, Bin; Sumkin, Jules H.; Tublin, Mitchell; Gur, David
2011-03-01
After developing a multi-probe resonance-frequency electrical impedance spectroscopy (REIS) system aimed at detecting women with breast abnormalities that may indicate a developing breast cancer, we have been conducting a prospective clinical study to explore the feasibility of applying this REIS system to classify younger women (< 50 years old) into two groups of "higher-than-average risk" and "average risk" of having or developing breast cancer. The system comprises one central probe placed in contact with the nipple, and six additional probes uniformly distributed along an outside circle to be placed in contact with six points on the outer breast skin surface. In this preliminary study, we selected an initial set of 174 examinations on participants that have completed REIS examinations and have clinical status verification. Among these, 66 examinations were recommended for biopsy due to findings of a highly suspicious breast lesion ("positives"), and 108 were determined as negative during imaging based procedures ("negatives"). A set of REIS-based features, extracted using a mirror-matched approach, was computed and fed into five machine learning classifiers. A genetic algorithm was used to select an optimal subset of features for each of the five classifiers. Three fusion rules, namely sum rule, weighted sum rule and weighted median rule, were used to combine the results of the classifiers. Performance evaluation was performed using a leave-one-case-out cross-validation method. The results indicated that REIS may provide a new technology to identify younger women with higher than average risk of having or developing breast cancer. Furthermore, it was shown that fusion rule, such as a weighted median fusion rule and a weighted sum fusion rule may improve performance as compared with the highest performing single classifier.
Spatial Statistical Data Fusion for Remote Sensing Applications
NASA Technical Reports Server (NTRS)
Nguyen, Hai
2010-01-01
Data fusion is the process of combining information from heterogeneous sources into a single composite picture of the relevant process, such that the composite picture is generally more accurate and complete than that derived from any single source alone. Data collection is often incomplete, sparse, and yields incompatible information. Fusion techniques can make optimal use of such data. When investment in data collection is high, fusion gives the best return. Our study uses data from two satellites: (1) Multiangle Imaging SpectroRadiometer (MISR), (2) Moderate Resolution Imaging Spectroradiometer (MODIS).
Multi Sensor Fusion Using Fitness Adaptive Differential Evolution
NASA Astrophysics Data System (ADS)
Giri, Ritwik; Ghosh, Arnob; Chowdhury, Aritra; Das, Swagatam
The rising popularity of multi-source, multi-sensor networks supports real-life applications calls for an efficient and intelligent approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach provides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolutionary approach based on a modified version of Differential Evolution (DE), called Fitness Adaptive Differential Evolution (FiADE). FiADE treats sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed approach is formulated to produce good result for the problems that are high-dimensional, highly nonlinear, and random. The proposed approach gives better result in case of optimal allocation of sensors. The performance of the proposed approach is compared with an evolutionary algorithm coordination generalized particle model (C-GPM).
Multidirectional testing of one- and two-level ProDisc-L versus simulated fusions.
Panjabi, Manohar; Henderson, Gweneth; Abjornson, Celeste; Yue, James
2007-05-20
An in vitro human cadaveric biomechanical study. To evaluate intervertebral rotation changes due to lumbar ProDisc-L compared with simulated fusion, using follower load and multidirectional testing. Artificial discs, as opposed to the fusions, are thought to decrease the long-term accelerated degeneration at adjacent levels. A biomechanical assessment can be helpful, as the long-term clinical evaluation is impractical. Six fresh human cadaveric lumbar specimens (T12-S1) underwent multidirectional testing in flexion-extension, bilateral lateral bending, and bilateral torsion using the Hybrid test method. First, intact specimen total range of rotation (T12-S1) was determined. Second, using pure moments again, this range of rotation was achieved in each of the 5 constructs: A) ProDisc-L at L5-S1; B) fusion at L5-S1; C) ProDisc-L at L4-L5 and fusion at L5-S1; D) ProDisc-L at L4-L5 and L5-S1; and E) 2-level fusion at L4-L5 to L5-S1. Significant changes in the intervertebral rotations due to each construct were determined at the operated and nonoperated levels using repeated measures single factor ANOVA and Bonferroni statistical tests (P < 0.05). Adjacent-level effects (ALEs) were defined as the percentage changes in intervertebral rotations at the nonoperated levels due to the constructs. One- and 2-level ProDisc-L constructs showed only small ALE in any of the 3 rotations. In contrast, 1- and 2-level fusions showed increased ALE in all 3 directions (average, 7.8% and 35.3%, respectively, for 1 and 2 levels). In the disc plus fusion combination (construct C), the ALEs were similar to the 1-level fusion alone. In general, ProDisc-L preserved physiologic motions at all spinal levels, while the fusion simulations resulted in significant ALE.
Mechanisms of ring chromosome formation, ring instability and clinical consequences.
Guilherme, Roberta S; Meloni, Vera F Ayres; Kim, Chong A; Pellegrino, Renata; Takeno, Sylvia S; Spinner, Nancy B; Conlin, Laura K; Christofolini, Denise M; Kulikowski, Leslie D; Melaragno, Maria I
2011-12-21
The breakpoints and mechanisms of ring chromosome formation were studied and mapped in 14 patients. Several techniques were performed such as genome-wide array, MLPA (Multiplex Ligation-Dependent Probe Amplification) and FISH (Fluorescent in situ Hybridization). The ring chromosomes of patients I to XIV were determined to be, respectively: r(3)(p26.1q29), r(4)(p16.3q35.2), r(10)(p15.3q26.2), r(10)(p15.3q26.13), r(13)(p13q31.1), r(13)(p13q34), r(14)(p13q32.33), r(15)(p13q26.2), r(18)(p11.32q22.2), r(18)(p11.32q21.33), r(18)(p11.21q23), r(22)(p13q13.33), r(22)(p13q13.2), and r(22)(p13q13.2). These rings were found to have been formed by different mechanisms, such as: breaks in both chromosome arms followed by end-to-end reunion (patients IV, VIII, IX, XI, XIII and XIV); a break in one chromosome arm followed by fusion with the subtelomeric region of the other (patients I and II); a break in one chromosome arm followed by fusion with the opposite telomeric region (patients III and X); fusion of two subtelomeric regions (patient VII); and telomere-telomere fusion (patient XII). Thus, the r(14) and one r(22) can be considered complete rings, since there was no loss of relevant genetic material. Two patients (V and VI) with r(13) showed duplication along with terminal deletion of 13q, one of them proved to be inverted, a mechanism known as inv-dup-del. Ring instability was detected by ring loss and secondary aberrations in all but three patients, who presented stable ring chromosomes (II, XIII and XIV). We concluded that the clinical phenotype of patients with ring chromosomes may be related with different factors, including gene haploinsufficiency, gene duplications and ring instability. Epigenetic factors due to the circular architecture of ring chromosomes must also be considered, since even complete ring chromosomes can result in phenotypic alterations, as observed in our patients with complete r(14) and r(22).
Poller, Wolfram C; Dreger, Henryk; Schwerg, Marius; Melzer, Christoph
2015-01-01
Optimization of the AV-interval (AVI) in DDD pacemakers improves cardiac hemodynamics and reduces pacemaker syndromes. Manual optimization is typically not performed in clinical routine. In the present study we analyze the prevalence of E/A wave fusion and A wave truncation under resting conditions in 160 patients with complete AV block (AVB) under the pre-programmed AVI. We manually optimized sub-optimal AVI. We analyzed 160 pacemaker patients with complete AVB, both in sinus rhythm (AV-sense; n = 129) and under atrial pacing (AV-pace; n = 31). Using Doppler analyses of the transmitral inflow we classified the nominal AVI as: a) normal, b) too long (E/A wave fusion) or c) too short (A wave truncation). In patients with a sub-optimal AVI, we performed manual optimization according to the recommendations of the American Society of Echocardiography. All AVB patients with atrial pacing exhibited a normal transmitral inflow under the nominal AV-pace intervals (100%). In contrast, 25 AVB patients in sinus rhythm showed E/A wave fusion under the pre-programmed AV-sense intervals (19.4%; 95% confidence interval (CI): 12.6-26.2%). A wave truncations were not observed in any patient. All patients with a complete E/A wave fusion achieved a normal transmitral inflow after AV-sense interval reduction (mean optimized AVI: 79.4 ± 13.6 ms). Given the rate of 19.4% (CI 12.6-26.2%) of patients with a too long nominal AV-sense interval, automatic algorithms may prove useful in improving cardiac hemodynamics, especially in the subgroup of atrially triggered pacemaker patients with AV node diseases.
Cha, Dong Ik; Lee, Min Woo; Kim, Ah Yeong; Kang, Tae Wook; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga
2017-11-01
Background A major drawback of conventional manual image fusion is that the process may be complex, especially for less-experienced operators. Recently, two automatic image fusion techniques called Positioning and Sweeping auto-registration have been developed. Purpose To compare the accuracy and required time for image fusion of real-time ultrasonography (US) and computed tomography (CT) images between Positioning and Sweeping auto-registration. Material and Methods Eighteen consecutive patients referred for planning US for radiofrequency ablation or biopsy for focal hepatic lesions were enrolled. Image fusion using both auto-registration methods was performed for each patient. Registration error, time required for image fusion, and number of point locks used were compared using the Wilcoxon signed rank test. Results Image fusion was successful in all patients. Positioning auto-registration was significantly faster than Sweeping auto-registration for both initial (median, 11 s [range, 3-16 s] vs. 32 s [range, 21-38 s]; P < 0.001] and complete (median, 34.0 s [range, 26-66 s] vs. 47.5 s [range, 32-90]; P = 0.001] image fusion. Registration error of Positioning auto-registration was significantly higher for initial image fusion (median, 38.8 mm [range, 16.0-84.6 mm] vs. 18.2 mm [6.7-73.4 mm]; P = 0.029), but not for complete image fusion (median, 4.75 mm [range, 1.7-9.9 mm] vs. 5.8 mm [range, 2.0-13.0 mm]; P = 0.338]. Number of point locks required to refine the initially fused images was significantly higher with Positioning auto-registration (median, 2 [range, 2-3] vs. 1 [range, 1-2]; P = 0.012]. Conclusion Positioning auto-registration offers faster image fusion between real-time US and pre-procedural CT images than Sweeping auto-registration. The final registration error is similar between the two methods.
The dynamics and regulation of mesenchymal cell fusion in the sea urchin embryo.
Hodor, P G; Ettensohn, C A
1998-07-01
Cell-cell fusion occurs in a wide variety of developmental contexts, yet the mechanisms involved are just beginning to be elucidated. In the sea urchin embryo, primary mesenchyme cells (PMCs) fuse to form syncytial filopodial cables within which skeletal spicules are deposited. Taking advantage of the optical transparency and ease of micromanipulation of sea urchin embryos, we have developed methods for directly observing the dynamics of PMC fusion in vivo. A fraction of the PMCs was labeled with fluorescent dextran and transfer of the dye to unlabeled PMCs was followed by time-lapse, fluorescence microscopy. Fusion was first detected about 2 h after PMCs began to migrate within the blastocoel. Fusion proceeded in parallel with the assembly of the PMC ring pattern and was complete by the early gastrula stage. The formation of a single, extensive PMC syncytium was confirmed by DiI labeling of fixed embryos. When single micromeres were isolated and cultured in unsupplemented seawater, they divided and their progeny underwent fusion. This shows that the capacity to fuse is autonomously programmed in the micromere-PMC lineage by the 16-cell stage. PMC transplantations at late embryonic stages revealed that these cells remain fusion-competent long after their fusion is complete. At late stages, other mesenchyme cells (blastocoelar cells) are also present within the blastocoel and are migrating and fusing with one another. Fusion-competent blastocoelar cells and PMCs come into contact but do not fuse with one another, indicating that these two cell types fuse by distinct mechanisms. When secondary mesenchyme cells convert to a skeletogenic fate they alter their fusogenic properties and join the PMC syncytium, as shown by transfer of fluorescent dextran. Our analysis has provided a detailed picture of the cellular basis and regulation of mesodermal cell fusion and has important implications regarding molecular mechanisms that underlie fusion.
Sensitivity of low-energy incomplete fusion to various entrance-channel parameters
NASA Astrophysics Data System (ADS)
Kumar, Harish; Tali, Suhail A.; Afzal Ansari, M.; Singh, D.; Ali, Rahbar; Kumar, Kamal; Sathik, N. P. M.; Ali, Asif; Parashari, Siddharth; Dubey, R.; Bala, Indu; Kumar, R.; Singh, R. P.; Muralithar, S.
2018-03-01
The disentangling of incomplete fusion dependence on various entrance channel parameters has been made from the forward recoil range distribution measurement for the 12C+175Lu system at ≈ 88 MeV energy. It gives the direct measure of full and/or partial linear momentum transfer from the projectile to the target nucleus. The comparison of observed recoil ranges with theoretical ranges calculated using the code SRIM infers the production of evaporation residues via complete and/or incomplete fusion process. Present results show that incomplete fusion process contributes significantly in the production of α xn and 2α xn emission channels. The deduced incomplete fusion probability (F_{ICF}) is compared with that obtained for systems available in the literature. An interesting behavior of F_{ICF} with ZP ZT is observed in the reinvestigation of incomplete fusion dependency with the Coulomb factor (ZPZT), contrary to the recent observations. The present results based on (ZPZT) are found in good agreement with recent observations of our group. A larger F_{ICF} value for 12C induced reactions is found than that for 13C, although both have the same ZPZT. A nonsystematic behavior of the incomplete fusion process with the target deformation parameter (β2) is observed, which is further correlated with a new parameter (ZP ZT . β2). The projectile α -Q-value is found to explain more clearly the discrepancy observed in incomplete fusion dependency with parameters ( ZPZT) and (ZP ZT . β2). It may be pointed out that any single entrance channel parameter (mass-asymmetry or (ZPZT) or β2 or projectile α-Q-value) may not be able to explain completely the incomplete fusion process.
NASA Astrophysics Data System (ADS)
Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.
1996-04-01
Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.
Myomaker is a membrane activator of myoblast fusion and muscle formation.
Millay, Douglas P; O'Rourke, Jason R; Sutherland, Lillian B; Bezprozvannaya, Svetlana; Shelton, John M; Bassel-Duby, Rhonda; Olson, Eric N
2013-07-18
Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibres. However, the identity of muscle-specific proteins that directly govern this fusion process in mammals has remained elusive. Here we identify a muscle-specific membrane protein, named myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is downregulated thereafter. Overexpression of myomaker in myoblasts markedly enhances fusion, and genetic disruption of myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibres. Remarkably, forced expression of myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacological perturbation of the actin cytoskeleton abolishes the activity of myomaker, consistent with previous studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein that controls mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation.
Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic
Bird, Gregory H.; Madani, Navid; Perry, Alisa F.; Princiotto, Amy M.; Supko, Jeffrey G.; He, Xiaoying; Gavathiotis, Evripidis; Sodroski, Joseph G.; Walensky, Loren D.
2010-01-01
The pharmacologic utility of lengthy peptides can be hindered by loss of bioactive structure and rapid proteolysis, which limits bioavailability. For example, enfuvirtide (Fuzeon, T20, DP178), a 36-amino acid peptide that inhibits human immunodeficiency virus type 1 (HIV-1) infection by effectively targeting the viral fusion apparatus, has been relegated to a salvage treatment option mostly due to poor in vivo stability and lack of oral bioavailability. To overcome the proteolytic shortcomings of long peptides as therapeutics, we examined the biophysical, biological, and pharmacologic impact of inserting all-hydrocarbon staples into an HIV-1 fusion inhibitor. We find that peptide double-stapling confers striking protease resistance that translates into markedly improved pharmacokinetic properties, including oral absorption. We determined that the hydrocarbon staples create a proteolytic shield by combining reinforcement of overall α-helical structure, which slows the kinetics of proteolysis, with complete blockade of peptide cleavage at constrained sites in the immediate vicinity of the staple. Importantly, double-stapling also optimizes the antiviral activity of HIV-1 fusion peptides and the antiproteolytic feature extends to other therapeutic peptide templates, such as the diabetes drug exenatide (Byetta). Thus, hydrocarbon double-stapling may unlock the therapeutic potential of natural bioactive polypeptides by transforming them into structurally fortified agents with enhanced bioavailability. PMID:20660316
Faust, James J.; Christenson, Wayne; Doudrick, Kyle; Ros, Robert
2017-01-01
Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, αMβ2) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials. PMID:28340410
Aleman, Monica; Dimock, Abigail N.; Wisner, Erik R.; Prutton, Jamie W.; Madigan, John E.
2014-01-01
A 2-year-old Thoroughbred gelding with clinical signs localized to the first 6 spinal cord segments (C1 to C6) had complete fusion of the atlanto-occipital bones which precluded performing a routine myelogram. An ultrasound-assisted myelogram at the intervertebral space between the atlas and axis was successfully done and identified a marked extradural compressive myelopathy at the level of the atlas and axis, and axis and third cervical vertebrae. PMID:25392550
Fusion Simulation Program Definition. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, John R.
2012-09-05
We have completed our contributions to the Fusion Simulation Program Definition Project. Our contributions were in the overall planning with concentration in the definition of the area of Software Integration and Support. We contributed to the planning of multiple meetings, and we contributed to multiple planning documents.
Jablonski, M; Tomlinson, E
1979-12-01
Sixty-four patients who did not respond adequately to passive conventional occlusion were treated with active pleoptic therapy, and followed with orthoptic therapy when fusion potential was demonstrated. Patients ranged in age from 4 to 17 years, and ranged in visual acuity from 20/30 to 20/100. Seventeen patients had some fusion prior to starting pleoptics. All 64 patients achieved an immediate post-therapy acuity of 20/30 or better; 25 were fusing and demonstrated some stereopsis. Twenty-seven patients were followed for a period of one to ten years, including the 25 patients who were fusing at completion of therapy. Twenty-four (88%) maintained visual acuity of 20/30 or better. All fused either normally or with ARC. Three patients, whose visual acuity dropped to 20/50, had no fusion. Only one patient who had fusion at the completion of therapy was unable to maintain it. We conclude, therefore, that pleoptics retains values in the treatment of amblyopic patients with steady and unsteady central fixation, in those situations where conventional occlusion in unsuccessful.
Image fusion based on Bandelet and sparse representation
NASA Astrophysics Data System (ADS)
Zhang, Jiuxing; Zhang, Wei; Li, Xuzhi
2018-04-01
Bandelet transform could acquire geometric regular direction and geometric flow, sparse representation could represent signals with as little as possible atoms on over-complete dictionary, both of which could be used to image fusion. Therefore, a new fusion method is proposed based on Bandelet and Sparse Representation, to fuse Bandelet coefficients of multi-source images and obtain high quality fusion effects. The test are performed on remote sensing images and simulated multi-focus images, experimental results show that the performance of new method is better than tested methods according to objective evaluation indexes and subjective visual effects.
Fusion Reactions and Matter-Antimatter Annihilation for Space Propulsion
2005-07-13
shielding. λ D-3He eliminates the need for a complicated tritium-breeding blanked and tritium-processing system. 4 - MAGNETIC FUSION ENERGY (MFE...resulting specific powers. 5 - INERTIAL FUSION ENERGY (IFE) The possibility of igniting thermonuclear micro-explosions with pulsed laser beams was... fusion energy to antimatter rest mass energy, β, of 1.6 × 107. However, energy utilization is also lower due to the isotropic expansion process (ηe ~ 15
Panigrahi, Priyabrata; Jere, Abhay; Anamika, Krishanpal
2018-01-01
Gene fusion is a chromosomal rearrangement event which plays a significant role in cancer due to the oncogenic potential of the chimeric protein generated through fusions. At present many databases are available in public domain which provides detailed information about known gene fusion events and their functional role. Existing gene fusion detection tools, based on analysis of transcriptomics data usually report a large number of fusion genes as potential candidates, which could be either known or novel or false positives. Manual annotation of these putative genes is indeed time-consuming. We have developed a web platform FusionHub, which acts as integrated search engine interfacing various fusion gene databases and simplifies large scale annotation of fusion genes in a seamless way. In addition, FusionHub provides three ways of visualizing fusion events: circular view, domain architecture view and network view. Design of potential siRNA molecules through ensemble method is another utility integrated in FusionHub that could aid in siRNA-based targeted therapy. FusionHub is freely available at https://fusionhub.persistent.co.in.
Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens
Valansi, Clari; Moi, David; Leikina, Evgenia; Matveev, Elena; Chernomordik, Leonid V.
2017-01-01
Cell–cell fusion is inherent to sexual reproduction. Loss of HAPLESS 2/GENERATIVE CELL SPECIFIC 1 (HAP2/GCS1) proteins results in gamete fusion failure in diverse organisms, but their exact role is unclear. In this study, we show that Arabidopsis thaliana HAP2/GCS1 is sufficient to promote mammalian cell–cell fusion. Hemifusion and complete fusion depend on HAP2/GCS1 presence in both fusing cells. Furthermore, expression of HAP2 on the surface of pseudotyped vesicular stomatitis virus results in homotypic virus–cell fusion. We demonstrate that the Caenorhabditis elegans Epithelial Fusion Failure 1 (EFF-1) somatic cell fusogen can replace HAP2/GCS1 in one of the fusing membranes, indicating that HAP2/GCS1 and EFF-1 share a similar fusion mechanism. Structural modeling of the HAP2/GCS1 protein family predicts that they are homologous to EFF-1 and viral class II fusion proteins (e.g., Zika virus). We name this superfamily Fusexins: fusion proteins essential for sexual reproduction and exoplasmic merger of plasma membranes. We suggest a common origin and evolution of sexual reproduction, enveloped virus entry into cells, and somatic cell fusion. PMID:28137780
Continuous internal channels formed in aluminum fusion welds
NASA Technical Reports Server (NTRS)
Gault, J.; Sabo, W.
1967-01-01
Process produces continuous internal channel systems on a repeatable basis in 2014-T6 aluminum. Standard machining forms the initial channel, which is filled with tungsten carbide powder. TIG machine fusion welding completes formation of the channel. Chem-mill techniques enlarge it to the desired size.
Faust, James J; Christenson, Wayne; Doudrick, Kyle; Ros, Robert; Ugarova, Tatiana P
2017-06-01
Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, α M β 2 ) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Myomaker: A membrane activator of myoblast fusion and muscle formation
Millay, Douglas P.; O’Rourke, Jason R.; Sutherland, Lillian B.; Bezprozvannaya, Svetlana; Shelton, John M.; Bassel-Duby, Rhonda; Olson, Eric N.
2013-01-01
Summary Fusion of myoblasts is essential for the formation of multi-nucleated muscle fibers. However, the identity of myogenic proteins that directly govern this fusion process has remained elusive. Here, we discovered a muscle-specific membrane protein, named Myomaker, that controls myoblast fusion. Myomaker is expressed on the cell surface of myoblasts during fusion and is down-regulated thereafter. Over-expression of Myomaker in myoblasts dramatically enhances fusion and genetic disruption of Myomaker in mice causes perinatal death due to an absence of multi-nucleated muscle fibers. Remarkably, forced expression of Myomaker in fibroblasts promotes fusion with myoblasts, demonstrating the direct participation of this protein in the fusion process. Pharmacologic perturbation of the actin cytoskeleton abolishes the activity of Myomaker, consistent with prior studies implicating actin dynamics in myoblast fusion. These findings reveal a long-sought myogenic fusion protein both necessary and sufficient for mammalian myoblast fusion and provide new insights into the molecular underpinnings of muscle formation. PMID:23868259
Telomeres and mechanisms of Robertsonian fusion.
Slijepcevic, P
1998-05-01
The Robertsonian (Rb) fusion, a chromosome rearrangement involving centric fusion of two acro-(telo)centric chromosomes to form a single metacentric, is one of the most frequent events in mammalian karyotype evolution. Since one of the functions of telomeres is to preserve chromosome integrity, a prerequisite for the formation of Rb fusions should be either telomere loss or telomere inactivation. Possible mechanisms underlying the formation of various types of Rb fusion are discussed here. For example, Rb fusion in wild mice involves complete loss of p-arm telomeres by chromosome breakage within minor satellite sequences. By contrast, interstitial telomeric sites are found in the pericentromeric regions of chromosomes originating from a number of vertebrate species, suggesting the occurrence of Rb-like fusion without loss of telomeres, a possibility consistent with some form of telomere inactivation. Finally, a recent study suggests that telomere shortening induced by the deletion of the telomerase RNA gene in the mouse germ-line leads to telomere loss and high frequencies of Rb fusion in mouse somatic cells. Thus, at least three mechanisms in mammalian cells lead to the formation of Rb fusions.
Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang
2017-02-01
Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.
SD-OCT stages of progression of type 2 macular telangiectasia in a patient followed for 3 years.
Coscas, Gabriel; Coscas, Florence; Zucchiatti, Ilaria; Bandello, Francesco; Soubrane, Gisele; SouÏed, Eric
2013-01-01
To describe the natural course of type 2 idiopathic macular telangiectasia (MT) using spectral-domain optical coherence tomography (SD-OCT). Analysis of the different stages of progression of type 2 MT during a period of 3 years using multimodal imaging, including SD-OCT correlated with angiographic and autofluorescence images. The analysis of the different steps was obtained initially from the first eye, then successively from the fellow eye when progressive changes appeared. The earliest visible alteration at SD-OCT was the interruption of the interface between inner segment and ellipsoid (IS/EL) (stage 1). The second stage was characterized by the complete interruption of both IS/EL interface and external limiting membrane (stage 2). At the next step, a wide disruption of the outer nuclear layer was noted (stage 3). The fourth stage showed a complete disorganization of the inner layers with aspect of fusion of the inner retinal layers associated with progressive atrophy of the outer layers (stage 4). Hyper-reflective deposits were found in both the internal and external retinal layers (stage 5). Small intraretinal cystoid spaces appeared in the different retinal layers (stage 6). This last feature was an earlier manifestation of the typical intraretinal cysts that are the well-known OCT appearance of type 2 MT. We describe the 6 steps of progression from earlier SD-OCT findings that led to a complete disorganization and fusion of the inner layers (probably due to changes in the Müller cells) to the typical intraretinal cysts.
ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating.
Rogers, Jason V; Arlow, Tim; Inkellis, Elizabeth R; Koo, Timothy S; Rose, Mark D
2013-12-01
During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway.
Antwi, Prince; Grant, Ryan; Kuzmik, Gregory; Abbed, Khalid
2018-05-01
"White cord syndrome" is a very rare condition thought to be due to acute reperfusion of chronically ischemic areas of the spinal cord. Its hallmark is the presence of intramedullary hyperintense signal on T2-weighted magnetic resonance imaging sequences in a patient with unexplained neurologic deficits following spinal cord decompression surgery. The syndrome is rare and has been reported previously in 2 patients following anterior cervical decompression and fusion. We report an additional case of this complication. A 68-year-old man developed acute left-sided hemiparesis after posterior cervical decompression and fusion for cervical spondylotic myelopathy. The patient improved with high-dose steroid therapy. The rare white cord syndrome following either anterior cervical decompression and fusion or posterior cervical decompression and fusion may be due to ischemic-reperfusion injury sustained by chronically compressed parts of the spinal cord. In previous reports, patients have improved following steroid therapy and acute rehabilitation. Copyright © 2018 Elsevier Inc. All rights reserved.
Liu, Yanjie; Misamore, Michael J; Snell, William J
2010-05-01
The plasma membranes of gametes are specialized for fusion, yet, once fusion occurs, in many organisms the new zygote becomes incapable of further membrane fusion reactions. The molecular mechanisms that underlie this loss of fusion capacity (block to polygamy) remain unknown. During fertilization in the green alga Chlamydomonas, the plus gamete-specific membrane protein FUS1 is required for adhesion between the apically localized sites on the plasma membranes of plus and minus gametes that are specialized for fusion, and the minus-specific membrane protein HAP2 is essential for completion of the membrane fusion reaction. HAP2 (GCS1) family members are also required for fertilization in Arabidopsis, and for the membrane fusion reaction in the malaria organism Plasmodium berghei. Here, we tested whether Chlamydomonas gamete fusion triggers alterations in FUS1 and HAP2 and renders the plasma membranes of the cells incapable of subsequent fusion. We find that, even though the fusogenic sites support multi-cell adhesions, triploid zygotes are rare, indicating a fusion-triggered block to the membrane fusion reaction. Consistent with the extinction of fusogenic capacity, both FUS1 and HAP2 are degraded upon fusion. The rapid, fusion-triggered cleavage of HAP2 in zygotes is distinct from degradation occurring during constitutive turnover in gametes. Thus, gamete fusion triggers specific degradation of fusion-essential proteins and renders the zygote incapable of fusion. Our results provide the first molecular explanation for a membrane block to polygamy in any organism.
Fusion genes in solid tumors: an emerging target for cancer diagnosis and treatment.
Parker, Brittany C; Zhang, Wei
2013-11-01
Studies over the past decades have uncovered fusion genes, a class of oncogenes that provide immense diagnostic and therapeutic advantages because of their tumor-specific expression. Originally associated with hemotologic cancers, fusion genes have recently been discovered in a wide array of solid tumors, including sarcomas, carcinomas, and tumors of the central nervous system. Fusion genes are attractive as both therapeutic targets and diagnostic tools due to their inherent expression in tumor tissue alone. Therefore, the discovery and elucidation of fusion genes in various cancer types may provide more effective therapies in the future for cancer patients.
Yao, Yi; Ghosh, Kakoli; Epand, Raquel F; Epand, Richard M; Ghosh, Hara P
2003-06-05
The fusogenic envelope glycoprotein G of the rhabdovirus vesicular stomatitis virus (VSV) induces membrane fusion at acidic pH. At acidic pH the G protein undergoes a major structural reorganization leading to the fusogenic conformation. However, unlike other viral fusion proteins, the low-pH-induced conformational change of VSV G is completely reversible. As well, the presence of an alpha-helical coiled-coil motif required for fusion by a number of viral and cellular fusion proteins was not predicted in VSV G protein by using a number of algorithms. Results of pH dependence of the thermal stability of G protein as determined by intrinsic Trp fluorescence and circular dichroism (CD) spectroscopy show that the G protein is equally stable at neutral or acidic pH. Destabilization of G structure at neutral pH with either heat or urea did not induce membrane fusion or conformational change(s) leading to membrane fusion. Taken together, these data suggest that the mechanism of VSV G-induced fusion is distinct from the fusion mechanism of fusion proteins that involve a coiled-coil motif.
Elder, Benjamin D; Ishida, Wataru; Goodwin, C Rory; Bydon, Ali; Gokaslan, Ziya L; Sciubba, Daniel M; Wolinsky, Jean-Paul; Witham, Timothy F
2017-01-01
OBJECTIVE With the advent of new adjunctive therapy, the overall survival of patients harboring spinal column tumors has improved. However, there is limited knowledge regarding the optimal bone graft options following resection of spinal column tumors, due to their relative rarity and because fusion outcomes in this cohort are affected by various factors, such as radiation therapy (RT) and chemotherapy. Furthermore, bone graft options are often limited following tumor resection because the use of local bone grafts and bone morphogenetic proteins (BMPs) are usually avoided in light of microscopic infiltration of tumors into local bone and potential carcinogenicity of BMP. The objective of this study was to review and meta-analyze the relevant clinical literature to provide further clinical insight regarding bone graft options. METHODS A web-based MEDLINE search was conducted in accordance with preferred reporting items for systematic review and meta-analysis (PRISMA) guidelines, which yielded 27 articles with 383 patients. Information on baseline characteristics, tumor histology, adjunctive treatments, reconstruction methods, bone graft options, fusion rates, and time to fusion were collected. Pooled fusion rates (PFRs) and I 2 values were calculated in meta-analysis. Meta-regression analyses were also performed if each variable appeared to affect fusion outcomes. Furthermore, data on 272 individual patients were available, which were additionally reviewed and statistically analyzed. RESULTS Overall, fusion rates varied widely from 36.0% to 100.0% due to both inter- and intrastudy heterogeneity, with a PFR of 85.7% (I 2 = 36.4). The studies in which cages were filled with morselized iliac crest autogenic bone graft (ICABG) and/or other bone graft options were used for anterior fusion showed a significantly higher PFR of 92.8, compared with the other studies (83.3%, p = 0.04). In per-patient analysis, anterior plus posterior fusion resulted in a higher fusion rate than anterior fusion only (98.8% vs 86.4%, p < 0.001). Although unmodifiable, RT (90.3% vs 98.6%, p = 0.03) and lumbosacral tumors (74.6% vs 97.9%, p < 0.001) were associated with lower fusion rates in univariate analysis. The mean time to fusion was 5.4 ± 1.4 months (range 3-9 months), whereas 16 of 272 patients died before the confirmation of solid fusion with a mean survival of 3.1 ± 2.1 months (range 0.5-6 months). The average time to fusion of patients who received RT and chemotherapy were significantly longer than those who did not receive these adjunctive treatments (RT: 6.1 months vs 4.3 months, p < 0.001; chemotherapy: 6.0 months vs 4.3 months, p = 0.02). CONCLUSIONS Due to inter- and intrastudy heterogeneity in patient, disease, fusion criteria, and treatment characteristics, the optimal surgical techniques and factors predictive of fusion remain unclear. Clearly, future prospective, randomized studies will be necessary to better understand the issues surrounding bone graft selection following resection of spinal column tumors.
Brief communication: timing of spheno-occipital closure in modern Western Australians.
Franklin, Daniel; Flavel, Ambika
2014-01-01
The spheno-occipital synchondrosis is a craniofacial growth centre between the occipital and sphenoid bones-its ossification persists into adolescence, which for the skeletal biologist, means it has potential application for estimating subadult age. Based on previous research the timing of spheno-occipital fusion is widely variable between and within populations, with reports of complete fusion in individuals as young as 11 years of age and nonfusion in adults. The aim of this study is, therefore, to examine this structure in a mixed sex sample of Western Australian individuals that developmentally span late childhood to adulthood. The objective is to develop statistically quantified age estimation standards based on scoring the degree of spheno-occipital fusion. The sample comprises multidetector computed tomography (MDCT) scans of 312 individuals (169 male; 143 female) between 5 and 25 years of age. Each MDCT scan is visualized in a standardized sagittal plane using three-dimensional oblique multiplanar reformatting. Fusion status is scored according to a four-stage system. Transition analysis is used to calculate age ranges for each defined stage and determine the mean age for transition between an unfused, fusing and fused status. The maximum likelihood estimates for the transition from open to fusing in the endocranial half is 14.44 years (male) and 11.42 years (female); transition from fusion in the ectocranial half to complete fusion is 16.16 years (male) and 13.62 years (female). This study affirms the potential value of assessing the degree of fusion in the spheno-occipital synchondrosis as an indicator of skeletal age. Copyright © 2013 Wiley Periodicals, Inc.
3D second harmonic generation imaging tomography by multi-view excitation
Campbell, Kirby R.; Wen, Bruce; Shelton, Emily M.; Swader, Robert; Cox, Benjamin L.; Eliceiri, Kevin; Campagnola, Paul J.
2018-01-01
Biological tissues have complex 3D collagen fiber architecture that cannot be fully visualized by conventional second harmonic generation (SHG) microscopy due to electric dipole considerations. We have developed a multi-view SHG imaging platform that successfully visualizes all orientations of collagen fibers. This is achieved by rotating tissues relative to the excitation laser plane of incidence, where the complete fibrillar structure is then visualized following registration and reconstruction. We evaluated high frequency and Gaussian weighted fusion reconstruction algorithms, and found the former approach performs better in terms of the resulting resolution. The new approach is a first step toward SHG tomography. PMID:29541654
NASA Astrophysics Data System (ADS)
Kumar, T. Senthil; Balasubramanian, V.; Babu, S.; Sanavullah, M. Y.
2007-08-01
AA6061 aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of food processing equipment, chemical containers, passenger cars, road tankers, and railway transport systems. The preferred process for welding these aluminium alloys is frequently Gas Tungsten Arc (GTA) welding due to its comparatively easy applicability and lower cost. In the case of single pass GTA welding of thinner sections of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current processes. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. In this investigation, an attempt has been made to develop a mathematical model to predict the fusion zone grain diameter incorporating pulsed current welding parameters. Statistical tools such as design of experiments, analysis of variance, and regression analysis are used to develop the mathematical model. The developed model can be effectively used to predict the fusion grain diameter at a 95% confidence level for the given pulsed current parameters. The effect of pulsed current GTA welding parameters on the fusion zone grain diameter of AA 6061 aluminium alloy welds is reported in this paper.
2013-01-01
Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins. PMID:23957834
Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs
2013-08-20
Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins.
Zick, Michael; Stroupe, Christopher; Orr, Amy; Douville, Deborah; Wickner, William T
2014-01-01
Like other intracellular fusion events, the homotypic fusion of yeast vacuoles requires a Rab GTPase, a large Rab effector complex, SNARE proteins which can form a 4-helical bundle, and the SNARE disassembly chaperones Sec17p and Sec18p. In addition to these proteins, specific vacuole lipids are required for efficient fusion in vivo and with the purified organelle. Reconstitution of vacuole fusion with all purified components reveals that high SNARE levels can mask the requirement for a complex mixture of vacuole lipids. At lower, more physiological SNARE levels, neutral lipids with small headgroups that tend to form non-bilayer structures (phosphatidylethanolamine, diacylglycerol, and ergosterol) are essential. Membranes without these three lipids can dock and complete trans-SNARE pairing but cannot rearrange their lipids for fusion. DOI: http://dx.doi.org/10.7554/eLife.01879.001.
Basic distinctions between cold- and hot-fusion reactions in the synthesis of superheavy elements
NASA Astrophysics Data System (ADS)
Nasirov, A. K.; Muminov, A. I.; Giardina, G.; Mandaglio, G.
2014-07-01
Superheavy elements (SHE) of charge number in the range of Z = 106-112 were synthesized in so-called cold-fusion reactions. The smallness of the excitation energy of compound nuclei is the main advantage of cold-fusion reactions. However, the synthesis of SHEs of charge number in the region of Z ≥ 112 is strongly complicated in cold-fusion reactions by a sharp decrease in the cross section of a compound nucleus formation in the entrance channel because of superiority of quasifission in the competition with complete fusion. Two favorable circumstances contributed to the success of the experiments aimed at the synthesis of the Z = 113-118 elements and performed at the Laboratory of Nuclear Reactions at the Joint Institute for Nuclear Research: large cross sections for the production of a compound nucleus, which are characteristic of hot-fusion reactions, and an increase in the fission barrier for nuclei toward the stability island. The factor that complicates the formation of a compound nucleus in cold-fusion reactions is discussed.
USDA-ARS?s Scientific Manuscript database
Foot-and-mouth disease (FMD) remains one of the most devastating livestock diseases around the world. Several serotype specific vaccine formulations exist but require about 5-7 days to induce protective immunity. Our previous studies have shown that a constitutively active fusion protein of porcine ...
Dirim, Ayhan; Hasirci, Eray
2011-01-01
A 73-year-old postmenopausal woman was admitted with recurrent urinary tract infection and a history of incontinence. General physical examination was normal. Complete labial fusion was noticed on genital examination. Surgical intervention was performed. This therapy alleviated incontinence and recurrent urinary tract infection.
Structural requirements of oleosin domains for subcellular targeting to the oil body.
van Rooijen, G J; Moloney, M M
1995-01-01
We have investigated the protein domains responsible for the correct subcellular targeting of plant seed oleosins. We have attempted to study this targeting in vivo using "tagged" oleosins in transgenic plants. Different constructs were prepared lacking gene sequences encoding one of three structural domains of natural oleosins. Each was fused in frame to the Escherichia coli uid A gene encoding beta-glucuronidase (GUS). These constructs were introduced into Brassica napus using Agrobacterium-mediated transformation. GUS activity was measured in washed oil bodies and in the soluble protein fraction of the transgenic seeds. It was found that complete Arabidopsis oleosin-GUS fusions undergo correct subcellular targeting in transgenic Brassica seeds. Removal of the C-terminal domain of the Arabidopsis oleosin comprising the last 48 amino acids had no effect on overall subcellular targeting. In contrast, loss of the first 47 amino acids (N terminus) or amino acids 48 to 113 (which make up a lipophilic core) resulted in impaired targeting of the fusion protein to the oil bodies and greatly reduced accumulation of the fusion protein. Northern blotting revealed that this reduction is not due to differences in mRNA accumulation. Results from these measurements indicated that both the N-terminal and central oleosin domain are important for targeting to the oil body and show that there is a direct correlation between the inability to target to the oil body and protein stability. PMID:8539295
An Improved WiFi Indoor Positioning Algorithm by Weighted Fusion
Ma, Rui; Guo, Qiang; Hu, Changzhen; Xue, Jingfeng
2015-01-01
The rapid development of mobile Internet has offered the opportunity for WiFi indoor positioning to come under the spotlight due to its low cost. However, nowadays the accuracy of WiFi indoor positioning cannot meet the demands of practical applications. To solve this problem, this paper proposes an improved WiFi indoor positioning algorithm by weighted fusion. The proposed algorithm is based on traditional location fingerprinting algorithms and consists of two stages: the offline acquisition and the online positioning. The offline acquisition process selects optimal parameters to complete the signal acquisition, and it forms a database of fingerprints by error classification and handling. To further improve the accuracy of positioning, the online positioning process first uses a pre-match method to select the candidate fingerprints to shorten the positioning time. After that, it uses the improved Euclidean distance and the improved joint probability to calculate two intermediate results, and further calculates the final result from these two intermediate results by weighted fusion. The improved Euclidean distance introduces the standard deviation of WiFi signal strength to smooth the WiFi signal fluctuation and the improved joint probability introduces the logarithmic calculation to reduce the difference between probability values. Comparing the proposed algorithm, the Euclidean distance based WKNN algorithm and the joint probability algorithm, the experimental results indicate that the proposed algorithm has higher positioning accuracy. PMID:26334278
An Improved WiFi Indoor Positioning Algorithm by Weighted Fusion.
Ma, Rui; Guo, Qiang; Hu, Changzhen; Xue, Jingfeng
2015-08-31
The rapid development of mobile Internet has offered the opportunity for WiFi indoor positioning to come under the spotlight due to its low cost. However, nowadays the accuracy of WiFi indoor positioning cannot meet the demands of practical applications. To solve this problem, this paper proposes an improved WiFi indoor positioning algorithm by weighted fusion. The proposed algorithm is based on traditional location fingerprinting algorithms and consists of two stages: the offline acquisition and the online positioning. The offline acquisition process selects optimal parameters to complete the signal acquisition, and it forms a database of fingerprints by error classification and handling. To further improve the accuracy of positioning, the online positioning process first uses a pre-match method to select the candidate fingerprints to shorten the positioning time. After that, it uses the improved Euclidean distance and the improved joint probability to calculate two intermediate results, and further calculates the final result from these two intermediate results by weighted fusion. The improved Euclidean distance introduces the standard deviation of WiFi signal strength to smooth the WiFi signal fluctuation and the improved joint probability introduces the logarithmic calculation to reduce the difference between probability values. Comparing the proposed algorithm, the Euclidean distance based WKNN algorithm and the joint probability algorithm, the experimental results indicate that the proposed algorithm has higher positioning accuracy.
Severe progressive scoliosis due to huge subcutaneous cavernous hemangioma: A case report
2011-01-01
Cavernous hemangioma consists mainly of congenital vascular malformations present before birth and gradually increasing in size with skeletal growth. A small number of patients with cavernous hemangioma develop scoliosis, and surgical treatment for the scoliosis in such cases has not been reported to date. Here we report a 12-year-old male patient with severe progressive scoliosis due to a huge subcutaneous cavernous hemangioma, who underwent posterior correction and fusion surgery. Upon referral to our department, radiographs revealed a scoliosis of 85° at T6-L1 and a kyphosis of 58° at T4-T10. CT and MR images revealed a huge hemangioma extending from the subcutaneous region to the paraspinal muscles and the retroperitoneal space and invading the spinal canal. Posterior correction and fusion surgery using pedicle screws between T2 and L3 were performed. Massive hemorrhage from the hemangioma occurred during the surgery, with intraoperative blood loss reaching 2800 ml. The scoliosis was corrected to 59°, and the kyphosis to 45° after surgery. Seven hours after surgery, the patient suffered from hypovolemic shock and disseminated intravascular coagulation due to postoperative hemorrhage from the hemangioma. The patient developed sensory and conduction aphasia caused by cerebral hypoxia during the shock on the day of the surgery. At present, two years after the surgery, although the patient has completely recovered from the aphasia. This case illustrates that, in correction surgery for scoliosis due to huge subcutaneous cavernous hemangioma, intraoperative and postoperative intensive care for hemodynamics should be performed, since massive hemorrhage can occur during the postoperative period as well as the intraoperative period. PMID:21414205
NASA Astrophysics Data System (ADS)
Li, Gang; Lu, Xiaofeng; Zhu, Xiaolei; Huang, Jian; Liu, Luwei; Wu, Yixiong
2017-09-01
The defects and microstructure in the fusion zone of multipass laser welded joints with Inconel 52M filler wire are investigated for nuclear power plants. Experimental results indicate that the incomplete fusion forms as the deposited metals do not completely cover the groove during multipass laser welding. The dendritic morphologies are observed on the inner surface of the porosity in the fusion zone. Many small cellular are found in the zones near the fusion boundary. With solidification preceding, cellular gradually turn into columnar dendrites and symmetrical columnar dendrites are exhibited in the weld center of the fusion zone. The fine equiaxed grains form and columnar dendrites disappear in the remelted zone of two passes. The dendrite arm spacing in the fusion zone becomes widened with increasing welding heat input. Nb-rich carbides/carbonitrides are preferentially precipitated in the fusion zone of multipass laser welded joints. In respect to high cooling rate during multipass laser welding, element segregation could be insufficient to achieve the component of Laves phase.
ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating
Rogers, Jason V.; Arlow, Tim; Inkellis, Elizabeth R.; Koo, Timothy S.; Rose, Mark D.
2013-01-01
During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide–sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway. PMID:24152736
Moses, Michael J; Tishelman, Jared C; Hasan, Saqib; Zhou, Peter L; Zevgaras, Ioanna; Smith, Justin S; Buckland, Aaron J; Kim, Yong; Razi, Afshin; Protopsaltis, Themistocles S
2018-03-09
Cross-Sectional Study. The goal of this study is to investigate how surgeons differ in collar and narcotic use, as well as return to driving recommendations following cervical spine surgeries and the associated medico-legal ramifications of these conditions. Restoration of quality of life is one of the main goals of cervical spine surgery. Patients frequently inquire when they may safely resume driving after cervical spine surgery. There is no consensus regarding post-operative driving restrictions. This study addresses how surgeons differ in their recommendations concerning cervical immobilization, narcotic analgesia, and suggested timeline of return to driving following cervical spine surgery. Surgeons at the Cervical Spine Research Society annual meeting completed anonymous surveys assessing postoperative patient management following fusion and non-fusion cervical spine surgeries. 70% of surgeons returned completed surveys (n = 71). 80.3% were orthopaedic surgeons and 94.2% completed a spine fellowship. Experienced surgeons (>15y in practice) were more likely to let patients return to driving within 2 weeks than less experienced surgeons (47.1% vs 24.3%, p = .013) for multi-level ACDF and laminectomy with fusion procedures. There were no differences between surgeons practicing inside and outside the USA for prescribing collars or return to driving time. Cervical collars were used more for fusions than non-fusions (57.7% vs 31.0%, p = .001). Surgeons reported 75.3% of patients ask when they may resume driving. For cervical fusions, 31.4% of surgeons allowed their patients to resume driving while restricting them with collars for longer durations. Furthermore, 27.5% of surgeons allowed their patients to resume driving while taking narcotics post-operatively. This survey-based study highlights the lack of consensus regarding patient 'fitness to drive' following cervical spine surgery. The importance of establishing evidence-based guidelines is critical as recommendations for driving in the post-operative period may have significant medical, legal, and financial implications. 5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gazda, J.; Meshii, M.; Tsai, H.
Specimens of V-(4-5)Cr-(4-5)Ti alloys were irradiated to {approx}18 dpa at 320 C in the Fusion-1 capsule inserted into the BOR-60 reactor. Tensile tests at 23 C indicated dramatic yield strength increase (>300%), lack of work hardening, and minimal (<1%) total elongations. SEM analysis of fracture and side surfaces were conducted to determine reduction in are and the mode of fracture. The reduction of area was negligible. All but one specimen failed by a combination of ductile shear deformation and cleavage crack growth. Transgranular cleavage cracks were initiated by stress concentrations at the tips of the shear bands. In side-view observations,more » evidence was found of slip bands typically associated with dislocation channeling. No differences due to pre-irradiation heat treatment and heat-to-heat composition variations were detected. The only deviation from this behavior was found in V-4Cr-4Ti-B alloy, which failed in the grip portion by complete cleavage cracking.« less
Rassin, E; Muris, P; Schmidt, H; Merckelbach, H
2000-09-01
Research has shown that there are strong similarities in content between the obsessions and compulsions that characterize obsessive-compulsive disorder and nonclinical obsessions and compulsions. However, clinical and nonclinical obsessions and compulsions do differ with respect to characteristics like frequency, intensity, discomfort and elicited resistance. Two separate concepts have been invoked to explain how normal obsessions and compulsions may develop into clinical phenomena. First, it is suggested that thought-action fusion (TAF) contributes to obsessive-compulsive symptoms. Second, thought suppression may intensify obsessive-compulsive symptoms due to its paradoxical effect on intrusive thoughts. Although both phenomena have been found to contribute to obsessive-compulsive symptoms, possible interactions between these two have never been investigated. The current study explored how TAF and thought suppression interact in the development of obsessive-compulsive symptoms. Undergraduate psychology students (N = 173) completed questionnaires pertaining to TAF, thought suppression and obsessive-compulsive symptoms. Covariances between the scores on these questionnaires were analyzed by means of structural equation modeling. Results suggest that TAF triggers thought suppression, while thought suppression, in turn, promotes obsessive-compulsive symptoms.
Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples
Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.
2015-02-14
Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less
NASA Technical Reports Server (NTRS)
Pryor, Wayne
1999-01-01
Dr. Wayne Pryor worked on three projects this summer. These were: 1) Inertial Electrostatic Confinement; 2) The Laser Elevator; and 3) Solar System Survey for Propellants Abstract. We Assisted Jon Nadler from Richland Community College in assembling and operating a table-top nuclear fusion reactor. We successfully demonstrated neutron production in a deuterium plasma. Pryor also obtained basic spectroscopic information on the atomic and molecular emissions in the plasma. The second project consisted of the completion of a paper on a novel propulsion concept (due to Tom Meyer of Colorado, the first author): a laser sail that bounces light back to the laser source. Recycling the photons from source to sail perhaps 100-1000 times dramatically improves the energy efficiency of this system, which may become very important for high-velocity missions in the future. Lastly, we compiled a very basic inventory of solar system propellant resources, their locations, and their accessibility. This initial inventory concentrates on sunlight availability, water availability, and the difficulty (delta-velocity requirement and radiation environment) in getting there.
NASA Astrophysics Data System (ADS)
Stankunas, Gediminas; Batistoni, Paola; Sjöstrand, Henrik; Conroy, Sean; JET Contributors
2015-07-01
The neutron activation technique is routinely used in fusion experiments to measure the neutron yields. This paper investigates the uncertainty on these measurements as due to the uncertainties on dosimetry and activation reactions. For this purpose, activation cross-sections were taken from the International Reactor Dosimetry and Fusion File (IRDFF-v1.05) in 640 groups ENDF-6 format for several reactions of interest for both 2.5 and 14 MeV neutrons. Activation coefficients (reaction rates) have been calculated using the neutron flux spectra at JET vacuum vessel, both for DD and DT plasmas, calculated by MCNP in the required 640-energy group format. The related uncertainties for the JET neutron spectra are evaluated as well using the covariance data available in the library. These uncertainties are in general small, but not negligible when high accuracy is required in the determination of the fusion neutron yields.
NASA Astrophysics Data System (ADS)
Dickens, J. K.; Hill, N. W.; Hou, F. S.; McConnell, J. W.; Spencer, R. R.; Tsang, F. Y.
1985-08-01
A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in the detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report.
A color fusion method of infrared and low-light-level images based on visual perception
NASA Astrophysics Data System (ADS)
Han, Jing; Yan, Minmin; Zhang, Yi; Bai, Lianfa
2014-11-01
The color fusion images can be obtained through the fusion of infrared and low-light-level images, which will contain both the information of the two. The fusion images can help observers to understand the multichannel images comprehensively. However, simple fusion may lose the target information due to inconspicuous targets in long-distance infrared and low-light-level images; and if targets extraction is adopted blindly, the perception of the scene information will be affected seriously. To solve this problem, a new fusion method based on visual perception is proposed in this paper. The extraction of the visual targets ("what" information) and parallel processing mechanism are applied in traditional color fusion methods. The infrared and low-light-level color fusion images are achieved based on efficient typical targets learning. Experimental results show the effectiveness of the proposed method. The fusion images achieved by our algorithm can not only improve the detection rate of targets, but also get rich natural information of the scenes.
Multi-focus image fusion based on window empirical mode decomposition
NASA Astrophysics Data System (ADS)
Qin, Xinqiang; Zheng, Jiaoyue; Hu, Gang; Wang, Jiao
2017-09-01
In order to improve multi-focus image fusion quality, a novel fusion algorithm based on window empirical mode decomposition (WEMD) is proposed. This WEMD is an improved form of bidimensional empirical mode decomposition (BEMD), due to its decomposition process using the adding window principle, effectively resolving the signal concealment problem. We used WEMD for multi-focus image fusion, and formulated different fusion rules for bidimensional intrinsic mode function (BIMF) components and the residue component. For fusion of the BIMF components, the concept of the Sum-modified-Laplacian was used and a scheme based on the visual feature contrast adopted; when choosing the residue coefficients, a pixel value based on the local visibility was selected. We carried out four groups of multi-focus image fusion experiments and compared objective evaluation criteria with other three fusion methods. The experimental results show that the proposed fusion approach is effective and performs better at fusing multi-focus images than some traditional methods.
Tsukasaki, Wakako; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko
2014-01-01
Hyphal fusion is involved in the formation of an interconnected colony in filamentous fungi, and it is the first process in sexual/parasexual reproduction. However, it was difficult to evaluate hyphal fusion efficiency due to the low frequency in Aspergillus oryzae in spite of its industrial significance. Here, we established a method to quantitatively evaluate the hyphal fusion ability of A. oryzae with mixed culture of two different auxotrophic strains, where the ratio of heterokaryotic conidia growing without the auxotrophic requirements reflects the hyphal fusion efficiency. By employing this method, it was demonstrated that AoSO and AoFus3 are required for hyphal fusion, and that hyphal fusion efficiency of A. oryzae was increased by depleting nitrogen source, including large amounts of carbon source, and adjusting pH to 7.0.
Decision Fusion with Channel Errors in Distributed Decode-Then-Fuse Sensor Networks
Yan, Yongsheng; Wang, Haiyan; Shen, Xiaohong; Zhong, Xionghu
2015-01-01
Decision fusion for distributed detection in sensor networks under non-ideal channels is investigated in this paper. Usually, the local decisions are transmitted to the fusion center (FC) and decoded, and a fusion rule is then applied to achieve a global decision. We propose an optimal likelihood ratio test (LRT)-based fusion rule to take the uncertainty of the decoded binary data due to modulation, reception mode and communication channel into account. The average bit error rate (BER) is employed to characterize such an uncertainty. Further, the detection performance is analyzed under both non-identical and identical local detection performance indices. In addition, the performance of the proposed method is compared with the existing optimal and suboptimal LRT fusion rules. The results show that the proposed fusion rule is more robust compared to these existing ones. PMID:26251908
Bilateral Complete and Incomplete Fusion of Incisors and its Management.
Da Costa, Godwin Clovis; Chalakkal, Paul; De Souza, Neil; Gavhane, Sanket
2017-01-01
This case report highlights the management of a case of bilateral complete and incomplete fusion of maxillary incisors in a 10-year-old child. A mock-up was done on the diagnostic cast. Pretreatment esthetic evaluation was done using bis-acryl composite temporaries which were transferred intraorally from the diagnostic cast using a putty index. An incisal overlap veneer preparation was done, following which, an IPS e-max veneer was cemented. A digital mock-up was carried out using the Adobe Photoshop and Corel Draw softwares to aid in laboratorial fabrication of the veneer.
