Sample records for complete mtdna sequence

  1. Phylogenetic Network for European mtDNA

    PubMed Central

    Finnilä, Saara; Lehtonen, Mervi S.; Majamaa, Kari

    2001-01-01

    The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229

  2. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing

    PubMed Central

    Green, Richard E.; Malaspinas, Anna-Sapfo; Krause, Johannes; Briggs, Adrian W.; Johnson, Philip L. F.; Uhler, Caroline; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Stenzel, Udo; Prüfer, Kay; Siebauer, Michael; Burbano, Hernán A.; Ronan, Michael; Rothberg, Jonathan M.; Egholm, Michael; Rudan, Pavao; Brajković, Dejana; Kućan, Željko; Gušić, Ivan; Wikström, Mårten; Laakkonen, Liisa; Kelso, Janet; Slatkin, Montgomery; Pääbo, Svante

    2008-01-01

    Summary A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000-year-old Neandertal individual using 8,341 mtDNA sequences identified among 4.8 Gb of DNA generated from ~0.3 grams of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs and allows an estimate of the divergence date between the two mtDNA lineages of 660,000±140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared to other primate lineages suggesting that the effective population size of Neandertals was small. PMID:18692465

  3. Complete mtDNA sequencing reveals mutations m.9185T>C and m.13513G>A in three patients with Leigh syndrome.

    PubMed

    Pelnena, Dita; Burnyte, Birute; Jankevics, Eriks; Lace, Baiba; Dagyte, Evelina; Grigalioniene, Kristina; Utkus, Algirdas; Krumina, Zita; Rozentale, Jolanta; Adomaitiene, Irina; Stavusis, Janis; Pliss, Liana; Inashkina, Inna

    2017-12-12

    The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations. Patients from Latvia and Lithuania (n = 92 and n = 57, respectively) referred by clinical geneticists were included. The de novo point mutations m.9185T>C and m.13513G>A, respectively, were detected in two patients with lactic acidosis and neurodegenerative lesions. In one patient with neurodegenerative lesions, the mutation m.9185T>C was identified. These mutations are associated with Leigh syndrome. The present data suggest that full-length mtDNA sequencing is recommended as a supplement to nuclear gene testing and enzymatic assays to enhance mitochondrial disease diagnostics.

  4. Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel.

    PubMed

    Meadows, J R S; Hiendleder, S; Kijas, J W

    2011-04-01

    Five haplogroups have been identified in domestic sheep through global surveys of mitochondrial (mt) sequence variation, however these group classifications are often based on small fragments of the complete mtDNA sequence; partial control region or the cytochrome B gene. This study presents the complete mitogenome from representatives of each haplogroup identified in domestic sheep, plus a sample of their wild relatives. Comparison of the sequence successfully resolved the relationships between each haplogroup and provided insight into the relationship with wild sheep. The five haplogroups were characterised as branching independently, a radiation that shared a common ancestor 920,000 ± 190,000 years ago based on protein coding sequence. The utility of various mtDNA components to inform the true relationship between sheep was also examined with Bayesian, maximum likelihood and partitioned Bremmer support analyses. The control region was found to be the mtDNA component, which contributed the highest amount of support to the tree generated using the complete data set. This study provides the nucleus of a mtDNA mitogenome panel, which can be used to assess additional mitogenomes and serve as a reference set to evaluate small fragments of the mtDNA.

  5. Haplogroup relationships between domestic and wild sheep resolved using a mitogenome panel

    PubMed Central

    Meadows, J R S; Hiendleder, S; Kijas, J W

    2011-01-01

    Five haplogroups have been identified in domestic sheep through global surveys of mitochondrial (mt) sequence variation, however these group classifications are often based on small fragments of the complete mtDNA sequence; partial control region or the cytochrome B gene. This study presents the complete mitogenome from representatives of each haplogroup identified in domestic sheep, plus a sample of their wild relatives. Comparison of the sequence successfully resolved the relationships between each haplogroup and provided insight into the relationship with wild sheep. The five haplogroups were characterised as branching independently, a radiation that shared a common ancestor 920 000±190 000 years ago based on protein coding sequence. The utility of various mtDNA components to inform the true relationship between sheep was also examined with Bayesian, maximum likelihood and partitioned Bremmer support analyses. The control region was found to be the mtDNA component, which contributed the highest amount of support to the tree generated using the complete data set. This study provides the nucleus of a mtDNA mitogenome panel, which can be used to assess additional mitogenomes and serve as a reference set to evaluate small fragments of the mtDNA. PMID:20940734

  6. Median network analysis of defectively sequenced entire mitochondrial genomes from early and contemporary disease studies.

    PubMed

    Bandelt, Hans-Jürgen; Yao, Yong-Gang; Bravi, Claudio M; Salas, Antonio; Kivisild, Toomas

    2009-03-01

    Sequence analysis of the mitochondrial genome has become a routine method in the study of mitochondrial diseases. Quite often, the sequencing efforts in the search of pathogenic or disease-associated mutations are affected by technical and interpretive problems, caused by sample mix-up, contamination, biochemical problems, incomplete sequencing, misdocumentation and insufficient reference to previously published data. To assess data quality in case studies of mitochondrial diseases, it is recommended to compare any mtDNA sequence under consideration to their phylogenetically closest lineages available in the Web. The median network method has proven useful for visualizing potential problems with the data. We contrast some early reports of complete mtDNA sequences to more recent total mtDNA sequencing efforts in studies of various mitochondrial diseases. We conclude that the quality of complete mtDNA sequences generated in the medical field in the past few years is somewhat unsatisfactory and may even fall behind that of pioneer manual sequencing in the early nineties. Our study provides a paradigm for an a posteriori evaluation of sequence quality and for detection of potential problems with inferring a pathogenic status of a particular mutation.

  7. High-quality mtDNA control region sequences from 680 individuals sampled across the Netherlands to establish a national forensic mtDNA reference database.

    PubMed

    Chaitanya, Lakshmi; van Oven, Mannis; Brauer, Silke; Zimmermann, Bettina; Huber, Gabriela; Xavier, Catarina; Parson, Walther; de Knijff, Peter; Kayser, Manfred

    2016-03-01

    The use of mitochondrial DNA (mtDNA) for maternal lineage identification often marks the last resort when investigating forensic and missing-person cases involving highly degraded biological materials. As with all comparative DNA testing, a match between evidence and reference sample requires a statistical interpretation, for which high-quality mtDNA population frequency data are crucial. Here, we determined, under high quality standards, the complete mtDNA control-region sequences of 680 individuals from across the Netherlands sampled at 54 sites, covering the entire country with 10 geographic sub-regions. The complete mtDNA control region (nucleotide positions 16,024-16,569 and 1-576) was amplified with two PCR primers and sequenced with ten different sequencing primers using the EMPOP protocol. Haplotype diversity of the entire sample set was very high at 99.63% and, accordingly, the random-match probability was 0.37%. No population substructure within the Netherlands was detected with our dataset. Phylogenetic analyses were performed to determine mtDNA haplogroups. Inclusion of these high-quality data in the EMPOP database (accession number: EMP00666) will improve its overall data content and geographic coverage in the interest of all EMPOP users worldwide. Moreover, this dataset will serve as (the start of) a national reference database for mtDNA applications in forensic and missing person casework in the Netherlands. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Evidence for recombination of mitochondrial DNA in triploid crucian carp.

    PubMed

    Guo, Xinhong; Liu, Shaojun; Liu, Yun

    2006-03-01

    In this study, we report the complete mitochondrial DNA (mtDNA) sequences of the allotetraploid and triploid crucian carp and compare the complete mtDNA sequences between the triploid crucian carp and its female parent Japanese crucian carp and between the triploid crucian carp and its male parent allotetraploid. Our results indicate that the complete mtDNA nucleotide identity (98%) between the triploid crucian carp and its male parent allotetraploid was higher than that (93%) between the triploid crucian carp and its female parent Japanese crucian carp. Moreover, the presence of a pattern of identity and difference at synonymous sites of mitochondrial genomes between the triploid crucian carp and its parents provides direct evidence that triploid crucian carp possessed the recombination mtDNA fragment (12,759 bp) derived from the paternal fish. These results suggest that mtDNA recombination was derived from the fusion of the maternal and paternal mtDNAs. Compared with the haploid egg with one set of genome from the Japanese crucian carp, the diploid sperm with two sets of genomes from the allotetraploid could more easily make its mtDNA fuse with the mtDNA of the haploid egg. In addition, the triple hybrid nature of the triploid crucian carp probably allowed its better mtDNA recombination. In summary, our results provide the first evidence of mtDNA combination in polyploid fish.

  9. A high-throughput Sanger strategy for human mitochondrial genome sequencing

    PubMed Central

    2013-01-01

    Background A population reference database of complete human mitochondrial genome (mtGenome) sequences is needed to enable the use of mitochondrial DNA (mtDNA) coding region data in forensic casework applications. However, the development of entire mtGenome haplotypes to forensic data quality standards is difficult and laborious. A Sanger-based amplification and sequencing strategy that is designed for automated processing, yet routinely produces high quality sequences, is needed to facilitate high-volume production of these mtGenome data sets. Results We developed a robust 8-amplicon Sanger sequencing strategy that regularly produces complete, forensic-quality mtGenome haplotypes in the first pass of data generation. The protocol works equally well on samples representing diverse mtDNA haplogroups and DNA input quantities ranging from 50 pg to 1 ng, and can be applied to specimens of varying DNA quality. The complete workflow was specifically designed for implementation on robotic instrumentation, which increases throughput and reduces both the opportunities for error inherent to manual processing and the cost of generating full mtGenome sequences. Conclusions The described strategy will assist efforts to generate complete mtGenome haplotypes which meet the highest data quality expectations for forensic genetic and other applications. Additionally, high-quality data produced using this protocol can be used to assess mtDNA data developed using newer technologies and chemistries. Further, the amplification strategy can be used to enrich for mtDNA as a first step in sample preparation for targeted next-generation sequencing. PMID:24341507

  10. Phylogenetic position of the pentastomida and [pan]crustacean relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavrov, Dennis V.; Brown, Wesley M.; Boore, Jeffrey L.

    2004-01-31

    Pentastomids are a small group of vermiform animals with unique morphology and parasitic lifestyle. They are generally recognized as being related to the Arthropoda, however the nature of this relationship is controversial. We have determined the complete sequence of the mitochondrial DNA (mtDNA) of the pentastomid Armillifer armillatus and complete, or nearly complete, mtDNA sequences from representatives of four previously unsampled groups of Crustacea: Remipedia (Speleonectes tulumensis), Cephalocarida (Hutchinsoniella macracantha), Cirripedia (Pollicipes polymerus), and Branchiura (Argulus americanus). Analyses of the mtDNA gene arrangements and sequences determined in this study indicate unambiguously that pentastomids are a group of modified crustaceans likelymore » related to branchiurans. In addition, gene arrangement comparisons strongly support an unforeseen assemblage of pentastomids with maxillopod and cephalocarid crustaceans, to the exclusion of remipedes, branchiopods, malacos tracans and insects.« less

  11. Characterization of the Complete Mitochondrial Genome Sequence of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae) from China

    PubMed Central

    Liu, Guo-Hua; Li, Chun; Li, Jia-Yuan; Zhou, Dong-Hui; Xiong, Rong-Chuan; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan

    2012-01-01

    Sparganosis, caused by the plerocercoid larvae of members of the genus Spirometra, can cause significant public health problem and considerable economic losses. In the present study, the complete mitochondrial DNA (mtDNA) sequence of Spirometra erinaceieuropaei from China was determined, characterized and compared with that of S. erinaceieuropaei from Japan. The gene arrangement in the mt genome sequences of S. erinaceieuropaei from China and Japan is identical. The identity of the mt genomes was 99.1% between S. erinaceieuropaei from China and Japan, and the complete mtDNA sequence of S. erinaceieuropaei from China is slightly shorter (2 bp) than that from Japan. Phylogenetic analysis of S. erinaceieuropaei with other representative cestodes using two different computational algorithms [Bayesian inference (BI) and maximum likelihood (ML)] based on concatenated amino acid sequences of 12 protein-coding genes, revealed that S. erinaceieuropaei is closely related to Diphyllobothrium spp., supporting classification based on morphological features. The present study determined the complete mtDNA sequences of S. erinaceieuropaei from China that provides novel genetic markers for studying the population genetics and molecular epidemiology of S. erinaceieuropaei in humans and animals. PMID:22553464

  12. Sequencing and comparing whole mitochondrial genomes ofanimals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based onmore » our experiences to date with determining and comparing complete mtDNA sequences.« less

  13. The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).

    PubMed

    Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai

    2014-12-01

    The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.

  14. mtDNA sequence diversity of Hazara ethnic group from Pakistan.

    PubMed

    Rakha, Allah; Fatima; Peng, Min-Sheng; Adan, Atif; Bi, Rui; Yasmin, Memona; Yao, Yong-Gang

    2017-09-01

    The present study was undertaken to investigate mitochondrial DNA (mtDNA) control region sequences of Hazaras from Pakistan, so as to generate mtDNA reference database for forensic casework in Pakistan and to analyze phylogenetic relationship of this particular ethnic group with geographically proximal populations. Complete mtDNA control region (nt 16024-576) sequences were generated through Sanger Sequencing for 319 Hazara individuals from Quetta, Baluchistan. The population sample set showed a total of 189 distinct haplotypes, belonging mainly to West Eurasian (51.72%), East & Southeast Asian (29.78%) and South Asian (18.50%) haplogroups. Compared with other populations from Pakistan, the Hazara population had a relatively high haplotype diversity (0.9945) and a lower random match probability (0.0085). The dataset has been incorporated into EMPOP database under accession number EMP00680. The data herein comprises the largest, and likely most thoroughly examined, control region mtDNA dataset from Hazaras of Pakistan. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Complete mitochondrial genome sequence of the common bean anthracnose pathogen Colletotrichum lindemuthianum.

    PubMed

    Gutiérrez, Pablo; Alzate, Juan; Yepes, Mauricio Salazar; Marín, Mauricio

    2016-01-01

    Colletotrichum lindemuthianum is the causal agent of anthracnose in common bean (Phaseolus vulgaris), one of the most limiting factors for this crop in South and Central America. In this work, the mitochondrial sequence of a Colombian isolate of C. lindemuthianum obtained from a common bean plant (var. Cargamanto) with anthracnose symptoms is presented. The mtDNA codes for 13 proteins of the respiratory chain, 1 ribosomal protein, 2 homing endonucleases, 2 ribosomal RNAs and 28 tRNAs. This is the first report of a complete mtDNA genome sequence from C. lindemuthianum.

  16. The full mitochondrial genome sequence of Raillietina tetragona from chicken (Cestoda: Davaineidae).

    PubMed

    Liang, Jian-Ying; Lin, Rui-Qing

    2016-11-01

    In the present study, the complete mitochondrial DNA (mtDNA) sequence of Raillietina tetragona was sequenced and its gene contents and genome organizations was compared with that of other tapeworm. The complete mt genome sequence of R. tetragona is 14,444 bp in length. It contains 12 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and two non-coding region. All genes are transcribed in the same direction and have a nucleotide composition high in A and T. The contents of A + T of the complete mt genome are 71.4% for R. tetragona. The R. tetragona mt genome sequence provides novel mtDNA marker for studying the molecular epidemiology and population genetics of Raillietina and has implications for the molecular diagnosis of chicken cestodosis caused by Raillietina.

  17. The determination of complete human mitochondrial DNA sequences in single cells: implications for the study of somatic mitochondrial DNA point mutations

    PubMed Central

    Taylor, Robert W.; Taylor, Geoffrey A.; Durham, Steve E.; Turnbull, Douglass M.

    2001-01-01

    Studies of single cells have previously shown intracellular clonal expansion of mitochondrial DNA (mtDNA) mutations to levels that can cause a focal cytochrome c oxidase (COX) defect. Whilst techniques are available to study mtDNA rearrangements at the level of the single cell, recent interest has focused on the possible role of somatic mtDNA point mutations in ageing, neurodegenerative disease and cancer. We have therefore developed a method that permits the reliable determination of the entire mtDNA sequence from single cells without amplifying contaminating, nuclear-embedded pseudogenes. Sequencing and PCR–RFLP analyses of individual COX-negative muscle fibres from a patient with a previously described heteroplasmic COX II (T7587C) mutation indicate that mutant loads as low as 30% can be reliably detected by sequencing. This technique will be particularly useful in identifying the mtDNA mutational spectra in age-related COX-negative cells and will increase our understanding of the pathogenetic mechanisms by which they occur. PMID:11470889

  18. Phylogeographic Differentiation of Mitochondrial DNA in Han Chinese

    PubMed Central

    Yao, Yong-Gang; Kong, Qing-Peng; Bandelt, Hans-Jürgen; Kivisild, Toomas; Zhang, Ya-Ping

    2002-01-01

    To characterize the mitochondrial DNA (mtDNA) variation in Han Chinese from several provinces of China, we have sequenced the two hypervariable segments of the control region and the segment spanning nucleotide positions 10171–10659 of the coding region, and we have identified a number of specific coding-region mutations by direct sequencing or restriction-fragment–length–polymorphism tests. This allows us to define new haplogroups (clades of the mtDNA phylogeny) and to dissect the Han mtDNA pool on a phylogenetic basis, which is a prerequisite for any fine-grained phylogeographic analysis, the interpretation of ancient mtDNA, or future complete mtDNA sequencing efforts. Some of the haplogroups under study differ considerably in frequencies across different provinces. The southernmost provinces show more pronounced contrasts in their regional Han mtDNA pools than the central and northern provinces. These and other features of the geographical distribution of the mtDNA haplogroups observed in the Han Chinese make an initial Paleolithic colonization from south to north plausible but would suggest subsequent migration events in China that mainly proceeded from north to south and east to west. Lumping together all regional Han mtDNA pools into one fictive general mtDNA pool or choosing one or two regional Han populations to represent all Han Chinese is inappropriate for prehistoric considerations as well as for forensic purposes or medical disease studies. PMID:11836649

  19. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line.

    PubMed

    Liu, Huitao; Cui, Peng; Zhan, Kehui; Lin, Qiang; Zhuo, Guoyin; Guo, Xiaoli; Ding, Feng; Yang, Wenlong; Liu, Dongcheng; Hu, Songnian; Yu, Jun; Zhang, Aimin

    2011-03-29

    Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi) CMS line, Ks3, was assembled into a master circle (MC) molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs), and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38%) and repeats (> 100 bp, 29 units) as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs) in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of its maintainer line Km3, especially in non-coding sequences. Sequence rearrangement has produced novel chimeric ORFs, which may be candidate genes for CMS. Comparative analysis of several angiosperm mtDNAs indicated that non-coding sequences are the most frequently reorganized during mtDNA evolution in higher plants.

  20. De novo assembly of mitochondrial genomes provides insights into genetic diversity and molecular evolution in wild boars and domestic pigs.

    PubMed

    Ni, Pan; Bhuiyan, Ali Akbar; Chen, Jian-Hai; Li, Jingjin; Zhang, Cheng; Zhao, Shuhong; Du, Xiaoyong; Li, Hua; Yu, Hui; Liu, Xiangdong; Li, Kui

    2018-06-01

    Up to date, the scarcity of publicly available complete mitochondrial sequences for European wild pigs hampers deeper understanding about the genetic changes following domestication. Here, we have assembled 26 de novo mtDNA sequences of European wild boars from next generation sequencing (NGS) data and downloaded 174 complete mtDNA sequences to assess the genetic relationship, nucleotide diversity, and selection. The Bayesian consensus tree reveals the clear divergence between the European and Asian clade and a very small portion (10 out of 200 samples) of maternal introgression. The overall nucleotides diversities of the mtDNA sequences have been reduced following domestication. Interestingly, the selection efficiencies in both European and Asian domestic pigs are reduced, probably caused by changes in both selection constraints and maternal population size following domestication. This study suggests that de novo assembled mitogenomes can be a great boon to uncover the genetic turnover following domestication. Further investigation is warranted to include more samples from the ever-increasing amounts of NGS data to help us to better understand the process of domestication.

  1. Identical mitochondrial somatic mutations unique to chronic periodontitis and coronary artery disease

    PubMed Central

    Pallavi, Tokala; Chandra, Rampalli Viswa; Reddy, Aileni Amarender; Reddy, Bavigadda Harish; Naveen, Anumala

    2016-01-01

    Context: The inflammatory processes involved in chronic periodontitis and coronary artery diseases (CADs) are similar and produce reactive oxygen species that may result in similar somatic mutations in mitochondrial deoxyribonucleic acid (mtDNA). Aims: The aims of the present study were to identify somatic mtDNA mutations in periodontal and cardiac tissues from subjects undergoing coronary artery bypass surgery and determine what fraction was identical and unique to these tissues. Settings and Design: The study population consisted of 30 chronic periodontitis subjects who underwent coronary artery surgery after an angiogram had indicated CAD. Materials and Methods: Gingival tissue samples were taken from the site with deepest probing depth; coronary artery tissue samples were taken during the coronary artery bypass grafting procedures, and blood samples were drawn during this surgical procedure. These samples were stored under aseptic conditions and later transported for mtDNA analysis. Statistical Analysis Used: Complete mtDNA sequences were obtained and aligned with the revised Cambridge reference sequence (NC_012920) using sequence analysis and auto assembler tools. Results: Among the complete mtDNA sequences, a total of 162 variations were spread across the whole mitochondrial genome and present only in the coronary artery and the gingival tissue samples but not in the blood samples. Among the 162 variations, 12 were novel and four of the 12 novel variations were found in mitochondrial NADH dehydrogenase subunit 5 complex I gene (33.3%). Conclusions: Analysis of mtDNA mutations indicated 162 variants unique to periodontitis and CAD. Of these, 12 were novel and may have resulted from destructive oxidative forces common to these two diseases. PMID:27041832

  2. Analysis of European mtDNAs for recombination.

    PubMed

    Elson, J L; Andrews, R M; Chinnery, P F; Lightowlers, R N; Turnbull, D M; Howell, N

    2001-01-01

    The standard paradigm postulates that the human mitochondrial genome (mtDNA) is strictly maternally inherited and that, consequently, mtDNA lineages are clonal. As a result of mtDNA clonality, phylogenetic and population genetic analyses should therefore be free of the complexities imposed by biparental recombination. The use of mtDNA in analyses of human molecular evolution is contingent, in fact, on clonality, which is also a condition that is critical both for forensic studies and for understanding the transmission of pathogenic mtDNA mutations within families. This paradigm, however, has been challenged recently by Eyre-Walker and colleagues. Using two different tests, they have concluded that recombination has contributed to the distribution of mtDNA polymorphisms within the human population. We have assembled a database that comprises the complete sequences of 64 European and 2 African mtDNAs. When this set of sequences was analyzed using any of three measures of linkage disequilibrium, one of the tests of Eyre-Walker and colleagues, there was no evidence for mtDNA recombination. When their test for excess homoplasies was applied to our set of sequences, only a slight excess of homoplasies was observed. We discuss possible reasons that our results differ from those of Eyre-Walker and colleagues. When we take the various results together, our conclusion is that mtDNA recombination has not been sufficiently frequent during human evolution to overturn the standard paradigm.

  3. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod graptacme eborea and the bivalve mytilus edulis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boore, Jeffrey L.; Medina, Monica; Rosenberg, Lewis A.

    2004-01-31

    We have determined the complete sequence of the mitochondrial genome of the scaphopod mollusk Graptacme eborea (Conrad, 1846) (14,492 nts) and completed the sequence of the mitochondrial genome of the bivalve mollusk Mytilus edulis Linnaeus, 1758 (16,740 nts). (The name Graptacme eborea is a revision of the species formerly known as Dentalium eboreum.) G. eborea mtDNA contains the 37 genes that are typically found and has the genes divided about evenly between the two strands, but M. edulis contains an extra trnM and is missing atp8, and has all genes on the same strand. Each has a highly rearranged genemore » order relative to each other and to all other studied mtDNAs. G. eborea mtDNA has almost no strand skew, but the coding strand of M. edulis mtDNA is very rich in G and T. This is reflected in differential codon usage patterns and even in amino acid compositions. G. eborea mtDNA has fewer non-coding nucleotides than any other mtDNA studied to date, with the largest non-coding region being only 24 nt long. Phylogenetic analysis using 2,420 aligned amino acid positions of concatenated proteins weakly supports an association of the scaphopod with gastropods to the exclusion of Bivalvia, Cephalopoda, and Polyplacophora, but is generally unable to convincingly resolve the relationships among major groups of the Lophotrochozoa, in contrast to the good resolution seen for several other major metazoan groups.« less

  4. Data from complete mtDNA sequencing of Tunisian centenarians: testing haplogroup association and the "golden mean" to longevity.

    PubMed

    Costa, Marta D; Cherni, Lotfi; Fernandes, Verónica; Freitas, Fernando; Ammar El Gaaied, Amel Ben; Pereira, Luísa

    2009-04-01

    Since the mitochondrial theory of ageing was proposed, mitochondrial DNA (mtDNA) diversity has been largely studied in old people, however complete genomes are still rare, being limited to Japanese and UK/US samples. In this work, we evaluated possible longevity associated polymorphisms/haplogroups in an African population, from Tunisia, by performing complete mtDNA sequencing. This population has a mixed Eurasian/sub-Saharan mtDNA gene pool, which could potentially facilitate the evaluation of association for sub-Saharan lineages. Sub-Saharan haplogroups were shown to be significantly less represented in centenarians (9.5%) than in controls (54.5%), but it is not possible to rule out an influence of population structure, which is high in these populations. No recurrent polymorphism were more frequent in centenarians than in controls, and although the Tunisian centenarians presented less synonymous and replacement polymorphisms than controls, this difference was not statistically significant. So far, it does not seem that centenarians have significantly less mildly deleterious substitutions, not only in Tunisia but also in Japanese and UK/US samples, as tested here, not favouring a "golden mean" to longevity.

  5. Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups.

    PubMed

    Herrnstadt, Corinna; Elson, Joanna L; Fahy, Eoin; Preston, Gwen; Turnbull, Douglass M; Anderson, Christen; Ghosh, Soumitra S; Olefsky, Jerrold M; Beal, M Flint; Davis, Robert E; Howell, Neil

    2002-05-01

    The evolution of the human mitochondrial genome is characterized by the emergence of ethnically distinct lineages or haplogroups. Nine European, seven Asian (including Native American), and three African mitochondrial DNA (mtDNA) haplogroups have been identified previously on the basis of the presence or absence of a relatively small number of restriction-enzyme recognition sites or on the basis of nucleotide sequences of the D-loop region. We have used reduced-median-network approaches to analyze 560 complete European, Asian, and African mtDNA coding-region sequences from unrelated individuals to develop a more complete understanding of sequence diversity both within and between haplogroups. A total of 497 haplogroup-associated polymorphisms were identified, 323 (65%) of which were associated with one haplogroup and 174 (35%) of which were associated with two or more haplogroups. Approximately one-half of these polymorphisms are reported for the first time here. Our results confirm and substantially extend the phylogenetic relationships among mitochondrial genomes described elsewhere from the major human ethnic groups. Another important result is that there were numerous instances both of parallel mutations at the same site and of reversion (i.e., homoplasy). It is likely that homoplasy in the coding region will confound evolutionary analysis of small sequence sets. By a linkage-disequilibrium approach, additional evidence for the absence of human mtDNA recombination is presented here.

  6. The Complete Mitochondrial Genomes of Two Octopods Cistopus chinensis and Cistopus taiwanicus: Revealing the Phylogenetic Position of the Genus Cistopus within the Order Octopoda

    PubMed Central

    Cheng, Rubin; Zheng, Xiaodong; Ma, Yuanyuan; Li, Qi

    2013-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequences of two species of Cistopus, namely C. chinensis and C. taiwanicus, and conducted a comparative mt genome analysis across the class Cephalopoda. The mtDNA length of C. chinensis and C. taiwanicus are 15706 and 15793 nucleotides with an AT content of 76.21% and 76.5%, respectively. The sequence identity of mtDNA between C. chinensis and C. taiwanicus was 88%, suggesting a close relationship. Compared with C. taiwanicus and other octopods, C. chinensis encoded two additional tRNA genes, showing a novel gene arrangement. In addition, an unusual 23 poly (A) signal structure is found in the ATP8 coding region of C. chinensis. The entire genome and each protein coding gene of the two Cistopus species displayed notable levels of AT and GC skews. Based on sliding window analysis among Octopodiformes, ND1 and DN5 were considered to be more reliable molecular beacons. Phylogenetic analyses based on the 13 protein-coding genes revealed that C. chinensis and C. taiwanicus form a monophyletic group with high statistical support, consistent with previous studies based on morphological characteristics. Our results also indicated that the phylogenetic position of the genus Cistopus is closer to Octopus than to Amphioctopus and Callistoctopus. The complete mtDNA sequence of C. chinensis and C. taiwanicus represent the first whole mt genomes in the genus Cistopus. These novel mtDNA data will be important in refining the phylogenetic relationships within Octopodiformes and enriching the resource of markers for systematic, population genetic and evolutionary biological studies of Cephalopoda. PMID:24358345

  7. High-throughput sequencing of complete human mtDNA genomes from the Caucasus and West Asia: high diversity and demographic inferences.

    PubMed

    Schönberg, Anna; Theunert, Christoph; Li, Mingkun; Stoneking, Mark; Nasidze, Ivan

    2011-09-01

    To investigate the demographic history of human populations from the Caucasus and surrounding regions, we used high-throughput sequencing to generate 147 complete mtDNA genome sequences from random samples of individuals from three groups from the Caucasus (Armenians, Azeri and Georgians), and one group each from Iran and Turkey. Overall diversity is very high, with 144 different sequences that fall into 97 different haplogroups found among the 147 individuals. Bayesian skyline plots (BSPs) of population size change through time show a population expansion around 40-50 kya, followed by a constant population size, and then another expansion around 15-18 kya for the groups from the Caucasus and Iran. The BSP for Turkey differs the most from the others, with an increase from 35 to 50 kya followed by a prolonged period of constant population size, and no indication of a second period of growth. An approximate Bayesian computation approach was used to estimate divergence times between each pair of populations; the oldest divergence times were between Turkey and the other four groups from the South Caucasus and Iran (~400-600 generations), while the divergence time of the three Caucasus groups from each other was comparable to their divergence time from Iran (average of ~360 generations). These results illustrate the value of random sampling of complete mtDNA genome sequences that can be obtained with high-throughput sequencing platforms.

  8. The evolutionary history of Saccharomyces species inferred from completed mitochondrial genomes and revision in the ‘yeast mitochondrial genetic code’

    PubMed Central

    Szabóová, Dana; Bielik, Peter; Poláková, Silvia; Šoltys, Katarína; Jatzová, Katarína; Szemes, Tomáš

    2017-01-01

    Abstract The yeast Saccharomyces are widely used to test ecological and evolutionary hypotheses. A large number of nuclear genomic DNA sequences are available, but mitochondrial genomic data are insufficient. We completed mitochondrial DNA (mtDNA) sequencing from Illumina MiSeq reads for all Saccharomyces species. All are circularly mapped molecules decreasing in size with phylogenetic distance from Saccharomyces cerevisiae but with similar gene content including regulatory and selfish elements like origins of replication, introns, free-standing open reading frames or GC clusters. Their most profound feature is species-specific alteration in gene order. The genetic code slightly differs from well-established yeast mitochondrial code as GUG is used rarely as the translation start and CGA and CGC code for arginine. The multilocus phylogeny, inferred from mtDNA, does not correlate with the trees derived from nuclear genes. mtDNA data demonstrate that Saccharomyces cariocanus should be assigned as a separate species and Saccharomyces bayanus CBS 380T should not be considered as a distinct species due to mtDNA nearly identical to Saccharomyces uvarum mtDNA. Apparently, comparison of mtDNAs should not be neglected in genomic studies as it is an important tool to understand the origin and evolutionary history of some yeast species. PMID:28992063

  9. A reanalysis of the indirect evidence for recombination in human mitochondrial DNA.

    PubMed

    Piganeau, G; Eyre-Walker, A

    2004-04-01

    In an attempt to resolve the controversy about whether recombination occurs in human mtDNA, we have analysed three recently published data sets of complete mtDNA sequences along with 10 RFLP data sets. We have analysed the relationship between linkage disequilibrium (LD) and distance between sites under a variety of conditions using two measures of LD, r2 and /D'/. We find that there is a negative correlation between r2 and distance in the majority of data sets, but no overall trend for /D'/. Five out of six mtDNA sequence data sets show an excess of homoplasy, but this could be due to either recombination or hypervariable sites. Two additional recombination detection methods used, Geneconv and Maximum Chi-Square, showed nonsignificant results. The overall significance of these findings is hard to quantify because of nonindependence, but our results suggest a lack of evidence for recombination in human mtDNA.