Membrane Fusion Induced by Small Molecules and Ions
Mondal Roy, Sutapa; Sarkar, Munna
2011-01-01
Membrane fusion is a key event in many biological processes. These processes are controlled by various fusogenic agents of which proteins and peptides from the principal group. The fusion process is characterized by three major steps, namely, inter membrane contact, lipid mixing forming the intermediate step, pore opening and finally mixing of inner contents of the cells/vesicles. These steps are governed by energy barriers, which need to be overcome to complete fusion. Structural reorganization of big molecules like proteins/peptides, supplies the required driving force to overcome the energy barrier of the different intermediate steps. Small molecules/ions do not share this advantage. Hence fusion induced by small molecules/ions is expected to be different from that induced by proteins/peptides. Although several reviews exist on membrane fusion, no recent review is devoted solely to small moleculs/ions induced membrane fusion. Here we intend to present, how a variety of small molecules/ions act as independent fusogens. The detailed mechanism of some are well understood but for many it is still an unanswered question. Clearer understanding of how a particular small molecule can control fusion will open up a vista to use these moleucles instead of proteins/peptides to induce fusion both in vivo and in vitro fusion processes. PMID:21660306
A transversal approach for patch-based label fusion via matrix completion
Sanroma, Gerard; Wu, Guorong; Gao, Yaozong; Thung, Kim-Han; Guo, Yanrong; Shen, Dinggang
2015-01-01
Recently, multi-atlas patch-based label fusion has received an increasing interest in the medical image segmentation field. After warping the anatomical labels from the atlas images to the target image by registration, label fusion is the key step to determine the latent label for each target image point. Two popular types of patch-based label fusion approaches are (1) reconstruction-based approaches that compute the target labels as a weighted average of atlas labels, where the weights are derived by reconstructing the target image patch using the atlas image patches; and (2) classification-based approaches that determine the target label as a mapping of the target image patch, where the mapping function is often learned using the atlas image patches and their corresponding labels. Both approaches have their advantages and limitations. In this paper, we propose a novel patch-based label fusion method to combine the above two types of approaches via matrix completion (and hence, we call it transversal). As we will show, our method overcomes the individual limitations of both reconstruction-based and classification-based approaches. Since the labeling confidences may vary across the target image points, we further propose a sequential labeling framework that first labels the highly confident points and then gradually labels more challenging points in an iterative manner, guided by the label information determined in the previous iterations. We demonstrate the performance of our novel label fusion method in segmenting the hippocampus in the ADNI dataset, subcortical and limbic structures in the LONI dataset, and mid-brain structures in the SATA dataset. We achieve more accurate segmentation results than both reconstruction-based and classification-based approaches. Our label fusion method is also ranked 1st in the online SATA Multi-Atlas Segmentation Challenge. PMID:26160394
Miao, De-chao; Zhang, Bao-yang; Lei, Tao; Shen, Yong
2017-01-01
Background The aim of this study was to analyze the clinical features and to evaluate the efficacy of anterior partial corpectomy and titanium mesh fusion and internal fixation of old fracture dislocation of the lower cervical spine. Material/Methods We retrospectively analyzed the clinical data of 52 patients with old lower cervical fracture and dislocation treated with anterior partial corpectomy and titanium mesh fusion fixation between January 2008 and December 2013, with a mean follow-up period of 4.1 years. There were 35 males and 17 females. Patient radiological data and clinical parameters were recorded and compared before and after the operations. Results The average follow-up was 4.1 years. Intervertebral height and physiological curvature were well-reconstructed for all cases. No loosening or rupturing of titanium plate or screw occurred. The neurological function of the patients with incomplete spinal cord injury was significantly improved, and the function of the nerve roots at the injury level was also improved in patients with complete spinal cord injury. Bone fusion was completed within 6 months to 1 year after surgery. Conclusions Completed decompression, sequence and physiological curvature of the cervical vertebra, immediate and long-term anterior cervical column support, and nerve function restoration can be achieved by using anterior partial corpectomy and titanium mesh fusion and internal fixation to treat old fracture dislocation of the lower cervical spine. For cases with locked facet joints or posterior structures invading the vertebral canal, the combined anterior and posterior approaches should be performed, when necessary, to achieve better results. PMID:29184051
Optimal fusion offset in splicing photonic crystal fibers
NASA Astrophysics Data System (ADS)
Jin, Wa; Bi, Weihong; Fu, Guangwei
2013-08-01
Heat transfer is very complicate in fusion splicing process of photonic crystal fibers (PCFs) due to different structures and sizes of air hole, which requires different fusion splicing power and offsets of heat source. Based on the heat transfer characteristics, this paper focus on the optimal splicing offset splicing the single mode fiber and PCFs with a CO2 laser irradiation. The theory and experiments both show that the research results can effectively calculate the optimal fusion splicing offset and guide the practical splicing between PCFs and SMFs.
Smith, Jacob D; Jack, Megan M; Harn, Nicholas R; Bertsch, Judson R; Arnold, Paul M
2016-06-01
Study Design Case series of seven patients. Objective C2 stabilization can be challenging due to the complex anatomy of the upper cervical vertebrae. We describe seven cases of C1-C2 fusion using intraoperative navigation to aid in the screw placement at the atlantoaxial (C1-C2) junction. Methods Between 2011 and 2014, seven patients underwent posterior atlantoaxial fusion using intraoperative frameless stereotactic O-arm Surgical Imaging and StealthStation Surgical Navigation System (Medtronic, Inc., Minneapolis, Minnesota, United States). Outcome measures included screw accuracy, neurologic status, radiation dosing, and surgical complications. Results Four patients had fusion at C1-C2 only, and in the remaining three, fixation extended down to C3 due to anatomical considerations for screw placement recognized on intraoperative imaging. Out of 30 screws placed, all demonstrated minimal divergence from desired placement in either C1 lateral mass, C2 pedicle, or C3 lateral mass. No neurovascular compromise was seen following the use of intraoperative guided screw placement. The average radiation dosing due to intraoperative imaging was 39.0 mGy. All patients were followed for a minimum of 12 months. All patients went on to solid fusion. Conclusion C1-C2 fusion using computed tomography-guided navigation is a safe and effective way to treat atlantoaxial instability. Intraoperative neuronavigation allows for high accuracy of screw placement, limits complications by sparing injury to the critical structures in the upper cervical spine, and can help surgeons make intraoperative decisions regarding complex pathology.
El Ottra, Juliana Hanna Leite; Pirani, José Rubens; Endress, Peter K.
2013-01-01
Background and Aims Most genera of the neotropical Galipeinae (tribe Galipeeae, Rutoideae) exhibit several forms and degrees of fusion between the floral organs, including the union of petals into an apparently sympetalous corolla, the joining of the stamens among themselves and to the corolla, and the partial to complete connation of carpels. Though these and others floral traits are currently used in the circumscription of species in Galipeinae, few studies have shown in detail in which way (postgenital or congenital) and to what extent these fusions occur. To elucidate these anatomical conditions, a structural study of the flowers of the Galipeinae species was carried out. Methods Flowers of six species from three genera of Galipeinae were studied in their morphology, anatomy and development with stereomicroscopy, light microscopy and scanning electron microscopy (SEM). Key Results The floral tube is formed by synorganization of stamens with petals in all species, and exhibits three main patterns: (1) Conchocarpus heterophyllus and C. minutiflorus have a floral tube formed by marginal coherence/adherence of petals and filaments due to interwining trichomes (postgenital connection); (2) Erythrochiton brasiliensis has a tube formed by congenital fusion of petals and filaments; and (3) Galipea jasminiflora and Conchocarpus macrophyllus have a tube formed distally with the first pattern, and proximally with the second pattern. Although floral tubes seem to be homologous within Galipeinae, this is not true at the level of the family: the floral tube of Correa (from an only distantly related clade of the family) is formed by postgenital union of the petals representing a convergent structure. The gynoecium of the studied species of Galipeinae shows a great variability in the extent of fusion of carpel flanks. Even though different structures for the mature gynoecium were found in each genus, all genera show postgenitally fused carpel apices, which is related to the formation of a compitum, as described earlier for other members of Rutaceae. Conclusions The degree and diversity of fusions of floral organs in Galipeinae is unique within the order Sapindales. A study of the amount of diversification of Galipeinae in South America and comparison with other clades of Rutaceae would be of interest. PMID:23463590
Fleege, C; Rickert, M; Werner, I; Rauschmann, M; Arabmotlagh, M
2016-09-01
Determination of the extent of spinal fusion for lumbar degenerative diseases is often difficult due to minor pathologies in the adjacent segment. Although surgical intervention is required, fusion seems to be an overtreatment. Decompression alone may be not enough as this segment is affected by multiple factors such as destabilization, low grade degeneration and an unfavorable biomechanical transition next to a rigid construct. An alternative surgical treatment is a hybrid construct, consisting of fusion and implantation of an interlaminar stabilization device at the adjacent level. The aim of this study was to compare long-term clinical outcome after lumbar fusion with a hybrid construct including an interlaminar stabilization device as "topping-off". A retrospective analysis of 25 lumbar spinal fusions from 2003 to 2010 with additional interlaminar stabilization device was performed. Through a matched case controlled procedure 25 congruent patients who received lumbar spinal fusion in one or two levels were included as a control group. At an average follow-up of 43 months pre- and postoperative pain, ODI, SF-36 as well as clinical parameters, such as leg and back pain, walking distance and patient satisfaction were recorded. Pain relief, ODI improvement and patient satisfaction was significantly higher in the hybrid group compared to the control group. SF-36 scores improved in both groups but was higher in the hybrid group, although without significance. Evaluation of walking distance showed no significant differences. Many outcome parameters present significantly better long-term results in the hybrid group compared to sole spinal fusion. Therefore, in cases with a clear indication for lumbar spinal fusion with the need for decompression at the adjacent level due to spinal stenosis or moderate spondylarthrosis, support of this segment with an interlaminar stabilization device demonstrates a reasonable treatment option with good clinical outcome. Also, the length of the fusion construct can be reduced allowing for a softer and more harmonic transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Neumeyer; M. Ono; S.M. Kaye
1999-11-01
The NSTX (National Spherical Torus Experiment) facility located at Princeton Plasma Physics Laboratory is the newest national fusion science experimental facility for the restructured US Fusion Energy Science Program. The NSTX project was approved in FY 97 as the first proof-of-principle national fusion facility dedicated to the spherical torus research. On Feb. 15, 1999, the first plasma was achieved 10 weeks ahead of schedule. The project was completed on budget and with an outstanding safety record. This paper gives an overview of the NSTX facility construction and the initial plasma operations.
Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: A Prospective Study.
Duhon, Bradley S; Cher, Daniel J; Wine, Kathryn D; Kovalsky, Don A; Lockstadt, Harry
2016-05-01
Study Design Prospective multicenter single-arm interventional clinical trial. Objective To determine the degree of improvement in sacroiliac (SI) joint pain, disability related to SI joint pain, and quality of life in patients with SI joint dysfunction who undergo minimally invasive SI joint fusion using triangular-shaped titanium implants. Methods Subjects (n = 172) underwent minimally invasive SI joint fusion between August 2012 and January 2014 and completed structured assessments preoperatively and at 1, 3, 6, and 12 months postoperatively, including a 100-mm SI joint and back pain visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form-36 (SF-36), and EuroQOL-5D. Patient satisfaction with surgery was assessed at 6 and 12 months. Results Mean SI joint pain improved from 79.8 at baseline to 30.0 and 30.4 at 6 and 12 months, respectively (mean improvements of 49.9 and 49.1 points, p < 0.0001 each). Mean ODI improved from 55.2 at baseline to 32.5 and 31.4 at 6 and 12 months (improvements of 22.7 and 23.9 points, p < 0.0001 each). SF-36 physical component summary improved from 31.7 at baseline to 40.2 and 40.3 at 6 and 12 months (p < 0.0001). At 6 and 12 months, 93 and 87% of subjects, respectively, were somewhat or very satisfied and 92 and 91%, respectively, would have the procedure again. Conclusions Minimally invasive SI joint fusion resulted in improvement of pain, disability, and quality of life in patients with SI joint dysfunction due to degenerative sacroiliitis and SI joint disruption.
Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: A Prospective Study
Duhon, Bradley S.; Cher, Daniel J.; Wine, Kathryn D.; Kovalsky, Don A.; Lockstadt, Harry
2015-01-01
Study Design Prospective multicenter single-arm interventional clinical trial. Objective To determine the degree of improvement in sacroiliac (SI) joint pain, disability related to SI joint pain, and quality of life in patients with SI joint dysfunction who undergo minimally invasive SI joint fusion using triangular-shaped titanium implants. Methods Subjects (n = 172) underwent minimally invasive SI joint fusion between August 2012 and January 2014 and completed structured assessments preoperatively and at 1, 3, 6, and 12 months postoperatively, including a 100-mm SI joint and back pain visual analog scale (VAS), Oswestry Disability Index (ODI), Short Form-36 (SF-36), and EuroQOL-5D. Patient satisfaction with surgery was assessed at 6 and 12 months. Results Mean SI joint pain improved from 79.8 at baseline to 30.0 and 30.4 at 6 and 12 months, respectively (mean improvements of 49.9 and 49.1 points, p < 0.0001 each). Mean ODI improved from 55.2 at baseline to 32.5 and 31.4 at 6 and 12 months (improvements of 22.7 and 23.9 points, p < 0.0001 each). SF-36 physical component summary improved from 31.7 at baseline to 40.2 and 40.3 at 6 and 12 months (p < 0.0001). At 6 and 12 months, 93 and 87% of subjects, respectively, were somewhat or very satisfied and 92 and 91%, respectively, would have the procedure again. Conclusions Minimally invasive SI joint fusion resulted in improvement of pain, disability, and quality of life in patients with SI joint dysfunction due to degenerative sacroiliitis and SI joint disruption. PMID:27099817
An Abundant Evolutionarily Conserved CSB-PiggyBac Fusion Protein Expressed in Cockayne Syndrome
Newman, John C.; Bailey, Arnold D.; Fan, Hua-Ying; Pavelitz, Thomas; Weiner, Alan M.
2008-01-01
Cockayne syndrome (CS) is a devastating progeria most often caused by mutations in the CSB gene encoding a SWI/SNF family chromatin remodeling protein. Although all CSB mutations that cause CS are recessive, the complete absence of CSB protein does not cause CS. In addition, most CSB mutations are located beyond exon 5 and are thought to generate only C-terminally truncated protein fragments. We now show that a domesticated PiggyBac-like transposon PGBD3, residing within intron 5 of the CSB gene, functions as an alternative 3′ terminal exon. The alternatively spliced mRNA encodes a novel chimeric protein in which CSB exons 1–5 are joined in frame to the PiggyBac transposase. The resulting CSB-transposase fusion protein is as abundant as CSB protein itself in a variety of human cell lines, and continues to be expressed by primary CS cells in which functional CSB is lost due to mutations beyond exon 5. The CSB-transposase fusion protein has been highly conserved for at least 43 Myr since the divergence of humans and marmoset, and appears to be subject to selective pressure. The human genome contains over 600 nonautonomous PGBD3-related MER85 elements that were dispersed when the PGBD3 transposase was last active at least 37 Mya. Many of these MER85 elements are associated with genes which are involved in neuronal development, and are known to be regulated by CSB. We speculate that the CSB-transposase fusion protein has been conserved for host antitransposon defense, or to modulate gene regulation by MER85 elements, but may cause CS in the absence of functional CSB protein. PMID:18369450
Research on the strategy of underwater united detection fusion and communication using multi-sensor
NASA Astrophysics Data System (ADS)
Xu, Zhenhua; Huang, Jianguo; Huang, Hai; Zhang, Qunfei
2011-09-01
In order to solve the distributed detection fusion problem of underwater target detection, when the signal to noise ratio (SNR) of the acoustic channel is low, a new strategy for united detection fusion and communication using multiple sensors was proposed. The performance of detection fusion was studied and compared based on the Neyman-Pearson principle when the binary phase shift keying (BPSK) and on-off keying (OOK) modes were used by the local sensors. The comparative simulation and analysis between the optimal likelihood ratio test and the proposed strategy was completed, and both the theoretical analysis and simulation indicate that using the proposed new strategy could improve the detection performance effectively. In theory, the proposed strategy of united detection fusion and communication is of great significance to the establishment of an underwater target detection system.
Hamm, Klaus D; Surber, Gunnar; Schmücking, Michael; Wurm, Reinhard E; Aschenbach, Rene; Kleinert, Gabriele; Niesen, A; Baum, Richard P
2004-11-01
Innovative new software solutions may enable image fusion to produce the desired data superposition for precise target definition and follow-up studies in radiosurgery/stereotactic radiotherapy in patients with intracranial lesions. The aim is to integrate the anatomical and functional information completely into the radiation treatment planning and to achieve an exact comparison for follow-up examinations. Special conditions and advantages of BrainLAB's fully automatic image fusion system are evaluated and described for this purpose. In 458 patients, the radiation treatment planning and some follow-up studies were performed using an automatic image fusion technique involving the use of different imaging modalities. Each fusion was visually checked and corrected as necessary. The computerized tomography (CT) scans for radiation treatment planning (slice thickness 1.25 mm), as well as stereotactic angiography for arteriovenous malformations, were acquired using head fixation with stereotactic arc or, in the case of stereotactic radiotherapy, with a relocatable stereotactic mask. Different magnetic resonance (MR) imaging sequences (T1, T2, and fluid-attenuated inversion-recovery images) and positron emission tomography (PET) scans were obtained without head fixation. Fusion results and the effects on radiation treatment planning and follow-up studies were analyzed. The precision level of the results of the automatic fusion depended primarily on the image quality, especially the slice thickness and the field homogeneity when using MR images, as well as on patient movement during data acquisition. Fully automated image fusion of different MR, CT, and PET studies was performed for each patient. Only in a few cases was it necessary to correct the fusion manually after visual evaluation. These corrections were minor and did not materially affect treatment planning. High-quality fusion of thin slices of a region of interest with a complete head data set could be performed easily. The target volume for radiation treatment planning could be accurately delineated using multimodal information provided by CT, MR, angiography, and PET studies. The fusion of follow-up image data sets yielded results that could be successfully compared and quantitatively evaluated. Depending on the quality of the originally acquired image, automated image fusion can be a very valuable tool, allowing for fast (approximately 1-2 minute) and precise fusion of all relevant data sets. Fused multimodality imaging improves the target volume definition for radiation treatment planning. High-quality follow-up image data sets should be acquired for image fusion to provide exactly comparable slices and volumetric results that will contribute to quality contol.
Winters, Jennifer L; Davila, Jaime I; McDonald, Amber M; Nair, Asha A; Fadra, Numrah; Wehrs, Rebecca N; Thomas, Brittany C; Balcom, Jessica R; Jin, Long; Wu, Xianglin; Voss, Jesse S; Klee, Eric W; Oliver, Gavin R; Graham, Rondell P; Neff, Jadee L; Rumilla, Kandelaria M; Aypar, Umut; Kipp, Benjamin R; Jenkins, Robert B; Jen, Jin; Halling, Kevin C
2018-06-13
We assessed the performance characteristics of an RNA sequencing (RNA-Seq) assay designed to detect gene fusions in 571 genes to help manage patients with cancer. Polyadenylated RNA was converted to cDNA, which was then used to prepare next-generation sequencing libraries that were sequenced on an Illumina HiSeq 2500 instrument and analyzed with an in-house developed bioinformatic pipeline. The assay identified 38 of 41 gene fusions detected by another method, such as fluorescence in situ hybridization or RT-PCR, for a sensitivity of 93%. No false-positive gene fusions were identified in 15 normal tissue specimens and 10 tumor specimens that were negative for fusions by RNA sequencing or Mate Pair NGS (100% specificity). The assay also identified 22 fusions in 17 tumor specimens that had not been detected by other methods. Eighteen of the 22 fusions had not previously been described. Good intra-assay and interassay reproducibility was observed with complete concordance for the presence or absence of gene fusions in replicates. The analytical sensitivity of the assay was tested by diluting RNA isolated from gene fusion-positive cases with fusion-negative RNA. Gene fusions were generally detectable down to 12.5% dilutions for most fusions and as little as 3% for some fusions. This assay can help identify fusions in patients with cancer; these patients may in turn benefit from both US Food and Drug Administration-approved and investigational targeted therapies. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Respiratory Chain Complexes in Dynamic Mitochondria Display a Patchy Distribution in Life Cells
Muster, Britta; Kohl, Wladislaw; Wittig, Ilka; Strecker, Valentina; Joos, Friederike; Haase, Winfried; Bereiter-Hahn, Jürgen; Busch, Karin
2010-01-01
Background Mitochondria, the main suppliers of cellular energy, are dynamic organelles that fuse and divide frequently. Constraining these processes impairs mitochondrial is closely linked to certain neurodegenerative diseases. It is proposed that functional mitochondrial dynamics allows the exchange of compounds thereby providing a rescue mechanism. Methodology/Principal Findings The question discussed in this paper is whether fusion and fission of mitochondria in different cell lines result in re-localization of respiratory chain (RC) complexes and of the ATP synthase. This was addressed by fusing cells containing mitochondria with respiratory complexes labelled with different fluorescent proteins and resolving their time dependent re-localization in living cells. We found a complete reshuffling of RC complexes throughout the entire chondriome in single HeLa cells within 2–3 h by organelle fusion and fission. Polykaryons of fused cells completely re-mixed their RC complexes in 10–24 h in a progressive way. In contrast to the recently described homogeneous mixing of matrix-targeted proteins or outer membrane proteins, the distribution of RC complexes and ATP synthase in fused hybrid mitochondria, however, was not homogeneous but patterned. Thus, complete equilibration of respiratory chain complexes as integral inner mitochondrial membrane complexes is a slow process compared with matrix proteins probably limited by complete fusion. In co-expressing cells, complex II is more homogenously distributed than complex I and V, resp. Indeed, this result argues for higher mobility and less integration in supercomplexes. Conclusion/Significance Our results clearly demonstrate that mitochondrial fusion and fission dynamics favours the re-mixing of all RC complexes within the chondriome. This permanent mixing avoids a static situation with a fixed composition of RC complexes per mitochondrion. PMID:20689601
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Li, Kuixing; Fu, Xinghu; Bi, Weihong
2013-07-01
During the fusion splicing Hollow Core Photonic Crystal Fiber (HC-PCF), the air-holes collapse easily due to the improper fusion duration time and optical power. To analyze the temperature characteristics of fusion splicing HC-PCF, a heating method by sinusoidal modulation CO2 laser has been proposed. In the sinusoidal modulation, the variation relationships among laser power, temperature difference and angular frequency are analyzed. The results show that the theoretical simulation is basically in accordance with the experimental data. Therefore, a low-loss fusion splicing can be achieved by modulating the CO2 laser frequency to avoid the air-holes collapse of HC-PCF. Further, the errors are also given.
Low-energy nuclear reaction of the 14N+169Tm system: Incomplete fusion
NASA Astrophysics Data System (ADS)
Kumar, R.; Sharma, Vijay R.; Yadav, Abhishek; Singh, Pushpendra P.; Agarwal, Avinash; Appannababu, S.; Mukherjee, S.; Singh, B. P.; Ali, R.; Bhowmik, R. K.
2017-11-01
Excitation functions of reaction residues produced in the 14N+169Tm system have been measured to high precision at energies above the fusion barrier, ranging from 1.04 VB to 1.30 VB , and analyzed in the framework of the statistical model code pace4. Analysis of α -emitting channels points toward the onset of incomplete fusion even at slightly above-barrier energies where complete fusion is supposed to be one of the dominant processes. The onset and strength of incomplete fusion have been deduced and studied in terms of various entrance channel parameters. Present results together with the reanalysis of existing data for various projectile-target combinations conclusively suggest strong influence of projectile structure on the onset of incomplete fusion. Also, a strong dependence on the Coulomb effect (ZPZT) has been observed for the present system along with different projectile-target combinations available in the literature. It is concluded that the fraction of incomplete fusion linearly increases with ZPZT and is found to be more for larger ZPZT values, indicating significantly important linear systematics.
Structure-function analysis of myomaker domains required for myoblast fusion.
Millay, Douglas P; Gamage, Dilani G; Quinn, Malgorzata E; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N
2016-02-23
During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.
Multi-focus image fusion with the all convolutional neural network
NASA Astrophysics Data System (ADS)
Du, Chao-ben; Gao, She-sheng
2018-01-01
A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image fusion effect, getting a decision map is very necessary and usually difficult to finish. In this letter, we address this problem with convolutional neural network (CNN), aiming to get a state-of-the-art decision map. The main idea is that the max-pooling of CNN is replaced by a convolution layer, the residuals are propagated backwards by gradient descent, and the training parameters of the individual layers of the CNN are updated layer by layer. Based on this, we propose a new all CNN (ACNN)-based multi-focus image fusion method in spatial domain. We demonstrate that the decision map obtained from the ACNN is reliable and can lead to high-quality fusion results. Experimental results clearly validate that the proposed algorithm can obtain state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations.
Deep learning decision fusion for the classification of urban remote sensing data
NASA Astrophysics Data System (ADS)
Abdi, Ghasem; Samadzadegan, Farhad; Reinartz, Peter
2018-01-01
Multisensor data fusion is one of the most common and popular remote sensing data classification topics by considering a robust and complete description about the objects of interest. Furthermore, deep feature extraction has recently attracted significant interest and has become a hot research topic in the geoscience and remote sensing research community. A deep learning decision fusion approach is presented to perform multisensor urban remote sensing data classification. After deep features are extracted by utilizing joint spectral-spatial information, a soft-decision made classifier is applied to train high-level feature representations and to fine-tune the deep learning framework. Next, a decision-level fusion classifies objects of interest by the joint use of sensors. Finally, a context-aware object-based postprocessing is used to enhance the classification results. A series of comparative experiments are conducted on the widely used dataset of 2014 IEEE GRSS data fusion contest. The obtained results illustrate the considerable advantages of the proposed deep learning decision fusion over the traditional classifiers.
Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy.
Goh, Qingnian; Millay, Douglas P
2017-02-10
Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy.
The national ignition facility and atomic data
NASA Astrophysics Data System (ADS)
Crandall, David H.
1998-07-01
The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.
Dimar, John R; Glassman, Steven D; Vemuri, Venu M; Esterberg, Justin L; Howard, Jennifer M; Carreon, Leah Y
2011-11-09
A major sequelae of lumbar fusion is acceleration of adjacent-level degeneration due to decreased lumbar lordosis. We evaluated the effectiveness of 4 common fusion techniques in restoring lordosis: instrumented posterolateral fusion, translumbar interbody fusion, anteroposterior fusion with posterior instrumentation, and anterior interbody fusion with lordotic threaded (LT) cages (Medtronic Sofamor Danek, Memphis, Tennessee). Radiographs were measured preoperatively, immediately postoperatively, and a minimum of 6 months postoperatively. Parameters measured included anterior and posterior disk space height, lumbar lordosis from L3 to S1, and surgical level lordosis.No significant difference in demographics existed among the 4 groups. All preoperative parameters were similar among the 4 groups. Lumbar lordosis at final follow-up showed no difference between the anteroposterior fusion with posterior instrumentation, translumbar interbody fusion, and LT cage groups, although the posterolateral fusion group showed a significant loss of lordosis (-10°) (P<.001). Immediately postoperatively and at follow-up, the LT cage group had a significantly greater amount of lordosis and showed maintenance of anterior and posterior disk space height postoperatively compared with the other groups. Instrumented posterolateral fusion produces a greater loss of lordosis compared with anteroposterior fusion with posterior instrumentation, translumbar interbody fusion, and LT cages. Maintenance of lordosis and anterior and posterior disk space height is significantly better with anterior interbody fusion with LT cages. Copyright 2011, SLACK Incorporated.
Anterior interbody fusion for cervical osteomyelitis
Bartal, A. D.; Schiffer, J.; Heilbronn, Y. D.; Yahel, M.
1972-01-01
Interbody fusion for stabilization of the cervical spine after osteomyelitic destruction of the body of C5 vertebra is reported in a patient with quadriplegia and sphincter disturbances secondary to an epidural abscess. The successful union of the bone graft along with complete neurological recovery after anterior decompression and evacuation of the epidural mass seem to justify the procedure. Images PMID:4554587
Product development using process monitoring and NDE data fusion
NASA Astrophysics Data System (ADS)
Peterson, Todd; Bossi, Richard H.
1998-03-01
Composite process/product development relies on both process monitoring information and nondestructive evaluation measurements for determining application suitability. In the past these activities have been performed and analyzed independently. Our present approach is to present the process monitoring and NDE data together in a data fusion workstation. This methodology leads to final product acceptance based on a combined process monitoring and NDE criteria. The data fusion work station combines process parameter and NDE data in a single workspace enabling all the data to be used in the acceptance/rejection decision process. An example application is the induction welding process, a unique joining method for assembling primary composite structure, that offers significant cost and weight advantages over traditional fasted structure. The determination of the required time, temperature and pressure conditions used in the process to achieve a complete weld is being aided by the use of ultrasonic inspection techniques. Full waveform ultrasonic inspection data is employed to evaluate the quality of spar cap to skin fit, an essential element of the welding process, and is processed to find a parameter that can be used for weld acceptance. Certification of the completed weld incorporates the data fusion methodology.
Miniature fiber Fabry-Perot sensors based on fusion splicing
NASA Astrophysics Data System (ADS)
Zhu, Jia-li; Wang, Ming; Yang, Chun-di; Wang, Ting-ting
2013-03-01
Fiber-optic Fabry-Perot (F-P) sensors are widely investigated because they have several advantages over conventional sensors, such as immunity to electromagnetic interference, ability to operate under bad environments, high sensitivity and the potential for multiplexing. A new method to fabricate micro-cavity Fabry-Perot interferometer is introduced, which is fusion splicing a section of conventional single-mode fiber (SMF) and a section of hollow core or solid core photonic crystal fiber (PCF) together to form a micro-cavity at the splice joint. The technology of fusion splicing is discussed, and two miniature optical fiber sensors based on Fabry-Perot interference using fusion splicing are presented. The two sensors are completely made of fused silica, and have good high-temperature capability.
NASA Technical Reports Server (NTRS)
Griffin, Steven T.
2002-01-01
Magnetized target fusion (MTF) is under consideration as a means of building a low mass, high specific impulse, and high thrust propulsion system for interplanetary travel. This unique combination is the result of the generation of a high temperature plasma by the nuclear fusion process. This plasma can then be deflected by magnetic fields to provide thrust. Fusion is initiated by a small traction of the energy generated in the magnetic coils due to the plasma's compression of the magnetic field. The power gain from a fusion reaction is such that inefficiencies due to thermal neutrons and coil losses can be overcome. Since the fusion reaction products are directly used for propulsion and the power to initiate the reaction is directly obtained from the thrust generation, no massive power supply for energy conversion is required. The result should be a low engine mass, high specific impulse and high thrust system. The key is to successfully initiate fusion as a proof-of-principle for this application. Currently MSFC is implementing MTF proof-of-principle experiments. This involves many technical details and ancillary investigations. Of these, selected pertinent issues include the properties, orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the target plasma's behavior under compression and the convergence and mixing of the gun plasma are under investigation. This work is to focus on the gun characterization and development as it relates to plasma initiation and repeatability.
Hexahistidine (6xHis) fusion-based assays for protein-protein interactions.
Puckett, Mary C
2015-01-01
Fusion-protein tags provide a useful method to study protein-protein interactions. One widely used fusion tag is hexahistidine (6xHis). This tag has unique advantages over others due to its small size and the relatively low abundance of naturally occurring consecutive histidine repeats. 6xHis tags can interact with immobilized metal cations to provide for the capture of proteins and protein complexes of interest. In this chapter, a description of the benefits and uses of 6xHis-fusion proteins as well as a detailed method for performing a 6xHis-pulldown assay are described.
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-01-01
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs. PMID:25587878
Yang, Yong; Tong, Song; Huang, Shuying; Lin, Pan
2014-11-26
This paper presents a novel framework for the fusion of multi-focus images explicitly designed for visual sensor network (VSN) environments. Multi-scale based fusion methods can often obtain fused images with good visual effect. However, because of the defects of the fusion rules, it is almost impossible to completely avoid the loss of useful information in the thus obtained fused images. The proposed fusion scheme can be divided into two processes: initial fusion and final fusion. The initial fusion is based on a dual-tree complex wavelet transform (DTCWT). The Sum-Modified-Laplacian (SML)-based visual contrast and SML are employed to fuse the low- and high-frequency coefficients, respectively, and an initial composited image is obtained. In the final fusion process, the image block residuals technique and consistency verification are used to detect the focusing areas and then a decision map is obtained. The map is used to guide how to achieve the final fused image. The performance of the proposed method was extensively tested on a number of multi-focus images, including no-referenced images, referenced images, and images with different noise levels. The experimental results clearly indicate that the proposed method outperformed various state-of-the-art fusion methods, in terms of both subjective and objective evaluations, and is more suitable for VSNs.
NASA Astrophysics Data System (ADS)
Barnes, Cris W.
2009-05-01
The great vision of fusion power - harnessing the energy source of the stars for the good of people on Earth - is and has always been a highly attractive one. The history of fusion research is full of interesting tales, from its discovery to the recent completion of the US National Ignition Facility (NIF), now the world's largest laser (see Physics World March p7). Unfortunately, a new popular account of this history, Sun in a Bottle, mostly retells old stories of notable fusion failures, from mysterious early devices in Argentina through the cold-fusion debacle of the late 1980s. As a scientist who has devoted his career to plasma physics and fusion, I am - at least according to author Charles Seife - part of a community of researchers "unable to rid themselves of their intemperate self-deception". Having read it, I appear to be faced with a choice: am I a fraud or an incompetent?
An epidemic model for biological data fusion in ad hoc sensor networks
NASA Astrophysics Data System (ADS)
Chang, K. C.; Kotari, Vikas
2009-05-01
Bio terrorism can be a very refined and a catastrophic approach of attacking a nation. This requires the development of a complete architecture dedicatedly designed for this purpose which includes but is not limited to Sensing/Detection, Tracking and Fusion, Communication, and others. In this paper we focus on one such architecture and evaluate its performance. Various sensors for this specific purpose have been studied. The accent has been on use of Distributed systems such as ad-hoc networks and on application of epidemic data fusion algorithms to better manage the bio threat data. The emphasis has been on understanding the performance characteristics of these algorithms under diversified real time scenarios which are implemented through extensive JAVA based simulations. Through comparative studies on communication and fusion the performance of channel filter algorithm for the purpose of biological sensor data fusion are validated.
Sensor fusion for antipersonnel landmine detection: a case study
NASA Astrophysics Data System (ADS)
den Breejen, Eric; Schutte, Klamer; Cremer, Frank
1999-08-01
In this paper the multi sensor fusion results obtained within the European research project GEODE are presented. The layout of the test lane and the individual sensors used are described. The implementation of the SCOOP algorithm improves the ROC curves, as the false alarm surface and the number of false alarms both are taken into account. The confidence grids, as produced by the sensor manufacturers, of the sensors are used as input for the different sensor fusion methods implemented. The multisensor fusion methods implemented are Bayes, Dempster-Shafer, fuzzy probabilities and rules. The mapping of the confidence grids to the input parameters for fusion methods is an important step. Due to limited amount of the available data the entire test lane is used for training and evaluation. All four sensor fusion methods provide better detection results than the individual sensors.
Induction of cell-cell fusion by ectromelia virus is not inhibited by its fusion inhibitory complex.
Erez, Noam; Paran, Nir; Maik-Rachline, Galia; Politi, Boaz; Israely, Tomer; Schnider, Paula; Fuchs, Pinhas; Melamed, Sharon; Lustig, Shlomo
2009-09-29
Ectromelia virus, a member of the Orthopox genus, is the causative agent of the highly infectious mousepox disease. Previous studies have shown that different poxviruses induce cell-cell fusion which is manifested by the formation of multinucleated-giant cells (polykaryocytes). This phenomenon has been widely studied with vaccinia virus in conditions which require artificial acidification of the medium. We show that Ectromelia virus induces cell-cell fusion under neutral pH conditions and requires the presence of a sufficient amount of viral particles on the plasma membrane of infected cells. This could be achieved by infection with a replicating virus and its propagation in infected cells (fusion "from within") or by infection with a high amount of virus particles per cell (fusion "from without"). Inhibition of virus maturation or inhibition of virus transport on microtubules towards the plasma membrane resulted in a complete inhibition of syncytia formation. We show that in contrast to vaccinia virus, Ectromelia virus induces cell-cell fusion irrespectively of its hemagglutination properties and cell-surface expression of the orthologs of the fusion inhibitory complex, A56 and K2. Additionally, cell-cell fusion was also detected in mice lungs following lethal respiratory infection. Ectromelia virus induces spontaneous cell-cell fusion in-vitro and in-vivo although expressing an A56/K2 fusion inhibitory complex. This syncytia formation property cannot be attributed to the 37 amino acid deletion in ECTV A56.
Feasibility study on sensor data fusion for the CP-140 aircraft: fusion architecture analyses
NASA Astrophysics Data System (ADS)
Shahbazian, Elisa
1995-09-01
Loral Canada completed (May 1995) a Department of National Defense (DND) Chief of Research and Development (CRAD) contract, to study the feasibility of implementing a multi- sensor data fusion (MSDF) system onboard the CP-140 Aurora aircraft. This system is expected to fuse data from: (a) attributed measurement oriented sensors (ESM, IFF, etc.); (b) imaging sensors (FLIR, SAR, etc.); (c) tracking sensors (radar, acoustics, etc.); (d) data from remote platforms (data links); and (e) non-sensor data (intelligence reports, environmental data, visual sightings, encyclopedic data, etc.). Based on purely theoretical considerations a central-level fusion architecture will lead to a higher performance fusion system. However, there are a number of systems and fusion architecture issues involving fusion of such dissimilar data: (1) the currently existing sensors are not designed to provide the type of data required by a fusion system; (2) the different types (attribute, imaging, tracking, etc.) of data may require different degree of processing, before they can be used within a fusion system efficiently; (3) the data quality from different sensors, and more importantly from remote platforms via the data links must be taken into account before fusing; and (4) the non-sensor data may impose specific requirements on the fusion architecture (e.g. variable weight/priority for the data from different sensors). This paper presents the analyses performed for the selection of the fusion architecture for the enhanced sensor suite planned for the CP-140 aircraft in the context of the mission requirements and environmental conditions.
New results in low-energy fusion of Ca 40 + Zr 90 , 92
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanini, A. M.; Montagnoli, G.; Esbensen, H.
Near- and sub-barrier fusion of various Ca + Zr isotopic combinations have been widely investigated. A recent analysis of 40Ca + 96Zr data has highlighted the importance of couplings to multiphonon excitations and to both neutron and proton transfer channels. Analogous studies of 40Ca + 90Zr tend to exclude any role of transfer couplings. However, the lowest measured cross section for this system is rather high (840μb). Here, a rather complete data set is available for 40Ca + 94Zr, while no measurement of 40Ca + 92Zr fusion has been performed in the past.
New results in low-energy fusion of Ca 40 + Zr 90 , 92
Stefanini, A. M.; Montagnoli, G.; Esbensen, H.; ...
2017-07-07
Near- and sub-barrier fusion of various Ca + Zr isotopic combinations have been widely investigated. A recent analysis of 40Ca + 96Zr data has highlighted the importance of couplings to multiphonon excitations and to both neutron and proton transfer channels. Analogous studies of 40Ca + 90Zr tend to exclude any role of transfer couplings. However, the lowest measured cross section for this system is rather high (840μb). Here, a rather complete data set is available for 40Ca + 94Zr, while no measurement of 40Ca + 92Zr fusion has been performed in the past.
Method for vacuum fusion bonding
Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.
2001-01-01
An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.
Fusion bonding and alignment fixture
Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.
2000-01-01
An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.
Stabilization effect of Weibel modes in relativistic laser fusion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belghit, Slimen, E-mail: Belghit.slimen@gmail.com; Sid, Abdelaziz, E-mail: Sid-abdelaziz@hotmail.com
In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. Thismore » decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.« less
NASA Astrophysics Data System (ADS)
Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.
2016-07-01
Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The approach developed for analysis of the effects is a suitable tool to get insight into the complete fusion-fission dynamics, in particular, to investigate the mechanism of the complete fusion and fission time scale.
Rajpoot, Kashif; Grau, Vicente; Noble, J Alison; Becher, Harald; Szmigielski, Cezary
2011-08-01
Real-time 3D echocardiography (RT3DE) promises a more objective and complete cardiac functional analysis by dynamic 3D image acquisition. Despite several efforts towards automation of left ventricle (LV) segmentation and tracking, these remain challenging research problems due to the poor-quality nature of acquired images usually containing missing anatomical information, speckle noise, and limited field-of-view (FOV). Recently, multi-view fusion 3D echocardiography has been introduced as acquiring multiple conventional single-view RT3DE images with small probe movements and fusing them together after alignment. This concept of multi-view fusion helps to improve image quality and anatomical information and extends the FOV. We now take this work further by comparing single-view and multi-view fused images in a systematic study. In order to better illustrate the differences, this work evaluates image quality and information content of single-view and multi-view fused images using image-driven LV endocardial segmentation and tracking. The image-driven methods were utilized to fully exploit image quality and anatomical information present in the image, thus purposely not including any high-level constraints like prior shape or motion knowledge in the analysis approaches. Experiments show that multi-view fused images are better suited for LV segmentation and tracking, while relatively more failures and errors were observed on single-view images. Copyright © 2011 Elsevier B.V. All rights reserved.
PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site
Bothe, Ingo; Deng, Su; Baylies, Mary
2014-01-01
Cell-cell fusion is a regulated process that requires merging of the opposing membranes and underlying cytoskeletons. However, the integration between membrane and cytoskeleton signaling during fusion is not known. Using Drosophila, we demonstrate that the membrane phosphoinositide PI(4,5)P2 is a crucial regulator of F-actin dynamics during myoblast fusion. PI(4,5)P2 is locally enriched and colocalizes spatially and temporally with the F-actin focus that defines the fusion site. PI(4,5)P2 enrichment depends on receptor engagement but is upstream or parallel to actin remodeling. Regulators of actin branching via Arp2/3 colocalize with PI(4,5)P2 in vivo and bind PI(4,5)P2 in vitro. Manipulation of PI(4,5)P2 availability leads to impaired fusion, with a reduction in the F-actin focus size and altered focus morphology. Mechanistically, the changes in the actin focus are due to a failure in the enrichment of actin regulators at the fusion site. Moreover, improper localization of these regulators hinders expansion of the fusion interface. Thus, PI(4,5)P2 enrichment at the fusion site encodes spatial and temporal information that regulates fusion progression through the localization of activators of actin polymerization. PMID:24821989
Pretell-Mazzini, Juan; Chikwava, Kudakwashe R; Dormans, John Paul
2012-01-01
Back pain prevalence in the pediatric age group is less compared with adults. There is a wide range of possible etiologies, and tumors such as primary spinal hemangiomas are uncommon. Most are incidental findings and asymptomatic; however, painful lesions can be presented in up to 0.9% to 1.2% of cases. These lesions can produce neurologic involvement either spinal cord compression or cauda equina syndrome as in our case. The aim of this study is to describe a case of low back pain in a child due to a vertebral hemangioma complicated with acute cauda equina syndrome, and performed a literature review that will help us to recognize this aggressive variance making an early treatment feasible. A 13-year-old female, follow-up in an outer health care center due to a L1 vertebral hemangioma, characterized by 3 years of low back pain without neurologic symptoms presented to our emergency department with an acute cauda equina syndrome. An outside magnetic resonance imaging showed complete obliteration of the spinal canal at the level of the conus medullaris related to retropulsion of bone at L1. She underwent 2-stage surgical treatment: complete posterior L1 laminectomy and partial T12-L2 laminectomies, with partial L1 vertebrectomy and posterior fusion with instrumention from T11 to L3. Three weeks later, embolization before anterior fusion with inner body cage was performed. Forty months after surgery, she is doing well with no neurologic deficits. Even though hemangiomas are not a common cause of back pain, they should be taken into account. It is important to recognize the aggressive variance so an early treatment could be performed. There is no enough clinical data to establish guidelines of management in children, therefore, the treatment should be individualized.
Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M
2007-07-15
Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.
Importance of interpolation and coincidence errors in data fusion
NASA Astrophysics Data System (ADS)
Ceccherini, Simone; Carli, Bruno; Tirelli, Cecilia; Zoppetti, Nicola; Del Bianco, Samuele; Cortesi, Ugo; Kujanpää, Jukka; Dragani, Rossana
2018-02-01
The complete data fusion (CDF) method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickens, J.K.; Hill, N.W.; Hou, F.S.
1985-08-01
A system for making diagnostic measurements of the energy spectra of greater than or equal to 0.8-MeV neutrons produced during plasma operations of the Princeton Tokamak Fusion Test Reactor (TFTR) has been fabricated and tested and is presently in operation in the TFTR Test Cell Basement. The system consists of two separate detectors, each made up of cells containing liquid NE-213 scintillator attached permanently to RCA-8850 photomultiplier tubes. Pulses obtained from each photomultiplier system are amplified and electronically analyzed to identify and separate those pulses due to neutron-induced events in the detector from those due to photon-induced events in themore » detector. Signals from each detector are routed to two separate Analog-to-Digital Converters, and the resulting digitized information, representing: (1) the raw neutron-spectrum data; and (2) the raw photon-spectrum data, are transmited to the CICADA data-acquisition computer system of the TFTR. Software programs have been installed on the CICADA system to analyze the raw data to provide moderate-resolution recreations of the energy spectrum of the neutron and photon fluences incident on the detector during the operation of the TFTR. A complete description of, as well as the operation of, the hardware and software is given in this report.« less
Brindley, Melinda A.; Plattet, Philippe; Plemper, Richard Karl
2014-01-01
Enveloped viruses such as HIV and members of the paramyxovirus family use metastable, proteinaceous fusion machineries to merge the viral envelope with cellular membranes for infection. A hallmark of the fusogenic glycoproteins of these pathogens is refolding into a thermodynamically highly stable fusion core structure composed of six antiparallel α-helices, and this structure is considered instrumental for pore opening and/or enlargement. Using a paramyxovirus fusion (F) protein, we tested this paradigm by engineering covalently restricted F proteins that are predicted to be unable to close the six-helix bundle core structure fully. Several candidate bonds formed efficiently, resulting in F trimers and higher-order complexes containing covalently linked dimers. The engineered F complexes were incorporated into recombinant virions efficiently and were capable of refolding into a postfusion conformation without temporary or permanent disruption of the disulfide bonds. They efficiently formed fusion pores based on virus replication and quantitative cell-to-cell and virus-to-cell fusion assays. Complementation of these F mutants with a monomeric, fusion-inactive F variant enriched the F oligomers for heterotrimers containing a single disulfide bond, without affecting fusion complementation profiles compared with standard F protein. Our demonstration that complete closure of the fusion core does not drive paramyxovirus entry may aid the design of strategies for inhibiting virus entry. PMID:25157143
Brindley, Melinda A; Plattet, Philippe; Plemper, Richard Karl
2014-09-09
Enveloped viruses such as HIV and members of the paramyxovirus family use metastable, proteinaceous fusion machineries to merge the viral envelope with cellular membranes for infection. A hallmark of the fusogenic glycoproteins of these pathogens is refolding into a thermodynamically highly stable fusion core structure composed of six antiparallel α-helices, and this structure is considered instrumental for pore opening and/or enlargement. Using a paramyxovirus fusion (F) protein, we tested this paradigm by engineering covalently restricted F proteins that are predicted to be unable to close the six-helix bundle core structure fully. Several candidate bonds formed efficiently, resulting in F trimers and higher-order complexes containing covalently linked dimers. The engineered F complexes were incorporated into recombinant virions efficiently and were capable of refolding into a postfusion conformation without temporary or permanent disruption of the disulfide bonds. They efficiently formed fusion pores based on virus replication and quantitative cell-to-cell and virus-to-cell fusion assays. Complementation of these F mutants with a monomeric, fusion-inactive F variant enriched the F oligomers for heterotrimers containing a single disulfide bond, without affecting fusion complementation profiles compared with standard F protein. Our demonstration that complete closure of the fusion core does not drive paramyxovirus entry may aid the design of strategies for inhibiting virus entry.
Ahsan, M K; Hossain, M A; Sakeb, N; Khan, S I; Zaman, N
2013-10-01
This prospective interventional study carried out at Bangabandhu Sheikh Mujib Medical University and a private hospital in Dhaka, Bangladesh during the period from October 2003 to September 2011. Surgical treatment of degenerative disc disease (DDD) should aim to re-expand the interbody space and stabilize until fusion is complete. The present study conducted to find out the efficacy of using interbody fusion device (Cage) to achieve interbody space re-expansion and fusion in surgical management of DDD. We have performed the interventional study on 53 patients, 42 female and 11 male, with age between 40 to 67 years. All the patients were followed up for 36 to 60 months (average 48 months). Forty seven patients were with spondylolisthesis and 06 with desiccated disc. All subjects were evaluated with regard to immediate and long term complications, radiological fusion and interbody space re-expansion and maintenance. The clinical outcome (pain and disability) was scored by standard pre and postoperative questionnaires. Intrusion, extrusion and migration of the interbody fusion cage were also assessed. Forty seven patients were considered to have satisfactory outcome in at least 36 months follow up. Pseudoarthrosis developed in 04 cases and 06 patients developed complications. In this series posterior lumbar interbody fusion (PLIF) with interbody cage and instrumentation in DDD showed significant fusion rate and maintenance of interbody space. Satisfactory outcome observed in 88.68% cases.
An Approach to Automated Fusion System Design and Adaptation
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-01-01
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum. PMID:28300762
A cryptic translocation leading to NUP98-PHF23 fusion in AML.
Ning, Yi
2016-12-01
Chromosome translocations leading to gene fusions have emerged as important oncogenic drivers of various types of malignancies. Detection and characterization of these fusion genes not only help diagnosis and management of specific malignancies, but also contribute to our understanding of the genetic basis and pathogenesis of these diseases. NUP98 gene encodes a 98 kDa nucleoporin, which is a component of the nuclear pore complex that mediates transport of mRNA and proteins between the nucleus and the cytoplasm. Due to its participation in translocations leading to the formation of fusion with at least 29 different partner genes, NUP98 is considered one of the most promiscuous fusion genes in hematologic malignancies. We discuss our identification and characterization of a NUP98-PHF23 fusion from a cryptic translocation in patients with acute myeloid leukemia (AML). Copyright © 2016 Elsevier Ltd. All rights reserved.
An Approach to Automated Fusion System Design and Adaptation.
Fritze, Alexander; Mönks, Uwe; Holst, Christoph-Alexander; Lohweg, Volker
2017-03-16
Industrial applications are in transition towards modular and flexible architectures that are capable of self-configuration and -optimisation. This is due to the demand of mass customisation and the increasing complexity of industrial systems. The conversion to modular systems is related to challenges in all disciplines. Consequently, diverse tasks such as information processing, extensive networking, or system monitoring using sensor and information fusion systems need to be reconsidered. The focus of this contribution is on distributed sensor and information fusion systems for system monitoring, which must reflect the increasing flexibility of fusion systems. This contribution thus proposes an approach, which relies on a network of self-descriptive intelligent sensor nodes, for the automatic design and update of sensor and information fusion systems. This article encompasses the fusion system configuration and adaptation as well as communication aspects. Manual interaction with the flexibly changing system is reduced to a minimum.
In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.
Woodman, P G; Adamczewski, J P; Hunt, T; Warren, G
1993-05-01
Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment.
Control of mechanically activated polymersome fusion: Factors affecting fusion
Henderson, Ian M.; Paxton, Walter F.
2014-12-15
Previously we have studied the mechanically-activated fusion of extruded (200 nm) polymer vesicles into giant polymersomes using agitation in the presence of salt. In this study we have investigated several factors contributing to this phenomenon, including the effects of (i) polymer vesicle concentration, (ii) agitation speed and duration, and iii) variation of the salt and its concentration. It was found that increasing the concentration of the polymer dramatically increases the production of giant vesicles through the increased collisions of polymersomes. Our investigations also found that increasing the frequency of agitation increased the efficiency of fusion, though ultimately limited the sizemore » of vesicle which could be produced due to the high shear involved. Finally it was determined that salt-mediation of the fusion process was not limited to NaCl, but is instead a general effect facilitated by the presence of solvated ionic compounds, albeit with different salts initiating fusion at different concentration.« less
Status and problems of fusion reactor development.
Schumacher, U
2001-03-01
Thermonuclear fusion of deuterium and tritium constitutes an enormous potential for a safe, environmentally compatible and sustainable energy supply. The fuel source is practically inexhaustible. Further, the safety prospects of a fusion reactor are quite favourable due to the inherently self-limiting fusion process, the limited radiologic toxicity and the passive cooling property. Among a small number of approaches, the concept of toroidal magnetic confinement of fusion plasmas has achieved most impressive scientific and technical progress towards energy release by thermonuclear burn of deuterium-tritium fuels. The status of thermonuclear fusion research activity world-wide is reviewed and present solutions to the complicated physical and technological problems are presented. These problems comprise plasma heating, confinement and exhaust of energy and particles, plasma stability, alpha particle heating, fusion reactor materials, reactor safety and environmental compatibility. The results and the high scientific level of this international research activity provide a sound basis for the realisation of the International Thermonuclear Experimental Reactor (ITER), whose goal is to demonstrate the scientific and technological feasibility of a fusion energy source for peaceful purposes.
Kotsias, Andreas; Mularski, Sven; Kühn, Björn; Hanna, Michael; Suess, Olaf
2017-01-01
Anterior cervical diskectomy and fusion (ACDF) is a well-established surgical treatment. Several types of intervertebral spacers can be used, but there is increasing evidence that PEEK cages yield insufficient fusion and thus less clinical improvement. The study aim was to assess the outcomes of single-level ACDF with an empty PEEK cage partially coated with titanium. This prospective multicenter single-arm clinical study collected follow-up data at 6, 12, and 18 months. A post hoc comparison was made to closely matched patients from another similar trial treated with identically designed, empty, uncoated PEEK cages. There were 49 of 50 patients (98%) who met the MCID of 3+ points of improvement on VAS pain or had an 18-month VAS ≤ 1. Yet even by 18 months post-op, only 40 of 50 (80%) PEEK + Ti patients achieved complete bony fusion. The PEEK + Ti group ( n = 49) seemed to have somewhat better fusion scores and significantly better pain relief at 6 M than the matched controls ( n = 49), but these differences did not persist at 12 M or 18 M. Patients (with either implant) who achieved complete bony fusion had significantly better improvement of pain at 6 M and disability at 6 M and 12 M than patients that remained unfused. ACDF is effective treatment for cervical myelopathy and radiculopathy. Although this and other studies show that titanium fuses better, partial coating of a PEEK cage does not improve the fusion rate sufficiently or confer other lasting clinical benefit. PEEK cages fully coated with titanium should be tested in prospective randomized comparative trials. Prospective, multicenter, single-arm clinical observational study without an individual Trial registration number. Study design and post hoc data analysis according to the "PIERCE-PEEK study", ISRCTN42774128, retrospectively registered 14 April 2009.
A review of potential image fusion methods for remote sensing-based irrigation management: Part II
USDA-ARS?s Scientific Manuscript database
Satellite-based sensors provide data at either greater spectral and coarser spatial resolutions, or lower spectral and finer spatial resolutions due to complementary spectral and spatial characteristics of optical sensor systems. In order to overcome this limitation, image fusion has been suggested ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Kurt A.; Settembre, Ethan C.; Shaw, Christine A.
2012-02-07
Respiratory syncytial virus (RSV), the main cause of infant bronchiolitis, remains a major unmet vaccine need despite more than 40 years of vaccine research. Vaccine candidates based on a chief RSV neutralization antigen, the fusion (F) glycoprotein, have foundered due to problems with stability, purity, reproducibility, and potency. Crystal structures of related parainfluenza F glycoproteins have revealed a large conformational change between the prefusion and postfusion states, suggesting that postfusion F antigens might not efficiently elicit neutralizing antibodies. We have generated a homogeneous, stable, and reproducible postfusion RSV F immunogen that elicits high titers of neutralizing antibodies in immunized animals.more » The 3.2-{angstrom} X-ray crystal structure of this substantially complete RSV F reveals important differences from homology-based structural models. Specifically, the RSV F crystal structure demonstrates the exposure of key neutralizing antibody binding sites on the surface of the postfusion RSV F trimer. This unanticipated structural feature explains the engineered RSV F antigen's efficiency as an immunogen. This work illustrates how structural-based antigen design can guide the rational optimization of candidate vaccine antigens.« less
Requirement of myomaker-mediated stem cell fusion for skeletal muscle hypertrophy
Goh, Qingnian; Millay, Douglas P
2017-01-01
Fusion of skeletal muscle stem/progenitor cells is required for proper development and regeneration, however the significance of this process during adult muscle hypertrophy has not been explored. In response to muscle overload after synergist ablation in mice, we show that myomaker, a muscle specific membrane protein essential for myoblast fusion, is activated mainly in muscle progenitors and not myofibers. We rendered muscle progenitors fusion-incompetent through genetic deletion of myomaker in muscle stem cells and observed a complete reduction of overload-induced hypertrophy. This blunted hypertrophic response was associated with a reduction in Akt and p70s6k signaling and protein synthesis, suggesting a link between myonuclear accretion and activation of pro-hypertrophic pathways. Furthermore, fusion-incompetent muscle exhibited increased fibrosis after muscle overload, indicating a protective role for normal stem cell activity in reducing myofiber strain associated with hypertrophy. These findings reveal an essential contribution of myomaker-mediated stem cell fusion during physiological adult muscle hypertrophy. DOI: http://dx.doi.org/10.7554/eLife.20007.001 PMID:28186492
Abrams, Michael S; Duncan, Candace L; McMurtrey, Ryan
2011-04-01
To document the development of motor fusion when patients with a history of strabismic amblyopia are treated part-time with Bangerter foils. This was a prospective interventional outcome study of consecutive patients with a history of strabismic amblyopia, horizontal strabismus (only) ≤20(∆), visual acuity of 20/60 or better in the nonfixating eye, and no motor fusion (as indicated by the absence of prism vergence) for 1 year before entry into the study. Subjects wore a 0.1 density Bangerter foil for 3-4 hours daily. Data on visual acuity, alignment, and motor fusion status were collected for a minimum of 2 years. Patients with motor fusion were then followed for a minimum of 18 months to assess the stability of their motor fusion status after the Bangerter foil was discontinued. Of the 46 patients meeting entry criteria (mean age, 5.3 ± 1.7 years) who completed follow-up, 28 (61%) developed motor fusion. Motor fusion was retained in all 17 patients who were followed after their foils were discontinued for a mean of 13.3 months. A child's motor fusion status is generally believed to be established during an early formative period of visual development. The development of motor fusion in many of our patients during the course of part-time Bangerter foil treatment suggests that improvements in motor fusion status can occur at a later age than previously believed. Copyright © 2011 American Association for Pediatric Ophthalmology and Strabismus. Published by Mosby, Inc. All rights reserved.
Characterizing the astrophysical S factor for 12C+12C fusion with wave-packet dynamics
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis; Wiescher, Michael
2018-05-01
A quantitative study of the astrophysically important subbarrier fusion of 12C+12C is presented. Low-energy collisions are described in the body-fixed reference frame using wave-packet dynamics within a nuclear molecular picture. A collective Hamiltonian drives the time propagation of the wave packet through the collective potential-energy landscape. The fusion imaginary potential for specific dinuclear configurations is crucial for understanding the appearance of resonances in the fusion cross section. The theoretical subbarrier fusion cross sections explain some observed resonant structures in the astrophysical S factor. These cross sections monotonically decline towards stellar energies. The structures in the data that are not explained are possibly due to cluster effects in the nuclear molecule, which need to be included in the present approach.
Chowdhury, Forhad H; Haque, Mohammod Raziul; Alam, Sarwar Murshed; Khaled Chowdhury, S M Noman; Khan, Shamsul Islam; Goel, Atul
2017-11-01
Nontraumatic spontaneous atlanto-occipital dislocation (AOD) is rare. In this report, we discuss the technical steps of condylar joint fusion and stabilization (by screws and plates) in nontraumatic AOD. To the best of our knowledge, it is the first report of such techniques. A young girl and a young man with progressive quadriparesis due to nontraumatic spontaneous atlanto-occipital dislocation were managed by microsurgical reduction, fusion, and stabilization of the joint by occipital condylar and C1 lateral mass screw and plate fixation after mobilization of vertebral artery. In both cases, condylar joints fixation and fusion were done successfully. Condylar joint stabilization and fusion may be a good or alternative option for AOD. Copyright © 2017 Elsevier Inc. All rights reserved.
Ikumi, Akira; Kubota, Shigeki; Shimizu, Yukiyo; Kadone, Hideki; Marushima, Aiki; Ueno, Tomoyuki; Kawamoto, Hiroaki; Hada, Yasushi; Matsumura, Akira; Sankai, Yoshiyuki; Yamazaki, Masashi
2017-09-01
Recently, locomotor training with robotic assistance has been found effective in treating spinal cord injury (SCI). Our case report examined locomotor training using the robotic suit hybrid assistive limb (HAL) in a patient with complete C4 quadriplegia due to chronic SCI. This is the first report examining HAL in complete C4 quadriplegia. The patient was a 19-year-old man who dislocated C3/4 during judo 4 years previously. Following the injury, he underwent C3/4 posterior spinal fusion but remained paralyzed despite rehabilitation. There was muscle atrophy under C5 level and no sensation around the anus, but partial sensation of pressure remained in the limbs. The American Spinal Injury Association impairment scale was Grade A (complete motor C4 lesion). HAL training was administered in 10 sessions (twice per week). The training sessions consisted of treadmill walking with HAL. For safety, 2 physicians and 1 therapist supported the subject for balance and weight-bearing. The device's cybernic autonomous control mode provides autonomic physical support based on predefined walking patterns. We evaluated the adverse events, walking time and distance, and the difference in muscle spasticity before and after HAL-training using a modified Ashworth scale (mAs). No adverse events were observed that required discontinuation of rehabilitation. Walking distance and time increased from 25.2 meters/7.6 minutes to 148.3 meter/15 minutes. The mAs score decreased after HAL training. Our case report indicates that HAL training is feasible and effective for complete C4 quadriplegia in chronic SCI.
Shah, Nameeta; Lankerovich, Michael; Lee, Hwahyung; Yoon, Jae-Geun; Schroeder, Brett; Foltz, Greg
2013-11-22
RNA-seq has spurred important gene fusion discoveries in a number of different cancers, including lung, prostate, breast, brain, thyroid and bladder carcinomas. Gene fusion discovery can potentially lead to the development of novel treatments that target the underlying genetic abnormalities. In this study, we provide comprehensive view of gene fusion landscape in 185 glioblastoma multiforme patients from two independent cohorts. Fusions occur in approximately 30-50% of GBM patient samples. In the Ivy Center cohort of 24 patients, 33% of samples harbored fusions that were validated by qPCR and Sanger sequencing. We were able to identify high-confidence gene fusions from RNA-seq data in 53% of the samples in a TCGA cohort of 161 patients. We identified 13 cases (8%) with fusions retaining a tyrosine kinase domain in the TCGA cohort and one case in the Ivy Center cohort. Ours is the first study to describe recurrent fusions involving non-coding genes. Genomic locations 7p11 and 12q14-15 harbor majority of the fusions. Fusions on 7p11 are formed in focally amplified EGFR locus whereas 12q14-15 fusions are formed by complex genomic rearrangements. All the fusions detected in this study can be further visualized and analyzed using our website: http://ivygap.swedish.org/fusions. Our study highlights the prevalence of gene fusions as one of the major genomic abnormalities in GBM. The majority of the fusions are private fusions, and a minority of these recur with low frequency. A small subset of patients with fusions of receptor tyrosine kinases can benefit from existing FDA approved drugs and drugs available in various clinical trials. Due to the low frequency and rarity of clinically relevant fusions, RNA-seq of GBM patient samples will be a vital tool for the identification of patient-specific fusions that can drive personalized therapy.
Acute repair of traumatic pan-brachial plexus injury: technical considerations and approaches.
Abou-Al-Shaar, Hussam; Karsy, Michael; Ravindra, Vijay; Joyce, Evan; Mahan, Mark A
2018-01-01
Particularly challenging after complete brachial plexus avulsion is reestablishing effective hand function, due to limited neurological donors to reanimate the arm. Acute repair of avulsion injuries may enable reinnervation strategies for achieving hand function. This patient presented with pan-brachial plexus injury. Given its irreparable nature, the authors recommended multistage reconstruction, including contralateral C-7 transfer for hand function, multiple intercostal nerves for shoulder/triceps function, shoulder fusion, and spinal accessory nerve-to-musculocutaneous nerve transfer for elbow flexion. The video demonstrates distal contraction from electrical stimulation of the avulsed roots. Single neurorrhaphy of the contralateral C-7 transfer was performed along with a retrosternocleidomastoid approach. The video can be found here: https://youtu.be/GMPfno8sK0U .
Nyström, Bo; Weber, Henrik; Schillberg, Birgitta; Taube, Adam
2017-07-01
Only two out of the five existing randomized studies have reported better results from fusion surgery for chronic low back pain (CLBP) compared to conservative treatment. In these studies the back symptoms of the patients were described simply as "chronic low back pain". One possible reason for the modest results of surgery is the lack of a description of specified symptoms that might be related to a painful segment/disc, and patient selection may therefore be more or less a matter of chance. Previous prospective studies including facet joint injections and discography and eventually MRI have failed to identify patients with a painful segment/disc that will benefit from fusion surgery. Our purpose was to analyse in detail the pre-operative symptoms and signs presented by patients who showed substantial relief from their back pain following spinal fusion surgery with the aim of possibly finding a pain pattern indicating segmental, discogenic pain. We analysed 40 consecutive patients, mean age 41 years, with a history of disabling low back pain for a mean of 7.7 years. Before surgery the patients completed a detailed questionnaire concerning various aspects of their back pain, and findings at clinical examination were thoroughly noted. Monosegmental posterior lumbar interbody fusion without internal fixation was performed using microsurgical technique. Outcome was assessed at 1, 2 and 4 years after surgery and finally at 18 years, using self-reporting measures and assessment by an independent examiner. Assessment at 18 years applied the Balanced Inventory for Spinal Disorders Questionnaire and the Roland-Morris Disability Questionnaire. According to the independent observer's assessment at two years 27 of the 40 patients were much improved. Analysis of the pre-operative depiction of the back symptoms of this group revealed a rather uniform pattern, the most important being: dominating back pain originating in the midline of the spine, with a dull, aching character and stabbing pain in the same area provoked by sudden movements. Most patients in this group also had diffuse pain radiation of various extension down one or both legs and often bladder dysfunction with frequency. At clinical examination, localized interspinal tenderness was observed within the spinal area in question and the patient's back pain was provoked by pressure in that area and by tapping a neighbouring spinous process. At 18 years after surgery 19 patients assessed themselves as much improved. At that time 5 of them had pension due to age, 7 early pension, one worked full time and six patients part time. Eleven patients were re-operated due to defect bony healing. The results may suggest that the use of a detailed symptom analysis and clinical examination may make it possible to select a subgroup of patients within the CLBP group likely to have better outcome following fusion surgery. The next step would be to execute prospective studies and if our findings concerning back pain details and signs among CLPB patients can be confirmed this can provide for more accurate selection of patients suitable for fusion surgery. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Sudden quadriplegia after acute cervical disc herniation.
Sadanand, Venkatraman; Kelly, Michael; Varughese, George; Fourney, Daryl R
2005-08-01
Acute neurological deterioration secondary to cervical disc herniation not related to external trauma is very rare, with only six published reports to date. In most cases, acute symptoms were due to progression of disc herniation in the presence of pre-existing spinal canal stenosis. A 42-year-old man developed weakness and numbness in his arms and legs immediately following a sneeze. On physical examination he had upper motor neuron signs that progressed over a few hours to a complete C5 quadriplegia. An emergent magnetic resonance imaging study revealed a massive C4/5 disc herniation. He underwent emergency anterior cervical discectomy and fusion. Postoperatively, the patient remained quadriplegic. Eighteen days later, while receiving rehabilitation therapy, he expired secondary to a pulmonary embolus. Autopsy confirmed complete surgical decompression of the spinal cord. Our case demonstrates that acute quadriplegia secondary to cervical disc herniation may occur without a history of myelopathy or spinal canal stenosis after an event as benign as a sneeze.
Effects of ROCK inhibitor Y-27632 on cell fusion through a microslit.
Wada, Ken-Ichi; Hosokawa, Kazuo; Ito, Yoshihiro; Maeda, Mizuo
2015-11-01
We previously reported a direct cytoplasmic transfer method using a microfluidic device, in which cell fusion was induced through a microslit (slit-through-fusion) by the Sendai virus envelope (HVJ-E) to prevent nuclear mixing. However, the method was impractical due to low efficiency of slit-through-fusion formation and insufficient prevention of nuclear mixing. The purpose of this study was to establish an efficient method for inducing slit-through-fusion without nuclear mixing. We hypothesized that modulation of cytoskeletal component can decrease nuclear migration through the microslit considering its functions. Here we report that supplementation with Y-27632, a specific ROCK inhibitor, significantly enhances cell fusion induction and prevention of nuclear mixing. Supplementation with Y-27632 increased the formation of slit-through-fusion efficiency by more than twofold. Disruption of F-actin by Y-27632 prevented nuclear migration between fused cells through the microslit. These two effects of Y-27632 led to promotion of the slit-through-fusion without nuclear mixing with a 16.5-fold higher frequency compared to our previous method (i.e., cell fusion induction by HVJ-E without supplementation with Y-27632). We also confirmed that mitochondria were successfully transferred to the fusion partner under conditions of Y-27632 supplementation. These findings demonstrate the practicality of our cell fusion system in producing direct cytoplasmic transfer between live cells. © 2015 Wiley Periodicals, Inc.
Tritium well depth, tritium well time and sponge mechanism for reducing tritium retention
NASA Astrophysics Data System (ADS)
Deng, B. Q.; Li, Z. X.; Li, C. Y.; Feng, K. M.
2011-07-01
New simulation results are predicted in a fusion reactor operation process. They are somewhat similar to, but quite different from, the xenon poisoning effects resulting from fission-produced iodine during the restart-up process of a fission reactor. We obtained completely new results of tritium well depth and tritium well time in magnetic confinement fusion energy research area. This study is carried out to investigate the following: what will be the least amount of tritium storage required to start up a fusion reactor and how long the fusion reactor needs to be operated for achieving the tritium break-even during the initial start-up phase due to the finite tritium-breeding time, which is dependent on the tritium breeder, specific structure of the breeding zone, layout of the coolant flow pipes, tritium recovery scheme and applied extraction process, the tritium retention of plasma facing component (PFC) and other reactor components, unrecoverable tritium fraction in the breeder, leakage to the inertial gas container and the natural radioactive decay time constant. We describe these new issues and answer these problems by setting up and solving a set of equations, which are described by a dynamic subsystem model of tritium inventory evolution in a fusion experimental breeder (FEB). Reasonable results are obtained using our simulation model. It is found that the tritium well depth is about 0.319 kg and the tritium well time is approximately 235 full power operation days for the reference case of the designed FEB configuration, and it is also found that after one-year operation the tritium storage reaches 0.767 kg, which is more than the least amount of tritium storage required to start up another FEB-like fusion reactor. The results show that the tritium retention in the PFC is equivalent to 11.9% of tritium well depth that is fairly consistent with the result of 10-20% deduced from the integrated particle balance of European tokamaks. Based on our experimental and theoretical studies, some new mechanisms are proposed for reducing the tritium retention in PFC and structure materials of tritium-breeding blanket. In this paper, a qualitative analysis of the 'sponge effect' is carried out. The 'sponge effect' may help us to reduce tritium retention by ~20% in the PFC.
Comparative assessment of methods for the fusion transcripts detection from RNA-Seq data
Kumar, Shailesh; Vo, Angie Duy; Qin, Fujun; Li, Hui
2016-01-01
RNA-Seq made possible the global identification of fusion transcripts, i.e. “chimeric RNAs”. Even though various software packages have been developed to serve this purpose, they behave differently in different datasets provided by different developers. It is important for both users, and developers to have an unbiased assessment of the performance of existing fusion detection tools. Toward this goal, we compared the performance of 12 well-known fusion detection software packages. We evaluated the sensitivity, false discovery rate, computing time, and memory usage of these tools in four different datasets (positive, negative, mixed, and test). We conclude that some tools are better than others in terms of sensitivity, positive prediction value, time consumption and memory usage. We also observed small overlaps of the fusions detected by different tools in the real dataset (test dataset). This could be due to false discoveries by various tools, but could also be due to the reason that none of the tools are inclusive. We have found that the performance of the tools depends on the quality, read length, and number of reads of the RNA-Seq data. We recommend that users choose the proper tools for their purpose based on the properties of their RNA-Seq data. PMID:26862001
Thought-action fusion as a causal factor in the development of intrusions.
Rassin, E; Merckelbach, H; Muris, P; Spaan, V
1999-03-01
Thought-action fusion refers to the tendency to treat thoughts and actions as equivalents. Some authors (e.g., Rachman, 1997; Behaviour Research and Therapy, 35, 793-802) have suggested that thought-action fusion plays a role in the etiology of obsessive intrusions. The present study sought to test this idea. Subjects (n = 19) in the experimental condition underwent a bogus EEG recording session. They were informed that the apparatus was able to pick up the word 'apple' and that thoughts of that word could result in the administration of electrical shocks to another person. After having spent 15 minutes in the EEG laboratory, experimental subjects and controls (n = 26) completed a short questionnaire containing items about characteristics of the target thought (e.g., frequency, aversiveness). Results indicate that thought-action fusion, indeed, promotes intrusive thinking in that it results in a higher frequency of target thoughts, more discomfort, and more resistance. Thus, the current findings support the idea that thought-action fusion may contribute to the development of obsessive intrusions.
The ring of life provides evidence for a genome fusion origin of eukaryotes.
Rivera, Maria C; Lake, James A
2004-09-09
Genomes hold within them the record of the evolution of life on Earth. But genome fusions and horizontal gene transfer seem to have obscured sufficiently the gene sequence record such that it is difficult to reconstruct the phylogenetic tree of life. Here we determine the general outline of the tree using complete genome data from representative prokaryotes and eukaryotes and a new genome analysis method that makes it possible to reconstruct ancient genome fusions and phylogenetic trees. Our analyses indicate that the eukaryotic genome resulted from a fusion of two diverse prokaryotic genomes, and therefore at the deepest levels linking prokaryotes and eukaryotes, the tree of life is actually a ring of life. One fusion partner branches from deep within an ancient photosynthetic clade, and the other is related to the archaeal prokaryotes. The eubacterial organism is either a proteobacterium, or a member of a larger photosynthetic clade that includes the Cyanobacteria and the Proteobacteria.
Interplay of charge clustering and weak binding in reactions of 8Li
NASA Astrophysics Data System (ADS)
Cook, K. J.; Carter, I. P.; Simpson, E. C.; Dasgupta, M.; Hinde, D. J.; Bezzina, L. T.; Kalkal, Sunil; Sengupta, C.; Simenel, C.; Swinton-Bland, B. M. A.; Vo-Phuoc, K.; Williams, E.
2018-02-01
In collisions of light, stable, weakly bound nuclides, complete fusion (capture of all of the projectile charge) has been found to be suppressed by ˜30 % at above-barrier energies. This is thought to be related to their low thresholds for breakup into charged clusters. The observation of fusion suppression in the neutron-rich radioactive nucleus 8Li is therefore puzzling: the lowest breakup threshold yields 7Li+n which cannot contribute to fusion suppression because 7Li retains all the projectile charge. In this work, the full characteristics of 8Li breakup in reactions with 209Bi are presented, including, for the first time, coincidence measurements of breakup into charged clusters. Correlations of cluster fragments show that most breakup occurs too slowly to significantly suppress fusion. However, a large cross section for unaccompanied α particles was found, suggesting that charge clustering, facilitating partial charge capture, rather than weak binding is the crucial factor in fusion suppression, which may therefore persist in exotic nuclides.
Matsunaga, S; Ijiri, K; Koga, H
2000-07-15
Evaluation of results a longer than 10-year follow-up of patients with upper cervical lesions due to rheumatoid arthritis who underwent occipitocervical fusion. To determine the final outcome of patients with upper cervical lesions due to rheumatoid arthritis treated by occipitocervical fusion. There are few studies reporting the final outcome of patients with rheumatoid arthritis treated by occipitocervical fusion and observed for longer than 10 years. The subjects were 16 patients with rheumatoid arthritis with myelopathy who underwent occipitocervical fusion with a rectangular rod more than 10 years ago. All 16 patients had irreducible atlantoaxial dislocation, and 11 also had vertical dislocation of the axis. All patients had preoperative nuchal pain, and were classified into Class II (two patients), Class IIIA (nine patients), and class IIIB (five patients) according to Ranawat's preoperative neurologic classification. The atlas-dens interval remained the same as immediately after surgery. Vertical dislocation returned to the preoperative condition, despite successful surgical correction. Preoperative occipital pain disappeared or was reduced in all cases. Myelopathy improved in 12 of the 16 patients (75%) by more than one class in the Ranawat preoperative neurologic classification. Survival rate at 10 years after surgery was 38%; mean age at death was 70.7 years. The postoperative periods during which patients could walk by themselves ranged from 6 months to 13 years (mean, 7.5 years). Occipitocervical fusion for patients with rheumatoid arthritis is useful for decreasing nuchal pain, reducing myelopathy, and improving prognosis.
Effective World Modeling: Multisensor Data Fusion Methodology for Automated Driving
Elfring, Jos; Appeldoorn, Rein; van den Dries, Sjoerd; Kwakkernaat, Maurice
2016-01-01
The number of perception sensors on automated vehicles increases due to the increasing number of advanced driver assistance system functions and their increasing complexity. Furthermore, fail-safe systems require redundancy, thereby increasing the number of sensors even further. A one-size-fits-all multisensor data fusion architecture is not realistic due to the enormous diversity in vehicles, sensors and applications. As an alternative, this work presents a methodology that can be used to effectively come up with an implementation to build a consistent model of a vehicle’s surroundings. The methodology is accompanied by a software architecture. This combination minimizes the effort required to update the multisensor data fusion system whenever sensors or applications are added or replaced. A series of real-world experiments involving different sensors and algorithms demonstrates the methodology and the software architecture. PMID:27727171
Exploring incomplete fusion fraction in 6,7Li induced nuclear reactions
NASA Astrophysics Data System (ADS)
Parkar, V. V.; Jha, V.; Kailas, S.
2017-11-01
We have included breakup effects explicitly to simultaneously calculate the measured cross-sections of the complete fusion, incomplete fusion, and total fusion for 6,7Li projectiles on various targets using the Continuum Discretized Coupled Channels method. The breakup absorption cross-sections obtained with different choices of short range imaginary potentials are utilized to evaluate the individual α-capture and d/t-capture cross-sections and compare with the measured data. It is interesting to note, while in case of 7Li projectile the cross-sections for triton-ICF/triton-capture is far more dominant than α-ICF/α-capture at all energies, similar behavior is not observed in case of 6Li projectile for the deuteron-ICF/deuteron-capture and α-ICF/α-capture. Both these observations are also corroborated by the experimental data for all the systems studied.
Transient complex peroxisomal interactions
Bonekamp, Nina A.; Schrader, Michael
2012-01-01
Mitochondria and peroxisomes are ubiquitous subcellular organelles that fulfill essential metabolic functions, rendering them indispensable for human development and health. Both are highly dynamic organelles that can undergo remarkable changes in morphology and number to accomplish cellular needs. While mitochondrial dynamics are also regulated by frequent fusion events, the fusion of mature peroxisomes in mammalian cells remained a matter of debate. In our recent study, we clarified systematically that there is no complete fusion of mature peroxisomes analogous to mitochondria. Moreover, in contrast to key division components such as DLP1, Fis1 or Mff, mitochondrial fusion proteins were not localized to peroxisomes. However, we discovered and characterized novel transient, complex interactions between individual peroxisomes which may contribute to the homogenization of the often heterogeneous peroxisomal compartment, e.g., by distribution of metabolites, signals or other “molecular information” via interperoxisomal contact sites. PMID:23336019
C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein
Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis
2011-01-01
The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223
Hussain, Manzar; Nasir, Sadaf; Moed, Amber; Murtaza, Ghulam
2011-12-01
This is a case series. We wanted to identify variations in the practice patterns among neurosurgeons and orthopedic surgeons for the management of spinal disorders. Spinal disorders are common in the clinical practice of both neurosurgeons and orthopedic surgeons. It has been observed that despite the availability of various guidelines, there is lack of consensus among surgeons about the management of various disorders. A questionnaire was distributed, either directly or via e-mail, to the both the neurosurgeons and orthopedic surgeons who worked at 5 tertiary care centers within a single region of Korea. The surgeons were working either in private practice or in academic institutions. The details of the questionnaire included demographic details and the specialty (orthopedic/neurosurgeon). The surgeons were classified according to the level of experience as up to 5 years, 6-10 years and > 10 years. Questions were asked about the approach to lumbar discectomy (fragmentectomy or aggressive disc removal), using steroids for treating discitis, the fusion preference for spondylolisthesis, the role of an orthosis after fusion, the preferred surgical approach for spinal stenosis, the operative approach for spinal trauma (early within 72 hours or late > 72 hours) and the role of surgery in complete spinal cord injury. The data was analyzed using SPSS ver 16. p-values < 0.05 were considered to be significant. Of the 30 surgeons who completed the questionnaire, 20 were neurosurgeons and 10 were orthopedic surgeons. Statistically significant differences were observed for the management of spinal stenosis, spondylolisthesis, using an orthosis after fusion, the type of lumbar discectomy and the value of surgical intervention after complete spinal cord injury. Our results suggest that there continues to exist a statistically significant lack of consensus among neurosurgeons and orthopedic spine surgeons when considering using an orthosis after fusion, the type of discectomy and the value of intervention after complete spinal injury.
Nasir, Sadaf; Moed, Amber; Murtaza, Ghulam
2011-01-01
Study Design This is a case series. Purpose We wanted to identify variations in the practice patterns among neurosurgeons and orthopedic surgeons for the management of spinal disorders. Overview of Literature Spinal disorders are common in the clinical practice of both neurosurgeons and orthopedic surgeons. It has been observed that despite the availability of various guidelines, there is lack of consensus among surgeons about the management of various disorders. Methods A questionnaire was distributed, either directly or via e-mail, to the both the neurosurgeons and orthopedic surgeons who worked at 5 tertiary care centers within a single region of Korea. The surgeons were working either in private practice or in academic institutions. The details of the questionnaire included demographic details and the specialty (orthopedic/neurosurgeon). The surgeons were classified according to the level of experience as up to 5 years, 6-10 years and > 10 years. Questions were asked about the approach to lumbar discectomy (fragmentectomy or aggressive disc removal), using steroids for treating discitis, the fusion preference for spondylolisthesis, the role of an orthosis after fusion, the preferred surgical approach for spinal stenosis, the operative approach for spinal trauma (early within 72 hours or late > 72 hours) and the role of surgery in complete spinal cord injury. The data was analyzed using SPSS ver 16. p-values < 0.05 were considered to be significant. Results Of the 30 surgeons who completed the questionnaire, 20 were neurosurgeons and 10 were orthopedic surgeons. Statistically significant differences were observed for the management of spinal stenosis, spondylolisthesis, using an orthosis after fusion, the type of lumbar discectomy and the value of surgical intervention after complete spinal cord injury. Conclusions Our results suggest that there continues to exist a statistically significant lack of consensus among neurosurgeons and orthopedic spine surgeons when considering using an orthosis after fusion, the type of discectomy and the value of intervention after complete spinal injury. PMID:22164314
1981-02-01
GUteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Physics Publication Number 81...GCiteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University oflMaryland College Park, Maryland 20742 i AflS1RACi Parametric
Landowski, Matthew; Dabundo, Jeffrey; Liu, Qian; Nicola, Anthony V; Aguilar, Hector C
2014-12-01
Virus-cell membrane fusion is essential for enveloped virus infections. However, mechanistic viral membrane fusion studies have predominantly focused on cell-cell fusion models, largely due to the low availability of technologies capable of characterizing actual virus-cell membrane fusion. Although cell-cell fusion assays are valuable, they do not fully recapitulate all the variables of virus-cell membrane fusion. Drastic differences between viral and cellular membrane lipid and protein compositions and curvatures exist. For biosafety level 4 (BSL4) pathogens such as the deadly Nipah virus (NiV), virus-cell fusion mechanistic studies are notably cumbersome. To circumvent these limitations, we used enzymatic Nipah virus-like-particles (NiVLPs) and developed new flow virometric tools. NiV's attachment (G) and fusion (F) envelope glycoproteins mediate viral binding to the ephrinB2/ephrinB3 cell receptors and virus-cell membrane fusion, respectively. The NiV matrix protein (M) can autonomously induce NiV assembly and budding. Using a β-lactamase (βLa) reporter/NiV-M chimeric protein, we produced NiVLPs expressing NiV-G and wild-type or mutant NiV-F on their surfaces. By preloading target cells with the βLa fluorescent substrate CCF2-AM, we obtained viral entry kinetic curves that correlated with the NiV-F fusogenic phenotypes, validating NiVLPs as suitable viral entry kinetic tools and suggesting overall relatively slower viral entry than cell-cell fusion kinetics. Additionally, the proportions of F and G on individual NiVLPs and the extent of receptor-induced conformational changes in NiV-G were measured via flow virometry, allowing the proper interpretation of the viral entry kinetic phenotypes. The significance of these findings in the viral entry field extends beyond NiV to other paramyxoviruses and enveloped viruses. Virus-cell membrane fusion is essential for enveloped virus infections. However, mechanistic viral membrane fusion studies have predominantly focused on cell-cell fusion models, largely due to the low availability of technologies capable of characterizing actual virus-cell membrane fusion. Although cell-cell fusion assays are valuable, they do not fully recapitulate all the variables of virus-cell membrane fusion. For example, drastic differences between viral and cellular membrane lipid and protein compositions and curvatures exist. For biosafety level 4 (BSL4) pathogens such as the deadly Nipah virus (NiV), virus-cell fusion mechanistic studies are especially cumbersome. To circumvent these limitations, we used enzymatic Nipah virus-like-particles (NiVLPs) and developed new flow virometric tools. Our new tools allowed us the high-throughput measurement of viral entry kinetics, glycoprotein proportions on individual viral particles, and receptor-induced conformational changes in viral glycoproteins on viral surfaces. The significance of these findings extends beyond NiV to other paramyxoviruses and enveloped viruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Khan, M. Rashid
1990-01-01
A high-pressure microdilatometer is provided for measuring the sintering and fusion properties of various coal ashes under the influence of elevated pressures and temperatures in various atmospheres. Electrical resistivity measurements across a sample of coal ash provide a measurement of the onset of the sintering and fusion of the ash particulates while the contraction of the sample during sintering is measured with a linear variable displacement transducer for detecting the initiation of sintering. These measurements of sintering in coal ash at different pressures provide a mechanism by which deleterious problems due to the sintering and fusion of ash in various combustion systems can be minimized or obviated.
High-Energy Space Propulsion Based on Magnetized Target Fusion
NASA Technical Reports Server (NTRS)
Thio, Y. C. F.; Freeze, B.; Kirkpatrick, R. C.; Landrum, B.; Gerrish, H.; Schmidt, G. R.
1999-01-01
A conceptual study is made to explore the feasibility of applying magnetized target fusion (MTF) to space propulsion for omniplanetary travel. Plasma-jet driven MTF not only is highly amenable to space propulsion, but also has a number of very attractive features for this application: 1) The pulsed fusion scheme provides in situ a very dense hydrogenous liner capable of moderating the neutrons, converting more than 97% of the neutron energy into charged particle energy of the fusion plasma available for propulsion. 2) The fusion yield per pulse can be maintained at an attractively low level (< 1 GJ) despite a respectable gain in excess of 70. A compact, low-weight engine is the result. An engine with a jet power of 25 GW, a thrust of 66 kN, and a specific impulse of 77,000 s, can be achieved with an overall engine mass of about 41 metric tons, with a specific power density of 605 kW/kg, and a specific thrust density of 1.6 N/kg. The engine is rep-rated at 40 Hz to provide this power and thrust level. At a practical rep-rate limit of 200 Hz, the engine can deliver 128 GW jet power and 340 kN of thrust, at specific power and thrust density of 1,141 kW/kg and 3 N/kg respectively. 3) It is possible to operate the magnetic nozzle as a magnetic flux compression generator in this scheme, while attaining a high nozzle efficiency of 80% in converting the spherically radial momentum of the fusion plasma to an axial impulse. 4) A small fraction of the electrical energy generated from the flux compression is used directly to recharge the capacitor bank and other energy storage equipment, without the use of a highvoltage DC power supply. A separate electrical generator is not necessary. 5) Due to the simplicity of the electrical circuit and the components, involving mainly inductors, capacitors, and plasma guns, which are connected directly to each other without any intermediate equipment, a high rep-rate (with a maximum of 200 Hz) appears practicable. 6) All fusion related components are within the current state of the art for pulsed power technology. Experimental facilities with the required pulsed power capabilities already exist. 7) The scheme does not require prefabricated fuel target and liner hardware in any esoteric form or state. All necessary fuel and liner material are introduced into the engine in the form of ordinary matter in gaseous state at room temperature, greatly simplifying their handling on board. They are delivered into the fusion reaction chamber in a completely standoff manner.
Fracture of fusion mass after hardware removal in patients with high sagittal imbalance.
Sedney, Cara L; Daffner, Scott D; Stefanko, Jared J; Abdelfattah, Hesham; Emery, Sanford E; France, John C
2016-04-01
As spinal fusions become more common and more complex, so do the sequelae of these procedures, some of which remain poorly understood. The authors report on a series of patients who underwent removal of hardware after CT-proven solid fusion, confirmed by intraoperative findings. These patients later developed a spontaneous fracture of the fusion mass that was not associated with trauma. A series of such patients has not previously been described in the literature. An unfunded, retrospective review of the surgical logs of 3 fellowship-trained spine surgeons yielded 7 patients who suffered a fracture of a fusion mass after hardware removal. Adult patients from the West Virginia University Department of Orthopaedics who underwent hardware removal in the setting of adjacent-segment disease (ASD), and subsequently experienced fracture of the fusion mass through the uninstrumented segment, were studied. The medical records and radiological studies of these patients were examined for patient demographics and comorbidities, initial indication for surgery, total number of surgeries, timeline of fracture occurrence, risk factors for fracture, as well as sagittal imbalance. All 7 patients underwent hardware removal in conjunction with an extension of fusion for ASD. All had CT-proven solid fusion of their previously fused segments, which was confirmed intraoperatively. All patients had previously undergone multiple operations for a variety of indications, 4 patients were smokers, and 3 patients had osteoporosis. Spontaneous fracture of the fusion mass occurred in all patients and was not due to trauma. These fractures occurred 4 months to 4 years after hardware removal. All patients had significant sagittal imbalance of 13-15 cm. The fracture level was L-5 in 6 of the 7 patients, which was the first uninstrumented level caudal to the newly placed hardware in all 6 of these patients. Six patients underwent surgery due to this fracture. The authors present a case series of 7 patients who underwent surgery for ASD after a remote fusion. These patients later developed a fracture of the fusion mass after hardware removal from their previously successfully fused segment. All patients had a high sagittal imbalance and had previously undergone multiple spinal operations. The development of a spontaneous fracture of the fusion mass may be related to sagittal imbalance. Consideration should be given to reimplanting hardware for these patients, even across good fusions, to prevent spontaneous fracture of these areas if the sagittal imbalance is not corrected.
Telomere dynamics in an immortal human cell line.
Murnane, J P; Sabatier, L; Marder, B A; Morgan, W F
1994-01-01
The integration of transfected plasmid DNA at the telomere of chromosome 13 in an immortalized simian virus 40-transformed human cell line provided the first opportunity to study polymorphism in the number of telomeric repeat sequences on the end of a single chromosome. Three subclones of this cell line were selected for analysis: one with a long telomere on chromosome 13, one with a short telomere, and one with such extreme polymorphism that no distinct band was discernible. Further subcloning demonstrated that telomere polymorphism resulted from both gradual changes and rapid changes that sometimes involved many kilobases. The gradual changes were due to the shortening of telomeres at a rate similar to that reported for telomeres of somatic cells without telomerase, eventually resulting in the loss of nearly all of the telomere. However, telomeres were not generally lost completely, as shown by the absence of polymorphism in the subtelomeric plasmid sequences. Instead, telomeres that were less than a few hundred base pairs in length showed a rapid, highly heterogeneous increase in size. Rapid changes in telomere length also occurred on longer telomeres. The frequency of this type of change in telomere length varied among the subclones and correlated with chromosome fusion. Therefore, the rapid changes in telomere length appeared occasionally to result in the complete loss of telomeric repeat sequences. Rapid changes in telomere length have been associated with telomere loss and chromosome instability in yeast and could be responsible for the high rate of chromosome fusion observed in many human tumor cell lines. Images PMID:7957062
Z-Pinch Magneto-Inertial Fusion Propulsion Engine Design Concept
NASA Technical Reports Server (NTRS)
Miernik, Janie H.; Statham, Geoffrey; Adams, Robert B.; Polsgrove, Tara; Fincher, Sharon; Fabisinski, Leo; Maples, C. Dauphne; Percy, Thomas K.; Cortez, Ross J.; Cassibry, Jason
2011-01-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. Magneto-Inertial Fusion (MIF) is an approach which has been shown to potentially lead to a low cost, small fusion reactor/engine assembly (1). The Z-Pinch dense plasma focus method is an MIF concept in which a column of gas is compressed to thermonuclear conditions by an estimated axial current of approximately 100 MA. Recent advancements in experiments and the theoretical understanding of this concept suggest favorable scaling of fusion power output yield as I(sup 4) (2). The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this is repeated over short timescales (10(exp -6) sec). This plasma formation is widely used in the field of Nuclear Weapons Effects (NWE) testing in the defense industry, as well as in fusion energy research. There is a wealth of literature characterizing Z-Pinch physics and existing models (3-5). In order to be useful in engineering analysis, a simplified Z-Pinch fusion thermodynamic model was developed to determine the quantity of plasma, plasma temperature, rate of expansion, energy production, etc. to calculate the parameters that characterize a propulsion system. The amount of nuclear fuel per pulse, mixture ratio of the D-T and nozzle liner propellant, and assumptions about the efficiency of the engine, enabled the sizing of the propulsion system and resulted in an estimate of the thrust and Isp of a Z-Pinch fusion propulsion system for the concept vehicle. MIF requires a magnetic nozzle to contain and direct the nuclear pulses, as well as a robust structure and radiation shielding. The structure, configuration, and materials of the nozzle must meet many severe requirements. The configuration would focus, in a conical manner, the Deuterium-Tritium (D-T) fuel and Lithium-6/7 liner fluid to meet at a specific point that acts as a cathode so the Li-6 can serve as a current return path to complete the circuit. In addition to serving as a current return path, the Li liner also serves as a radiation shield. The advantage to this configuration is the reaction between neutrons and Li-6 results in the production of additional Tritium, thus adding further fuel to the fusion reaction and boosting the energy output. To understand the applicability of Z-Pinch propulsion to interplanetary travel, it is necessary to design a concept vehicle that uses it. The propulsion system significantly impacts the design of the electrical, thermal control, avionics, radiation shielding, and structural subsystems of a vehicle. The design reference mission is the transport of crew and cargo to Mars and back, with the intention that the vehicle be reused for other missions. Several aspects of this vehicle are based on a previous crewed fusion vehicle study called Human Outer Planet Exploration (HOPE), which employed a Magnetized Target Fusion (MTF) propulsion concept. Analysis of this propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. This along with a greater than 30% predicted payload mass fraction certainly warrants further development of enabling technologies. The vehicle is designed for multiple interplanetary missions and conceivably may be suited for an automated one-way interstellar voyage.
Distributed data fusion across multiple hard and soft mobile sensor platforms
NASA Astrophysics Data System (ADS)
Sinsley, Gregory
One of the biggest challenges currently facing the robotics field is sensor data fusion. Unmanned robots carry many sophisticated sensors including visual and infrared cameras, radar, laser range finders, chemical sensors, accelerometers, gyros, and global positioning systems. By effectively fusing the data from these sensors, a robot would be able to form a coherent view of its world that could then be used to facilitate both autonomous and intelligent operation. Another distinct fusion problem is that of fusing data from teammates with data from onboard sensors. If an entire team of vehicles has the same worldview they will be able to cooperate much more effectively. Sharing worldviews is made even more difficult if the teammates have different sensor types. The final fusion challenge the robotics field faces is that of fusing data gathered by robots with data gathered by human teammates (soft sensors). Humans sense the world completely differently from robots, which makes this problem particularly difficult. The advantage of fusing data from humans is that it makes more information available to the entire team, thus helping each agent to make the best possible decisions. This thesis presents a system for fusing data from multiple unmanned aerial vehicles, unmanned ground vehicles, and human observers. The first issue this thesis addresses is that of centralized data fusion. This is a foundational data fusion issue, which has been very well studied. Important issues in centralized fusion include data association, classification, tracking, and robotics problems. Because these problems are so well studied, this thesis does not make any major contributions in this area, but does review it for completeness. The chapter on centralized fusion concludes with an example unmanned aerial vehicle surveillance problem that demonstrates many of the traditional fusion methods. The second problem this thesis addresses is that of distributed data fusion. Distributed data fusion is a younger field than centralized fusion. The main issues in distributed fusion that are addressed are distributed classification and distributed tracking. There are several well established methods for performing distributed fusion that are first reviewed. The chapter on distributed fusion concludes with a multiple unmanned vehicle collaborative test involving an unmanned aerial vehicle and an unmanned ground vehicle. The third issue this thesis addresses is that of soft sensor only data fusion. Soft-only fusion is a newer field than centralized or distributed hard sensor fusion. Because of the novelty of the field, the chapter on soft only fusion contains less background information and instead focuses on some new results in soft sensor data fusion. Specifically, it discusses a novel fuzzy logic based soft sensor data fusion method. This new method is tested using both simulations and field measurements. The biggest issue addressed in this thesis is that of combined hard and soft fusion. Fusion of hard and soft data is the newest area for research in the data fusion community; therefore, some of the largest theoretical contributions in this thesis are in the chapter on combined hard and soft fusion. This chapter presents a novel combined hard and soft data fusion method based on random set theory, which processes random set data using a particle filter. Furthermore, the particle filter is designed to be distributed across multiple robots and portable computers (used by human observers) so that there is no centralized failure point in the system. After laying out a theoretical groundwork for hard and soft sensor data fusion the thesis presents practical applications for hard and soft sensor data fusion in simulation. Through a series of three progressively more difficult simulations, some important hard and soft sensor data fusion capabilities are demonstrated. The first simulation demonstrates fusing data from a single soft sensor and a single hard sensor in order to track a car that could be driving normally or erratically. The second simulation adds the extra complication of classifying the type of target to the simulation. The third simulation uses multiple hard and soft sensors, with a limited field of view, to track a moving target and classify it as a friend, foe, or neutral. The final chapter builds on the work done in previous chapters by performing a field test of the algorithms for hard and soft sensor data fusion. The test utilizes an unmanned aerial vehicle, an unmanned ground vehicle, and a human observer with a laptop. The test is designed to mimic a collaborative human and robot search and rescue problem. This test makes some of the most important practical contributions of the thesis by showing that the algorithms that have been developed for hard and soft sensor data fusion are capable of running in real time on relatively simple hardware.
Fusion of infrared and visible images based on BEMD and NSDFB
NASA Astrophysics Data System (ADS)
Zhu, Pan; Huang, Zhanhua; Lei, Hai
2016-07-01
This paper presents a new fusion method based on the adaptive multi-scale decomposition of bidimensional empirical mode decomposition (BEMD) and the flexible directional expansion of nonsubsampled directional filter banks (NSDFB) for visible-infrared images. Compared with conventional multi-scale fusion methods, BEMD is non-parametric and completely data-driven, which is relatively more suitable for non-linear signals decomposition and fusion. NSDFB can provide direction filtering on the decomposition levels to capture more geometrical structure of the source images effectively. In our fusion framework, the entropies of the two patterns of source images are firstly calculated and the residue of the image whose entropy is larger is extracted to make it highly relevant with the other source image. Then, the residue and the other source image are decomposed into low-frequency sub-bands and a sequence of high-frequency directional sub-bands in different scales by using BEMD and NSDFB. In this fusion scheme, two relevant fusion rules are used in low-frequency sub-bands and high-frequency directional sub-bands, respectively. Finally, the fused image is obtained by applying corresponding inverse transform. Experimental results indicate that the proposed fusion algorithm can obtain state-of-the-art performance for visible-infrared images fusion in both aspects of objective assessment and subjective visual quality even for the source images obtained in different conditions. Furthermore, the fused results have high contrast, remarkable target information and rich details information that are more suitable for human visual characteristics or machine perception.
Probing the mechanism of fusion in a two-dimensional computer simulation.
Chanturiya, Alexandr; Scaria, Puthurapamil; Kuksenok, Oleksandr; Woodle, Martin C
2002-01-01
A two-dimensional (2D) model of lipid bilayers was developed and used to investigate a possible role of membrane lateral tension in membrane fusion. We found that an increase of lateral tension in contacting monolayers of 2D analogs of liposomes and planar membranes could cause not only hemifusion, but also complete fusion when internal pressure is introduced in the model. With a certain set of model parameters it was possible to induce hemifusion-like structural changes by a tension increase in only one of the two contacting bilayers. The effect of lysolipids was modeled as an insertion of a small number of extra molecules into the cis or trans side of the interacting bilayers at different stages of simulation. It was found that cis insertion arrests fusion and trans insertion has no inhibitory effect on fusion. The possibility of protein participation in tension-driven fusion was tested in simulation, with one of two model liposomes containing a number of structures capable of reducing the area occupied by them in the outer monolayer. It was found that condensation of these structures was sufficient to produce membrane reorganization similar to that observed in simulations with "protein-free" bilayers. These data support the hypothesis that changes in membrane lateral tension may be responsible for fusion in both model phospholipid membranes and in biological protein-mediated fusion. PMID:12023230
Rhee, Wootack; Ha, Seongil; Lim, Jae Hyeon; Jang, Il Tae
2014-01-01
Objective Using alendronate after spinal fusion is a controversial issue due to the inhibition of osteoclast mediated bone resorption. In addition, there are an increasing number of reports that the endplate degeneration influences the lumbar spinal fusion. The object of this retrospective controlled study was to evaluate how the endplate degeneration and the bisphosphonate medication influence the spinal fusion through radiographic evaluation. Methods In this study, 44 patients who underwent single-level posterior lumbar interbody fusion (PLIF) using cage were examined from April 2007 to March 2009. All patients had been diagnosed as osteoporosis and would be recommended for alendronate medication. Endplate degeneration is categorized by the Modic changes. The solid fusion is defined if there was bridging bone between the vertebral bodies, either within or external to the cage on the plain X-ray and if there is less than 5° of angular difference in dynamic X-ray. Results In alendronate group, fusion was achieved in 66.7% compared to 73.9% in control group (no medication). Alendronate did not influence the fusion rate of PLIF. However, there was the statistical difference of fusion rate between the endplate degeneration group and the group without endplate degeneration. A total of 52.4% of fusion rate was seen in the endplate degeneration group compared to 91.3% in the group without endplate degeneration. The endplate degeneration suppresses the fusion process of PLIF. Conclusion Alendronate does not influence the fusion process in osteoporotic patients. The endplate degeneration decreases the fusion rate. PMID:25620981
Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg
2017-10-01
Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.
[Hindfoot fusion for Charcot osteoarthropathy with a curved retrograde nail].
Pyrc, J; Fuchs, A; Zwipp, H; Rammelt, S
2015-01-01
Charcot osteoarthropathy of the hindfoot with considerable dislocation and instability represents a therapeutic dilemma. The treatment goal is a plantigrade, stable foot that is free of infection and ulceration with the ability to ambulate in special footwear. Over a period of 6 years, we performed 23 hindfoot fusions in 21 patients with manifest Charcot arthropathy with the help of a curved retrograde nail (HAN). All patients suffered from insulin-dependent diabetes mellitus with polyneuropathy; 12 patients had additional peripheral vasculopathy. An average of 3.5 previous surgeries had been performed prior to hindfoot fusion. Complete tibiotalocalcaneal fusion was obtained in 16 of 21 patients (76 %). Of these 21 patients, 18 (86 %) were followed clinically and radiologically for an average of 2 years. Overall, 16 patients (89 %) reported a substantial subjective improvement compared to the preoperative state. Hardware failure occurred in 7 cases (30 %) that could be brought to consolidation with exchange of the locking bolts or the complete nail. In 5 cases (22 %), a postoperative hematoma had to be removed and in 8 cases (35 %) wound edge necrosis was treated with local wound care. In 2 cases (9 %), a secondary or reactivated osteitis occurred that finally required below knee amputation. Tibiotalocalcaneal fusion with a curved retrograde intramedullary nail (HAN) is an effective treatment option in highly unstable and deforming Charcot osteoarthropathy of the hindfoot. It is an alternative to external or other internal fixation methods and helps to avoid below knee amputation in more than 90 % of cases.
NASA Astrophysics Data System (ADS)
Lee, Myoung-Jae; Jung, Young-Dae
2017-04-01
The collective nonideal effects on the nuclear fusion reaction process are investigated in partially ionized classical nonideal hydrogen plasmas. The effective pseudopotential model taking into account the collective and plasma shielding effects is applied to describe the interaction potential in nonideal plasmas. The analytic expressions of the Sommerfeld parameter, the fusion penetration factor, and the cross section for the nuclear fusion reaction in nonideal plasmas are obtained as functions of the nonideality parameter, Debye length, and relative kinetic energy. It is found that the Sommerfeld parameter is suppressed due to the influence of collective nonideal shielding. However, the collective nonideal shielding is found to enhance the fusion penetration factor in partially ionized classical nonideal plasmas. It is also found that the fusion penetration factors in nonideal plasmas represented by the pseudopotential model are always greater than those in ideal plasmas represented by the Debye-Hückel model. In addition, it is shown that the collective nonideal shielding effect on the fusion penetration factor decreases with an increase of the kinetic energy.
Nanoparticle delivery of miR-223 to attenuate macrophage fusion
Moore, Laura Beth; Sawyer, Andrew J.; Saucier-Sawyer, Jennifer; Saltzman, W. Mark; Kyriakides, Themis R.
2016-01-01
The foreign body response (FBR) begins with injury acquired during implantation of a biomaterial (BM) and is detrimental due to the eventual encapsulation of the implant. Fusion of macrophages to form foreign body giant cells (FBGC), a hallmark of the FBR, is the consequence of a multistep mechanism induced by interleukin (IL)-4 that includes the acquisition of a fusion competent state and subsequent cytoskeletal rearrangements. However, the precise mechanism, regulation, and interplay among molecular mediators to generate FBGCs are insufficiently understood. Seeking novel mediators of fusion that might be regulated at the post-transcriptional level, we examined the role of microRNAs (miRs) in this process. A miR microarray was screened and identified miR-223 as a negative regulator of macrophage fusion. In addition, transfection of primary macrophages with a mir-223 mimic attenuated IL-4-induced fusion. Furthermore, miR-223 KO mice and mir-223 deficient cells displayed increased fusion in vivo and in vitro, respectively. Finally, we developed a method for in vivo delivery of miR-223 mimic utilizing PLGA nanoparticles, which inhibited FBGC formation in a biomaterial implant model. Our results identify miR-223 as a negative regulator of fusion and demonstrate miR-223 mimic-loaded nanoparticles as a therapeutic inhibitor of macrophage fusion. PMID:26967647
Aydin, Halil; Cook, Jonathan D.
2014-01-01
Membrane fusion is a key step in the life cycle of all envelope viruses, but this process is energetically unfavorable; the transmembrane fusion subunit (TM) of the virion-attached glycoprotein actively catalyzes the membrane merger process. Retroviral glycoproteins are the prototypical system to study pH-independent viral entry. In this study, we determined crystal structures of extramembrane regions of the TMs from Mason-Pfizer monkey virus (MPMV) and xenotropic murine leukemia virus-related virus (XMRV) at 1.7-Å and 2.2-Å resolution, respectively. The structures are comprised of a trimer of hairpins that is characteristic of class I viral fusion proteins and now completes a structural library of retroviral fusion proteins. Our results allowed us to identify a series of intra- and interchain electrostatic interactions in the heptad repeat and chain reversal regions. Mutagenesis reveals that charge-neutralizing salt bridge mutations significantly destabilize the postfusion six-helix bundle and abrogate retroviral infection, demonstrating that electrostatic stapling of the fusion subunit is essential for viral entry. Our data indicate that salt bridges are a major stabilizing force on the MPMV and XMRV retroviral TMs and likely provide the key energetics for viral and host membrane fusion. PMID:24131724
Self-assembly of tissue spheroids on polymeric membranes.
Messina, Antonietta; Morelli, Sabrina; Forgacs, Gabor; Barbieri, Giuseppe; Drioli, Enrico; De Bartolo, Loredana
2017-07-01
In this study, multicellular tissue spheroids were fabricated on polymeric membranes in order to accelerate the fusion process and tissue formation. To this purpose, tissue spheroids composed of three different cell types, myoblasts, fibroblasts and neural cells, were formed and cultured on agarose and membranes of polycaprolactone (PCL) and chitosan (CHT). Membranes prepared by a phase-inversion technique display different physicochemical, mechanical and transport properties, which can affect the fusion process. The membranes accelerated the fusion process of a pair of spheroids with respect to the inert substrate. In this process, a critical role is played by the membrane properties, especially by their mechanical characteristics and oxygen and carbon dioxide mass transfer. The rate of fusion was quantified and found to be similar for fibroblast, myoblast and neural tissue spheroids on membranes, which completed the fusion within 3 days. These spheroids underwent faster fusion and maturation on PCL membrane than on agarose, the rate of fusion being proportional to the value of oxygen and carbon dioxide permeances and elastic characteristics. Consequently, tissue spheroids on the membranes expressed high biological activity in terms of oxygen uptake, making them more suitable as building blocks in the fabrication of tissues and organs. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
[A case of diprosopus in the cat].
Aharon, D C; Wouda, W; van Weelden, E
1986-06-15
A case of diprosopus in a spontaneously delivered live-born kitten is reported. All facial components were completely duplicated. Fusion of the skulls had occurred in the temporal region; a single ear was present at the site of fusion. Additional defects were a cleft lip in one face and cleft palates in both faces. The cerebral hemispheres and arterior portions of the brain stem were completely duplicated, whereas the cerebellum and caudal brain stem were partially duplicated. The pathogenesis and aetiology are discussed. It is believed that disprosopus originates during the (pre)gastrulation stage of embryonic development, either by coalescence of two embryonic fields following a double process of gastrulation or by bifurcation of the axial mesoderm during a single gastrulation.
NASA Astrophysics Data System (ADS)
Snadden, John; Ridout, David; Wood, Simon
2018-05-01
The modular properties of the simple vertex operator superalgebra associated with the affine Kac-Moody superalgebra \\widehat{{osp}} (1|2) at level -5/4 are investigated. After classifying the relaxed highest-weight modules over this vertex operator superalgebra, the characters and supercharacters of the simple weight modules are computed and their modular transforms are determined. This leads to a complete list of the Grothendieck fusion rules by way of a continuous superalgebraic analog of the Verlinde formula. All Grothendieck fusion coefficients are observed to be non-negative integers. These results indicate that the extension to general admissible levels will follow using the same methodology once the classification of relaxed highest-weight modules is completed.
In vitro fusion of endocytic vesicles is inhibited by cyclin A-cdc2 kinase.
Woodman, P G; Adamczewski, J P; Hunt, T; Warren, G
1993-01-01
Receptor-mediated endocytosis and recycling are inhibited in mitotic mammalian cells, and previous studies have shown that inhibition of endocytic vesicle fusion in vitro occurs via cyclin B-cdc2 kinase. To test for the ability of cyclin A-cdc2 kinase to inhibit endocytic vesicle fusion, we employed recombinant cyclin A proteins. Addition of cyclin A to interphase extracts activated a histone kinase and markedly reduced the efficiency of endocytic vesicle fusion. By a number of criteria, inhibition of fusion was shown to be due to the action of cyclin A, via the mitosis-specific cdc2 kinase, and not an indirect effect through cyclin B. Two-stage incubations were used to demonstrate that at least one target of cyclin A-cdc2 kinase is a cytosolic component of the fusion apparatus. Reconstitution experiments showed that this component was also modified in mitotic cytosols and was unaffected by N-ethyl maleimide treatment. Images PMID:8334308
Late-developing infection following posterior fusion for adolescent idiopathic scoliosis.
Di Silvestre, Mario; Bakaloudis, Georgios; Lolli, Francesco; Giacomini, Stefano
2011-05-01
This study is a retrospective case series review of patients with adolescent idiopathic scoliosis (AIS) who were revised more than 1 year after the index procedure, due to a late-developing deep wound infection, to determine onset, bacteriology, possible influence of implant alloy (titanium vs. stainless-steel) and treatment outcome of patients. From a total of 540 patients who underwent posterior-only fusion for AIS from 1993 through 2005 at our institution, 15 cases (2.77%) were revised due to a late-developing post-operative infection: there were six males and nine females, with an average age at initial surgery of 15.8 years (range 12-18). Late infections occurred at a mean of 70 months (15-95) after the index procedure. The implant alloy used was a stainless-steel instrumentation in 11 patients (4.56% of 241) and a titanium one in 4 patients (1.33% of 299): there was an higher incidence of late infections in stainless-steel alloy group of patients (P < 0.0001). Complete removal of instrumentation was performed in nine patients, obtaining in all cases wound healing and no symptoms of infection, at a minimum 3 years follow-up. In the other six patients, presenting less severe clinical signs of infections, an attempt to save/replace the previous instrumentation was performed, but a complete instrumentation removal had to be performed 11.6 months later (range 3-24) for the persistence or recurrence of infection: all patients healed uneventfully at a minimum 3 years follow-up. Intraoperative cultures were obtained in all 15 cases, being positive in 13 cases (S. epidermidis in 5 patients, S. aureus in 3, Propionibacterium acnes in 1, Serratia marcescens in 1, Propionibacterium acnes + S. epidermidis in 1, S. aureus + S. epidermidis in 1 and coagulase-negative Staphylococci in 1). None presented at latest follow-up scoliosis progression: there was no statistically significant difference between final and pre-operative revision surgery values (P = 0.17). In conclusion, treatment of late-developing post-operative infection in AIS surgery required complete removal of the implant, continuous drain and adequate antibiotic therapy based on intraoperative swab antibiogram. Titanium alloy instrumentations resulted less subject to late post-operative infections, when compared to stainless-steel ones (P < 0.0001).
Persson, B M; Rydholm, A
1984-01-01
Extensive local excisions of skeletal tumors in the knee region create reconstruction problems with several alternative solutions. Custom-made endoprostheses now compete with joint homografts and fusion with autogenous bone-grafts. Artificial fusion utilizing an extra long Küntscher-nail and acrylic cement as a spacer is a fourth possibility with the advantages of immediate ambulation and weight-bearing, here presented in two cases. The expected disadvantages of loosening in long time survivors can be taken care of using one of the above-mentioned alternatives. This revision can be made after completion of adjunctive chemotherapy or later when called for by the occurrence of pain or instability.
Interplanetary propulsion using inertial fusion
NASA Technical Reports Server (NTRS)
Orth, C. D.; Hogan, W. J.; Hoffman, N.; Murray, K.; Klein, G.; Diaz, F. C.
1987-01-01
Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed.
Study of Magnetic Reconnection
1988-11-01
and disruptions in the Tosca tokamak, Nuclear Fusion 19, 115-119, 1979. 9. Stenzel, R. L., W. Gekelman and N. Wild, Magnetic field line reconnection...Acknowledgments. The authors gratefully acknowledge the techni- plasma diffusion due to polycliromatic fluctuations, Nucl. Fussion , cal support and...sans collisions, in: Proceedings of the Conference on Plasma Physics and Controlled Nuclear Fusion, International Atomic Energy Agency, Vienna
Evans, David W; Hersperger, Chelsea; Capaldi, Philip A
2011-02-01
A new inventory assessing thought-action fusion (TAF) in children is presented. We explore the psychometric properties of this instrument and examine the associations between TAF, ritualistic and compulsive-like behavior (CLB) and anxiety. Three hundred thirteen children ages 7-14 (M = 10.16, SD = 1.92) representing six grades (grouped into three grade levels (grades 2-3, 4-5, and 6-7) completed the Thought-action Fusion Inventory for Children (TAFIC) and the Child Revised Manifest Anxiety Scale. One hundred thirty-five parents or guardians completed the Childhood Routines Inventory. Results revealed high internal consistency in the TAFIC (Cronbach's α = .92). TAF scores changed with age: Older children reported less TAF than younger children. Stepwise multiple regression analyses revealed that: (1) physiological anxiety predicted CLB in early childhood; (2) TAF predicted CLB in older children. Consistent with structural developmental theories, TAF changes throughout development, but plays a role in the normative regulation of affective states, as well as in the development of ritualistic compulsive like behavior in children.
Obanda, Vincent; Michuki, George; Jowers, Michael J; Rumberia, Cecilia; Mutinda, Mathew; Lwande, Olivia Wesula; Wangoru, Kihara; Kasiiti-Orengo, Jacquiline; Yongo, Moses; Angelone-Alasaad, Samer
2016-07-01
Following mass deaths of Laughing Doves (Streptopelia senegalensis) in different localities throughout Kenya, internal organs obtained during necropsy of two moribund birds were sampled and analyzed by next generation sequencing. We isolated the virulent strain of pigeon paramyxovirus type-1 (PPMV-1), PPMV1/Laughing Dove/Kenya/Isiolo/B2/2012, which had a characteristic fusion gene motif (110)GGRRQKRF(117). We obtained a partial full genome of 15,114 nucleotides. The phylogenetic relationship based on the fusion gene and genomic sequence grouped our isolate as class II genotype VI, a group of viruses commonly isolated from wild birds but potentially lethal to Chickens ( Gallus gallus domesticus ). The fusion gene isolate clustered with PPMV-I strains from pigeons (Columbidae) in Nigeria. The complete genome showed a basal and highly divergent lineage to American, European, and Asian strains, indicating a divergent evolutionary pathway. The isolated strain is highly virulent and apparently species-specific to Laughing Doves in Kenya. Risk of transmission of such a strain to poultry is potentially high whereas the cyclic epizootic in doves is a threat to conservation of wild Columbidae in Kenya.