  10. Complete Mitochondrial DNA Analysis of Eastern Eurasian Haplogroups Rarely Found in Populations of Northern Asia and Eastern Europe

    PubMed Central

    Derenko, Miroslava; Malyarchuk, Boris; Denisova, Galina; Perkova, Maria; Rogalla, Urszula; Grzybowski, Tomasz; Khusnutdinova, Elza; Dambueva, Irina; Zakharov, Ilia

    2012-01-01

    With the aim of uncovering all of the most basal variation in the northern Asian mitochondrial DNA (mtDNA) haplogroups, we have analyzed mtDNA control region and coding region sequence variation in 98 Altaian Kazakhs from southern Siberia and 149 Barghuts from Inner Mongolia, China. Both populations exhibit the prevalence of eastern Eurasian lineages accounting for 91.9% in Barghuts and 60.2% in Altaian Kazakhs. The strong affinity of Altaian Kazakhs and populations of northern and central Asia has been revealed, reflecting both influences of central Asian inhabitants and essential genetic interaction with the Altai region indigenous populations. Statistical analyses data demonstrate a close positioning of all Mongolic-speaking populations (Mongolians, Buryats, Khamnigans, Kalmyks as well as Barghuts studied here) and Turkic-speaking Sojots, thus suggesting their origin from a common maternal ancestral gene pool. In order to achieve a thorough coverage of DNA lineages revealed in the northern Asian matrilineal gene pool, we have completely sequenced the mtDNA of 55 samples representing haplogroups R11b, B4, B5, F2, M9, M10, M11, M13, N9a and R9c1, which were pinpointed from a massive collection (over 5000 individuals) of northern and eastern Asian, as well as European control region mtDNA sequences. Applying the newly updated mtDNA tree to the previously reported northern Asian and eastern Asian mtDNA data sets has resolved the status of the poorly classified mtDNA types and allowed us to obtain the coalescence age estimates of the nodes of interest using different calibrated rates. Our findings confirm our previous conclusion that northern Asian maternal gene pool consists of predominantly post-LGM components of eastern Asian ancestry, though some genetic lineages may have a pre-LGM/LGM origin. PMID:22363811

  11. Phylogeographic Analysis of Mitochondrial DNA in Northern Asian Populations

    PubMed Central

    Derenko, Miroslava ; Malyarchuk, Boris ; Grzybowski, Tomasz ; Denisova, Galina ; Dambueva, Irina ; Perkova, Maria ; Dorzhu, Choduraa ; Luzina, Faina ; Lee, Hong Kyu ; Vanecek, Tomas ; Villems, Richard ; Zakharov, Ilia 

    2007-01-01

    To elucidate the human colonization process of northern Asia and human dispersals to the Americas, a diverse subset of 71 mitochondrial DNA (mtDNA) lineages was chosen for complete genome sequencing from the collection of 1,432 control-region sequences sampled from 18 autochthonous populations of northern, central, eastern, and southwestern Asia. On the basis of complete mtDNA sequencing, we have revised the classification of haplogroups A, D2, G1, M7, and I; identified six new subhaplogroups (I4, N1e, G1c, M7d, M7e, and J1b2a); and fully characterized haplogroups N1a and G1b, which were previously described only by the first hypervariable segment (HVS1) sequencing and coding-region restriction-fragment–length polymorphism analysis. Our findings indicate that the southern Siberian mtDNA pool harbors several lineages associated with the Late Upper Paleolithic and/or early Neolithic dispersals from both eastern Asia and southwestern Asia/southern Caucasus. Moreover, the phylogeography of the D2 lineages suggests that southern Siberia is likely to be a geographical source for the last postglacial maximum spread of this subhaplogroup to northern Siberia and that the expansion of the D2b branch occurred in Beringia ∼7,000 years ago. In general, a detailed analysis of mtDNA gene pools of northern Asians provides the additional evidence to rule out the existence of a northern Asian route for the initial human colonization of Asia. PMID:17924343

  12. Phylogeographic analysis of mitochondrial DNA in northern Asian populations.

    PubMed

    Derenko, Miroslava; Malyarchuk, Boris; Grzybowski, Tomasz; Denisova, Galina; Dambueva, Irina; Perkova, Maria; Dorzhu, Choduraa; Luzina, Faina; Lee, Hong Kyu; Vanecek, Tomas; Villems, Richard; Zakharov, Ilia

    2007-11-01

    To elucidate the human colonization process of northern Asia and human dispersals to the Americas, a diverse subset of 71 mitochondrial DNA (mtDNA) lineages was chosen for complete genome sequencing from the collection of 1,432 control-region sequences sampled from 18 autochthonous populations of northern, central, eastern, and southwestern Asia. On the basis of complete mtDNA sequencing, we have revised the classification of haplogroups A, D2, G1, M7, and I; identified six new subhaplogroups (I4, N1e, G1c, M7d, M7e, and J1b2a); and fully characterized haplogroups N1a and G1b, which were previously described only by the first hypervariable segment (HVS1) sequencing and coding-region restriction-fragment-length polymorphism analysis. Our findings indicate that the southern Siberian mtDNA pool harbors several lineages associated with the Late Upper Paleolithic and/or early Neolithic dispersals from both eastern Asia and southwestern Asia/southern Caucasus. Moreover, the phylogeography of the D2 lineages suggests that southern Siberia is likely to be a geographical source for the last postglacial maximum spread of this subhaplogroup to northern Siberia and that the expansion of the D2b branch occurred in Beringia ~7,000 years ago. In general, a detailed analysis of mtDNA gene pools of northern Asians provides the additional evidence to rule out the existence of a northern Asian route for the initial human colonization of Asia.

  13. Technical adequacy of bisulfite sequencing and pyrosequencing for detection of mitochondrial DNA methylation: Sources and avoidance of false-positive detection.

    PubMed

    Owa, Chie; Poulin, Matthew; Yan, Liying; Shioda, Toshi

    2018-01-01

    The existence of cytosine methylation in mammalian mitochondrial DNA (mtDNA) is a controversial subject. Because detection of DNA methylation depends on resistance of 5'-modified cytosines to bisulfite-catalyzed conversion to uracil, examined parameters that affect technical adequacy of mtDNA methylation analysis. Negative control amplicons (NCAs) devoid of cytosine methylation were amplified to cover the entire human or mouse mtDNA by long-range PCR. When the pyrosequencing template amplicons were gel-purified after bisulfite conversion, bisulfite pyrosequencing of NCAs did not detect significant levels of bisulfite-resistant cytosines (brCs) at ND1 (7 CpG sites) or CYTB (8 CpG sites) genes (CI95 = 0%-0.94%); without gel-purification, significant false-positive brCs were detected from NCAs (CI95 = 4.2%-6.8%). Bisulfite pyrosequencing of highly purified, linearized mtDNA isolated from human iPS cells or mouse liver detected significant brCs (~30%) in human ND1 gene when the sequencing primer was not selective in bisulfite-converted and unconverted templates. However, repeated experiments using a sequencing primer selective in bisulfite-converted templates almost completely (< 0.8%) suppressed brC detection, supporting the false-positive nature of brCs detected using the non-selective primer. Bisulfite-seq deep sequencing of linearized, gel-purified human mtDNA detected 9.4%-14.8% brCs for 9 CpG sites in ND1 gene. However, because all these brCs were associated with adjacent non-CpG brCs showing the same degrees of bisulfite resistance, DNA methylation in this mtDNA-encoded gene was not confirmed. Without linearization, data generated by bisulfite pyrosequencing or deep sequencing of purified mtDNA templates did not pass the quality control criteria. Shotgun bisulfite sequencing of human mtDNA detected extremely low levels of CpG methylation (<0.65%) over non-CpG methylation (<0.55%). Taken together, our study demonstrates that adequacy of mtDNA methylation analysis using methods dependent on bisulfite conversion needs to be established for each experiment, taking effects of incomplete bisulfite conversion and template impurity or topology into consideration.

  14. The mitochondrial genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao.

    PubMed

    Costa, Gustavo G L; Cabrera, Odalys G; Tiburcio, Ricardo A; Medrano, Francisco J; Carazzolle, Marcelo F; Thomazella, Daniela P T; Schuster, Stephen C; Carlson, John E; Guiltinan, Mark J; Bailey, Bryan A; Mieczkowski, Piotr; Pereira, Gonçalo A G; Meinhardt, Lyndel W

    2012-05-01

    In this study, we report the sequence of the mitochondrial (mt) genome of the Basidiomycete fungus Moniliophthora roreri, which is the etiologic agent of frosty pod rot of cacao (Theobroma cacao L.). We also compare it to the mtDNA from the closely-related species Moniliophthora perniciosa, which causes witches' broom disease of cacao. The 94 Kb mtDNA genome of M. roreri has a circular topology and codes for the typical 14 mt genes involved in oxidative phosphorylation. It also codes for both rRNA genes, a ribosomal protein subunit, 13 intronic open reading frames (ORFs), and a full complement of 27 tRNA genes. The conserved genes of M. roreri mtDNA are completely syntenic with homologous genes of the 109 Kb mtDNA of M. perniciosa. As in M. perniciosa, M. roreri mtDNA contains a high number of hypothetical ORFs (28), a remarkable feature that make Moniliophthoras the largest reservoir of hypothetical ORFs among sequenced fungal mtDNA. Additionally, the mt genome of M. roreri has three free invertron-like linear mt plasmids, one of which is very similar to that previously described as integrated into the main M. perniciosa mtDNA molecule. Moniliophthora roreri mtDNA also has a region of suspected plasmid origin containing 15 hypothetical ORFs distributed in both strands. One of these ORFs is similar to an ORF in the mtDNA gene encoding DNA polymerase in Pleurotus ostreatus. The comparison to M. perniciosa showed that the 15 Kb difference in mtDNA sizes is mainly attributed to a lower abundance of repetitive regions in M. roreri (5.8 Kb vs 20.7 Kb). The most notable differences between M. roreri and M. perniciosa mtDNA are attributed to repeats and regions of plasmid origin. These elements might have contributed to the rapid evolution of mtDNA. Since M. roreri is the second species of the genus Moniliophthora whose mtDNA genome has been sequenced, the data presented here contribute valuable information for understanding the evolution of fungal mt genomes among closely-related species. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  15. Population and forensic genetic analyses of mitochondrial DNA control region variation from six major provinces in the Korean population.

    PubMed

    Hong, Seung Beom; Kim, Ki Cheol; Kim, Wook

    2015-07-01

    We generated complete mitochondrial DNA (mtDNA) control region sequences from 704 unrelated individuals residing in six major provinces in Korea. In addition to our earlier survey of the distribution of mtDNA haplogroup variation, a total of 560 different haplotypes characterized by 271 polymorphic sites were identified, of which 473 haplotypes were unique. The gene diversity and random match probability were 0.9989 and 0.0025, respectively. According to the pairwise comparison of the 704 control region sequences, the mean number of pairwise differences between individuals was 13.47±6.06. Based on the result of mtDNA control region sequences, pairwise FST genetic distances revealed genetic homogeneity of the Korean provinces on a peninsular level, except in samples from Jeju Island. This result indicates there may be a need to formulate a local mtDNA database for Jeju Island, to avoid bias in forensic parameter estimates caused by genetic heterogeneity of the population. Thus, the present data may help not only in personal identification but also in determining maternal lineages to provide an expanded and reliable Korean mtDNA database. These data will be available on the EMPOP database via accession number EMP00661. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. An integrated pipeline for next generation sequencing and annotation of the complete mitochondrial genome of the giant intestinal fluke, Fasciolopsis buski (Lankester, 1857) Looss, 1899

    PubMed Central

    Biswal, Devendra Kumar; Ghatani, Sudeep; Shylla, Jollin A.; Sahu, Ranjana; Mullapudi, Nandita

    2013-01-01

    Helminths include both parasitic nematodes (roundworms) and platyhelminths (trematode and cestode flatworms) that are abundant, and are of clinical importance. The genetic characterization of parasitic flatworms using advanced molecular tools is central to the diagnosis and control of infections. Although the nuclear genome houses suitable genetic markers (e.g., in ribosomal (r) DNA) for species identification and molecular characterization, the mitochondrial (mt) genome consistently provides a rich source of novel markers for informative systematics and epidemiological studies. In the last decade, there have been some important advances in mtDNA genomics of helminths, especially lung flukes, liver flukes and intestinal flukes. Fasciolopsis buski, often called the giant intestinal fluke, is one of the largest digenean trematodes infecting humans and found primarily in Asia, in particular the Indian subcontinent. Next-generation sequencing (NGS) technologies now provide opportunities for high throughput sequencing, assembly and annotation within a short span of time. Herein, we describe a high-throughput sequencing and bioinformatics pipeline for mt genomics for F. buski that emphasizes the utility of short read NGS platforms such as Ion Torrent and Illumina in successfully sequencing and assembling the mt genome using innovative approaches for PCR primer design as well as assembly. We took advantage of our NGS whole genome sequence data (unpublished so far) for F. buski and its comparison with available data for the Fasciola hepatica mtDNA as the reference genome for design of precise and specific primers for amplification of mt genome sequences from F. buski. A long-range PCR was carried out to create an NGS library enriched in mt DNA sequences. Two different NGS platforms were employed for complete sequencing, assembly and annotation of the F. buski mt genome. The complete mt genome sequences of the intestinal fluke comprise 14,118 bp and is thus the shortest trematode mitochondrial genome sequenced to date. The noncoding control regions are separated into two parts by the tRNA-Gly gene and don’t contain either tandem repeats or secondary structures, which are typical for trematode control regions. The gene content and arrangement are identical to that of F. hepatica. The F. buski mtDNA genome has a close resemblance with F. hepatica and has a similar gene order tallying with that of other trematodes. The mtDNA for the intestinal fluke is reported herein for the first time by our group that would help investigate Fasciolidae taxonomy and systematics with the aid of mtDNA NGS data. More so, it would serve as a resource for comparative mitochondrial genomics and systematic studies of trematode parasites. PMID:24255820

  17. New progress in snake mitochondrial gene rearrangement.

    PubMed

    Chen, Nian; Zhao, Shujin

    2009-08-01

    To further understand the evolution of snake mitochondrial genomes, the complete mitochondrial DNA (mtDNA) sequences were determined for representative species from two snake families: the Many-banded krait, the Banded krait, the Chinese cobra, the King cobra, the Hundred-pace viper, the Short-tailed mamushi, and the Chain viper. Thirteen protein-coding genes, 22-23 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNAPro gene were two notable features of the snake mtDNAs. These results from the gene rearrangement comparisons confirm the correctness of traditional classification schemes and validate the utility of comparing complete mtDNA sequences for snake phylogeny reconstruction.

  18. Ovine mitochondrial DNA sequence variation and its association with production and reproduction traits within an Afec-Assaf flock.

    PubMed

    Reicher, S; Seroussi, E; Weller, J I; Rosov, A; Gootwine, E

    2012-07-01

    Polymorphisms in mitochondrial DNA (mtDNA) protein- and tRNA-coding genes were shown to be associated with various diseases in humans as well as with production and reproduction traits in livestock. Alignment of full length mitochondria sequences from the 5 known ovine haplogroups: HA (n = 3), HB (n = 5), HC (n = 3), HD (n = 2), and HE (n = 2; GenBank accession nos. HE577847-50 and 11 published complete ovine mitochondria sequences) revealed sequence variation in 10 out of the 13 protein coding mtDNA sequences. Twenty-six of the 245 variable sites found in the protein coding sequences represent non-synonymous mutations. Sequence variation was observed also in 8 out of the 22 tRNA mtDNA sequences. On the basis of the mtDNA control region and cytochrome b partial sequences along with information on maternal lineages within an Afec-Assaf flock, 1,126 Afec-Assaf ewes were assigned to mitochondrial haplogroups HA, HB, and HC, with frequencies of 0.43, 0.43, and 0.14, respectively. Analysis of birth weight and growth rate records of lamb (n = 1286) and productivity from 4,993 lambing records revealed no association between mitochondrial haplogroup affiliation and female longevity, lambs perinatal survival rate, birth weight, and daily growth rate of lambs up to 150 d that averaged 1,664 d, 88.3%, 4.5 kg, and 320 g/d, respectively. However, significant (P < 0.0001) differences among the haplogroups were found for prolificacy of ewes, with prolificacies (mean ± SE) of 2.14 ± 0.04, 2.25 ± 0.04, and 2.30 ± 0.06 lamb born/ewe lambing for the HA, HB, and the HC haplogroups, respectively. Our results highlight the ovine mitogenome genetic variation in protein- and tRNA coding genes and suggest that sequence variation in ovine mtDNA is associated with variation in ewe prolificacy.

  19. The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).

    PubMed

    Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis.

  20. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: Insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2002-01-01

    The land plants and their immediate green algal ancestors, the charophytes, form the Streptophyta. There is evidence that both the chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) underwent substantial changes in their architecture (intron insertions, gene losses, scrambling in gene order, and genome expansion in the case of mtDNA) during the evolution of streptophytes; however, because no charophyte organelle DNAs have been sequenced completely thus far, the suite of events that shaped streptophyte organelle genomes remains largely unknown. Here, we have determined the complete cpDNA (131,183 bp) and mtDNA (56,574 bp) sequences of the charophyte Chaetosphaeridium globosum (Coleochaetales). At the levels of gene content (124 genes), intron composition (18 introns), and gene order, Chaetosphaeridium cpDNA is remarkably similar to land-plant cpDNAs, implying that most of the features characteristic of land-plant lineages were gained during the evolution of charophytes. Although the gene content of Chaetosphaeridium mtDNA (67 genes) closely resembles that of the bryophyte Marchantia polymorpha (69 genes), this charophyte mtDNA differs substantially from its land-plant relatives at the levels of size, intron composition (11 introns), and gene order. Our finding that it shares only one intron with its land-plant counterparts supports the idea that the vast majority of mitochondrial introns in land plants appeared after the emergence of these organisms. Our results also suggest that the events accounting for the spacious intergenic spacers found in land-plant mtDNAs took place late during the evolution of charophytes or coincided with the transition from charophytes to land plants. PMID:12161560

  1. Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants

    PubMed Central

    2014-01-01

    Background Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related species and resolving phylogenetic relationships at different taxonomic levels. Methods In the present study, the complete mitochondrial (mt) genomes of N. oiratianus and N. spathiger from small ruminants in China were obtained using Long-range PCR and sequencing. Results The complete mt genomes of N. oiratianus and N. spathiger were 13,765 bp and 13,519 bp in length, respectively. Both mt genomes were circular and consisted of 36 genes, including 12 genes encoding proteins, 2 genes encoding rRNA, and 22 genes encoding tRNA. Phylogenetic analyses based on the concatenated amino acid sequence data of all 12 protein-coding genes by Bayesian inference (BI), Maximum likelihood (ML) and Maximum parsimony (MP) showed that the two Nematodirus species (Molineidae) were closely related to Dictyocaulidae. Conclusions The availability of the complete mtDNA sequences of N. oiratianus and N. spathiger not only provides new mtDNA sources for a better understanding of nematode mt genomics and phylogeny, but also provides novel and useful genetic markers for studying diagnosis, population genetics and molecular epidemiology of Nematodirus spp. in small ruminants. PMID:25015379

  2. Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants.

    PubMed

    Zhao, Guang-Hui; Jia, Yan-Qing; Cheng, Wen-Yu; Zhao, Wen; Bian, Qing-Qing; Liu, Guo-Hua

    2014-07-11

    Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related species and resolving phylogenetic relationships at different taxonomic levels. In the present study, the complete mitochondrial (mt) genomes of N. oiratianus and N. spathiger from small ruminants in China were obtained using Long-range PCR and sequencing. The complete mt genomes of N. oiratianus and N. spathiger were 13,765 bp and 13,519 bp in length, respectively. Both mt genomes were circular and consisted of 36 genes, including 12 genes encoding proteins, 2 genes encoding rRNA, and 22 genes encoding tRNA. Phylogenetic analyses based on the concatenated amino acid sequence data of all 12 protein-coding genes by Bayesian inference (BI), Maximum likelihood (ML) and Maximum parsimony (MP) showed that the two Nematodirus species (Molineidae) were closely related to Dictyocaulidae. The availability of the complete mtDNA sequences of N. oiratianus and N. spathiger not only provides new mtDNA sources for a better understanding of nematode mt genomics and phylogeny, but also provides novel and useful genetic markers for studying diagnosis, population genetics and molecular epidemiology of Nematodirus spp. in small ruminants.

  3. Phylogeny and temporal diversification of darters (Percidae: Etheostomatinae).

    PubMed

    Near, Thomas J; Bossu, Christen M; Bradburd, Gideon S; Carlson, Rose L; Harrington, Richard C; Hollingsworth, Phillip R; Keck, Benjamin P; Etnier, David A

    2011-10-01

    Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.

  4. Nonneutral mitochondrial DNA variation in humans and chimpanzees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachman, M.W.; Aquadro, C.F.; Brown, W.M.

    1996-03-01

    We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions.more » We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases. 59 refs., 2 figs., 8 tabs.« less

  5. From cheek swabs to consensus sequences: an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomes

    PubMed Central

    2014-01-01

    Background Next-generation DNA sequencing (NGS) technologies have made huge impacts in many fields of biological research, but especially in evolutionary biology. One area where NGS has shown potential is for high-throughput sequencing of complete mtDNA genomes (of humans and other animals). Despite the increasing use of NGS technologies and a better appreciation of their importance in answering biological questions, there remain significant obstacles to the successful implementation of NGS-based projects, especially for new users. Results Here we present an ‘A to Z’ protocol for obtaining complete human mitochondrial (mtDNA) genomes – from DNA extraction to consensus sequence. Although designed for use on humans, this protocol could also be used to sequence small, organellar genomes from other species, and also nuclear loci. This protocol includes DNA extraction, PCR amplification, fragmentation of PCR products, barcoding of fragments, sequencing using the 454 GS FLX platform, and a complete bioinformatics pipeline (primer removal, reference-based mapping, output of coverage plots and SNP calling). Conclusions All steps in this protocol are designed to be straightforward to implement, especially for researchers who are undertaking next-generation sequencing for the first time. The molecular steps are scalable to large numbers (hundreds) of individuals and all steps post-DNA extraction can be carried out in 96-well plate format. Also, the protocol has been assembled so that individual ‘modules’ can be swapped out to suit available resources. PMID:24460871

  6. [Whole Genome Sequencing of Human mtDNA Based on Ion Torrent PGM™ Platform].

    PubMed

    Cao, Y; Zou, K N; Huang, J P; Ma, K; Ping, Y

    2017-08-01

    To analyze and detect the whole genome sequence of human mitochondrial DNA (mtDNA) by Ion Torrent PGM™ platform and to study the differences of mtDNA sequence in different tissues. Samples were collected from 6 unrelated individuals by forensic postmortem examination, including chest blood, hair, costicartilage, nail, skeletal muscle and oral epithelium. Amplification of whole genome sequence of mtDNA was performed by 4 pairs of primer. Libraries were constructed with Ion Shear™ Plus Reagents kit and Ion Plus Fragment Library kit. Whole genome sequencing of mtDNA was performed using Ion Torrent PGM™ platform. Sanger sequencing was used to determine the heteroplasmy positions and the mutation positions on HVⅠ region. The whole genome sequence of mtDNA from all samples were amplified successfully. Six unrelated individuals belonged to 6 different haplotypes. Different tissues in one individual had heteroplasmy difference. The heteroplasmy positions and the mutation positions on HVⅠ region were verified by Sanger sequencing. After a consistency check by the Kappa method, it was found that the results of mtDNA sequence had a high consistency in different tissues. The testing method used in present study for sequencing the whole genome sequence of human mtDNA can detect the heteroplasmy difference in different tissues, which have good consistency. The results provide guidance for the further applications of mtDNA in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine

  7. Mitochondrial genetic diversity, selection and recombination in a canine transmissible cancer

    PubMed Central

    Strakova, Andrea; Ní Leathlobhair, Máire; Wang, Guo-Dong; Yin, Ting-Ting; Airikkala-Otter, Ilona; Allen, Janice L; Allum, Karen M; Bansse-Issa, Leontine; Bisson, Jocelyn L; Castillo Domracheva, Artemio; de Castro, Karina F; Corrigan, Anne M; Cran, Hugh R; Crawford, Jane T; Cutter, Stephen M; Delgadillo Keenan, Laura; Donelan, Edward M; Faramade, Ibikunle A; Flores Reynoso, Erika; Fotopoulou, Eleni; Fruean, Skye N; Gallardo-Arrieta, Fanny; Glebova, Olga; Häfelin Manrique, Rodrigo F; Henriques, Joaquim JGP; Ignatenko, Natalia; Koenig, Debbie; Lanza-Perea, Marta; Lobetti, Remo; Lopez Quintana, Adriana M; Losfelt, Thibault; Marino, Gabriele; Martincorena, Inigo; Martínez Castañeda, Simón; Martínez-López, Mayra F; Meyer, Michael; Nakanwagi, Berna; De Nardi, Andrigo B; Neunzig, Winifred; Nixon, Sally J; Onsare, Marsden M; Ortega-Pacheco, Antonio; Peleteiro, Maria C; Pye, Ruth J; Reece, John F; Rojas Gutierrez, Jose; Sadia, Haleema; Schmeling, Sheila K; Shamanova, Olga; Ssuna, Richard K; Steenland-Smit, Audrey E; Svitich, Alla; Thoya Ngoka, Ismail; Vițălaru, Bogdan A; de Vos, Anna P; de Vos, Johan P; Walkinton, Oliver; Wedge, David C; Wehrle-Martinez, Alvaro S; van der Wel, Mirjam G; Widdowson, Sophie AE; Murchison, Elizabeth P

    2016-01-01

    Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution. DOI: http://dx.doi.org/10.7554/eLife.14552.001 PMID:27185408

  8. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs?

    PubMed

    Noda, Aoi; Yonesaka, Riku; Sasazaki, Shinji; Mannen, Hideyuki

    2018-01-01

    Aurochs (Bos primigenius) were distributed throughout large parts of Eurasia and Northern Africa during the late Pleistocene and the early Holocene, and all modern cattle are derived from the aurochs. Although the mtDNA haplogroups of most modern cattle belong to haplogroups T and I, several additional haplogroups (P, Q, R, C and E) have been identified in modern cattle and aurochs. Haplogroup P was the most common haplogroup in European aurochs, but so far, it has been identified in only three of >3,000 submitted haplotypes of modern Asian cattle. We sequenced the complete mtDNA D-loop region of 181 Japanese Shorthorn cattle and analyzed these together with representative bovine mtDNA sequences. The haplotype P of Japanese Shorthorn cattle was analyzed along with that of 36 previously published European aurochs and three modern Asian cattle sequences using the hypervariable 410 bp of the D-loop region. We detected the mtDNA haplogroup P in Japanese Shorthorn cattle with an extremely high frequency (83/181). Phylogenetic networks revealed two main clusters, designated as Pa for haplogroup P in European aurochs and Pc in modern Asian cattle. We also report the genetic diversity of haplogroup P compared with the sequences of extinct aurochs. No shared haplotypes are observed between the European aurochs and the modern Asian cattle. This finding suggests the possibility of local and secondary introgression events of haplogroup P in northeast Asian cattle, and will contribute to a better understanding of its origin and genetic diversity.

  9. The mtDNA haplogroup P of modern Asian cattle: A genetic legacy of Asian aurochs?

    PubMed Central

    Noda, Aoi; Yonesaka, Riku; Sasazaki, Shinji

    2018-01-01

    Background Aurochs (Bos primigenius) were distributed throughout large parts of Eurasia and Northern Africa during the late Pleistocene and the early Holocene, and all modern cattle are derived from the aurochs. Although the mtDNA haplogroups of most modern cattle belong to haplogroups T and I, several additional haplogroups (P, Q, R, C and E) have been identified in modern cattle and aurochs. Haplogroup P was the most common haplogroup in European aurochs, but so far, it has been identified in only three of >3,000 submitted haplotypes of modern Asian cattle. Methodology We sequenced the complete mtDNA D-loop region of 181 Japanese Shorthorn cattle and analyzed these together with representative bovine mtDNA sequences. The haplotype P of Japanese Shorthorn cattle was analyzed along with that of 36 previously published European aurochs and three modern Asian cattle sequences using the hypervariable 410 bp of the D-loop region. Conclusions We detected the mtDNA haplogroup P in Japanese Shorthorn cattle with an extremely high frequency (83/181). Phylogenetic networks revealed two main clusters, designated as Pa for haplogroup P in European aurochs and Pc in modern Asian cattle. We also report the genetic diversity of haplogroup P compared with the sequences of extinct aurochs. No shared haplotypes are observed between the European aurochs and the modern Asian cattle. This finding suggests the possibility of local and secondary introgression events of haplogroup P in northeast Asian cattle, and will contribute to a better understanding of its origin and genetic diversity. PMID:29304129

  10. Development of forensic-quality full mtGenome haplotypes: success rates with low template specimens.

    PubMed

    Just, Rebecca S; Scheible, Melissa K; Fast, Spence A; Sturk-Andreaggi, Kimberly; Higginbotham, Jennifer L; Lyons, Elizabeth A; Bush, Jocelyn M; Peck, Michelle A; Ring, Joseph D; Diegoli, Toni M; Röck, Alexander W; Huber, Gabriela E; Nagl, Simone; Strobl, Christina; Zimmermann, Bettina; Parson, Walther; Irwin, Jodi A

    2014-05-01

    Forensic mitochondrial DNA (mtDNA) testing requires appropriate, high quality reference population data for estimating the rarity of questioned haplotypes and, in turn, the strength of the mtDNA evidence. Available reference databases (SWGDAM, EMPOP) currently include information from the mtDNA control region; however, novel methods that quickly and easily recover mtDNA coding region data are becoming increasingly available. Though these assays promise to both facilitate the acquisition of mitochondrial genome (mtGenome) data and maximize the general utility of mtDNA testing in forensics, the appropriate reference data and database tools required for their routine application in forensic casework are lacking. To address this deficiency, we have undertaken an effort to: (1) increase the large-scale availability of high-quality entire mtGenome reference population data, and (2) improve the information technology infrastructure required to access/search mtGenome data and employ them in forensic casework. Here, we describe the application of a data generation and analysis workflow to the development of more than 400 complete, forensic-quality mtGenomes from low DNA quantity blood serum specimens as part of a U.S. National Institute of Justice funded reference population databasing initiative. We discuss the minor modifications made to a published mtGenome Sanger sequencing protocol to maintain a high rate of throughput while minimizing manual reprocessing with these low template samples. The successful use of this semi-automated strategy on forensic-like samples provides practical insight into the feasibility of producing complete mtGenome data in a routine casework environment, and demonstrates that large (>2kb) mtDNA fragments can regularly be recovered from high quality but very low DNA quantity specimens. Further, the detailed empirical data we provide on the amplification success rates across a range of DNA input quantities will be useful moving forward as PCR-based strategies for mtDNA enrichment are considered for targeted next-generation sequencing workflows. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. The Phylogeny of the Four Pan-American MtDNA Haplogroups: Implications for Evolutionary and Disease Studies

    PubMed Central

    Achilli, Alessandro; Perego, Ugo A.; Bravi, Claudio M.; Coble, Michael D.; Kong, Qing-Peng; Woodward, Scott R.; Salas, Antonio; Torroni, Antonio; Bandelt, Hans-Jürgen

    2008-01-01

    Only a limited number of complete mitochondrial genome sequences belonging to Native American haplogroups were available until recently, which left America as the continent with the least amount of information about sequence variation of entire mitochondrial DNAs. In this study, a comprehensive overview of all available complete mitochondrial DNA (mtDNA) genomes of the four pan-American haplogroups A2, B2, C1, and D1 is provided by revising the information scattered throughout GenBank and the literature, and adding 14 novel mtDNA sequences. The phylogenies of haplogroups A2, B2, C1, and D1 reveal a large number of sub-haplogroups but suggest that the ancestral Beringian population(s) contributed only six (successful) founder haplotypes to these haplogroups. The derived clades are overall starlike with coalescence times ranging from 18,000 to 21,000 years (with one exception) using the conventional calibration. The average of about 19,000 years somewhat contrasts with the corresponding lower age of about 13,500 years that was recently proposed by employing a different calibration and estimation approach. Our estimate indicates a human entry and spread of the pan-American haplogroups into the Americas right after the peak of the Last Glacial Maximum and comfortably agrees with the undisputed ages of the earliest Paleoindians in South America. In addition, the phylogenetic approach also indicates that the pathogenic status proposed for various mtDNA mutations, which actually define branches of Native American haplogroups, was based on insufficient grounds. PMID:18335039

  12. Evidence for recombination in scorpion mitochondrial DNA (Scorpiones: Buthidae).

    PubMed

    Gantenbein, Benjamin; Fet, Victor; Gantenbein-Ritter, Iris A; Balloux, François

    2005-04-07

    There has been very little undisputed evidence for recombination in animal mitochondrial DNA (mtDNA) provided so far. Previous unpublished results suggestive of mtDNA recombination in the scorpion family Buthidae, together with cytological evidence for a unique mechanism of mitochondrial fusion in that family, prompted us to investigate this group in more details. First, we sequenced the complete mtDNA genome of Mesobuthus gibbosus, and chose two genes opposing each other (16S and coxI). We then sequenced 150 individuals from the natural populations of four species of Buthidae (Old World genera Buthus and Mesobuthus). We observed strong evidence for widespread recombination through highly significant negative correlations between linkage disequilibrium and physical distance in three out of four species. The evidence is further confirmed when using five other tests for recombination and by the presence of a high amount of homoplasy in phylogenetic trees.