Vitriol, Eric A; Uetrecht, Andrea C; Shen, Feimo; Jacobson, Ken; Bear, James E
2007-04-17
Chromophore-assisted laser inactivation (CALI) is a light-mediated technique that offers precise spatiotemporal control of protein inactivation, enabling better understanding of the protein's role in cell function. EGFP has been used effectively as a CALI chromophore, and its cotranslational attachment to the target protein avoids having to use exogenously added labeling reagents. A potential drawback to EGFP-CALI is that the CALI phenotype can be obscured by the endogenous, unlabeled protein that is not susceptible to light inactivation. Performing EGFP-CALI experiments in deficient cells rescued with functional EGFP-fusion proteins permits more complete loss of function to be achieved. Here, we present a modified lentiviral system for rapid and efficient generation of knockdown cell lines complemented with physiological levels of EGFP-fusion proteins. We demonstrate that CALI of EGFP-CapZbeta increases uncapped actin filaments, resulting in enhanced filament growth and the formation of numerous protrusive structures. We show that these effects are completely dependent upon knocking down the endogenous protein. We also demonstrate that CALI of EGFP-Mena in Mena/VASP-deficient cells stabilizes lamellipodial protrusions.
Plasma Physics/Fusion Energy Education at the Liberty Science Center
NASA Astrophysics Data System (ADS)
Zwicker, Andrew; Delooper, John; Carpe, Andy; Amara, Joe; Butnick, Nancy; Lynch, Ellen; Osowski, Jeff
2007-11-01
The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey-New York City region. A major 109 million expansion and renewal was recently completed. Accordingly, PPPL has expanded the science education collaboration with the Center into three innovative, hands-on programs. On the main floor, a new fusion exhibit is one of the focuses of ``Energy Quest.'' This includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma while reading information on plasma creation and fusion energy. In the section of LSC dedicated to intensive science investigations (20,000 sq. ft) we have added ``Live from NSTX'' which will give students an opportunity to connect via video-conferencing to the NSTX control room during plasma operations. A prototype program was completed in May, 2007 with three high school physics classes and will be expanded when NSTX resumes operation. Finally, a plasma physics laboratory in this area will have a fully functioning, research-grade plasma source that will allow long-term visitors an opportunity to perform experiments in plasma processing, plasma spectroscopy, and dusty plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holdren, J.P.
The need for fusion energy depends strongly on fusion's potential to achieve ambitious safety goals more completely or more economically than fission can. The history and present complexion of public opinion about environment and safety gives little basis for expecting either that these concerns will prove to be a passing fad or that the public will make demands for zero risk that no energy source can meet. Hazard indices based on ''worst case'' accidents and exposures should be used as design tools to promote combinations of fusion-reactor materials and configurations that bring the worst cases down to levels small comparedmore » to the hazards people tolerate from electricity at the point of end use. It may well be possible, by building such safety into fusion from the ground up, to accomplish this goal at costs competitive with other inexhaustible electricity sources. Indeed, the still rising and ultimately indeterminate costs of meeting safety and environmental requirements in nonbreeder fission reactors and coal-burning power plants mean that fusion reactors meeting ambitious safety goals may be able to compete economically with these ''interim'' electricity sources as well.« less
Fusion energy for space: Feasibility demonstration. A proposal to NASA
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1992-01-01
This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power space systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.
Hamilton, Brian S.; Whittaker, Gary R.; Daniel, Susan
2012-01-01
Hemagglutinin (HA) is the viral protein that facilitates the entry of influenza viruses into host cells. This protein controls two critical aspects of entry: virus binding and membrane fusion. In order for HA to carry out these functions, it must first undergo a priming step, proteolytic cleavage, which renders it fusion competent. Membrane fusion commences from inside the endosome after a drop in lumenal pH and an ensuing conformational change in HA that leads to the hemifusion of the outer membrane leaflets of the virus and endosome, the formation of a stalk between them, followed by pore formation. Thus, the fusion machinery is an excellent target for antiviral compounds, especially those that target the conserved stem region of the protein. However, traditional ensemble fusion assays provide a somewhat limited ability to directly quantify fusion partly due to the inherent averaging of individual fusion events resulting from experimental constraints. Inspired by the gains achieved by single molecule experiments and analysis of stochastic events, recently-developed individual virion imaging techniques and analysis of single fusion events has provided critical information about individual virion behavior, discriminated intermediate fusion steps within a single virion, and allowed the study of the overall population dynamics without the loss of discrete, individual information. In this article, we first start by reviewing the determinants of HA fusogenic activity and the viral entry process, highlight some open questions, and then describe the experimental approaches for assaying fusion that will be useful in developing the most effective therapies in the future. PMID:22852045
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
NASA Astrophysics Data System (ADS)
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-11-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; ...
2015-11-03
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, F.; Mason, D. R.; Eliason, J. K.
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-01-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099
Induced parasexual processes in Claviceps sp. strain SD58.
Brauer, K L; Robbers, J E
1987-01-01
A homokaryotic, clavine alkaloid-producing strain of ergot, Claviceps sp. strain SD 58, was used in an attempt to demonstrate parasexuality. Genetically marked auxotrophic strains were produced by mutation with N-methyl-N'-nitro-N-nitrosoguanidine. Protoplast fusion of pairs of unlike doubly auxotrophic strains and isolation of stable prototrophic fusion products were carried out. By growth of the fusion products on complete medium, selective pressure for prototrophy was removed and auxotrophic segregants were allowed to form. Analysis of these and recovery of segregants with nonleaky, non-parent-type combinations of auxotrophic characteristics has provided strong evidence that a parasexual cycle can function in Claviceps sp. strain SD 58. Preliminary work suggests that the genetics of ergot might be studied by mitotic analysis and that protoplast fusion and selection procedures might be useful for the enhancement of favorable characteristics in Claviceps strains. PMID:3827250
Mitochondrial network complexity emerges from fission/fusion dynamics.
Zamponi, Nahuel; Zamponi, Emiliano; Cannas, Sergio A; Billoni, Orlando V; Helguera, Pablo R; Chialvo, Dante R
2018-01-10
Mitochondrial networks exhibit a variety of complex behaviors, including coordinated cell-wide oscillations of energy states as well as a phase transition (depolarization) in response to oxidative stress. Since functional and structural properties are often interwinded, here we characterized the structure of mitochondrial networks in mouse embryonic fibroblasts using network tools and percolation theory. Subsequently we perturbed the system either by promoting the fusion of mitochondrial segments or by inducing mitochondrial fission. Quantitative analysis of mitochondrial clusters revealed that structural parameters of healthy mitochondria laid in between the extremes of highly fragmented and completely fusioned networks. We confirmed our results by contrasting our empirical findings with the predictions of a recently described computational model of mitochondrial network emergence based on fission-fusion kinetics. Altogether these results offer not only an objective methodology to parametrize the complexity of this organelle but also support the idea that mitochondrial networks behave as critical systems and undergo structural phase transitions.
Tscholl, P M; Junge, A; Dvorak, J; Zubler, V
2016-03-01
Age determination on magnetic resonance imaging (MRI) of the wrist is a reliable method in male football players to evaluate their eligibility to participate in Under 17 tournaments. MRI of the wrist was performed in 487 female volunteers aged 13-19 years from Brazil, Germany, Malaysia, and Tanzania, and in 139 female football players participating in Under-16 and Under-17 football tournaments. A previously validated method for grading fusion of the distal radial epiphysis in male adolescent was used. Moderate correlation of chronological age and epiphyseal fusion was found in the normative control group (r = .59) and weak correlation in female football players (r = .27). Complete fusion of the distal radial epiphysis was observed in two 15-year-old volunteers of the control group (1.7%) and in 17.6% (3 of 17) of 14-year-old football players. Up to 10.8% (47 of 437) in the control group and 14.4% (20 of 139) of the football players 17 years or younger had complete fused epiphysis. Because of earlier osseous maturity in female adolescents, the grade of fusion of the distal radial epiphysis on MRI is not recommended for pretournament age determination for the age of 17 and younger in female. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Distributed Multisensor Data Fusion under Unknown Correlation and Data Inconsistency
Abu Bakr, Muhammad; Lee, Sukhan
2017-01-01
The paradigm of multisensor data fusion has been evolved from a centralized architecture to a decentralized or distributed architecture along with the advancement in sensor and communication technologies. These days, distributed state estimation and data fusion has been widely explored in diverse fields of engineering and control due to its superior performance over the centralized one in terms of flexibility, robustness to failure and cost effectiveness in infrastructure and communication. However, distributed multisensor data fusion is not without technical challenges to overcome: namely, dealing with cross-correlation and inconsistency among state estimates and sensor data. In this paper, we review the key theories and methodologies of distributed multisensor data fusion available to date with a specific focus on handling unknown correlation and data inconsistency. We aim at providing readers with a unifying view out of individual theories and methodologies by presenting a formal analysis of their implications. Finally, several directions of future research are highlighted. PMID:29077035
Fusion yield rate recovery by escaping hot-spot fast ions in the neighboring fuel layer
NASA Astrophysics Data System (ADS)
Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.
2014-02-01
Free-streaming loss by fast ions can deplete the tail population in the hot spot of an inertial confinement fusion (ICF) target. Escaping fast ions in the neighboring fuel layer of a cryogenic target can produce a surplus of fast ions locally. In contrast to the Knudsen layer effect that reduces hot-spot fusion reactivity due to tail ion depletion, the inverse Knudsen layer effect increases fusion reactivity in the neighboring fuel layer. In the case of a burning ICF target in the presence of significant hydrodynamic mix which aggravates the Knudsen layer effect, the yield recovery largely compensates for the yield reduction. For mix-dominated sub-ignition targets, the yield reduction is the dominant process.
Furuhashi, Hiroki; Togawa, Daisuke; Koyama, Hiroshi; Hoshino, Hironobu; Yasuda, Tatsuya; Matsuyama, Yukihiro
2017-05-01
Several reports have indicated that anterior dislocation of total hip arthroplasty (THA) can be caused by spinal degenerative changes with excessive pelvic retroversion. However, no reports have indicated that posterior dislocation can be caused by fixed pelvic anteversion after corrective spine surgery. We describe a rare case experiencing repeated posterior THA dislocation that occurred at 5 months after corrective spinal long fusion with pelvic fixation. A 64-year-old woman had undergone bilateral THA at 13 years before presenting to our institution. She had been diagnosed with kyphoscoliosis and underwent three subsequent spinal surgeries after the THA. We finally performed spinal corrective long fusion from T5 to ilium with pelvic fixation (with iliac screws). Five months later, she experienced severe hip pain when she tried to stand up from the toilet, and was unable to move, due to posterior THA dislocation. Therefore, we performed closed reduction under sedation, and her left hip was easily reduced. After the reduction, she started to walk with a hip abduction brace. However, she had experienced 5 subsequent dislocations. Based on our findings and previous reports, we have hypothesized that posterior dislocation could be occurred after spinal corrective long fusion with pelvic fixation due to three mechanisms: (1) a change in the THA cup alignment before and after spinal corrective long fusion surgery, (2) decreased and fixed pelvic posterior tilt in the sitting position, or (3) the trunk's forward tilting during standing-up motion after spinopelvic fixation. Spinal long fusion with pelvic fixation could be a risk factor for posterior THA dislocation.
NASA Astrophysics Data System (ADS)
Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.
A two-dimensional bounce averaged Fokker-Planck code is used to study the fusion yield and the wave absorption by residual hydrogen ions in higher harmonic ICRF heating of D (120 keV) and 3He (80 keV) beams in the JT-60U tokamak. Both for the fourth harmonic resonance of 3He (ω = 4ωc3He(0), which is accompanied by the third harmonic resonance of hydrogen (ω = 3ωcH) at the low field side, and for the third harmonic resonance of 3He (ω = 4ωcD(0) = 3ωc3He(0)) = 2ωcH(0)), a few per cent of hydrogen ions are found to absorb a large fraction of the ICRF power and to degrade the fusion output power. In the latter case, D beam acceleration due to the fourth harmonic resonance in the 3He(D) regime can enhance the fusion yield more effectively. A discussion is given of the effect of D beam acceleration due to the fifth harmonic resonance (ω = 5ωcD) at the high field side in the case of ω = 4ωc3He(0) and of the optimization of the fusion yield in the case of lower electron density and higher electron temperature
Knee arthrodesis with modular nail after failed TKA due to infection.
Gallusser, Nicolas; Goetti, Patrick; Luyet, Anais; Borens, Olivier
2015-12-01
Knee arthrodesis is an established procedure for limb salvage after failed total knee arthroplasty (TKA) in cases of recurrent infection, soft tissue damage, reduced bone stock or with a deficient extensor mechanism. Walking with an arthrodesis is more efficient and less costly in terms of energy expenditure than above-knee amputation. Surgical options include an arthrodesis nail, external fixator or compression plate. We present our results of knee arthrodesis using the modular Wichita Fusion Nail(®) in patients after infected TKA. Fifteen patients with irretrievably failed TKA, due to infection, who underwent arthrodesis with the Wichita Fusion Nail(®) from 2004 to 2012 were retrospectively reviewed to assess fusion rate, time to fusion, complication rate, including new infections, and ambulatory status. Three patients were lost to follow-up. Mean follow-up was 33 months (6-132 months). At their most recent follow-up, all patients were walking with full weight bearing on a fused arthrodesis. Mean time to union was 9 months (3-29 months). Three patients necessitated a revision arthrodesis to achieve union after a mean of 5 months after the last procedure. Arthrodesis with the Wichita Fusion Nail(®) provides satisfactory results in patients with failure after infected TKA, with 75 % primary union rate and no new or persistent infection at last follow-up visit. Although burdened with a high complication rate, it represents an acceptable option for limb salvage in this particular pathology.
Complete genome sequence of genotype VI Newcastle disease viruses isolated from pigeons in Pakistan
USDA-ARS?s Scientific Manuscript database
Two complete genome sequences of Newcastle disease virus (NDV) are described here. Virulent isolates pigeon/Pakistan/Lahore/21A/2015 and pigeon/Pakistan/Lahore/25A/2015 were obtained from racing pigeons sampled in the Pakistani province of Punjab during 2015. Phylogenetic analysis of the fusion prot...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J C; Diaz de la Rubia, T; Moses, E
2008-12-23
The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including unenriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. This report discusses the application of the LIFE concept to nonproliferation issues, initially looking at the LIFE (Laser Inertial Fusion-Fission Energy) engine as a means of completely burning WG Pu and HEU. By combining a neutron-rich inertial fusion point source with energy-rich fission, the once-through closed fuel-cycle LIFE concept has the following characteristics: it is capable of efficiently burning excess weapons or separated civilian plutonium and highly enriched uranium; the fission blanket is sub-critical at all times (keff < 0.95); because LIFE can operate well beyond the point at which light water reactors (LWRs) need to be refueled due to burn-up of fissile material and the resulting drop in system reactivity, fuel burn-up of 99% or more appears feasible. The objective of this work is to develop LIFE technology for burning of WG-Pu and HEU.« less
Knee arthrodesis with the Wichita Fusion Nail: an outcome comparison.
McQueen, D A; Cooke, F W; Hahn, D L
2006-05-01
The Wichita Fusion Nail (WFN) is a knee arthrodesis stabilization system that employs compression via an intramedullary rod. It was designed for use in the salvage of the irretrievably failed total knee arthroplasty and other severe knee pathologies. Questionnaires covering the fusion success rate, fusion time, and complication rate were obtained from 33 surgeons who were among the first to use the device. Data from these questionnaires were analyzed to determine if the rate of successful fusion was close to 100%, which was the primary hypothesis of this study. The average time required to achieve fusion and the rate of complications were also calculated and compared to similar results available in the literature. The results for 44 selected patients were included and it was determined that all achieved fusion for a success rate of 100%. This compared favorably with reported success rates in the range of 54% to 96%. The average fusion time was 15.5 weeks. Complications included: six delayed unions, three deep infections, and two periimplant fractures for a major complications rate of 20.4%. Both the fusion times and complication rate compared favorably with other reported results. Surgeons using the device for the first time had outcomes equal to those of more experienced users. Our results demonstrated that a rate of successful arthrodesis close to 100% could be consistently achieved with the WFN. Overall, the WFN facilitated an improved outcome for a previously difficult procedure. Therapeutic study, level IV (case series). See the Guidelines for Authors for a complete description of level of evidence.
de Graaf, M; Boven, E; Oosterhoff, D; van der Meulen-Muileman, I H; Huls, G A; Gerritsen, W R; Haisma, H J; Pinedo, H M
2002-03-04
Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme beta-glucuronidase. The sequences encoding C28 and human enzyme beta-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGkappa signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-beta-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-beta-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme beta-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug. Copyright 2002 Cancer Research UK
Sirenomelia apus with vestigial tail.
Parikh, Tushar B; Nanavati, Ruchi N; Udani, Rekha H
2005-04-01
Sirenomelia is an exceptionally rare congenital malformation characterized by complete or near complete fusion of lower limbs. A newborn with clinical features of sirenomelia including fused lower limbs in medial position, absent fibula, anal atresia, complete absence of urogenital system (bilateral renal agenesis, absent ureters, urinary bladder, absent internal and external genitalia), a single umbilical artery and a vestigial tail is reported. Association of vestigial tail with sirenomelia is not described in the literature.
Complete Genome Sequence of Genotype VI Newcastle Disease Viruses Isolated from Pigeons in Pakistan
Wajid, Abdul; Rehmani, Shafqat Fatima; Sharma, Poonam; Goraichuk, Iryna V.; Dimitrov, Kiril M.
2016-01-01
Two complete genome sequences of Newcastle disease virus (NDV) are described here. Virulent isolates pigeon/Pakistan/Lahore/21A/2015 and pigeon/Pakistan/Lahore/25A/2015 were obtained from racing pigeons sampled in the Pakistani province of Punjab during 2015. Phylogenetic analysis of the fusion protein genes and complete genomes classified the isolates as members of NDV class II, genotype VI. PMID:27540069
Assessment of radiofrequency ablation margin by MRI-MRI image fusion in hepatocellular carcinoma.
Wang, Xiao-Li; Li, Kai; Su, Zhong-Zhen; Huang, Ze-Ping; Wang, Ping; Zheng, Rong-Qin
2015-05-07
To investigate the feasibility and clinical value of magnetic resonance imaging (MRI)-MRI image fusion in assessing the ablative margin (AM) for hepatocellular carcinoma (HCC). A newly developed ultrasound workstation for MRI-MRI image fusion was used to evaluate the AM of 62 tumors in 52 HCC patients after radiofrequency ablation (RFA). The lesions were divided into two groups: group A, in which the tumor was completely ablated and 5 mm AM was achieved (n = 32); and group B, in which the tumor was completely ablated but 5 mm AM was not achieved (n = 29). To detect local tumor progression (LTP), all patients were followed every two months by contrast-enhanced ultrasound, contrast-enhanced MRI or computed tomography (CT) in the first year after RFA. Then, the follow-up interval was prolonged to every three months after the first year. Of the 62 tumors, MRI-MRI image fusion was successful in 61 (98.4%); the remaining case had significant deformation of the liver and massive ascites after RFA. The time required for creating image fusion and AM evaluation was 15.5 ± 5.5 min (range: 8-22 min) and 9.6 ± 3.2 min (range: 6-14 min), respectively. The follow-up period ranged from 1-23 mo (14.2 ± 5.4 mo). In group A, no LTP was detected in 32 lesions, whereas in group B, LTP was detected in 4 of 29 tumors, which occurred at 2, 7, 9, and 15 mo after RFA. The frequency of LTP in group B (13.8%; 4/29) was significantly higher than that in group A (0/32, P = 0.046). All of the LTPs occurred in the area in which the 5 mm AM was not achieved. The MRI-MRI image fusion using an ultrasound workstation is feasible and useful for evaluating the AM after RFA for HCC.
Assessment of radiofrequency ablation margin by MRI-MRI image fusion in hepatocellular carcinoma
Wang, Xiao-Li; Li, Kai; Su, Zhong-Zhen; Huang, Ze-Ping; Wang, Ping; Zheng, Rong-Qin
2015-01-01
AIM: To investigate the feasibility and clinical value of magnetic resonance imaging (MRI)-MRI image fusion in assessing the ablative margin (AM) for hepatocellular carcinoma (HCC). METHODS: A newly developed ultrasound workstation for MRI-MRI image fusion was used to evaluate the AM of 62 tumors in 52 HCC patients after radiofrequency ablation (RFA). The lesions were divided into two groups: group A, in which the tumor was completely ablated and 5 mm AM was achieved (n = 32); and group B, in which the tumor was completely ablated but 5 mm AM was not achieved (n = 29). To detect local tumor progression (LTP), all patients were followed every two months by contrast-enhanced ultrasound, contrast-enhanced MRI or computed tomography (CT) in the first year after RFA. Then, the follow-up interval was prolonged to every three months after the first year. RESULTS: Of the 62 tumors, MRI-MRI image fusion was successful in 61 (98.4%); the remaining case had significant deformation of the liver and massive ascites after RFA. The time required for creating image fusion and AM evaluation was 15.5 ± 5.5 min (range: 8-22 min) and 9.6 ± 3.2 min (range: 6-14 min), respectively. The follow-up period ranged from 1-23 mo (14.2 ± 5.4 mo). In group A, no LTP was detected in 32 lesions, whereas in group B, LTP was detected in 4 of 29 tumors, which occurred at 2, 7, 9, and 15 mo after RFA. The frequency of LTP in group B (13.8%; 4/29) was significantly higher than that in group A (0/32, P = 0.046). All of the LTPs occurred in the area in which the 5 mm AM was not achieved. CONCLUSION: The MRI-MRI image fusion using an ultrasound workstation is feasible and useful for evaluating the AM after RFA for HCC. PMID:25954109
Liu, Yu-Tao; Shi, Yuan-Kai; Hao, Xue-Zhi; Wang, Lin; Li, Jun-Ling; Han, Xiao-Hong; Li, Dan; Zhou, Yu-Jie; Tang, Le
2014-01-01
Background The echinoderm microtubule-associated protein-like-4-anaplastic lymphoma kinase (EML4-ALK) fusion gene defines a novel molecular subset of non-small-cell lung cancer (NSCLC). However, the clinicopathological features of patients with the EML4-ALK fusion gene have not been defined completely. Methods Clinicopathological data of 200 Chinese patients with advanced NSCLC were analyzed retrospectively to explore their possible correlations with EML4-ALK fusions. Results The EML4-ALK fusion gene was detected in 56 (28.0%) of the 200 NSCLC patients, and undetected in 22 (11.0%) patients because of an insufficient amount of pathological tissue. The median age of the patients with positive and negative EML4-ALK was 48 and 55 years, respectively. Patients with the EML4-ALK fusion gene were significantly younger (P< 0.001). The detection rate of the EML4-ALK fusion gene in patients who received primary tumor or metastatic lymph node resection was significantly higher than in patients who received fine-needle biopsy (P= 0.003). The detection rate of the EML4-ALK fusion gene in patients with a time lag from obtainment of the pathological tissue to EML4-ALK fusion gene detection ≤48 months was significantly higher than in patients >48 months (P= 0.020). The occurrence of the EML4-ALK fusion gene in patients with wild-type epidermal growth factor receptor (EGFR) was significantly higher than in patients with mutant-type EGFR (42.5% [37/87] vs. 6.3% [1/16], P= 0.005). Conclusions Younger age and wild-type EGFR were identified as clinicopathological characteristics of patients with advanced NSCLC who harbored the EML4-ALK fusion gene. The optimal time lag from the obtainment of the pathological tissue to the time of EML4-ALK fusion gene detection is ≤48 months. PMID:26767009
Multi-atlas and label fusion approach for patient-specific MRI based skull estimation.
Torrado-Carvajal, Angel; Herraiz, Joaquin L; Hernandez-Tamames, Juan A; San Jose-Estepar, Raul; Eryaman, Yigitcan; Rozenholc, Yves; Adalsteinsson, Elfar; Wald, Lawrence L; Malpica, Norberto
2016-04-01
MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR. © 2015 Wiley Periodicals, Inc.
Standard model EFT and extended scalar sectors
Dawson, Sally; Murphy, Christopher W.
2017-07-31
One of the simplest extensions of the Standard Model is the inclusion of an additional scalar multiplet, and we consider scalars in the S U ( 2 ) L singlet, triplet, and quartet representations. Here, we examine models with heavy neutral scalars, m H ~1 – 2 TeV , and the matching of the UV complete theories to the low energy effective field theory. We also demonstrate the agreement of the kinematic distributions obtained in the singlet models for the gluon fusion of a Higgs pair with the predictions of the effective field theory. Finally, the restrictions on the extendedmore » scalar sectors due to unitarity and precision electroweak measurements are summarized and lead to highly restricted regions of viable parameter space for the triplet and quartet models.« less
Asphalted Road Temperature Variations Due to Wind Turbine Cast Shadows
Arnay, Rafael; Acosta, Leopoldo; Sigut, Marta; Toledo, Jonay
2009-01-01
The contribution of this paper is a technique that in certain circumstances allows one to avoid the removal of dynamic shadows in the visible spectrum making use of images in the infrared spectrum. This technique emerged from a real problem concerning the autonomous navigation of a vehicle in a wind farm. In this environment, the dynamic shadows cast by the wind turbines' blades make it necessary to include a shadows removal stage in the preprocessing of the visible spectrum images in order to avoid the shadows being misclassified as obstacles. In the thermal images, dynamic shadows completely disappear, something that does not always occur in the visible spectrum, even when the preprocessing is executed. Thus, a fusion on thermal and visible bands is performed. PMID:22291541
Standard model EFT and extended scalar sectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, Sally; Murphy, Christopher W.
One of the simplest extensions of the Standard Model is the inclusion of an additional scalar multiplet, and we consider scalars in the S U ( 2 ) L singlet, triplet, and quartet representations. Here, we examine models with heavy neutral scalars, m H ~1 – 2 TeV , and the matching of the UV complete theories to the low energy effective field theory. We also demonstrate the agreement of the kinematic distributions obtained in the singlet models for the gluon fusion of a Higgs pair with the predictions of the effective field theory. Finally, the restrictions on the extendedmore » scalar sectors due to unitarity and precision electroweak measurements are summarized and lead to highly restricted regions of viable parameter space for the triplet and quartet models.« less
Park, Yung; Ha, Joong Won; Lee, Yun Tae; Sung, Na Young
2014-06-01
Multiple studies have reported favorable short-term results after treatment of spondylolisthesis and other degenerative lumbar diseases with minimally invasive transforaminal lumbar interbody fusion. However, to our knowledge, results at a minimum of 5 years have not been reported. We determined (1) changes to the Oswestry Disability Index, (2) frequency of radiographic fusion, (3) complications and reoperations, and (4) the learning curve associated with minimally invasive transforaminal lumbar interbody fusion at minimum 5-year followup. We reviewed our first 124 patients who underwent minimally invasive transforaminal lumbar interbody fusion to treat low-grade spondylolisthesis and degenerative lumbar diseases and did not need a major deformity correction. This represented 63% (124 of 198) of the transforaminal lumbar interbody fusion procedures we performed for those indications during the study period (2003-2007). Eighty-three (67%) patients had complete 5-year followup. Plain radiographs and CT scans were evaluated by two reviewers. Trends of surgical time, blood loss, and hospital stay over time were examined by logarithmic curve fit-regression analysis to evaluate the learning curve. At 5 years, mean Oswestry Disability Index improved from 60 points preoperatively to 24 points and 79 of 83 patients (95%) had improvement of greater than 10 points. At 5 years, 67 of 83 (81%) achieved radiographic fusion, including 64 of 72 patients (89%) who had single-level surgery. Perioperative complications occurred in 11 of 124 patients (9%), and another surgical procedure was performed in eight of 124 patients (6.5%) involving the index level and seven of 124 patients (5.6%) at adjacent levels. There were slowly decreasing trends of surgical time and hospital stay only in single-level surgery and almost no change in intraoperative blood loss over time, suggesting a challenging learning curve. Oswestry Disability Index scores improved for patients with spondylolisthesis and degenerative lumbar diseases treated with minimally invasive transforaminal lumbar interbody fusion at minimum 5-year followup. We suggest this procedure is reasonable for properly selected patients with these indications; however, traditional approaches should still be performed for patients with high-grade spondylolisthesis, patients with a severely collapsed disc space and no motion seen on the dynamic radiographs, patients who need multilevel decompression and arthrodesis, and patients with kyphoscoliosis needing correction. Level IV, therapeutic study. See the Instructions for Authors for a complete description of levels of evidence.
Visualization and Sequencing of Membrane Remodeling Leading to Influenza Virus Fusion
Gui, Long; Ebner, Jamie L.; Mileant, Alexander; Williams, James A.
2016-01-01
ABSTRACT Protein-mediated membrane fusion is an essential step in many fundamental biological events, including enveloped virus infection. The nature of protein and membrane intermediates and the sequence of membrane remodeling during these essential processes remain poorly understood. Here we used cryo-electron tomography (cryo-ET) to image the interplay between influenza virus and vesicles with a range of lipid compositions. By following the population kinetics of membrane fusion intermediates imaged by cryo-ET, we found that membrane remodeling commenced with the hemagglutinin fusion protein spikes grappling onto the target membrane, followed by localized target membrane dimpling as local clusters of hemagglutinin started to undergo conformational refolding. The local dimples then transitioned to extended, tightly apposed contact zones where the two proximal membrane leaflets were in most cases indistinguishable from each other, suggesting significant dehydration and possible intermingling of the lipid head groups. Increasing the content of fusion-enhancing cholesterol or bis-monoacylglycerophosphate in the target membrane led to an increase in extended contact zone formation. Interestingly, hemifused intermediates were found to be extremely rare in the influenza virus fusion system studied here, most likely reflecting the instability of this state and its rapid conversion to postfusion complexes, which increased in population over time. By tracking the populations of fusion complexes over time, the architecture and sequence of membrane reorganization leading to efficient enveloped virus fusion were thus resolved. IMPORTANCE Enveloped viruses employ specialized surface proteins to mediate fusion of cellular and viral membranes that results in the formation of pores through which the viral genetic material is delivered to the cell. For influenza virus, the trimeric hemagglutinin (HA) glycoprotein spike mediates host cell attachment and membrane fusion. While structures of a subset of conformations and parts of the fusion machinery have been characterized, the nature and sequence of membrane deformations during fusion have largely eluded characterization. Building upon studies that focused on early stages of HA-mediated membrane remodeling, here cryo-electron tomography (cryo-ET) was used to image the three-dimensional organization of intact influenza virions at different stages of fusion with liposomes, leading all the way to completion of the fusion reaction. By monitoring the evolution of fusion intermediate populations over the course of acid-induced fusion, we identified the progression of membrane reorganization that leads to efficient fusion by an enveloped virus. PMID:27226364
Carp, Julia; Sethi, Anil; Bartol, Stephen; Craig, Joseph; Les, Clifford M.
2007-01-01
The use of bone morphogenetic protein-2 (rhBMP-2) in spinal fusion has increased dramatically since an FDA approval for its use in anterior lumbar fusion with the LT cage. There are several reports of its use in transforaminal lumbar interbody fusion, posterolateral fusion, and anterior cervical fusion. Reports on adverse effects of rhBMP-2 when used in spinal fusion are scarce in literature. An Institutional Review Board approved retrospective study was conducted in patients undergoing anterior spinal fusion and instrumentation following diskectomy at a single center. Forty-six consecutive patients were included. Twenty-two patients treated with rhBMP-2 and PEEK cages were compared to 24 in whom allograft spacers and demineralized bone matrix was used. Patients filled out Cervical Oswestry Scores, VAS for arm pain, neck pain, and had radiographs preoperatively as well at every follow up visit. Radiographic examination following surgery revealed end plate resorption in all patients in whom rhBMP-2 was used. This was followed by a period of new bone formation commencing at 6 weeks. In contrast, allograft patients showed a progressive blurring of end plate-allograft junction. Dysphagia was a common complication and it was significantly more frequent and more severe in patients in whom rhBMP-2 was used. Post operative swelling anterior to the vertebral body on lateral cervical spine X-ray was significantly larger in the rhBMP-2 group when measured from 1 to 6 weeks after which it was similar. These effects are possibly due to an early inflammatory response to rhBMP-2 and were observed to be dose related. With the parameters we used, there was no significant difference in the clinical outcome of patients in the two groups at 2 years. The cost of implants in patients treated with rhBMP-2 and PEEK spacers was more than three times the cost of allograft spacers and demineralized bone matrix in 1, 2, and 3-level cases. Despite providing consistently good fusion rates, we have abandoned using rhBMP-2 and PEEK cages for anterior cervical fusion, due to the side effects, high cost, and the availability of a suitable alternative. PMID:17387522
Membrane Fusion Proteins as Nanomachines
NASA Astrophysics Data System (ADS)
Tamm, Lukas
2009-03-01
Membrane fusion is key to fertilization, virus infection, and neurotransmission. Specific proteins work like nanomachines to stitch together fluid, yet highly ordered lipid bilayers. The energy gained from large exothermic conformational changes of these proteins is utilized to fuse lipid bilayers that do not fuse spontaneously. Structural studies using x-ray crystallography and NMR spectroscopy have yielded detailed information about architecture and inner workings of these molecular machines. The question now is: how is mechanical energy gained from such protein transformations harnessed to transform membrane topology? To answer this question, we have determined that a boomerang-shaped structure of the influenza fusion peptide is critical to generate a high-energy binding intermediate in the target membrane and to return the ``boomerang'' to its place of release near the viral membrane for completion of the fusion cycle. In presynaptic exocytosis, receptor and acceptor SNAREs are zippered to form a helical bundle that is arrested shortly before the membrane. Ca binding to interlocked synaptotagmin releases the fusion block. Structural NMR and single molecule fluorescence data are combined to arrive at and further refine this picture.
Information recovery through image sequence fusion under wavelet transformation
NASA Astrophysics Data System (ADS)
He, Qiang
2010-04-01
Remote sensing is widely applied to provide information of areas with limited ground access with applications such as to assess the destruction from natural disasters and to plan relief and recovery operations. However, the data collection of aerial digital images is constrained by bad weather, atmospheric conditions, and unstable camera or camcorder. Therefore, how to recover the information from the low-quality remote sensing images and how to enhance the image quality becomes very important for many visual understanding tasks, such like feature detection, object segmentation, and object recognition. The quality of remote sensing imagery can be improved through meaningful combination of the employed images captured from different sensors or from different conditions through information fusion. Here we particularly address information fusion to remote sensing images under multi-resolution analysis in the employed image sequences. The image fusion is to recover complete information by integrating multiple images captured from the same scene. Through image fusion, a new image with high-resolution or more perceptive for human and machine is created from a time series of low-quality images based on image registration between different video frames.
Fusion Propulsion Z-Pinch Engine Concept
NASA Technical Reports Server (NTRS)
Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.;
2011-01-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human spaceflight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly1. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield 2. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10(exp -6 sec). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Decade Module 2 (DM2), approx.500 KJ pulsed-power is coming to the RSA Aerophysics Lab managed by UAHuntsville in January, 2012. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) 3 propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle.
A survey of infrared and visual image fusion methods
NASA Astrophysics Data System (ADS)
Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Hai, Jinjin; He, Kangjian
2017-09-01
Infrared (IR) and visual (VI) image fusion is designed to fuse multiple source images into a comprehensive image to boost imaging quality and reduce redundancy information, which is widely used in various imaging equipment to improve the visual ability of human and robot. The accurate, reliable and complementary descriptions of the scene in fused images make these techniques be widely used in various fields. In recent years, a large number of fusion methods for IR and VI images have been proposed due to the ever-growing demands and the progress of image representation methods; however, there has not been published an integrated survey paper about this field in last several years. Therefore, we make a survey to report the algorithmic developments of IR and VI image fusion. In this paper, we first characterize the IR and VI image fusion based applications to represent an overview of the research status. Then we present a synthesize survey of the state of the art. Thirdly, the frequently-used image fusion quality measures are introduced. Fourthly, we perform some experiments of typical methods and make corresponding analysis. At last, we summarize the corresponding tendencies and challenges in IR and VI image fusion. This survey concludes that although various IR and VI image fusion methods have been proposed, there still exist further improvements or potential research directions in different applications of IR and VI image fusion.
Extraction of the Wichita Fusion Nail after Knee Arthrodesis.
Neuts, Ann-Sophie; Lammens, Johan; Stuyck, Jose
2016-01-01
To avoid a new exposition and partial damage of a knee arthrodesis site due to the removal of the Wichita fusion nail (WFN), a new extraction technique was developed, using a femoral osteotomy at the proximal end of the nail. Fixing the osteotomy with an Ilizarov frame offered the possibility to perform an additional correction of length and/or alignment if necessary.
Recent progress in understanding electron thermal transport in NSTX
Ren, Y.; Belova, E.; Gorelenkov, N.; ...
2017-03-10
The anomalous level of electron thermal transport inferred in magnetically confined configurations is one of the most challenging problems for the ultimate realization of fusion power using toroidal devices: tokamaks, spherical tori and stellarators. It is generally believed that plasma instabilities driven by the abundant free energy in fusion plasmas are responsible for the electron thermal transport. The National Spherical Torus eXperiment (NSTX) (Ono et al 2000 Nucl. Fusion 40 557) provides a unique laboratory for studying plasma instabilities and their relation to electron thermal transport due to its low toroidal field, high plasma beta, low aspect ratio and largemore » ExB flow shear. Recent findings on NSTX have shown that multiple instabilities are required to explain observed electron thermal transport, given the wide range of equilibrium parameters due to different operational scenarios and radial regions in fusion plasmas. Here we review the recent progresses in understanding anomalous electron thermal transport in NSTX and focus on mechanisms that could drive electron thermal transport in the core region. The synergy between experiment and theoretical/ numerical modeling is essential to achieving these progresses. The plans for newly commissioned NSTX-Upgrade will also be discussed.« less
Kiani, Ali Asghar; Shahsavar, Farhad; Gorji, Mojtaba; Ahmadi, Kolsoum; Nazarabad, Vahideh Heydari; Bahmani, Banafsheh
2016-01-01
Chronic myelogenous leukemia (CML) is a chronic malignancy of myeloid linage associated with a significant increase in granulocytes in bone marrow and peripheral blood. CML diagnosis is based on detection of Philadelphia chromosome and "Abelson murine leukemia viral oncogene homolog" (ABL)-"breakpoint cluster region protein" fusions (ABL-BCR fusions). In this study, patients with CML morphology were studied according to ABL-BCR fusions and the relationship between the fusions and peripheral blood cell changes was examined. All patients suspected to chronic myeloproliferative disorders in Lorestan Province visiting subspecialist hematology clinics who were confirmed by oncologist were studied over a period of 5 years. After completing basic data questionnaire, blood samples were obtained with informed consent from the patients. Blood cell count and morphology were investigated and RNA was extracted from blood samples. cDNA was synthesized from RNA and ABL-BCR fusions including b3a2 and b2a2 (protein 210 kd or p210), e1a2 (protein 190 kdor p190), and e19a2 (protein 230 kdor p230) were studied by multiplex reverse transcription polymerase chain reaction method. Coexistence of e1a2 and b2a2 (p210/p190) fusions was also studied. The prevalence of mutations and their correlation with the blood parameters were statistically analyzed. Of 58 patients positive for ABL-BCR fusion, 18 (30.5%) had b2a2 fusion, 37 (62.71%) had b3a2 fusion and three (3.08%) had e1a2 fusion. Coexistence of e1a2 and b2a2 (p210/p190) was not observed. There was no significant correlation between ABL-BCR fusions and white blood cell count, platelet count, and hemoglobin concentration. The ABL-BCR fusions in Lorestan Province were similar to other studies in Iran, and b3a2 fusion had the highest prevalence in the studied patients studied.
Macrophage Fusion Is Controlled by the Cytoplasmic Protein Tyrosine Phosphatase PTP-PEST/PTPN12
Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean
2013-01-01
Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading. PMID:23589331
Distinct Requirements for HIV-Cell Fusion and HIV-mediated Cell-Cell Fusion*
Kondo, Naoyuki; Marin, Mariana; Kim, Jeong Hwa; Desai, Tanay M.; Melikyan, Gregory B.
2015-01-01
Whether HIV-1 enters cells by fusing with the plasma membrane or with endosomes is a subject of active debate. The ability of HIV-1 to mediate fusion between adjacent cells, a process referred to as “fusion-from-without” (FFWO), shows that this virus can fuse with the plasma membrane. To compare FFWO occurring at the cell surface with HIV-cell fusion through a conventional entry route, we designed an experimental approach that enabled the measurements of both processes in the same sample. The following key differences were observed. First, a very small fraction of viruses fusing with target cells participated in FFWO. Second, whereas HIV-1 fusion with adherent cells was insensitive to actin inhibitors, post-CD4/coreceptor binding steps during FFWO were abrogated. A partial dependence of HIV-cell fusion on actin remodeling was observed in CD4+ T cells, but this effect appeared to be due to the actin dependence of virus uptake. Third, deletion of the cytoplasmic tail of HIV-1 gp41 dramatically enhanced the ability of the virus to promote FFWO, while having a modest effect on virus-cell fusion. Distinct efficiencies and actin dependences of FFWO versus HIV-cell fusion are consistent with the notion that, except for a minor fraction of particles that mediate fusion between the plasma membranes of adjacent cells, HIV-1 enters through an endocytic pathway. We surmise, however, that cell-cell contacts enabling HIV-1 fusion with the plasma membrane could be favored at the sites of high density of target cells, such as lymph nodes. PMID:25589785
Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.
Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André
2013-06-01
Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.
Entropic forces drive self-organization and membrane fusion by SNARE proteins
Stratton, Benjamin S.; Warner, Jason M.; Rothman, James E.; O’Shaughnessy, Ben
2017-01-01
SNARE proteins are the core of the cell’s fusion machinery and mediate virtually all known intracellular membrane fusion reactions on which exocytosis and trafficking depend. Fusion is catalyzed when vesicle-associated v-SNAREs form trans-SNARE complexes (“SNAREpins”) with target membrane-associated t-SNAREs, a zippering-like process releasing ∼65 kT per SNAREpin. Fusion requires several SNAREpins, but how they cooperate is unknown and reports of the number required vary widely. To capture the collective behavior on the long timescales of fusion, we developed a highly coarse-grained model that retains key biophysical SNARE properties such as the zippering energy landscape and the surface charge distribution. In simulations the ∼65-kT zippering energy was almost entirely dissipated, with fully assembled SNARE motifs but uncomplexed linker domains. The SNAREpins self-organized into a circular cluster at the fusion site, driven by entropic forces that originate in steric–electrostatic interactions among SNAREpins and membranes. Cooperative entropic forces expanded the cluster and pulled the membranes together at the center point with high force. We find that there is no critical number of SNAREs required for fusion, but instead the fusion rate increases rapidly with the number of SNAREpins due to increasing entropic forces. We hypothesize that this principle finds physiological use to boost fusion rates to meet the demanding timescales of neurotransmission, exploiting the large number of v-SNAREs available in synaptic vesicles. Once in an unfettered cluster, we estimate ≥15 SNAREpins are required for fusion within the ∼1-ms timescale of neurotransmitter release. PMID:28490503
DOE Office of Scientific and Technical Information (OSTI.GOV)
Séguin, F. H.; Li, C. K.; DeCiantis, J. L.
Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seguin, F. H.; Li, C. K.; DeCiantis, J. L.
Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Furthermore, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).
Seguin, F. H.; Li, C. K.; DeCiantis, J. L.; ...
2016-03-22
Three orthogonal proton emission imaging cameras were used to study the 3D effects of low-mode drive asymmetries and target asymmetries on nuclear burn symmetry and yield in direct-drive, inertial-confinement-fusion experiments. The fusion yield decreased quickly as the burn region became asymmetric due to either drive or capsule asymmetry. Furthermore, measurements and analytic scaling are used to predict how intentionally asymmetric capsule shells could improve performance by compensating for drive asymmetry when it cannot be avoided (such as with indirect drive or with polar direct drive).
NASA Technical Reports Server (NTRS)
Gopalan, Arun; Zubko, Viktor; Leptoukh, Gregory G.
2008-01-01
We look at issues, barriers and approaches for Data Fusion of satellite aerosol data as available from the GES DISC GIOVANNI Web Service. Daily Global Maps of AOT from a single satellite sensor alone contain gaps that arise due to various sources (sun glint regions, clouds, orbital swath gaps at low latitudes, bright underlying surfaces etc.). The goal is to develop a fast, accurate and efficient method to improve the spatial coverage of the Daily AOT data to facilitate comparisons with Global Models. Data Fusion may be supplemented by Optimal Interpolation (OI) as needed.
El-Guebaly, Laila; Rowcliffe, Arthur; Menard, Jonathan; ...
2016-08-11
The qualification and validation of nuclear technologies are daunting tasks for fusion demonstration (DEMO) and power plants. This is particularly true for advanced designs that involve harsh radiation environment with 14 MeV neutrons and high-temperature operating regimes. This paper outlines the unique qualification and validation processes developed in the U.S., offering the only access to the complete fusion environment, focusing on the most prominent U.S. blanket concept (the dual cooled PbLi (DCLL)) along with testing new generations of structural and functional materials in dedicated test modules. The venue for such activities is the proposed Fusion Nuclear Science Facility (FNSF), whichmore » is viewed as an essential element of the U.S. fusion roadmap. A staged blanket testing strategy has been developed to test and enhance the DCLL blanket performance during each phase of FNSF D-T operation. A materials testing module (MTM) is critically important to include in the FNSF as well to test a broad range of specimens of future, more advanced generations of materials in a relevant fusion environment. Here, the most important attributes for MTM are the relevant He/dpa ratio (10–15) and the much larger specimen volumes compared to the 10–500 mL range available in the International Fusion Materials Irradiation Facility (IFMIF) and European DEMO-Oriented Neutron Source (DONES).« less
Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation.
Escobar-Henriques, Mafalda; Anton, Fabian
2013-01-01
Mitochondrial fusion is a fundamental process driven by dynamin related GTPase proteins (DRPs), in contrast to the general SNARE-dependence of most cellular fusion events. The DRPs Mfn1/Mfn2/Fzo1 and OPA1/Mgm1 are the key effectors for fusion of the mitochondrial outer and inner membranes, respectively. In order to promote fusion, these two DRPs require post-translational modifications and proteolysis. OPA1/Mgm1 undergoes partial proteolytic processing, which results in a combination between short and long isoforms. In turn, ubiquitylation of mitofusins, after oligomerization and GTP hydrolysis, promotes and positively regulates mitochondrial fusion. In contrast, under conditions of mitochondrial dysfunction, negative regulation by proteolysis on these DRPs results in mitochondrial fragmentation. This occurs by complete processing of OPA1 and via ubiquitylation and degradation of mitofusins. Mitochondrial fragmentation contributes to the elimination of damaged mitochondria by mitophagy, and may play a protective role against Parkinson's disease. Moreover, a link of Mfn2 to Alzheimer's disease is emerging and mutations in Mfn2 or OPA1 cause Charcot-Marie-Tooth type 2A neuropathy or autosomal-dominant optic atrophy. Here, we summarize our current understanding on the molecular mechanisms promoting or inhibiting fusion of mitochondrial membranes, which is essential for cellular survival and disease control. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Laporte, Nadine; Netanyahuy, Nathan S.; Zukor, Dorothy (Technical Monitor)
2001-01-01
The characterization and the mapping of land cover/land use of forest areas, such as the Central African rainforest, is a very complex task. This complexity is mainly due to the extent of such areas and, as a consequence, to the lack of full and continuous cloud-free coverage of those large regions by one single remote sensing instrument, In order to provide improved vegetation maps of Central Africa and to develop forest monitoring techniques for applications at the local and regional scales, we propose to utilize multi-sensor remote sensing observations coupled with in-situ data. Fusion and clustering of multi-sensor data are the first steps towards the development of such a forest monitoring system. In this paper, we will describe some preliminary experiments involving the fusion of SAR and Landsat image data of the Lope Reserve in Gabon. Similarly to previous fusion studies, our fusion method is wavelet-based. The fusion provides a new image data set which contains more detailed texture features and preserves the large homogeneous regions that are observed by the Thematic Mapper sensor. The fusion step is followed by unsupervised clustering and provides a vegetation map of the area.
Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution
Song, Yantao; Wu, Guorong; Sun, Quansen; Bahrami, Khosro; Li, Chunming; Shen, Dinggang
2015-01-01
Accurate segmentation of anatomical structures in medical images is very important in neuroscience studies. Recently, multi-atlas patch-based label fusion methods have achieved many successes, which generally represent each target patch from an atlas patch dictionary in the image domain and then predict the latent label by directly applying the estimated representation coefficients in the label domain. However, due to the large gap between these two domains, the estimated representation coefficients in the image domain may not stay optimal for the label fusion. To overcome this dilemma, we propose a novel label fusion framework to make the weighting coefficients eventually to be optimal for the label fusion by progressively constructing a dynamic dictionary in a layer-by-layer manner, where a sequence of intermediate patch dictionaries gradually encode the transition from the patch representation coefficients in image domain to the optimal weights for label fusion. Our proposed framework is general to augment the label fusion performance of the current state-of-the-art methods. In our experiments, we apply our proposed method to hippocampus segmentation on ADNI dataset and achieve more accurate labeling results, compared to the counterpart methods with single-layer dictionary. PMID:26942233
Progressive Label Fusion Framework for Multi-atlas Segmentation by Dictionary Evolution.
Song, Yantao; Wu, Guorong; Sun, Quansen; Bahrami, Khosro; Li, Chunming; Shen, Dinggang
2015-10-01
Accurate segmentation of anatomical structures in medical images is very important in neuroscience studies. Recently, multi-atlas patch-based label fusion methods have achieved many successes, which generally represent each target patch from an atlas patch dictionary in the image domain and then predict the latent label by directly applying the estimated representation coefficients in the label domain. However, due to the large gap between these two domains, the estimated representation coefficients in the image domain may not stay optimal for the label fusion. To overcome this dilemma, we propose a novel label fusion framework to make the weighting coefficients eventually to be optimal for the label fusion by progressively constructing a dynamic dictionary in a layer-by-layer manner, where a sequence of intermediate patch dictionaries gradually encode the transition from the patch representation coefficients in image domain to the optimal weights for label fusion. Our proposed framework is general to augment the label fusion performance of the current state-of-the-art methods. In our experiments, we apply our proposed method to hippocampus segmentation on ADNI dataset and achieve more accurate labeling results, compared to the counterpart methods with single-layer dictionary.
The Rab3A-22A Chimera Prevents Sperm Exocytosis by Stabilizing Open Fusion Pores*
Quevedo, María F.; Lucchesi, Ornella; Bustos, Matías A.; Pocognoni, Cristian A.; De la Iglesia, Paola X.
2016-01-01
At the final stage of exocytotis, a fusion pore opens between the plasma and a secretory vesicle membranes; typically, when the pore dilates the vesicle releases its cargo. Sperm contain a large dense-core secretory granule (the acrosome) whose contents are secreted by regulated exocytosis at fertilization. Minutes after the arrival of the triggering signal, the acrosomal and plasma membranes dock at multiple sites and fusion pores open at the contact points. It is believed that immediately afterward, fusion pores dilate spontaneously. Rab3A is an essential component of human sperm exocytotic machinery. Yet, recombinant, persistently active Rab3A halts calcium-triggered secretion when introduced after docking into streptolysin O-permeabilized cells; so does a Rab3A-22A chimera. Here, we applied functional assays, electron and confocal microscopy to show that the secretion blockage is due to the stabilization of open fusion pores. Other novel findings are that sperm SNAREs engage in α-SNAP/NSF-sensitive complexes at a post-fusion stage. Complexes are disentangled by these chaperons to achieve vesiculation and acrosomal contents release. Thus, post-fusion regulation of the pores determines their expansion and the success of the acrosome reaction. PMID:27613869
Examining the role of transfer coupling in sub-barrier fusion of Ti 46 , 50 + Sn 124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, J. Felix; Allmond, J. M.; Gross, C. J.
2016-08-24
In this study, the presence of neutron transfer channels with positive Q values can enhance sub-barrier fusion cross sections. Recent measurements of the fusion excitation functions for 58Ni+ 132,124Sn found that the fusion enhancement due to the influence of neutron transfer is smaller than that in 40Ca + 132,124Sn although the Q values for multineutron transfer are comparable. The purpose of this study is to investigate the differences observed between the fusion of Sn + Ni and Sn + Ca. Methods: Fusion excitation functions for 46,50Ti + 124Sn have been measured at energies near the Coulomb barrier. As a result,more » a comparison of the barrier distributions for 46Ti+ 124Sn and 40Ca+ 124Sn shows that the 40Ca+ 124Sn system has a barrier strength resulting from the coupling to the very collective octupole state in 40Ca at an energy significantly lower than the uncoupled barrier. In conclusion, the large sub-barrier fusion enhancement in 40Ca induced reactions is attributed to both couplings to neutron transfer and inelastic excitation, with the octupole vibration of 40Ca playing a major role.« less
Christensen, Finn Bjarke
2004-10-01
Chronic low back pain (CLBP) has become one of the most common causes of disability in adults under 45 years of age and is consequently one of the most common reasons for early retirement in industrialised societies. Accordingly, CLBP represents an expensive drain on society's resources and is a very challenging area for which a consensus for rational therapy is yet to be established. The spinal fusion procedure was introduced as a treatment option for CLBP more than 70 years ago. However, few areas of spinal surgery have caused so much controversy as spinal fusion. The literature reveals divergent opinions about when fusion is indicated and how it should be performed. Furthermore, the significance of the role of postoperative rehabilitation following spinal fusion may be underestimated. There exists no consensus on the design of a program specific for rehabilitation. Ideally, for any given surgical procedure, it should be possible to identify not only possible complications relative to a surgical procedure, but also what symptoms may be expected, and what pain behaviour may be expected of a particular patient. The overall aims of the current studies were: 1) to introduce patient-based functional outcome evaluation into spinal fusion treatment; 2) to evaluate radiological assessment of different spinal fusion procedures; 3) to investigate the effect of titanium versus stainless steel pedicle screws on mechanical fixation and bone ingrowth in lumbar spinal fusion; 4) to analyse the clinical and radiological outcome of different lumbar spinal fusion techniques; 5) to evaluate complications and re-operation rates following different surgical procedures; and 6) to analyse the effect of different rehabilitation strategies for lumbar spinal fusion patients. The present thesis comprises 9 studies: 2 clinical retrospective studies, 1 clinical prospective case/reference study, 5 clinical randomised prospective studies and 1 animal study (Mini-pigs). In total, 594 patients were included in the investigation from 1979 to 1999. Each had prior to inclusion at least 2 years of CLBP and had therefore been subjected to most of the conservative treatment leg pain, due to localized isthmic spondylolisthesis grades I-II or primary or secondary degeneration. PATIENT-BASED FUNCTIONAL OUTCOME: Patients' self-reported parameters should include the impact of CLBP on daily activity, work and leisure time activities, anxiety/depression, social interests and intensity of back and leg pain. Between 1993 and 2003 approximately 1400 lumbar spinal fusion patients completed the Dallas Pain Questionnaire under prospective design studies. In 1996, the Low Back Pain Rating scale was added to the standard questionnaire packet distributed among spinal fusion patients. In our experience, these tools are valid instruments for clinical assessment of candidates for spinal fusion procedures. It is extremely difficult to interpret radiographs of both lumbar posterolateral fusion and anterior interbody fusion. Plain radiographs are clearly not the perfect media for analysis of spinal fusion, but until new and better diagnostic methods are available for clinical use, radiographs will remain the golden standard. Therefore, the development of a detailed reliable radiographic classification system is highly desirable. The classification used in the present thesis for the evaluation of posteroalteral spinal fusion, both with and without instrumentation, demonstrated good interobserver and intraobserver agreement. The classification showed acceptable reliability and may be one way to improve interstudy and intrastudy correlation of radiologic outcomes after posterolateral spinal fusion. Radiology-based evaluation of anterior lumbar interbody fusion is further complicated when cages are employed. The use of different cage designs and materials makes it almost impossible to establish a standard radiological classification system for anterior fusions. BONE-SCREW INTERFACE: Mechanical binding at the bone-screw interface was significantly greater for titanium pedicle screws than it was for stainless steel. This could be explained by the fact that the titanium screws had superior bone on-growth. There was no correlation between screw removal torques and pull-out strength. Clinically, the use of titanium and titanium-alloy pedicle screws may be preferable for osteoporotic patients and those with decreased osteogenesis. The present series of studies observed significant long-term functional improvement for approximately 70% of patients who had undergone lumbar spinal fusion procedure. Solid fusion as determined from radiographs ranged from 52% to 92% depending on the choice of surgical procedure. The choice of surgical procedure should relate to the diagnosis, as patients with isthmic spondylolisthesis (Grades I and II) are best served with posterolateral fusion without instrumentation, and patients with disc degeneration seem to gain most from instrumented posterolateral fusion or circumferential fusion. The number of perioperative complications increased with the use of pedicle screw systems to support posterolateral fusions and increased further with the use of circumferential fusions. There was no significant association between outcome result and perioperative complications. The risk of reoperation within 2 years after the spinal fusion procedure was, however, significantly lower for those who had received circumferential fusion in comparison to posterolateral fusion with instrumentation. Furthermore, the risk of non-union was found to be significantly lower for patients who had received circumferential fusion as compared to posterolateral fusion with and without instrumentation. The complications of sexual dysfunction and fusion at non-intended levels were found to be significant but without influence on the overall outcome. The patients in the Back-café group performed a succession of many daily tasks significantly better and moreover had less pain compared with both the Video and Training groups 2 years after lumbar spinal fusion. The Video group had significantly greater treatment demands outside the hospital system. This study demonstrates the importance of the inclusion of coping schemes and questions the role of intensive exercises in a rehabilitation program for spinal fusion patients.
2008-05-22
security organizations. At lower levels of the Counter-Terrorism structure, fusion centers exist within nearly all fifty states. This is a completely new...all Americans who do not convert to Islam. He elaborated how Muslims believe that rabbis and monks altered the Torah and Bible and that only the ...Forces (JTTF), and fusion artment of Homeland Security, the National Counterterrorism Center, and changes to the organization of the FBI and Congress
2014-10-01
Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The study investigates whether fusion PET/MRI imaging with 18F- choline PET/CT and...imaging with 18F- choline PET/CT and diffusion-weighted MRI can be successfully applied to target prostate cancer using image-guided prostate...Completed task. The 18F- choline synthesis was implemented and optimized for routine radiotracer production. RDRC committee approval as part of the IRB
NASA Astrophysics Data System (ADS)
Pace, D. C.; Collins, C. S.; Crowley, B.; Grierson, B. A.; Heidbrink, W. W.; Pawley, C.; Rauch, J.; Scoville, J. T.; Van Zeeland, M. A.; Zhu, Y. B.; The DIII-D Team
2017-01-01
A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significant changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. Developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.
Fusion of MultiSpectral and Panchromatic Images Based on Morphological Operators.
Restaino, Rocco; Vivone, Gemine; Dalla Mura, Mauro; Chanussot, Jocelyn
2016-04-20
Nonlinear decomposition schemes constitute an alternative to classical approaches for facing the problem of data fusion. In this paper we discuss the application of this methodology to a popular remote sensing application called pansharpening, which consists in the fusion of a low resolution multispectral image and a high resolution panchromatic image. We design a complete pansharpening scheme based on the use of morphological half gradients operators and demonstrate the suitability of this algorithm through the comparison with state of the art approaches. Four datasets acquired by the Pleiades, Worldview-2, Ikonos and Geoeye-1 satellites are employed for the performance assessment, testifying the effectiveness of the proposed approach in producing top-class images with a setting independent of the specific sensor.
Mass and angular distributions of the reaction products in heavy ion collisions
NASA Astrophysics Data System (ADS)
Nasirov, A. K.; Giardina, G.; Mandaglio, G.; Kayumov, B. M.; Tashkhodjaev, R. B.
2018-05-01
The optimal reactions and beam energies leading to synthesize superheavy elements is searched by studying mass and angular distributions of fission-like products in heavy-ion collisions since the evaporation residue cross section consists an ignorable small part of the fusion cross section. The intensity of the yield of fission-like products allows us to estimate the probability of the complete fusion of the interacting nuclei. The overlap of the mass and angular distributions of the fusion-fission and quasifission products causes difficulty at estimation of the correct value of the probability of the compound nucleus formation. A study of the mass and angular distributions of the reaction products is suitable key to understand the interaction mechanism of heavy ion collisions.
Endler, Peter; Ekman, Per; Möller, Hans; Gerdhem, Paul
2017-05-03
Various methods for the treatment of isthmic spondylolisthesis are available. The aim of this study was to compare outcomes after posterolateral fusion without instrumentation, posterolateral fusion with instrumentation, and interbody fusion. The Swedish Spine Register was used to identify 765 patients who had been operated on for isthmic spondylolisthesis and had at least preoperative and 2-year outcome data; 586 of them had longer follow-up (a mean of 6.9 years). The outcome measures were a global assessment of leg and back pain, the Oswestry Disability Index (ODI), the EuroQol-5 Dimensions (EQ-5D) Questionnaire, the Short Form-36 (SF-36), a visual analog scale (VAS) for back and leg pain, and satisfaction with treatment. Data on additional lumbar spine surgery was searched for in the register, with the mean duration of follow-up for this variable being 10.6 years after the index procedure. Statistical analyses were performed with analysis of covariance or competing-risks proportional hazards regression, adjusted for baseline differences in the studied variables, smoking, employment status, and level of fusion. Posterolateral fusion without instrumentation was performed in 102 patients; posterolateral fusion with instrumentation, in 452; and interbody fusion, in 211. At 1 year, improvement was reported in the global assessment for back pain by 54% of the patients who had posterolateral fusion without instrumentation, 68% of those treated with posterolateral fusion with instrumentation, and 70% of those treated with interbody fusion (p = 0.009). The VAS for back pain and reported satisfaction with treatment showed similar patterns (p = 0.003 and p = 0.017, respectively), whereas other outcomes did not differ among the treatment groups at 1 year. At 2 years, the global assessment for back pain indicated improvement in 57% of the patients who had undergone posterolateral fusion without instrumentation, 70% of those who had posterolateral fusion with instrumentation, and 71% of those treated with interbody fusion (p = 0.022). There were no significant outcome differences at the mean 6.9-year follow-up interval. There was an increased hazard ratio for additional lumbar spine surgery after interbody fusion (4.34; 95% confidence interval [CI] = 1.71 to 11.03) and posterolateral fusion with instrumentation (2.56; 95% CI = 1.02 to 6.42) compared with after posterolateral fusion without instrumentation (1.00; reference). Fusion with instrumentation, with or without interbody fusion, was associated with more improvement in back pain scores and higher satisfaction with treatment compared with fusion without instrumentation at 1 year, but the difference was attenuated with longer follow-up. Fusion with instrumentation was associated with a significantly higher risk of additional spine surgery. Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.
Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway
1994-01-01
Karyogamy is the process where haploid nuclei fuse to form a diploid nucleus during yeast mating. We devised a novel genetic screen that identified five new karyogamy (KAR) genes and three new cell fusion (FUS) genes. The kar mutants fell into two classes that represent distinct events in the yeast karyogamy pathway. Class I mutations blocked congression of the nuclei due to cytoplasmic microtubule defects. In Class II mutants, nuclear congression proceeded and the membranes of apposed nuclei were closely aligned but unfused. In vitro, Class II mutant membranes were defective in a homotypic ER/nuclear membrane fusion assay. We propose that Class II mutants define components of a novel membrane fusion complex which functions during vegetative growth and is recruited for karyogamy. PMID:8051211
NASA Astrophysics Data System (ADS)
Wu, NaiQi; Zhu, MengChu; Bai, LiPing; Li, ZhiWu
2016-07-01
In some refineries, storage tanks are located at two different sites, one for low-fusion-point crude oil and the other for high one. Two pipelines are used to transport different oil types. Due to the constraints resulting from the high-fusion-point oil transportation, it is challenging to schedule such a system. This work studies the scheduling problem from a control-theoretic perspective. It proposes to use a hybrid Petri net method to model the system. It then finds the schedulability conditions by analysing the dynamic behaviour of the net model. Next, it proposes an efficient scheduling method to minimize the cost of high-fusion-point oil transportation. Finally, it gives a complex industrial case study to show its application.
Project Icarus: Nuclear Fusion Propulsion Concept Comparison
NASA Astrophysics Data System (ADS)
Stanic, M.
Project Icarus will use nuclear fusion as the primary propulsion, since achieving breakeven is imminent within the next decade. Therefore, fusion technology provides confidence in further development and fairly high technological maturity by the time the Icarus mission would be plausible. Currently there are numerous (over 2 dozen) different fusion approaches that are simultaneously being developed around the World and it is difficult to predict which of the concepts is going to be the most successful one. This study tried to estimate current technological maturity and possible technological extrapolation of fusion approaches for which appropriate data could be found. Figures of merit that were assessed include: current technological state, mass and volume estimates, possible gain values, main advantages and disadvantages of the concept and an attempt to extrapolate current technological state for the next decade or two. Analysis suggests that Magnetic Confinement Fusion (MCF) concepts are not likely to deliver sufficient performance due to size, mass, gain and large technological barriers of the concept. However, ICF and PJMIF did show potential for delivering necessary performance, assuming appropriate techno- logical advances. This paper is a submission of the Project Icarus Study Group.
Lunar He-3, fusion propulsion, and space development
NASA Technical Reports Server (NTRS)
Santarius, John F.
1992-01-01
The recent identification of a substantial lunar resource of the fusion energy fuel He-3 may provide the first terrestrial market for a lunar commodity and, therefore, a major impetus to lunar development. The impact of this resource-when burned in D-He-3 fusion reactors for space power and propulsion-may be even more significant as an enabling technology for safe, efficient exploration and development of space. One possible reactor configuration among several options, the tandem mirror, illustrates the potential advantages of fusion propulsion. The most important advantage is the ability to provide either fast, piloted vessels or high-payload-fraction cargo vessels due to a range of specific impulses from 50 sec to 1,000,000 sec at thrust-to-weight ratios from 0.1 to 5x10(exp -5). Fusion power research has made steady, impressive progress. It is plausible, and even probable, that fusion rockets similar to the designs presented here will be available in the early part of the twenty-first century, enabling a major expansion of human presence into the solar system.
Research on the Fusion of Dependent Evidence Based on Rank Correlation Coefficient.
Shi, Fengjian; Su, Xiaoyan; Qian, Hong; Yang, Ning; Han, Wenhua
2017-10-16
In order to meet the higher accuracy and system reliability requirements, the information fusion for multi-sensor systems is an increasing concern. Dempster-Shafer evidence theory (D-S theory) has been investigated for many applications in multi-sensor information fusion due to its flexibility in uncertainty modeling. However, classical evidence theory assumes that the evidence is independent of each other, which is often unrealistic. Ignoring the relationship between the evidence may lead to unreasonable fusion results, and even lead to wrong decisions. This assumption severely prevents D-S evidence theory from practical application and further development. In this paper, an innovative evidence fusion model to deal with dependent evidence based on rank correlation coefficient is proposed. The model first uses rank correlation coefficient to measure the dependence degree between different evidence. Then, total discount coefficient is obtained based on the dependence degree, which also considers the impact of the reliability of evidence. Finally, the discount evidence fusion model is presented. An example is illustrated to show the use and effectiveness of the proposed method.
Wang, Lina; Tu, Zhaowei; Liu, Chao; Liu, Hongbin; Kaldis, Philipp; Chen, Zijiang; Li, Wei
2018-06-01
Telomeres integrity is indispensable for chromosomal stability by preventing chromosome erosion and end-to-end fusions. During meiosis, telomeres attach to the inner nuclear envelope and cluster into a highly crowded microenvironment at the bouquet stage, which requires specific mechanisms to protect the telomeres from fusion. Here, we demonstrate that germ cell-specific knockout of a shelterin complex subunit, Trf1, results in arrest of spermatocytes at two different stages. The obliterated telomere-nuclear envelope attachment in Trf1-deficient spermatocytes impairs homologue synapsis and recombination, resulting in a pachytene-like arrest, while the meiotic division arrest might stem from chromosome end-to-end fusion due to the failure of recruiting meiosis specific telomere associated proteins. Further investigations uncovered that TRF1 could directly interact with Speedy A, and Speedy A might work as a scaffold protein to further recruit Cdk2, thus protecting telomeres from fusion at this stage. Together, our results reveal a novel mechanism of TRF1, Speedy A, and Cdk2 in protecting telomere from fusion in a highly crowded microenvironment during meiosis.
Research on the Fusion of Dependent Evidence Based on Rank Correlation Coefficient
Su, Xiaoyan; Qian, Hong; Yang, Ning; Han, Wenhua
2017-01-01
In order to meet the higher accuracy and system reliability requirements, the information fusion for multi-sensor systems is an increasing concern. Dempster–Shafer evidence theory (D–S theory) has been investigated for many applications in multi-sensor information fusion due to its flexibility in uncertainty modeling. However, classical evidence theory assumes that the evidence is independent of each other, which is often unrealistic. Ignoring the relationship between the evidence may lead to unreasonable fusion results, and even lead to wrong decisions. This assumption severely prevents D–S evidence theory from practical application and further development. In this paper, an innovative evidence fusion model to deal with dependent evidence based on rank correlation coefficient is proposed. The model first uses rank correlation coefficient to measure the dependence degree between different evidence. Then, total discount coefficient is obtained based on the dependence degree, which also considers the impact of the reliability of evidence. Finally, the discount evidence fusion model is presented. An example is illustrated to show the use and effectiveness of the proposed method. PMID:29035341
TMPRSS2-ERG gene fusion status in minute (minimal) prostatic adenocarcinoma.
Albadine, Roula; Latour, Mathieu; Toubaji, Antoun; Haffner, Michael; Isaacs, William B; A Platz, Elizabeth; Meeker, Alan K; Demarzo, Angelo M; Epstein, Jonathan I; Netto, George J
2009-11-01
Minute prostatic adenocarcinomas are considered to be of insufficient virulence. Given recent suggestions of TMPRSS2-ERG gene fusion association with aggressive prostatic adenocarcinoma, we evaluated the incidence of TMPRSS2-ERG fusion in minute prostatic adenocarcinomas. A total of 45 consecutive prostatectomies with minute adenocarcinoma were used for tissue microarray construction. A total of 63 consecutive non-minimal, Gleason Score 6 tumors, from a separate PSA Era prostatectomy tissue microarray, were used for comparison. FISH was carried out using ERG break-apart probes. Tumors were assessed for fusion by deletion (Edel) or split (Esplit), duplicated fusions and low-level copy number gain in normal ERG gene locus. Minute adenocarcinomas: Fusion was evaluable in 32/45 tumors (71%). Fifteen out of 32 (47%) tumors were positive for fusion. Six (19%) were of the Edel class and 7 (22%) were classified as combined Edel+Esplit. Non-minute adenocarcinomas (pT2): Fusion was identified in 20/30 tumors (67%). Four (13%) were of Edel class and 5 (17%) were combined Edel+Esplit. Duplicated fusions were encountered in 5 (16%) tumors. Non-minute adenocarcinomas (pT3): Fusion was identified in 19/33 (58%). Fusion was due to a deletion in 6 (18%) tumors. Seven tumors (21%) were classified as combined Edel+Esplit. One tumor showed Esplit alone. Duplicated fusions were encountered in 3 (9%) cases. The incidence of duplicated fusions was higher in non-minute adenocarcinomas (13 vs 0%; P=0.03). A trend for higher incidence of low-level copy number gain in normal ERG gene locus without fusion was noted in non-minute adenocarcinomas (10 vs 0%; P=0.07). We found a TMPRSS2-ERG fusion rate of 47% in minute adenocarcinomas. The latter is not significantly different from that of grade matched non-minute adenocarcinomas. The incidence of duplicated fusion was higher in non-minute adenocarcinomas. Our finding of comparable rate of TMPRSS2-ERG fusion in minute adenocarcinomas may argue against its value as a marker of aggressive prostate carcinoma phenotype.
Cervical interfacet spacers and maintenance of cervical lordosis.
Tan, Lee A; Straus, David C; Traynelis, Vincent C
2015-05-01
OBJECT The cervical interfacet spacer (CIS) is a relatively new technology that can increase foraminal height and area by facet distraction. These offer the potential to provide indirect neuroforaminal decompression while simultaneously enhancing fusion potential due to the relatively large osteoconductive surface area and compressive forces exerted on the grafts. These potential benefits, along with the relative ease of implantation during posterior cervical fusion procedures, make the CIS an attractive adjuvant in the management of cervical pathology. One concern with the use of interfacet spacers is the theoretical risk of inducing iatrogenic kyphosis. This work tests the hypothesis that interfacet spacers are associated with loss of cervical lordosis. METHODS Records from patients undergoing posterior cervical fusion at Rush University Medical Center between March 2011 and December 2012 were reviewed. The FacetLift CISs were used in all patients. Preoperative and postoperative radiographic data were reviewed and the Ishihara indices and cervical lordotic angles were measured and recorded. Statistical analyses were performed using STATA software. RESULTS A total of 64 patients were identified in whom 154 cervical levels were implanted with machined allograft interfacet spacers. Of these, 15 patients underwent anterior-posterior fusions, 4 underwent anterior-posterior-anterior fusions, and the remaining 45 patients underwent posterior-only fusions. In the 45 patients with posterior-only fusions, a total of 110 levels were treated with spacers. There were 14 patients (31%) with a single level treated, 16 patients (36%) with two levels treated, 5 patients (11%) with three levels treated, 5 patients (11%) with four levels treated, 1 patient (2%) with five levels treated, and 4 patients (9%) with six levels treated. Complete radiographic data were available in 38 of 45 patients (84%). On average, radiographic follow-up was obtained at 256.9 days (range 48-524 days). There was no significant difference in the Ishihara index (5.76 preoperatively and 6.17 postoperatively, p = 0.8037). The analysis had 80% power to detect a change of 4.25 in the Ishihara index at p = 0.05. There was no significant difference in the preand postoperative cervical lordotic angles (35.6° preoperatively and 33.6° postoperatively, p = 0.2678). The analysis had 80% power to detect a 7° change in the cervical lordotic angle at p = 0.05. The ANOVA of the Ishihara index and cervical lordotic angle did not show a statistically significant difference in degree of change in cervical lordosis among patients with a different number of levels of CIS insertion (p = 0.25 and p = 0.96, respectively). CONCLUSIONS In the authors' experience of placing CISs in more than 100 levels, they found no evidence of significant loss of cervical lordosis. The long-term impacts of these implants on fusion rates and clinical outcomes (particularly radiculopathy and postoperative C-5 palsies) remain active areas of interest and fertile ground for further studies.
Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion.
Shen, Shu; Tobery, Cynthia E; Rose, Mark D
2009-05-01
Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.
Conceptual design of a fast-ignition laser fusion reactor based on a dry wall chamber
NASA Astrophysics Data System (ADS)
Ogawa, Y.; Goto, T.; Okano, K.; Asaoka, Y.; Hiwatari, R.; Someya, Y.
2008-05-01
The fast ignition is quite attractive for a compact laser fusion reactor, because a sufficiently high pellet gain is available with a small input energy. We designed an inertial fusion reactor based on Fast-ignition Advanced Laser fusion reactor CONcept, called FALCON-D, where a dry wall is employed for a chamber wall. A simple point model shows that the pellet gain G~100 is available with laser energies of 350kJ for implosion, 50kJ for heating. This results in the fusion yield of 40 MJ in one shot. By increasing the repetition rate up to 30 Hz, the fusion power of 1.2 GWth becomes available. Plant system analysis shows the net electric power to be about 0.4 GWe In the fast ignition it is available to employ a low aspect ratio pellet, which is favorable for the stability during the implosion phase. Here the pellet aspect ratio is reduced to be 2 ~ 4, and the optimization of the pulse shape for the implosion laser are carried out by using the 1-D hydrodynamic simulation code ILESTA-1D. A ferritic steel with a tungsten armour is employed for the chamber wall. The feasibility of this dry wall concept is studied from various engineering aspects such as surface melting, physical and chemical sputtering, blistering and exfoliation by helium retention, and thermo-mechanical fatigue, and it is found that blistering and exfoliation due to the helium retention and fatigue failure due to cyclic thermal load are major concerns. The cost analysis shows that the construction cost is moderate but the cost of electricity is slightly expensive.
Kim, Dae Hwan; Lee, Nam; Shin, Dong Ah; Yi, Seong; Kim, Keung Nyun; Ha, Yoon
2016-07-01
To compare the fusion rate of a hydroxyapatite demineralized bone matrix (DBM) with post-laminectomy acquired autograft in lumbar interbody fusion surgery and to evaluate the correlation between fusion rate and clinical outcome. From January 2013 to April 2014, 98 patients underwent lumbar interbody fusion surgery with hydroxyapatite DBM (HA-DBM group) in our institute. Of those patients, 65 received complete CT scans for 12 months postoperatively in order to evaluate fusion status. For comparison with autograft, we selected another 65 patients who underwent lumbar interbody fusion surgery with post-laminectomy acquired autograft (Autograft group) during the same period. Both fusion material groups were matched in terms of age, sex, body mass index (BMI), and bone mineral density (BMD). To evaluate the clinical outcomes, we analyzed the results of visual analogue scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey (SF-36). We reviewed the CT scans of 149 fusion levels in 130 patients (HA-DBM group, 75 levels/65 patients; Autograft group, 74 levels/65 patients). Age, sex, BMI, and BMD were not significantly different between the groups (p=0.528, p=0.848, p=0.527, and p=0.610, respectively). The HA-DBM group showed 39 of 75 fused levels (52%), and the Autograft group showed 46 of 74 fused levels (62.2%). This difference was not statistically significant (p=0.21). In the HA-DBM group, older age and low BMD were significantly associated with non-fusion (61.24 vs. 66.68, p=0.027; -1.63 vs. -2.29, p=0.015, respectively). VAS and ODI showed significant improvement after surgery when fusion was successfully achieved in both groups (p=0.004, p=0.002, HA-DBM group; p=0.012, p=0.03, Autograft group). The fusion rates of the hydroxyapatite DBM and Autograft groups were not significantly different. In addition, clinical outcomes were similar between the groups. However, older age and low BMD are risk factors that might induce non-union after surgery with hydroxyapatite DBM.
Kim, Dae Hwan; Lee, Nam; Shin, Dong Ah; Yi, Seong; Kim, Keung Nyun
2016-01-01
Objective To compare the fusion rate of a hydroxyapatite demineralized bone matrix (DBM) with post-laminectomy acquired autograft in lumbar interbody fusion surgery and to evaluate the correlation between fusion rate and clinical outcome. Methods From January 2013 to April 2014, 98 patients underwent lumbar interbody fusion surgery with hydroxyapatite DBM (HA-DBM group) in our institute. Of those patients, 65 received complete CT scans for 12 months postoperatively in order to evaluate fusion status. For comparison with autograft, we selected another 65 patients who underwent lumbar interbody fusion surgery with post-laminectomy acquired autograft (Autograft group) during the same period. Both fusion material groups were matched in terms of age, sex, body mass index (BMI), and bone mineral density (BMD). To evaluate the clinical outcomes, we analyzed the results of visual analogue scale (VAS), Oswestry Disability Index (ODI), and Short Form Health Survey (SF-36). Results We reviewed the CT scans of 149 fusion levels in 130 patients (HA-DBM group, 75 levels/65 patients; Autograft group, 74 levels/65 patients). Age, sex, BMI, and BMD were not significantly different between the groups (p=0.528, p=0.848, p=0.527, and p=0.610, respectively). The HA-DBM group showed 39 of 75 fused levels (52%), and the Autograft group showed 46 of 74 fused levels (62.2%). This difference was not statistically significant (p=0.21). In the HA-DBM group, older age and low BMD were significantly associated with non-fusion (61.24 vs. 66.68, p=0.027; -1.63 vs. -2.29, p=0.015, respectively). VAS and ODI showed significant improvement after surgery when fusion was successfully achieved in both groups (p=0.004, p=0.002, HA-DBM group; p=0.012, p=0.03, Autograft group). Conclusion The fusion rates of the hydroxyapatite DBM and Autograft groups were not significantly different. In addition, clinical outcomes were similar between the groups. However, older age and low BMD are risk factors that might induce non-union after surgery with hydroxyapatite DBM. PMID:27446517
Extraction of the Wichita Fusion Nail after Knee Arthrodesis
Neuts, Ann-Sophie; Lammens, Johan; Stuyck, Jose
2016-01-01
To avoid a new exposition and partial damage of a knee arthrodesis site due to the removal of the Wichita fusion nail (WFN), a new extraction technique was developed, using a femoral osteotomy at the proximal end of the nail. Fixing the osteotomy with an Ilizarov frame offered the possibility to perform an additional correction of length and/or alignment if necessary. PMID:28529847
Evaluation of MRI-US Fusion Technology in Sports-Related Musculoskeletal Injuries.
Wong-On, Manuel; Til-Pérez, Lluís; Balius, Ramón
2015-06-01
A combination of magnetic resonance imaging (MRI) with real-time high-resolution ultrasound (US) known as fusion imaging may improve visualization of musculoskeletal (MSK) sports medicine injuries. The aim of this study was to evaluate the applicability of MRI-US fusion technology in MSK sports medicine. This study was conducted by the medical services of the FC Barcelona. The participants included volunteers and referred athletes with symptomatic and asymptomatic MSK injuries. All cases underwent MRI which was loaded into the US system for manual registration on the live US image and fusion imaging examination. After every test, an evaluation form was completed in terms of advantages, disadvantages, and anatomic fusion landmarks. From November 2014 to March 2015, we evaluated 20 subjects who underwent fusion imaging, 5 non-injured volunteers and 15 injured athletes, 11 symptomatic and 4 asymptomatic, age range 16-50 years, mean 22. We describe some of the anatomic landmarks used to guide fusion in different regions. This technology allowed us to examine muscle and tendon injuries simultaneously in US and MRI, and the correlation of both techniques, especially low-grade muscular injuries. This has also helped compensate for the limited field of view with US. It improves spatial orientation of cartilage, labrum and meniscal injuries. However, a high-quality MRI image is essential in achieving an adequate fusion image, and 3D sequences need to be added in MRI protocols to improve navigation. The combination of real-time MRI and US image fusion and navigation is relatively easy to perform and is helping to improve understanding of MSK injuries. However, it requires specific skills in MSK imaging and still needs further research in sports-related injuries. Toshiba Medical Systems Corporation.
de Graaf, M; Boven, E; Oosterhoff, D; van der Meulen-Muileman, I H; Huls, G A; Gerritsen, W R; Haisma, H J; Pinedo, H M
2002-01-01
Monoclonal antibodies against tumour-associated antigens could be useful to deliver enzymes selectively to the site of a tumour for activation of a non-toxic prodrug. A completely human fusion protein may be advantageous for repeated administration, as host immune responses may be avoided. We have constructed a fusion protein consisting of a human single chain Fv antibody, C28, against the epithelial cell adhesion molecule and the human enzyme β-glucuronidase. The sequences encoding C28 and human enzyme β-glucuronidase were joined by a sequence encoding a flexible linker, and were preceded by the IgGκ signal sequence for secretion of the fusion protein. A CHO cell line was engineered to secrete C28-β-glucuronidase fusion protein. Antibody specificity and enzyme activity were retained in the secreted fusion protein that had an apparent molecular mass of 100 kDa under denaturing conditions. The fusion protein was able to convert a non-toxic prodrug of doxorubicin, N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate to doxorubicin, resulting in cytotoxicity. A bystander effect was demonstrated, as doxorubicin was detected in all cells after N-[4-doxorubicin-N-carbonyl(oxymethyl)phenyl]-O-β-glucuronyl carbamate administration when only 10% of the cells expressed the fusion protein. This is the first fully human and functional fusion protein consisting of an scFv against epithelial cell adhesion molecule and human enzyme β-glucuronidase for future use in tumour-specific activation of a non-toxic glucuronide prodrug. British Journal of Cancer (2002) 86, 811–818. DOI: 10.1038/sj/bjc/6600143 www.bjcancer.com © 2002 Cancer Research UK PMID:11875747
NASA Astrophysics Data System (ADS)
Lefebvre, Eric; Helleur, Christopher; Kashyap, Nathan
2008-03-01
Maritime surveillance of coastal regions requires operational staff to integrate a large amount of information from a variety of military and civilian sources. The diverse nature of the information sources makes complete automation difficult. The volume of vessels tracked and the number of sources makes it difficult for the limited operation centre staff to fuse all the information manually within a reasonable timeframe. In this paper, a conceptual decision space is proposed to provide a framework for automating the process of operators integrating the sources needed to maintain Maritime Domain Awareness. The decision space contains all potential pairs of ship tracks that are candidates for fusion. The location of the candidate pairs in this defined space depends on the value of the parameters used to make a decision. In the application presented, three independent parameters are used: the source detection efficiency, the geo-feasibility, and the track quality. One of three decisions is applied to each candidate track pair based on these three parameters: 1. to accept the fusion, in which case tracks are fused in one track, 2. to reject the fusion, in which case the candidate track pair is removed from the list of potential fusion, and 3. to defer the fusion, in which case no fusion occurs but the candidate track pair remains in the list of potential fusion until sufficient information is provided. This paper demonstrates in an operational setting how a proposed conceptual space is used to optimize the different thresholds for automatic fusion decision while minimizing the list of unresolved cases when the decision is left to the operator.
ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes.
Diao, Jiajie; Liu, Rong; Rong, Yueguang; Zhao, Minglei; Zhang, Jing; Lai, Ying; Zhou, Qiangjun; Wilz, Livia M; Li, Jianxu; Vivona, Sandro; Pfuetzner, Richard A; Brunger, Axel T; Zhong, Qing
2015-04-23
Autophagy, an important catabolic pathway implicated in a broad spectrum of human diseases, begins by forming double membrane autophagosomes that engulf cytosolic cargo and ends by fusing autophagosomes with lysosomes for degradation. Membrane fusion activity is required for early biogenesis of autophagosomes and late degradation in lysosomes. However, the key regulatory mechanisms of autophagic membrane tethering and fusion remain largely unknown. Here we report that ATG14 (also known as beclin-1-associated autophagy-related key regulator (Barkor) or ATG14L), an essential autophagy-specific regulator of the class III phosphatidylinositol 3-kinase complex, promotes membrane tethering of protein-free liposomes, and enhances hemifusion and full fusion of proteoliposomes reconstituted with the target (t)-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) syntaxin 17 (STX17) and SNAP29, and the vesicle (v)-SNARE VAMP8 (vesicle-associated membrane protein 8). ATG14 binds to the SNARE core domain of STX17 through its coiled-coil domain, and stabilizes the STX17-SNAP29 binary t-SNARE complex on autophagosomes. The STX17 binding, membrane tethering and fusion-enhancing activities of ATG14 require its homo-oligomerization by cysteine repeats. In ATG14 homo-oligomerization-defective cells, autophagosomes still efficiently form but their fusion with endolysosomes is blocked. Recombinant ATG14 homo-oligomerization mutants also completely lose their ability to promote membrane tethering and to enhance SNARE-mediated fusion in vitro. Taken together, our data suggest an autophagy-specific membrane fusion mechanism in which oligomeric ATG14 directly binds to STX17-SNAP29 binary t-SNARE complex on autophagosomes and primes it for VAMP8 interaction to promote autophagosome-endolysosome fusion.
Morphological changes and fusogenic activity of influenza virus hemagglutinin.
Shangguan, T; Siegel, D P; Lear, J D; Axelsen, P H; Alford, D; Bentz, J
1998-01-01
The kinetics of low-pH induced fusion of influenza virus with liposomes have been compared to changes in the morphology of influenza hemagglutinin (HA). At pH 4.9 and 30 degrees C, the fusion of influenza A/PR/8/34 virus with ganglioside-bearing liposomes was complete within 6 min. Virus preincubated at pH 4.9 and 30 degrees C in the absence of liposomes for 2 or 10 min retained most of its fusion activity. However, fusion activity was dramatically reduced after 30 min, and virtually abolished after a 60-min preincubation. Cryo-electron microscopy showed that the hemagglutinin spikes of virions exposed to pH 4.9 at 30 degrees C for 10 min underwent no major morphological changes. After 30 min, however, the spike morphology changed dramatically, and further changes occurred for up to 60 min after exposure to low pH. Because the morphological changes occur at a rate corresponding to the loss of fusion activity, and because these changes are much slower than the rate at which fusion occurs, we conclude that the morphologically altered HA is inactive with respect to fusion-promoting activity. Molecular modeling studies indicate that the formation of an extended coiled coil within the HA trimer, as proposed for HA at low pH, requires a major conformational change in HA, and that the morphological changes we observe are consistent with the formation of an extended coiled coil. These results imply that the crystallographically determined low-pH form of HA does occur in the intact virus, but that this form is not a precursor of viral fusion. It is speculated that the motion to the low-pH form may be responsible for the membrane destabilization leading to fusion. PMID:9449309
Gardner, Amanda E.; Martin, Kimberly L.; Dutch, Rebecca E.
2008-01-01
Paramyxoviruses are a diverse family which utilizes a fusion (F) protein to enter cells via fusion of the viral lipid bilayer with a target cell membrane. Although certain regions of F are known to play critical roles in membrane fusion, the function of much of the protein remains unclear. Sequence alignment of a set of paramyxovirus F proteins and analysis utilizing Block Maker identified a region of conserved amino acid sequence in a large domain between the heptad repeats of F1, designated CBF1. We employed site-directed mutagenesis to analyze the function of completely conserved residues of CBF1 in both the simian virus 5 (SV5) and Hendra virus F proteins. The majority of CBF1 point mutants were deficient in homotrimer formation, proteolytic processing, and transport to the cell surface. For some SV5 F mutants, proteolytic cleavage and surface expression could be restored by expression at 30°C, and varying levels of fusion promotion were observed at this temperature. In addition, the mutant SV5 F V402A displayed a hyperfusogenic phenotype at both 30°C and 37°C, indicating this mutation allows for efficient fusion with only an extremely small amount of cleaved, active protein. The recently published prefusogenic structure of PIV5/SV5 F [Yin, H.S., et al. (2006) Nature 439, 38–44] indicates that residues within and flanking CBF1 interact with the fusion peptide domain. Together, these data suggest that CBF1-fusion peptide interactions are critical for the initial folding of paramyxovirus F proteins from across this important viral family, and can also modulate subsequent membrane fusion promotion. PMID:17417875
Aneurysmal bone cyst of C2 treated with novel anterior reconstruction and stabilization.
Rajasekaran, S; Aiyer, Siddharth N; Shetty, Ajoy Prasad; Kanna, Rishi; Maheswaran, Anupama
2016-03-23
Aneurysmal bone cysts (ABC) form 1 % of primary bone tumors. Reported incidence rates are no more than 1.4 to 1,00,000. ABC of spine frequently involves posterior elements and commonly affects the lumbar spine (45 %). We present a case of C2 ABC for the challenges it poses due to the rarity of the lesion, tedious to access location, dilemmas relating to the suitable approach for tumor resection and technically demanding stabilization and reconstruction strategy post resection. Clinical data analysis was performed to discuss a method of novel anterior column reconstruction following resection of a C2 aneurysmal bone cyst in a 8 year old child with anterior and posterior elements being involved. An 8-year-old girl with an aneurysmal bone cyst of the C2 vertebra underwent staged surgery following pre-operative embolisation. First a posterior approach tumor excision with posterior instrumented fusion was performed. Following which, using a modified anterior retropharyngeal approach anterior tumor excision and fibular graft reconstruction between the C1 lateral mass and C2 body was performed. Complete tumor clearance and stable reconstruction was successfully achieved in our patient. Patient showed excellent clinical outcome with radiological fusion. Preoperative embolisation in the treatment of ABC has supplemental advantage by reducing blood loss. Modified anterior retropharyngeal approach allows satisfactory clearance for C1-2 lesion and fibular strut graft between the C1 lateral mass and C2 body can provide a stable graft placement with good chance of fusion. Instability and spinal deformity, whether preexisting or post-excision, should be corrected with reconstruction and stabilization to offer best chance of cure in such cases.
Sumi, Hajime; Itoh, Akihiro; Kawashima, Hiroki; Ohno, Eizaburo; Itoh, Yuya; Nakamura, Yosuke; Hiramatsu, Takeshi; Sugimoto, Hiroyuki; Hayashi, Daijuro; Kuwahara, Takamichi; Morishima, Tomomasa; Kawai, Manabu; Furukawa, Kazuhiro; Funasaka, Kohei; Nakamura, Masanao; Miyahara, Ryoji; Katano, Yoshiaki; Ishigami, Masatoshi; Ohmiya, Naoki; Goto, Hidemi; Hirooka, Yoshiki
2014-08-01
Transabdominal ultrasonography (US) is commonly used for the initial screening of bilio-pancreatic diseases in Asian countries due to its widespread availability, the non-invasiveness and the cost-effectiveness. However, it is considered that US has limits to observe the area, namely the blind area. The observation of the pancreatic tail is particularly difficult. The goal of this study was to examine the pancreatic tail region that cannot be visualized on transverse scanning of the upper abdomen using US with spatial positional information and factors related to visualization, and observation of the tail from the splenic hilum. Thirty-nine patients with pancreatic/biliary tract disease underwent CT and US with GPS-like technology and fusion imaging for measurement of the real pancreatic length and the predicted/real unobservable (PU and RU) length of the pancreatic tail. RU from US on transverse scanning and the real pancreatic length were used to determine the unobservable area (UA: RU/the real pancreatic length). Relationships of RU with physical and hematological variables that might influence visualization of the pancreatic tail were investigated. The real pancreatic length was 160.9 ± 16.4mm, RU was 41.0 ± 17.8mm, and UA was 25.3 ± 10.4%. RU was correlated with BMI (R=0.446, P=0.004) and waist circumferences (R=0.354, P=0.027), and strongly correlated with PU (R=0.788, P<0.001). The pancreatic tail was visible from the splenic hilum in 22 (56%) subjects and was completely identified in 13 (33%) subjects. Combined GPS-like technology with fusion imaging was useful for the objective estimation of the pancreatic blind area. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
BLASCHKO, SARAH D.; MAHAWONG, PHITSANU; FERRETTI, MAX; CUNHA, TRISTAN J.; SINCLAIR, ADRIANE; WANG, HONG; SCHLOMER, BRUCE J.; RISBRIDGER, GAIL; BASKIN, LAURENCE S.; CUNHA, GERALD R.
2013-01-01
Because both androgens and estrogens have been implicated in penile morphogenesis, we evaluated penile morphology in transgenic mice with known imbalance of androgen and estrogen signaling using scanning electron microscopy (SEM), histology, and immunohistochemistry of androgen and estrogen receptors α/β. Penises of adult wild-type, estrogen receptor-α knockout (αERKO), estrogen receptor-β knockout (βERKO), aromatase knockout (Arom-KO), and aromatase overexpression (Arom+) mice were evaluated, as well as adult mice treated with diethylstilbestrol (DES) from birth to day 10. Adult penises were examined because the adult pattern is the endpoint of development. The urethral orifice is formed by fusion of the MUMP (male urogenital mating protuberance) with the MUMP ridge, which consists of several processes fused to each other and to the MUMP. Similarly, the internal prepuce is completed ventrally by fusion of a ventral cleft. In adult murine penises the stromal processes that form the MUMP ridge are separated from their neighbors by clefts. αERKO, βERKO, and Arom-KO mice have penises with a MUMP ridge clefting pattern similar to that of wild-type mice. In contrast, Arom+ mice and neonatally DES-treated mice exhibit profound malformations of the MUMP, MUMP ridge clefting pattern, and internal prepuce. Abnormalities observed in Arom+ and neonatally DES-treated mice correlate with the expression of estrogen receptor-beta (ERβ) in the affected structures. This study demonstrates that formation of the urethal orifice and internal prepuce is due to fusion of separate epithelial-surfaced mesenchymal elements, a process dependent upon both androgen and estrogen signaling, in which ERβ signaling is strongly implicated. PMID:23653160
Le, Yilin; Wang, Huilei
2014-07-01
A thermostable xylanase is encoded by xynA from fungus Thermomyces lanuginosus. The problem emerged from overexpression of xynA in Escherichia coli has been the formation of inclusion bodies. Here we describe the xynA was fused with the hyperosmotically inducible periplasmic protein of E. coli, OsmY. The fusion protein OsmY-xynA was expressed as almost all soluble form. The soluble expression level of fusion protein reached 98±6U/ml when cells containing pET-OsmY-xynA were expressed without IPTG induction at 37°C. The induction is probably due to auto-induction due to lactose in the medium (Studier (2005) [21]). The cells harboring pET-OsmY-xynA expressed an activity level about 24 times higher than that expressed from pET-20b-xynA. Xylanase activity was observed in the extracellular (36±1.3U/ml) and the periplasmic (42±4U/ml) when cells containing pET-OsmY-xynA were induced without IPTG addition. After the cold osmotic shock procedure followed by nickel affinity chromatography, the purified fusion protein showed a single band on SDS-PAGE gel with a molecular mass of 44kDa. The purified fusion enzyme exhibited the highest activity at 65°C and pH 6.0. Copyright © 2014 Elsevier Inc. All rights reserved.
Elastin-like Polypeptide (ELP) Charge Influences Self-Assembly of ELP-mCherry Fusion Proteins.
Mills, Carolyn E; Michaud, Zachary; Olsen, Bradley D
2018-05-23
Self-assembly of protein-polymer bioconjugates presents an elegant strategy for controlling nanostructure and orientation of globular proteins in functional materials. Recent work has shown that genetic fusion of globular protein mCherry to an elastin-like polypeptide (ELP) yields similar self-assembly behavior to these protein-polymer bioconjugates. In the context of studying protein-polymer bioconjugate self-assembly, the mutability of the ELP sequence allows several different properties of the ELP block to be tuned orthogonally while maintaining consistent polypeptide backbone chemistry. This work uses this ELP sequence tunability in combination with the precise control offered by genetic engineering of an amino acid sequence to generate a library of four novel ELP sequences that are used to study the combined effect of charge and hydrophobicity on ELP-mCherry fusion protein self-assembly. Concentrated solution self-assembly is studied by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). These experiments show that fusions containing a negatively charged ELP block do not assemble at all, and fusions with a charge balanced ELP block exhibit a weak propensity for assembly. By comparison, the fusion containing an uncharged ELP block starts to order at 40 wt % in solution and at all concentrations measured has sharper, more intense SAXS peaks than other fusion proteins. These experiments show that charge character of the ELP block is a stronger predictor of self-assembly behavior than the hydrophobicity of the ELP block. Dilute solution small-angle neutron scattering (SANS) on the ELPs alone suggests that all ELPs used in this study (including the uncharged ELP) adopt dilute solution conformations similar to those of traditional polymers, including polyampholytes and polyelectrolytes. Finally, dynamic light scattering studies on ELP-mCherry blends shows that there is no significant complexation between the charged ELPs and mCherry. Therefore, it is proposed that the superior self-assembly of fusion proteins containing uncharged ELP block is due to effective repulsions between charged and uncharged blocks due to local charge correlation effects and, in the case of anionic ELPs, repulsion between like charges within the ELP block.
Sjöberg, Carl; Lundmark, Martin; Granberg, Christoffer; Johansson, Silvia; Ahnesjö, Anders; Montelius, Anders
2013-10-03
Semi-automated segmentation using deformable registration of selected atlas cases consisting of expert segmented patient images has been proposed to facilitate the delineation of lymph node regions for three-dimensional conformal and intensity-modulated radiotherapy planning of head and neck and prostate tumours. Our aim is to investigate if fusion of multiple atlases will lead to clinical workload reductions and more accurate segmentation proposals compared to the use of a single atlas segmentation, due to a more complete representation of the anatomical variations. Atlases for lymph node regions were constructed using 11 head and neck patients and 15 prostate patients based on published recommendations for segmentations. A commercial registration software (Velocity AI) was used to create individual segmentations through deformable registration. Ten head and neck patients, and ten prostate patients, all different from the atlas patients, were randomly chosen for the study from retrospective data. Each patient was first delineated three times, (a) manually by a radiation oncologist, (b) automatically using a single atlas segmentation proposal from a chosen atlas and (c) automatically by fusing the atlas proposals from all cases in the database using the probabilistic weighting fusion algorithm. In a subsequent step a radiation oncologist corrected the segmentation proposals achieved from step (b) and (c) without using the result from method (a) as reference. The time spent for editing the segmentations was recorded separately for each method and for each individual structure. Finally, the Dice Similarity Coefficient and the volume of the structures were used to evaluate the similarity between the structures delineated with the different methods. For the single atlas method, the time reduction compared to manual segmentation was 29% and 23% for head and neck and pelvis lymph nodes, respectively, while editing the fused atlas proposal resulted in time reductions of 49% and 34%. The average volume of the fused atlas proposals was only 74% of the manual segmentation for the head and neck cases and 82% for the prostate cases due to a blurring effect from the fusion process. After editing of the proposals the resulting volume differences were no longer statistically significant, although a slight influence by the proposals could be noticed since the average edited volume was still slightly smaller than the manual segmentation, 9% and 5%, respectively. Segmentation based on fusion of multiple atlases reduces the time needed for delineation of lymph node regions compared to the use of a single atlas segmentation. Even though the time saving is large, the quality of the segmentation is maintained compared to manual segmentation.
NASA Astrophysics Data System (ADS)
Tali, Suhail A.; Kumar, Harish; Ansari, M. Afzal; Ali, Asif; Singh, D.; Ali, Rahbar; Giri, Pankaj K.; Linda, Sneha B.; Parashari, Siddharth; Kumar, R.; Singh, R. P.; Muralithar, S.
2018-02-01
The excitation functions for the evaporation residues populated in the interaction of 13C +165 Ho system have been measured at projectile energies ≈ 4-7 MeV/nucleon. Stacked foil activation technique followed by off-line γ-ray spectroscopy have been employed in the present work. The experimentally measured cross-sections are analyzed in the frame work of statistical model code PACE4, which takes into account only the complete fusion reaction cross-sections. The evaporation residues populated via xn and pxn channels were found to be in good agreement with the PACE4 predictions, while a significant enhancement in the measured cross-sections over PACE4 predictions is observed in case of α-emitting channels, which may be attributed to the incomplete fusion process. For the better understanding of incomplete fusion dynamics, the incomplete fusion fraction has also been deduced and its sensitivity with various entrance channel parameters like: projectile energy, mass-asymmetry, projectile structure in terms of Qα-value and Coulomb effect has been studied in the present work. The incomplete fusion fraction is found to increase with increasing the projectile energy and a strong projectile structure dependent mass-asymmetry systematic is also observed. The incomplete fusion fraction is also found to be small for more negative Qα-value projectile (13C) induced reactions as compared to less negative Qα-value projectiles (12C, 16O and 20Ne) induced reactions with the same target nucleus 165Ho. An interesting trend is obtained on further investigation of incomplete fusion dependence on Coulomb effect (ZPZT).
Return to Golf After Lumbar Fusion.
Shifflett, Grant D; Hellman, Michael D; Louie, Philip K; Mikhail, Christopher; Park, Kevin U; Phillips, Frank M
Spinal fusion surgery is being increasingly performed, yet few studies have focused on return to recreational sports after lumbar fusion and none have specifically analyzed return to golf. Most golfers successfully return to sport after lumbar fusion surgery. Case series. Level 4. All patients who underwent 1- or 2-level primary lumbar fusion surgery for degenerative pathologies performed by a single surgeon between January 2008 and October 2012 and had at least 1-year follow-up were included. Patients completed a specifically designed golf survey. Surveys were mailed, given during follow-up clinic, or answered during telephone contact. A total of 353 patients met the inclusion and exclusion criteria, with 200 responses (57%) to the questionnaire producing 34 golfers. The average age of golfers was 57 years (range, 32-79 years). In 79% of golfers, preoperative back and/or leg pain significantly affected their ability to play golf. Within 1 year from surgery, 65% of patients returned to practice and 52% returned to course play. Only 29% of patients stated that continued back/leg pain limited their play. Twenty-five patients (77%) were able to play the same amount of golf or more than before fusion surgery. Of those providing handicaps, 12 (80%) reported the same or an improved handicap. More than 50% of golfers return to on-course play within 1 year of lumbar fusion surgery. The majority of golfers can return to preoperative levels in terms of performance (handicap) and frequency of play. This investigation offers insight into when golfers return to sport after lumbar fusion surgery and provides surgeons with information to set realistic expectations postoperatively.
A Burning Plasma Experiment: the role of international collaboration
NASA Astrophysics Data System (ADS)
Prager, Stewart
2003-04-01
The world effort to develop fusion energy is at the threshold of a new stage in its research: the investigation of burning plasmas. A burning plasma is self-heated. The 100 million degree temperature of the plasma is maintained by the heat generated by the fusion reactions themselves, as occurs in burning stars. The fusion-generated alpha particles produce new physical phenomena that are strongly coupled together as a nonlinear complex system, posing a major plasma physics challenge. Two attractive options are being considered by the US fusion community as burning plasma facilities: the international ITER experiment and the US-based FIRE experiment. ITER (the International Thermonuclear Experimental Reactor) is a large, power-plant scale facility. It was conceived and designed by a partnership of the European Union, Japan, the Soviet Union, and the United States. At the completion of the first engineering design in 1998, the US discontinued its participation. FIRE (the Fusion Ignition Research Experiment) is a smaller, domestic facility that is at an advanced pre-conceptual design stage. Each facility has different scientific, programmatic and political implications. Selecting the optimal path for burning plasma science is itself a challenge. Recently, the Fusion Energy Sciences Advisory Committee recommended a dual path strategy in which the US seek to rejoin ITER, but be prepared to move forward with FIRE if the ITER negotiations do not reach fruition by July, 2004. Either the ITER or FIRE experiment would reveal the behavior of burning plasmas, generate large amounts of fusion power, and be a huge step in establishing the potential of fusion energy to contribute to the world's energy security.
Z-Pinch fusion-based nuclear propulsion
NASA Astrophysics Data System (ADS)
Miernik, J.; Statham, G.; Fabisinski, L.; Maples, C. D.; Adams, R.; Polsgrove, T.; Fincher, S.; Cassibry, J.; Cortez, R.; Turner, M.; Percy, T.
2013-02-01
Fusion-based nuclear propulsion has the potential to enable fast interplanetary transportation. Due to the great distances between the planets of our solar system and the harmful radiation environment of interplanetary space, high specific impulse (Isp) propulsion in vehicles with high payload mass fractions must be developed to provide practical and safe vehicles for human space flight missions. The Z-Pinch dense plasma focus method is a Magneto-Inertial Fusion (MIF) approach that may potentially lead to a small, low cost fusion reactor/engine assembly [1]. Recent advancements in experimental and theoretical understanding of this concept suggest favorable scaling of fusion power output yield [2]. The magnetic field resulting from the large current compresses the plasma to fusion conditions, and this process can be pulsed over short timescales (10-6 s). This type of plasma formation is widely used in the field of Nuclear Weapons Effects testing in the defense industry, as well as in fusion energy research. A Z-Pinch propulsion concept was designed for a vehicle based on a previous fusion vehicle study called "Human Outer Planet Exploration" (HOPE), which used Magnetized Target Fusion (MTF) [3] propulsion. The reference mission is the transport of crew and cargo to Mars and back, with a reusable vehicle. The analysis of the Z-Pinch MIF propulsion system concludes that a 40-fold increase of Isp over chemical propulsion is predicted. An Isp of 19,436 s and thrust of 3812 N s/pulse, along with nearly doubling the predicted payload mass fraction, warrants further development of enabling technologies.
Nikolaus, Joerg; Karatekin, Erdem
2016-01-01
In the ubiquitous process of membrane fusion the opening of a fusion pore establishes the first connection between two formerly separate compartments. During neurotransmitter or hormone release via exocytosis, the fusion pore can transiently open and close repeatedly, regulating cargo release kinetics. Pore dynamics also determine the mode of vesicle recycling; irreversible resealing results in transient, "kiss-and-run" fusion, whereas dilation leads to full fusion. To better understand what factors govern pore dynamics, we developed an assay to monitor membrane fusion using polarized total internal reflection fluorescence (TIRF) microscopy with single molecule sensitivity and ~15 msec time resolution in a biochemically well-defined in vitro system. Fusion of fluorescently labeled small unilamellar vesicles containing v-SNARE proteins (v-SUVs) with a planar bilayer bearing t-SNAREs, supported on a soft polymer cushion (t-SBL, t-supported bilayer), is monitored. The assay uses microfluidic flow channels that ensure minimal sample consumption while supplying a constant density of SUVs. Exploiting the rapid signal enhancement upon transfer of lipid labels from the SUV to the SBL during fusion, kinetics of lipid dye transfer is monitored. The sensitivity of TIRF microscopy allows tracking single fluorescent lipid labels, from which lipid diffusivity and SUV size can be deduced for every fusion event. Lipid dye release times can be much longer than expected for unimpeded passage through permanently open pores. Using a model that assumes retardation of lipid release is due to pore flickering, a pore "openness", the fraction of time the pore remains open during fusion, can be estimated. A soluble marker can be encapsulated in the SUVs for simultaneous monitoring of lipid and soluble cargo release. Such measurements indicate some pores may reseal after losing a fraction of the soluble cargo. PMID:27585113
NASA Astrophysics Data System (ADS)
García-Rentería, M. A.; López-Morelos, V. H.; González-Sánchez, J.; García-Hernández, R.; Dzib-Pérez, L.; Curiel-López, F. F.
2017-02-01
The effect of electromagnetic interaction of low intensity (EMILI) applied during fusion welding of AISI 2205 duplex stainless steel on the resistance to localised corrosion in natural seawater was investigated. The heat affected zone (HAZ) of samples welded under EMILI showed a higher temperature for pitting initiation and lower dissolution under anodic polarisation in chloride containing solutions than samples welded without EMILI. The EMILI assisted welding process developed in the present work enhanced the resistance to localised corrosion due to a modification on the microstructural evolution in the HAZ and the fusion zone during the thermal cycle involved in fusion welding. The application of EMILI reduced the size of the HAZ, limited coarsening of the ferrite grains and promoted regeneration of austenite in this zone, inducing a homogeneous passive condition of the surface. EMILI can be applied during fusion welding of structural or functional components of diverse size manufactured with duplex stainless steel designed to withstand aggressive environments such as natural seawater or marine atmospheres.
NASA Astrophysics Data System (ADS)
Sarpün, Ismail Hakki; n, Abdullah Aydı; Tel, Eyyup
2017-09-01
In fusion reactors, neutron induced radioactivity strongly depends on the irradiated material. So, a proper selection of structural materials will have been limited the radioactive inventory in a fusion reactor. First-wall and blanket components have high radioactivity concentration due to being the most flux-exposed structures. The main objective of fusion structural material research is the development and selection of materials for reactor components with good thermo-mechanical and physical properties, coupled with low-activation characteristics. Double differential light charged particle emission cross section, which is a fundamental data to determine nuclear heating and material damages in structural fusion material research, for some elements target nuclei have been calculated by the TALYS 1.8 nuclear reaction code at 14-15 MeV neutron incident energy and compared with available experimental data in EXFOR library. Direct, compound and pre-equilibrium reaction contribution have been theoretically calculated and dominant contribution have been determined for each emission of proton, deuteron and alpha particle.
Yu, Ai-Ping; Shi, Bing-Xing; Dong, Chun-Na; Jiang, Zhong-Hua; Wu, Zu-Ze
2005-07-01
To combine the fibrinolytic with anticoagulant activities for therapy of thrombotic deseases, a fusion protein made of tissue-type plasminogen activator (t-PA) and hirudin was constructed and expressed in chia pastoris. To improve thrombolytic properties of t-PA and reduce bleeding side effect of hirudin, FXa-recognition sequence was introduced between t-PA and hirudin molecules.The anticoagulant activity of hirudin can be target-released through cleavage of FXa at thrombus site. t-PA gene and hirudin gene with FXa-recognition sequence at its 5'-terminal were obtained by RT-PCR and PCR respectively. The fusion protein gene was cloned into plasmid pIC9K and electroporated into the genome of Pichia pastoris GS115. The expression of fusion protein was induced by methanol in shaking flask and secreted into the culture medium. Two forms of the fusion protein, single-chain and double-chain linked by a disulfide bond (due to the cleveage of t-PA at Arg275-Ile276), were obtained. The intact fusion protein retained the fibrinolytic activity but lacked any anticoagulant activity. After cleavage by FXa, the fusion protein liberated intact free hirudin to exert its anticoagulant activity. So, the fusion protein is a bifunctional molecule having good prospect to develop into a new targeted therapeutic agent with reduced bleeding side effect for thrombotic diseases.
Elastin-like-polypeptide based fusion proteins for osteogenic factor delivery in bone healing.
McCarthy, Bryce; Yuan, Yuan; Koria, Piyush
2016-07-08
Modern treatments of bone injuries and diseases are becoming increasingly dependent on the usage of growth factors to stimulate bone growth. Bone morphogenetic protein-2 (BMP-2), a potent osteogenic inductive protein, exhibits promising results in treatment models, but recently has had its practical efficacy questioned due to the lack of local retention, ectopic bone formation, and potentially lethal inflammation. Where a new delivery technique of the BMP-2 is necessary, here we demonstrate the viability of an elastin-like peptide (ELP) fusion protein containing BMP-2 for delivery of the BMP-2. This fusion protein retains the performance characteristics of both the BMP-2 and ELP. The fusion protein was found to induce osteogenic differentiation of mesenchymal stem cells as evidenced by the production of alkaline phosphatase and extracellular calcium deposits in response to treatment by the fusion protein. Retention of the ELPs inverse phase transition property has allowed for expression of the fusion protein within a bacterial host (such as Escherichia coli) and easy and rapid purification using inverse transition cycling. The fusion protein formed self-aggregating nanoparticles at human-body temperature. The data collected suggests the viability of these fusion protein nanoparticles as a dosage-efficient and location-precise noncytotoxic delivery vehicle for BMP-2 in bone treatment. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1029-1037, 2016. © 2016 American Institute of Chemical Engineers.
Cho, Kwang-Soo; Cheon, Kyeong-Sik; Hong, Su-Young; Cho, Ji-Hong; Im, Ju-Seong; Mekapogu, Manjulatha; Yu, Yei-Soo; Park, Tae-Ho
2016-10-01
Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.
Dust-Particle Transport in Tokamak Edge Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K
2005-09-12
Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensivemore » dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.« less
Phan, Kevin; Malham, Greg; Seex, Kevin; Rao, Prashanth J.