  13. Complete mitochondrial DNA sequence of the Eastern keelback mullet Liza affinis.

    PubMed

    Gong, Xiaoling; Zhu, Wenjia; Bao, Baolong

    2016-05-01

    Eastern keelback mullet (Liza affinis) inhabits inlet waters and estuaries of rivers. In this paper, we initially determined the complete mitochondrial genome of Liza affinis. The entire mtDNA sequence is 16,831 bp in length, including 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes and 1 putative control region. Its order and numbers of genes are similar to most bony fishes.

  14. The complete mitochondrial genome of an 11,450-year-old aurochsen (Bos primigenius) from Central Italy.

    PubMed

    Lari, Martina; Rizzi, Ermanno; Mona, Stefano; Corti, Giorgio; Catalano, Giulio; Chen, Kefei; Vernesi, Cristiano; Larson, Greger; Boscato, Paolo; De Bellis, Gianluca; Cooper, Alan; Caramelli, David; Bertorelle, Giorgio

    2011-01-31

    Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments--namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins.

  15. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    PubMed

    Easton, R D; Merriwether, D A; Crews, D E; Ferrell, R E

    1996-07-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types.

  16. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    PubMed Central

    Easton, R. D.; Merriwether, D. A.; Crews, D. E.; Ferrell, R. E.

    1996-01-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types. PMID:8659527

  17. Genetic analysis of 7 medieval skeletons from Aragonese Pyrenees

    PubMed Central

    Núńez, Carolina; Sosa, Cecilia; Baeta, Miriam; Geppert, Maria; Turnbough, Meredith; Phillips, Nicole; Casalod, Yolanda; Bolea, Miguel; Roby, Rhonda; Budowle, Bruce; Martínez-Jarreta, Begońa

    2011-01-01

    Aim To perform a genetic characterization of 7 skeletons from medieval age found in a burial site in the Aragonese Pyrenees. Methods Allele frequencies of autosomal short tandem repeats (STR) loci were determined by 3 different STR systems. Mitochondrial DNA (mtDNA) and Y-chromosome haplogroups were determined by sequencing of the hypervariable segment 1 of mtDNA and typing of phylogenetic Y chromosome single nucleotide polymorphisms (Y-SNP) markers, respectively. Possible familial relationships were also investigated. Results Complete or partial STR profiles were obtained in 3 of the 7 samples. Mitochondrial DNA haplogroup was determined in 6 samples, with 5 of them corresponding to the haplogroup H and 1 to the haplogroup U5a. Y-chromosome haplogroup was determined in 2 samples, corresponding to the haplogroup R. In one of them, the sub-branch R1b1b2 was determined. mtDNA sequences indicated that some of the individuals could be maternally related, while STR profiles indicated no direct family relationships. Conclusions Despite the antiquity of the samples and great difficulty that genetic analyses entail, the combined use of autosomal STR markers, Y-chromosome informative SNPs, and mtDNA sequences allowed us to genotype a group of skeletons from the medieval age. PMID:21674829

  18. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts

    PubMed Central

    Langkjær, R. B.; Casaregola, S.; Ussery, D. W.; Gaillardin, C.; Piškur, J.

    2003-01-01

    The complete sequences of mitochondrial DNA (mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S.cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S.cerevisiae mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S.servazzii contain, in total, five +1 frameshifts. mtDNAs of S.castellii, S.servazzii and S.cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order is very different. Several gene rearrangements have taken place upon separation of the Saccharomyces lineages, and even a part of the transcription units have not been preserved. It seems that the mechanism(s) involved in the generation of the rearrangements has had to ensure that all genes stayed encoded by the same DNA strand. PMID:12799436

  19. Fine Dissection of Human Mitochondrial DNA Haplogroup HV Lineages Reveals Paleolithic Signatures from European Glacial Refugia

    PubMed Central

    Sarno, Stefania; Sevini, Federica; Vianello, Dario; Tamm, Erika; Metspalu, Ene; van Oven, Mannis; Hübner, Alexander; Sazzini, Marco; Franceschi, Claudio; Pettener, Davide; Luiselli, Donata

    2015-01-01

    Genetic signatures from the Paleolithic inhabitants of Eurasia can be traced from the early divergent mitochondrial DNA lineages still present in contemporary human populations. Previous studies already suggested a pre-Neolithic diffusion of mitochondrial haplogroup HV*(xH,V) lineages, a relatively rare class of mtDNA types that includes parallel branches mainly distributed across Europe and West Asia with a certain degree of structure. Up till now, variation within haplogroup HV was addressed mainly by analyzing sequence data from the mtDNA control region, except for specific sub-branches, such as HV4 or the widely distributed haplogroups H and V. In this study, we present a revised HV topology based on full mtDNA genome data, and we include a comprehensive dataset consisting of 316 complete mtDNA sequences including 60 new samples from the Italian peninsula, a previously underrepresented geographic area. We highlight points of instability in the particular topology of this haplogroup, reconstructed with BEAST-generated trees and networks. We also confirm a major lineage expansion that probably followed the Late Glacial Maximum and preceded Neolithic population movements. We finally observe that Italy harbors a reservoir of mtDNA diversity, with deep-rooting HV lineages often related to sequences present in the Caucasus and the Middle East. The resulting hypothesis of a glacial refugium in Southern Italy has implications for the understanding of late Paleolithic population movements and is discussed within the archaeological cultural shifts occurred over the entire continent. PMID:26640946

  20. Complete Sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: Gene arrangements indicate that platyhelminths are eutrochozoans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Nickisch-Rosenegk, Markus; Brown, Wesley M.; Boore, Jeffrey L.

    2001-01-01

    Using ''long-PCR'' we have amplified in overlapping fragments the complete mitochondrial genome of the tapeworm Hymenolepis diminuta (Platyhelminthes: Cestoda) and determined its 13,900 nucleotide sequence. The gene content is the same as that typically found for animal mitochondrial DNA (mtDNA) except that atp8 appears to be lacking, a condition found previously for several other animals. Despite the small size of this mtDNA, there are two large non-coding regions, one of which contains 13 repeats of a 31 nucleotide sequence and a potential stem-loop structure of 25 base pairs with an 11-member loop. Large potential secondary structures are identified also formore » the non-coding regions of two other cestode mtDNAs. Comparison of the mitochondrial gene arrangement of H. diminuta with those previously published supports a phylogenetic position of flatworms as members of the Eutrochozoa, rather than being basal to either a clade of protostomes or a clade of coelomates.« less

  1. Alcohol consumption and breast tumor mitochondrial DNA mutations.

    PubMed

    Platek, Mary E; Shields, Peter G; Tan, Duanjun; Marian, Catalin; Bonner, Matthew R; McCann, Susan E; Nie, Jing; Wilding, Gregory E; Ambrosone, Christine; Millen, Amy E; Trevisan, Maurizio; Russell, Marcia; Nochajski, Thomas H; Edge, Stephen B; Winston, Janet; Freudenheim, Jo L

    2010-06-01

    Mitochondrial DNA (mtDNA) mutations are frequent in breast tumors, but the etiology of these mutations is unknown. We hypothesized that these mutations are associated with exposures that affect oxidative stress such as alcohol metabolism. Using archived tumor blocks from incident breast cancer cases in a case control study, the Western New York Exposures and Breast Cancer (WEB) study, analysis of mtDNA mutations was conducted on 128 breast cancer cases selected based on extremes of alcohol intake. Temporal temperature gradient gel electrophoresis (TTGE) was used to screen the entire mtDNA genome and sequencing was completed for all TTGE positive samples. Case-case comparisons were completed using unconditional logistic regression to determine the relative prevalence of the mutations by exposures including alcohol consumption, manganese superoxide dismutase (MnSOD) genotype, nutrient intake related to oxidative stress and established breast cancer risk factors. Somatic mtDNA mutations were found in 60 of the 128 tumors examined. There were no differences in the prevalence of mtDNA mutations by alcohol consumption, MnSOD genotype or dietary intake. The likelihood of mtDNA mutations was reduced among those with a positive family history for breast cancer (OR = 0.33, CI = 0.12-0.92), among postmenopausal women who used hormone replacement therapy (OR = 0.46, CI = 0.19-1.08, P = 0.08) and was increased for ER negative tumors (OR = 2.05, CI = 0.95-4.43, P = 0.07). Consistent with previous studies, we found that mtDNA mutations are a frequent occurrence in breast tumors. An understanding of the etiology of mtDNA mutations may provide insight into breast carcinogenesis.

  2. Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi.

    PubMed

    Nadimi, Maryam; Daubois, Laurence; Hijri, Mohamed

    2016-05-01

    Mitochondrial (mt) genes, such as cytochrome C oxidase genes (cox), have been widely used for barcoding in many groups of organisms, although this approach has been less powerful in the fungal kingdom due to the rapid evolution of their mt genomes. The use of mt genes in phylogenetic studies of Dikarya has been met with success, while early diverging fungal lineages remain less studied, particularly the arbuscular mycorrhizal fungi (AMF). Advances in next-generation sequencing have substantially increased the number of publically available mtDNA sequences for the Glomeromycota. As a result, comparison of mtDNA across key AMF taxa can now be applied to assess the phylogenetic signal of individual mt coding genes, as well as concatenated subsets of coding genes. Here we show comparative analyses of publically available mt genomes of Glomeromycota, augmented with two mtDNA genomes that were newly sequenced for this study (Rhizophagus irregularis DAOM240159 and Glomus aggregatum DAOM240163), resulting in 16 complete mtDNA datasets. R. irregularis isolate DAOM240159 and G. aggregatum isolate DAOM240163 showed mt genomes measuring 72,293bp and 69,505bp with G+C contents of 37.1% and 37.3%, respectively. We assessed the phylogenies inferred from single mt genes and complete sets of coding genes, which are referred to as "supergenes" (16 concatenated coding genes), using Shimodaira-Hasegawa tests, in order to identify genes that best described AMF phylogeny. We found that rnl, nad5, cox1, and nad2 genes, as well as concatenated subset of these genes, provided phylogenies that were similar to the supergene set. This mitochondrial genomic analysis was also combined with principal coordinate and partitioning analyses, which helped to unravel certain evolutionary relationships in the Rhizophagus genus and for G. aggregatum within the Glomeromycota. We showed evidence to support the position of G. aggregatum within the R. irregularis 'species complex'. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Genetic Diversity and Phylogenetic Analysis of South-East Asian Duck Populations Based on the mtDNA D-loop Sequences

    PubMed Central

    Sultana, H.; Seo, D. W.; Bhuiyan, M. S. A.; Choi, N. R.; Hoque, M. R.; Heo, K. N.; Lee, J. H.

    2016-01-01

    The maternally inherited mitochondrial DNA (mtDNA) D–loop region is widely used for exploring genetic relationships and for investigating the origin of various animal species. Currently, domestic ducks play an important role in animal protein supply. In this study, partial mtDNA D–loop sequences were obtained from 145 samples belonging to six South-East Asian duck populations and commercial duck population. All these populations were closely related to the mallard duck (Anas platyrhynchos), as indicated by their mean overall genetic distance. Sixteen nucleotide substitutions were identified in sequence analyses allowing the distinction of 28 haplotypes. Around 42.76% of the duck sequences were classified as Hap_02, which completely matched with Anas platyrhynchos duck species. The neighbor-joining phylogenetic tree also revealed that South-East Asian duck populations were closely related to Anas platyrhynchos. Network profiles were also traced using the 28 haplotypes. Overall, results showed that those duck populations D-loop haplotypes were shared between several duck breeds from Korea and Bangladesh sub continental regions. Therefore, these results confirmed that South-East Asian domestic duck populations have been domesticated from Anas platyrhynchos duck as the maternal origins. PMID:27004808

  4. Widespread recombination in published animal mtDNA sequences.

    PubMed

    Tsaousis, A D; Martin, D P; Ladoukakis, E D; Posada, D; Zouros, E

    2005-04-01

    Mitochondrial DNA (mtDNA) recombination has been observed in several animal species, but there are doubts as to whether it is common or only occurs under special circumstances. Animal mtDNA sequences retrieved from public databases were unambiguously aligned and rigorously tested for evidence of recombination. At least 30 recombination events were detected among 186 alignments examined. Recombinant sequences were found in invertebrates and vertebrates, including primates. It appears that mtDNA recombination may occur regularly in the animal cell but rarely produces new haplotypes because of homoplasmy. Common animal mtDNA recombination would necessitate a reexamination of phylogenetic and biohistorical inference based on the assumption of clonal mtDNA transmission. Recombination may also have an important role in producing and purging mtDNA mutations and thus in mtDNA-based diseases and senescence.

  5. mtDNAmanager: a Web-based tool for the management and quality analysis of mitochondrial DNA control-region sequences

    PubMed Central

    Lee, Hwan Young; Song, Injee; Ha, Eunho; Cho, Sung-Bae; Yang, Woo Ick; Shin, Kyoung-Jin

    2008-01-01

    Background For the past few years, scientific controversy has surrounded the large number of errors in forensic and literature mitochondrial DNA (mtDNA) data. However, recent research has shown that using mtDNA phylogeny and referring to known mtDNA haplotypes can be useful for checking the quality of sequence data. Results We developed a Web-based bioinformatics resource "mtDNAmanager" that offers a convenient interface supporting the management and quality analysis of mtDNA sequence data. The mtDNAmanager performs computations on mtDNA control-region sequences to estimate the most-probable mtDNA haplogroups and retrieves similar sequences from a selected database. By the phased designation of the most-probable haplogroups (both expected and estimated haplogroups), mtDNAmanager enables users to systematically detect errors whilst allowing for confirmation of the presence of clear key diagnostic mutations and accompanying mutations. The query tools of mtDNAmanager also facilitate database screening with two options of "match" and "include the queried nucleotide polymorphism". In addition, mtDNAmanager provides Web interfaces for users to manage and analyse their own data in batch mode. Conclusion The mtDNAmanager will provide systematic routines for mtDNA sequence data management and analysis via easily accessible Web interfaces, and thus should be very useful for population, medical and forensic studies that employ mtDNA analysis. mtDNAmanager can be accessed at . PMID:19014619

  6. The Complete Mitochondrial Genome of an 11,450-year-old Aurochsen (Bos primigenius) from Central Italy

    PubMed Central

    2011-01-01

    Background Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. Results In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments - namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. Conclusions Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins. PMID:21281509

  7. Extreme-Depth Re-sequencing of Mitochondrial DNA Finds No Evidence of Paternal Transmission in Humans.

    PubMed

    Pyle, Angela; Hudson, Gavin; Wilson, Ian J; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F

    2015-05-01

    Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level.

  8. Extreme-Depth Re-sequencing of Mitochondrial DNA Finds No Evidence of Paternal Transmission in Humans

    PubMed Central

    Pyle, Angela; Hudson, Gavin; Wilson, Ian J.; Coxhead, Jonathan; Smertenko, Tania; Herbert, Mary; Santibanez-Koref, Mauro; Chinnery, Patrick F.

    2015-01-01

    Recent reports have questioned the accepted dogma that mammalian mitochondrial DNA (mtDNA) is strictly maternally inherited. In humans, the argument hinges on detecting a signature of inter-molecular recombination in mtDNA sequences sampled at the population level, inferring a paternal source for the mixed haplotypes. However, interpreting these data is fraught with difficulty, and direct experimental evidence is lacking. Using extreme-high depth mtDNA re-sequencing up to ~1.2 million-fold coverage, we find no evidence that paternal mtDNA haplotypes are transmitted to offspring in humans, thus excluding a simple dilution mechanism for uniparental transmission of mtDNA present in all healthy individuals. Our findings indicate that an active mechanism eliminates paternal mtDNA which likely acts at the molecular level. PMID:25973765

  9. Complete mitochondrial genome of the giant African snail, Achatina fulica (Mollusca: Achatinidae): a novel location of putative control regions (CR) in the mitogenome within Pulmonate species.

    PubMed

    He, Zhang-Ping; Dai, Xia-Bin; Zhang, Shuai; Zhi, Ting-Ting; Lun, Zhao-Rong; Wu, Zhong-Dao; Yang, Ting-Bao

    2016-01-01

    The whole sequence (15,057 bp) of the mitochondrial DNA (mtDNA) of the terrestrial snail Achatina fulica (order Stylommatophora) was determined. The mitogenome, as the typical metazoan mtDNA, contains 13 protein-coding genes (PCG), 2 ribosomal RNA genes (rRNA) and 22 transfer RNA genes (tRNA). The tRNA genes include two trnS without standard secondary structure. Interestingly, among the known mitogenomes of Pulmonata species, we firstly characterized an unassigned lengthy sequence (551 bp) between the cox1 and the trnV which may be the CR for the sake of its AT bases usage bias (65.70%) and potential hairpin structure.

  10. First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution.

    PubMed

    Smith, David Roy; Kayal, Ehsan; Yanagihara, Angel A; Collins, Allen G; Pirro, Stacy; Keeling, Patrick J

    2012-01-01

    Animal mitochondrial DNAs (mtDNAs) are typically single circular chromosomes, with the exception of those from medusozoan cnidarians (jellyfish and hydroids), which are linear and sometimes fragmented. Most medusozoans have linear monomeric or linear bipartite mitochondrial genomes, but preliminary data have suggested that box jellyfish (cubozoans) have mtDNAs that consist of many linear chromosomes. Here, we present the complete mtDNA sequence from the winged box jellyfish Alatina moseri (the first from a cubozoan). This genome contains unprecedented levels of fragmentation: 18 unique genes distributed over eight 2.9- to 4.6-kb linear chromosomes. The telomeres are identical within and between chromosomes, and recombination between subtelomeric sequences has led to many genes initiating or terminating with sequences from other genes (the most extreme case being 150 nt of a ribosomal RNA containing the 5' end of nad2), providing evidence for a gene conversion-based model of telomere evolution. The silent-site nucleotide variation within the A. moseri mtDNA is among the highest observed from a eukaryotic genome and may be associated with elevated rates of recombination.

  11. Background sequence characteristics influence the occurrence and severity of disease-causing mtDNA mutations

    PubMed Central

    Wei, Wei; Hudson, Gavin

    2017-01-01

    Inherited mitochondrial DNA (mtDNA) mutations have emerged as a common cause of human disease, with mutations occurring multiple times in the world population. The clinical presentation of three pathogenic mtDNA mutations is strongly associated with a background mtDNA haplogroup, but it is not clear whether this is limited to a handful of examples or is a more general phenomenon. To address this, we determined the characteristics of 30,506 mtDNA sequences sampled globally. After performing several quality control steps, we ascribed an established pathogenicity score to the major alleles for each sequence. The mean pathogenicity score for known disease-causing mutations was significantly different between mtDNA macro-haplogroups. Several mutations were observed across all haplogroup backgrounds, whereas others were only observed on specific clades. In some instances this reflected a founder effect, but in others, the mutation recurred but only within the same phylogenetic cluster. Sequence diversity estimates showed that disease-causing mutations were more frequent on young sequences, and genomes with two or more disease-causing mutations were more common than expected by chance. These findings implicate the mtDNA background more generally in recurrent mutation events that have been purified through natural selection in older populations. This provides an explanation for the low frequency of mtDNA disease reported in specific ethnic groups. PMID:29253894

  12. Complete sequence and analysis of the mitochondrial genome of Hemiselmis andersenii CCMP644 (Cryptophyceae).

    PubMed

    Kim, Eunsoo; Lane, Christopher E; Curtis, Bruce A; Kozera, Catherine; Bowman, Sharen; Archibald, John M

    2008-05-12

    Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote) endosymbiosis. Cryptophytes are unusual in that they possess four genomes-a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a approximately 20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22-336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu) gene and possesses a trnS-derived 'trnK(uuu)', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher-order eukaryotic lineages. Comparison of the H. andersenii and R. salina mitochondrial genomes reveals a number of cryptophyte-specific genomic features, most notably the presence of a large repeat-rich intergenic region. However, unlike R. salina, the H. andersenii mtDNA does not possess introns and lacks a Lys-tRNA, which is presumably imported from the cytosol.

  13. Complete Sequence and Analysis of the Mitochondrial Genome of Hemiselmis andersenii CCMP644 (Cryptophyceae)

    PubMed Central

    Kim, Eunsoo; Lane, Christopher E; Curtis, Bruce A; Kozera, Catherine; Bowman, Sharen; Archibald, John M

    2008-01-01

    Background Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote) endosymbiosis. Cryptophytes are unusual in that they possess four genomes–a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. Results The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a ~20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22–336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu) gene and possesses a trnS-derived 'trnK(uuu)', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher-order eukaryotic lineages. Conclusion Comparison of the H. andersenii and R. salina mitochondrial genomes reveals a number of cryptophyte-specific genomic features, most notably the presence of a large repeat-rich intergenic region. However, unlike R. salina, the H. andersenii mtDNA does not possess introns and lacks a Lys-tRNA, which is presumably imported from the cytosol. PMID:18474103

  14. More reliable estimates of divergence times in Pan using complete mtDNA sequences and accounting for population structure.

    PubMed

    Stone, Anne C; Battistuzzi, Fabia U; Kubatko, Laura S; Perry, George H; Trudeau, Evan; Lin, Hsiuman; Kumar, Sudhir

    2010-10-27

    Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human-chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1-1.5, 1.1-0.76 and 0.25-0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.

  15. Using mitochondrial DNA to test the hypothesis of a European post-glacial human recolonization from the Franco-Cantabrian refuge.

    PubMed

    García, O; Fregel, R; Larruga, J M; Álvarez, V; Yurrebaso, I; Cabrera, V M; González, A M

    2011-01-01

    It has been proposed that the distribution patterns and coalescence ages found in Europeans for mitochondrial DNA (mtDNA) haplogroups V, H1 and H3 are the result of a post-glacial expansion from a Franco-Cantabrian refuge that recolonized central and northern areas. In contrast, in this refined mtDNA study of the Cantabrian Cornice that contributes 413 partial and 9 complete new mtDNA sequences, including a large Basque sample and a sample of Asturians, no experimental evidence was found to support the human refuge-expansion theory. In fact, all measures of gene diversity point to the Cantabrian Cornice in general and the Basques in particular, as less polymorphic for V, H1 and H3 than other southern regions in Iberia or in Central Europe. Genetic distances show the Cantabrian Cornice is a very heterogeneous region with significant local differences. The analysis of several minor subhaplogroups, based on complete sequences, also suggests different focal expansions over a local and peninsular range that did not affect continental Europe. Furthermore, all detected clinal trends show stronger longitudinal than latitudinal profiles. In Northern Iberia, it seems that the highest diversity values for some haplogroups with Mesolithic coalescence ages are centred on the Mediterranean side, including Catalonia and South-eastern France.

  16. Extensive paternal mtDNA leakage in natural populations of Drosophila melanogaster.

    PubMed

    Nunes, Maria D S; Dolezal, Marlies; Schlötterer, Christian

    2013-04-01

    Strict maternal inheritance is considered a hallmark of animal mtDNA. Although recent reports suggest that paternal leakage occurs in a broad range of species, it is still considered an exceptionally rare event. To evaluate the impact of paternal leakage on the evolution of mtDNA, it is essential to reliably estimate the frequency of paternal leakage in natural populations. Using allele-specific real-time quantitative PCR (RT-qPCR), we show that heteroplasmy is common in natural populations with at least 14% of the individuals carrying multiple mitochondrial haplotypes. However, the average frequency of the minor mtDNA haplotype is low (0.8%), which suggests that this pervasive heteroplasmy has not been noticed before due to a lack of power in sequencing surveys. Based on the distribution of mtDNA haplotypes in the offspring of heteroplasmic mothers, we found no evidence for strong selection against one of the haplotypes. We estimated that the rate of paternal leakage is 6% and that at least 100 generations are required for complete sorting of mtDNA haplotypes. Despite the high proportion of heteroplasmic individuals in natural populations, we found no evidence for recombination between mtDNA molecules, suggesting that either recombination is rare or recombinant haplotypes are counter-selected. Our results indicate that evolutionary studies using mtDNA as a marker might be biased by paternal leakage in this species. © 2013 Blackwell Publishing Ltd.

  17. African-American mitochondrial DNAs often match mtDNAs found in multiple African ethnic groups

    PubMed Central

    Ely, Bert; Wilson, Jamie Lee; Jackson, Fatimah; Jackson, Bruce A

    2006-01-01

    Background Mitochondrial DNA (mtDNA) haplotypes have become popular tools for tracing maternal ancestry, and several companies offer this service to the general public. Numerous studies have demonstrated that human mtDNA haplotypes can be used with confidence to identify the continent where the haplotype originated. Ideally, mtDNA haplotypes could also be used to identify a particular country or ethnic group from which the maternal ancestor emanated. However, the geographic distribution of mtDNA haplotypes is greatly influenced by the movement of both individuals and population groups. Consequently, common mtDNA haplotypes are shared among multiple ethnic groups. We have studied the distribution of mtDNA haplotypes among West African ethnic groups to determine how often mtDNA haplotypes can be used to reconnect Americans of African descent to a country or ethnic group of a maternal African ancestor. The nucleotide sequence of the mtDNA hypervariable segment I (HVS-I) usually provides sufficient information to assign a particular mtDNA to the proper haplogroup, and it contains most of the variation that is available to distinguish a particular mtDNA haplotype from closely related haplotypes. In this study, samples of general African-American and specific Gullah/Geechee HVS-I haplotypes were compared with two databases of HVS-I haplotypes from sub-Saharan Africa, and the incidence of perfect matches recorded for each sample. Results When two independent African-American samples were analyzed, more than half of the sampled HVS-I mtDNA haplotypes exactly matched common haplotypes that were shared among multiple African ethnic groups. Another 40% did not match any sequence in the database, and fewer than 10% were an exact match to a sequence from a single African ethnic group. Differences in the regional distribution of haplotypes were observed in the African database, and the African-American haplotypes were more likely to match haplotypes found in ethnic groups from West or West Central Africa than those found in eastern or southern Africa. Fewer than 14% of the African-American mtDNA sequences matched sequences from only West Africa or only West Central Africa. Conclusion Our database of sub-Saharan mtDNA sequences includes the most common haplotypes that are shared among ethnic groups from multiple regions of Africa. These common haplotypes have been found in half of all sub-Saharan Africans. More than 60% of the remaining haplotypes differ from the common haplotypes at a single nucleotide position in the HVS-I region, and they are likely to occur at varying frequencies within sub-Saharan Africa. However, the finding that 40% of the African-American mtDNAs analyzed had no match in the database indicates that only a small fraction of the total number of African haplotypes has been identified. In addition, the finding that fewer than 10% of African-American mtDNAs matched mtDNA sequences from a single African region suggests that few African Americans might be able to trace their mtDNA lineages to a particular region of Africa, and even fewer will be able to trace their mtDNA to a single ethnic group. However, no firm conclusions should be made until a much larger database is available. It is clear, however, that when identical mtDNA haplotypes are shared among many ethnic groups from different parts of Africa, it is impossible to determine which single ethnic group was the source of a particular maternal ancestor based on the mtDNA sequence. PMID:17038170

  18. Mitochondrial DNA Evidence Supports the Hypothesis that Triodontophorus Species Belong to Cyathostominae

    PubMed Central

    Gao, Yuan; Zhang, Yan; Yang, Xin; Qiu, Jian-Hua; Duan, Hong; Xu, Wen-Wen; Chang, Qiao-Cheng; Wang, Chun-Ren

    2017-01-01

    Equine strongyles, the significant nematode pathogens of horses, are characterized by high quantities and species abundance, but classification of this group of parasitic nematodes is debated. Mitochondrial (mt) genome DNA data are often used to address classification controversies. Thus, the objectives of this study were to determine the complete mt genomes of three Cyathostominae nematode species (Cyathostomum catinatum, Cylicostephanus minutus, and Poteriostomum imparidentatum) of horses and reconstruct the phylogenetic relationship of Strongylidae with other nematodes in Strongyloidea to test the hypothesis that Triodontophorus spp. belong to Cyathostominae using the mt genomes. The mt genomes of Cy. catinatum, Cs. minutus, and P. imparidentatum were 13,838, 13,826, and 13,817 bp in length, respectively. Complete mt nucleotide sequence comparison of all Strongylidae nematodes revealed that sequence identity ranged from 77.8 to 91.6%. The mt genome sequences of Triodontophorus species had relatively high identity with Cyathostominae nematodes, rather than Strongylus species of the same subfamily (Strongylinae). Comparative analyses of mt genome organization for Strongyloidea nematodes sequenced to date revealed that members of this superfamily possess identical gene arrangements. Phylogenetic analyses using mtDNA data indicated that the Triodontophorus species clustered with Cyathostominae species instead of Strongylus species. The present study first determined the complete mt genome sequences of Cy. catinatum, Cs. minutus, and P. imparidentatum, which will provide novel genetic markers for further studies of Strongylidae taxonomy, population genetics, and systematics. Importantly, sequence comparison and phylogenetic analyses based on mtDNA sequences supported the hypothesis that Triodontophorus belongs to Cyathostominae. PMID:28824575

  19. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Rivera, Henry; Hernández-Laín, Aurelio; Coca-Robinot, David; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, Miguel A; Martínez-Azorín, Francisco

    2017-01-01

    Whole-exome sequencing was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase, deficiency of mitochondrial complex III and depletion of mtDNA. With whole-exome sequencing data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in thymidine kinase 2 gene ( TK2; NM_004614.4:c.323 C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes. This patient presents an atypical TK2-related myopathic form of mtDNA depletion syndromes, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in mtDNA depletion syndromes and expanded the phenotypic spectrum.

  20. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification

    PubMed Central

    2013-01-01

    Background Mitochondrial DNA (mtDNA) typing can be a useful aid for identifying people from compromised samples when nuclear DNA is too damaged, degraded or below detection thresholds for routine short tandem repeat (STR)-based analysis. Standard mtDNA typing, focused on PCR amplicon sequencing of the control region (HVS I and HVS II), is limited by the resolving power of this short sequence, which misses up to 70% of the variation present in the mtDNA genome. Methods We used in-solution hybridisation-based DNA capture (using DNA capture probes prepared from modern human mtDNA) to recover mtDNA from post-mortem human remains in which the majority of DNA is both highly fragmented (<100 base pairs in length) and chemically damaged. The method ‘immortalises’ the finite quantities of DNA in valuable extracts as DNA libraries, which is followed by the targeted enrichment of endogenous mtDNA sequences and characterisation by next-generation sequencing (NGS). Results We sequenced whole mitochondrial genomes for human identification from samples where standard nuclear STR typing produced only partial profiles or demonstrably failed and/or where standard mtDNA hypervariable region sequences lacked resolving power. Multiple rounds of enrichment can substantially improve coverage and sequencing depth of mtDNA genomes from highly degraded samples. The application of this method has led to the reliable mitochondrial sequencing of human skeletal remains from unidentified World War Two (WWII) casualties approximately 70 years old and from archaeological remains (up to 2,500 years old). Conclusions This approach has potential applications in forensic science, historical human identification cases, archived medical samples, kinship analysis and population studies. In particular the methodology can be applied to any case, involving human or non-human species, where whole mitochondrial genome sequences are required to provide the highest level of maternal lineage discrimination. Multiple rounds of in-solution hybridisation-based DNA capture can retrieve whole mitochondrial genome sequences from even the most challenging samples. PMID:24289217

  1. Mitochondrial DNA recombination in a free-ranging Australian lizard.

    PubMed

    Ujvari, Beata; Dowton, Mark; Madsen, Thomas

    2007-04-22

    Mitochondrial DNA (mtDNA) is the traditional workhorse for reconstructing evolutionary events. The frequent use of mtDNA in such analyses derives from the apparent simplicity of its inheritance: maternal and lacking bi-parental recombination. However, in hybrid zones, the reproductive barriers are often not completely developed, resulting in the breakdown of male mitochondrial elimination mechanisms, leading to leakage of paternal mitochondria and transient heteroplasmy, resulting in an increased possibility of recombination. Despite the widespread occurrence of heteroplasmy and the presence of the molecular machinery necessary for recombination, we know of no documented example of recombination of mtDNA in any terrestrial wild vertebrate population. By sequencing the entire mitochondrial genome (16761bp), we present evidence for mitochondrial recombination in the hybrid zone of two mitochondrial haplotypes in the Australian frillneck lizard (Chlamydosaurus kingii).