2015-01-01
Degenerative disc and facet joint disease of the lumbar spine is common in the ageing population, and is one of the most frequent causes of disability. Lumbar spondylosis may result in mechanical back pain, radicular and claudicant symptoms, reduced mobility and poor quality of life. Surgical interbody fusion of degenerative levels is an effective treatment option to stabilize the painful motion segment, and may provide indirect decompression of the neural elements, restore lordosis and correct deformity. The surgical options for interbody fusion of the lumbar spine include: posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), minimally invasive transforaminal lumbar interbody fusion (MI-TLIF), oblique lumbar interbody fusion/anterior to psoas (OLIF/ATP), lateral lumbar interbody fusion (LLIF) and anterior lumbar interbody fusion (ALIF). The indications may include: discogenic/facetogenic low back pain, neurogenic claudication, radiculopathy due to foraminal stenosis, lumbar degenerative spinal deformity including symptomatic spondylolisthesis and degenerative scoliosis. In general, traditional posterior approaches are frequently used with acceptable fusion rates and low complication rates, however they are limited by thecal sac and nerve root retraction, along with iatrogenic injury to the paraspinal musculature and disruption of the posterior tension band. Minimally invasive (MIS) posterior approaches have evolved in an attempt to reduce approach related complications. Anterior approaches avoid the spinal canal, cauda equina and nerve roots, however have issues with approach related abdominal and vascular complications. In addition, lateral and OLIF techniques have potential risks to the lumbar plexus and psoas muscle. The present study aims firstly to comprehensively review the available literature and evidence for different lumbar interbody fusion (LIF) techniques. Secondly, we propose a set of recommendations and guidelines for the indications for interbody fusion options. Thirdly, this article provides a description of each approach, and illustrates the potential benefits and disadvantages of each technique with reference to indication and spine level performed. PMID:27683674
Amiri Pichakolaei, Ahmad; Fahimi, Samad; Bakhshipour Roudsari, Abbas; Fakhari, Ali; Akbari, Ebrahim; Rahimkhanli, Masoumeh
2014-01-01
Objective: The present study aimed to investigate the metacognitive model of obsessive-compulsive disorder (OCD), through a comparative study of thought fusion beliefs and thought control strategies between patients with OCD, depression, and normal people. Methods: This is a causal-comparative study. About 20 patients were selected with OCD, and 20 patients with major depression disorder (MDD), and 20 normal individuals. Participants completed a thought fusion instrument and thought control questionnaire. Data were analyzed using multivariate analysis of variance. Results: Results indicated that patients with OCD obtained higher scores than two other groups. Also, there was a statistical significant difference between the three groups in thought control strategies and punishment, worry, and distraction subscales. Conclusion: Therefore, the results of the present study supported the metacognitive model of obsessive and showed thought fusion beliefs and thought control strategies can be effective in onset and continuity of OCD. PMID:25780373
The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varshney, Gaurav K.; Palmer, Ruth H.
2006-12-29
During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function resultsmore » in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.« less
Wu, Lingfei; Wu, Kesheng; Sim, Alex; ...
2016-06-01
A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes tomore » detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.« less
Highlander, S K; Wickersham, E A; Garza, O; Weinstock, G M
1993-01-01
Multicopy and single-copy chromosomal fusions between the Pasteurella haemolytica leukotoxin regulatory region and the Escherichia coli beta-galactosidase gene have been constructed. These fusions were used as reporters to identify and isolate regulators of leukotoxin expression from a P. haemolytica cosmid library. A cosmid clone, which inhibited leukotoxin expression from multicopy and single-copy protein fusions, was isolated and found to contain the complete leukotoxin gene cluster plus additional upstream sequences. The locus responsible for inhibition of expression from leukotoxin-beta-galactosidase fusions was mapped within these upstream sequences, by transposon mutagenesis with Tn5, and its DNA sequence was determined. The inhibitory activity was found to be associated with a predicted 440-amino-acid reading frame (lapA) that lies within a four-gene arginine transport locus. LapA is predicted to be the nucleotide-binding component of this transport system and shares homology with the Clp family of proteases. Images PMID:8359916
Regulation of cell protrusions by small GTPases during fusion of the neural folds
Rolo, Ana; Savery, Dawn; Escuin, Sarah; de Castro, Sandra C; Armer, Hannah EJ; Munro, Peter MG; Molè, Matteo A; Greene, Nicholas DE; Copp, Andrew J
2016-01-01
Epithelial fusion is a crucial process in embryonic development, and its failure underlies several clinically important birth defects. For example, failure of neural fold fusion during neurulation leads to open neural tube defects including spina bifida. Using mouse embryos, we show that cell protrusions emanating from the apposed neural fold tips, at the interface between the neuroepithelium and the surface ectoderm, are required for completion of neural tube closure. By genetically ablating the cytoskeletal regulators Rac1 or Cdc42 in the dorsal neuroepithelium, or in the surface ectoderm, we show that these protrusions originate from surface ectodermal cells and that Rac1 is necessary for the formation of membrane ruffles which typify late closure stages, whereas Cdc42 is required for the predominance of filopodia in early neurulation. This study provides evidence for the essential role and molecular regulation of membrane protrusions prior to fusion of a key organ primordium in mammalian development. DOI: http://dx.doi.org/10.7554/eLife.13273.001 PMID:27114066
The presence of magical thinking in obsessive compulsive disorder.
Einstein, Danielle A; Menzies, Ross G
2004-05-01
Two research groups have raised the possibility that magical ideation may be a fundamental feature of obsessive-compulsive disorder. It has been proposed to underlie thought action fusion and superstitious beliefs. In this study, the Magical Ideation scale, the Lucky Behaviours and Lucky Beliefs scales, the Thought Action Fusion-Revised scale, the Padua Inventory, and the Obsessive Compulsive Inventory-Short Version were completed by 60 obsessive compulsive patients at a hospital clinic. Of all the measures, the Magical Ideation (MI) scale was found to be the most strongly related to obsessive compulsive symptoms. Large and significant relationships between MI scores and the measures of OCD were obtained even when alternative constructs (Lucky Behaviours, Lucky Beliefs, Thought Action Fusion-Revised scales) were held constant. No other variable remained significantly related to the Obsessive Compulsive Inventory-Short Version when magical ideation scores were held constant. The findings suggest that a general magical thinking tendency may underpin previous observed links between superstitiousness, thought action fusion and OCD severity.
The Long way Towards Inertial Fusion Energy (lirpp Vol. 13)
NASA Astrophysics Data System (ADS)
Velarde, Guillermo
2016-10-01
In 1955 the first Geneva Conference was held in which two important events took place. Firstly, the announcement by President Eisenhower of the Program Atoms for Peace declassifying the information concerning nuclear fission reactors. Secondly, it was forecast that due to the research made on stellerators and magnetic mirrors, the first demo fusion facility would be in operation within ten years. This forecasting, as all of us know today, was a mistake. Forty years afterwards, we can say that probably the first Demo Reactor will be operative in some years more and I sincerely hope that it will be based on the inertial fusion concept...
Shittu, Ismaila; Sharma, Poonam; Joannis, Tony M.; Volkening, Jeremy D.; Odaibo, Georgina N.; Olaleye, David O.; Williams-Coplin, Dawn; Solomon, Ponman; Abolnik, Celia; Miller, Patti J.; Dimitrov, Kiril M.
2016-01-01
The first complete genome sequence of a strain of Newcastle disease virus (NDV) of genotype XVII is described here. A velogenic strain (duck/Nigeria/903/KUDU-113/1992) was isolated from an apparently healthy free-roaming domestic duck sampled in Kuru, Nigeria, in 1992. Phylogenetic analysis of the fusion protein gene and complete genome classified the isolate as a member of NDV class II, genotype XVII. PMID:26847901
NASA Astrophysics Data System (ADS)
Bechetti, Daniel H.; DuPont, John N.; deBarbadillo, John J.; Baker, Brian A.
2014-06-01
Thermodynamic and kinetic modeling were used to determine appropriate heat treatment schedules for homogenization and second phase dissolution in INCONEL® alloy 740H® (INCONEL and 740H are registered trademarks of Special Metals Corporation) fusion welds. Following these simulations, a two-step heat treatment process was applied to specimens from a single pass gas tungsten arc weld (GTAW). Scanning electron microscopy (SEM) has been used to assess the changes in the distribution of alloying elements as well as changes in the fraction of second phase particles within the fusion zone. Experimental results demonstrate that adequate homogenization of alloy 740H weld metal can be achieved by a 1373 K/4 h (1100 °C/4 h) treatment. Complete dissolution of second phase particles could not be completely achieved, even at exposure to temperatures near the alloy's solidus temperature. These results are in good agreement with thermodynamic and kinetic predictions.
Apert Syndrome: Molecularly Confirmed C.758C>G (P.Pro253Arg) in FGFR2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cha Gon, Lee, E-mail: leechagon@eulji.ac.kr
A 5-day-old girl was referred to our clinic for evaluation of congenital malformations. She was identified with a pathogenic mutation c.758C>G (p.Pro253Arg) in FGFR2 gene using targeted exome sequencing. The de novo mutation was confirmed with Sanger sequencing in the patient and her parents. She showed occipital plagiocephaly with frontal bossing (Figure A and B). Skull frontal and lateral radiography revealed fusion of most of the sutures except coronal suture, with convolutional markings (Figure D and E). She had complete cleft palate (Figure C). Her fused bilateral hands showed type II syndactyly with complete syndactyly between the ring and themore » little fingers (Figure F1-F3). Both toes were simple syndactyly with side-to-side fusion of skin (Figure G1-)« less
The National Ignition Facility: The world's largest optical system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolz, C J
2007-10-15
The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics atmore » desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.« less
A minichaperone-based fusion system for producing insoluble proteins in soluble stable forms.
Sharapova, Olga A; Yurkova, Maria S; Fedorov, Alexey N
2016-02-01
We have developed a fusion system for reliable production of insoluble hydrophobic proteins in soluble stable forms. A carrier is thermophilic minichaperone, GroEL apical domain (GrAD), a 15 kDa monomer able to bind diverse protein substrates. The Met-less variant of GrAD has been made for further convenient use of Met-specific CNBr chemical cleavage, if desired. The Met-less GrAD retained stability and solubility of the original protein. Target polypeptides can be fused to either C-terminus or N-terminus of GrAD. The system has been tested with two unrelated insoluble proteins fused to the C-terminus of GrAD. One of the proteins was also fused to GrAD N-terminus. The fusions formed inclusion bodies at 25°C and above and were partly soluble only at lower expression temperatures. Most importantly, however, after denaturation in urea, all fusions without exception were completely renatured in soluble stable forms that safely survived freezing-thawing as well as lyophilization. All fusions for both tested target proteins retained solubility at high concentrations for days. Functional analysis revealed that a target protein may retain functionality in the fusion. Convenience features include potential thermostability of GrAD fusions, capacity for chemical and enzymatic cleavage of a target and His6 tag for purification. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Chapman, Tara; Semal, Patrick; Moiseev, Fedor; Louryan, Stéphane; Rooze, Marcel; Van Sint Jan, Serge
2013-01-01
LhpFusionBox is a program originally designed for biomechanical and clinical studies relating to the musculoskeletal system of anatomically modern humans (AMH). The program has recently been adapted for paleontological purposes and used to reconstruct and biomechanically analyse a fossil hominid. There is no complete Neandertal skeleton in the fossil record. The aim of the study was to reconstruct a complete three-dimensional (3D) model of a Neandertal using the relatively complete Spy II Neandertal and to conduct biomechanical feasibility studies on the knee and hamstring moment arms of the skeleton. Different Neandertal specimens were scaled to the size of Spy II to replace incomplete or missing bones. Biomechanical feasibility studies performed on the knee seem to show that Neandertal and AMHh gait is similar and Neandertals were shown to have larger moment arms in the hamstring muscles, which would have given them a mechanical advantage. The complete Neandertal was printed in 3D and used as the base to create the artistic model of "Spyrou" housed at l'Espace de l'Homme de Spy (EHoS) museum. © 2013 médecine/sciences – Inserm.
Begum, Shahina; Barua, Shaibal; Ahmed, Mobyen Uddin
2014-07-03
Today, clinicians often do diagnosis and classification of diseases based on information collected from several physiological sensor signals. However, sensor signal could easily be vulnerable to uncertain noises or interferences and due to large individual variations sensitivity to different physiological sensors could also vary. Therefore, multiple sensor signal fusion is valuable to provide more robust and reliable decision. This paper demonstrates a physiological sensor signal classification approach using sensor signal fusion and case-based reasoning. The proposed approach has been evaluated to classify Stressed or Relaxed individuals using sensor data fusion. Physiological sensor signals i.e., Heart Rate (HR), Finger Temperature (FT), Respiration Rate (RR), Carbon dioxide (CO2) and Oxygen Saturation (SpO2) are collected during the data collection phase. Here, sensor fusion has been done in two different ways: (i) decision-level fusion using features extracted through traditional approaches; and (ii) data-level fusion using features extracted by means of Multivariate Multiscale Entropy (MMSE). Case-Based Reasoning (CBR) is applied for the classification of the signals. The experimental result shows that the proposed system could classify Stressed or Relaxed individual 87.5% accurately compare to an expert in the domain. So, it shows promising result in the psychophysiological domain and could be possible to adapt this approach to other relevant healthcare systems.
[Mechanical studies of lumbar interbody fusion implants].
Bader, R J; Steinhauser, E; Rechl, H; Mittelmeier, W; Bertagnoli, R; Gradinger, R
2002-05-01
In addition to autogenous or allogeneic bone grafts, fusion cages composed of metal or plastic are being used increasingly as spacers for interbody fusion of spinal segments. The goal of this study was the mechanical testing of carbon fiber reinforced plastic (CFRP) fusion cages used for anterior lumbar interbody fusion. With a special testing device according to American Society for Testing and Materials (ASTM) standards, the mechanical properties of the implants were determined under four different loading conditions. The implants (UNION cages, Medtronic Sofamor Danek) provide sufficient axial compression, shear, and torsional strength of the implant body. Ultimate axial compression load of the fins is less than the physiological compression loads at the lumbar spine. Therefore by means of an appropriate surgical technique parallel grooves have to be reamed into the endplates of the vertebral bodies according to the fin geometry. Thereby axial compression forces affect the implants body and the fins are protected from damaging loading. Using a supplementary anterior or posterior instrumentation, in vivo failure of the fins as a result of physiological shear and torsional spinal loads is unlikely. Due to specific complications related to autogenous or allogeneic bone grafts, fusion cages made of metal or carbon fiber reinforced plastic are an important alternative implant in interbody fusion.
The Rab3A-22A Chimera Prevents Sperm Exocytosis by Stabilizing Open Fusion Pores.
Quevedo, María F; Lucchesi, Ornella; Bustos, Matías A; Pocognoni, Cristian A; De la Iglesia, Paola X; Tomes, Claudia N
2016-10-28
At the final stage of exocytotis, a fusion pore opens between the plasma and a secretory vesicle membranes; typically, when the pore dilates the vesicle releases its cargo. Sperm contain a large dense-core secretory granule (the acrosome) whose contents are secreted by regulated exocytosis at fertilization. Minutes after the arrival of the triggering signal, the acrosomal and plasma membranes dock at multiple sites and fusion pores open at the contact points. It is believed that immediately afterward, fusion pores dilate spontaneously. Rab3A is an essential component of human sperm exocytotic machinery. Yet, recombinant, persistently active Rab3A halts calcium-triggered secretion when introduced after docking into streptolysin O-permeabilized cells; so does a Rab3A-22A chimera. Here, we applied functional assays, electron and confocal microscopy to show that the secretion blockage is due to the stabilization of open fusion pores. Other novel findings are that sperm SNAREs engage in α-SNAP/NSF-sensitive complexes at a post-fusion stage. Complexes are disentangled by these chaperons to achieve vesiculation and acrosomal contents release. Thus, post-fusion regulation of the pores determines their expansion and the success of the acrosome reaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport
Arlt, Henning; Auffarth, Kathrin; Kurre, Rainer; Lisse, Dominik; Piehler, Jacob; Ungermann, Christian
2015-01-01
Organelles of the endolysosomal system undergo multiple fission and fusion events to combine sorting of selected proteins to the vacuole with endosomal recycling. This sorting requires a consecutive remodeling of the organelle surface in the course of endosomal maturation. Here we dissect the remodeling and fusion machinery on endosomes during the process of endocytosis. We traced selected GFP-tagged endosomal proteins relative to exogenously added fluorescently labeled α-factor on its way from the plasma membrane to the vacuole. Our data reveal that the machinery of endosomal fusion and ESCRT proteins has similar temporal localization on endosomes, whereas they precede the retromer cargo recognition complex. Neither deletion of retromer nor the fusion machinery with the vacuole affects this maturation process, although the kinetics seems to be delayed due to ESCRT deletion. Of importance, in strains lacking the active Rab7-like Ypt7 or the vacuolar SNARE fusion machinery, α-factor still proceeds to late endosomes with the same kinetics. This indicates that endosomal maturation is mainly controlled by the early endosomal fusion and remodeling machinery but not the downstream Rab Ypt7 or the SNARE machinery. Our data thus provide important further understanding of endosomal biogenesis in the context of cargo sorting. PMID:25657322
Miller, Larry E; Block, Jon E
2014-01-01
Chronic sacroiliac (SI) joint-related low back pain (LBP) is a common, yet under-diagnosed and undertreated condition due to difficulties in accurate diagnosis and highly variable treatment practices. In patients with debilitating SI-related LBP for at least 6 months duration who have failed conservative management, arthrodesis is a viable option. The SImmetry® SI Joint Fusion System is a novel therapy for SI joint fusion, not just fixation, which utilizes a minimally invasive surgical approach, instrumented fixation for immediate stability, and joint preparation with bone grafting for a secure construct in the long term. The purpose of this report is to describe the minimally invasive SI Joint Fusion System, including patient selection criteria, implant characteristics, surgical technique, postoperative recovery, and biomechanical testing results. Advantages and limitations of this system will be discussed. PMID:24851059
Miller, Larry E; Block, Jon E
2014-01-01
Chronic sacroiliac (SI) joint-related low back pain (LBP) is a common, yet under-diagnosed and undertreated condition due to difficulties in accurate diagnosis and highly variable treatment practices. In patients with debilitating SI-related LBP for at least 6 months duration who have failed conservative management, arthrodesis is a viable option. The SImmetry(®) SI Joint Fusion System is a novel therapy for SI joint fusion, not just fixation, which utilizes a minimally invasive surgical approach, instrumented fixation for immediate stability, and joint preparation with bone grafting for a secure construct in the long term. The purpose of this report is to describe the minimally invasive SI Joint Fusion System, including patient selection criteria, implant characteristics, surgical technique, postoperative recovery, and biomechanical testing results. Advantages and limitations of this system will be discussed.
NASA Astrophysics Data System (ADS)
Pahlavani, M. R.; Motevalli, S. M.
2008-03-01
The muon catalyzed fusion cycle in mixtures of deuterium and tritium is of particular interest due to the observation of high fusion yields. In the D-T mixture, the most serious limitation to the efficiency of the fusion chain is the probability of muon sticking to the alpha -particle produced in the nuclear reaction. An accurate kinetic treatment has been applied to the muonic helium atoms formed by a muon sticking to the alpha -particles. In this work accurate rates for collisions of alpha mu + ions with hydrogen atoms have been used for calculation of muon stripping probability and the intensities of X-ray transitions by solving a set of coupled differential equations numerically. Our calculated results are in good agreement with experimental data available in literature.
Sangawa, Takeshi; Tabata, Sanae; Suzuki, Kei; Saheki, Yasushi; Tanaka, Keiji; Takagi, Junichi
2013-01-01
Expression and purification of aggregation-prone and disulfide-containing proteins in Escherichia coli remains as a major hurdle for structural and functional analyses of high-value target proteins. Here, we present a novel gene-fusion strategy that greatly simplifies purification and refolding procedure at very low cost using a unique hyperacidic module derived from the human amyloid precursor protein. Fusion with this polypeptide (dubbed FATT for Flag-Acidic-Target Tag) results in near-complete soluble expression of variety of extracellular proteins, which can be directly refolded in the crude bacterial lysate and purified in one-step by anion exchange chromatography. Application of this system enabled preparation of functionally active extracellular enzymes and antibody fragments without the need for condition optimization. PMID:23526492
NASA Astrophysics Data System (ADS)
Zielinski, Jonas; Mindt, Hans-Wilfried; Düchting, Jan; Schleifenbaum, Johannes Henrich; Megahed, Mustafa
2017-12-01
Powder bed fusion additive manufacturing of titanium alloys is an interesting manufacturing route for many applications requiring high material strength combined with geometric complexity. Managing powder bed fusion challenges, including porosity, surface finish, distortions and residual stresses of as-built material, is the key to bringing the advantages of this process to production main stream. This paper discusses the application of experimental and numerical analysis towards optimizing the manufacturing process of a demonstration component. Powder characterization including assessment of the reusability, assessment of material consolidation and process window optimization is pursued prior to applying the identified optima to study the distortion and residual stresses of the demonstrator. Comparisons of numerical predictions with measurements show good correlations along the complete numerical chain.
NASA Astrophysics Data System (ADS)
Mosteiro, P.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarría, Á.; Chepurnov, A.; D'Angelo, D.; Davini, S.; Derbin, A.; Empl, A.; Etenko, A.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Gromov, M.; Hagner, C.; Hungerford, E.; Ianni, Al.; Ianni, An.; Kobychev, V.; Korablëv, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Lehnert, B.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Meindl, Q.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.
2015-08-01
The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.
Multi-focus image fusion and robust encryption algorithm based on compressive sensing
NASA Astrophysics Data System (ADS)
Xiao, Di; Wang, Lan; Xiang, Tao; Wang, Yong
2017-06-01
Multi-focus image fusion schemes have been studied in recent years. However, little work has been done in multi-focus image transmission security. This paper proposes a scheme that can reduce data transmission volume and resist various attacks. First, multi-focus image fusion based on wavelet decomposition can generate complete scene images and optimize the perception of the human eye. The fused images are sparsely represented with DCT and sampled with structurally random matrix (SRM), which reduces the data volume and realizes the initial encryption. Then the obtained measurements are further encrypted to resist noise and crop attack through combining permutation and diffusion stages. At the receiver, the cipher images can be jointly decrypted and reconstructed. Simulation results demonstrate the security and robustness of the proposed scheme.
Properties of the ion-ion hybrid resonator in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, George J.
2015-10-06
The project developed theoretical and numerical descriptions of the properties of ion-ion hybrid Alfvén resonators that are expected to arise in the operation of a fusion reactor. The methodology and theoretical concepts were successfully compared to observations made in basic experiments in the LAPD device at UCLA. An assessment was made of the excitation of resonator modes by energetic alpha particles for burning plasma conditions expected in the ITER device. The broader impacts included the generation of basic insight useful to magnetic fusion and space science researchers, defining new avenues for exploration in basic laboratory experiments, establishing broader contacts betweenmore » experimentalists and theoreticians, completion of a Ph.D. dissertation, and promotion of interest in science through community outreach events and classroom instruction.« less
Fusion Sciences Education Outreach in the Middle Schools, an Unplanned Case Study
NASA Astrophysics Data System (ADS)
Danielson, C. A.
1997-11-01
Before bringing a class to General Atomics (GA) for the DIII--D educational tour, the teacher is provided with pre-tour materials which include a videotape, curriculum notebook and fusion poster. These materials are used in the classroom to familiarize students with fusion concepts before the tour. This presentation will focus on the results of projects of 7th grade students of Chula Vista Junior High School (a magnet school for performing arts with a majority of Hispanic students). The assignment given by Physics Teacher Caryn Hoffman to her students prior to the tour was to focus on one or two of the DIII--D tour guides, ask questions relating to their careers in science and then prepare a presentation based on their interviews and their tour experience. The completed projects were very diverse -- calendars, comic strips, newspapers, plays, and board games were some of the media the students used. Tour guides selected by the students ranged from physicists, designers and computer support personnel. Project results reflected a surprisingly good understanding of fusion science concepts. Subsequent classroom interviews with the students demonstrated an overall increase in science interest and a specific interest in plasma and fusion research.
Identification of the neurofibromatosis type 1 gene product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutmann, D.H.; Wood, D.L.; Collins, F.S.
The gene for neurofibromatosis type 1 (NF1) was recently identified by positional cloning. The complete cDNA encodes a polypeptide of 2818 amino acids. To study the NF1 gene product, antibodies were raised against both fusion proteins and synthetic peptides. Initial characterization of two anti-peptide antibodies and one fusion-protein antibody demonstrated a specific protein of {approx}250 kDa by both immunoprecipitation and immunoblotting. This protein was found in all tissues and cell lines examined and is detected in human, rat, and mouse tissues. To demonstrate that these antibodies specifically recognize the NF1 protein, additional fusion proteins containing the sequence specific to themore » synthetic peptide were generated. Both peptide antisera recognize the proper specific fusion proteins so generated. Immunoprecipitates using the peptide antisera were shown to recognize the same protein detected by immunoblotting with either the other peptide antiserum or the fusion-protein antiserum. Immunoblotting using antiserum specific to spatially distinct epitopes conducted on tissue homogenates demonstrated the NF1 protein in all adult tissues. Based on the homology between the NF1 gene product and members of the GTPase-activating protein (GAP) superfamily, the name NF1-GAP-related protein (NF1GRP) is suggested.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulze, N.R.
This proposed program is to initiate a space flight research and development program to develop fusion energy for the space applications of direct space propulsion and direct space power, that is, a Space Fusion Energy (SFE) program. 'Direct propulsion' refers to the use of plasma energy directly for thrust without requiring other energy conversion systems. Further, to provide space missions with large electrical power, 'direct space power' is proposed whereby the direct conversion of charged particles into electricity is used, thereby avoiding thermal conversion system losses. The energy release from nuclear fusion reactions makes these highly efficient, high power spacemore » systems possible. The program as presented conducts in an orderly, hierarchical manner the necessary planning, analyses, and testing to demonstrate the practical use of fusion energy for space. There is nothing discussed that is known to be theoretically impossible. Validation of the engineering principles is sought in this program which uses a cost-benefit approach. Upon successful program completion, space will become more accessible and space missions more safely conducted. The country will have taken a giant step toward the commercialization of space. The mission enabling capability provided by fusion energy is well beyond mission planners' current dreams.« less
Nuclear Fusion Blast and Electrode Lifetimes in a PJMIF Reactor
NASA Astrophysics Data System (ADS)
Thio, Y. C. Francis; Witherspoon, F. D.; Case, A.; Brockington, S.; Cruz, E.; Luna, M.; Hsu, S. C.
2017-10-01
We present an analysis and numerical simulation of the nuclear blast from the micro-explosion following the completion of the fusion burn for a baseline design of a PJMIF fusion reactor with a fusion gain of 20. The stagnation pressure from the blast against the chamber wall defines the engineering requirement for the structural design of the first wall and the plasma guns. We also present an analysis of the lifetimes of the electrodes of the plasma guns which are exposed to (1) the high current, and (2) the neutron produced by the fusion reactions. We anticipate that the gun electrodes are made of tungsten alloys as plasma facing components reinforced structurally by appropriate steel alloys. Making reasonable assumptions about the electrode erosion rate (100 ng/C transfer), the electrode lifetime limited by the erosion rate is estimated to be between 19 and 24 million pulses before replacement. Based on known neutron radiation effects on structural materials such as steel alloys and plasma facing component materials such as tungsten alloys, the plasma guns are expected to survive some 22 million shots. At 1 Hz, this equal to about 6 months of continuous operation before they need to be replaced. Work supported by Strong Atomics, LLC.
Inhibition of crossed-beam energy transfer induced by expansion-velocity fluctuations
NASA Astrophysics Data System (ADS)
Neuville, C.; Glize, K.; Loiseau, P.; Masson-Laborde, P.-E.; Debayle, A.; Casanova, M.; Baccou, C.; Labaune, C.; Depierreux, S.
2018-04-01
Crossed-beam energy transfer between three laser beams has been experimentally investigated in a flowing plasma. Time-evolution measurements of the amplification of a first beam by a second beam highlighted the inhibition of energy transfer by hydrodynamic modifications of the plasma in the crossing volume due to the propagation of a third beam. According to 3D simulations and an analytical model, it appears that the long-wavelength expansion-velocity fluctuations produced by the propagation of the third beam in the crossing volume are responsible for this mitigation of energy transfer. This effect could be a cause of the over-estimation of the amount of the transferred energy in indirect-drive inertial confinement fusion experiments. Besides, tuning such long-wavelength fluctuations could be a way to completely inhibit CBET at the laser entrance holes of hohlraums.
Smucker, Joseph D; Bassuener, Scott R; Sasso, Rick C; Riew, K Daniel
2017-10-01
Retrospective cohort study. This study investigates the incidence of long-term dysphagia in cervical disc arthroplasty, and anterior cervical discectomy and fusion (ACDF) patients. No long-term comparison of dysphagia between cervical arthroplasty and fusion patients has been published. Widely variable short-term postsurgical dysphagia rates have been reported. Cohorts for this study are patients with single-level cervical degenerative disc disease previously enrolled in a randomized clinical trial comparing cervical arthroplasty and ACDF. Subjective modified Bazaz Dysphagia Severity questionnaires were distributed to each patient at a minimum of 5 years postoperative for the long-term assessment. Dysphagia severity data were pooled to compare the rate of patients with dysphagia (grade>1) to asymptomatic (grade=1). In the arthroplasty cohort, 15 of 22 (68%) patients completed long-term swallowing questionnaires with no reports of dysphagia. Eighteen of 25 (72%) ACDF patients completed questionnaires, with 5 of 18 (28%) reporting dysphagia. This is a statistically significant difference (P=0.042) favoring lower rates of long-term dysphagia after cervical arthroplasty at an average interval of 7 years postoperative (range, 5.5-8.5 y). No significant difference between rates of self-reported short-term dysphagia was noted with 12% (3/25) and 9% (2/22) in the ACDF and arthroplasty groups, respectively (P=0.56). All short-term dysphagia cases in the arthroplasty cohort reported complete resolution of symptoms within 12 months postoperative. In the ACDF cohort, persistent symptoms at 7 years were noted in all responding patients. Three ACDF patients reported new late-onset, which was not noted in the arthroplasty cohort. To date, these findings represent the longest reported follow-up interval comparing rates of dysphagia between randomized cohorts of cervical arthroplasty and fusion patients. Our study suggests that cervical arthroplasty is less likely than ACDF to cause sustained long-term or late-presenting dysphagia.
Natsis, Konstantinos; Lyrtzis, Christos; Totlis, Trifon; Anastasopoulos, Nikolaos; Piagkou, Maria
2017-01-01
Our study highlights the morphometry of the partial and complete atlas occipitalization (AOZ), its coexistence with fusions of the 2nd and 3rd cervical vertebrae and morphological and morphometric abnormalities of the posterior cranial fossa that are of paramount neurological importance. One hundred and eighty adult dry skulls, the atlas and axis vertebrae were examined. Four skulls (2.2 %) showed AOZ. Two of them (1.1 %) presented a partial AOZ, one male skull (0.6 %) a complete AOZ and a female skull (0.6 %) had a fused left hemiatlas with the occipital bone and a fusion of the 2nd and 3rd cervical vertebrae. The inner anteroposterior and transverse diameters of the foramen magnum (FM) in the control group were 34.6 ± 3.46 and 29.3 ± 3.47 mm. Only the skull with the complete AOZ had a reduced outer anteroposterior diameter of the FM (29.8 mm), while no specimen was found with a reduced transverse diameter. A wide total decrease (range 13.1-50.9 %) in the surface area of the FM in skulls with AOZ was detected. Extracranial, the clivus length in two skulls with AOZ was smaller than the normal range. No skull was detected with a reduction in the intracranial length of the clivus. All skulls with the AOZ had a vermian fossa. The study adds important morphometric details about the partial and complete AOZ and correlates the phenomenon of synostosis with the narrowing of the FM, particularly in the case of complete AOZ. Awareness of the AOZ and other fusions of the upper cervical vertebrae and their topographical relations and attendant problems are of paramount importance to surgeons, when operate to the craniocervical junction, or interpret imaging studies to plan a safe surgery for nerve or spinal tissue decompression.
[Spanish adaptation of the Thought-Action Fusion Questionnaire for Adolescents (TAFQ-A)].
Fernández-Llebrés, Rosa; Godoy, Antonio; Gavino, Aurora
2010-08-01
This study deals with the psychometric properties of the Thought-Action Fusion Questionnaire for Adolescents (TAFQ-A), which assesses the belief that harmful thoughts and actions are equivalent. The TAFQ-A comprises two scales: TAF-Moral and TAF-Likelihood. A total of 1726 children and adolescents completed 5 tests in order to establish the relationships of TAFQ-A with measures of psychopathology and with cognitive variables related to the ethiology of obsessive-compulsive problems. Results show that factorial structure, reliability and criterion validity of TAFQ-A are appropriate.
1999-02-01
from trials of complete systems at the other. This was perhaps reflected in answers to the questionnaire circulated to participants; more than half ...Cushing ~ • "A pile of facts is no more a science than a pile of bricks is a house." ~ J. Henri Poincare ~ • "Where is the wisdom we have lost in...Situation, • Diagnosis of the Situation, • Planing and Decision Making and • Plan Execution/Activation. Situation monitoring comprises the determination
Lu, Yan; Li, Gang; Liu, Wei; Yuan, Hongyan; Xiao, Dan
2018-08-15
It is known that most of the refractory ore are the basis of national economy and widely applied in various fields, however, the complexity of the chemical composition and the diversity of the crystallinity in the mineral phases make the sample pre-treatment of refractory ore still remains a challenge. In this work, the complete decomposition of the refractory ore sample can be achieved just by exposing the solid fusion agent and the refractory ore sample in the microwave irradiation environment for a few minutes, and induced by a drop of water. A digestion time of 15 min for 3.0 g solid fusion agent mixture of sodium peroxide/sodium carbonate (Na 2 O 2 /Na 2 CO 3 ) in a corundum crucible via microwave heating is sufficient to decompose 0.1 g refractory ore sample. An excellent microwave digestion solid agent should meet the following conditions, a good decomposition ability, an outstanding ability of absorbing microwave energy and converting it into heat quickly, a higher melting point than the decomposing temperature of the ore sample. In the research, the induction effect of water plays an important role for the microwave digestion. The energy which is released by the reaction of water and the solid fusion agent (Na 2 O 2 ) is the key to decompose refractory ore samples with solid fusion agent, which replenished the total energy required for the microwave digestion and made the microwave digestion completed successfully. This microwave digestion technique has good reproducibility and precision, RSD % for Mo, Fe, Ti, Cr and W in the refractory ore samples were all better than 6, except RSD % for Be of about 8 because of the influence of matrix-effect. Meanwhile, the analysis results of the elements in the refractory ore samples provided by the microwave digestion technique were all in good agreement with the analysis results provided by the traditional fusion method except for Cr in the mixture ore samples. In the study, the non-linear dependence of the electromagnetic and thermal properties of the solid fusion agent on temperature under microwave irradiation and the selective heating of microwave are fully applied in this simple microwave technique. Comparing to the traditional fusion decomposition method, this microwave digestion technique is a simple, economical, fast and energy-saving sample pre-treatment technique. Copyright © 2018 Elsevier B.V. All rights reserved.
... Games, they came ready to play. Read more Image-2 Excerpt-2 Training, technological synergy key to future battlefield care scenarios To obtain a more complete, more mature fusion of technology and Soldier, Army Medicine focuses on ...
Fusion Energy and Stopping Power in a Degenerate DT Pellet Driven by a Laser-Accelerated Proton Beam
NASA Astrophysics Data System (ADS)
Mehrangiz, M.; Ghasemizad, A.; Jafari, S.; Khanbabaei, B.
2016-06-01
In this paper, we have improved the fast ignition scheme in order to have more authority needed for high-energy-gain. Due to the more penetrability and energy deposition of the particle beams in fusion targets, we employ a laser-to-ion converter foil as a scheme for generating energetic ion beams to ignite the fusion fuel. We find the favorable intensity and wavelength of incident laser by evaluating the laser-proton conversion gain. By calculating the source-target distance, proton beam power and energy are estimated. Our analysis is generalized to the plasma degeneracy effects which can increase the fusion gain several orders of magnitude by decreasing the ion-electron collisions in the plasma. It is found that the wavelength of 0.53 μm and the intensity of about 1020 W/cm2, by saving about 10% conversion coefficient, are the suitable measured values for converting a laser into protons. Besides, stopping power and fusion burn calculations have been done in degenerate and non-degenerate plasma mediums. The results indicate that in the presence of degeneracy, the rate of fusion enhances. Supported by the Research Council of University of Guilan
Radar image and data fusion for natural hazards characterisation
Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Jixian; Zhang, Yonghong
2010-01-01
Fusion of synthetic aperture radar (SAR) images through interferometric, polarimetric and tomographic processing provides an all - weather imaging capability to characterise and monitor various natural hazards. This article outlines interferometric synthetic aperture radar (InSAR) processing and products and their utility for natural hazards characterisation, provides an overview of the techniques and applications related to fusion of SAR/InSAR images with optical and other images and highlights the emerging SAR fusion technologies. In addition to providing precise land - surface digital elevation maps, SAR - derived imaging products can map millimetre - scale elevation changes driven by volcanic, seismic and hydrogeologic processes, by landslides and wildfires and other natural hazards. With products derived from the fusion of SAR and other images, scientists can monitor the progress of flooding, estimate water storage changes in wetlands for improved hydrological modelling predictions and assessments of future flood impacts and map vegetation structure on a global scale and monitor its changes due to such processes as fire, volcanic eruption and deforestation. With the availability of SAR images in near real - time from multiple satellites in the near future, the fusion of SAR images with other images and data is playing an increasingly important role in understanding and forecasting natural hazards.
[Anterior lumbar interbody fusion. Indications, technique, advantages and disadvantages].
Richter, M; Weidenfeld, M; Uckmann, F P
2015-02-01
Anterior lumbar interbody fusion (ALIF) for lumbar interbody fusion from L2 to the sacrum has been an established technique for decades. The advantages and disadvantages of ALIF compared to posterior interbody fusion techniques are discussed. The operative technique is described in detail. Complications and avoidance strategies are discussed. This article is based on a selective literature search using PubMed and the experience of the authors in this medical field. The advantages of ALIF compared to posterior fusion techniques are the free approach to the anterior disc space without opening of the spinal canal or the neural foramina. This gives the possibility of an extensive anterior release and placement of the largest possible cages without the risk of neural structure damage. The disadvantages of ALIF are the additional anterior approach and the related complications. The most frequent complication is due to damage of vessels. The rate of complications is significantly increased in revision surgery. The ALIF technique meaningfully expands the repertoire of the spinal surgeon especially for the treatment of non-union after interbody fusion, in patients with epidural scar tissue at the index level and spinal infections. Advantages and disadvantages should be considered when evaluating the indications for ALIF.
Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm.
Kozlovsky, Yonathan; Chernomordik, Leonid V; Kozlov, Michael M
2002-11-01
Lipid bilayer fusion is thought to involve formation of a local hemifusion connection, referred to as a fusion stalk. The subsequent fusion stages leading to the opening of a fusion pore remain unknown. The earliest fusion pore could represent a bilayer connection between the membranes and could be formed directly from the stalk. Alternatively, fusion pore can form in a single bilayer, referred to as hemifusion diaphragm (HD), generated by stalk expansion. To analyze the plausibility of stalk expansion, we studied the pathway of hemifusion theoretically, using a recently developed elastic model. We show that the stalk has a tendency to expand into an HD for lipids with sufficiently negative spontaneous splay, (~)J(s)< 0. For different experimentally relevant membrane configurations we find two characteristic values of the spontaneous splay. (~)J*(s) and (~)J**(s), determining HD dimension. The HD is predicted to have a finite equilibrium radius provided that the spontaneous splay is in the range (~)J**(s)< (~)J(s)<(~)J*(s), and to expand infinitely for (~)J(s)<(~)J**(s). In the case of common lipids, which do not fuse spontaneously, an HD forms only under action of an external force pulling the diaphragm rim apart. We calculate the dependence of the HD radius on this force. To address the mechanism of fusion pore formation, we analyze the distribution of the lateral tension emerging in the HD due to the establishment of lateral equilibrium between the deformed and relaxed portions of lipid monolayers. We show that this tension concentrates along the HD rim and reaches high values sufficient to rupture the bilayer and form the fusion pore. Our analysis supports the hypothesis that transition from a hemifusion to a fusion pore involves radial expansion of the stalk.
Kim, Jaewook; Shin, Yeon-Kyun
2017-01-01
Ca 2+ -triggered SNARE-mediated membrane fusion is essential for neuronal communication. The speed of this process is of particular importance because it sets a time limit to cognitive and physical activities. In this work, we expand the proteoliposome-to-supported bilayer (SBL) fusion assay by successfully incorporating synaptotagmin 1 (Syt1), a major Ca 2+ sensor. We report that Syt1 and Ca 2+ together can elicit more than a 50-fold increase in the number of membrane fusion events when compared with membrane fusion mediated by SNAREs only. What is remarkable is that ~55% of all vesicle fusion events occurs within 20 ms upon vesicle docking. Furthermore, pre-binding of Syt1 to SNAREs prior to Ca 2+ inhibits spontaneous fusion, but intriguingly, this leads to a complete loss of the Ca 2+ responsiveness. Thus, our results suggest that there is a productive and a non-productive pathway for Syt1, depending on whether there is a premature interaction between Syt1 and SNAREs. Our results show that Ca 2+ binding to Syt1 prior to Syt1's binding to SNAREs may be a prerequisite for the productive pathway. The successful reconstitution of Syt1 activities in the physiological time scale provides new opportunities to test the current mechanistic models for Ca 2+ -triggered exocytosis.
A label field fusion bayesian model and its penalized maximum rand estimator for image segmentation.
Mignotte, Max
2010-06-01
This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.
Shadrin, Ilya Y; Yoon, Woohyun; Li, Liqing; Shepherd, Neal; Bursac, Nenad
2015-07-10
Cardiac cell therapies involving bone marrow-derived human mesenchymal stem cells (hMSCs) have shown promising results, although their mechanisms of action are still poorly understood. Here, we investigated direct interactions between hMSCs and cardiomyocytes in vitro. Using a genetic Ca(2+) indicator gCaMP3 to efficiently label hMSCs in co-cultures with neonatal rat ventricular myocytes (NRVMs), we determined that 25-40% of hMSCs (from 4 independent donors) acquired periodic Ca(2+) transients and cardiac markers through spontaneous fusion with NRVMs. Sharp electrode and voltage-clamp recordings in fused cells showed action potential properties and Ca(2+) current amplitudes in between those of non-fused hMSCs and NRVMs. Time-lapse video-microscopy revealed the first direct evidence of active fusion between hMSCs and NRVMs within several hours of co-culture. Application of blebbistatin, nifedipine or verapamil caused complete and reversible inhibition of fusion, suggesting potential roles for actomyosin bridging and Ca(2+) channels in the fusion process. Immunostaining for Cx43, Ki67, and sarcomeric α-actinin showed that fused cells remain strongly coupled to surrounding NRVMs, but downregulate sarcomeric structures over time, acquiring a non-proliferative and non-contractile phenotype. Overall, these results describe the phenotype and mechanisms of hybrid cell formation via fusion of hMSCs and cardiomyocytes with potential implications for cardiac cell therapy.
Antibody-cytokine fusion proteins for improving efficacy and safety of cancer therapy.
Valedkarimi, Zahra; Nasiri, Hadi; Aghebati-Maleki, Leili; Majidi, Jafar
2017-11-01
Cytokines are key players in the regulation of immune responses both in physiological and pathological states. A number of cytokines have been evaluated in clinical trials and shown promising results in the treatment of different malignancies. Despite this, the clinical application of these molecules may be plagued by undesirable side effects The development of recombinant antibody-cytokine fusion proteins, which offer a means for target delivery of cytokines toward the tumor site, has significantly improved the therapeutic index of these immunomodulatory molecules. Selective tumor localization is provided by the monoclonal antibody component of the fusion protein that binds to the molecules present on the surface of tumor cells or accumulated preferentially in the diseased site. In this manner, the cytokine element is specifically located at the tumor site and can stimulate immune cells with appropriate cytokine receptors. Over the recent years, several antibody-cytokine fusion proteins have been developed with the capacity to target a wide variety of cancers whose application, in some cases, has led to complete rejection of the tumor. These findings support the notion that antibody-cytokine fusion proteins represent huge potential for cancer therapy. This review presents an overview of the advances made in the field of targeted cytokine delivery, which is made possible by genetically engineering antibody-cytokine fusion proteins. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
[Experience of Fusion image guided system in endonasal endoscopic surgery].
Wen, Jingying; Zhen, Hongtao; Shi, Lili; Cao, Pingping; Cui, Yonghua
2015-08-01
To review endonasal endoscopic surgeries aided by Fusion image guided system, and to explore the application value of Fusion image guided system in endonasal endoscopic surgeries. Retrospective research. Sixty cases of endonasal endoscopic surgeries aided by Fusion image guided system were analysed including chronic rhinosinusitis with polyp (n = 10), fungus sinusitis (n = 5), endoscopic optic nerve decompression (n = 16), inverted papilloma of the paranasal sinus (n = 9), ossifying fibroma of sphenoid bone (n = 1), malignance of the paranasal sinus (n = 9), cerebrospinal fluid leak (n = 5), hemangioma of orbital apex (n = 2) and orbital reconstruction (n = 3). Sixty cases of endonasal endoscopic surgeries completed successfully without any complications. Fusion image guided system can help to identify the ostium of paranasal sinus, lamina papyracea and skull base. Fused CT-CTA images, or fused MR-MRA images can help to localize the optic nerve or internal carotid arteiy . Fused CT-MR images can help to detect the range of the tumor. It spent (7.13 ± 1.358) minutes for image guided system to do preoperative preparation and the surgical navigation accuracy reached less than 1mm after proficient. There was no device localization problem because of block or head set loosed. Fusion image guided system make endonasal endoscopic surgery to be a true microinvasive and exact surgery. It spends less preoperative preparation time, has high surgical navigation accuracy, improves the surgical safety and reduces the surgical complications.
Gardner, Samantha; Gross, Sean M; David, Larry L; Klimek, John E; Rotwein, Peter
2015-10-01
The p38 MAP kinases play critical roles in skeletal muscle biology, but the specific processes regulated by these kinases remain poorly defined. Here we find that activity of p38α/β is important not only in early phases of myoblast differentiation, but also in later stages of myocyte fusion and myofibrillogenesis. By treatment of C2 myoblasts with the promyogenic growth factor insulin-like growth factor (IGF)-I, the early block in differentiation imposed by the p38 chemical inhibitor SB202190 could be overcome. Yet, under these conditions, IGF-I could not prevent the later impairment of muscle cell fusion, as marked by the nearly complete absence of multinucleated myofibers. Removal of SB202190 from the medium of differentiating myoblasts reversed the fusion block, as multinucleated myofibers were detected several hours later and reached ∼90% of the culture within 30 h. Analysis by quantitative mass spectroscopy of proteins that changed in abundance following removal of the inhibitor revealed a cohort of upregulated muscle-enriched molecules that may be important for both myofibrillogenesis and fusion. We have thus developed a model system that allows separation of myoblast differentiation from muscle cell fusion and should be useful in identifying specific steps regulated by p38 MAP kinase-mediated signaling in myogenesis. Copyright © 2015 the American Physiological Society.
Tang, Yongchuan; Zhou, Deyun; Chan, Felix T S
2018-06-11
Quantification of uncertain degree in the Dempster-Shafer evidence theory (DST) framework with belief entropy is still an open issue, even a blank field for the open world assumption. Currently, the existed uncertainty measures in the DST framework are limited to the closed world where the frame of discernment (FOD) is assumed to be complete. To address this issue, this paper focuses on extending a belief entropy to the open world by considering the uncertain information represented as the FOD and the nonzero mass function of the empty set simultaneously. An extension to Deng’s entropy in the open world assumption (EDEOW) is proposed as a generalization of the Deng’s entropy and it can be degenerated to the Deng entropy in the closed world wherever necessary. In order to test the reasonability and effectiveness of the extended belief entropy, an EDEOW-based information fusion approach is proposed and applied to sensor data fusion under uncertainty circumstance. The experimental results verify the usefulness and applicability of the extended measure as well as the modified sensor data fusion method. In addition, a few open issues still exist in the current work: the necessary properties for a belief entropy in the open world assumption, whether there exists a belief entropy that satisfies all the existed properties, and what is the most proper fusion frame for sensor data fusion under uncertainty.
Cha, Dong Ik; Lee, Min Woo; Kang, Tae Wook; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Kim, Kyunga
2017-10-01
To identify the more accurate reference data sets for fusion imaging-guided radiofrequency ablation or biopsy of hepatic lesions between computed tomography (CT) and magnetic resonance (MR) images. This study was approved by the institutional review board, and written informed consent was received from all patients. Twelve consecutive patients who were referred to assess the feasibility of radiofrequency ablation or biopsy were enrolled. Automatic registration using CT and MR images was performed in each patient. Registration errors during optimal and opposite respiratory phases, time required for image fusion and number of point locks used were compared using the Wilcoxon signed-rank test. The registration errors during optimal respiratory phase were not significantly different between image fusion using CT and MR images as reference data sets (p = 0.969). During opposite respiratory phase, the registration error was smaller with MR images than CT (p = 0.028). The time and the number of points locks needed for complete image fusion were not significantly different between CT and MR images (p = 0.328 and p = 0.317, respectively). MR images would be more suitable as the reference data set for fusion imaging-guided procedures of focal hepatic lesions than CT images.
Lin, X; Qureshi, M Z; Romero, M A; Yaylim, I; Arif, S; Ucak, I; Fayyaz, S; Farooqi, A A; Mansoor, Q; Ismail, M
2017-02-28
Overwhelmingly increasing scientific evidence has provided near complete resolution of prostate cancer landscape and it is now more understandable that wide ranging factors underlies its development and progression. Increasingly it is being realized that genetic/epigenetic factors, Intra-tumoral and inter-tumoral heterogeneity, loss of apoptosis, dysregulations of spatio-temporally controlled signaling cascades, Darwinian evolution in response to therapeutic pressures play instrumental role in prostate carcinogenesis. Moreover, multi-directional patterns of spread between primary tumors and metastatic sites have also been studied extensively in prostate cancer. Research over the years has gradually and systematically revealed closer association between tumor phenotype and type of gene fusion. Latest developments in deep sequencing technologies have shown that gene fusions originate in a non-random, cell type dependent manner and are much more frequent than previously surmised. These findings enabled sub-classification and categorization of seemingly identical diseases. Furthermore, research methodologies have shown that many gene fusions inform us about risk stratification and many chimeric proteins encoded by the fused genes are being studied as drug target/s. We partition this multi-component review into the molecular basis of formation of fusion transcripts, how protein network is regulated in fusion positive prostate cancer cells and therapeutic strategies which are currently being investigated to efficiently target fusion transcript and its protein product.
Chen, Yuanbo; Li, Hulin; Wu, Dingtao; Bi, Keming; Liu, Chunxiao
2014-12-01
Construction of three-dimensional (3D) model of renal tumor facilitated surgical planning and imaging guidance of manual image fusion in laparoscopic partial nephrectomy (LPN) for intrarenal tumors. Fifteen patients with intrarenal tumors underwent LPN between January and December 2012. Computed tomography-based reconstruction of the 3D models of renal tumors was performed using Mimics 12.1 software. Surgical planning was performed through morphometry and multi-angle visual views of the tumor model. Two-step manual image fusion superimposed 3D model images onto 2D laparoscopic images. The image fusion was verified by intraoperative ultrasound. Imaging-guided laparoscopic hilar clamping and tumor excision was performed. Manual fusion time, patient demographics, surgical details, and postoperative treatment parameters were analyzed. The reconstructed 3D tumor models accurately represented the patient's physiological anatomical landmarks. The surgical planning markers were marked successfully. Manual image fusion was flexible and feasible with fusion time of 6 min (5-7 min). All surgeries were completed laparoscopically. The median tumor excision time was 5.4 min (3.5-10 min), whereas the median warm ischemia time was 25.5 min (16-32 min). Twelve patients (80 %) demonstrated renal cell carcinoma on final pathology, and all surgical margins were negative. No tumor recurrence was detected after a media follow-up of 1 year (3-15 months). The surgical planning and two-step manual image fusion based on 3D model of renal tumor facilitated visible-imaging-guided tumor resection with negative margin in LPN for intrarenal tumor. It is promising and moves us one step closer to imaging-guided surgery.
Return to Golf After Lumbar Fusion
Shifflett, Grant D.; Hellman, Michael D.; Louie, Philip K.; Mikhail, Christopher; Park, Kevin U.; Phillips, Frank M.
2016-01-01
Background: Spinal fusion surgery is being increasingly performed, yet few studies have focused on return to recreational sports after lumbar fusion and none have specifically analyzed return to golf. Hypothesis: Most golfers successfully return to sport after lumbar fusion surgery. Study Design: Case series. Level of Evidence: Level 4. Methods: All patients who underwent 1- or 2-level primary lumbar fusion surgery for degenerative pathologies performed by a single surgeon between January 2008 and October 2012 and had at least 1-year follow-up were included. Patients completed a specifically designed golf survey. Surveys were mailed, given during follow-up clinic, or answered during telephone contact. Results: A total of 353 patients met the inclusion and exclusion criteria, with 200 responses (57%) to the questionnaire producing 34 golfers. The average age of golfers was 57 years (range, 32-79 years). In 79% of golfers, preoperative back and/or leg pain significantly affected their ability to play golf. Within 1 year from surgery, 65% of patients returned to practice and 52% returned to course play. Only 29% of patients stated that continued back/leg pain limited their play. Twenty-five patients (77%) were able to play the same amount of golf or more than before fusion surgery. Of those providing handicaps, 12 (80%) reported the same or an improved handicap. Conclusion: More than 50% of golfers return to on-course play within 1 year of lumbar fusion surgery. The majority of golfers can return to preoperative levels in terms of performance (handicap) and frequency of play. Clinical Relevance: This investigation offers insight into when golfers return to sport after lumbar fusion surgery and provides surgeons with information to set realistic expectations postoperatively. PMID:27879299
Rudzinski, Erin R; Anderson, James R; Chi, Yueh-Yun; Gastier-Foster, Julie M; Astbury, Caroline; Barr, Frederic G; Skapek, Stephen X; Hawkins, Douglas S; Weigel, Brenda J; Pappo, Alberto; Meyer, William H; Arnold, Michael A; Teot, Lisa A; Parham, David M
2017-12-01
Distinguishing alveolar rhabdomyosarcoma (ARMS) from embryonal rhabdomyosarcoma (ERMS) has historically been of prognostic and therapeutic importance. However, classification has been complicated by shifting histologic criteria required for an ARMS diagnosis. Children's Oncology Group (COG) studies after IRS-IV, which included the height of this diagnostic shift, showed both an increased number of ARMS and an increase in the proportion of fusion-negative ARMS. Following diagnostic standardization and histologic re-review of ARMS cases enrolled during this era, analysis of low-risk (D9602) and intermediate-risk (D9803) rhabdomyosarcoma (RMS) studies showed that fusion status rather than histology best predicts prognosis for patients with RMS. This analysis remains to be completed for patients with high-risk RMS. We re-reviewed cases on high-risk COG studies D9802 and ARST0431 with an enrollment diagnosis of ARMS. We compared the event-free survival (EFS) and overall survival by histology, PAX-FOXO1 fusion, and clinical risk factors (Oberlin score) for patients with metastatic RMS using the log-rank test. Histology re-review resulted in reclassification as ERMS for 12% of D9802 cases and 5% of ARST0431 cases. Fusion-negative RMS had a superior EFS to fusion-positive RMS; however, poorer outcome for metastatic RMS was most related to clinical risk factors including age, primary site, and number of metastatic sites. In contrast to low- or intermediate-risk RMS, in metastatic RMS, clinical risk factors have the most impact on patient outcome. PAX-FOXO1 fusion is more common in patients with a high Oberlin score, but fusion status is not an independent biomarker of prognosis. © 2017 Wiley Periodicals, Inc.
Case presentation and short perspective on management of foraminal/far lateral discs and stenosis.
Epstein, Nancy E
2018-01-01
The management of lumbar foraminal/far lateral discs (FOR/FLD) with stenosis remains controversial. Operative choices should be based on each patient's preoperative dynamic X-ray findings, magnetic resonance (MR), and computed tomography (CT) studies. Here we reviewed several options for decompression alone vs. decompression with fusion. Safe excision of FOR/FLD with stenosis should begin at the level above the disc herniation, as identification of the superior, foraminally, and far laterally exiting nerve root is critical. Performing an undercutting laminectomy and utilizing an operating microscope usually preserves the facet joints, and in many cases, avoids the need for fusion. Other decompressive techniques include; the intertransverse (ITT), and Wiltse approaches. Fusions following complete unilateral full facetectomy may be; noninstrumented (e.g., older, osteoporotic patients) vs. instrumented (e.g., posterolateral fusion or occasionally transforaminal lumbar interbody fusion). Here we present a patient with L2-L5 stenosis, and a left L3-L4 FOR/FLD, and multiple synovial cysts who was successfully managed with an l2-L5 laminecotmy, left L34 FOR/FLD diksectomy without fusion. Postoperatively, the patient was neurologically intact, and stability was maintained. Adjunctive measures for FOR/FLD diksectomy should include; intraoperative monitoring, use of the operating microscope, and an intraoperative film with a radiopaque marker in the correct disc space to confirm the correct level of diskectomy. There are multiple approaches to the excision of FOR/FLD with stenosis. These include; decompression alone vs. decompression with non-instrumented vs. instrumented fusion. Surgical choices must be based on individual patient's X-ray, MR, and CT findings. The aim should be to maximize the safety of disc excision with decompression of stenosis, and to preserve stability, reducing the need for fusion, while minimizing morbidity.
NASA Astrophysics Data System (ADS)
Diaz-Torres, Alexis
2011-04-01
A self-contained Fortran-90 program based on a three-dimensional classical dynamical reaction model with stochastic breakup is presented, which is a useful tool for quantifying complete and incomplete fusion, and breakup in reactions induced by weakly-bound two-body projectiles near the Coulomb barrier. The code calculates (i) integrated complete and incomplete fusion cross sections and their angular momentum distribution, (ii) the excitation energy distribution of the primary incomplete-fusion products, (iii) the asymptotic angular distribution of the incomplete-fusion products and the surviving breakup fragments, and (iv) breakup observables, such as angle, kinetic energy and relative energy distributions. Program summaryProgram title: PLATYPUS Catalogue identifier: AEIG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 342 No. of bytes in distributed program, including test data, etc.: 344 124 Distribution format: tar.gz Programming language: Fortran-90 Computer: Any Unix/Linux workstation or PC with a Fortran-90 compiler Operating system: Linux or Unix RAM: 10 MB Classification: 16.9, 17.7, 17.8, 17.11 Nature of problem: The program calculates a wide range of observables in reactions induced by weakly-bound two-body nuclei near the Coulomb barrier. These include integrated complete and incomplete fusion cross sections and their spin distribution, as well as breakup observables (e.g. the angle, kinetic energy, and relative energy distributions of the fragments). Solution method: All the observables are calculated using a three-dimensional classical dynamical model combined with the Monte Carlo sampling of probability-density distributions. See Refs. [1,2] for further details. Restrictions: The program is suited for a weakly-bound two-body projectile colliding with a stable target. The initial orientation of the segment joining the two breakup fragments is considered to be isotropic. Additional comments: Several source routines from Numerical Recipies, and the Mersenne Twister random number generator package are included to enable independent compilation. Running time: About 75 minutes for input provided, using a PC with 1.5 GHz processor.