  2. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome.

    PubMed

    Kim, K S; Lee, S E; Jeong, H W; Ha, J H

    1998-10-01

    The complete nucleotide sequence of the mitochondrial genome of the domestic dog, Canis familiaris, was determined. The length of the sequence was 16,728 bp; however, the length was not absolute due to the variation (heteroplasmy) caused by differing numbers of the repetitive motif, 5'-GTACACGT(A/G)C-3', in the control region. The genome organization, gene contents, and codon usage conformed to those of other mammalian mitochondrial genomes. Although its features were unknown, the "CTAGA" duplication event which followed the translational stop codon of the COII gene was not observed in other mammalian mitochondrial genomes. In order to determine the possible differences between mtDNAs in carnivores, two rRNA and 13 protein-coding genes from the cat, dog, and seal were compared. The combined molecular differences, in two rRNA genes as well as in the inferred amino acid sequences of the mitochondrial 13 protein-coding genes, suggested that there is a closer relationship between the dog and the seal than there is between either of these species and the cat. Based on the molecular differences of the mtDNA, the evolutionary divergence between the cat, the dog, and the seal was dated to approximately 50 +/- 4 million years ago. The degree of difference between carnivore mtDNAs varied according to the individual protein-coding gene applied, showing that the evolutionary relationships of distantly related species should be presented in an extended study based on ample sequence data like complete mtDNA molecules. Copyright 1998 Academic Press.

  3. Recombination and evolution of duplicate control regions in the mitochondrial genome of the Asian big-headed turtle, Platysternon megacephalum.

    PubMed

    Zheng, Chenfei; Nie, Liuwang; Wang, Jue; Zhou, Huaxing; Hou, Huazhen; Wang, Hao; Liu, Juanjuan

    2013-01-01

    Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3' end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum.

  4. Recombination and Evolution of Duplicate Control Regions in the Mitochondrial Genome of the Asian Big-Headed Turtle, Platysternon megacephalum

    PubMed Central

    Zheng, Chenfei; Nie, Liuwang; Wang, Jue; Zhou, Huaxing; Hou, Huazhen; Wang, Hao; Liu, Juanjuan

    2013-01-01

    Complete mitochondrial (mt) genome sequences with duplicate control regions (CRs) have been detected in various animal species. In Testudines, duplicate mtCRs have been reported in the mtDNA of the Asian big-headed turtle, Platysternon megacephalum, which has three living subspecies. However, the evolutionary pattern of these CRs remains unclear. In this study, we report the completed sequences of duplicate CRs from 20 individuals belonging to three subspecies of this turtle and discuss the micro-evolutionary analysis of the evolution of duplicate CRs. Genetic distances calculated with MEGA 4.1 using the complete duplicate CR sequences revealed that within turtle subspecies, genetic distances between orthologous copies from different individuals were 0.63% for CR1 and 1.2% for CR2app:addword:respectively, and the average distance between paralogous copies of CR1 and CR2 was 4.8%. Phylogenetic relationships were reconstructed from the CR sequences, excluding the variable number of tandem repeats (VNTRs) at the 3′ end using three methods: neighbor-joining, maximum likelihood algorithm, and Bayesian inference. These data show that any two CRs within individuals were more genetically distant from orthologous genes in different individuals within the same subspecies. This suggests independent evolution of the two mtCRs within each P. megacephalum subspecies. Reconstruction of separate phylogenetic trees using different CR components (TAS, CD, CSB, and VNTRs) suggested the role of recombination in the evolution of duplicate CRs. Consequently, recombination events were detected using RDP software with break points at ≈290 bp and ≈1,080 bp. Based on these results, we hypothesize that duplicate CRs in P. megacephalum originated from heterological ancestral recombination of mtDNA. Subsequent recombination could have resulted in homogenization during independent evolutionary events, thus maintaining the functions of duplicate CRs in the mtDNA of P. megacephalum. PMID:24367563

  5. How good are indirect tests at detecting recombination in human mtDNA?

    PubMed

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-07-08

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D' and r(2), Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ(2)) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7-70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed.

  6. How Good Are Indirect Tests at Detecting Recombination in Human mtDNA?

    PubMed Central

    White, Daniel James; Bryant, David; Gemmell, Neil John

    2013-01-01

    Empirical proof of human mitochondrial DNA (mtDNA) recombination in somatic tissues was obtained in 2004; however, a lack of irrefutable evidence exists for recombination in human mtDNA at the population level. Our inability to demonstrate convincingly a signal of recombination in population data sets of human mtDNA sequence may be due, in part, to the ineffectiveness of current indirect tests. Previously, we tested some well-established indirect tests of recombination (linkage disequilibrium vs. distance using D′ and r2, Homoplasy Test, Pairwise Homoplasy Index, Neighborhood Similarity Score, and Max χ2) on sequence data derived from the only empirically confirmed case of human mtDNA recombination thus far and demonstrated that some methods were unable to detect recombination. Here, we assess the performance of these six well-established tests and explore what characteristics specific to human mtDNA sequence may affect their efficacy by simulating sequence under various parameters with levels of recombination (ρ) that vary around an empirically derived estimate for human mtDNA (population parameter ρ = 5.492). No test performed infallibly under any of our scenarios, and error rates varied across tests, whereas detection rates increased substantially with ρ values > 5.492. Under a model of evolution that incorporates parameters specific to human mtDNA, including rate heterogeneity, population expansion, and ρ = 5.492, successful detection rates are limited to a range of 7−70% across tests with an acceptable level of false-positive results: the neighborhood similarity score incompatibility test performed best overall under these parameters. Population growth seems to have the greatest impact on recombination detection probabilities across all models tested, likely due to its impact on sequence diversity. The implications of our findings on our current understanding of mtDNA recombination in humans are discussed. PMID:23665874

  7. The case for the continuing use of the revised Cambridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies.

    PubMed

    Bandelt, Hans-Jürgen; Kloss-Brandstätter, Anita; Richards, Martin B; Yao, Yong-Gang; Logan, Ian

    2014-02-01

    Since the determination in 1981 of the sequence of the human mitochondrial DNA (mtDNA) genome, the Cambridge Reference Sequence (CRS), has been used as the reference sequence to annotate mtDNA in molecular anthropology, forensic science and medical genetics. The CRS was eventually upgraded to the revised version (rCRS) in 1999. This reference sequence is a convenient device for recording mtDNA variation, although it has often been misunderstood as a wild-type (WT) or consensus sequence by medical geneticists. Recently, there has been a proposal to replace the rCRS with the so-called Reconstructed Sapiens Reference Sequence (RSRS). Even if it had been estimated accurately, the RSRS would be a cumbersome substitute for the rCRS, as the new proposal fuses--and thus confuses--the two distinct concepts of ancestral lineage and reference point for human mtDNA. Instead, we prefer to maintain the rCRS and to report mtDNA profiles by employing the hitherto predominant circumfix style. Tree diagrams could display mutations by using either the profile notation (in conventional short forms where appropriate) or in a root-upwards way with two suffixes indicating ancestral and derived nucleotides. This would guard against misunderstandings about reporting mtDNA variation. It is therefore neither necessary nor sensible to change the present reference sequence, the rCRS, in any way. The proposed switch to RSRS would inevitably lead to notational chaos, mistakes and misinterpretations.

  8. Mitochondrial genomic analysis of late onset Alzheimer's disease reveals protective haplogroups H6A1A/H6A1B: the Cache County Study on Memory in Aging.

    PubMed

    Ridge, Perry G; Maxwell, Taylor J; Corcoran, Christopher D; Norton, Maria C; Tschanz, Joann T; O'Brien, Elizabeth; Kerber, Richard A; Cawthon, Richard M; Munger, Ronald G; Kauwe, John S K

    2012-01-01

    Alzheimer's disease (AD) is the most common cause of dementia and AD risk clusters within families. Part of the familial aggregation of AD is accounted for by excess maternal vs. paternal inheritance, a pattern consistent with mitochondrial inheritance. The role of specific mitochondrial DNA (mtDNA) variants and haplogroups in AD risk is uncertain. We determined the complete mitochondrial genome sequence of 1007 participants in the Cache County Study on Memory in Aging, a population-based prospective cohort study of dementia in northern Utah. AD diagnoses were made with a multi-stage protocol that included clinical examination and review by a panel of clinical experts. We used TreeScanning, a statistically robust approach based on haplotype networks, to analyze the mtDNA sequence data. Participants with major mitochondrial haplotypes H6A1A and H6A1B showed a reduced risk of AD (p=0.017, corrected for multiple comparisons). The protective haplotypes were defined by three variants: m.3915G>A, m.4727A>G, and m.9380G>A. These three variants characterize two different major haplogroups. Together m.4727A>G and m.9380G>A define H6A1, and it has been suggested m.3915G>A defines H6A. Additional variants differentiate H6A1A and H6A1B; however, none of these variants had a significant relationship with AD case-control status. Our findings provide evidence of a reduced risk of AD for individuals with mtDNA haplotypes H6A1A and H6A1B. These findings are the results of the largest study to date with complete mtDNA genome sequence data, yet the functional significance of the associated haplotypes remains unknown and replication in others studies is necessary.

  9. Mitochondrial Genomic Analysis of Late Onset Alzheimer’s Disease Reveals Protective Haplogroups H6A1A/H6A1B: The Cache County Study on Memory in Aging

    PubMed Central

    Ridge, Perry G.; Maxwell, Taylor J.; Corcoran, Christopher D.; Norton, Maria C.; Tschanz, JoAnn T.; O’Brien, Elizabeth; Kerber, Richard A.; Cawthon, Richard M.; Munger, Ronald G.; Kauwe, John S. K.

    2012-01-01

    Background Alzheimer’s disease (AD) is the most common cause of dementia and AD risk clusters within families. Part of the familial aggregation of AD is accounted for by excess maternal vs. paternal inheritance, a pattern consistent with mitochondrial inheritance. The role of specific mitochondrial DNA (mtDNA) variants and haplogroups in AD risk is uncertain. Methodology/Principal Findings We determined the complete mitochondrial genome sequence of 1007 participants in the Cache County Study on Memory in Aging, a population-based prospective cohort study of dementia in northern Utah. AD diagnoses were made with a multi-stage protocol that included clinical examination and review by a panel of clinical experts. We used TreeScanning, a statistically robust approach based on haplotype networks, to analyze the mtDNA sequence data. Participants with major mitochondrial haplotypes H6A1A and H6A1B showed a reduced risk of AD (p = 0.017, corrected for multiple comparisons). The protective haplotypes were defined by three variants: m.3915G>A, m.4727A>G, and m.9380G>A. These three variants characterize two different major haplogroups. Together m.4727A>G and m.9380G>A define H6A1, and it has been suggested m.3915G>A defines H6A. Additional variants differentiate H6A1A and H6A1B; however, none of these variants had a significant relationship with AD case-control status. Conclusions/Significance Our findings provide evidence of a reduced risk of AD for individuals with mtDNA haplotypes H6A1A and H6A1B. These findings are the results of the largest study to date with complete mtDNA genome sequence data, yet the functional significance of the associated haplotypes remains unknown and replication in others studies is necessary. PMID:23028804

  10. Analysis of mitochondrial DNA in Bolivian llama, alpaca and vicuna populations: a contribution to the phylogeny of the South American camelids.

    PubMed

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Saavedra, V; Chiri, R; Latorre, E; Arranz, J J

    2013-04-01

    The objectives of this work were to assess the mtDNA diversity of Bolivian South American camelid (SAC) populations and to shed light on the evolutionary relationships between the Bolivian camelids and other populations of SACs. We have analysed two different mtDNA regions: the complete coding region of the MT-CYB gene and 513 bp of the D-loop region. The populations sampled included Bolivian llamas, alpacas and vicunas, and Chilean guanacos. High levels of genetic diversity were observed in the studied populations. In general, MT-CYB was more variable than D-loop. On a species level, the vicunas showed the lowest genetic variability, followed by the guanacos, alpacas and llamas. Phylogenetic analyses performed by including additional available mtDNA sequences from the studied species confirmed the existence of the two monophyletic clades previously described by other authors for guanacos (G) and vicunas (V). Significant levels of mtDNA hybridization were found in the domestic species. Our sequence analyses revealed significant sequence divergence within clade G, and some of the Bolivian llamas grouped with the majority of the southern guanacos. This finding supports the existence of more than the one llama domestication centre in South America previously suggested on the basis of archaeozoological evidence. Additionally, analysis of D-loop sequences revealed two new matrilineal lineages that are distinct from the previously reported G and V clades. The results presented here represent the first report on the population structure and genetic variability of Bolivian camelids and may help to elucidate the complex and dynamic domestication process of SAC populations. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  11. Evaluation of next generation mtGenome sequencing using the Ion Torrent Personal Genome Machine (PGM)☆

    PubMed Central

    Parson, Walther; Strobl, Christina; Huber, Gabriela; Zimmermann, Bettina; Gomes, Sibylle M.; Souto, Luis; Fendt, Liane; Delport, Rhena; Langit, Reina; Wootton, Sharon; Lagacé, Robert; Irwin, Jodi

    2013-01-01

    Insights into the human mitochondrial phylogeny have been primarily achieved by sequencing full mitochondrial genomes (mtGenomes). In forensic genetics (partial) mtGenome information can be used to assign haplotypes to their phylogenetic backgrounds, which may, in turn, have characteristic geographic distributions that would offer useful information in a forensic case. In addition and perhaps even more relevant in the forensic context, haplogroup-specific patterns of mutations form the basis for quality control of mtDNA sequences. The current method for establishing (partial) mtDNA haplotypes is Sanger-type sequencing (STS), which is laborious, time-consuming, and expensive. With the emergence of Next Generation Sequencing (NGS) technologies, the body of available mtDNA data can potentially be extended much more quickly and cost-efficiently. Customized chemistries, laboratory workflows and data analysis packages could support the community and increase the utility of mtDNA analysis in forensics. We have evaluated the performance of mtGenome sequencing using the Personal Genome Machine (PGM) and compared the resulting haplotypes directly with conventional Sanger-type sequencing. A total of 64 mtGenomes (>1 million bases) were established that yielded high concordance with the corresponding STS haplotypes (<0.02% differences). About two-thirds of the differences were observed in or around homopolymeric sequence stretches. In addition, the sequence alignment algorithm employed to align NGS reads played a significant role in the analysis of the data and the resulting mtDNA haplotypes. Further development of alignment software would be desirable to facilitate the application of NGS in mtDNA forensic genetics. PMID:23948325

  12. Mitochondrial DNA mutations in single human blood cells.

    PubMed

    Yao, Yong-Gang; Kajigaya, Sachiko; Young, Neal S

    2015-09-01

    Determination mitochondrial DNA (mtDNA) sequences from extremely small amounts of DNA extracted from tissue of limited amounts and/or degraded samples is frequently employed in medical, forensic, and anthropologic studies. Polymerase chain reaction (PCR) amplification followed by DNA cloning is a routine method, especially to examine heteroplasmy of mtDNA mutations. In this review, we compare the mtDNA mutation patterns detected by three different sequencing strategies. Cloning and sequencing methods that are based on PCR amplification of DNA extracted from either single cells or pooled cells yield a high frequency of mutations, partly due to the artifacts introduced by PCR and/or the DNA cloning process. Direct sequencing of PCR product which has been amplified from DNA in individual cells is able to detect the low levels of mtDNA mutations present within a cell. We further summarize the findings in our recent studies that utilized this single cell method to assay mtDNA mutation patterns in different human blood cells. Our data show that many somatic mutations observed in the end-stage differentiated cells are found in hematopoietic stem cells (HSCs) and progenitors within the CD34(+) cell compartment. Accumulation of mtDNA variations in the individual CD34+ cells is affected by both aging and family genetic background. Granulocytes harbor higher numbers of mutations compared with the other cells, such as CD34(+) cells and lymphocytes. Serial assessment of mtDNA mutations in a population of single CD34(+) cells obtained from the same donor over time suggests stability of some somatic mutations. CD34(+) cell clones from a donor marked by specific mtDNA somatic mutations can be found in the recipient after transplantation. The significance of these findings is discussed in terms of the lineage tracing of HSCs, aging effect on accumulation of mtDNA mutations and the usage of mtDNA sequence in forensic identification. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Optimized mtDNA Control Region Primer Extension Capture Analysis for Forensically Relevant Samples and Highly Compromised mtDNA of Different Age and Origin

    PubMed Central

    Eduardoff, Mayra; Xavier, Catarina; Strobl, Christina; Casas-Vargas, Andrea; Parson, Walther

    2017-01-01

    The analysis of mitochondrial DNA (mtDNA) has proven useful in forensic genetics and ancient DNA (aDNA) studies, where specimens are often highly compromised and DNA quality and quantity are low. In forensic genetics, the mtDNA control region (CR) is commonly sequenced using established Sanger-type Sequencing (STS) protocols involving fragment sizes down to approximately 150 base pairs (bp). Recent developments include Massively Parallel Sequencing (MPS) of (multiplex) PCR-generated libraries using the same amplicon sizes. Molecular genetic studies on archaeological remains that harbor more degraded aDNA have pioneered alternative approaches to target mtDNA, such as capture hybridization and primer extension capture (PEC) methods followed by MPS. These assays target smaller mtDNA fragment sizes (down to 50 bp or less), and have proven to be substantially more successful in obtaining useful mtDNA sequences from these samples compared to electrophoretic methods. Here, we present the modification and optimization of a PEC method, earlier developed for sequencing the Neanderthal mitochondrial genome, with forensic applications in mind. Our approach was designed for a more sensitive enrichment of the mtDNA CR in a single tube assay and short laboratory turnaround times, thus complying with forensic practices. We characterized the method using sheared, high quantity mtDNA (six samples), and tested challenging forensic samples (n = 2) as well as compromised solid tissue samples (n = 15) up to 8 kyrs of age. The PEC MPS method produced reliable and plausible mtDNA haplotypes that were useful in the forensic context. It yielded plausible data in samples that did not provide results with STS and other MPS techniques. We addressed the issue of contamination by including four generations of negative controls, and discuss the results in the forensic context. We finally offer perspectives for future research to enable the validation and accreditation of the PEC MPS method for final implementation in forensic genetic laboratories. PMID:28934125

  14. Mitochondrial Mutations in Subjects with Psychiatric Disorders

    PubMed Central

    Magnan, Christophe; van Oven, Mannis; Baldi, Pierre; Myers, Richard M.; Barchas, Jack D.; Schatzberg, Alan F.; Watson, Stanley J.; Akil, Huda; Bunney, William E.; Vawter, Marquis P.

    2015-01-01

    A considerable body of evidence supports the role of mitochondrial dysfunction in psychiatric disorders and mitochondrial DNA (mtDNA) mutations are known to alter brain energy metabolism, neurotransmission, and cause neurodegenerative disorders. Genetic studies focusing on common nuclear genome variants associated with these disorders have produced genome wide significant results but those studies have not directly studied mtDNA variants. The purpose of this study is to investigate, using next generation sequencing, the involvement of mtDNA variation in bipolar disorder, schizophrenia, major depressive disorder, and methamphetamine use. MtDNA extracted from multiple brain regions and blood were sequenced (121 mtDNA samples with an average of 8,800x coverage) and compared to an electronic database containing 26,850 mtDNA genomes. We confirmed novel and rare variants, and confirmed next generation sequencing error hotspots by traditional sequencing and genotyping methods. We observed a significant increase of non-synonymous mutations found in individuals with schizophrenia. Novel and rare non-synonymous mutations were found in psychiatric cases in mtDNA genes: ND6, ATP6, CYTB, and ND2. We also observed mtDNA heteroplasmy in brain at a locus previously associated with schizophrenia (T16519C). Large differences in heteroplasmy levels across brain regions within subjects suggest that somatic mutations accumulate differentially in brain regions. Finally, multiplasmy, a heteroplasmic measure of repeat length, was observed in brain from selective cases at a higher frequency than controls. These results offer support for increased rates of mtDNA substitutions in schizophrenia shown in our prior results. The variable levels of heteroplasmic/multiplasmic somatic mutations that occur in brain may be indicators of genetic instability in mtDNA. PMID:26011537

  15. Mitochondrial sequence analysis for forensic identification using pyrosequencing technology.

    PubMed

    Andréasson, H; Asp, A; Alderborn, A; Gyllensten, U; Allen, M

    2002-01-01

    Over recent years, requests for mtDNA analysis in the field of forensic medicine have notably increased, and the results of such analyses have proved to be very useful in forensic cases where nuclear DNA analysis cannot be performed. Traditionally, mtDNA has been analyzed by DNA sequencing of the two hypervariable regions, HVI and HVII, in the D-loop. DNA sequence analysis using the conventional Sanger sequencing is very robust but time consuming and labor intensive. By contrast, mtDNA analysis based on the pyrosequencing technology provides fast and accurate results from the human mtDNA present in many types of evidence materials in forensic casework. The assay has been developed to determine polymorphic sites in the mitochondrial D-loop as well as the coding region to further increase the discrimination power of mtDNA analysis. The pyrosequencing technology for analysis of mtDNA polymorphisms has been tested with regard to sensitivity, reproducibility, and success rate when applied to control samples and actual casework materials. The results show that the method is very accurate and sensitive; the results are easily interpreted and provide a high success rate on casework samples. The panel of pyrosequencing reactions for the mtDNA polymorphisms were chosen to result in an optimal discrimination power in relation to the number of bases determined.

  16. Classification of European Mtdnas from an Analysis of Three European Populations

    PubMed Central

    Torroni, A.; Huoponen, K.; Francalacci, P.; Petrozzi, M.; Morelli, L.; Scozzari, R.; Obinu, D.; Savontaus, M. L.; Wallace, D. C.

    1996-01-01

    Mitochondrial DNA (mtDNA) sequence variation was examined in Finns, Swedes and Tuscans by PCR amplification and restriction analysis. About 99% of the mtDNAs were subsumed within 10 mtDNA haplogroups (H, I, J, K, M, T, U, V, W, and X) suggesting that the identified haplogroups could encompass virtually all European mtDNAs. Because both hypervariable segments of the mtDNA control region were previously sequenced in the Tuscan samples, the mtDNA haplogroups and control region sequences could be compared. Using a combination of haplogroup-specific restriction site changes and control region nucleotide substitutions, the distribution of the haplogroups was surveyed through the published restriction site polymorphism and control region sequence data of Caucasoids. This supported the conclusion that most haplogroups observed in Europe are Caucasoid-specific, and that at least some of them occur at varying frequencies in different Caucasoid populations. The classification of almost all European mtDNA variation in a number of well defined haplogroups could provide additional insights about the origin and relationships of Caucasoid populations and the process of human colonization of Europe, and is valuable for the definition of the role played by mtDNA backgrounds in the expression of pathological mtDNA mutations PMID:8978068

  17. Molecular phylogeography of the brown bear (Ursus arctos) in Northeastern Asia based on analyses of complete mitochondrial DNA sequences.

    PubMed

    Hirata, Daisuke; Mano, Tsutomu; Abramov, Alexei V; Baryshnikov, Gennady F; Kosintsev, Pavel A; Vorobiev, Alexandr A; Raichev, Evgeny G; Tsunoda, Hiroshi; Kaneko, Yayoi; Murata, Koichi; Fukui, Daisuke; Masuda, Ryuichi

    2013-07-01

    To further elucidate the migration history of the brown bears (Ursus arctos) on Hokkaido Island, Japan, we analyzed the complete mitochondrial DNA (mtDNA) sequences of 35 brown bears from Hokkaido, the southern Kuril Islands (Etorofu and Kunashiri), Sakhalin Island, and the Eurasian Continent (continental Russia, Bulgaria, and Tibet), and those of four polar bears. Based on these sequences, we reconstructed the maternal phylogeny of the brown bear and estimated divergence times to investigate the timing of brown bear migrations, especially in northeastern Eurasia. Our gene tree showed the mtDNA haplotypes of all 73 brown and polar bears to be divided into eight divergent lineages. The brown bear on Hokkaido was divided into three lineages (central, eastern, and southern). The Sakhalin brown bear grouped with eastern European and western Alaskan brown bears. Etorofu and Kunashiri brown bears were closely related to eastern Hokkaido brown bears and could have diverged from the eastern Hokkaido lineage after formation of the channel between Hokkaido and the southern Kuril Islands. Tibetan brown bears diverged early in the eastern lineage. Southern Hokkaido brown bears were closely related to North American brown bears.

  18. Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae.

    PubMed

    Talbot, S L; Shields, G F

    1996-06-01

    Complete nucleotide sequences of the mitochondrial cytochrome b, tRNA(prolime), and tRNA(threonine) genes were described for 166 brown bears (Ursus arctos) from 10 geographic regions of Alaska to describe natural genetic variation, construct a molecular phylogeny, and evaluate classical taxonomies. DNA sequences of brown bears were compared to homologous sequences of the polar bear (maritimus) and of the sun bear (Helarctos malayanus), which was used as an outgroup. Parsimony and neighbor-joining methods each produced essentially identical phylogenetic trees that suggest two distinct clades of mtDNA for brown bears in Alaska: one composed only of bears that now reside on some of the islands of southeastern Alaska and the other which includes bears from all other regions of Alaska. The very close relationship of the polar bear to brown bears of the islands of southeastern Alaska as previously reported by us and the paraphyletic association of polar bears to brown bears reported by others have been reaffirmed with this much larger data set. A weak correlation is suggested between types of mtDNA and habitat preference by brown bears in Alaska. Our mtDNA data support some, but not all, of the currently designated subspecies of brown bears whose descriptions have been based essentially on morphology.

  19. Mini-midi-mito: adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples.

    PubMed

    Berger, Cordula; Parson, Walther

    2009-06-01

    The degradation state of some biological traces recovered from the crime scene requires the amplification of very short fragments to attain a useful mitochondrial (mt)DNA sequence. We have previously introduced two mini-multiplex assays that amplify 10 overlapping control region (CR) fragments in two separate multiplex PCRs, which brought successful CR consensus sequences from even highly degraded DNA extracts. This procedure requires a total of 20 sequencing reactions per sample, which is laborious and cost intensive. For only moderately degraded samples that we encounter more frequently with typical mtDNA casework material, we developed two new multiplex assays that use a subset of the mini-amplicon primers but embrace larger fragments (midis) and require only 10 sequencing reactions to build a double-stranded CR consensus sequence. We used a preceding mtDNA quantitation step by real-time PCR with two different target fragments (143 and 283 bp) that roughly correspond to the average fragment sizes of the different multiplex approaches to estimate size-dependent mtDNA quantities and to aid the choice of the appropriate PCR multiplexes with respect to quality of the results and required costs.

  20. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase.

    PubMed

    Shao, Zhiyong; Graf, Shannon; Chaga, Oleg Y; Lavrov, Dennis V

    2006-10-15

    The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.

  1. Detailed mtDNA genotypes permit a reassessment of the settlement and population structure of the Andaman Islands.

    PubMed

    Barik, S S; Sahani, R; Prasad, B V R; Endicott, P; Metspalu, M; Sarkar, B N; Bhattacharya, S; Annapoorna, P C H; Sreenath, J; Sun, D; Sanchez, J J; Ho, S Y W; Chandrasekar, A; Rao, V R

    2008-05-01

    The population genetics of the Indian subcontinent is central to understanding early human prehistory due to its strategic location on the proposed corridor of human movement from Africa to Australia during the late Pleistocene. Previous genetic research using mtDNA has emphasized the relative isolation of the late Pleistocene colonizers, and the physically isolated Andaman Island populations of Island South-East Asia remain the source of claims supporting an early split between the populations that formed the patchy settlement pattern along the coast of the Indian Ocean. Using whole-genome sequencing, combined with multiplexed SNP typing, this study investigates the deep structure of mtDNA haplogroups M31 and M32 in India and the Andaman Islands. The identification of a so far unnoticed rare polymorphism shared between these two lineages suggests that they are actually sister groups within a single haplogroup, M31'32. The enhanced resolution of M31 allows for the inference of a more recent colonization of the Andaman Islands than previously suggested, but cannot reject the very early peopling scenario. We further demonstrate a widespread overlap of mtDNA and cultural markers between the two major language groups of the Andaman archipelago. Given the "completeness" of the genealogy based on whole genome sequences, and the multiple scenarios for the peopling of the Andaman Islands sustained by this inferred genealogy, our study hints that further mtDNA based phylogeographic studies are unlikely to unequivocally support any one of these possibilities. (c) 2008 Wiley-Liss, Inc.

  2. Genetic variation among the Mapuche Indians from the Patagonian region of Argentina: mitochondrial DNA sequence variation and allele frequencies of several nuclear genes.

    PubMed

    Ginther, C; Corach, D; Penacino, G A; Rey, J A; Carnese, F R; Hutz, M H; Anderson, A; Just, J; Salzano, F M; King, M C

    1993-01-01

    DNA samples from 60 Mapuche Indians, representing 39 maternal lineages, were genetically characterized for (1) nucleotide sequences of the mtDNA control region; (2) presence or absence of a nine base duplication in mtDNA region V; (3) HLA loci DRB1 and DQA1; (4) variation at three nuclear genes with short tandem repeats; and (5) variation at the polymorphic marker D2S44. The genetic profile of the Mapuche population was compared to other Amerinds and to worldwide populations. Two highly polymorphic portions of the mtDNA control region, comprising 650 nucleotides, were amplified by the polymerase chain reaction (PCR) and directly sequenced. The 39 maternal lineages were defined by two or three generation families identified by the Mapuches. These 39 lineages included 19 different mtDNA sequences that could be grouped into four classes. The same classes of sequences appear in other Amerinds from North, Central, and South American populations separated by thousands of miles, suggesting that the origin of the mtDNA patterns predates the migration to the Americas. The mtDNA sequence similarity between Amerind populations suggests that the migration throughout the Americas occurred rapidly relative to the mtDNA mutation rate. HLA DRB1 alleles 1602 and 1402 were frequent among the Mapuches. These alleles also occur at high frequency among other Amerinds in North and South America, but not among Spanish, Chinese or African-American populations. The high frequency of these alleles throughout the Americas, and their specificity to the Americas, supports the hypothesis that Mapuches and other Amerind groups are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Characterization of the complete mitochondrial genomes of two whipworms Trichuris ovis and Trichuris discolor (Nematoda: Trichuridae).

    PubMed

    Liu, Guo-Hua; Wang, Yan; Xu, Min-Jun; Zhou, Dong-Hui; Ye, Yong-Gang; Li, Jia-Yuan; Song, Hui-Qun; Lin, Rui-Qing; Zhu, Xing-Quan

    2012-12-01

    For many years, whipworms (Trichuris spp.) have been described with a relatively narrow range of both morphological and biometrical features. Moreover, there has been insufficient discrimination between congeners (or closely related species). In the present study, we determined the complete mitochondrial (mt) genomes of two whipworms Trichuris ovis and Trichuris discolor, compared them and then tested the hypothesis that T. ovis and T. discolor are distinct species by phylogenetic analyses using Bayesian inference, maximum likelihood and maximum parsimony) based on the deduced amino acid sequences of the mt protein-coding genes. The complete mt genomes of T. ovis and T. discolor were 13,946 bp and 13,904 bp in size, respectively. Both mt genomes are circular, and consist of 37 genes, including 13 genes coding for proteins, 2 genes for rRNA, and 22 genes for tRNA. The gene content and arrangement are identical to that of human and pig whipworms Trichuris trichiura and Trichuris suis. Taken together, these analyses showed genetic distinctiveness and strongly supported the recent proposal that T. ovis and T. discolor are distinct species using nuclear ribosomal DNA and a portion of the mtDNA sequence dataset. The availability of the complete mtDNA sequences of T. ovis and T. discolor provides novel genetic markers for studying the population genetics, diagnostics and molecular epidemiology of T. ovis and T. discolor. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Assessing the Fidelity of Ancient DNA Sequences Amplified From Nuclear Genes

    PubMed Central

    Binladen, Jonas; Wiuf, Carsten; Gilbert, M. Thomas P.; Bunce, Michael; Barnett, Ross; Larson, Greger; Greenwood, Alex D.; Haile, James; Ho, Simon Y. W.; Hansen, Anders J.; Willerslev, Eske

    2006-01-01

    To date, the field of ancient DNA has relied almost exclusively on mitochondrial DNA (mtDNA) sequences. However, a number of recent studies have reported the successful recovery of ancient nuclear DNA (nuDNA) sequences, thereby allowing the characterization of genetic loci directly involved in phenotypic traits of extinct taxa. It is well documented that postmortem damage in ancient mtDNA can lead to the generation of artifactual sequences. However, as yet no one has thoroughly investigated the damage spectrum in ancient nuDNA. By comparing clone sequences from 23 fossil specimens, recovered from environments ranging from permafrost to desert, we demonstrate the presence of miscoding lesion damage in both the mtDNA and nuDNA, resulting in insertion of erroneous bases during amplification. Interestingly, no significant differences in the frequency of miscoding lesion damage are recorded between mtDNA and nuDNA despite great differences in cellular copy numbers. For both mtDNA and nuDNA, we find significant positive correlations between total sequence heterogeneity and the rates of type 1 transitions (adenine → guanine and thymine → cytosine) and type 2 transitions (cytosine → thymine and guanine → adenine), respectively. Type 2 transitions are by far the most dominant and increase relative to those of type 1 with damage load. The results suggest that the deamination of cytosine (and 5-methyl cytosine) to uracil (and thymine) is the main cause of miscoding lesions in both ancient mtDNA and nuDNA sequences. We argue that the problems presented by postmortem damage, as well as problems with contamination from exogenous sources of conserved nuclear genes, allelic variation, and the reliance on single nucleotide polymorphisms, call for great caution in studies relying on ancient nuDNA sequences. PMID:16299392

  5. The history of the North African mitochondrial DNA haplogroup U6 gene flow into the African, Eurasian and American continents

    PubMed Central

    2014-01-01

    Background Complete mitochondrial DNA (mtDNA) genome analyses have greatly improved the phylogeny and phylogeography of human mtDNA. Human mitochondrial DNA haplogroup U6 has been considered as a molecular signal of a Paleolithic return to North Africa of modern humans from southwestern Asia. Results Using 230 complete sequences we have refined the U6 phylogeny, and improved the phylogeographic information by the analysis of 761 partial sequences. This approach provides chronological limits for its arrival to Africa, followed by its spreads there according to climatic fluctuations, and its secondary prehistoric and historic migrations out of Africa colonizing Europe, the Canary Islands and the American Continent. Conclusions The U6 expansions and contractions inside Africa faithfully reflect the climatic fluctuations that occurred in this Continent affecting also the Canary Islands. Mediterranean contacts drove these lineages to Europe, at least since the Neolithic. In turn, the European colonization brought different U6 lineages throughout the American Continent leaving the specific sign of the colonizers origin. PMID:24885141

  6. Severe epilepsy as the major symptom of new mutations in the mitochondrial tRNA(Phe) gene.

    PubMed

    Zsurka, G; Hampel, K G; Nelson, I; Jardel, C; Mirandola, S R; Sassen, R; Kornblum, C; Marcorelles, P; Lavoué, S; Lombès, A; Kunz, W S

    2010-02-09

    To present 2 families with maternally inherited severe epilepsy as the main symptom of mitochondrial disease due to point mutations at position 616 in the mitochondrial tRNA(Phe) (MT-TF) gene. Histologic stainings were performed on skeletal muscle slices from the 2 index patients. Oxidative phosphorylation activity was measured by oxygraphic and spectrophotometric methods. The patients' complete mitochondrial DNA (mtDNA) and the relevant mtDNA region in maternal relatives were sequenced. Muscle histology showed only decreased overall COX staining, while a combined respiratory chain defect, most severely affecting complex IV, was noted in both patients' skeletal muscle. Sequencing of the mtDNA revealed in both patients a mutation at position 616 in the MT-TF gene (T>C or T>G). These mutations disrupt a base pair in the anticodon stem at a highly conserved position. They were apparently homoplasmic in both patients, and had different heteroplasmy levels in the investigated maternal relatives. Deleterious mutations in the mitochondrial tRNA(Phe) may solely manifest with epilepsy when segregating to homoplasmy. They may be overlooked in the absence of lactate accumulation and typical mosaic mitochondrial defects in muscle.

  7. Phylogenetic relationships among four new complete mitogenome sequences of Pelophylax (Amphibia: Anura) from the Balkans and Cyprus.

    PubMed

    Hofman, Sebastian; Pabijan, Maciej; Osikowski, Artur; Litvinchuk, Spartak N; Szymura, Jacek M

    2016-09-01

    We present the full-length mitogenome sequences of four European water frog species: Pelophylax cypriensis, P. epeiroticus, P. kurtmuelleri and P. shqipericus. The mtDNA size varied from 17,363 to 17,895 bp, and its organization with the LPTF tRNA gene cluster preceding the 12 S rRNA gene displayed the typical Neobatrachian arrangement. Maximum likelihood and Bayesian inference revealed a well-resolved mtDNA phylogeny of seven European Pelophylax species. The uncorrected p-distance for among Pelophylax mitogenomes was 9.6 (range 0.01-0.13). Most divergent was the P. shqipericus mitogenome, clustering with the "P. lessonae" group, in contrast to the other three new Pelophylax mitogenomes related to the "P. bedriagae/ridibundus" lineage. The new mitogenomes resolve ambiguities of the phylogenetic placement of P. cretensis and P. epeiroticus.

  8. Investigating the prehistory of Tungusic peoples of Siberia and the Amur-Ussuri region with complete mtDNA genome sequences and Y-chromosomal markers.

    PubMed

    Duggan, Ana T; Whitten, Mark; Wiebe, Victor; Crawford, Michael; Butthof, Anne; Spitsyn, Victor; Makarov, Sergey; Novgorodov, Innokentiy; Osakovsky, Vladimir; Pakendorf, Brigitte

    2013-01-01

    Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north.

  9. Forensic strategy to ensure the quality of sequencing data of mitochondrial DNA in highly degraded samples.

    PubMed

    Adachi, Noboru; Umetsu, Kazuo; Shojo, Hideki

    2014-01-01

    Mitochondrial DNA (mtDNA) is widely used for DNA analysis of highly degraded samples because of its polymorphic nature and high number of copies in a cell. However, as endogenous mtDNA in deteriorated samples is scarce and highly fragmented, it is not easy to obtain reliable data. In the current study, we report the risks of direct sequencing mtDNA in highly degraded material, and suggest a strategy to ensure the quality of sequencing data. It was observed that direct sequencing data of the hypervariable segment (HVS) 1 by using primer sets that generate an amplicon of 407 bp (long-primer sets) was different from results obtained by using newly designed primer sets that produce an amplicon of 120-139 bp (mini-primer sets). The data aligned with the results of mini-primer sets analysis in an amplicon length-dependent manner; the shorter the amplicon, the more evident the endogenous sequence became. Coding region analysis using multiplex amplified product-length polymorphisms revealed the incongruence of single nucleotide polymorphisms between the coding region and HVS 1 caused by contamination with exogenous mtDNA. Although the sequencing data obtained using long-primer sets turned out to be erroneous, it was unambiguous and reproducible. These findings suggest that PCR primers that produce amplicons shorter than those currently recognized should be used for mtDNA analysis in highly degraded samples. Haplogroup motif analysis of the coding region and HVS should also be performed to improve the reliability of forensic mtDNA data. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Foreign Plastid Sequences in Plant Mitochondria are Frequently Acquired Via Mitochondrion-to-Mitochondrion Horizontal Transfer

    PubMed Central

    Gandini, C. L.; Sanchez-Puerta, M. V.

    2017-01-01

    Angiosperm mitochondrial genomes (mtDNA) exhibit variable quantities of alien sequences. Many of these sequences are acquired by intracellular gene transfer (IGT) from the plastid. In addition, frequent events of horizontal gene transfer (HGT) between mitochondria of different species also contribute to their expanded genomes. In contrast, alien sequences are rarely found in plastid genomes. Most of the plant-to-plant HGT events involve mitochondrion-to-mitochondrion transfers. Occasionally, foreign sequences in mtDNAs are plastid-derived (MTPT), raising questions about their origin, frequency, and mechanism of transfer. The rising number of complete mtDNAs allowed us to address these questions. We identified 15 new foreign MTPTs, increasing significantly the number of those previously reported. One out of five of the angiosperm species analyzed contained at least one foreign MTPT, suggesting a remarkable frequency of HGT among plants. By analyzing the flanking regions of the foreign MTPTs, we found strong evidence for mt-to-mt transfers in 65% of the cases. We hypothesize that plastid sequences were initially acquired by the native mtDNA via IGT and then transferred to a distantly-related plant via mitochondrial HGT, rather than directly from a foreign plastid to the mitochondrial genome. Finally, we describe three novel putative cases of mitochondrial-derived sequences among angiosperm plastomes. PMID:28262720

  11. Intraspecific variation in mitochondrial genome sequence, structure, and gene content in Silene vulgaris, an angiosperm with pervasive cytoplasmic male sterility.

    PubMed

    Sloan, Daniel B; Müller, Karel; McCauley, David E; Taylor, Douglas R; Storchová, Helena

    2012-12-01

    In angiosperms, mitochondrial-encoded genes can cause cytoplasmic male sterility (CMS), resulting in the coexistence of female and hermaphroditic individuals (gynodioecy). We compared four complete mitochondrial genomes from the gynodioecious species Silene vulgaris and found unprecedented amounts of intraspecific diversity for plant mitochondrial DNA (mtDNA). Remarkably, only about half of overall sequence content is shared between any pair of genomes. The four mtDNAs range in size from 361 to 429 kb and differ in gene complement, with rpl5 and rps13 being intact in some genomes but absent or pseudogenized in others. The genomes exhibit essentially no conservation of synteny and are highly repetitive, with evidence of reciprocal recombination occurring even across short repeats (< 250 bp). Some mitochondrial genes exhibit atypically high degrees of nucleotide polymorphism, while others are invariant. The genomes also contain a variable number of small autonomously mapping chromosomes, which have only recently been identified in angiosperm mtDNA. Southern blot analysis of one of these chromosomes indicated a complex in vivo structure consisting of both monomeric circles and multimeric forms. We conclude that S. vulgaris harbors an unusually large degree of variation in mtDNA sequence and structure and discuss the extent to which this variation might be related to CMS. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  12. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura

    PubMed Central

    Boore, Jeffrey L

    2004-01-01

    Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. Results This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Conclusions Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases. PMID:15369601

  13. Mitochondrial DNA variant at HVI region as a candidate of genetic markers of type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Gumilar, Gun Gun; Purnamasari, Yunita; Setiadi, Rahmat

    2016-02-01

    Mitochondrial DNA (mtDNA) is maternally inherited. mtDNA mutations which can contribute to the excess of maternal inheritance of type 2 diabetes. Due to the high mutation rate, one of the areas in the mtDNA that is often associated with the disease is the hypervariable region I (HVI). Therefore, this study was conducted to determine the genetic variants of human mtDNA HVI that related to the type 2 diabetes in four samples that were taken from four generations in one lineage. Steps being taken include the lyses of hair follicles, amplification of mtDNA HVI fragment using Polymerase Chain Reaction (PCR), detection of PCR products through agarose gel electrophoresis technique, the measurement of the concentration of mtDNA using UV-Vis spectrophotometer, determination of the nucleotide sequence via direct sequencing method and analysis of the sequencing results using SeqMan DNASTAR program. Based on the comparison between nucleotide sequence of samples and revised Cambridge Reference Sequence (rCRS) obtained six same mutations that these are C16147T, T16189C, C16193del, T16127C, A16235G, and A16293C. After comparing the data obtained to the secondary data from Mitomap and NCBI, it were found that two mutations, T16189C and T16217C, become candidates as genetic markers of type 2 diabetes even the mutations were found also in the generations of undiagnosed type 2 diabetes. The results of this study are expected to give contribution to the collection of human mtDNA database of genetic variants that associated to metabolic diseases, so that in the future it can be utilized in various fields, especially in medicine.

  14. Analysis of a library of macaque nuclear mitochondrial sequences confirms macaque origin of divergent sequences from old oral polio vaccine samples.

    PubMed

    Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2002-05-28

    Nuclear mtDNA sequences (numts) are a widespread family of paralogs evolving as pseudogenes in chromosomal DNA [Zhang, D. E. & Hewitt, G. M. (1996) TREE 11, 247-251 and Bensasson, D., Zhang, D., Hartl, D. L. & Hewitt, G. M. (2001) TREE 16, 314-321]. When trying to identify the species origin of an unknown DNA sample by way of an mtDNA locus, PCR may amplify both mtDNA and numts. Indeed, occasionally numts dominate confounding attempts at species identification [Bensasson, D., Zhang, D. X. & Hewitt, G. M. (2000) Mol. Biol. Evol. 17, 406-415; Wallace, D. C., et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14900-14905]. Rhesus and cynomolgus macaque mtDNA haplotypes were identified in a study of oral polio vaccine samples dating from the late 1950s [Blancou, P., et al. (2001) Nature (London) 410, 1045-1046]. They were accompanied by a number of putative numts. To confirm that these putative numts were of macaque origin, a library of numts corresponding to a small segment of 12S rDNA locus has been made by using DNA from a Chinese rhesus macaque. A broad distribution was found with up to 30% sequence variation. Phylogenetic analysis showed that the evolutionary trajectories of numts and bona fide mtDNA haplotypes do not overlap with the signal exception of the host species; mtDNA fragments are continually crossing over into the germ line. In the case of divergent mtDNA sequences from old oral polio vaccine samples [Blancou, P., et al. (2001) Nature (London) 410, 1045-1046], all were closely related to numts in the Chinese macaque library.

  15. Low-coverage MiSeq next generation sequencing reveals the mitochondrial genome of the Eastern Rock Lobster, Sagmariasus verreauxi.

    PubMed

    Doyle, Stephen R; Griffith, Ian S; Murphy, Nick P; Strugnell, Jan M

    2015-01-01

    The complete mitochondrial genome of the Eastern Rock lobster, Sagmariasus verreauxi, is reported for the first time. Using low-coverage, long read MiSeq next generation sequencing, we constructed and determined the mtDNA genome organization of the 15,470 bp sequence from two isolates from Eastern Tasmania, Australia and Northern New Zealand, and identified 46 polymorphic nucleotides between the two sequences. This genome sequence and its genetic polymorphisms will likely be useful in understanding the distribution and population connectivity of the Eastern Rock Lobster, and in the fisheries management of this commercially important species.

  16. Enlightenment of Yeast Mitochondrial Homoplasmy: Diversified Roles of Gene Conversion

    PubMed Central

    Ling, Feng; Mikawa, Tsutomu; Shibata, Takehiko

    2011-01-01

    Mitochondria have their own genomic DNA. Unlike the nuclear genome, each cell contains hundreds to thousands of copies of mitochondrial DNA (mtDNA). The copies of mtDNA tend to have heterogeneous sequences, due to the high frequency of mutagenesis, but are quickly homogenized within a cell (“homoplasmy”) during vegetative cell growth or through a few sexual generations. Heteroplasmy is strongly associated with mitochondrial diseases, diabetes and aging. Recent studies revealed that the yeast cell has the machinery to homogenize mtDNA, using a common DNA processing pathway with gene conversion; i.e., both genetic events are initiated by a double-stranded break, which is processed into 3′ single-stranded tails. One of the tails is base-paired with the complementary sequence of the recipient double-stranded DNA to form a D-loop (homologous pairing), in which repair DNA synthesis is initiated to restore the sequence lost by the breakage. Gene conversion generates sequence diversity, depending on the divergence between the donor and recipient sequences, especially when it occurs among a number of copies of a DNA sequence family with some sequence variations, such as in immunoglobulin diversification in chicken. MtDNA can be regarded as a sequence family, in which the members tend to be diversified by a high frequency of spontaneous mutagenesis. Thus, it would be interesting to determine why and how double-stranded breakage and D-loop formation induce sequence homogenization in mitochondria and sequence diversification in nuclear DNA. We will review the mechanisms and roles of mtDNA homoplasmy, in contrast to nuclear gene conversion, which diversifies gene and genome sequences, to provide clues toward understanding how the common DNA processing pathway results in such divergent outcomes. PMID:24710143

  17. A Mitochondrial DNA A8701G Mutation Associated with Maternally Inherited Hypertension and Dilated Cardiomyopathy in a Chinese Pedigree of a Consanguineous Marriage

    PubMed Central

    Zhu, Ye; Gu, Xiang; Xu, Chao

    2016-01-01

    Background: Cardiovascular diseases, including dilated cardiomyopathy (DCM) and hypertension, are the leading cause of death worldwide. The role of mitochondrial DNA (mtDNA) in the pathogenesis of these diseases has not been completely clarified. In this study, we evaluate whether A8701G mutation is associated with maternally inherited hypertension and DCM in a Chinese pedigree of a consanguineous marriage. Methods: Fourteen subjects in a three-generation Han Chinese family with hypertension and DCM, in which consanguineous marriage was present in the parental generation, were interviewed. We divided all the family members into case (7 maternal members) and control group (7 nonmaternal members) for comparison. Clinical evaluations and sequence analysis of mtDNA were obtained from all participants. Frequency differences between maternal and nonmaternal members were tested to locate the disease-associated mutations. Results: The majority of the family members presented with a maternal inheritance of hypertension and DCM. Sequence analysis of mtDNA in this pedigree identified eight mtDNA mutations. Among the mutations identified, there was only one significant mutation: A8701G (P = 0.005), which is a homoplasmic mitochondrial missense mutation in all the matrilineal relatives. There was no clear evidence for any synergistic effects between A8701G and other mutations. Conclusions: A8701G mutation may act as an inherited risk factor for the matrilineal transmission of hypertension and DCM in conjunction with genetic disorders caused by consanguineous marriage. PMID:26831225

  18. Japanese Wolves are Genetically Divided into Two Groups Based on an 8-Nucleotide Insertion/Deletion within the mtDNA Control Region.

    PubMed

    Ishiguro, Naotaka; Inoshima, Yasuo; Yanai, Tokuma; Sasaki, Motoki; Matsui, Akira; Kikuchi, Hiroki; Maruyama, Masashi; Hongo, Hitomi; Vostretsov, Yuri E; Gasilin, Viatcheslav; Kosintsev, Pavel A; Quanjia, Chen; Chunxue, Wang

    2016-02-01

    The mitochondrial DNA (mtDNA) control region (198- to 598-bp) of four ancient Canis specimens (two Canis mandibles, a cranium, and a first phalanx) was examined, and each specimen was genetically identified as Japanese wolf. Two unique nucleotide substitutions, the 78-C insertion and the 482-G deletion, both of which are specific for Japanese wolf, were observed in each sample. Based on the mtDNA sequences analyzed, these four specimens and 10 additional Japanese wolf samples could be classified into two groups- Group A (10 samples) and Group B (4 samples)-which contain or lack an 8-bp insertion/deletion (indel), respectively. Interestingly, three dogs (Akita-b, Kishu 25, and S-husky 102) that each contained Japanese wolf-specific features were also classified into Group A or B based on the 8-bp indel. To determine the origin or ancestor of the Japanese wolf, mtDNA control regions of ancient continental Canis specimens were examined; 84 specimens were from Russia, and 29 were from China. However, none of these 113 specimens contained Japanese wolf-specific sequences. Moreover, none of 426 Japanese modern hunting dogs examined contained these Japanese wolf-specific mtDNA sequences. The mtDNA control region sequences of Groups A and B appeared to be unique to grey wolf and dog populations.

  19. Mitochondrial DNA association study of type 2 diabetes with or without ischemic stroke in Taiwan

    PubMed Central

    2014-01-01

    Background The importance of mitochondrial DNA (mtDNA) polymorphism in the prediction of type 2 diabetes (T2D) in men and women is not well understood. We questioned whether mtDNA polymorphism, mitochondrial functions, age and gender influenced the occurrence of T2D with or without ischemic stroke (IS). Methods We first designed a matched case–control study of 373 T2D patients and 327 healthy unrelated individuals without history of IS. MtDNA haplogroups were determined on all participants using sequencing of the control region and relevant SNPs from the coding region. Mitochondria functional tests, systemic biochemical measurements and complete genomic mtDNA sequencing were further determined on 239 participants (73 healthy controls, 33 T2D with IS, 70 T2D only and 63 IS patients without T2D). Results MtDNA haplogroups B4a1a, and E2b1 showed significant association with T2D (P <0.05), and haplogroup D4 indicated resistance (P <0.05). Mitochondrial and systemic functional tests showed significantly less variance within groups bearing the same mtDNA haplotypes. There was a pronounced male excess among all T2D patients and prevalence of IS was seen only in the older population. Finally, nucleotide variant np 15746, a determinant of haplogroup G3 seen in Japanese and of B4a1a prevalent in Taiwanese was associated with T2D in both populations. Conclusions Men appeared more susceptible to T2D than women. Although the significant association of B4a1a and E2b1 with T2D ceased when corrected for multiple testings, these haplogroups are seen only among Taiwan Aborigines, Southeast Asian and the Pacific Ocean islanders where T2D is predominant. The data further suggested that physiological and biochemical measurements were influenced by the mtDNA genetic profile of the individual. More understanding of the function of the mitochondrion in the development of T2D might indicate ways of influencing the early course of the disease. PMID:24713204

  20. Transmission of human mtDNA heteroplasmy in the Genome of the Netherlands families: support for a variable-size bottleneck

    PubMed Central

    Li, Mingkun; Rothwell, Rebecca; Vermaat, Martijn; Wachsmuth, Manja; Schröder, Roland; Laros, Jeroen F.J.; van Oven, Mannis; de Bakker, Paul I.W.; Bovenberg, Jasper A.; van Duijn, Cornelia M.; van Ommen, Gert-Jan B.; Slagboom, P. Eline; Swertz, Morris A.; Wijmenga, Cisca; Kayser, Manfred; Boomsma, Dorret I.; Zöllner, Sebastian; de Knijff, Peter; Stoneking, Mark

    2016-01-01

    Although previous studies have documented a bottleneck in the transmission of mtDNA genomes from mothers to offspring, several aspects remain unclear, including the size and nature of the bottleneck. Here, we analyze the dynamics of mtDNA heteroplasmy transmission in the Genomes of the Netherlands (GoNL) data, which consists of complete mtDNA genome sequences from 228 trios, eight dizygotic (DZ) twin quartets, and 10 monozygotic (MZ) twin quartets. Using a minor allele frequency (MAF) threshold of 2%, we identified 189 heteroplasmies in the trio mothers, of which 59% were transmitted to offspring, and 159 heteroplasmies in the trio offspring, of which 70% were inherited from the mothers. MZ twin pairs exhibited greater similarity in MAF at heteroplasmic sites than DZ twin pairs, suggesting that the heteroplasmy MAF in the oocyte is the major determinant of the heteroplasmy MAF in the offspring. We used a likelihood method to estimate the effective number of mtDNA genomes transmitted to offspring under different bottleneck models; a variable bottleneck size model provided the best fit to the data, with an estimated mean of nine individual mtDNA genomes transmitted. We also found evidence for negative selection during transmission against novel heteroplasmies (in which the minor allele has never been observed in polymorphism data). These novel heteroplasmies are enhanced for tRNA and rRNA genes, and mutations associated with mtDNA diseases frequently occur in these genes. Our results thus suggest that the female germ line is able to recognize and select against deleterious heteroplasmies. PMID:26916109

  1. Phylogenetic analysis of mtDNA lineages in South American mummies.

    PubMed

    Monsalve, M V; Cardenas, F; Guhl, F; Delaney, A D; Devine, D V

    1996-07-01

    Some studies of mtDNA propose that contemporary Amerindians have descended from four haplotype groups, each defined by specific sets of polymorphisms. One recent study also found evidence of other potential founder haplotypes. We wanted to determine whether the four haplotypes in modern populations were also present in ancient South American aboriginals. We subjected mtDNA from Colombian mummies (470 to 1849 AD) to PCR amplification and restriction endonuclease analysis. The mtDNA D-loop region was surveyed for sequence variation by restriction analysis and a segment of this region was sequenced for each mummy to characterize the haplotypes. Our mummies exhibited three of the four major characteristic haplotypes of Amerindian populations defined by four markers. With sequence data obtained in the ancient samples and published data on contemporary Amerindians it was possible to infer the origin of these six mummies.

  2. Mitochondrial DNA control region sequences from Nairobi (Kenya): inferring phylogenetic parameters for the establishment of a forensic database.

    PubMed

    Brandstätter, Anita; Peterson, Christine T; Irwin, Jodi A; Mpoke, Solomon; Koech, Davy K; Parson, Walther; Parsons, Thomas J

    2004-10-01

    Large forensic mtDNA databases which adhere to strict guidelines for generation and maintenance, are not available for many populations outside of the United States and western Europe. We have established a high quality mtDNA control region sequence database for urban Nairobi as both a reference database for forensic investigations, and as a tool to examine the genetic variation of Kenyan sequences in the context of known African variation. The Nairobi sequences exhibited high variation and a low random match probability, indicating utility for forensic testing. Haplogroup identification and frequencies were compared with those reported from other published studies on African, or African-origin populations from Mozambique, Sierra Leone, and the United States, and suggest significant differences in the mtDNA compositions of the various populations. The quality of the sequence data in our study was investigated and supported using phylogenetic measures. Our data demonstrate the diversity and distinctiveness of African populations, and underline the importance of establishing additional forensic mtDNA databases of indigenous African populations.

  3. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions.

    PubMed

    Belmonte, Frances R; Martin, James L; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A; Kaufman, Brett A

    2016-04-28

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error.

  4. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions

    PubMed Central

    Belmonte, Frances R.; Martin, James L.; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A.; Kaufman, Brett A.

    2016-01-01

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error. PMID:27122135

  5. Mitochondrial genome of the tomato clownfish Amphiprion frenatus (Pomacentridae, Amphiprioninae).

    PubMed

    Ye, Le; Hu, Jing; Wu, Kaichang; Wang, Yu; Li, Jianlong

    2016-01-01

    The complete mitochondrial (mt) genome of the tomato clownfish Amphiprion frenatus was obtained in this study. The circular mtDNA molecule was 16,774 bp in size and the overall nucleotide composition of the H-strand was 29.72% A, 25.81% T, 15.38% G and 29.09% C, with an A + T bias. The complete mitogenome encoded 13 protein-coding genes, 2 rRNAs, 22 tRNAs and a control region (D-loop), with the gene arrangement and translation direction basically identical to other typical vertebrate mitogenomes. The D-loop included termination associated sequence (TAS), central conserved domain (CCD) and conserved sequence block (CSB), and was composed of 6 complete continuity tandem repeat units and an imperfect tandem repeat unit.

  6. A test of the transcription model for biased inheritance of yeast mitochondrial DNA.

    PubMed

    Lorimer, H E; Brewer, B J; Fangman, W L

    1995-09-01

    Two strand-specific origins of replication appear to be required for mammalian mitochondrial DNA (mtDNA) replication. Structural equivalents of these origins are found in the rep sequences of Saccharomyces cerevisiae mtDNA. These striking similarities have contributed to a universal model for the initiation of mtDNA replication in which a primer is created by cleavage of an origin region transcript. Consistent with this model are the properties of deletion mutants of yeast mtDNA ([rho-]) with a high density of reps (HS [rho-]). These mutant mtDNAs are preferentially inherited by the progeny resulting from the mating of HS [rho-] cells with cells containing wild-type mtDNA ([rho+]). This bias is presumed to result from a replication advantage conferred on HS [rho-] mtDNA by the high density of rep sequences acting as origins. To test whether transcription is indeed required for the preferential inheritance of HS [rho-] mtDNA, we deleted the nuclear gene (RPO41) for the mitochondrial RNA polymerase, reducing transcripts by at least 1000-fold. Since [rho-] genomes, but not [rho+] genomes, are stable when RPO41 is deleted, we examined matings between HS [rho-] and neutral [rho-] cells. Neutral [rho-] mtDNAs lack rep sequences and are not preferentially inherited in [rho-] x [rho+] crosses. In HS [rho-] x neutral [rho-] matings, the HS [rho-] mtDNA was preferentially inherited whether both parents were wild type or both were deleted for RPO41. Thus, transcription from the rep promoter does not appear to be necessary for biased inheritance. Our results, and analysis of the literature, suggest that priming by transcription is not a universal mechanism for mtDNA replication initiation.

  7. Classification and phylogeny of sika deer (Cervus nippon) subspecies based on the mitochondrial control region DNA sequence using an extended sample set.

    PubMed

    Ba, Hengxing; Yang, Fuhe; Xing, Xiumei; Li, Chunyi

    2015-06-01

    To further refine the classification and phylogeny of sika deer subspecies, the well-annotated sequences of the complete mitochondrial DNA (mtDNA) control region of 13 sika deer subspecies from GenBank were downloaded, aligned and analyzed in this study. By reconstructing the phylogenetic tree with an extended sample set, the results revealed a split between Northern and Southern Mainland Asia/Taiwan lineages, and moreover, two subspecies, C.n.mantchuricus and C.n.hortulorum, were existed in Northern Mainland Asia. Unexpectedly, Dybowskii's sika deer that was thought to originate from Northern Mainland Asia joins the Southern Mainland Asia/Taiwan lineage. The genetic divergences were ranged from 2.1% to 4.7% between Dybowskii's sika deer and all the other established subspecies at the mtDNA sequence level, which suggests that the maternal lineage of uncertain sika subspecies in Europe had been maintained until today. This study also provides a better understanding for the classification, phylogeny and phylogeographic history of sika deer subspecies.

  8. Mapping the Space of Genomic Signatures

    PubMed Central

    Kari, Lila; Hill, Kathleen A.; Sayem, Abu S.; Karamichalis, Rallis; Bryans, Nathaniel; Davis, Katelyn; Dattani, Nikesh S.

    2015-01-01

    We propose a computational method to measure and visualize interrelationships among any number of DNA sequences allowing, for example, the examination of hundreds or thousands of complete mitochondrial genomes. An "image distance" is computed for each pair of graphical representations of DNA sequences, and the distances are visualized as a Molecular Distance Map: Each point on the map represents a DNA sequence, and the spatial proximity between any two points reflects the degree of structural similarity between the corresponding sequences. The graphical representation of DNA sequences utilized, Chaos Game Representation (CGR), is genome- and species-specific and can thus act as a genomic signature. Consequently, Molecular Distance Maps could inform species identification, taxonomic classifications and, to a certain extent, evolutionary history. The image distance employed, Structural Dissimilarity Index (DSSIM), implicitly compares the occurrences of oligomers of length up to k (herein k = 9) in DNA sequences. We computed DSSIM distances for more than 5 million pairs of complete mitochondrial genomes, and used Multi-Dimensional Scaling (MDS) to obtain Molecular Distance Maps that visually display the sequence relatedness in various subsets, at different taxonomic levels. This general-purpose method does not require DNA sequence alignment and can thus be used to compare similar or vastly different DNA sequences, genomic or computer-generated, of the same or different lengths. We illustrate potential uses of this approach by applying it to several taxonomic subsets: phylum Vertebrata, (super)kingdom Protista, classes Amphibia-Insecta-Mammalia, class Amphibia, and order Primates. This analysis of an extensive dataset confirms that the oligomer composition of full mtDNA sequences can be a source of taxonomic information. This method also correctly finds the mtDNA sequences most closely related to that of the anatomically modern human (the Neanderthal, the Denisovan, and the chimp), and that the sequence most different from it in this dataset belongs to a cucumber. PMID:26000734

  9. Trading genes along the silk road: mtDNA sequences and the origin of central Asian populations.

    PubMed Central

    Comas, D; Calafell, F; Mateu, E; Pérez-Lezaun, A; Bosch, E; Martínez-Arias, R; Clarimon, J; Facchini, F; Fiori, G; Luiselli, D; Pettener, D; Bertranpetit, J

    1998-01-01

    Central Asia is a vast region at the crossroads of different habitats, cultures, and trade routes. Little is known about the genetics and the history of the population of this region. We present the analysis of mtDNA control-region sequences in samples of the Kazakh, the Uighurs, the lowland Kirghiz, and the highland Kirghiz, which we have used to address both the population history of the region and the possible selective pressures that high altitude has on mtDNA genes. Central Asian mtDNA sequences present features intermediate between European and eastern Asian sequences, in several parameters-such as the frequencies of certain nucleotides, the levels of nucleotide diversity, mean pairwise differences, and genetic distances. Several hypotheses could explain the intermediate position of central Asia between Europe and eastern Asia, but the most plausible would involve extensive levels of admixture between Europeans and eastern Asians in central Asia, possibly enhanced during the Silk Road trade and clearly after the eastern and western Eurasian human groups had diverged. Lowland and highland Kirghiz mtDNA sequences are very similar, and the analysis of molecular variance has revealed that the fraction of mitochondrial genetic variance due to altitude is not significantly different from zero. Thus, it seems unlikely that altitude has exerted a major selective pressure on mitochondrial genes in central Asian populations. PMID:9837835

  10. Investigating the Prehistory of Tungusic Peoples of Siberia and the Amur-Ussuri Region with Complete mtDNA Genome Sequences and Y-chromosomal Markers

    PubMed Central

    Duggan, Ana T.; Whitten, Mark; Wiebe, Victor; Crawford, Michael; Butthof, Anne; Spitsyn, Victor; Makarov, Sergey; Novgorodov, Innokentiy; Osakovsky, Vladimir; Pakendorf, Brigitte

    2013-01-01

    Evenks and Evens, Tungusic-speaking reindeer herders and hunter-gatherers, are spread over a wide area of northern Asia, whereas their linguistic relatives the Udegey, sedentary fishermen and hunter-gatherers, are settled to the south of the lower Amur River. The prehistory and relationships of these Tungusic peoples are as yet poorly investigated, especially with respect to their interactions with neighbouring populations. In this study, we analyse over 500 complete mtDNA genome sequences from nine different Evenk and even subgroups as well as their geographic neighbours from Siberia and their linguistic relatives the Udegey from the Amur-Ussuri region in order to investigate the prehistory of the Tungusic populations. These data are supplemented with analyses of Y-chromosomal haplogroups and STR haplotypes in the Evenks, Evens, and neighbouring Siberian populations. We demonstrate that whereas the North Tungusic Evenks and Evens show evidence of shared ancestry both in the maternal and in the paternal line, this signal has been attenuated by genetic drift and differential gene flow with neighbouring populations, with isolation by distance further shaping the maternal genepool of the Evens. The Udegey, in contrast, appear quite divergent from their linguistic relatives in the maternal line, with a mtDNA haplogroup composition characteristic of populations of the Amur-Ussuri region. Nevertheless, they show affinities with the Evenks, indicating that they might be the result of admixture between local Amur-Ussuri populations and Tungusic populations from the north. PMID:24349531

  11. The repeating nucleotide sequence in the repetitive mitochondrial DNA from a "low-density" petite mutant of yeast.

    PubMed Central

    Van Kreijl, C F; Bos, J L

    1977-01-01

    The repeating nucleotide sequence of 68 base pairs in the mtDNA from an ethidium-induced cytoplasmic petite mutant of yeast has been determined. For sequence analysis specifically primed and terminated RNA copies, obtained by in vitro transcription of the separated strands, were use. The sequence consists of 66 consecutive AT base pairs flanked by two GC pairs and comprises nearly all of the mutant mitochondrial genome. The sequence, moreover, also represents the first part of wild-type mtDNA sequence so far. Images PMID:198740

  12. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites.