Tritium Breeding Blanket for a Commercial Fusion Power Plant - A System Engineering Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Wayne R.
The goal of developing a new source of electric power based on fusion has been pursued for decades. If successful, future fusion power plants will help meet growing world-wide demand for electric power. A key feature and selling point for fusion is that its fuel supply is widely distributed globally and virtually inexhaustible. Current world-wide research on fusion energy is focused on the deuterium-tritium (DT for short) fusion reaction since it will be the easiest to achieve in terms of the conditions (e.g., temperature, density and confinement time of the DT fuel) required to produce net energy. Over the pastmore » decades countless studies have examined various concepts for TBBs for both magnetic fusion energy (MFE) and inertial fusion energy (IFE). At this time, the key organizations involved are government sponsored research organizations world-wide. The near-term focus of the MFE community is on the development of TBB mock-ups to be tested on the ITER tokamak currently under construction in Caderache France. TBB concepts for IFE tend to be different from MFE primarily due to significantly different operating conditions and constraints. This report focuses on longer-term commercial power plants where the key stakeholders include: electric utilities, plant owner and operator, manufacturer, regulators, utility customers, and in-plant subsystems including the heat transfer and conversion systems, fuel processing system, plant safety systems, and the monitoring control systems.« less
Akyürek, Elkan G; van Asselt, E Manon
2015-12-01
When two different color stimuli are presented in rapid succession, the resulting percept is sometimes that of a mixture of both colors, due to a perceptual process called color fusion. Although color fusion might seem to occur very early in the visual pathway, and only happens across the briefest of stimulus presentation intervals (< 50 ms), the present study showed that spatial attention can alter the fusion process. In a series of experiments, spatial cues were presented that either validly indicated the location of a pair of (different) color stimuli in successive stimulus arrays, or did not, pointing toward isoluminant gray distractors in the other visual hemifield. Increased color fusion was observed for valid cues across a range of stimulus durations, at the expense of individual color reports. By contrast, perception of repeated, same-color stimulus pairs did not change, suggesting that the enhancement was specific to fusion, not color discrimination per se. Electrophysiological measures furthermore showed that the amplitude of the N1, N2pc, and P3 components of the ERP were differentially modulated during the perception of individual and fused colors, as a function of cueing and stimulus duration. Fusion itself, collapsed across cueing conditions, was reflected uniquely in N1 amplitude. Overall, the results suggest that spatial attention enhances color fusion and decreases competition between stimuli, constituting an adaptive slowdown in service of temporal integration. © 2015 Society for Psychophysiological Research.
The national ignition facility: path to ignition in the laboratory
NASA Astrophysics Data System (ADS)
Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.
2007-08-01
The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.
NASA Astrophysics Data System (ADS)
Linke, J.
2006-04-01
The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive R&D. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.
Hand-writing motion tracking with vision-inertial sensor fusion: calibration and error correction.
Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J
2014-08-25
The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model.
NASA Astrophysics Data System (ADS)
Tang, Xian-Zhu; McDevitt, C. J.; Guo, Zehua; Berk, H. L.
2014-03-01
Inertial confinement fusion requires an imploded target in which a central hot spot is surrounded by a cold and dense pusher. The hot spot/pusher interface can take complicated shape in three dimensions due to hydrodynamic mix. It is also a transition region where the Knudsen and inverse Knudsen layer effect can significantly modify the fusion reactivity in comparison with the commonly used value evaluated with background Maxwellians. Here, we describe a hybrid model that couples the kinetic correction of fusion reactivity to global hydrodynamic implosion simulations. The key ingredient is a non-perturbative treatment of the tail ions in the interface region where the Gamow ion Knudsen number approaches or surpasses order unity. The accuracy of the coupling scheme is controlled by the precise criteria for matching the non-perturbative kinetic model to perturbative solutions in both configuration space and velocity space.
Fusion and Gaussian mixture based classifiers for SONAR data
NASA Astrophysics Data System (ADS)
Kotari, Vikas; Chang, KC
2011-06-01
Underwater mines are inexpensive and highly effective weapons. They are difficult to detect and classify. Hence detection and classification of underwater mines is essential for the safety of naval vessels. This necessitates a formulation of highly efficient classifiers and detection techniques. Current techniques primarily focus on signals from one source. Data fusion is known to increase the accuracy of detection and classification. In this paper, we formulated a fusion-based classifier and a Gaussian mixture model (GMM) based classifier for classification of underwater mines. The emphasis has been on sound navigation and ranging (SONAR) signals due to their extensive use in current naval operations. The classifiers have been tested on real SONAR data obtained from University of California Irvine (UCI) repository. The performance of both GMM based classifier and fusion based classifier clearly demonstrate their superior classification accuracy over conventional single source cases and validate our approach.
NASA Astrophysics Data System (ADS)
Gonderman, S.; Tripathi, J. K.; Sinclair, G.; Novakowski, T. J.; Sizyuk, T.; Hassanein, A.
2018-02-01
The strong thermal and mechanical properties of tungsten (W) are well suited for the harsh fusion environment. However, increasing interest in using tungsten as plasma-facing components (PFCs) has revealed several key issues. These potential roadblocks necessitate more investigation of W and other alternative W based materials exposed to realistic fusion conditions. In this work, W and tungsten-tantalum (W-Ta) alloys were exposed to single (He+) and dual (He+ + D+) ion irradiations with simultaneous pulsed heat loading to elucidate PFCs response under more realistic conditions. Laser only exposer revealed significantly more damage in W-Ta samples as compared to pure W samples. This was due to the difference in the mechanical properties of the two different materials. Further erosion studies were conducted to evaluate the material degradation due to transient heat loading in both the presence and absence of He+ and/or D+ ions. We concluded that erosion of PFC materials was significantly enhanced due to the presence of ion irradiation. This is important as it demonstrates that there are key synergistic effects resulting from more realistic fusion loading conditions that need to be considered when evaluating the response of plasma facing materials.
[Research progress in fusion expression of antimicrobial peptides].
Ma, Qingshan; Yu, Zhanqiao; Han, Bing; Zhang, Rijun
2011-10-01
Antimicrobial peptides (AMPs) are of great significance in the field of food, feed and medicine due to their wide spectrum of antimicrobial activity and new mechanism of action different from conventional antibiotics. AMPs production from natural sources is usually limited, and chemical synthesis is not economically practical, especially for the production of long peptides. Therefore, heterologous expression of AMPs has been widely studied as an alternative, and fusion expression plays an important role in increasing production. The present review mainly focuses on the types and bioactivities of AMPs. In addition, the recent strategies to the most commonly used carrier proteins for fusion expression of AMPs and prospects for future research were also discussed.
Frequency domain surface EMG sensor fusion for estimating finger forces.
Potluri, Chandrasekhar; Kumar, Parmod; Anugolu, Madhavi; Urfer, Alex; Chiu, Steve; Naidu, D; Schoen, Marco P
2010-01-01
Extracting or estimating skeletal hand/finger forces using surface electro myographic (sEMG) signals poses many challenges due to cross-talk, noise, and a temporal and spatially modulated signal characteristics. Normal sEMG measurements are based on single sensor data. In this paper, array sensors are used along with a proposed sensor fusion scheme that result in a simple Multi-Input-Single-Output (MISO) transfer function. Experimental data is used along with system identification to find this MISO system. A Genetic Algorithm (GA) approach is employed to optimize the characteristics of the MISO system. The proposed fusion-based approach is tested experimentally and indicates improvement in finger/hand force estimation.
Deciphering the Functional Composition of Fusogenic Liposomes
Kolašinac, Rejhana; Kleusch, Christian; Braun, Tobias; Merkel, Rudolf; Csiszár, Agnes
2018-01-01
Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis. PMID:29364187
Current status and future R&D for reduced-activation ferritic/martensitic steels
NASA Astrophysics Data System (ADS)
Hishinuma, A.; Kohyama, A.; Klueh, R. L.; Gelles, D. S.; Dietz, W.; Ehrlich, K.
1998-10-01
International research and development programs on reduced-activation ferritic/martensitic steels, the primary candidate-alloys for a DEMO fusion reactor and beyond, are briefly summarized, along with some information on conventional steels. An International Energy Agency (IEA) collaborative test program to determine the feasibility of reduced-activation ferritic/martensitic steels for fusion is in progress and will be completed within this century. Baseline properties including typical irradiation behavior for Fe-(7-9)%Cr reduced-activation ferritic steels are shown. Most of the data are for a heat of modified F82H steel, purchased for the IEA program. Experimental plans to explore possible problems and solutions for fusion devices using ferromagnetic materials are introduced. The preliminary results show that it should be possible to use a ferromagnetic vacuum vessel in tokamak devices.
Watanabe, Kei; Yamazaki, Akiyoshi; Hirano, Toru; Izumi, Tomohiro; Sano, Atsuki; Morita, Osamu; Kikuchi, Ren; Ito, Takui
2010-09-15
Case report. To describe an iatrogenic aortic injury by pedicle screw instrumentation during posterior reconstructive surgery of spinal deformity. Iatrogenic major vascular injuries during anterior instrumentation procedures have been reported by several authors, but there have been few reports regarding iatrogenic major vascular injuries during posterior instrumentation procedures. A 57-year-old woman with thoracolumbar kyphosis due to osteoporotic T12 vertebral fracture underwent posterior correction and fusion (T10-L2), using segmental pedicle screw construct concomitant with T12 pedicle subtraction osteotomy. Postoperative routine plain radiographs and computed tomography myelography demonstrated a misplaced left T10 pedicle screw, which was in contact with the posteromedial aspect of the thoracic aorta, and suspected penetration of the aortic wall. The patient underwent removal of the pedicle screw, and repair of the penetrated aortic wall through a simultaneous anterior-posterior approach. The patient tolerated the procedure well without neurologic sequelae, and was discharged several days after removal of a left tube thoracostomy. Plain radiographs demonstrated solid fusion at the osteotomy site and no loosening of hardware. Preoperative neurologic symptoms improved completely at 18-months follow-up. Use of pedicle screw instrumentation has the potential to cause major vascular injury during posterior spinal surgery, and measures to prevent this complication must be taken. Timely diagnosis and treatment are essential to prevent both early and delayed complications and death.
Multisource image fusion method using support value transform.
Zheng, Sheng; Shi, Wen-Zhong; Liu, Jian; Zhu, Guang-Xi; Tian, Jin-Wen
2007-07-01
With the development of numerous imaging sensors, many images can be simultaneously pictured by various sensors. However, there are many scenarios where no one sensor can give the complete picture. Image fusion is an important approach to solve this problem and produces a single image which preserves all relevant information from a set of different sensors. In this paper, we proposed a new image fusion method using the support value transform, which uses the support value to represent the salient features of image. This is based on the fact that, in support vector machines (SVMs), the data with larger support values have a physical meaning in the sense that they reveal relative more importance of the data points for contributing to the SVM model. The mapped least squares SVM (mapped LS-SVM) is used to efficiently compute the support values of image. The support value analysis is developed by using a series of multiscale support value filters, which are obtained by filling zeros in the basic support value filter deduced from the mapped LS-SVM to match the resolution of the desired level. Compared with the widely used image fusion methods, such as the Laplacian pyramid, discrete wavelet transform methods, the proposed method is an undecimated transform-based approach. The fusion experiments are undertaken on multisource images. The results demonstrate that the proposed approach is effective and is superior to the conventional image fusion methods in terms of the pertained quantitative fusion evaluation indexes, such as quality of visual information (Q(AB/F)), the mutual information, etc.
Li, You; Heavican, Tayla B.; Vellichirammal, Neetha N.; Iqbal, Javeed
2017-01-01
Abstract The RNA-Seq technology has revolutionized transcriptome characterization not only by accurately quantifying gene expression, but also by the identification of novel transcripts like chimeric fusion transcripts. The ‘fusion’ or ‘chimeric’ transcripts have improved the diagnosis and prognosis of several tumors, and have led to the development of novel therapeutic regimen. The fusion transcript detection is currently accomplished by several software packages, primarily relying on sequence alignment algorithms. The alignment of sequencing reads from fusion transcript loci in cancer genomes can be highly challenging due to the incorrect mapping induced by genomic alterations, thereby limiting the performance of alignment-based fusion transcript detection methods. Here, we developed a novel alignment-free method, ChimeRScope that accurately predicts fusion transcripts based on the gene fingerprint (as k-mers) profiles of the RNA-Seq paired-end reads. Results on published datasets and in-house cancer cell line datasets followed by experimental validations demonstrate that ChimeRScope consistently outperforms other popular methods irrespective of the read lengths and sequencing depth. More importantly, results on our in-house datasets show that ChimeRScope is a better tool that is capable of identifying novel fusion transcripts with potential oncogenic functions. ChimeRScope is accessible as a standalone software at (https://github.com/ChimeRScope/ChimeRScope/wiki) or via the Galaxy web-interface at (https://galaxy.unmc.edu/). PMID:28472320
Knowledge guided information fusion for segmentation of multiple sclerosis lesions in MRI images
NASA Astrophysics Data System (ADS)
Zhu, Chaozhe; Jiang, Tianzi
2003-05-01
In this work, T1-, T2- and PD-weighted MR images of multiple sclerosis (MS) patients, providing information on the properties of tissues from different aspects, are treated as three independent information sources for the detection and segmentation of MS lesions. Based on information fusion theory, a knowledge guided information fusion framework is proposed to accomplish 3-D segmentation of MS lesions. This framework consists of three parts: (1) information extraction, (2) information fusion, and (3) decision. Information provided by different spectral images is extracted and modeled separately in each spectrum using fuzzy sets, aiming at managing the uncertainty and ambiguity in the images due to noise and partial volume effect. In the second part, the possible fuzzy map of MS lesions in each spectral image is constructed from the extracted information under the guidance of experts' knowledge, and then the final fuzzy map of MS lesions is constructed through the fusion of the fuzzy maps obtained from different spectrum. Finally, 3-D segmentation of MS lesions is derived from the final fuzzy map. Experimental results show that this method is fast and accurate.
Advanced algorithms for distributed fusion
NASA Astrophysics Data System (ADS)
Gelfand, A.; Smith, C.; Colony, M.; Bowman, C.; Pei, R.; Huynh, T.; Brown, C.
2008-03-01
The US Military has been undergoing a radical transition from a traditional "platform-centric" force to one capable of performing in a "Network-Centric" environment. This transformation will place all of the data needed to efficiently meet tactical and strategic goals at the warfighter's fingertips. With access to this information, the challenge of fusing data from across the batttlespace into an operational picture for real-time Situational Awareness emerges. In such an environment, centralized fusion approaches will have limited application due to the constraints of real-time communications networks and computational resources. To overcome these limitations, we are developing a formalized architecture for fusion and track adjudication that allows the distribution of fusion processes over a dynamically created and managed information network. This network will support the incorporation and utilization of low level tracking information within the Army Distributed Common Ground System (DCGS-A) or Future Combat System (FCS). The framework is based on Bowman's Dual Node Network (DNN) architecture that utilizes a distributed network of interlaced fusion and track adjudication nodes to build and maintain a globally consistent picture across all assets.
Rolling blackout is required for synaptic vesicle exocytosis.
Huang, Fu-De; Woodruff, Elvin; Mohrmann, Ralf; Broadie, Kendal
2006-03-01
Rolling blackout (RBO) is a putative transmembrane lipase required for phospholipase C-dependent phosphatidylinositol 4,5-bisphosphate-diacylglycerol signaling in Drosophila neurons. Conditional temperature-sensitive (TS) rbo mutants display complete, reversible paralysis within minutes, demonstrating that RBO is acutely required for movement. RBO protein is localized predominantly in presynaptic boutons at neuromuscular junction (NMJ) synapses and throughout central synaptic neuropil, and rbo TS mutants display a complete, reversible block of both central and peripheral synaptic transmission within minutes. This phenotype appears limited to adults, because larval NMJs do not manifest the acute blockade. Electron microscopy of adult rbo TS mutant boutons reveals an increase in total synaptic vesicle (SV) content, with a concomitant shrinkage of presynaptic bouton size and an accumulation of docked SVs at presynaptic active zones within minutes. Genetic tests reveal a synergistic interaction between rbo and syntaxin1A TS mutants, suggesting that RBO is required in the mechanism of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated SV exocytosis, or in a parallel pathway necessary for SV fusion. The rbo TS mutation does not detectably alter SNARE complex assembly, suggesting a downstream requirement in SV fusion. We conclude that RBO plays an essential role in neurotransmitter release, downstream of SV docking, likely mediating SV fusion.
Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview
NASA Astrophysics Data System (ADS)
Doshi, Bharat; Reddy, D. Chenna
2017-04-01
Naturally occurring thermonuclear fusion reaction (of light atoms to form a heavier nucleus) in the sun and every star in the universe, releases incredible amounts of energy. Demonstrating the controlled and sustained reaction of deuterium-tritium plasma should enable the development of fusion as an energy source here on Earth. The promising fusion power reactors could be operated on the deuterium-tritium fuel cycle with fuel self-sufficiency. The potential impact of fusion power on the environment and the possible risks associated with operating large-scale fusion power plants is being studied by different countries. The results show that fusion can be a very safe and sustainable energy source. A fusion power plant possesses not only intrinsic advantages with respect to safety compared to other sources of energy, but also a negligible long term impact on the environment provided certain precautions are taken in its design. One of the important considerations is in the selection of low activation structural materials for reactor vessel. Selection of the materials for first wall and breeding blanket components is also important from safety issues. It is possible to fully benefit from the advantages of fusion energy if safety and environmental concerns are taken into account when considering the conceptual studies of a reactor design. The significant safety hazards are due to the tritium inventory and energetic neutron fluence induced activity in the reactor vessel, first wall components, blanket system etc. The potential of release of radioactivity under operational and accident conditions needs attention while designing the fusion reactor. Appropriate safety analysis for the quantification of the risk shall be done following different methods such as FFMEA (Functional Failure Modes and Effects Analysis) and HAZOP (Hazards and operability). Level of safety and safety classification such as nuclear safety and non-nuclear safety is very important for the FPR (Fusion Power Reactor). This paper describes an overview of safety and environmental merits of fusion power reactor, issues and design considerations and need for R&D on safety and environmental aspects of Tokamak type fusion reactor.
The impact of preoperative epidural injections on postoperative infection in lumbar fusion surgery.
Singla, Anuj; Yang, Scott; Werner, Brian C; Cancienne, Jourdan M; Nourbakhsh, Ali; Shimer, Adam L; Hassanzadeh, Hamid; Shen, Francis H
2017-05-01
OBJECTIVE Lumbar epidural steroid injections (LESIs) are performed for both diagnostic and therapeutic purposes for a variety of indications, including low-back pain, the leading cause of disability and expense due to work-related conditions in the US. The steroid agent used in epidural injections is reported to relieve nerve root inflammation, local ischemia, and resultant pain, but the injection may also have an adverse impact on spinal surgery performed thereafter. In particular, the possibility that preoperative epidural injections may increase the risk of surgical site infection after lumbar spinal fusion has been reported but has not been studied in detail. The goal of the present study was to use a large national insurance database to analyze the association of preoperative LESIs with surgical site infection after lumbar spinal fusion. METHODS A nationwide insurance database of patient records was used for this retrospective analysis. Current Procedural Terminology codes were used to query the database for patients who had undergone LESI and 1- or 2-level lumbar posterior spinal fusion procedures. The rate of postoperative infection after 1- or 2-level posterior spinal fusion was analyzed. These study patients were then divided into 3 separate cohorts: 1) lumbar spinal fusion performed within 1 month after LESI, 2) fusion performed between 1 and 3 months after LESI, and 3) fusion performed between 3 and 6 months after LESI. The study patients were compared with a control cohort of patients who underwent lumbar fusion without previous LESI. RESULTS The overall 3-month infection rate after lumbar spinal fusion procedure was 1.6% (1411 of 88,540 patients). The infection risk increased in patients who received LESI within 1 month (OR 2.6, p < 0.0001) or 1-3 months (OR 1.4, p = 0.0002) prior to surgery compared with controls. The infection risk was not significantly different from controls in patients who underwent lumbar fusion more than 3 months after LESI. CONCLUSIONS Lumbar spinal fusion performed within 3 months after LESI may be associated with an increased rate of postoperative infection. This association was not found when lumbar fusion was performed more than 3 months after LESI.
Hybrid testing of lumbar CHARITE discs versus fusions.
Panjabi, Manohar; Malcolmson, George; Teng, Edward; Tominaga, Yasuhiro; Henderson, Gweneth; Serhan, Hassan
2007-04-20
An in vitro human cadaveric biomechanical study. To quantify effects on operated and other levels, including adjacent levels, due to CHARITE disc implantations versus simulated fusions, using follower load and the new hybrid test method in flexion-extension and bilateral torsion. Spinal fusion has been associated with long-term accelerated degeneration at adjacent levels. As opposed to the fusion, artificial discs are designed to preserve motion and diminish the adjacent-level effects. Five fresh human cadaveric lumbar specimens (T12-S1) underwent multidirectional testing in flexion-extension and bilateral torsion with 400 N follower load. Intact specimen total ranges of motion were determined with +/-10 Nm unconstrained pure moments. The intact range of motion was used as input for the hybrid tests of 5 constructs: 1) CHARITE disc at L5-S1; 2) fusion at L5-S1; 3) CHARITE discs at L4-L5 and L5-S1; 4) CHARITE disc at L4-L5 and fusion at L5-S1; and 5) 2-level fusion at L4-L5-S1. Using repeated-measures single factor analysis of variance and Bonferroni statistical tests (P < 0.05), intervertebral motion redistribution of each construct was compared with the intact. In flexion-extension, 1-level CHARITE disc preserved motion at the operated and other levels, while 2-level CHARITE showed some amount of other-level effects. In contrast, 1- and 2-level fusions increased other-level motions (average, 21.0% and 61.9%, respectively). In torsion, both 1- and 2-level discs preserved motions at all levels. The 2-level simulated fusion increased motions at proximal levels (22.9%), while the 1-level fusion produced no significant changes. In general, CHARITE discs preserved operated- and other-level motions. Fusion simulations affected motion redistribution at other levels, including adjacent levels.
Schmitt, Paul J; Kelleher, John P; Ailon, Tamir; Heller, Joshua E; Kasliwal, Manish K; Shaffrey, Christopher I; Smith, Justin S
2016-08-01
Although use of very high-dose recombinant human bone morphogenetic protein-2 (rhBMP-2) has been reported to markedly improve fusion rates in adult spinal deformity (ASD) surgery, most centers use much lower doses due to cost constraints. How effective these lower doses are for fusion enhancement remains unclear. To assess fusion rates using relatively low-dose rhBMP-2 for ASD surgery. This was a retrospective review of consecutive ASD patients that underwent thoracic to sacral fusion. Patients that achieved 2-year follow-up were analyzed. Impact of patient and surgical factors on fusion rate was assessed, and fusion rates were compared with historical cohorts. Of 219 patients, 172 (78.5%) achieved 2-year follow-up and were analyzed. Using an average rhBMP-2 dose of 3.1 mg/level (average total dose = 35.9 mg/case), the 2-year fusion rate was 73.8%. Cancellous allograft, local autograft, and very limited iliac crest bone graft (<20 mL, obtained during iliac bolt placement) were also used. On multivariate analysis, female sex was associated with a higher fusion rate, whereas age, comorbidity score, deformity type, and 3-column osteotomy were not. There were no complications directly attributable to rhBMP-2. Fusion rates for ASD using low-dose rhBMP-2 were comparable to those reported for iliac crest bone graft but lower than for high-dose rhBMP-2. Importantly, there were substantial differences between patients in the present series and those in the historical comparison groups that could not be fully adjusted for based on available data. Prospective evaluation of rhBMP-2 dosing for ASD surgery is warranted to define the most appropriate dose that balances benefits, risks, and costs. ASD, adult spinal deformityICBG, iliac crest bone graftOR, odds ratiorhBMP-2, recombinant human bone morphogenetic protein-2RR, risk ratioTCO, 3-column osteotomy.
A Fusion Nuclear Science Facility for a fast-track path to DEMO
Garofalo, Andrea M.; Abdou, M.; Canik, John M.; ...
2014-10-01
An accelerated fusion energy development program, a “fast-track” approach, requires developing an understanding of fusion nuclear science (FNS) in parallel with research on ITER to study burning plasmas. A Fusion Nuclear Science Facility (FNSF) in parallel with ITER provides the capability to resolve FNS feasibility issues related to power extraction, tritium fuel sustainability, and reliability, and to begin construction of DEMO upon the achievement of Q~10 in ITER. Fusion nuclear components, including the first wall (FW)/blanket, divertor, heating/fueling systems, etc. are complex systems with many inter-related functions and different materials, fluids, and physical interfaces. These in-vessel nuclear components must operatemore » continuously and reliably with: (a) Plasma exposure, surface particle & radiation loads, (b) High energy 2 neutron fluxes and their interactions in materials (e.g. peaked volumetric heating with steep gradients, tritium production, activation, atomic displacements, gas production, etc.), (c) Strong magnetic fields with temporal and spatial variations (electromagnetic coupling to the plasma including off-normal events like disruptions), and (d) a High temperature, high vacuum, chemically active environment. While many of these conditions and effects are being studied with separate and multiple effect experimental test stands and modeling, fusion nuclear conditions cannot be completely simulated outside the fusion environment. This means there are many new multi-physics, multi-scale phenomena and synergistic effects yet to be discovered and accounted for in the understanding, design and operation of fusion as a self-sustaining, energy producing system, and significant experimentation and operational experience in a true fusion environment is an essential requirement. In the following sections we discuss the FNSF objectives, describe the facility requirements and a facility concept and operation approach that can accomplish those objectives, and assess the readiness to construct with respect to several key FNSF issues: materials, steady-state operation, disruptions, power exhaust, and breeding blanket. Finally we present our conclusions.« less
Li, Kai; Su, Zhongzhen; Xu, Erjiao; Huang, Qiannan; Zeng, Qingjing; Zheng, Rongqin
2017-01-19
To assess the accuracy of contrast-enhanced ultrasound (CEUS)-CT/MR image fusion in evaluating the radiofrequency ablative margin (AM) of hepatocellular carcinoma (HCC) based on a custom-made phantom model and in HCC patients. Twenty-four phantoms were randomly divided into a complete ablation group (n = 6) and an incomplete ablation group (n = 18). After radiofrequency ablation (RFA), the AM was evaluated using ultrasound (US)-CT image fusion, and the results were compared with the AM results that were directly measured in a gross specimen. CEUS-CT/MR image fusion and CT-CT / MR-MR image fusion were used to evaluate the AM in 37 tumors from 33 HCC patients who underwent RFA. The sensitivity, specificity, and accuracy of US-CT image fusion for evaluating AM in the phantom model were 93.8, 85.7 and 91.3%, respectively. The maximal thicknesses of the residual AM were 3.5 ± 2.0 mm and 3.2 ± 2.0 mm in the US-CT image fusion and gross specimen, respectively. No significant difference was observed between the US-CT image fusion and direct measurements of the AM of HCC. In the clinical study, the success rate of the AM evaluation was 100% for both CEUS-CT/MR and CT-CT/MR-MR, and the duration was 8.5 ± 2.8 min (range: 4-12 min) and 13.5 ± 4.5 min (range: 8-16 min) for CEUS-CT/MR and CT-CT/MR-MR, respectively. The sensitivity, specificity, and accuracy of CEUS-CT/MR imaging for evaluating the AM were 100.0, 80.0, and 90.0%, respectively. A phantom model composed of carrageenan gel and additives was suitable for the evaluation of HCC AM. CEUS-CT/MR image fusion can be used to evaluate HCC AM with high accuracy.
EDITORIAL: Message from the Editor
NASA Astrophysics Data System (ADS)
Schüller, F. C.
2005-01-01
The group of 25 articles published in this special issue of Nuclear Fusion aims to monitor the progress made with experiments on fusion physics that have been conducted worldwide up to the end of 2004. These articles are based on overview reports from the various experimental teams presented at the Fusion Energy Conference (FEC 2004). This conference was organized by the IAEA together with the Portuguese host organization CFN-IST and was held in Vilamoura, Portugal, in early November 2004. The overviews presented at the conference have been rewritten and extended for the purpose of this special issue and submitted to the standard double-referee peer-review of Nuclear Fusion. Most teams have made use of this opportunity. Therefore this issue, which also includes four conference summaries, presents a reasonably complete picture of the progress made since FEC 2002 in Lyon. The articles are placed in the following sequence: Conference summaries Theory of magnetic confinement Experimental confinement, plasma-material interactions and innovative concepts Experiments on stability, energetic particles, waves and current drive Inertial confinement fusion Tokamaks Performance: JT-60U, JET, DIII-D, ASDEX-U, C-MOD Steady state/long pulse operation: Tore Supra, HT-7, TRIAM Spherical tokamaks: MAST, NSTX Tritium experiments: JET Diagnostics and heating methods: JET (diagnostics), T-10 (ECRH and diagnostics) and FTU (LHH + ECRH) New devices: HL-2A Small devices Alternative magnetic confinement concepts Stellarators: LHD, TJ-II Reversed field pinches: MST Inertial confinement Direct drive Heavy ion beam fusion Readers will also notice the supplementary issue of the journal (volume 45, issue 10A). This extra issue contains the 15-year overview report on progress in fusion research as written by the International Fusion Research Council (IFRC) under the editorial responsibility of the IFRC. Both issues together will give the interested reader a state-of-the-art picture of the progress in nuclear fusion research.
Cell fusion contributes to the rescue of apoptotic cardiomyocytes by bone marrow cells
Yang, Wei-Jian; Li, Shu-Hong; Weisel, Richard D; Liu, Shi-Ming; Li, Ren-Ke
2012-01-01
Cardiomyocyte apoptosis is an important contributor to the progressive cardiac dysfunction that culminates in congestive heart failure. Bone marrow cells (BMCs) restore cardiac function following ischaemia, and transplanted BMCs have been reported to fuse with cells of diverse tissues. We previously demonstrated that the myogenic conversion of bone marrow stromal cells increased nearly twofold when the cells were co-cultured with apoptotic (TNF-α treated) cardiomyocytes. We therefore hypothesized that cell fusion may be a major mechanism by which BMCs rescue cardiomyocytes from apoptosis. We induced cellular apoptosis in neonatal rat cardiomyocytes by treatment with hydrogen peroxide (H2O2). The TUNEL assay demonstrated an increase in apoptosis from 4.5 ± 1.3% in non-treated cells to 19.0 ± 4.4% (P < 0.05) in treated cells. We subsequently co-cultured the apoptotic cardiomyocytes with BMCs and assessed cell fusion using flow cytometry. Fusion was rare in the non-treated control cardiomyocytes (0.3%), whereas H2O2 treatment led to significantly higher fusion rates than the control group (P < 0.05), with the highest rate of 7.9 ± 0.3% occurring at 25 μM H2O2. We found an inverse correlation between cell fusion and completion of cardiomyocyte apoptosis (R2 = 0.9863). An in vivo mouse model provided evidence of cell fusion in the infarcted myocardium following the injection of BMCs. The percentage of cells undergoing fusion was significantly higher in mice injected with BMCs following infarction (8.8 ± 1.3%) compared to mice that did not undergo infarction (4.6 ± 0.6%, P < 0.05). Enhancing cell fusion may be one method to preserve cardiomyocytes following myocardial infarction, and this new approach may provide a novel target for cardiac regenerative therapies. PMID:22805279
Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing
NASA Astrophysics Data System (ADS)
Fan, Lei
Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems.
Arts, Mark P; Brand, Ronald; van den Akker, Elske; Koes, Bart W; Peul, Wilco C
2010-06-16
Patients with cervical radicular syndrome due to disc herniation refractory to conservative treatment are offered surgical treatment. Anterior cervical discectomy is the standard procedure, often in combination with interbody fusion. Accelerated adjacent disc degeneration is a known entity on the long term. Recently, cervical disc prostheses are developed to maintain motion and possibly reduce the incidence of adjacent disc degeneration. A comparative cost-effectiveness study focused on adjacent segment degeneration and functional outcome has not been performed yet. We present the design of the NECK trial, a randomised study on cost-effectiveness of anterior cervical discectomy with or without interbody fusion and arthroplasty in patients with cervical disc herniation. Patients (age 18-65 years) presenting with radicular signs due to single level cervical disc herniation lasting more than 8 weeks are included. Patients will be randomised into 3 groups: anterior discectomy only, anterior discectomy with interbody fusion, and anterior discectomy with disc prosthesis. The primary outcome measure is symptomatic adjacent disc degeneration at 2 and 5 years after surgery. Other outcome parameters will be the Neck Disability Index, perceived recovery, arm and neck pain, complications, re-operations, quality of life, job satisfaction, anxiety and depression assessment, medical consumption, absenteeism, and costs. The study is a randomised prospective multicenter trial, in which 3 surgical techniques are compared in a parallel group design. Patients and research nurses will be kept blinded of the allocated treatment for 2 years. The follow-up period is 5 years. Currently, anterior cervical discectomy with fusion is the golden standard in the surgical treatment of cervical disc herniation. Whether additional interbody fusion or disc prosthesis is necessary and cost-effective will be determined by this trial. Netherlands Trial Register NTR1289.
2010-01-01
Background Patients with cervical radicular syndrome due to disc herniation refractory to conservative treatment are offered surgical treatment. Anterior cervical discectomy is the standard procedure, often in combination with interbody fusion. Accelerated adjacent disc degeneration is a known entity on the long term. Recently, cervical disc prostheses are developed to maintain motion and possibly reduce the incidence of adjacent disc degeneration. A comparative cost-effectiveness study focused on adjacent segment degeneration and functional outcome has not been performed yet. We present the design of the NECK trial, a randomised study on cost-effectiveness of anterior cervical discectomy with or without interbody fusion and arthroplasty in patients with cervical disc herniation. Methods/Design Patients (age 18-65 years) presenting with radicular signs due to single level cervical disc herniation lasting more than 8 weeks are included. Patients will be randomised into 3 groups: anterior discectomy only, anterior discectomy with interbody fusion, and anterior discectomy with disc prosthesis. The primary outcome measure is symptomatic adjacent disc degeneration at 2 and 5 years after surgery. Other outcome parameters will be the Neck Disability Index, perceived recovery, arm and neck pain, complications, re-operations, quality of life, job satisfaction, anxiety and depression assessment, medical consumption, absenteeism, and costs. The study is a randomised prospective multicenter trial, in which 3 surgical techniques are compared in a parallel group design. Patients and research nurses will be kept blinded of the allocated treatment for 2 years. The follow-up period is 5 years. Discussion Currently, anterior cervical discectomy with fusion is the golden standard in the surgical treatment of cervical disc herniation. Whether additional interbody fusion or disc prothesis is necessary and cost-effective will be determined by this trial. Trial Registration Netherlands Trial Register NTR1289 PMID:20553591
Park, Soonhong; Ahuja, Malini; Kim, Min Seuk; Brailoiu, G Cristina; Jha, Archana; Zeng, Mei; Baydyuk, Maryna; Wu, Ling-Gang; Wassif, Christopher A; Porter, Forbes D; Zerfas, Patricia M; Eckhaus, Michael A; Brailoiu, Eugen; Shin, Dong Min; Muallem, Shmuel
2016-02-01
Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV. © 2015 The Authors.
Wang, Shunfang; Liu, Shuhui
2015-12-19
An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one.
Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A
2014-04-01
We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.
Wang, Shunfang; Liu, Shuhui
2015-01-01
An effective representation of a protein sequence plays a crucial role in protein sub-nuclear localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC, respectively. When constructing each fusion representation, we introduce the balance factors to value the importance of its components. The optimal values of the balance factors are sought by genetic algorithm. Due to the high dimensionality of the proposed representations, linear discriminant analysis (LDA) is used to find its important low dimensional structure, which is essential for classification and location prediction. The numerical experiments on two public datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the traditional representations in protein sub-nuclear localization, and the representation treated by LDA outperforms the untreated one. PMID:26703574
Coelho, Jennifer S; Baeyens, Céline; Purdon, Christine; Shafran, Roz; Roulin, Jean-Luc; Bouvard, Martine
2013-01-01
Thought-shape fusion (TSF) is a cognitive distortion that has been linked to eating pathology. Two studies were conducted to further explore this phenomenon and to establish the psychometric properties of a French short version of the TSF scale. In Study 1, students (n = 284) completed questionnaires assessing TSF and related psychopathology. In Study 2, the responses of women with eating disorders (n = 22) and women with no history of an eating disorder (n = 23) were compared. The French short version of the TSF scale has a unifactorial structure, with convergent validity with measures of eating pathology, and good internal consistency. Depression, eating pathology, body dissatisfaction, and thought-action fusion emerged as predictors of TSF. Individuals with eating disorders have higher TSF, and more clinically relevant food-related thoughts than do women with no history of an eating disorder. This research suggests that the shortened TSF scale can suitably measure this construct, and provides support for the notion that TSF is associated with eating pathology. Copyright © 2012 Wiley Periodicals, Inc.
PARP-1 inhibition as a targeted strategy to treat Ewing's sarcoma
Brenner, J. Chad; Feng, Felix Y.; Han, Sumin; Patel, Sonam; Goyal, Siddharth V.; Bou-Maroun, Laura M.; Liu, Meilan; Lonigro, Robert; Prensner, John R.; Tomlins, Scott A.; Chinnaiyan, Arul M.
2012-01-01
Ewing's sarcoma family tumors (ESFTs) are aggressive malignancies which frequently harbor characteristic EWS-FLI1 or EWS-ERG genomic fusions. Here we report that these fusion products interact with the DNA damage response protein and transcriptional co-regulator PARP-1. ESFT cells, primary tumor xenografts and tumor metastases were all highly sensitive to PARP1 inhibition. Addition of a PARP1 inhibitor to the second-line chemotherapeutic agent temozolamide resulted in complete responses of all treated tumors in an EWS-FLI1-driven mouse xenograft model of ESFT. Mechanistic investigations revealed that DNA damage induced by expression of EWS-FLI1 or EWS-ERG fusion genes was potentiated by PARP1 inhibition in ESFT cell lines. Notably, EWS-FLI1 fusion genes acted in a positive feedback loop to maintain the expression of PARP1, which was required for EWS-FLI-mediated transcription, thereby enforcing oncogene-dependent sensitivity to PARP-1 inhibition. Together, our findings offer a strong preclinical rationale to target the EWS-FLI1: PARP1 intersection as a therapeutic strategy to improve the treatment of Ewing's sarcoma family tumors. PMID:22287547
Wang, Bao-Zhong; Gill, Harvinder S; He, Cheng; Ou, Changbo; Wang, Li; Wang, Ying-Chun; Feng, Hao; Zhang, Han; Prausnitz, Mark R; Compans, Richard W
2014-03-28
Influenza vaccines with broad cross-protection are urgently needed to prevent an emerging influenza pandemic. A fusion protein of the Toll-like receptor (TLR) 5-agonist domains from flagellin and multiple repeats of the conserved extracellular domain of the influenza matrix protein 2 (M2e) was constructed, purified and evaluated as such a vaccine. A painless vaccination method suitable for possible self-administration using coated microneedle arrays was investigated for skin-targeted delivery of the fusion protein in a mouse model. The results demonstrate that microneedle immunization induced strong humoral as well as mucosal antibody responses and conferred complete protection against homo- and heterosubtypic lethal virus challenges. Protective efficacy with microneedles was found to be significantly better than that seen with conventional intramuscular injection, and comparable to that observed with intranasal immunization. Because of its advantages for administration, safety and storage, microneedle delivery of M2e-flagellin fusion protein is a promising approach for an easy-to-administer universal influenza vaccine. Copyright © 2014 Elsevier B.V. All rights reserved.
Promoting Pre-college Science Education
NASA Astrophysics Data System (ADS)
Taylor, P. L.; Lee, R. L.
2000-10-01
The Fusion Education Program, with continued support from DOE, has strengthened its interactions with educators in promoting pre-college science education for students. Projects aggressively pursued this year include an on-site, college credited, laboratory-based 10-day educator workshop on plasma and fusion science; completion of `Starpower', a fusion power plant simulation on interactive CD; expansion of scientist visits to classrooms; broadened participation in an internet-based science olympiad; and enhancements to the tours of the DIII-D Facility. In the workshop, twelve teachers used bench top devices to explore basic plasma physics. Also included were radiation experiments, computer aided drafting, techniques to integrate fusion science and technology in the classroom, and visits to a University Physics lab and the San Diego Supercomputer Center. Our ``Scientist in a Classroom'' program reached more than 2200 students at 20 schools. Our `Starpower' CD allows a range of interactive learning from the effects of electric and magnetic fields on charged particles to operation of a Tokamak-based power plant. Continuing tours of the DIII-D facility were attended by more than 800 students this past year.
NASA Astrophysics Data System (ADS)
Ai, Yan-Ting; Guan, Jiao-Yue; Fei, Cheng-Wei; Tian, Jing; Zhang, Feng-Ling
2017-05-01
To monitor rolling bearing operating status with casings in real time efficiently and accurately, a fusion method based on n-dimensional characteristic parameters distance (n-DCPD) was proposed for rolling bearing fault diagnosis with two types of signals including vibration signal and acoustic emission signals. The n-DCPD was investigated based on four information entropies (singular spectrum entropy in time domain, power spectrum entropy in frequency domain, wavelet space characteristic spectrum entropy and wavelet energy spectrum entropy in time-frequency domain) and the basic thought of fusion information entropy fault diagnosis method with n-DCPD was given. Through rotor simulation test rig, the vibration and acoustic emission signals of six rolling bearing faults (ball fault, inner race fault, outer race fault, inner-ball faults, inner-outer faults and normal) are collected under different operation conditions with the emphasis on the rotation speed from 800 rpm to 2000 rpm. In the light of the proposed fusion information entropy method with n-DCPD, the diagnosis of rolling bearing faults was completed. The fault diagnosis results show that the fusion entropy method holds high precision in the recognition of rolling bearing faults. The efforts of this study provide a novel and useful methodology for the fault diagnosis of an aeroengine rolling bearing.
Pore opening dynamics in the exocytosis of serotonin
NASA Astrophysics Data System (ADS)
Ramirez-Santiago, Guillermo; Cercos, Montserrat G.; Martinez-Valencia, Alejandro; Salinas Hernandez, Israel; Rodríguez-Sosa, Leonardo; de-Miguel, Francisco F.
2015-03-01
The current view of the exocytosis of transmitter molecules is that it starts with the formation of a fusion pore that connects the intravesicular and the extracellular spaces, and is completed by the release of the rest of the transmitter contained in the vesicle upon the full fusion and collapse of the vesicle with the plasma membrane. However, under certain circumstances, a rapid closure of the pore before the full vesicle fusion produces only a partial release of the transmitter. Here we show that whole release of the transmitter occurs through fusion pores that remain opened for tens of milliseconds without vesicle collapse. This was demonstrated through amperometric measurements of serotonin release from electrodense vesicles in the axon of leech Retzius neurons and mathematical modelling. By modeling transmitter release with a diffusion equation subjected to boundary conditions that are defined by the experiment, we showed that those pores with a fast half rise time constant remained opened and allowed the full quantum release without vesicle collapse, whereas pores with a slow rise time constant closed rapidly, thus producing partial release. We conclude that a full transmitter release may occur through the fusion pore in the absence of vesicle collapse. This work was founded by a DGAPA-UNAM grants IN200914 and IN118410 CONACYT GRANT 130031, and CONACyT doctoral fellowships.
Return to duty and disability after combat-related hindfoot injury.
Sheean, Andrew J; Krueger, Chad A; Hsu, Joseph R
2014-11-01
To characterize the return-to-duty (RTD) rates and disability outcomes for soldiers who sustained combat-related hindfoot injuries that were treated with either reconstruction or transtibial amputation (TTA). Retrospective cohort series. Tertiary trauma center. All patients treated for combat-related hindfoot injuries between May 2005 and July 2011. TTA or hindfoot reconstruction/ankle fusion. Age, RTD rate, combined disability, and associated disabling conditions. One hundred twenty-two patients underwent treatment for combat-related hindfoot injuries. Fifty-seven patients were treated with amputation, and 65 patients were treated with hindfoot reconstruction or ankle fusion. The overall RTD rate was 20%. Amputees had a RTD rate of 12%, which was lower than those who had a fusion or hindfoot repair [26% (P < 0.06)]. The disability ratings of amputees were significantly higher than those patients undergoing either ankle fusion or primary hindfoot repair [75% and 62%, respectively (P < 0.006)]. While RTD rates were higher for hindfoot reconstruction or ankle fusion compared with TTA, psychiatric conditions were more common among these patients. Although there were clear differences between both groups, the relationship between true functional outcomes and disability ratings remains unclear and both treatment groups seem to do poorly in terms of returning to active duty. Therapeutic level III. See instructions for authors for a complete description of levels of evidence.
The first IEC fusion industrial neutron generator and developments
NASA Astrophysics Data System (ADS)
Sved, John
1999-06-01
Inertial Electrostatic Confinement fusion grade plasma containment has been sporadically researched since the early 1960's. In the 1990's the work of G. H. Miley and his team at the University of Illinios, Fusion Studies Laboratory, Champaign-Urbana has stimulated a collaboration with industry. The development and test program for the first industrial IEC neutron generator has progressed to the point where an endurance test is under way to demonstrate at least 10,000 hours of operational life of the sealed chamber device without servicing. The market entry goals of steady 107 D-D n/s CW output with an air-cooled system have been achieved. DASA has invested in the development of the industrial product and the continuing basic research at the UI-FSL. The complete DASA FusionStar IEC-PS1 point source neutron generator set is described with emphasis on the interfaces to user NAA systems. The next product developments are pulsed neutron operations and higher fusion reaction rates of up to 1010 by means of affordable add-ons to the basic IEC-PS system. The production engineering experience gained will next be applied to a more challenging line source variant of the IEC. Beyond neutron and proton sources, several other IEC applications are being developed.
Objective Evaluation of Visual Fatigue Using Binocular Fusion Maintenance.
Hirota, Masakazu; Morimoto, Takeshi; Kanda, Hiroyuki; Endo, Takao; Miyoshi, Tomomitsu; Miyagawa, Suguru; Hirohara, Yoko; Yamaguchi, Tatsuo; Saika, Makoto; Fujikado, Takashi
2018-03-01
In this study, we investigated whether an individual's visual fatigue can be evaluated objectively and quantitatively from their ability to maintain binocular fusion. Binocular fusion maintenance (BFM) was measured using a custom-made binocular open-view Shack-Hartmann wavefront aberrometer equipped with liquid crystal shutters, wherein eye movements and wavefront aberrations were measured simultaneously. Transmittance in the liquid crystal shutter in front of the subject's nondominant eye was reduced linearly, and BFM was determined from the transmittance at the point when binocular fusion was broken and vergence eye movement was induced. In total, 40 healthy subjects underwent the BFM test and completed a questionnaire regarding subjective symptoms before and after a visual task lasting 30 minutes. BFM was significantly reduced after the visual task ( P < 0.001) and was negatively correlated with the total subjective eye symptom score (adjusted R 2 = 0.752, P < 0.001). Furthermore, the diagnostic accuracy for visual fatigue was significantly higher in BFM than in the conventional test results (aggregated fusional vergence range, near point of convergence, and the high-frequency component of accommodative microfluctuations; P = 0.007). These results suggest that BFM can be used as an indicator for evaluating visual fatigue. BFM can be used to evaluate the visual fatigue caused by the new visual devices, such as head-mount display, objectively.
V S, Unni; Mishra, Deepak; Subrahmanyam, G R K S
2016-12-01
The need for image fusion in current image processing systems is increasing mainly due to the increased number and variety of image acquisition techniques. Image fusion is the process of combining substantial information from several sensors using mathematical techniques in order to create a single composite image that will be more comprehensive and thus more useful for a human operator or other computer vision tasks. This paper presents a new approach to multifocus image fusion based on sparse signal representation. Block-based compressive sensing integrated with a projection-driven compressive sensing (CS) recovery that encourages sparsity in the wavelet domain is used as a method to get the focused image from a set of out-of-focus images. Compression is achieved during the image acquisition process using a block compressive sensing method. An adaptive thresholding technique within the smoothed projected Landweber recovery process reconstructs high-resolution focused images from low-dimensional CS measurements of out-of-focus images. Discrete wavelet transform and dual-tree complex wavelet transform are used as the sparsifying basis for the proposed fusion. The main finding lies in the fact that sparsification enables a better selection of the fusion coefficients and hence better fusion. A Laplacian mixture model fit is done in the wavelet domain and estimation of the probability density function (pdf) parameters by expectation maximization leads us to the proper selection of the coefficients of the fused image. Using the proposed method compared with the fusion scheme without employing the projected Landweber (PL) scheme and the other existing CS-based fusion approaches, it is observed that with fewer samples itself, the proposed method outperforms other approaches.
NASA Astrophysics Data System (ADS)
Ningrum, R. A.; Santoso, A.; Herawati, N.
2017-05-01
Human interferon alpha2a (hIFNα2a) is a therapeutic protein that used in cancer and hepatitis B/C therapy. The main problem of using hIFNα-2a is its short elimination half life due to its low molecular weight. Development of higher molecular weight protein by albumin fusion technology is a rational strategy to solve the problem. In our previous research we constructed an open reading frame (ORF) encoding hIFNα2a-human serum albumin (HSA) fusion protein that expressed in Pichia pastoris (P. pastoris) protease deficient strain SMD1168. This research was performed to overproduce, purify and characterize the fusion protein. To overproduce the protein, cultivation was performed in buffered complex medium containing glyserol (BMGY) for 24 h and protein overproduction was applied in buffered complex medium containing methanol (BMMY) for 48 hours at 30°C. The fusion protein was purified by blue sepharose affinity chromatography. Molecular weight characterization by SDS PAGE corresponds with its theoretical size, 85 kDa. Western blot analysis demonstrated that the fusion protein was recognized by anti hIFNα2 and anti HSA monoclonal antibody as well. Amino acid sequence of the fusion protein was determined by LC MS/MS2 mass spectrometry with trypsin as proteolitic enzyme. There were three fragments that identified as hIFNα2a and seven fragments that identified as HSA. Total identified amino acids were 150 residues with 20% coverage from total residues. To conclude, hIFNα2a-HSA fusion protein was overproduced, purified and characterized. Characterization based on molecular weight, antibody recognition and amino acid sequence confirmed that the fusion protein has correct identity as theoretically thought.
Production of b and overlineb quarks by photon-gluon fusion in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Hofmann, Ch.; Soff, G.; Schäfer, A.; Greiner, W.
1991-06-01
Electromagnetic Higgs production in ultrarelativistic heavy-ion collisions has been proposed as an alternative for detecting Higgs particles in the mass range mZ< mH<2 mW. We consider the fussion of a photon and a gluon into b and overlineb quarks as background to the b overlineb decay of the Higgs boson. This completely hides the Higgs signal. We also discuss the possibility of utilizing photon-gluon fusion into b overlineb and c overlinec as a sensitive tool to determine the gluon distribution of the nucleon inside the nucleus, e.g., at RHIC.
The correlation between thought-action fusion and religiosity in a normal sample.
Rassin, E; Koster, E
2003-03-01
Thought-action fusion (TAF) refers to a set of two cognitive biases that are thought to contribute to the inflation of feelings of responsibility for one's own thoughts, and thus to the development of obsession. Therefore, insight into the origins of TAF is a clinically relevant research topic. The present study examined the association between religiosity and TAF. Undergraduate students (N=100) completed questionnaires concerning religion, TAF and obsessive-compulsive complaints. Results indicate that religiosity is, indeed, correlated with certain aspects of TAF. Furthermore, correlational patterns differed between Catholic and Protestant subsamples.
Status of the irradiation test vehicle for testing fusion materials in the Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, H.; Gomes, I.C.; Smith, D.L.
1998-09-01
The design of the irradiation test vehicle (ITV) for the Advanced Test Reactor (ATR) has been completed. The main application for the ITV is irradiation testing of candidate fusion structural materials, including vanadium-base alloys, silicon carbide composites, and low-activation steels. Construction of the vehicle is underway at the Lockheed Martin Idaho Technology Company (LMITCO). Dummy test trains are being built for system checkout and fine-tuning. Reactor insertion of the ITV with the dummy test trains is scheduled for fall 1998. Barring unexpected difficulties, the ITV will be available for experiments in early 1999.
Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion.
Cullen, G; van Deurzen, H; Greiner, N; Luisoni, G; Mastrolia, P; Mirabella, E; Ossola, G; Peraro, T; Tramontano, F
2013-09-27
We report on the calculation of the cross section for Higgs boson production in association with three jets via gluon fusion, at next-to-leading-order (NLO) accuracy in QCD, in the infinite top-mass approximation. After including the complete NLO QCD corrections, we observe a strong reduction in the scale dependence of the result, and an increased steepness in the transverse momentum distributions of both the Higgs boson and the leading jets. The results are obtained with the combined use of GOSAM, SHERPA, and the MADDIPOLE-MADEVENT framework.
Bo, Xiao-Wan; Xu, Hui-Xiong; Wang, Dan; Guo, Le-Hang; Sun, Li-Ping; Li, Xiao-Long; Zhao, Chong-Ke; He, Ya-Ping; Liu, Bo-Ji; Li, Dan-Dan; Zhang, Kun
2016-11-01
To investigate the usefulness of fusion imaging of contrast-enhanced ultrasound (CEUS) and CECT/CEMRI before percutaneous ultrasound-guided radiofrequency ablation (RFA) for liver cancers. 45 consecutive patients with 70 liver lesions were included between March 2013 and October 2015, and all the lesions were identified on CEMRI/CECT prior to inclusion in the study. Planning ultrasound for percutaneous RFA was performed using conventional ultrasound, ultrasound-CECT/CEMRI and CEUS and CECT/CEMRI fusion imaging during the same session. The numbers of the conspicuous lesions on ultrasound and fusion imaging were recorded. RFA was performed according to the results of fusion imaging. Complete response (CR) rate was calculated and the complications were recorded. On conventional ultrasound, 25 (35.7%) of the 70 lesions were conspicuous, whereas 45 (64.3%) were inconspicuous. Ultrasound-CECT/CEMRI fusion imaging detected additional 24 lesions thus increased the number of the conspicuous lesions to 49 (70.0%) (70.0% vs 35.7%; p < 0.001 in comparison with conventional ultrasound). With the use of CEUS and CECT/CEMRI fusion imaging, the number of the conspicuous lesions further increased to 67 (95.7%, 67/70) (95.7% vs 70.0%, 95.7% vs 35.7%; both p < 0.001 in comparison with ultrasound and ultrasound-CECT/CEMRI fusion imaging, respectively). With the assistance of CEUS and CECT/CEMRI fusion imaging, the confidence level of the operator for performing RFA improved significantly with regard to visualization of the target lesions (p = 0.001). The CR rate for RFA was 97.0% (64/66) in accordance to the CECT/CEMRI results 1 month later. No procedure-related deaths and major complications occurred during and after RFA. Fusion of CEUS and CECT/CEMRI improves the visualization of those inconspicuous lesions on conventional ultrasound. It also facilitates improvement in the RFA operators' confidence and CR of RFA. Advances in knowledge: CEUS and CECT/CEMRI fusion imaging is better than both conventional ultrasound and ultrasound-CECT/CEMRI fusion imaging for lesion visualization and improves the operator confidence, thus it should be recommended to be used as a routine in ultrasound-guided percutaneous RFA procedures for liver cancer.
Bo, Xiao-Wan; Wang, Dan; Guo, Le-Hang; Sun, Li-Ping; Li, Xiao-Long; Zhao, Chong-Ke; He, Ya-Ping; Liu, Bo-Ji; Li, Dan-Dan; Zhang, Kun
2016-01-01
Objective: To investigate the usefulness of fusion imaging of contrast-enhanced ultrasound (CEUS) and CECT/CEMRI before percutaneous ultrasound-guided radiofrequency ablation (RFA) for liver cancers. Methods: 45 consecutive patients with 70 liver lesions were included between March 2013 and October 2015, and all the lesions were identified on CEMRI/CECT prior to inclusion in the study. Planning ultrasound for percutaneous RFA was performed using conventional ultrasound, ultrasound-CECT/CEMRI and CEUS and CECT/CEMRI fusion imaging during the same session. The numbers of the conspicuous lesions on ultrasound and fusion imaging were recorded. RFA was performed according to the results of fusion imaging. Complete response (CR) rate was calculated and the complications were recorded. Results: On conventional ultrasound, 25 (35.7%) of the 70 lesions were conspicuous, whereas 45 (64.3%) were inconspicuous. Ultrasound-CECT/CEMRI fusion imaging detected additional 24 lesions thus increased the number of the conspicuous lesions to 49 (70.0%) (70.0% vs 35.7%; p < 0.001 in comparison with conventional ultrasound). With the use of CEUS and CECT/CEMRI fusion imaging, the number of the conspicuous lesions further increased to 67 (95.7%, 67/70) (95.7% vs 70.0%, 95.7% vs 35.7%; both p < 0.001 in comparison with ultrasound and ultrasound-CECT/CEMRI fusion imaging, respectively). With the assistance of CEUS and CECT/CEMRI fusion imaging, the confidence level of the operator for performing RFA improved significantly with regard to visualization of the target lesions (p = 0.001). The CR rate for RFA was 97.0% (64/66) in accordance to the CECT/CEMRI results 1 month later. No procedure-related deaths and major complications occurred during and after RFA. Conclusion: Fusion of CEUS and CECT/CEMRI improves the visualization of those inconspicuous lesions on conventional ultrasound. It also facilitates improvement in the RFA operators' confidence and CR of RFA. Advances in knowledge: CEUS and CECT/CEMRI fusion imaging is better than both conventional ultrasound and ultrasound-CECT/CEMRI fusion imaging for lesion visualization and improves the operator confidence, thus it should be recommended to be used as a routine in ultrasound-guided percutaneous RFA procedures for liver cancer. PMID:27626506
Kang, Heesuk; Hollister, Scott J; La Marca, Frank; Park, Paul; Lin, Chia-Ying
2013-10-01
Biodegradable cages have received increasing attention for their use in spinal procedures involving interbody fusion to resolve complications associated with the use of nondegradable cages, such as stress shielding and long-term foreign body reaction. However, the relatively weak initial material strength compared to permanent materials and subsequent reduction due to degradation may be problematic. To design a porous biodegradable interbody fusion cage for a preclinical large animal study that can withstand physiological loads while possessing sufficient interconnected porosity for bony bridging and fusion, we developed a multiscale topology optimization technique. Topology optimization at the macroscopic scale provides optimal structural layout that ensures mechanical strength, while optimally designed microstructures, which replace the macroscopic material layout, ensure maximum permeability. Optimally designed cages were fabricated using solid, freeform fabrication of poly(ε-caprolactone) mixed with hydroxyapatite. Compression tests revealed that the yield strength of optimized fusion cages was two times that of typical human lumbar spine loads. Computational analysis further confirmed the mechanical integrity within the human lumbar spine, although the pore structure locally underwent higher stress than yield stress. This optimization technique may be utilized to balance the complex requirements of load-bearing, stress shielding, and interconnected porosity when using biodegradable materials for fusion cages.