    PubMed

    Chaw, Shu-Miaw; Shih, Arthur Chun-Chieh; Wang, Daryi; Wu, Yu-Wei; Liu, Shu-Mei; Chou, The-Yuan

    2008-03-01

    The mtDNA of Cycas taitungensis is a circular molecule of 414,903 bp, making it 2- to 6-fold larger than the known mtDNAs of charophytes and bryophytes, but similar to the average of 7 elucidated angiosperm mtDNAs. It is characterized by abundant RNA editing sites (1,084), more than twice the number found in the angiosperm mtDNAs. The A + T content of Cycas mtDNA is 53.1%, the lowest among known land plants. About 5% of the Cycas mtDNA is composed of a novel family of mobile elements, which we designated as "Bpu sequences." They share a consensus sequence of 36 bp with 2 terminal direct repeats (AAGG) and a recognition site for the Bpu 10I restriction endonuclease (CCTGAAGC). Comparison of the Cycas mtDNA with other plant mtDNAs revealed many new insights into the biology and evolution of land plant mtDNAs. For example, the noncoding sequences in mtDNAs have drastically expanded as land plants have evolved, with abrupt increases appearing in the bryophytes, and then in the seed plants. As a result, the genomic organizations of seed plant mtDNAs are much less compact than in other plants. Also, the Cycas mtDNA appears to have been exempted from the frequent gene loss observed in angiosperm mtDNAs. Similar to the angiosperms, the 3 Cycas genes nad1, nad2, and nad5 are disrupted by 5 group II intron squences, which have brought the genes into trans-splicing arrangements. The evolutionary origin and invasion/duplication mechanism of the Bpu sequences in Cycas mtDNA are hypothesized and discussed.

  13. Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar.

    PubMed

    Summerer, Monika; Horst, Jürgen; Erhart, Gertraud; Weißensteiner, Hansi; Schönherr, Sebastian; Pacher, Dominic; Forer, Lukas; Horst, David; Manhart, Angelika; Horst, Basil; Sanguansermsri, Torpong; Kloss-Brandstätter, Anita

    2014-01-28

    Myanmar is the largest country in mainland Southeast Asia with a population of 55 million people subdivided into more than 100 ethnic groups. Ruled by changing kingdoms and dynasties and lying on the trade route between India and China, Myanmar was influenced by numerous cultures. Since its independence from British occupation, tensions between the ruling Bamar and ethnic minorities increased. Our aim was to search for genetic footprints of Myanmar's geographic, historic and sociocultural characteristics and to contribute to the picture of human colonization by describing and dating of new mitochondrial DNA (mtDNA) haplogroups. Therefore, we sequenced the mtDNA control region of 327 unrelated donors and the complete mitochondrial genome of 44 selected individuals according to highest quality standards. Phylogenetic analyses of the entire mtDNA genomes uncovered eight new haplogroups and three unclassified basal M-lineages. The multi-ethnic population and the complex history of Myanmar were reflected in its mtDNA heterogeneity. Population genetic analyses of Burmese control region sequences combined with population data from neighboring countries revealed that the Myanmar haplogroup distribution showed a typical Southeast Asian pattern, but also Northeast Asian and Indian influences. The population structure of the extraordinarily diverse Bamar differed from that of the Karen people who displayed signs of genetic isolation. Migration analyses indicated a considerable genetic exchange with an overall positive migration balance from Myanmar to neighboring countries. Age estimates of the newly described haplogroups point to the existence of evolutionary windows where climatic and cultural changes gave rise to mitochondrial haplogroup diversification in Asia.

  14. Rapid coastal spread of First Americans: Novel insights from South America's Southern Cone mitochondrial genomes

    PubMed Central

    Bodner, Martin; Perego, Ugo A.; Huber, Gabriela; Fendt, Liane; Röck, Alexander W.; Zimmermann, Bettina; Olivieri, Anna; Gómez-Carballa, Alberto; Lancioni, Hovirag; Angerhofer, Norman; Bobillo, Maria Cecilia; Corach, Daniel; Woodward, Scott R.; Salas, Antonio; Achilli, Alessandro; Torroni, Antonio; Bandelt, Hans-Jürgen; Parson, Walther

    2012-01-01

    It is now widely agreed that the Native American founders originated from a Beringian source population ∼15–18 thousand years ago (kya) and rapidly populated all of the New World, probably mainly following the Pacific coastal route. However, details about the migration into the Americas and the routes pursued on the continent still remain unresolved, despite numerous genetic, archaeological, and linguistic investigations. To examine the pioneering peopling phase of the South American continent, we screened literature and mtDNA databases and identified two novel mitochondrial DNA (mtDNA) clades, here named D1g and D1j, within the pan-American haplogroup D1. They both show overall rare occurrences but local high frequencies, and are essentially restricted to populations from the Southern Cone of South America (Chile and Argentina). We selected and completely sequenced 43 D1g and D1j mtDNA genomes applying highest quality standards. Molecular and phylogeographic analyses revealed extensive variation within each of the two clades and possibly distinct dispersal patterns. Their age estimates agree with the dating of the earliest archaeological sites in South America and indicate that the Paleo-Indian spread along the entire longitude of the American double continent might have taken even <2000 yr. This study confirms that major sampling and sequencing efforts are mandatory for uncovering all of the most basal variation in the Native American mtDNA haplogroups and for clarification of Paleo-Indian migrations, by targeting, if possible, both the general mixed population of national states and autochthonous Native American groups, especially in South America. PMID:22333566

  15. Phylogeography of Bufo marinus from its natural and introduced ranges.

    PubMed Central

    Slade, R W; Moritz, C

    1998-01-01

    The marine toad, Bufo marinus, has a broad natural distribution extending from the south-west of the USA to southern Peru and the central Amazon. It was introduced to several localities in the Caribbean and Pacific Oceans to control sugar cane pests. We sequenced 468 bp of mitochondrial DNA (mtDNA) containing the ND3 gene, and flanking tRNA genes from toads spanning the broad natural and introduced ranges. Consistent with the known history of introductions and expected effects of serial bottlenecks, mtDNA within introduced populations in Hawaii and Australia was uniform and most closely related to samples from eastern Venezuela and French Guiana. However, mtDNA nucleotide diversity in the geographic region spanning the source areas is also relative low (0.18-0.46%) and the absence of variation in the introduced populations precludes quantitative assessment of the reduction in genetic diversity. Unexpectedly, there was a large phylogeographic break (5.4% sequence divergence) within the natural range separating populations east and west of the Venezuelan Andes. We hypothesize that the two major lineages of B. marinus were isolated by the uplift of the eastern Andean cordillera which was completed approximately 2.7 Ma. Another species of the marinus group, B. paracnemis, had mtDNA paraphyletic, with marinus, being nested within the eastern lineage. Thus, at least one speciation event within the marinus group postdates the split within marinus. These findings suggest that the taxonomy of B. marinus should be re-evaluated and that the search for pathogens to control Australian populations should be conducted in populations from both lineages in the natural range. PMID:9628036

  16. Evolution of Linear Mitochondrial Genomes in Medusozoan Cnidarians

    PubMed Central

    Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G.; Pirro, Stacy; Lavrov, Dennis V.

    2012-01-01

    In nearly all animals, mitochondrial DNA (mtDNA) consists of a single circular molecule that encodes several subunits of the protein complexes involved in oxidative phosphorylation as well as part of the machinery for their expression. By contrast, mtDNA in species belonging to Medusozoa (one of the two major lineages in the phylum Cnidaria) comprises one to several linear molecules. Many questions remain on the ubiquity of linear mtDNA in medusozoans and the mechanisms responsible for its evolution, replication, and transcription. To address some of these questions, we determined the sequences of nearly complete linear mtDNA from 24 species representing all four medusozoan classes: Cubozoa, Hydrozoa, Scyphozoa, and Staurozoa. All newly determined medusozoan mitochondrial genomes harbor the 17 genes typical for cnidarians and map as linear molecules with a high degree of gene order conservation relative to the anthozoans. In addition, two open reading frames (ORFs), polB and ORF314, are identified in cubozoan, schyphozoan, staurozoan, and trachyline hydrozoan mtDNA. polB belongs to the B-type DNA polymerase gene family, while the product of ORF314 may act as a terminal protein that binds telomeres. We posit that these two ORFs are remnants of a linear plasmid that invaded the mitochondrial genomes of the last common ancestor of Medusozoa and are responsible for its linearity. Hydroidolinan hydrozoans have lost the two ORFs and instead have duplicated cox1 at each end of their mitochondrial chromosome(s). Fragmentation of mtDNA occurred independently in Cubozoa and Hydridae (Hydrozoa, Hydroidolina). Our broad sampling allows us to reconstruct the evolutionary history of linear mtDNA in medusozoans. PMID:22113796

  17. Analysis of the mitochondrial genome of cheetahs (Acinonyx jubatus) with neurodegenerative disease.

    PubMed

    Burger, Pamela A; Steinborn, Ralf; Walzer, Christian; Petit, Thierry; Mueller, Mathias; Schwarzenberger, Franz

    2004-08-18

    The complete mitochondrial genome of Acinonyx jubatus was sequenced and mitochondrial DNA (mtDNA) regions were screened for polymorphisms as candidates for the cause of a neurodegenerative demyelinating disease affecting captive cheetahs. The mtDNA reference sequences were established on the basis of the complete sequences of two diseased and two nondiseased animals as well as partial sequences of 26 further individuals. The A. jubatus mitochondrial genome is 17,047-bp long and shows a high sequence similarity (91%) to the domestic cat. Based on single nucleotide polymorphisms (SNPs) in the control region (CR) and pedigree information, the 18 myelopathic and 12 non-myelopathic cheetahs included in this study were classified into haplotypes I, II and III. In view of the phenotypic comparability of the neurodegenerative disease observed in cheetahs and human mtDNA-associated diseases, specific coding regions including the tRNAs leucine UUR, lysine, serine UCN, and partial complex I and V sequences were screened. We identified a heteroplasmic and a homoplasmic SNP at codon 507 in the subunit 5 (MTND5) of complex I. The heteroplasmic haplotype I-specific valine to methionine substitution represents a nonconservative amino acid change and was found in 11 myelopathic and eight non-myelopathic cheetahs with levels ranging from 29% to 79%. The homoplasmic conservative amino acid substitution valine to alanine was identified in two myelopathic animals of haplotype II. In addition, a synonymous SNP in the codon 76 of the MTND4L gene was found in the single haplotype III animal. The amino acid exchanges in the MTND5 gene were not associated with the occurrence of neurodegenerative disease in captive cheetahs.

  18. Molecular analysis of a 11 700-year-old rodent midden from the Atacama Desert, Chile

    USGS Publications Warehouse

    Kuch, M.; Rohland, N.; Betancourt, J.L.; Latorre, C.; Steppan, S.; Poinar, H.N.

    2002-01-01

    DNA was extracted from an 11 700-year-old rodent midden from the Atacama Desert, Chile and the chloroplast and animal mitochondrial DNA (mtDNA) gene sequences were analysed to investigate the floral environment surrounding the midden, and the identity of the midden agent. The plant sequences, together with the macroscopic identifications, suggest the presence of 13 plant families and three orders that no longer exist today at the midden locality, and thus point to a much more diverse and humid climate 11 700 years ago. The mtDNA sequences suggest the presence of at least four different vertebrates, which have been putatively identified as a camelid (vicuna), two rodents (Phyllotis and Abrocoma), and a cardinal bird (Passeriformes). To identify the midden agent, DNA was extracted from pooled faecal pellets, three small overlapping fragments of the mitochondrial cytochrome b gene were amplified and multiple clones were sequenced. These results were analysed along with complete cytochrome b sequences for several modern Phyllotis species to place the midden sequence phylogenetically. The results identified the midden agent as belonging to an ancestral P. limatus. Today, P. limatus is not found at the midden locality but it can be found 100 km to the north, indicating at least a small range shift. The more extensive sampling of modern Phyllotis reinforces the suggestion that P. limatus is recently derived from a peripheral isolate.

  19. Fascioliasis transmission by Lymnaea neotropica confirmed by nuclear rDNA and mtDNA sequencing in Argentina.

    PubMed

    Mera y Sierra, Roberto; Artigas, Patricio; Cuervo, Pablo; Deis, Erika; Sidoti, Laura; Mas-Coma, Santiago; Bargues, Maria Dolores

    2009-12-03

    Fascioliasis is widespread in livestock in Argentina. Among activities included in a long-term initiative to ascertain which are the fascioliasis areas of most concern, studies were performed in a recreational farm, including liver fluke infection in different domestic animal species, classification of the lymnaeid vector and verification of natural transmission of fascioliasis by identification of the intramolluscan trematode larval stages found in naturally infected snails. The high prevalences in the domestic animals appeared related to only one lymnaeid species present. Lymnaeid and trematode classification was verified by means of nuclear ribosomal DNA and mitochondrial DNA marker sequencing. Complete sequences of 18S rRNA gene and rDNA ITS-2 and ITS-1, and a fragment of the mtDNA cox1 gene demonstrate that the Argentinian lymnaeid belongs to the species Lymnaea neotropica. Redial larval stages found in a L. neotropica specimen were ascribed to Fasciola hepatica after analysis of the complete ITS-1 sequence. The finding of L. neotropica is the first of this lymnaeid species not only in Argentina but also in Southern Cone countries. The total absence of nucleotide differences between the sequences of specimens from Argentina and the specimens from the Peruvian type locality at the levels of rDNA 18S, ITS-2 and ITS-1, and the only one mutation at the mtDNA cox1 gene suggest a very recent spread. The ecological characteristics of this lymnaeid, living in small, superficial water collections frequented by livestock, suggest that it may be carried from one place to another by remaining in dried mud stuck to the feet of transported animals. The presence of L. neotropica adds pronounced complexity to the transmission and epidemiology of fascioliasis in Argentina, due to the great difficulties in distinguishing, by traditional malacological methods, between the three similar lymnaeid species of the controversial Galba/Fossaria group present in this country: L. viatrix, Galba truncatula and L. neotropica. It also poses a problem with regard to the use, for lymnaeid vector species discrimination, of several molecular techniques which do not show sufficient accuracy, as those relying on the 18S rRNA gene or parts of it, because both L. neotropica and L. viatrix present identical 18S sequence.

  20. Canis mtDNA HV1 database: a web-based tool for collecting and surveying Canis mtDNA HV1 haplotype in public database.

    PubMed

    Thai, Quan Ke; Chung, Dung Anh; Tran, Hoang-Dung

    2017-06-26

    Canine and wolf mitochondrial DNA haplotypes, which can be used for forensic or phylogenetic analyses, have been defined in various schemes depending on the region analyzed. In recent studies, the 582 bp fragment of the HV1 region is most commonly used. 317 different canine HV1 haplotypes have been reported in the rapidly growing public database GenBank. These reported haplotypes contain several inconsistencies in their haplotype information. To overcome this issue, we have developed a Canis mtDNA HV1 database. This database collects data on the HV1 582 bp region in dog mitochondrial DNA from the GenBank to screen and correct the inconsistencies. It also supports users in detection of new novel mutation profiles and assignment of new haplotypes. The Canis mtDNA HV1 database (CHD) contains 5567 nucleotide entries originating from 15 subspecies in the species Canis lupus. Of these entries, 3646 were haplotypes and grouped into 804 distinct sequences. 319 sequences were recognized as previously assigned haplotypes, while the remaining 485 sequences had new mutation profiles and were marked as new haplotype candidates awaiting further analysis for haplotype assignment. Of the 3646 nucleotide entries, only 414 were annotated with correct haplotype information, while 3232 had insufficient or lacked haplotype information and were corrected or modified before storing in the CHD. The CHD can be accessed at http://chd.vnbiology.com . It provides sequences, haplotype information, and a web-based tool for mtDNA HV1 haplotyping. The CHD is updated monthly and supplies all data for download. The Canis mtDNA HV1 database contains information about canine mitochondrial DNA HV1 sequences with reconciled annotation. It serves as a tool for detection of inconsistencies in GenBank and helps identifying new HV1 haplotypes. Thus, it supports the scientific community in naming new HV1 haplotypes and to reconcile existing annotation of HV1 582 bp sequences.

  1. Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes.

    PubMed

    Samuels, Amy K; Weisrock, David W; Smith, Jeramiah J; France, Katherine J; Walker, John A; Putta, Srikrishna; Voss, S Randal

    2005-04-11

    We report on a study that extended mitochondrial transcript information from a recent EST project to obtain complete mitochondrial genome sequence for 5 tiger salamander complex species (Ambystoma mexicanum, A. t. tigrinum, A. andersoni, A. californiense, and A. dumerilii). We describe, for the first time, aspects of mitochondrial transcription in a representative amphibian, and then use complete mitochondrial sequence data to examine salamander phylogeny at both deep and shallow levels of evolutionary divergence. The available mitochondrial ESTs for A. mexicanum (N=2481) and A. t. tigrinum (N=1205) provided 92% and 87% coverage of the mitochondrial genome, respectively. Complete mitochondrial sequences for all species were rapidly obtained by using long distance PCR and DNA sequencing. A number of genome structural characteristics (base pair length, base composition, gene number, gene boundaries, codon usage) were highly similar among all species and to other distantly related salamanders. Overall, mitochondrial transcription in Ambystoma approximated the pattern observed in other vertebrates. We inferred from the mapping of ESTs onto mtDNA that transcription occurs from both heavy and light strand promoters and continues around the entire length of the mtDNA, followed by post-transcriptional processing. However, the observation of many short transcripts corresponding to rRNA genes indicates that transcription may often terminate prematurely to bias transcription of rRNA genes; indeed an rRNA transcription termination signal sequence was observed immediately following the 16S rRNA gene. Phylogenetic analyses of salamander family relationships consistently grouped Ambystomatidae in a clade containing Cryptobranchidae and Hynobiidae, to the exclusion of Salamandridae. This robust result suggests a novel alternative hypothesis because previous studies have consistently identified Ambystomatidae and Salamandridae as closely related taxa. Phylogenetic analyses of tiger salamander complex species also produced robustly supported trees. The D-loop, used in previous molecular phylogenetic studies of the complex, was found to contain a relatively low level of variation and we identified mitochondrial regions with higher rates of molecular evolution that are more useful in resolving relationships among species. Our results show the benefit of using complete genome mitochondrial information in studies of recently and rapidly diverged taxa.

  2. The Elusive Nature of Adaptive Mitochondrial DNA Evolution of an Arctic Lineage Prone to Frequent Introgression

    PubMed Central

    Melo-Ferreira, José; Vilela, Joana; Fonseca, Miguel M.; da Fonseca, Rute R.; Boursot, Pierre; Alves, Paulo C.

    2014-01-01

    Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread. Here, we analyzed the sequences of 11 complete mitogenomes (ten newly obtained) of hares of temperate and arctic origins (including two of arctic origin introgressed into temperate species). The analysis of patterns of codon substitutions along the reconstructed phylogeny showed evidence for positive selection in several codons in genes of the OXPHOS complexes, most notably affecting the arctic lineage. However, using theoretical models, no predictable effect of these differences was found on the structure and physicochemical properties of the encoded proteins, suggesting that the focus of selection may lie on complex interactions with nuclear encoded peptides. Also, a cloverleaf structure was detected in the control region only from the arctic mtDNA lineage, which may influence mtDNA replication and transcription. These results suggest that adaptation impacted the evolution of hare mtDNA and may have influenced the occurrence and consequences of the many reported cases of massive mtDNA introgression. However, the origin of adaptation remains elusive. PMID:24696399

  3. Cattle phenotypes can disguise their maternal ancestry.

    PubMed

    Srirattana, Kanokwan; McCosker, Kieren; Schatz, Tim; St John, Justin C

    2017-06-26

    Cattle are bred for, amongst other factors, specific traits, including parasite resistance and adaptation to climate. However, the influence and inheritance of mitochondrial DNA (mtDNA) are not usually considered in breeding programmes. In this study, we analysed the mtDNA profiles of cattle from Victoria (VIC), southern Australia, which is a temperate climate, and the Northern Territory (NT), the northern part of Australia, which has a tropical climate, to determine if the mtDNA profiles of these cattle are indicative of breed and phenotype, and whether these profiles are appropriate for their environments. A phylogenetic tree of the full mtDNA sequences of different breeds of cattle, which were obtained from the NCBI database, showed that the mtDNA profiles of cattle do not always reflect their phenotype as some cattle with Bos taurus phenotypes had Bos indicus mtDNA, whilst some cattle with Bos indicus phenotypes had Bos taurus mtDNA. Using D-loop sequencing, we were able to contrast the phenotypes and mtDNA profiles from different species of cattle from the 2 distinct cattle breeding regions of Australia. We found that 67 of the 121 cattle with Bos indicus phenotypes from NT (55.4%) had Bos taurus mtDNA. In VIC, 92 of the 225 cattle with Bos taurus phenotypes (40.9%) possessed Bos indicus mtDNA. When focusing on oocytes from cattle with the Bos taurus phenotype in VIC, their respective oocytes with Bos indicus mtDNA had significantly lower levels of mtDNA copy number compared with oocytes possessing Bos taurus mtDNA (P < 0.01). However, embryos derived from oocytes with Bos indicus mtDNA had the same ability to develop to the blastocyst stage and the levels of mtDNA copy number in their blastocysts were similar to blastocysts derived from oocytes harbouring Bos taurus mtDNA. Nevertheless, oocytes originating from the Bos indicus phenotype exhibited lower developmental potential due to low mtDNA copy number when compared with oocytes from cattle with a Bos taurus phenotype. The phenotype of cattle is not always related to their mtDNA profiles. MtDNA profiles should be considered for breeding programmes as they also influence phenotypic traits and reproductive capacity in terms of oocyte quality.

  4. Reconciling Apparent Conflicts between Mitochondrial and Nuclear Phylogenies in African Elephants

    PubMed Central

    Georgiadis, Nicholas J.; David, Victor A.; Zhao, Kai; Stephens, Robert M.; Kolokotronis, Sergios-Orestis; Roca, Alfred L.

    2011-01-01

    Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest “F” and savanna “S” mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure, and strongly support the existence of two elephant species in Africa. PMID:21701575

  5. The Use and Effectiveness of Triple Multiplex System for Coding Region Single Nucleotide Polymorphism in Mitochondrial DNA Typing of Archaeologically Obtained Human Skeletons from Premodern Joseon Tombs of Korea

    PubMed Central

    Oh, Chang Seok; Lee, Soong Deok; Kim, Yi-Suk; Shin, Dong Hoon

    2015-01-01

    Previous study showed that East Asian mtDNA haplogroups, especially those of Koreans, could be successfully assigned by the coupled use of analyses on coding region SNP markers and control region mutation motifs. In this study, we tried to see if the same triple multiplex analysis for coding regions SNPs could be also applicable to ancient samples from East Asia as the complementation for sequence analysis of mtDNA control region. By the study on Joseon skeleton samples, we know that mtDNA haplogroup determined by coding region SNP markers successfully falls within the same haplogroup that sequence analysis on control region can assign. Considering that ancient samples in previous studies make no small number of errors in control region mtDNA sequencing, coding region SNP analysis can be used as good complimentary to the conventional haplogroup determination, especially of archaeological human bone samples buried underground over long periods. PMID:26345190

  6. 'Mitominis': multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.

    PubMed

    Eichmann, Cordula; Parson, Walther

    2008-09-01

    The traditional protocol for forensic mitochondrial DNA (mtDNA) analyses involves the amplification and sequencing of the two hypervariable segments HVS-I and HVS-II of the mtDNA control region. The primers usually span fragment sizes of 300-400 bp each region, which may result in weak or failed amplification in highly degraded samples. Here we introduce an improved and more stable approach using shortened amplicons in the fragment range between 144 and 237 bp. Ten such amplicons were required to produce overlapping fragments that cover the entire human mtDNA control region. These were co-amplified in two multiplex polymerase chain reactions and sequenced with the individual amplification primers. The primers were carefully selected to minimize binding on homoplasic and haplogroup-specific sites that would otherwise result in loss of amplification due to mis-priming. The multiplexes have successfully been applied to ancient and forensic samples such as bones and teeth that showed a high degree of degradation.

  7. MitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases

    PubMed Central

    Hashimoto, Masami; Bacman, Sandra R; Peralta, Susana; Falk, Marni J; Chomyn, Anne; Chan, David C; Williams, Sion L; Moraes, Carlos T

    2015-01-01

    We have designed mitochondrially targeted transcription activator-like effector nucleases or mitoTALENs to cleave specific sequences in the mitochondrial DNA (mtDNA) with the goal of eliminating mtDNA carrying pathogenic point mutations. To test the generality of the approach, we designed mitoTALENs to target two relatively common pathogenic mtDNA point mutations associated with mitochondrial diseases: the m.8344A>G tRNALys gene mutation associated with myoclonic epilepsy with ragged red fibers (MERRF) and the m.13513G>A ND5 mutation associated with MELAS/Leigh syndrome. Transmitochondrial cybrid cells harbouring the respective heteroplasmic mtDNA mutations were transfected with the respective mitoTALEN and analyzed after different time periods. MitoTALENs efficiently reduced the levels of the targeted pathogenic mtDNAs in the respective cell lines. Functional assays showed that cells with heteroplasmic mutant mtDNA were able to recover respiratory capacity and oxidative phosphorylation enzymes activity after transfection with the mitoTALEN. To improve the design in the context of the low complexity of mtDNA, we designed shorter versions of the mitoTALEN specific for the MERRF m.8344A>G mutation. These shorter mitoTALENs also eliminated the mutant mtDNA. These reductions in size will improve our ability to package these large sequences into viral vectors, bringing the use of these genetic tools closer to clinical trials. PMID:26159306

  8. The complete mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae).

    PubMed

    Zhou, Xuming; Chen, Yu; Zhu, Shanliang; Xu, Haigen; Liu, Yan; Chen, Lian

    2016-01-01

    The mitochondrial genome of Pomacea canaliculata (Gastropoda: Ampullariidae) is the first complete mtDNA sequence reported in the genus Pomacea. The total length of mtDNA is 15,707 bp, which containing 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a 359 bp non-coding region. The A + T content of the overall base composition of H-strand is 71.7% (T: 41%, C: 12.7%, A: 30.7%, G: 15.6%). ATP6, ATP8, CO1, CO2, ND1-3, ND5, ND6, ND4L and Cyt b genes begin with ATG as start codon, CO3 and ND4 begin with ATA. ATP8, CO2-3, ND4L, ND2-6 and Cyt b genes are terminated with TAA as stop codon, ATP6, ND1, and CO1 end with TAG. A long non-coding region is found and a 23 bp repeat unit repeat 11 times in this region.

  9. Complete Mitochondrial Genome of Eruca sativa Mill. (Garden Rocket)

    PubMed Central

    Yang, Qing; Chang, Shengxin; Chen, Jianmei; Hu, Maolong; Guan, Rongzhan

    2014-01-01

    Eruca sativa (Cruciferae family) is an ancient crop of great economic and agronomic importance. Here, the complete mitochondrial genome of Eruca sativa was sequenced and annotated. The circular molecule is 247 696 bp long, with a G+C content of 45.07%, containing 33 protein-coding genes, three rRNA genes, and 18 tRNA genes. The Eruca sativa mitochondrial genome may be divided into six master circles and four subgenomic molecules via three pairwise large repeats, resulting in a more dynamic structure of the Eruca sativa mtDNA compared with other cruciferous mitotypes. Comparison with the Brassica napus MtDNA revealed that most of the genes with known function are conserved between these two mitotypes except for the ccmFN2 and rrn18 genes, and 27 point mutations were scattered in the 14 protein-coding genes. Evolutionary relationships analysis suggested that Eruca sativa is more closely related to the Brassica species and to Raphanus sativus than to Arabidopsis thaliana. PMID:25157569

  10. Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of Tai-Kadai languages.

    PubMed

    Kutanan, Wibhu; Kampuansai, Jatupol; Srikummool, Metawee; Kangwanpong, Daoroong; Ghirotto, Silvia; Brunelli, Andrea; Stoneking, Mark

    2017-01-01

    The Tai-Kadai (TK) language family is thought to have originated in southern China and spread to Thailand and Laos, but it is not clear if TK languages spread by demic diffusion (i.e., a migration of people from southern China) or by cultural diffusion, with native Austroasiatic (AA) speakers switching to TK languages. To address this and other questions, we obtained 1234 complete mtDNA genome sequences from 51 TK and AA groups from Thailand and Laos. We find high genetic heterogeneity across the region, with 212 different haplogroups, and significant genetic differentiation among different samples from the same ethnolinguistic group. TK groups are more genetically homogeneous than AA groups, with the latter exhibiting more ancient/basal mtDNA lineages, and showing more drift effects. Modeling of demic diffusion, cultural diffusion, and admixture scenarios consistently supports the spread of TK languages by demic diffusion.

  11. Few mitochondrial DNA sequences are inserted into the turkey (Meleagris gallopavo) nuclear genome: evolutionary analyses and informativity in the domestic lineage.

    PubMed

    Schiavo, G; Strillacci, M G; Ribani, A; Bovo, S; Roman-Ponce, S I; Cerolini, S; Bertolini, F; Bagnato, A; Fontanesi, L

    2018-06-01

    Mitochondrial DNA (mtDNA) insertions have been detected in the nuclear genome of many eukaryotes. These sequences are pseudogenes originated by horizontal transfer of mtDNA fragments into the nuclear genome, producing nuclear DNA sequences of mitochondrial origin (numt). In this study we determined the frequency and distribution of mtDNA-originated pseudogenes in the turkey (Meleagris gallopavo) nuclear genome. The turkey reference genome (Turkey_2.01) was aligned with the reference linearized mtDNA sequence using last. A total of 32 numt sequences (corresponding to 18 numt regions derived by unique insertional events) were identified in the turkey nuclear genome (size ranging from 66 to 1415 bp; identity against the modern turkey mtDNA corresponding region ranging from 62% to 100%). Numts were distributed in nine chromosomes and in one scaffold. They derived from parts of 10 mtDNA protein-coding genes, ribosomal genes, the control region and 10 tRNA genes. Seven numt regions reported in the turkey genome were identified in orthologues positions in the Gallus gallus genome and therefore were present in the ancestral genome that in the Cretaceous originated the lineages of the modern crown Galliformes. Five recently integrated turkey numts were validated by PCR in 168 turkeys of six different domestic populations. None of the analysed numts were polymorphic (i.e. absence of the inserted sequence, as reported in numts of recent integration in other species), suggesting that the reticulate speciation model is not useful for explaining the origin of the domesticated turkey lineage. © 2018 Stichting International Foundation for Animal Genetics.

  12. Uniparental genetic markers in South Amerindians

    PubMed Central

    Bisso-Machado, Rafael; Bortolini, Maria Cátira; Salzano, Francisco Mauro

    2012-01-01

    A comprehensive review of uniparental systems in South Amerindians was undertaken. Variability in the Y-chromosome haplogroups were assessed in 68 populations and 1,814 individuals whereas that of Y-STR markers was assessed in 29 populations and 590 subjects. Variability in the mitochondrial DNA (mtDNA) haplogroup was examined in 108 populations and 6,697 persons, and sequencing studies used either the complete mtDNA genome or the highly variable segments 1 and 2. The diversity of the markers made it difficult to establish a general picture of Y-chromosome variability in the populations studied. However, haplogroup Q1a3a* was almost always the most prevalent whereas Q1a3* occurred equally in all regions, which suggested its prevalence among the early colonizers. The STR allele frequencies were used to derive a possible ancient Native American Q-clade chromosome haplotype and five of six STR loci showed significant geographic variation. Geographic and linguistic factors moderately influenced the mtDNA distributions (6% and 7%, respectively) and mtDNA haplogroups A and D correlated positively and negatively, respectively, with latitude. The data analyzed here provide rich material for understanding the biological history of South Amerindians and can serve as a basis for comparative studies involving other types of data, such as cultural data. PMID:22888284

  13. Myopathic mtDNA Depletion Syndrome Due to Mutation in TK2 Gene.

    PubMed

    Martín-Hernández, Elena; García-Silva, María Teresa; Quijada-Fraile, Pilar; Rodríguez-García, María Elena; Hernández-Laín, Aurelio; Coca-Robinot, David; Rivera, Henry; Fernández-Toral, Joaquín; Arenas, Joaquín; Martín, MiguelÁngel; Martínez-Azorín, Francisco

    2016-02-29

    Whole-exome sequencing (WES) was used to identify the disease gene(s) in a Spanish girl with failure to thrive, muscle weakness, mild facial weakness, elevated creatine kinase (CK), deficiency of mitochondrial complex III and depletion of mtDNA. With WES data, it was possible to get the whole mtDNA sequencing and discard any pathogenic variant in this genome. The analysis of whole exome uncovered a homozygous pathogenic mutation in Thymidine kinase 2 gene (TK2; NM_004614.4:c.323C>T, p.T108M). TK2 mutations have been identified mainly in patients with the myopathic form of mtDNA depletion syndromes (MDS). This patient presents an atypical TK2 related-myopathic form of MDS, because despite having a very low content of mtDNA (<20%), she presents a slower and less severe evolution of the disease. In conclusion, our data confirm the role of TK2 gene in MDS and expanded the phenotypic spectrum.

  14. Triangulating the provenance of African elephants using mitochondrial DNA

    PubMed Central

    Ishida, Yasuko; Georgiadis, Nicholas J; Hondo, Tomoko; Roca, Alfred L

    2013-01-01

    African elephant mitochondrial (mt) DNA follows a distinctive evolutionary trajectory. As females do not migrate between elephant herds, mtDNA exhibits low geographic dispersal. We therefore examined the effectiveness of mtDNA for assigning the provenance of African elephants (or their ivory). For 653 savanna and forest elephants from 22 localities in 13 countries, 4258 bp of mtDNA was sequenced. We detected eight mtDNA subclades, of which seven had regionally restricted distributions. Among 108 unique haplotypes identified, 72% were found at only one locality and 84% were country specific, while 44% of individuals carried a haplotype detected only at their sampling locality. We combined 316 bp of our control region sequences with those generated by previous trans-national surveys of African elephants. Among 101 unique control region haplotypes detected in African elephants across 81 locations in 22 countries, 62% were present in only a single country. Applying our mtDNA results to a previous microsatellite-based assignment study would improve estimates of the provenance of elephants in 115 of 122 mis-assigned cases. Nuclear partitioning followed species boundaries and not mtDNA subclade boundaries. For taxa such as elephants in which nuclear and mtDNA markers differ in phylogeography, combining the two markers can triangulate the origins of confiscated wildlife products. PMID:23798975

  15. Lineage divergence detected in the malaria vector Anopheles marajoara (Diptera: Culicidae) in Amazonian Brazil

    PubMed Central

    2010-01-01

    Background Cryptic species complexes are common among anophelines. Previous phylogenetic analysis based on the complete mtDNA COI gene sequences detected paraphyly in the Neotropical malaria vector Anopheles marajoara. The "Folmer region" detects a single taxon using a 3% divergence threshold. Methods To test the paraphyletic hypothesis and examine the utility of the Folmer region, genealogical trees based on a concatenated (white + 3' COI sequences) dataset and pairwise differentiation of COI fragments were examined. The population structure and demographic history were based on partial COI sequences for 294 individuals from 14 localities in Amazonian Brazil. 109 individuals from 12 localities were sequenced for the nDNA white gene, and 57 individuals from 11 localities were sequenced for the ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2). Results Distinct A. marajoara lineages were detected by combined genealogical analysis and were also supported among COI haplotypes using a median joining network and AMOVA, with time since divergence during the Pleistocene (<100,000 ya). COI sequences at the 3' end were more variable, demonstrating significant pairwise differentiation (3.82%) compared to the more moderate 2.92% detected by the Folmer region. Lineage 1 was present in all localities, whereas lineage 2 was restricted mainly to the west. Mismatch distributions for both lineages were bimodal, likely due to multiple colonization events and spatial expansion (~798 - 81,045 ya). There appears to be gene flow within, not between lineages, and a partial barrier was detected near Rio Jari in Amapá state, separating western and eastern populations. In contrast, both nDNA data sets (white gene sequences with or without the retention of the 4th intron, and ITS2 sequences and length) detected a single A. marajoara lineage. Conclusions Strong support for combined data with significant differentiation detected in the COI and absent in the nDNA suggest that the divergence is recent, and detectable only by the faster evolving mtDNA. A within subgenus threshold of >2% may be more appropriate among sister taxa in cryptic anopheline complexes than the standard 3%. Differences in demographic history and climatic changes may have contributed to mtDNA lineage divergence in A. marajoara. PMID:20929572

  16. Germ line insertion of mtDNA at the breakpoint junction of a reciprocal constitutional translocation.

    PubMed

    Willett-Brozick, J E; Savul, S A; Richey, L E; Baysal, B E

    2001-08-01

    Constitutional chromosomal translocations are relatively common causes of human morbidity, yet the DNA double-strand break (DSB) repair mechanisms that generate them are incompletely understood. We cloned, sequenced and analyzed the breakpoint junctions of a familial constitutional reciprocal translocation t(9;11)(p24;q23). Within the 10-kb region flanking the breakpoints, chromosome 11 had 25% repeat elements, whereas chromosome 9 had 98% repeats, 95% of which were L1-type LINE elements. The breakpoints occurred within an L1-type repeat element at 9p24 and at the 3'-end of an Alu sequence at 11q23. At the breakpoint junction of derivative chromosome 9, we discovered an unusually large 41-bp insertion, which showed 100% identity to 12S mitochondrial DNA (mtDNA) between nucleotides 896 and 936 of the mtDNA sequence. Analysis of the human genome failed to show the preexistence of the inserted sequence at normal chromosomes 9 and 11 breakpoint junctions or elsewhere in the genome, strongly suggesting that the insertion was derived from human mtDNA and captured into the junction during the DSB repair process. To our knowledge, these findings represent the first observation of spontaneous germ line insertion of modern human mtDNA sequences and suggest that DSB repair may play a role in inter-organellar gene transfer in vivo. Our findings also provide evidence for a previously unrecognized insertional mechanism in human, by which non-mobile extra-chromosomal fragments can be inserted into the genome at DSB repair junctions.

  17. Mitochondrial genome diversity in the Tubalar, Even, and Ulchi: contribution to prehistory of native Siberians and their affinities to Native Americans.

    PubMed

    Sukernik, Rem I; Volodko, Natalia V; Mazunin, Ilya O; Eltsov, Nikolai P; Dryomov, Stanislav V; Starikovskaya, Elena B

    2012-05-01

    To fill remaining gaps in mitochondrial DNA diversity in the least surveyed eastern and western flanks of Siberia, 391 mtDNA samples (144 Tubalar from Altai, 87 Even from northeastern Siberia, and 160 Ulchi from the Russian Far East) were characterized via high-resolution restriction fragment length polymorphism/single nucleotide polymorphisms analysis. The subhaplogroup structure was extended through complete sequencing of 67 mtDNA samples selected from these and other related native Siberians. Specifically, we have focused on the evolutionary histories of the derivatives of M and N haplogroups, putatively reflecting different phases of settling Siberia by early modern humans. Population history and phylogeography of the resulting mtDNA genomes, combined with those from previously published data sets, revealed a wide range of tribal- and region-specific mtDNA haplotypes that emerged or diversified in Siberia before or after the last glacial maximum, ∼18 kya. Spatial distribution and ages of the "east" and "west" Eurasian mtDNA haploclusters suggest that anatomically modern humans that originally colonized Altai derived from macrohaplogroup N and came from Southwest Asia around 38,000 years ago. The derivatives of macrohaplogroup M, which largely emerged or diversified within the Russian Far East, came along with subsequent migrations to West Siberia millennia later. The last glacial maximum played a critical role in the timing and character of the settlement of the Siberian subcontinent. Copyright © 2012 Wiley Periodicals, Inc.

  18. Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage.

    PubMed

    Sardina, M T; Ballester, M; Marmi, J; Finocchiaro, R; van Kaam, J B C H M; Portolano, B; Folch, J M

    2006-08-01

    The mitochondrial hypervariable region 1 (HVR1) sequence of 67 goats belonging to the Girgentana, Maltese and Derivata di Siria breeds was partially sequenced in order to present the first phylogenetic characterization of Sicilian goat breeds. These sequences were compared with published sequences of Indian and Pakistani domestic goats and wild goats. Mitochondrial lineage A was observed in most of the Sicilian goats. However, three Girgentana haplotypes were highly divergent from the Capra hircus clade, indicating that a new mtDNA lineage in domestic goats was found.

  19. Large-scale mitochondrial DNA analysis in Southeast Asia reveals evolutionary effects of cultural isolation in the multi-ethnic population of Myanmar

    PubMed Central

    2014-01-01

    Background Myanmar is the largest country in mainland Southeast Asia with a population of 55 million people subdivided into more than 100 ethnic groups. Ruled by changing kingdoms and dynasties and lying on the trade route between India and China, Myanmar was influenced by numerous cultures. Since its independence from British occupation, tensions between the ruling Bamar and ethnic minorities increased. Results Our aim was to search for genetic footprints of Myanmar’s geographic, historic and sociocultural characteristics and to contribute to the picture of human colonization by describing and dating of new mitochondrial DNA (mtDNA) haplogroups. Therefore, we sequenced the mtDNA control region of 327 unrelated donors and the complete mitochondrial genome of 44 selected individuals according to highest quality standards. Conclusion Phylogenetic analyses of the entire mtDNA genomes uncovered eight new haplogroups and three unclassified basal M-lineages. The multi-ethnic population and the complex history of Myanmar were reflected in its mtDNA heterogeneity. Population genetic analyses of Burmese control region sequences combined with population data from neighboring countries revealed that the Myanmar haplogroup distribution showed a typical Southeast Asian pattern, but also Northeast Asian and Indian influences. The population structure of the extraordinarily diverse Bamar differed from that of the Karen people who displayed signs of genetic isolation. Migration analyses indicated a considerable genetic exchange with an overall positive migration balance from Myanmar to neighboring countries. Age estimates of the newly described haplogroups point to the existence of evolutionary windows where climatic and cultural changes gave rise to mitochondrial haplogroup diversification in Asia. PMID:24467713

  20. Deep sequencing of the mitochondrial genome reveals common heteroplasmic sites in NADH dehydrogenase genes.

    PubMed

    Liu, Chunyu; Fetterman, Jessica L; Liu, Poching; Luo, Yan; Larson, Martin G; Vasan, Ramachandran S; Zhu, Jun; Levy, Daniel

    2018-03-01

    Increasing evidence implicates mitochondrial dysfunction in aging and age-related conditions. But little is known about the molecular basis for this connection. A possible cause may be mutations in the mitochondrial DNA (mtDNA), which are often heteroplasmic-the joint presence of different alleles at a single locus in the same individual. However, the involvement of mtDNA heteroplasmy in aging and age-related conditions has not been investigated thoroughly. We deep-sequenced the complete mtDNA genomes of 356 Framingham Heart Study participants (52% women, mean age 43, mean coverage 4570-fold), identified 2880 unique mutations and comprehensively annotated them by MITOMAP and PolyPhen-2. We discovered 11 heteroplasmic "hot" spots [NADH dehydrogenase (ND) subunit 1, 4, 5 and 6 genes, n = 7; cytochrome c oxidase I (COI), n = 2; 16S rRNA, n = 1; D-loop, n = 1] for which the alternative-to-reference allele ratios significantly increased with advancing age (Bonferroni correction p < 0.001). Four of these heteroplasmic mutations in ND and COI genes were predicted to be deleterious nonsynonymous mutations which may have direct impact on ATP production. We confirmed previous findings that healthy individuals carry many low-frequency heteroplasmy mutations with potentially deleterious effects. We hypothesize that the effect of a single deleterious heteroplasmy may be minimal due to a low mutant-to-wildtype allele ratio, whereas the aggregate effects of many deleterious mutations may cause changes in mitochondrial function and contribute to age-related diseases. The identification of age-related mtDNA mutations is an important step to understand the genetic architecture of age-related diseases and may uncover novel therapeutic targets for such diseases.

  1. Characterization of mtDNA variation in a cohort of South African paediatric patients with mitochondrial disease.

    PubMed

    van der Walt, Elizna M; Smuts, Izelle; Taylor, Robert W; Elson, Joanna L; Turnbull, Douglass M; Louw, Roan; van der Westhuizen, Francois H

    2012-06-01

    Mitochondrial disease can be attributed to both mitochondrial and nuclear gene mutations. It has a heterogeneous clinical and biochemical profile, which is compounded by the diversity of the genetic background. Disease-based epidemiological information has expanded significantly in recent decades, but little information is known that clarifies the aetiology in African patients. The aim of this study was to investigate mitochondrial DNA variation and pathogenic mutations in the muscle of diagnosed paediatric patients from South Africa. A cohort of 71 South African paediatric patients was included and a high-throughput nucleotide sequencing approach was used to sequence full-length muscle mtDNA. The average coverage of the mtDNA genome was 81±26 per position. After assigning haplogroups, it was determined that although the nature of non-haplogroup-defining variants was similar in African and non-African haplogroup patients, the number of substitutions were significantly higher in African patients. We describe previously reported disease-associated and novel variants in this cohort. We observed a general lack of commonly reported syndrome-associated mutations, which supports clinical observations and confirms general observations in African patients when using single mutation screening strategies based on (predominantly non-African) mtDNA disease-based information. It is finally concluded that this first extensive report on muscle mtDNA sequences in African paediatric patients highlights the need for a full-length mtDNA sequencing strategy, which applies to all populations where specific mutations is not present. This, in addition to nuclear DNA gene mutation and pathogenicity evaluations, will be required to better unravel the aetiology of these disorders in African patients.

  2. Mitochondrial DNA typing from human axillary, pubic and head hair shafts - success rates and sequence comparisons.

    PubMed

    Pfeiffer, H; Hühne, J; Ortmann, C; Waterkamp, K; Brinkmann, B

    1999-01-01

    The analysis of mitochondrial DNA (mtDNA) from shed hairs has gained high importance in forensic casework since telogen hairs are one of the most common types of evidence left at the crime scene. In this systematic study of hair shafts from 20 individuals, the correlation of mtDNA recovery with hair morphology (length, diameter, volume, colour), with sex, and with body localisation (head, armpit, pubis) was investigated. The highest average success rate of hypervariable region 1 (HV 1) sequencing was found in head hair shafts (75%) followed by pubic (66%) and axillary hair shafts (52%). No statistically significant correlation between morphological parameters or sex and the success rate of sequencing was found. MtDNA sequences of buccal cells, head, pubic and axillary hair shafts did not show intraindividual differences. Heteroplasmic base positions were observed neither in the hair shafts nor in control samples of buccal cells.

  3. GENETIC STRUCTURE OF CREEK CHUB (SEMOTILUS ATROMACULATUS) POPULATIONS IN COAL MINING-IMPACTED AREAS OF THE EASTERN UNITED STATES, AS DETERMINED BY MTDNA SEQUENCING AND AFLP ANALYSIS

    EPA Science Inventory

    Analysis of intraspecific patterns in genetic diversity of stream fishes provides a potentially powerful method for assessing the status and trends in the condition of aquatic ecosystems. We analyzed mitochondrial DNA (mtDNA) sequences (590 bases of cytochrome B) and nuclear DNA...

  4. Simultaneous detection of human mitochondrial DNA and nuclear-inserted mitochondrial-origin sequences (NumtS) using forensic mtDNA amplification strategies and pyrosequencing technology.

    PubMed

    Bintz, Brittania J; Dixon, Groves B; Wilson, Mark R

    2014-07-01

    Next-generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior(®) instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611-bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer-binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep-sequencing methods in casework. © 2014 American Academy of Forensic Sciences.

  5. Mitochondrial DNA sequence data reveals association of haplogroup U with psychosis in bipolar disorder.

    PubMed

    Frye, Mark A; Ryu, Euijung; Nassan, Malik; Jenkins, Gregory D; Andreazza, Ana C; Evans, Jared M; McElroy, Susan L; Oglesbee, Devin; Highsmith, W Edward; Biernacka, Joanna M

    2017-01-01

    Converging genetic, postmortem gene-expression, cellular, and neuroimaging data implicate mitochondrial dysfunction in bipolar disorder. This study was conducted to investigate whether mitochondrial DNA (mtDNA) haplogroups and single nucleotide variants (SNVs) are associated with sub-phenotypes of bipolar disorder. MtDNA from 224 patients with Bipolar I disorder (BPI) was sequenced, and association of sequence variations with 3 sub-phenotypes (psychosis, rapid cycling, and adolescent illness onset) was evaluated. Gene-level tests were performed to evaluate overall burden of minor alleles for each phenotype. The haplogroup U was associated with a higher risk of psychosis. Secondary analyses of SNVs provided nominal evidence for association of psychosis with variants in the tRNA, ND4 and ND5 genes. The association of psychosis with ND4 (gene that encodes NADH dehydrogenase 4) was further supported by gene-level analysis. Preliminary analysis of mtDNA sequence data suggests a higher risk of psychosis with the U haplogroup and variation in the ND4 gene implicated in electron transport chain energy regulation. Further investigation of the functional consequences of this mtDNA variation is encouraged. Copyright © 2016. Published by Elsevier Ltd.

  6. mtDNA recombination in a natural population.

    PubMed

    Saville, B J; Kohli, Y; Anderson, J B

    1998-02-03

    Variation in mtDNA has been used extensively to draw inferences in phylogenetics and population biology. In the majority of eukaryotes investigated, transmission of mtDNA is uniparental and clonal, with genotypic diversity arising from mutation alone. In other eukaryotes, the transmission of mtDNA is biparental or primarily uniparental with the possibility of "leakage" from the minority parent. In these cases, heteroplasmy carries the potential for recombination between mtDNAs of different descent. In fungi, such mtDNA recombination has long been documented but only in laboratory experiments and only under conditions in which heteroplasmy is ensured. Despite this experimental evidence, mtDNA recombination has not been to our knowledge documented in a natural population. Because evidence from natural populations is prerequisite to understanding the evolutionary impact of mtDNA recombination, we investigated the possibility of mtDNA recombination in an organism with the demonstrated potential for heteroplasmy in laboratory matings. Using nucleotide sequence data, we report here that the genotypic structure of mtDNA in a natural population of the basidiomycete fungus Armillaria gallica is inconsistent with purely clonal mtDNA evolution and is fully consistent with mtDNA recombination.

  7. The complete mitochondrial genome structure of snow leopard Panthera uncia.

    PubMed

    Wei, Lei; Wu, Xiaobing; Jiang, Zhigang

    2009-05-01

    The complete mitochondrial genome (mtDNA) of snow leopard Panthera uncia was obtained by using the polymerase chain reaction (PCR) technique based on the PCR fragments of 30 primers we designed. The entire mtDNA sequence was 16 773 base pairs (bp) in length, and the base composition was: A-5,357 bp (31.9%); C-4,444 bp (26.5%); G-2,428 bp (14.5%); T-4,544 bp (27.1%). The structural characteristics [0] of the P. uncia mitochondrial genome were highly similar to these of Felis catus, Acinonyx jubatus, Neofelis nebulosa and other mammals. However, we found several distinctive features of the mitochondrial genome of Panthera unica. First, the termination codon of COIII was TAA, which differed from those of F. catus, A. jubatus and N. nebulosa. Second, tRNA(Ser) ((AGY)), which lacked the ''DHU'' arm, could not be folded into the typical cloverleaf-shaped structure. Third, in the control region, a long repetitive sequence in RS-2 (32 bp) region was found with 2 repeats while one short repetitive segment (9 bp) was found with 15 repeats in the RS-3 region. We performed phylogenetic analysis based on a 3 816 bp concatenated sequence of 12S rRNA, 16S rRNA, ND2, ND4, ND5, Cyt b and ATP8 for P. uncia and other related species, the result indicated that P. uncia and P. leo were the sister species, which was different from the previous findings.

  8. mtDNA control-region sequence variation suggests multiple independent origins of an "Asian-specific" 9-bp deletion in sub-Saharan Africans.

    PubMed Central

    Soodyall, H.; Vigilant, L.; Hill, A. V.; Stoneking, M.; Jenkins, T.

    1996-01-01

    The intergenic COII/tRNA(Lys) 9-bp deletion in human mtDNA, which is found at varying frequencies in Asia, Southeast Asia, Polynesia, and the New World, was also found in 81 of 919 sub-Saharan Africans. Using mtDNA control-region sequence data from a subset of 41 individuals with the deletion, we identified 22 unique mtDNA types associated with the deletion in Africa. A comparison of the unique mtDNA types from sub-Saharan Africans and Asians with the 9-bp deletion revealed that sub-Saharan Africans and Asians have sequence profiles that differ in the locations and frequencies of variant sites. Both phylogenetic and mismatch-distribution analysis suggest that 9-bp deletion arose independently in sub-Saharan Africa and Asia and that the deletion has arisen more than once in Africa. Within Africa, the deletion was not found among Khoisan peoples and was rare to absent in western and southwestern African populations, but it did occur in Pygmy and Negroid populations from central Africa and in Malawi and southern African Bantu-speakers. The distribution of the 9-bp deletion in Africa suggests that the deletion could have arisen in central Africa and was then introduced to southern Africa via the recent "Bantu expansion." PMID:8644719

  9. Mitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia.

    PubMed

    Torrell, Helena; Salas, Antonio; Abasolo, Nerea; Morén, Constanza; Garrabou, Glòria; Valero, Joaquín; Alonso, Yolanda; Vilella, Elisabet; Costas, Javier; Martorell, Lourdes

    2014-10-01

    It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia. © 2014 Wiley Periodicals, Inc.

  10. mtDNA and the Origin of the Icelanders: Deciphering Signals of Recent Population History

    PubMed Central

    Helgason, Agnar; Sigurðardóttir, Sigrún; Gulcher, Jeffrey R.; Ward, Ryk; Stefánsson, Kári

    2000-01-01

    Previous attempts to investigate the origin of the Icelanders have provided estimates of ancestry ranging from a 98% British Isles contribution to an 86% Scandinavian contribution. We generated mitochondrial sequence data for 401 Icelandic individuals and compared these data with >2,500 other European sequences from published sources, to determine the probable origins of women who contributed to Iceland’s settlement. Although the mean number of base-pair differences is high in the Icelandic sequences and they are widely distributed in the overall European mtDNA phylogeny, we find a smaller number of distinct mitochondrial lineages, compared with most other European populations. The frequencies of a number of mtDNA lineages in the Icelanders deviate noticeably from those in neighboring populations, suggesting that founder effects and genetic drift may have had a considerable influence on the Icelandic gene pool. This is in accordance with available demographic evidence about Icelandic population history. A comparison with published mtDNA lineages from European populations indicates that, whereas most founding females probably originated from Scandinavia and the British Isles, lesser contributions from other populations may also have taken place. We present a highly resolved phylogenetic network for the Icelandic data, identifying a number of previously unreported mtDNA lineage clusters and providing a detailed depiction of the evolutionary relationships between European mtDNA clusters. Our findings indicate that European populations contain a large number of closely related mitochondrial lineages, many of which have not yet been sampled in the current comparative data set. Consequently, substantial increases in sample sizes that use mtDNA data will be needed to obtain valid estimates of the diverse ancestral mixtures that ultimately gave rise to contemporary populations. PMID:10712214

  11. The Mitochondrial Genome of Chara vulgaris: Insights into the Mitochondrial DNA Architecture of the Last Common Ancestor of Green Algae and Land PlantsW⃞

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2003-01-01

    Mitochondrial DNA (mtDNA) has undergone radical changes during the evolution of green plants, yet little is known about the dynamics of mtDNA evolution in this phylum. Land plant mtDNAs differ from the few green algal mtDNAs that have been analyzed to date by their expanded size, long spacers, and diversity of introns. We have determined the mtDNA sequence of Chara vulgaris (Charophyceae), a green alga belonging to the charophycean order (Charales) that is thought to be the most closely related alga to land plants. This 67,737-bp mtDNA sequence, displaying 68 conserved genes and 27 introns, was compared with those of three angiosperms, the bryophyte Marchantia polymorpha, the charophycean alga Chaetosphaeridium globosum (Coleochaetales), and the green alga Mesostigma viride. Despite important differences in size and intron composition, Chara mtDNA strikingly resembles Marchantia mtDNA; for instance, all except 9 of 68 conserved genes lie within blocks of colinear sequences. Overall, our genome comparisons and phylogenetic analyses provide unequivocal support for a sister-group relationship between the Charales and the land plants. Only four introns in land plant mtDNAs appear to have been inherited vertically from a charalean algar ancestor. We infer that the common ancestor of green algae and land plants harbored a tightly packed, gene-rich, and relatively intron-poor mitochondrial genome. The group II introns in this ancestral genome appear to have spread to new mtDNA sites during the evolution of bryophytes and charalean green algae, accounting for part of the intron diversity found in Chara and land plant mitochondria. PMID:12897260

  12. Surveyor Nuclease: a new strategy for a rapid identification of heteroplasmic mitochondrial DNA mutations in patients with respiratory chain defects.

    PubMed

    Bannwarth, Sylvie; Procaccio, Vincent; Paquis-Flucklinger, Veronique

    2005-06-01

    Molecular analysis of mitochondrial DNA (mtDNA) is a critical step in diagnosis and genetic counseling of respiratory chain defects. No fast method is currently available for the identification of unknown mtDNA point mutations. We have developed a new strategy based on complete mtDNA PCR amplification followed by digestion with a mismatch-specific DNA endonuclease, Surveyor Nuclease. This enzyme, a member of the CEL nuclease family of plant DNA endonucleases, cleaves double-strand DNA at any mismatch site including base substitutions and small insertions/deletions. After digestion, cleavage products are separated and analyzed by agarose gel electrophoresis. The size of the digestion products indicates the location of the mutation, which is then confirmed and characterized by sequencing. Although this method allows the analysis of 2 kb mtDNA amplicons and the detection of multiple mutations within the same fragment, it does not lead to the identification of homoplasmic base substitutions. Homoplasmic pathogenic mutations have been described. Nevertheless, most homoplasmic base substitutions are neutral polymorphisms while deleterious mutations are typically heteroplasmic. Here, we report that this method can be used to detect mtDNA mutations such as m.3243A>G tRNA(Leu) and m.14709T>C tRNA(Glu) even when they are present at levels as low as 3% in DNA samples derived from patients with respiratory chain defects. Then, we tested five patients suffering from a mitochondrial respiratory chain defect and we identified a variant (m.16189T>C) in two of them, which was previously associated with susceptibility to diabetes and cardiomyopathy. In conclusion, this method can be effectively used to rapidly and completely screen the entire human mitochondrial genome for heteroplasmic mutations and in this context represents an important advance for the diagnosis of mitochondrial diseases.

  13. Missing genes, multiple ORFs, and C-to-U type RNA editing in Acrasis kona (Heterolobosea, Excavata) mitochondrial DNA.

    PubMed

    Fu, Cheng-Jie; Sheikh, Sanea; Miao, Wei; Andersson, Siv G E; Baldauf, Sandra L

    2014-08-21

    Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs (mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Mitochondrial pathology in inclusion body myositis.

    PubMed

    Lindgren, Ulrika; Roos, Sara; Hedberg Oldfors, Carola; Moslemi, Ali-Reza; Lindberg, Christopher; Oldfors, Anders

    2015-04-01

    Inclusion body myositis (IBM) is usually associated with a large number of cytochrome c oxidase (COX)-deficient muscle fibers and acquired mitochondrial DNA (mtDNA) deletions. We studied the number of COX-deficient fibers and the amount of mtDNA deletions, and if variants in nuclear genes involved in mtDNA maintenance may contribute to the occurrence of mtDNA deletions in IBM muscle. Twenty-six IBM patients were included. COX-deficient fibers were assayed by morphometry and mtDNA deletions by qPCR. POLG was analyzed in all patients by Sanger sequencing and C10orf2 (Twinkle), DNA2, MGME1, OPA1, POLG2, RRM2B, SLC25A4 and TYMP in six patients by next generation sequencing. Patients with many COX-deficient muscle fibers had a significantly higher proportion of mtDNA deletions than patients with few COX-deficient fibers. We found previously unreported variants in POLG and C10orf2 and IBM patients had a significantly higher frequency of an RRM2B variant than controls. POLG variants appeared more common in IBM patients with many COX-deficient fibers, but the difference was not statistically significant. We conclude that COX-deficient fibers in inclusion body myositis are associated with multiple mtDNA deletions. In IBM patients we found novel and also previously reported variants in genes of importance for mtDNA maintenance that warrants further studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic.

    PubMed

    Burzyński, Artur; Zbawicka, Małgorzata; Skibinski, David O F; Wenne, Roman

    2003-03-01

    A number of studies have claimed that recombination occurs in animal mtDNA, although this evidence is controversial. Ladoukakis and Zouros (2001) provided strong evidence for mtDNA recombination in the COIII gene in gonadal tissue in the marine mussel Mytilus galloprovincialis from the Black Sea. The recombinant molecules they reported had not however become established in the population from which experimental animals were sampled. In the present study, we provide further evidence of the generality of mtDNA recombination in Mytilus by reporting recombinant mtDNA molecules in a related mussel species, Mytilus trossulus, from the Baltic. The mtDNA region studied begins in the 16S rRNA gene and terminates in the cytochrome b gene and includes a major noncoding region that may be analogous to the D-loop region observed in other animals. Many bivalve species, including some Mytilus species, are unusual in that they have two mtDNA genomes, one of which is inherited maternally (F genome) the other inherited paternally (M genome). Two recombinant variants reported in the present study have population frequencies of 5% and 36% and appear to be mosaic for F-like and M-like sequences. However, both variants have the noncoding region from the M genome, and both are transmitted to sperm like the M genome. We speculate that acquisition of the noncoding region by the recombinant molecules has conferred a paternal role on mtDNA genomes that otherwise resemble the F genome in sequence.