Multimodal biometric system using rank-level fusion approach.
Monwar, Md Maruf; Gavrilova, Marina L
2009-08-01
In many real-world applications, unimodal biometric systems often face significant limitations due to sensitivity to noise, intraclass variability, data quality, nonuniversality, and other factors. Attempting to improve the performance of individual matchers in such situations may not prove to be highly effective. Multibiometric systems seek to alleviate some of these problems by providing multiple pieces of evidence of the same identity. These systems help achieve an increase in performance that may not be possible using a single-biometric indicator. This paper presents an effective fusion scheme that combines information presented by multiple domain experts based on the rank-level fusion integration method. The developed multimodal biometric system possesses a number of unique qualities, starting from utilizing principal component analysis and Fisher's linear discriminant methods for individual matchers (face, ear, and signature) identity authentication and utilizing the novel rank-level fusion method in order to consolidate the results obtained from different biometric matchers. The ranks of individual matchers are combined using the highest rank, Borda count, and logistic regression approaches. The results indicate that fusion of individual modalities can improve the overall performance of the biometric system, even in the presence of low quality data. Insights on multibiometric design using rank-level fusion and its performance on a variety of biometric databases are discussed in the concluding section.
Commentary: on bone marrow stem cells and openmindedness.
Mezey, Eva
2004-02-01
Several lines of evidence support the concept that pluripotent stem cells reside in the hematopoietic system of adults, but each has been questioned for valid reasons. Thus, the results reported to date after infusion of bone marrow stem cells, may be due to cell fusion, non-physiological de-differentiation and subsequent differentiation to lineages directed by the culture environment, microchimerism, or transdifferentiation. Several authors have suggested complex ways of investigating each of these possibilities, but in no case are any of the suggested protocols complete, nor will they rule out other possible causes of the results observed to date. Determining the nature, origin, and characteristics of adult cells is important and interesting, but the important question at this time is not what happens physiologically, but what we can do with these cells therapeutically. Research addressing therapeutic endpoints now takes a pivotal position in studies of nonembryonic stem cells.
Defect processes in Be12X (X = Ti, Mo, V, W)
NASA Astrophysics Data System (ADS)
Jackson, M. L.; Burr, P. A.; Grimes, R. W.
2017-08-01
The stability of intrinsic point defects in Be12X intermetallics (where X = Ti, V, Mo or W) are predicted using density functional theory simulations and discussed with respect to fusion energy applications. Schottky disorder is found to be the lowest energy complete disorder process, closely matched by Be Frenkel disorder in the cases of Be12V and Be12Ti. Antitisite and X Frenkel disorder are of significantly higher energy. Small clusters of point defects including Be divacancies, Be di-interstitials and accommodation of the X species on two Be sites were considered. Some di-interstitial, divacancy and X2Be combinations exhibit negative binding enthalpy (i.e. clustering is favourable), although this is orientationally dependent. None of the Be12X intermetallics are predicted to exhibit significant non-stoichiometry, ruling out non-stoichiometry as a mechanism for accommodating Be depletion due to neutron transmutation.
Chemical experiments with superheavy elements.
Türler, Andreas
2010-01-01
Unnoticed by many chemists, the Periodic Table of the Elements has been extended significantly in the last couple of years and the 7th period has very recently been completed with eka-Rn (element 118) currently being the heaviest element whose synthesis has been reported. These 'superheavy' elements (also called transactinides with atomic number > or = 104 (Rf)) have been artificially synthesized in fusion reactions at accelerators in minute quantities of a few single atoms. In addition, all isotopes of the transactinide elements are radioactive and decay with rather short half-lives. Nevertheless, it has been possible in some cases to investigate experimentally chemical properties of transactinide elements and even synthesize simple compounds. The experimental investigation of superheavy elements is especially intriguing, since theoretical calculations predict significant deviations from periodic trends due to the influence of strong relativistic effects. In this contribution first experiments with hassium (Hs, atomic number 108), copernicium (Cn, atomic number 112) and element 114 (eka-Pb) are reviewed.
Shigematsu, Hideki; Cheung, Jason Pui Yin; Bruzzone, Mauro; Matsumori, Hiroaki; Mak, Kin-Cheung; Samartzis, Dino; Luk, Keith Dip Kei
2017-05-01
Surgery for adolescent idiopathic scoliosis (AIS) is only complete after achieving fusion to maintain the correction obtained intraoperatively. The instrumented or fused segments can be referred to as the "fusion mass". In patients with AIS, the ideal fusion mass strategy has been established based on fulcrum-bending radiographs for main thoracic curves. Ideally, the fusion mass should achieve parallel endplates of the upper and lower instrumented vertebra and correct any "shift" for truncal balance. Distal adding-on is an important element to consider in AIS surgery. This phenomenon represents a progressive increase in the number of vertebrae included distally in the primary curvature and it should be avoided as it is associated with unsatisfactory cosmesis and an increased risk of revision surgery. However, it remains unknown whether any fusion mass shift, or shift in the fusion mass or instrumented segments, affects global spinal balance and distal adding-on after curve correction surgery in patients with AIS. (1) To investigate the relationship among postoperative fusion mass shift, global balance, and distal adding-on phenomenon in patients with AIS; and (2) to identify a cutoff value of fusion mass shift that will lead to distal adding-on. This was a retrospective study of patients with AIS from a single institution. Between 2006 and 2011 we performed 69 selective thoracic fusions for patients with main thoracic AIS. All patients were evaluated preoperatively and at 2 years postoperatively. The Cobb angle between the cranial and caudal endplates of the fusion mass and the coronal shift between them, which was defined as "fusion mass shift", were measured. Patients with a fusion mass Cobb angle greater than 20° were excluded to specifically determine the effect of fusion mass shift on distal adding-on phenomenon. Fusion mass shift was empirically set as 20 mm for analysis. Therefore, of the 69 patients who underwent selective thoracic fusion, only 52 with a fusion mass Cobb angle of 20° or less were recruited for study. We defined patients with a fusion mass shift of 20 mm or less as the balanced group and those with a fusion mass shift greater than 20 mm as the unbalanced group. A receiver operating characteristic (ROC) curve was used to determine the cutoff point of fusion mass shift for adding-on. Of the 52 patients studied, fusion mass shift (> 20 mm) was noted in 11 (21%), and six of those patients had distal adding-on at final followup. Although global spinal balance did not differ significantly between patients with or without fusion mass shift, the occurrence of adding-on phenomenon was significantly higher in the unbalanced group (55% (six of 11 patients), odds ratio [OR], 8.6; 95% CI, 2-39; p < 0.002) than the balanced group (12% [five of 41 patients]). Based on the ROC curve analysis, a fusion mass shift more than 18 mm was observed as the cutoff point for distal adding-on phenomenon (area under the curve, 0.70; 95% CI, 0.5-0.9; likelihood ratio, 5.0; sensitivity, 0.64; specificity, 0.73; positive predictive value, 39% [seven of 18 patients]; negative predictive value, 88% [30 of 34 patients]; OR, 4.8; 95% CI, 1-20; p = 0.02). Our study illustrates the substantial utility of the fulcrum-bending radiograph in determining fusion levels that can avoid fusion mass shift; thereby, underlining its importance in designing personalized surgical strategies for patients with scoliosis. Preoperatively, determining fusion levels by fulcrum-bending radiographs to avoid residual fusion mass shift is imperative. Intraoperatively, any fusion mass shift should be corrected to avoid distal adding-on, reoperation, and elevated healthcare costs. Level II, prognostic study.
Stover, Kristin K; Sidote, JoAnna; Williams, Susan H
2017-10-01
A primary hypothesis for the evolution of mandibular symphyseal fusion in some mammals is that it functions to resist loads incurred during routine mastication. Anecdotal support for this hypothesis is based on the fact that when the symphysis fuses, it typically does so early during postnatal ontogeny prior to or around the time of weaning. However, little is known about the process of fusion, particularly relative to feeding behaviors and the dynamics of mastication, including occlusion and masticatory loading. In the present study, we investigate the timing and process of symphyseal fusion in alpacas (Vicugna pacos) in the context of maturation of the oral apparatus and oral behavior. We also report on in vivo strains from the symphysis and corpus in young alpacas prior to and following full fusion and M 1 occlusion. Results show that fusion begins rostrally by 1 month and is complete by 6-7 months whereas all deciduous premolars and M 1 come into occlusion by 6 months. Although symphyseal loading patterns are maintained throughout ontogeny, in young alpacas symphyseal strain magnitudes are low compared with adults but corpus strain magnitudes are comparable to those found in adults. Reduced symphyseal loading in young individuals is contrary to what might be predicted given that the symphysis is still fusing. When considered in light of the development of occlusion and rumination, strain magnitudes may be necessarily low and reflect an overall delay in the maturation of masticatory dynamics. Copyright © 2017 Elsevier GmbH. All rights reserved.
Wong, J Y; Park, C K; Seitz, M; Israelachvili, J
1999-01-01
We have created phospholipid bilayers supported on soft polymer "cushions" which act as deformable substrates (see accompanying paper, Wong, J. Y., J. Majewski, M. Seitz, C. K. Park, J. N. Israelachvili, and G. S. Smith. 1999. Biophys. J. 77:1445-1457). In contrast to "solid-supported" membranes, such "soft-supported" membranes can exhibit more natural (higher) fluidity. Our bilayer system was constructed by adsorption of small unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles onto polyethylenimine (PEI)-supported Langmuir-Blodgett lipid monolayers on mica. We used the surface forces apparatus (SFA) to investigate the long-range forces, adhesion, and fusion of two DMPC bilayers both above and below their main transition temperature (T(m) approximately 24 degrees C). Above T(m), hemi-fusion activation pressures of apposing bilayers were considerably smaller than for solid-supported bilayers, e.g., directly supported on mica. After separation, the bilayers naturally re-formed after short healing times. Also, for the first time, complete fusion of two fluid (liquid crystalline) phospholipid bilayers was observed in the SFA. Below T(m) (gel state), very high pressures were needed for hemi-fusion and the healing process became very slow. The presence of the polymer cushion significantly alters the interaction potential, e.g., long-range forces as well as fusion pressures, when compared to solid-supported systems. These fluid model membranes should allow the future study of integral membrane proteins under more physiological conditions. PMID:10465756
Fuel cycle for a fusion neutron source
NASA Astrophysics Data System (ADS)
Ananyev, S. S.; Spitsyn, A. V.; Kuteev, B. V.
2015-12-01
The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion-fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium-tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m3Pa/s, and temperature of reactor elements up to 650°C). The deuterium-tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.
Fusion hindrance for the positive Q -value system 12C+30Si
NASA Astrophysics Data System (ADS)
Montagnoli, G.; Stefanini, A. M.; Jiang, C. L.; Hagino, K.; Galtarossa, F.; Colucci, G.; Bottoni, S.; Broggini, C.; Caciolli, A.; Čolović, P.; Corradi, L.; Courtin, S.; Depalo, R.; Fioretto, E.; Fruet, G.; Gal, A.; Goasduff, A.; Heine, M.; Hu, S. P.; Kaur, M.; Mijatović, T.; Mazzocco, M.; Montanari, D.; Scarlassara, F.; Strano, E.; Szilner, S.; Zhang, G. X.
2018-02-01
Background: The fusion reaction 12C+30Si is a link between heavier cases studied in recent years, and the light heavy-ion systems, e.g., 12C+12C , 16O+16O that have a prominent role in the dynamics of stellar evolution. 12C+30Si fusion itself is not a relevant process for astrophysics, but it is important to establish its behavior below the barrier, where couplings to low-lying collective modes and the hindrance phenomenon may determine the cross sections. The excitation function is presently completely unknown below the barrier for the 12C+30Si reaction, thus no reliable extrapolation into the astrophysical regime for the C+C and O+O cases can be performed. Purpose: Our aim was to carry out a complete measurement of the fusion excitation function of 12C+30Si from well below to above the Coulomb barrier, so as to clear up the consequence of couplings to low-lying states of 30Si, and whether the hindrance effect appears in this relatively light system which has a positive Q value for fusion. This would have consequences for the extrapolated behavior to even lighter systems. Methods: The inverse kinematics was used by sending 30Si beams delivered from the XTU Tandem accelerator of INFN-Laboratori Nazionali di Legnaro onto thin 12C (50 μ g /cm2 ) targets enriched to 99.9 % in mass 12. The fusion evaporation residues (ER) were detected at very forward angles, following beam separation by means of an electrostatic deflector. Angular distributions of ER were measured at Ebeam=45 , 59, and 80 MeV, and they were angle integrated to derive total fusion cross sections. Results: The fusion excitation function of 12C+30Si was measured with high statistical accuracy, covering more than five orders of magnitude down to a lowest cross section ≃3 μ b . The logarithmic slope and the S factor have been extracted and we have convincing phenomenological evidence of the hindrance effect. These results have been compared with the calculations performed within the model that considers a damping of the coupling strength well inside the Coulomb barrier. Conclusions: The experimental data are consistent with the coupled-channels calculations. A better fit is obtained by using the Yukawa-plus-exponential potential and a damping of the coupling strengths inside the barrier. The degree of hindrance is much smaller than the one in heavier systems. Also a phenomenological estimate reproduces quite closely the hindrance threshold for 12C+30Si , so that an extrapolation to the C+C and O+O cases can be reliably performed.
Effects of large-angle Coulomb collisions on inertial confinement fusion plasmas.
Turrell, A E; Sherlock, M; Rose, S J
2014-06-20
Large-angle Coulomb collisions affect the rates of energy and momentum exchange in a plasma, and it is expected that their effects will be important in many plasmas of current research interest, including in inertial confinement fusion. Their inclusion is a long-standing problem, and the first fully self-consistent method for calculating their effects is presented. This method is applied to "burn" in the hot fuel in inertial confinement fusion capsules and finds that the yield increases due to an increase in the rate of temperature equilibration between electrons and ions which is not predicted by small-angle collision theories. The equilibration rate increases are 50%-100% for number densities of 10(30) m(-3) and temperatures around 1 keV.
Activity recognition using dynamic multiple sensor fusion in body sensor networks.
Gao, Lei; Bourke, Alan K; Nelson, John
2012-01-01
Multiple sensor fusion is a main research direction for activity recognition. However, there are two challenges in those systems: the energy consumption due to the wireless transmission and the classifier design because of the dynamic feature vector. This paper proposes a multi-sensor fusion framework, which consists of the sensor selection module and the hierarchical classifier. The sensor selection module adopts the convex optimization to select the sensor subset in real time. The hierarchical classifier combines the Decision Tree classifier with the Naïve Bayes classifier. The dataset collected from 8 subjects, who performed 8 scenario activities, was used to evaluate the proposed system. The results show that the proposed system can obviously reduce the energy consumption while guaranteeing the recognition accuracy.
Soegaard, Rikke; Bünger, Cody E; Christiansen, Terkel; Høy, Kristian; Eiskjaer, Søren P; Christensen, Finn B
2007-10-15
Cost-utility evaluation of a randomized, controlled trial with a 4- to 8-year follow-up. To investigate the incremental cost per quality-adjusted-life-year (QALY) when comparing circumferential fusion to posterolateral fusion in a long-term, societal perspective. The cost-effectiveness of circumferential fusion in a long-term perspective is uncertain but nonetheless highly relevant as the ISSLS prize winner 2006 in clinical studies reported the effect of circumferential fusion superior to the effect of posterolateral fusion. A recent trial found no significant difference between posterolateral and circumferential fusion reporting cost-effectiveness from a 2-year viewpoint. A total of 146 patients were randomized to posterolateral or circumferential fusion and followed 4 to 8 years after surgery. The mean age of the cohort was 46 years (range, 20-65 years); 61% were females, 49% were smokers, 30% had primary diagnosis of isthmic spondylolisthesis, 35% had disc degeneration and no previous surgery, and 35% had disc degeneration and previous surgery. Eighty-two percent of patients have had symptoms for more than 2 years and 50% were out of the labor market due to sickness. The EQ-5D instrument was applied for the measurement of health-related quality of life and costs (2004 U.S. dollars) were measured in a full-scale societal perspective. Productivity costs were valued by the Friction Cost method, and both costs and effects were discounted. Arithmetic means and 95% bias-corrected, bootstrapped confidence intervals were reported. Nonparametric statistics were used for tests of statistical significance. Comprehensive sensitivity analysis was conducted and reported using cost-effectiveness acceptability curves. The circumferential group demonstrated clinical superiority over the posterolateral fusion group in functional outcome (P < 0.01), fusion rate (P < 0.04), and number of reoperations (P < 0.01) among others. Cost-utility analysis demonstrated circumferential fusion dominant over posterolateral fusion, that is, for each QALY gained performing circumferential fusion, the incremental saving was estimated at U.S. $49,306 (95% confidence interval, $27,183-$2,735,712). Results proved to be strong to various sensitivity analyses; only a differentiated underestimation of patients' need for postoperative household help against the circumferential approach could alter the dominance; however, still the probability of cost-effectiveness was >0.85 given a threshold for willingness to pay of U.S. $50,000 per QALY. Circumferential fusion is dominant over instrumented posterolateral fusion, that is, both being significantly cheaper and significantly better in a long-term, societal perspective.
Production cross sections of neutron-rich No-263261 isotopes
NASA Astrophysics Data System (ADS)
Li, Jingjing; Li, Cheng; Zhang, Gen; Zhu, Long; Liu, Zhong; Zhang, Feng-Shou
2017-05-01
The fusion excitation functions of No-263249 are studied by using various reaction systems based on the dinuclear system model. The neutron-rich radioactive beam 22O is used to produce neutron-rich nobelium isotopes, and the new neutron-rich isotopes No-263261 are synthesized by 242Pu(22O,3 n )261No , 244Pu(22O,4 n )262No , and 244Pu(22O,3 n )263No reactions, respectively. The corresponding maximum evaporation residue cross sections are 0.628, 4.649, and 1.638 μ b , respectively. The effects of the three processes (capture, fusion, and survival) in the complete fusion reaction are also analyzed. From investigation, a neutron-rich radioactive beam as the projectile and neutron-rich actinide as the target could be a new selection of the projectile-target combination to produce a neutron-rich heavy nuclide.
Gluon-fusion Higgs production in the Standard Model Effective Field Theory
NASA Astrophysics Data System (ADS)
Deutschmann, Nicolas; Duhr, Claude; Maltoni, Fabio; Vryonidou, Eleni
2017-12-01
We provide the complete set of predictions needed to achieve NLO accuracy in the Standard Model Effective Field Theory at dimension six for Higgs production in gluon fusion. In particular, we compute for the first time the contribution of the chromomagnetic operator {\\overline{Q}}_LΦ σ {q}_RG at NLO in QCD, which entails two-loop virtual and one-loop real contributions, as well as renormalisation and mixing with the Yukawa operator {Φ}^{\\dagger}Φ{\\overline{Q}}_LΦ {q}_R and the gluon-fusion operator Φ†Φ GG. Focusing on the top-quark-Higgs couplings, we consider the phenomenological impact of the NLO corrections in constraining the three relevant operators by implementing the results into the M adG raph5_ aMC@NLO frame-work. This allows us to compute total cross sections as well as to perform event generation at NLO that can be directly employed in experimental analyses.
Shi, Wei; Han, Yu; Guo, Cheng; Zhao, Xinguo; Liu, Saixi; Su, Wenhao; Wang, Yichen; Zha, Shanjie; Chai, Xueliang; Liu, Guangxu
2017-09-01
Although the effect of ocean acidification on fertilization success of marine organisms is increasingly well documented, the underlying mechanisms are not completely understood. The fertilization success of broadcast spawning invertebrates depends on successful sperm-egg collisions, gamete fusion, and standard generation of Ca 2+ oscillations. Therefore, the realistic effects of future ocean pCO 2 levels on these specific aspects of fertilization of Tegillarca granosa were investigated in the present study through sperm velocity trials, fertilization kinetics model analysis, and intracellular Ca 2+ assays, respectively. Results obtained indicated that ocean acidification significantly reduced the fertilization success of T. granosa, which could be accountable by (i) decreased sperm velocity hence reducing the probability for sperm-egg collisions; (ii) lowered probability of gamete fusion for each gamete collision event; and (iii) disrupted intracellular Ca 2+ oscillations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dinklage, Andreas; Turkin, Yuriy; Bozhenkov, Sergey; Geiger, Joachim; Fuchert, Golo; Bosch, Hans-Stephan; Rahbarnia, Kian; Thomsen, Henning; Neuner, Ulrich; Klinger, Thomas; Langenberg, Andreas; Trimiño Mora, Humberto; Kornejew, Petra; Hirsch, Matthias; Pablant, Novimir
2017-01-01
The first physics operation phase on the stellarator experiment Wendelstein 7-X was successfully completed in March 2016 after about 10 weeks of operation. Experiments in this phase were conducted with five graphite limiters as the primary plasma-facing components. Overall, the results were beyond the expectations published shortly before the start of operation [Sunn Pedersen et al., Nucl. Fusion 55, 126001 (2015)] both with respect to parameters reached and with respect to physics themes addressed. We report here on some of the most important plasma experiments that were conducted. The importance of electric fields on global confinement will be discussed, and the obtained results will be compared and contrasted with results from other devices, quantified in terms of the fusion triple product. Expected values for the triple product in future operation phases will also be described and put into a broader fusion perspective. PMID:29104420
Negative tail fusions can improve ruggedness of single domain antibodies.
Goldman, Ellen R; Brozozog-Lee, P Audrey; Zabetakis, Dan; Turner, Kendrick B; Walper, Scott A; Liu, Jinny L; Anderson, George P
2014-03-01
Single-domain antibodies (sdAbs), the recombinantly expressed binding domains derived from the heavy-chain-only antibodies found in camelids and sharks, are valued for their ability to refold after heat denaturation. However, some sdAbs are prone to aggregation on extended heating at high concentration. Additionally, sdAbs prepared cytoplasmically often lack the conserved disulfide bond found in variable heavy domains, which both decreases their melting point and can decrease their ability to refold. Genetic fusions of sdAbs with the acid tail of α-synuclein (ATS) resulted in constructs that had enhanced ability to resist aggregation. In addition, almost complete refolding was observed even in the absence of the disulfide bond. These sdAb-ATS fusions expand the utility of sdAbs. They provide sdAbs that are resistant to aggregation, and enable the production of re-foldable sdAbs in the reducing environment of the cytoplasm. Published by Elsevier Inc.
Sobrado, Pablo; Goren, Michael A.; James, Declan; Amundson, Carissa K.; Fox, Brian G.
2008-01-01
A specialized vector backbone from the Protein Structure Initiative was used to express full-length human cytochrome b5 as a C-terminal fusion to His8-maltose binding protein in Escherichia coli. The fusion protein could be completely cleaved by tobacco etch virus protease, and a yield of ~18 mg of purified full-length human cytochrome b5 per liter of culture medium was obtained (2.3 mg per]of wet weight bacterial cells). In situ proteolysis of the fusion protein in the presence of chemically defined synthetic liposomes allowed facile spontaneous delivery of the functional peripheral membrane protein into a defined membrane environment without prior exposure to detergents or other lipids. The utility of this approach as a delivery method for production and incorporation of monotopic (peripheral) membrane proteins is discussed. PMID:18226920
Buss, Leo W; Anderson, Christopher; Westerman, Erica; Kritzberger, Chad; Poudyal, Monita; Moreno, Maria A; Lakkis, Fadi G
2012-01-01
Transitory fusion is an allorecognition phenotype displayed by the colonial hydroid Hydractinia symbiolongicarpus when interacting colonies share some, but not all, loci within the allorecognition gene complex (ARC). The phenotype is characterized by an initial fusion followed by subsequent cell death resulting in separation of the two incompatible colonies. We here characterize this cell death process using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and continuous in vivo digital microscopy. These techniques reveal widespread autophagy and subsequent necrosis in both colony and grafted polyp assays. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays and ultrastructural observations revealed no evidence of apoptosis. Pharmacological inhibition of autophagy using 3-methyladenine (3-MA) completely suppressed transitory fusion in vivo in colony assays. Rapamycin did not have a significant effect in the same assays. These results establish the hydroid allorecognition system as a novel model for the study of cell death.
Sobrado, Pablo; Goren, Michael A; James, Declan; Amundson, Carissa K; Fox, Brian G
2008-04-01
A specialized vector backbone from the Protein Structure Initiative was used to express full-length human cytochrome b5 as a C-terminal fusion to His8-maltose binding protein in Escherichia coli. The fusion protein could be completely cleaved by tobacco etch virus protease, and a yield of approximately 18 mg of purified full-length human cytochrome b5 per liter of culture medium was obtained (2.3mg per g of wet weight bacterial cells). In situ proteolysis of the fusion protein in the presence of chemically defined synthetic liposomes allowed facile spontaneous delivery of the functional peripheral membrane protein into a defined membrane environment without prior exposure to detergents or other lipids. The utility of this approach as a delivery method for production and incorporation of monotopic (peripheral) membrane proteins is discussed.
On the Use of Low-Cost Radar Networks for Collision Warning Systems Aboard Dumpers
González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo
2014-01-01
The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system. PMID:24577521
On the use of low-cost radar networks for collision warning systems aboard dumpers.
González-Partida, José-Tomás; León-Infante, Francisco; Blázquez-García, Rodrigo; Burgos-García, Mateo
2014-02-26
The use of dumpers is one of the main causes of accidents in construction sites, many of them with fatal consequences. These kinds of work machines have many blind angles that complicate the driving task due to their large size and volume. To guarantee safety conditions is necessary to use automatic aid systems that can detect and locate the different objects and people in a work area. One promising solution is a radar network based on low-cost radar transceivers aboard the dumper. The complete system is specified to operate with a very low false alarm rate to avoid unnecessary stops of the dumper that reduce its productivity. The main sources of false alarm are the heavy ground clutter, and the interferences between the radars of the network. This article analyses the clutter for LFM signaling and proposes the use of Offset Linear Frequency Modulated Continuous Wave (OLFM-CW) as radar signal. This kind of waveform can be optimized to reject clutter and self-interferences. Jointly, a data fusion chain could be used to reduce the false alarm rate of the complete radar network. A real experiment is shown to demonstrate the feasibility of the proposed system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Strykowsky, T. Brown, J. Chrzanowski, M. Cole, P. Heitzenroeder, G.H. Neilson, Donald Rej, and M. Viola
The National Compact Stellarator Experiment (NCSX) was designed to test physics principles of an innovative fusion energy confinement device developed by the Princeton Plasma Physics Laboratory (PPPL) and Oak Ridge National Laboratory (ORNL) under contract from the US Department of Energy. The project was technically very challenging, primarily due to the complex component geometries and tight tolerances that were required. As the project matured these challenges manifested themselves in significant cost overruns through all phases of the project (i.e. design, R&D, fabrication and assembly). The project was subsequently cancelled by the DOE in 2008. Although the project was not completed,more » several major work packages, comprising about 65% of the total estimated cost (excluding management and contingency), were completed, providing a data base of actual costs that can be analyzed to understand cost drivers. Technical factors that drove costs included the complex geometry, tight tolerances, material requirements, and performance requirements. Management factors included imposed annual funding constraints that throttled project cash flow, staff availability, and inadequate R&D. Understanding how requirements and design decisions drove cost through this top-down forensic cost analysis could provide valuable insight into the configuration and design of future state-of-the art machines and other devices.« less
NASA Technical Reports Server (NTRS)
Tarditi, A. G.; Chap, A.; Wolinsky, J.; Scott, J. H.
2015-01-01
A coordinated experimental and theory/simulation effort has been carried out to investigate the physics of the Traveling Wave Direct Energy Converter (TWDEC), a scheme that has been proposed in the past for the direct conversion into electricity of the kinetic energy of an ion beam generated from fusion reactions. This effort has been focused in particular on the TWDEC process in the high density beam regime, thus accounting for the ion beam expansion due to its space charge.
2018-01-30
algorithms. Due to this, Fusion was built with the goal of extensibility throughout the architecture. The Fusion infrastructure enables software...DISTRIBUTION STATEMENT A: Approved for public release. Cleared, 88PA, Case# 2018-0820. b. Trigger a Highly Mobile ...modes were developed in IMPACT (i.e., normal full coverage patrol (NFCP) and highly mobile (HM)). In both NFCP and HM, all UxVs patrol their assigned
Sugita, Shintaro; Arai, Yasuhito; Tonooka, Akiko; Hama, Natsuko; Totoki, Yasushi; Fujii, Tomoki; Aoyama, Tomoyuki; Asanuma, Hiroko; Tsukahara, Tomohide; Kaya, Mitsunori; Shibata, Tatsuhiro; Hasegawa, Tadashi
2014-11-01
Differential diagnosis of small round cell sarcomas (SRCSs) grouped under the Ewing sarcoma family of tumors (ESFT) can be a challenging situation for pathologists. Recent studies have revealed that some groups of Ewing-like sarcoma show typical ESFT morphology but lack any EWSR1-ETS gene fusions. Here we identified a novel gene fusion, CIC-FOXO4, in a case of Ewing-like sarcoma with a t(X;19)(q13;q13.3) translocation. The patient was a 63-year-old man who had an asymptomatic, 30-mm, well-demarcated, intramuscular mass in his right posterior neck, and imaging findings suggested a diagnosis of high-grade sarcoma. He was treated with complete resection and subsequent radiotherapy and chemotherapy. He was alive without local recurrence or distant metastasis 6 months after the operation. Histologic examination revealed SRCS with abundant desmoplastic fibrous stroma suggesting a desmoplastic small round cell tumor. Immunohistochemical analysis showed weak to moderate and partial staining for MIC2 (CD99) and WT1, respectively. High-throughput transcriptome sequencing revealed a gene fusion, and the genomic rearrangement between the CIC and FOXO4 genes was identified by fluorescence in situ hybridization. Aside from the desmoplastic stroma, the CIC-FOXO4 fusion sarcoma showed morphologic and immunohistochemical similarity to ESFT and Ewing-like sarcomas, including the recently described CIC-DUX4 fusion sarcoma. Although clinicopathologic analysis with additional cases is necessary, we conclude that CIC-FOXO4 fusion sarcoma is a new type of Ewing-like sarcoma that has a specific genetic signature. These findings have important implications for the differential diagnosis of SRCS.
[Time consumption and quality of an automated fusion tool for SPECT and MRI images of the brain].
Fiedler, E; Platsch, G; Schwarz, A; Schmiedehausen, K; Tomandl, B; Huk, W; Rupprecht, Th; Rahn, N; Kuwert, T
2003-10-01
Although the fusion of images from different modalities may improve diagnostic accuracy, it is rarely used in clinical routine work due to logistic problems. Therefore we evaluated performance and time needed for fusing MRI and SPECT images using a semiautomated dedicated software. PATIENTS, MATERIAL AND METHOD: In 32 patients regional cerebral blood flow was measured using (99m)Tc ethylcystein dimer (ECD) and the three-headed SPECT camera MultiSPECT 3. MRI scans of the brain were performed using either a 0,2 T Open or a 1,5 T Sonata. Twelve of the MRI data sets were acquired using a 3D-T1w MPRAGE sequence, 20 with a 2D acquisition technique and different echo sequences. Image fusion was performed on a Syngo workstation using an entropy minimizing algorithm by an experienced user of the software. The fusion results were classified. We measured the time needed for the automated fusion procedure and in case of need that for manual realignment after automated, but insufficient fusion. The mean time of the automated fusion procedure was 123 s. It was for the 2D significantly shorter than for the 3D MRI datasets. For four of the 2D data sets and two of the 3D data sets an optimal fit was reached using the automated approach. The remaining 26 data sets required manual correction. The sum of the time required for automated fusion and that needed for manual correction averaged 320 s (50-886 s). The fusion of 3D MRI data sets lasted significantly longer than that of the 2D MRI data. The automated fusion tool delivered in 20% an optimal fit, in 80% manual correction was necessary. Nevertheless, each of the 32 SPECT data sets could be merged in less than 15 min with the corresponding MRI data, which seems acceptable for clinical routine use.
Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter.
Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei
2016-11-02
Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system's error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts.
Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter
Yang, Chun; Mohammadi, Arash; Chen, Qing-Wei
2016-01-01
Motivated by the key importance of multi-sensor information fusion algorithms in the state-of-the-art integrated navigation systems due to recent advancements in sensor technologies, telecommunication, and navigation systems, the paper proposes an improved and innovative fault-tolerant fusion framework. An integrated navigation system is considered consisting of four sensory sub-systems, i.e., Strap-down Inertial Navigation System (SINS), Global Navigation System (GPS), the Bei-Dou2 (BD2) and Celestial Navigation System (CNS) navigation sensors. In such multi-sensor applications, on the one hand, the design of an efficient fusion methodology is extremely constrained specially when no information regarding the system’s error characteristics is available. On the other hand, the development of an accurate fault detection and integrity monitoring solution is both challenging and critical. The paper addresses the sensitivity issues of conventional fault detection solutions and the unavailability of a precisely known system model by jointly designing fault detection and information fusion algorithms. In particular, by using ideas from Interacting Multiple Model (IMM) filters, the uncertainty of the system will be adjusted adaptively by model probabilities and using the proposed fuzzy-based fusion framework. The paper also addresses the problem of using corrupted measurements for fault detection purposes by designing a two state propagator chi-square test jointly with the fusion algorithm. Two IMM predictors, running in parallel, are used and alternatively reactivated based on the received information form the fusion filter to increase the reliability and accuracy of the proposed detection solution. With the combination of the IMM and the proposed fusion method, we increase the failure sensitivity of the detection system and, thereby, significantly increase the overall reliability and accuracy of the integrated navigation system. Simulation results indicate that the proposed fault tolerant fusion framework provides superior performance over its traditional counterparts. PMID:27827832
Cost-effectiveness of minimally invasive sacroiliac joint fusion.
Cher, Daniel J; Frasco, Melissa A; Arnold, Renée Jg; Polly, David W
2016-01-01
Sacroiliac joint (SIJ) disorders are common in patients with chronic lower back pain. Minimally invasive surgical options have been shown to be effective for the treatment of chronic SIJ dysfunction. To determine the cost-effectiveness of minimally invasive SIJ fusion. Data from two prospective, multicenter, clinical trials were used to inform a Markov process cost-utility model to evaluate cumulative 5-year health quality and costs after minimally invasive SIJ fusion using triangular titanium implants or non-surgical treatment. The analysis was performed from a third-party perspective. The model specifically incorporated variation in resource utilization observed in the randomized trial. Multiple one-way and probabilistic sensitivity analyses were performed. SIJ fusion was associated with a gain of approximately 0.74 quality-adjusted life years (QALYs) at a cost of US$13,313 per QALY gained. In multiple one-way sensitivity analyses all scenarios resulted in an incremental cost-effectiveness ratio (ICER) <$26,000/QALY. Probabilistic analyses showed a high degree of certainty that the maximum ICER for SIJ fusion was less than commonly selected thresholds for acceptability (mean ICER =$13,687, 95% confidence interval $5,162-$28,085). SIJ fusion provided potential cost savings per QALY gained compared to non-surgical treatment after a treatment horizon of greater than 13 years. Compared to traditional non-surgical treatments, SIJ fusion is a cost-effective, and, in the long term, cost-saving strategy for the treatment of SIJ dysfunction due to degenerative sacroiliitis or SIJ disruption.
Cost-effectiveness of minimally invasive sacroiliac joint fusion
Cher, Daniel J; Frasco, Melissa A; Arnold, Renée JG; Polly, David W
2016-01-01
Background Sacroiliac joint (SIJ) disorders are common in patients with chronic lower back pain. Minimally invasive surgical options have been shown to be effective for the treatment of chronic SIJ dysfunction. Objective To determine the cost-effectiveness of minimally invasive SIJ fusion. Methods Data from two prospective, multicenter, clinical trials were used to inform a Markov process cost-utility model to evaluate cumulative 5-year health quality and costs after minimally invasive SIJ fusion using triangular titanium implants or non-surgical treatment. The analysis was performed from a third-party perspective. The model specifically incorporated variation in resource utilization observed in the randomized trial. Multiple one-way and probabilistic sensitivity analyses were performed. Results SIJ fusion was associated with a gain of approximately 0.74 quality-adjusted life years (QALYs) at a cost of US$13,313 per QALY gained. In multiple one-way sensitivity analyses all scenarios resulted in an incremental cost-effectiveness ratio (ICER) <$26,000/QALY. Probabilistic analyses showed a high degree of certainty that the maximum ICER for SIJ fusion was less than commonly selected thresholds for acceptability (mean ICER =$13,687, 95% confidence interval $5,162–$28,085). SIJ fusion provided potential cost savings per QALY gained compared to non-surgical treatment after a treatment horizon of greater than 13 years. Conclusion Compared to traditional non-surgical treatments, SIJ fusion is a cost-effective, and, in the long term, cost-saving strategy for the treatment of SIJ dysfunction due to degenerative sacroiliitis or SIJ disruption. PMID:26719717
NASA Astrophysics Data System (ADS)
Sharma, Ajay; Khoury-Christianson, Anastasia M.; White, Steven P.; Dhanjal, Nirpal K.; Huang, Wen; Paulhiac, Clara; Friedman, Eric J.; Manjula, Belur N.; Kumar, Ramesh
1994-09-01
Chemical synthesis of peptides, though feasible, is hindered by considerations of cost, purity, and efficiency of synthesizing longer chains. Here we describe a transgenic system for producing peptides of therapeutic interest as fusion proteins at low cost and high purity. Transgenic hemoglobin expression technology using the locus control region was employed to produce fusion hemoglobins in the erythrocytes of mice. The fusion hemoglobin contains the desired peptide as an extension at the C end of human α-globin. A protein cleavage site is inserted between the C end of the α-globin chain and the N-terminal residue of the desired peptide. The peptide is recovered after cleavage of the fusion protein with enzymes that recognize this cleavage signal as their substrate. Due to the selective compartmentalization of hemoglobin in the erythrocytes, purification of the fusion hemoglobin is easy and efficient. Because of its compact and highly ordered structure, the internal sites of hemoglobin are resistant to protease digestion and the desired peptide is efficiently released and recovered. The applicability of this approach was established by producing a 16-mer α-endorphin peptide and a 26-mer magainin peptide in transgenic mice. Transgenic animals and their progeny expressing these fusion proteins remain healthy, even when the fusion protein is expressed at >25% of the total hemoglobin in the erythrocytes. Additional applications and potential improvements of this methodology are discussed.
Directional Track Selection Technique in CR39 SSNTD for lowyield reaction experiments
NASA Astrophysics Data System (ADS)
Ingenito, Francesco; Andreoli, Pierluigi; Batani, Dimitri; Bonasera, Aldo; Boutoux, Guillaume; Burgy, Frederic; Cipriani, Mattia; Consoli, Fabrizio; Cristofari, Giuseppe; De Angelis, Riccardo; Di Giorgio, Giorgio; Ducret, Jean Eric; Giulietti, Danilo; Jakubowska, Katarzyna
2018-01-01
There is a great interest in the study of p-11B aneutronic nuclear fusion reactions, both for energy production and for determination of fusion cross-sections at low energies. In this context we performed experiments at CELIA in which energetic protons, accelerated by the laser ECLIPSE, were directed toward a solid Boron target. Because of the small cross-sections at these energies the number of expected reactions is low. CR39 Solid-State Nuclear Track Detectors (SSNTD) were used to detect the alpha particles produced. Because of the low expected yield, it is difficult to discriminate the tracks due to true fusion products from those due to natural background in the CR39. To this purpose we developed a methodology of particle recognition according to their direction with respect to the detector normal, able to determine the position of their source. We applied this to the specific experiment geometry, so to select from all the tracks those due to particles coming from the region of interaction between accelerated protons and solid boron target. This technique can be of great help on the analysis of SSNTD in experiments with low yield reactions, but can be also generally applied to any experiment where particles reach the track detector with known directions, and for example to improve the detection limit of particle spectrometers using CR39.
Apfelbeck, M; Clevert, D-A; Ricke, J; Stief, C; Schlenker, B
2018-01-01
Reduced acceptance of radical prostatectomy in patients with low risk or intermediate risk prostate cancer has significantly changed treatment strategies in prostate cancer (PCa) during the last years. Focal therapy of the prostate with high intensity focused ultrasound (HIFU) is an organ-preserving treatment for prostate cancer with less impairment of health-related quality of life. Follow-up after HIFU therapy by imaging modalities remains a major problem as eg. MRI performs poorly. Contrast enhanced ultrasound (CEUS) allows to monitor the vascular architecture of organs non-invasively. However, only limited data are available using CEUS to define successful and complete HIFU treatment of the prostate. In this study, we aimed to evaluate short-term image findings using CEUS and image fusion before and after HIFU treatment. Prospective single arm study in patients with uni- or bilateral, low or intermediate risk prostate cancer or recurrent cancer after radiotherapy treated with HIFU at our institution between October 2016 and November 2017. HIFU hemiablation or whole gland treatment was performed using the Focal One® device. PCa was diagnosed either by multiparametric magnetic resonance imaging (mpMRI) followed by MRI fusion based targeted biopsy combined with 12 core transrectal ultrasound (TRUS) guided biopsy or 12 core random biopsy only. Monitoring of the target region before, immediately and 24 hours after the ablation was done by CEUS in combination with image fusion using an axial T2-weighted MRI sequence. 6 consecutive patients with Gleason score (GS) 6, 5 patients with GS 7a prostate cancer and one patient with biochemical recurrence after radiotherapy were included in the study. Three patients underwent whole gland treatment due to histological proven bilateral PCa or recurrent PCa after radiotherapy. Hemiablation was performed in 9 patients with unilateral tumor and no PIRADS 4 or 5 lesion in the contralateral lobe. Median patient age was 69.8 years and median PSA (prostate-specific antigen) level was 8.4 ng/ml. CEUS showed markedly reduced microbubbles in the ablated area, the prostate capsule still showed signs of perfusion. The study is limited by the short follow up and small number of patients. CEUS examination showed a reduction of microcirculation in the treated area immediately after the treatment and 24 hours later. The combination of CEUS and image fusion seems to be helpful for detecting the PCa target lesion and monitor the success of HIFU ablation treatment. Evidence for image findings after HIFU-therapy are rare. Further studies on this topic are needed.
NASA Astrophysics Data System (ADS)
Liu, Yong; Qin, Zhimeng; Hu, Baodan; Feng, Shuai
2018-04-01
Stability analysis is of great significance to landslide hazard prevention, especially the dynamic stability. However, many existing stability analysis methods are difficult to analyse the continuous landslide stability and its changing regularities in a uniform criterion due to the unique landslide geological conditions. Based on the relationship between displacement monitoring data, deformation states and landslide stability, a state fusion entropy method is herein proposed to derive landslide instability through a comprehensive multi-attribute entropy analysis of deformation states, which are defined by a proposed joint clustering method combining K-means and a cloud model. Taking Xintan landslide as the detailed case study, cumulative state fusion entropy presents an obvious increasing trend after the landslide entered accelerative deformation stage and historical maxima match highly with landslide macroscopic deformation behaviours in key time nodes. Reasonable results are also obtained in its application to several other landslides in the Three Gorges Reservoir in China. Combined with field survey, state fusion entropy may serve for assessing landslide stability and judging landslide evolutionary stages.
Knee arthrodesis with the Sheffield external ring fixator: fusion in 6 of 10 consecutive patients.
Ulstrup, Anton K; Folkmar, Klaus; Broeng, Leif
2007-06-01
Knee arthrodesis with external fixation (XF) is a possible salvage procedure for infected total knee arthroplasties (TKA). We report the outcome in 10 patients who underwent arthrodesis with the Sheffield Ring Fixator. The patients had primary arthrosis in 8 cases; 2 cases were due to rheumatoid arthritis and sclerodermia. The mean time between the primary TKA and arthrodesis was 6 (0.5-14) years. The average age at arthrodesis was 69 years. The average follow-up period was 10 months. Stable fusion was obtained in 6 patients after a mean XF time of 3.6 (2-4) months. 1 patient was referred to another hospital because of nonunion. This patient showed fusion with intramedullary nailing after 7 months. 3 nonunion patients required permanent bracing. 7 patients had pin tract infections. Infections healed in all patients. The Sheffield Ring Fixator gives an acceptable fusion rate for arthrodesis in the infected TKA, with limited complications.
Microstructure and Mechanical Properties of 21-6-9 Stainless Steel Electron Beam Welds
NASA Astrophysics Data System (ADS)
Elmer, John W.; Ellsworth, G. Fred; Florando, Jeffrey N.; Golosker, Ilya V.; Mulay, Rupalee P.
2017-04-01
Welds can either be stronger or weaker than the base metals that they join depending on the microstructures that form in the fusion and heat-affected zones of the weld. In this paper, weld strengthening in the fusion zone of annealed 21-6-9 stainless steel is investigated using cross-weld tensile samples, hardness testing, and microstructural characterization. Due to the stronger nature of the weld, the cross-weld tensile tests failed in the base metal and were not able to generate true fusion zone mechanical properties. Nanoindentation with a spherical indenter was instead used to predict the tensile behavior for the weld metal. Extrapolation of the nanoindentation results to higher strains was performed using the Steinberg-Guinan and Johnson-Cook strength models, and the results can be used for weld strength modeling purposes. The results illustrate how microstructural refinement and residual ferrite formation in the weld fusion zone can be an effective strengthener for 21-6-9 stainless steel.
An efficient method for the fusion of light field refocused images
NASA Astrophysics Data System (ADS)
Wang, Yingqian; Yang, Jungang; Xiao, Chao; An, Wei
2018-04-01
Light field cameras have drawn much attention due to the advantage of post-capture adjustments such as refocusing after exposure. The depth of field in refocused images is always shallow because of the large equivalent aperture. As a result, a large number of multi-focus images are obtained and an all-in-focus image is demanded. Consider that most multi-focus image fusion algorithms do not particularly aim at large numbers of source images and traditional DWT-based fusion approach has serious problems in dealing with lots of multi-focus images, causing color distortion and ringing effect. To solve this problem, this paper proposes an efficient multi-focus image fusion method based on stationary wavelet transform (SWT), which can deal with a large quantity of multi-focus images with shallow depth of fields. We compare SWT-based approach with DWT-based approach on various occasions. And the results demonstrate that the proposed method performs much better both visually and quantitatively.
Spatial heterogeneity of tungsten transmutation in a fusion device
NASA Astrophysics Data System (ADS)
Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.
2017-04-01
Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.
Design of a tokamak fusion reactor first wall armor against neutral beam impingement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, R.A.
1977-12-01
The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiationmore » damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem.« less
Hand-Writing Motion Tracking with Vision-Inertial Sensor Fusion: Calibration and Error Correction
Zhou, Shengli; Fei, Fei; Zhang, Guanglie; Liu, Yunhui; Li, Wen J.
2014-01-01
The purpose of this study was to improve the accuracy of real-time ego-motion tracking through inertial sensor and vision sensor fusion. Due to low sampling rates supported by web-based vision sensor and accumulation of errors in inertial sensors, ego-motion tracking with vision sensors is commonly afflicted by slow updating rates, while motion tracking with inertial sensor suffers from rapid deterioration in accuracy with time. This paper starts with a discussion of developed algorithms for calibrating two relative rotations of the system using only one reference image. Next, stochastic noises associated with the inertial sensor are identified using Allan Variance analysis, and modeled according to their characteristics. Finally, the proposed models are incorporated into an extended Kalman filter for inertial sensor and vision sensor fusion. Compared with results from conventional sensor fusion models, we have shown that ego-motion tracking can be greatly enhanced using the proposed error correction model. PMID:25157546
NASA Astrophysics Data System (ADS)
Ebrahimi Orimi, H.; Esmaeili, M.; Refahi Oskouei, A.; Mirhadizadehd, S. A.; Tse, P. W.
2017-10-01
Condition monitoring of rotary devices such as helical gears is an issue of great significance in industrial projects. This paper introduces a feature extraction method for gear fault diagnosis using wavelet packet due to its higher frequency resolution. During this investigation, the mother wavelet Daubechies 10 (Db-10) was applied to calculate the coefficient entropy of each frequency band of 5th level (32 frequency bands) as features. In this study, the peak value of the signal entropies was selected as applicable features in order to improve frequency band differentiation and reduce feature vectors' dimension. Feature extraction is followed by the fusion network where four different structured multi-layer perceptron networks are trained to classify the recorded signals (healthy/faulty). The robustness of fusion network outputs is greater compared to perceptron networks. The results provided by the fusion network indicate a classification of 98.88 and 97.95% for healthy and faulty classes, respectively.
Rizk, Mazen; Elleuche, Skander; Antranikian, Garabed
2015-01-01
Bifunctional enzyme constructs were generated comprising two genes encoding heat-active endoglucanase (cel5A) and endoxylanase (xylT). The fused proteins Cel5A-XylT and XylT-Cel5A were active on both β-glucan and beechwood xylan. An improvement in endoglucanase and endoxylanase catalytic activities was observed. The specific activity of the fusion towards xylan was significantly raised when compared to XylT. The fusion constructs were active from 40 to 100 °C for endoglucanase and from 40 to 90 °C for endoxylanase, but the temperature optima were lowered from 90 to 80 °C for the endoglucanase and from 80 to 70 °C for the endoxylanase. XylT in the construct XylT-Cel5A was less stable at higher temperatures compared to Cel5A-XylT. Due to the enzymatic performance, these fusion enzymes are attractive candidates for applications in biorefineries based on plant waste.
The national ignition facility: Path to ignition in the laboratory
NASA Astrophysics Data System (ADS)
Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.
2006-06-01
The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.
Cognitive Load Measurement in a Virtual Reality-based Driving System for Autism Intervention.
Zhang, Lian; Wade, Joshua; Bian, Dayi; Fan, Jing; Swanson, Amy; Weitlauf, Amy; Warren, Zachary; Sarkar, Nilanjan
2017-01-01
Autism Spectrum Disorder (ASD) is a highly prevalent neurodevelopmental disorder with enormous individual and social cost. In this paper, a novel virtual reality (VR)-based driving system was introduced to teach driving skills to adolescents with ASD. This driving system is capable of gathering eye gaze, electroencephalography, and peripheral physiology data in addition to driving performance data. The objective of this paper is to fuse multimodal information to measure cognitive load during driving such that driving tasks can be individualized for optimal skill learning. Individualization of ASD intervention is an important criterion due to the spectrum nature of the disorder. Twenty adolescents with ASD participated in our study and the data collected were used for systematic feature extraction and classification of cognitive loads based on five well-known machine learning methods. Subsequently, three information fusion schemes-feature level fusion, decision level fusion and hybrid level fusion-were explored. Results indicate that multimodal information fusion can be used to measure cognitive load with high accuracy. Such a mechanism is essential since it will allow individualization of driving skill training based on cognitive load, which will facilitate acceptance of this driving system for clinical use and eventual commercialization.
Hermansen, Anna; Peolsson, Anneli; Kammerlind, Ann-Sofi; Hjelm, Katarina
2016-04-01
To explore and describe women's experiences of daily life after anterior cervical decompression and fusion surgery. Qualitative explorative design. Fourteen women aged 39-62 years (median 52 years) were included 1.5-3 years after anterior cervical decompression and fusion for cervical disc disease. Individual semi-structured interviews were analysed by qualitative content analysis with an inductive approach. The women described their experiences of daily life in 5 different ways: being recovered to various extents; impact of remaining symptoms on thoughts and feelings; making daily life work; receiving support from social and occupational networks; and physical and behavioural changes due to interventions and encounters with healthcare professionals. This interview study provides insight into women's daily life after anterior cervical decompression and fusion. Whilst the subjects improved after surgery, they also experienced remaining symptoms and limitations in daily life. A variety of mostly active coping strategies were used to manage daily life. Social support from family, friends, occupational networks and healthcare professionals positively influenced daily life. These findings provide knowledge about aspects of daily life that should be considered in individualized postoperative care and rehabilitation in an attempt to provide better outcomes in women after anterior cervical decompression and fusion.
NASA Astrophysics Data System (ADS)
Osychenko, Alina A.; Zalessky, Alexandr D.; Kostrov, Andrey N.; Ryabova, Anastasia V.; Krivokharchenko, Alexander S.; Nadtochenko, Viktor A.
2017-12-01
The effect of the laser pulse energy and total expose of the energy incident on the embryo blastomere fusion probability was investigated. The probability of the four different events after laser pulse was determined: the fusion of two blastomeres with the following formation of tetraploid embryo, the destruction of the first blastomere occurs, the second blastomere conservation remains intact, the destruction and the death of both cells; two blastomeres were not fused, and no morphological changes occurred. We report on viability and quality of the embryo after laser surgery as a function of the laser energy incident. To characterize embryo quality, the probability of the blastocyst stage achievement was estimated and the blastocyst cells number was calculated. Blastocoel formation is the only event of morphogenesis in the preimplantation development of mammals, so we assumed it as an indicator of the time of embryonic "clocks" and observed it among fused and control embryos. The blastocoel formation time is the same for fused and control embryos. It indicates that embryo clocks were not affected due to blastomere fusion. Thus, the analysis of the fluorescence microscopic images of nuclei in the fused embryo revealed that nuclei fusion does not occur after blastomere fusion.
Multimodal biometric approach for cancelable face template generation
NASA Astrophysics Data System (ADS)
Paul, Padma Polash; Gavrilova, Marina
2012-06-01
Due to the rapid growth of biometric technology, template protection becomes crucial to secure integrity of the biometric security system and prevent unauthorized access. Cancelable biometrics is emerging as one of the best solutions to secure the biometric identification and verification system. We present a novel technique for robust cancelable template generation algorithm that takes advantage of the multimodal biometric using feature level fusion. Feature level fusion of different facial features is applied to generate the cancelable template. A proposed algorithm based on the multi-fold random projection and fuzzy communication scheme is used for this purpose. In cancelable template generation, one of the main difficulties is keeping interclass variance of the feature. We have found that interclass variations of the features that are lost during multi fold random projection can be recovered using fusion of different feature subsets and projecting in a new feature domain. Applying the multimodal technique in feature level, we enhance the interclass variability hence improving the performance of the system. We have tested the system for classifier fusion for different feature subset and different cancelable template fusion. Experiments have shown that cancelable template improves the performance of the biometric system compared with the original template.
A comparison of commercially available demineralized bone matrix for spinal fusion.
Wang, Jeffrey C; Alanay, A; Mark, Davies; Kanim, Linda E A; Campbell, Pat A; Dawson, Edgar G; Lieberman, Jay R
2007-08-01
In an effort to augment the available grafting material as well as to increase spinal fusion rates, the utilization of a demineralized bone matrix (DBM) as a graft extender or replacement is common. There are several commercially available DBM substances available for use in spinal surgery, each with different amounts of DBM containing osteoinductive proteins. Each product may have different osteoinductivity potential due to different methods of preparation, storage, and donor specifications. The purpose of this study is to prospectively compare the osteoinductive potential of three different commercially available DBM substances in an athymic rodent spinal fusion model and to discuss the reasons of the variability in osteoinductivity. A posterolateral fusion was performed in 72 mature athymic nude female rats. Three groups of 18 rats were implanted with 1 of 3 DBMs (Osteofil, Grafton, and Dynagraft). A fourth group was implanted with rodent autogenous iliac crest bone graft. The rats were sacrificed at 2, 4, 6, and 8 weeks. A dose of 0.3 cm(3) per side (0.6 cm(3)per animal) was used for each substance. Radiographs were taken at 2 weeks intervals until sacrifice. Fusion was determined by radiographs, manual palpation, and histological analysis. The Osteofil substance had the highest overall fusion rate (14/18), and the highest early 4 weeks fusion rate of (4/5). Grafton produced slightly lower fusion rates of (11/17) overall, and lower early 4 weeks fusion rate of (2/5). There was no statistically significant difference between the rate of fusion after implantation of Osteofil and Grafton. None of the sites implanted with Dynagraft fused at any time point (0/17), and there was a significantly lower fusion rate between the Dynagraft and the other two substances at the six-week-time point and for final fusion rate (P = 0.0001, Fischer's exact test). None of the autogenous iliac crest animals fused at any time point. Non-decalcified histology confirmed the presence of a pseudarthrosis or the presence of a solid fusion, and the results were highly correlated with the manual testing. Although all products claim to have significant osteoinductive capabilities, this study demonstrates that there are significant differences between some of the tested products.
NASA Astrophysics Data System (ADS)
Matsuura, H.; Nakao, Y.
2007-05-01
An effect of nuclear elastic scattering on the rate coefficient of fusion reaction between field deuteron and triton in the presence of neutral beam injection heating is studied. Without assuming a Maxwellian for bulk-ion distribution function, the Boltzmann-Fokker-Planck (BFP) equations for field (bulk) deuteron, field (bulk) triton, α-particle, and beam deuteron are simultaneously solved in an ITER-like deuterium-tritium thermonuclear plasma [R. Aymar, Fusion Eng. Des. 55, 107 (2001)]. The BFP calculation shows that enhancement of the reaction rate coefficient due to knock-on tail formation in fuel-ion distribution functions becomes appreciable, especially in the case of low-density operations.