  16. High Mitochondrial DNA Stability in B-Cell Chronic Lymphocytic Leukemia

    PubMed Central

    Cerezo, María; Bandelt, Hans-Jürgen; Martín-Guerrero, Idoia; Ardanaz, Maite; Vega, Ana; Carracedo, Ángel; García-Orad, África; Salas, Antonio

    2009-01-01

    Background Chronic Lymphocytic Leukemia (CLL) leads to progressive accumulation of lymphocytes in the blood, bone marrow, and lymphatic tissues. Previous findings have suggested that the mtDNA could play an important role in CLL. Methodology/Principal Findings The mitochondrial DNA (mtDNA) control-region was analyzed in lymphocyte cell DNA extracts and compared with their granulocyte counterpart extract of 146 patients suffering from B-Cell CLL; B-CLL (all recruited from the Basque country). Major efforts were undertaken to rule out methodological artefacts that would render a high false positive rate for mtDNA instabilities and thus lead to erroneous interpretation of sequence instabilities. Only twenty instabilities were finally confirmed, most of them affecting the homopolymeric stretch located in the second hypervariable segment (HVS-II) around position 310, which is well known to constitute an extreme mutational hotspot of length polymorphism, as these mutations are frequently observed in the general human population. A critical revision of the findings in previous studies indicates a lack of proper methodological standards, which eventually led to an overinterpretation of the role of the mtDNA in CLL tumorigenesis. Conclusions/Significance Our results suggest that mtDNA instability is not the primary causal factor in B-CLL. A secondary role of mtDNA mutations cannot be fully ruled out under the hypothesis that the progressive accumulation of mtDNA instabilities could finally contribute to the tumoral process. Recommendations are given that would help to minimize erroneous interpretation of sequencing results in mtDNA studies in tumorigenesis. PMID:19924307

  17. Mitochondrial genome of the endangered marine gastropod Strombus gigas Linnaeus, 1758 (Mollusca: Gastropoda).

    PubMed

    Márquez, Edna J; Castro, Erick R; Alzate, Juan F

    2016-01-01

    The queen conch Strombus gigas is an endangered marine gastropod of significant economic importance across the Greater Caribbean region. This work reports for the first time the complete mitochondrial genome of S. gigas, obtained by FLX 454 pyrosequencing. The mtDNA genome encodes for 13 proteins, 22 tRNAs and 2 ribosomal RNAs. In addition, the coding sequences and gene synteny were similar to other previously reported mitogenomes of gastropods.

  18. The complete mitochondrial genome of the Asian tapirs (Tapirus indicus): the only extant Tapiridae species in the old world.

    PubMed

    Muangkram, Yuttamol; Wajjwalku, Worawidh; Kaolim, Nongnid; Buddhakosai, Waradee; Kamolnorranath, Sumate; Siriaroonrat, Boripat; Tipkantha, Wanlaya; Dongsaard, Khwanruean; Maikaew, Umaporn; Sanannu, Saowaphang

    2016-01-01

    Asian tapir (Tapirus indicus) is categorized as Endangered on the 2008 IUCN red list. The first full-length mitochondrial DNA (mtDNA) sequence of Asian tapir is 16,717 bp in length. Base composition shows 34.6% A, 27.2% T, 25.8% C and 12.3% G. Highest polymorphic site is on the control region as typical for many species.

  19. Mitochondrial DNA haplogroup phylogeny of the dog: Proposal for a cladistic nomenclature.

    PubMed

    Fregel, Rosa; Suárez, Nicolás M; Betancor, Eva; González, Ana M; Cabrera, Vicente M; Pestano, José

    2015-05-01

    Canis lupus familiaris mitochondrial DNA analysis has increased in recent years, not only for the purpose of deciphering dog domestication but also for forensic genetic studies or breed characterization. The resultant accumulation of data has increased the need for a normalized and phylogenetic-based nomenclature like those provided for human maternal lineages. Although a standardized classification has been proposed, haplotype names within clades have been assigned gradually without considering the evolutionary history of dog mtDNA. Moreover, this classification is based only on the D-loop region, proven to be insufficient for phylogenetic purposes due to its high number of recurrent mutations and the lack of relevant information present in the coding region. In this study, we design 1) a refined mtDNA cladistic nomenclature from a phylogenetic tree based on complete sequences, classifying dog maternal lineages into haplogroups defined by specific diagnostic mutations, and 2) a coding region SNP analysis that allows a more accurate classification into haplogroups when combined with D-loop sequencing, thus improving the phylogenetic information obtained in dog mitochondrial DNA studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Mitochondrial genome nucleotide substitution pattern between domesticated silkmoth, Bombyx mori, and its wild ancestors, Chinese Bombyx mandarina and Japanese Bombyx mandarina

    PubMed Central

    2010-01-01

    Bombyx mori and Bombyx mandarina are morphologically and physiologically similar. In this study, we compared the nucleotide variations in the complete mitochondrial (mt) genomes between the domesticated silkmoth, B. mori, and its wild ancestors, Chinese B. mandarina (ChBm) and Japanese B. mandarina (JaBm). The sequence divergence and transition mutation ratio between B. mori and ChBm are significantly smaller than those observed between B. mori and JaBm. The preference of transition by DNA strands between B. mori and ChBm is consistent with that between B. mori and JaBm, however, the regional variation in nucleotide substitution rate shows a different feature. These results suggest that the ChBm mt genome is not undergoing the same evolutionary process as JaBm, providing evidence for selection on mtDNA. Moreover, investigation of the nucleotide sequence divergence in the A+T-rich region of Bombyx mt genomes also provides evidence for the assumption that the A+T-rich region might not be the fastest evolving region of the mtDNA of insects. PMID:21637625

  1. Mitochondrial DNA Variation and the Evolution of Robertsonian Chromosomal Races of House Mice, Mus Domesticus

    PubMed Central

    Nachman, M. W.; Boyer, S. N.; Searle, J. B.; Aquadro, C. F.

    1994-01-01

    The house mouse, Mus domesticus, includes many distinct Robertsonian (Rb) chromosomal races with diploid numbers from 2n = 22 to 2n = 38. Although these races are highly differentiated karyotypically, they are otherwise indistinguishable from standard karyotype (i.e., 2n = 40) mice, and consequently their evolutionary histories are not well understood. We have examined mitochondrial DNA (mtDNA) sequence variation from the control region and the ND3 gene region among 56 M. domesticus from Western Europe, including 15 Rb populations and 13 standard karyotype populations, and two individuals of the sister species, Mus musculus. mtDNA exhibited an average sequence divergence of 0.84% within M. domesticus and 3.4% between M. domesticus and M. musculus. The transition/transversion bias for the regions sequenced is 5.7:1, and the overall rate of sequence evolution is approximately 10% divergence per million years. The amount of mtDNA variation was as great among different Rb races as among different populations of standard karyotype mice, suggesting that different Rb races do not derive from a single recent maternal lineage. Phylogenetic analysis of the mtDNA sequences resulted in a parsimony tree which contained six major clades. Each of these clades contained both Rb and standard karyotype mice, consistent with the hypothesis that Rb races have arisen independently multiple times. Discordance between phylogeny and geography was attributable to ancestral polymorphism as a consequence of the recent colonization of Western Europe by mice. Two major mtDNA lineages were geographically localized and contained both Rb and standard karyotype mice. The age of these lineages suggests that mice have moved into Europe only within the last 10,000 years and that Rb populations in different geographic regions arose during this time. PMID:8005418

  2. A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis)

    PubMed Central

    Hou, Wan-ru; Chen, Yu; Wu, Xia; Hu, Jin-chu; Peng, Zheng-song; Yang, Jung; Tang, Zong-xiang; Zhou, Cai-Quan; Li, Yu-ming; Yang, Shi-kui; Du, Yu-jie; Kong, Ling-lu; Ren, Zheng-long; Zhang, Huai-yu; Shuai, Su-rong

    2007-01-01

    We obtained the complete mitochondrial genome of U.thibetanus mupinensis by DNA sequencing based on the PCR fragments of 18 primers we designed. The results indicate that the mtDNA is 16 868 bp in size, encodes 13 protein genes, 22 tRNA genes, and 2 rRNA genes, with an overall H-strand base composition of 31.2% A, 25.4% C, 15.5% G and 27.9% T. The sequence of the control region (CR) located between tRNA-Pro and tRNA-Phe is 1422 bp in size, consists of 8.43% of the whole genome, GC content is 51.9% and has a 6bp tandem repeat and two 10bp tandem repeats identified by using the Tandem Repeats Finder. U. thibetanus mupinensis mitochondrial genome shares high similarity with those of three other Ursidae: U. americanus (91.46%), U. arctos (89.25%) and U. maritimus (87.66%). PMID:17205108

  3. Land, language, and loci: mtDNA in Native Americans and the genetic history of Peru.

    PubMed

    Lewis, Cecil M; Tito, Raúl Y; Lizárraga, Beatriz; Stone, Anne C

    2005-07-01

    Despite a long history of complex societies and despite extensive present-day linguistic and ethnic diversity, relatively few populations in Peru have been sampled for population genetic investigations. In order to address questions about the relationships between South American populations and about the extent of correlation between genetic distance, language, and geography in the region, mitochondrial DNA (mtDNA) hypervariable region I sequences and mtDNA haplogroup markers were examined in 33 individuals from the state of Ancash, Peru. These sequences were compared to those from 19 American Indian populations using diversity estimates, AMOVA tests, mismatch distributions, a multidimensional scaling plot, and regressions. The results show correlations between genetics, linguistics, and geographical affinities, with stronger correlations between genetics and language. Additionally, the results suggest a pattern of differential gene flow and drift in western vs. eastern South America, supporting previous mtDNA and Y chromosome investigations. (c) 2004 Wiley-Liss, Inc

  4. Development and expansion of high-quality control region databases to improve forensic mtDNA evidence interpretation.

    PubMed

    Irwin, Jodi A; Saunier, Jessica L; Strouss, Katharine M; Sturk, Kimberly A; Diegoli, Toni M; Just, Rebecca S; Coble, Michael D; Parson, Walther; Parsons, Thomas J

    2007-06-01

    In an effort to increase the quantity, breadth and availability of mtDNA databases suitable for forensic comparisons, we have developed a high-throughput process to generate approximately 5000 control region sequences per year from regional US populations, global populations from which the current US population is derived and global populations currently under-represented in available forensic databases. The system utilizes robotic instrumentation for all laboratory steps from pre-extraction through sequence detection, and a rigorous eight-step, multi-laboratory data review process with entirely electronic data transfer. Over the past 3 years, nearly 10,000 control region sequences have been generated using this approach. These data are being made publicly available and should further address the need for consistent, high-quality mtDNA databases for forensic testing.

  5. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales.

    PubMed

    Palumbi, S R; Baker, C S

    1994-05-01

    Powerful analyses of population structure require information from multiple genetic loci. To help develop a molecular toolbox for obtaining this information, we have designed universal oligonucleotide primers that span conserved intron-exon junctions in a wide variety of animal phyla. We test the utility of exon-primed, intron-crossing amplifications by analyzing the variability of actin intron sequences from humpback, blue, and bowhead whales and comparing the results with mitochondrial DNA (mtDNA) haplotype data. Humpback actin introns fall into two major clades that exist in different frequencies in different oceanic populations. It is surprising that Hawaii and California populations, which are very distinct in mtDNAs, are similar in actin intron alleles. This discrepancy between mtDNA and nuclear DNA results may be due either to differences in genetic drift in mitochondrial and nuclear genes or to preferential movement of males, which do not transmit mtDNA to offspring, between separate breeding grounds. Opposing mtDNA and nuclear DNA results can help clarify otherwise hidden patterns of structure in natural populations.

  6. Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds.

    PubMed

    Guo, H W; Li, C; Wang, X N; Li, Z J; Sun, G R; Li, G X; Liu, X J; Kang, X T; Han, R L

    2017-10-01

    1. To explore the genetic diversity of Chinese indigenous chicken breeds, a 585 bp fragment of the mitochondrial DNA (mtDNA) region was sequenced in 102 birds from the Xichuan black-bone chicken, Yunyang black-bone chicken and Lushi chicken. In addition, 30 mtDNA D-loop sequences of Silkie fowls were downloaded from NCBI. The mtDNA D-loop sequence polymorphism and maternal origin of 4 chicken breeds were analysed in this study. 2. The results showed that a total of 33 mutation sites and 28 haplotypes were detected in the 4 chicken breeds. The haplotype diversity and nucleotide diversity of these 4 native breeds were 0.916 ± 0.014 and 0.012 ± 0.002, respectively. Three clusters were formed in 4 Chinese native chickens and 12 reference breeds. Both the Xichuan black-bone chicken and Yunyang black-bone chicken were grouped into one cluster. Four haplogroups (A, B, C and E) emerged in the median-joining network in these breeds. 3. It was concluded that these 4 Chinese chicken breeds had high genetic diversity. The phylogenetic tree and median network profiles showed that Chinese native chickens and its neighbouring countries had at least two maternal origins, one from Yunnan, China and another from Southeast Asia or its surrounding area.

  7. Rare mtDNA variants in Leber hereditary optic neuropathy families with recurrence of myoclonus.

    PubMed

    La Morgia, C; Achilli, A; Iommarini, L; Barboni, P; Pala, M; Olivieri, A; Zanna, C; Vidoni, S; Tonon, C; Lodi, R; Vetrugno, R; Mostacci, B; Liguori, R; Carroccia, R; Montagna, P; Rugolo, M; Torroni, A; Carelli, V

    2008-03-04

    To investigate the mechanisms underlying myoclonus in Leber hereditary optic neuropathy (LHON). Five patients and one unaffected carrier from two Italian families bearing the homoplasmic 11778/ND4 and 3460/ND1 mutations underwent a uniform investigation including neurophysiologic studies, muscle biopsy, serum lactic acid after exercise, and muscle ((31)P) and cerebral ((1)H) magnetic resonance spectroscopy (MRS). Biochemical investigations on fibroblasts and complete mitochondrial DNA (mtDNA) sequences of both families were also performed. All six individuals had myoclonus. In spite of a normal EEG background and the absence of giant SEPs and C reflex, EEG-EMG back-averaging showed a preceding jerk-locked EEG potential, consistent with a cortical generator of the myoclonus. Specific comorbidities in the 11778/ND4 family included muscular cramps and psychiatric disorders, whereas features common to both families were migraine and cardiologic abnormalities. Signs of mitochondrial proliferation were seen in muscle biopsies and lactic acid elevation was observed in four of six patients. (31)P-MRS was abnormal in five of six patients and (1)H-MRS showed ventricular accumulation of lactic acid in three of six patients. Fibroblast ATP depletion was evident at 48 hours incubation with galactose in LHON/myoclonus patients. Sequence analysis revealed haplogroup T2 (11778/ND4 family) and U4a (3460/ND1 family) mtDNAs. A functional role for the non-synonymous 4136A>G/ND1, 9139G>A/ATPase6, and 15773G>A/cyt b variants was supported by amino acid conservation analysis. Myoclonus and other comorbidities characterized our Leber hereditary optic neuropathy (LHON) families. Functional investigations disclosed a bioenergetic impairment in all individuals. Our sequence analysis suggests that the LHON plus phenotype in our cases may relate to the synergic role of mtDNA variants.

  8. Complex interactions of the Eastern and Western Slavic populations with other European groups as revealed by mitochondrial DNA analysis.

    PubMed

    Grzybowski, Tomasz; Malyarchuk, Boris A; Derenko, Miroslava V; Perkova, Maria A; Bednarek, Jarosław; Woźniak, Marcin

    2007-06-01

    Mitochondrial DNA sequence variation was examined by the control region sequencing (HVS I and HVS II) and RFLP analysis of haplogroup-diagnostic coding region sites in 570 individuals from four regional populations of Poles and two Russian groups from northwestern part of the country. Additionally, sequences of complete mitochondrial genomes representing K1a1b1a subclade in Polish and Polish Roma populations have been determined. Haplogroup frequency patterns revealed in Poles and Russians are similar to those characteristic of other Europeans. However, there are several features of Slavic mtDNA pools seen on the level of regional populations which are helpful in the understanding of complex interactions of the Eastern and Western Slavic populations with other European groups. One of the most important is the presence of subhaplogroups U5b1b1, D5, Z1 and U8a with simultaneous scarcity of haplogroup K in populations of northwestern Russia suggesting the participation of Finno-Ugrian tribes in the formation of mtDNA pools of Russians from this region. The results of genetic structure analyses suggest that Russians from Velikii Novgorod area (northwestern Russia) and Poles from Suwalszczyzna (northeastern Poland) differ from all remaining Polish and Russian samples. Simultaneously, northwestern Russians and northeastern Poles bear some similarities to Baltic (Latvians) and Finno-Ugrian groups (Estonians) of northeastern Europe, especially on the level of U5 haplogroup frequencies. The occurrence of K1a1b1a subcluster in Poles and Polish Roma is one of the first direct proofs of the presence of Ashkenazi-specific mtDNA lineages in non-Jewish European populations.

  9. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants.

    PubMed

    Goremykin, Vadim V; Lockhart, Peter J; Viola, Roberto; Velasco, Riccardo

    2012-08-01

    Mitochondrial genomes of spermatophytes are the largest of all organellar genomes. Their large size has been attributed to various factors; however, the relative contribution of these factors to mitochondrial DNA (mtDNA) expansion remains undetermined. We estimated their relative contribution in Malus domestica (apple). The mitochondrial genome of apple has a size of 396 947 bp and a one to nine ratio of coding to non-coding DNA, close to the corresponding average values for angiosperms. We determined that 71.5% of the apple mtDNA sequence was highly similar to sequences of its nuclear DNA. Using nuclear gene exons, nuclear transposable elements and chloroplast DNA as markers of promiscuous DNA content in mtDNA, we estimated that approximately 20% of the apple mtDNA consisted of DNA sequences imported from other cell compartments, mostly from the nucleus. Similar marker-based estimates of promiscuous DNA content in the mitochondrial genomes of other species ranged between 21.2 and 25.3% of the total mtDNA length for grape, between 23.1 and 38.6% for rice, and between 47.1 and 78.4% for maize. All these estimates are conservative, because they underestimate the import of non-functional DNA. We propose that the import of promiscuous DNA is a core mechanism for mtDNA size expansion in seed plants. In apple, maize and grape this mechanism contributed far more to genome expansion than did homologous recombination. In rice the estimated contribution of both mechanisms was found to be similar. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  10. Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.).

    PubMed

    Shoemaker, D D; Ross, K G; Keller, L; Vargo, E L; Werren, J H

    2000-12-01

    Wolbachia are cytoplasmically inherited bacteria that induce a variety of effects with fitness consequences on host arthropods, including cytoplasmic incompatibility, parthenogenesis, male-killing and feminization. We report here the presence of Wolbachia in native South American populations of the fire ant Solenopsis invicta, but the apparent absence of the bacteria in introduced populations of this pest species in the USA. The Wolbachia strains in native S. invicta are of two divergent types (A and B), and the frequency of infection varies dramatically between geographical regions and social forms of this host. Survey data reveal that Wolbachia also are found in other native fire ant species within the Solenopsis saevissima species complex from South America, including S. richteri. This latter species also has been introduced in the USA, where it lacks Wolbachia. Sequence data reveal complete phylogenetic concordance between mtDNA haplotype in S. invicta and Wolbachia infection type (A or B). In addition, the mtDNA and associated group A Wolbachia strain in S. invicta are more closely related to the mtDNA and Wolbachia strain found in S. richteri than they are to the mtDNA and associated group B Wolbachia in S. invicta. These data are consistent with historical introgression of S. richteri cytoplasmic elements into S. invicta populations, resulting in enhanced infection and mtDNA polymorphisms in S. invicta. Wolbachia may have significant fitness effects on these hosts (either directly or by cytoplasmic incompatibility) and therefore these microbes potentially could be used in biological control programmes to suppress introduced fire ant populations.

  11. Genetic perspective of uniparental mitochondrial DNA landscape on the Punjabi population, Pakistan.

    PubMed

    Bhatti, Shahzad; Abbas, Sana; Aslamkhan, Muhammad; Attimonelli, Marcella; Trinidad, Magali Segundo; Aydin, Hikmet Hakan; de Souza, Erica Martinha Silva; Gonzalez, Gerardo Rodriguez

    2017-07-26

    To investigate the uniparental genetic structure of the Punjabi population from mtDNA aspect and to set up an appropriate mtDNA forensic database, we studied maternally unrelated Punjabi (N = 100) subjects from two caste groups (i.e. Arain and Gujar) belonging to territory of Punjab. The complete control region was elucidated by Sanger sequencing and the subsequent 58 different haplotypes were designated into appropriate haplogroups according to the most recently updated mtDNA phylogeny. We found a homogenous dispersal of Eurasian haplogroup uniformity among the Punjab Province and exhibited a strong connotation with the European populations. Punjabi castes are primarily a composite of substantial South Asian, East Asian and West Eurasian lineages. Moreover, for the first time we have defined the newly sub-haplogroup M52b1 characterized by 16223 T, 16275 G and 16438 A in Gujar caste. The vast array of mtDNA variants displayed in this study suggested that the haplogroup composition radiates signals of extensive genetic conglomeration, population admixture and demographic expansion that was equipped with diverse origin, whereas matrilineal gene pool was phylogeographically homogenous across the Punjab. This context was further fully acquainted with the facts supported by PCA scatterplot that Punjabi population clustered with South Asian populations. Finally, the high power of discrimination (0.8819) and low random match probability (0.0085%) proposed a worthy contribution of mtDNA control region dataset as a forensic database that considered a gold standard of today to get deeper insight into the genetic ancestry of contemporary matrilineal phylogeny.

  12. The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: Oxyurida)--an idiosyncratic gene order and phylogenetic information for chromadorean nematodes.

    PubMed

    Kang, Seokha; Sultana, Tahera; Eom, Keeseon S; Park, Yung Chul; Soonthornpong, Nathan; Nadler, Steven A; Park, Joong-Ki

    2009-01-15

    The complete mitochondrial genome sequence was determined for the human pinworm Enterobius vermicularis (Oxyurida: Nematoda) and used to infer its phylogenetic relationship to other major groups of chromadorean nematodes. The E. vermicularis genome is a 14,010-bp circular DNA molecule that encodes 36 genes (12 proteins, 22 tRNAs, and 2 rRNAs). This mtDNA genome lacks atp8, as reported for almost all other nematode species investigated. Phylogenetic analyses (maximum parsimony, maximum likelihood, neighbor joining, and Bayesian inference) of nucleotide sequences for the 12 protein-coding genes of 25 nematode species placed E. vermicularis, a representative of the order Oxyurida, as sister to the main Ascaridida+Rhabditida group. Tree topology comparisons using statistical tests rejected an alternative hypothesis favoring a closer relationship among Ascaridida, Spirurida, and Oxyurida, which has been supported from most studies based on nuclear ribosomal DNA sequences. Unlike the relatively conserved gene arrangement found for most chromadorean taxa, E. vermicularis mtDNA gene order is very unique, not sharing similarity to any other nematode species reported to date. This lack of gene order similarity may represent idiosyncratic gene rearrangements unique to this specific lineage of the oxyurids. To more fully understand the extent of gene rearrangement and its evolutionary significance within the nematode phylogenetic framework, additional mitochondrial genomes representing a greater evolutionary diversity of species must be characterized.

  13. Asian affinities and continental radiation of the four founding Native American mtDNAs.

    PubMed Central

    Torroni, A; Schurr, T G; Cabell, M F; Brown, M D; Neel, J V; Larsen, M; Smith, D G; Vullo, C M; Wallace, D C

    1993-01-01

    The mtDNA variation of 321 individuals from 17 Native American populations was examined by high-resolution restriction endonuclease analysis. All mtDNAs were amplified from a variety of sources by using PCR. The mtDNA of a subset of 38 of these individuals was also analyzed by D-loop sequencing. The resulting data were combined with previous mtDNA data from five other Native American tribes, as well as with data from a variety of Asian populations, and were used to deduce the phylogenetic relationships between mtDNAs and to estimate sequence divergences. This analysis revealed the presence of four haplotype groups (haplogroups A, B, C, and D) in the Amerind, but only one haplogroup (A) in the Na-Dene, and confirmed the independent origins of the Amerinds and the Na-Dene. Further, each haplogroup appeared to have been founded by a single mtDNA haplotype, a result which is consistent with a hypothesized founder effect. Most of the variation within haplogroups was tribal specific, that is, it occurred as tribal private polymorphisms. These observations suggest that the process of tribalization began early in the history of the Amerinds, with relatively little intertribal genetic exchange occurring subsequently. The sequencing of 341 nucleotides in the mtDNA D-loop revealed that the D-loop sequence variation correlated strongly with the four haplogroups defined by restriction analysis, and it indicated that the D-loop variation, like the haplotype variation, arose predominantly after the migration of the ancestral Amerinds across the Bering land bridge. Images Figure 4 PMID:7688932

  14. DNA Commission of the International Society for Forensic Genetics: revised and extended guidelines for mitochondrial DNA typing.

    PubMed

    Parson, W; Gusmão, L; Hares, D R; Irwin, J A; Mayr, W R; Morling, N; Pokorak, E; Prinz, M; Salas, A; Schneider, P M; Parsons, T J

    2014-11-01

    The DNA Commission of the International Society of Forensic Genetics (ISFG) regularly publishes guidelines and recommendations concerning the application of DNA polymorphisms to the question of human identification. Previous recommendations published in 2000 addressed the analysis and interpretation of mitochondrial DNA (mtDNA) in forensic casework. While the foundations set forth in the earlier recommendations still apply, new approaches to the quality control, alignment and nomenclature of mitochondrial sequences, as well as the establishment of mtDNA reference population databases, have been developed. Here, we describe these developments and discuss their application to both mtDNA casework and mtDNA reference population databasing applications. While the generation of mtDNA for forensic casework has always been guided by specific standards, it is now well-established that data of the same quality are required for the mtDNA reference population data used to assess the statistical weight of the evidence. As a result, we introduce guidelines regarding sequence generation, as well as quality control measures based on the known worldwide mtDNA phylogeny, that can be applied to ensure the highest quality population data possible. For both casework and reference population databasing applications, the alignment and nomenclature of haplotypes is revised here and the phylogenetic alignment proffered as acceptable standard. In addition, the interpretation of heteroplasmy in the forensic context is updated, and the utility of alignment-free database searches for unbiased probability estimates is highlighted. Finally, we discuss statistical issues and define minimal standards for mtDNA database searches. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Low mitochondrial DNA diversity of Japanese Polled and Kuchinoshima feral cattle.

    PubMed

    Mannen, Hideyuki; Yonesaka, Riku; Noda, Aoi; Shimogiri, Takeshi; Oshima, Ichiro; Katahira, Kiyomi; Kanemaki, Misao; Kunieda, Tetsuo; Inayoshi, Yousuke; Mukai, Fumio; Sasazaki, Shinji

    2017-05-01

    This study aims to estimate the mitochondrial genetic diversity and structure of Japanese Polled and Kuchinoshima feral cattle, which are maintained in small populations. We determined the mitochondrial DMA (mtDNA) displacement loop (D-loop) sequences for both cattle populations and analyzed these in conjunction with previously published data from Northeast Asian cattle populations. Our findings showed that Japanese native cattle have a predominant, Asian-specific mtDNA haplogroup T4 with high frequencies (0.43-0.81). This excluded Kuchinoshima cattle (32 animals), which had only one mtDNA haplotype belonging to the haplogroup T3. Japanese Polled showed relatively lower mtDNA diversity in the average sequence divergence (0.0020) than other Wagyu breeds (0.0036-0.0047). Japanese Polled have been maintained in a limited area of Yamaguchi, and the population size is now less than 200. Therefore, low mtDNA diversity in the Japanese Polled could be explained by the decreasing population size in the last three decades. We found low mtDNA diversity in both Japanese Polled and Kuchinoshima cattle. The genetic information obtained in this study will be useful for maintaining these populations and for understanding the origin of Japanese native cattle. © 2016 Japanese Society of Animal Science.

  16. More evidence for non-maternal inheritance of mitochondrial DNA?

    PubMed

    Bandelt, H-J; Kong, Q-P; Parson, W; Salas, A

    2005-12-01

    A single case of paternal co-transmission of mitochondrial DNA (mtDNA) in humans has been reported so far. To find potential instances of non-maternal inheritance of mtDNA. Published medical case studies (of single patients) were searched for irregular mtDNA patterns by comparing the given haplotype information for different clones or tissues with the worldwide mtDNA database as known to date-a method that has proved robust and reliable for the detection of flawed mtDNA sequence data. More than 20 studies were found reporting clear cut instances with mtDNAs of different ancestries in single individuals. As examples, cases are reviewed from recent published reports which, at face value, may be taken as evidence for paternal inheritance of mtDNA or recombination. Multiple types (or recombinant types) of quite dissimilar mitochondrial DNA from different parts of the known mtDNA phylogeny are often reported in single individuals. From re-analyses and corrigenda of forensic mtDNA data, it is apparent that the phenomenon of mixed or mosaic mtDNA can be ascribed solely to contamination and sample mix up.

  17. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals

    PubMed Central

    Posth, Cosimo; Wißing, Christoph; Kitagawa, Keiko; Pagani, Luca; van Holstein, Laura; Racimo, Fernando; Wehrberger, Kurt; Conard, Nicholas J.; Kind, Claus Joachim; Bocherens, Hervé; Krause, Johannes

    2017-01-01

    Ancient DNA is revealing new insights into the genetic relationship between Pleistocene hominins and modern humans. Nuclear DNA indicated Neanderthals as a sister group of Denisovans after diverging from modern humans. However, the closer affinity of the Neanderthal mitochondrial DNA (mtDNA) to modern humans than Denisovans has recently been suggested as the result of gene flow from an African source into Neanderthals before 100,000 years ago. Here we report the complete mtDNA of an archaic femur from the Hohlenstein–Stadel (HST) cave in southwestern Germany. HST carries the deepest divergent mtDNA lineage that splits from other Neanderthals ∼270,000 years ago, providing a lower boundary for the time of the putative mtDNA introgression event. We demonstrate that a complete Neanderthal mtDNA replacement is feasible over this time interval even with minimal hominin introgression. The highly divergent HST branch is indicative of greater mtDNA diversity during the Middle Pleistocene than in later periods. PMID:28675384

  18. A 28,000 Years Old Cro-Magnon mtDNA Sequence Differs from All Potentially Contaminating Modern Sequences

    PubMed Central

    Caramelli, David; Milani, Lucio; Vai, Stefania; Modi, Alessandra; Pecchioli, Elena; Girardi, Matteo; Pilli, Elena; Lari, Martina; Lippi, Barbara; Ronchitelli, Annamaria; Mallegni, Francesco; Casoli, Antonella; Bertorelle, Giorgio; Barbujani, Guido

    2008-01-01

    Background DNA sequences from ancient speciments may in fact result from undetected contamination of the ancient specimens by modern DNA, and the problem is particularly challenging in studies of human fossils. Doubts on the authenticity of the available sequences have so far hampered genetic comparisons between anatomically archaic (Neandertal) and early modern (Cro-Magnoid) Europeans. Methodology/Principal Findings We typed the mitochondrial DNA (mtDNA) hypervariable region I in a 28,000 years old Cro-Magnoid individual from the Paglicci cave, in Italy (Paglicci 23) and in all the people who had contact with the sample since its discovery in 2003. The Paglicci 23 sequence, determined through the analysis of 152 clones, is the Cambridge reference sequence, and cannot possibly reflect contamination because it differs from all potentially contaminating modern sequences. Conclusions/Significance: The Paglicci 23 individual carried a mtDNA sequence that is still common in Europe, and which radically differs from those of the almost contemporary Neandertals, demonstrating a genealogical continuity across 28,000 years, from Cro-Magnoid to modern Europeans. Because all potential sources of modern DNA contamination are known, the Paglicci 23 sample will offer a unique opportunity to get insight for the first time into the nuclear genes of early modern Europeans. PMID:18628960

  19. EMPOP-quality mtDNA control region sequences from Kashmiri of Azad Jammu & Kashmir, Pakistan.

    PubMed

    Rakha, Allah; Peng, Min-Sheng; Bi, Rui; Song, Jiao-Jiao; Salahudin, Zeenat; Adan, Atif; Israr, Muhammad; Yao, Yong-Gang

    2016-11-01

    The mitochondrial DNA (mtDNA) control region (nucleotide position 16024-576) sequences were generated through Sanger sequencing method for 317 self-identified Kashmiris from all districts of Azad Jammu & Kashmir Pakistan. The population sample set showed a total of 251 haplotypes, with a relatively high haplotype diversity (0.9977) and a low random match probability (0.54%). The containing matrilineal lineages belonging to three different phylogeographic origins of Western Eurasian (48.9%), South Asian (47.0%) and East Asian (4.1%). The present study was compared to previous data from Pakistan and other worldwide populations (Central Asia, Western Asia, and East & Southeast Asia). The dataset is made available through EMPOP under accession number EMP00679 and will serve as an mtDNA reference database in forensic casework in Pakistan. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto.

    PubMed

    Kinkar, Liina; Laurimäe, Teivi; Sharbatkhori, Mitra; Mirhendi, Hossein; Kia, Eshrat Beigom; Ponce-Gordo, Francisco; Andresiuk, Vanessa; Simsek, Sami; Lavikainen, Antti; Irshadullah, Malik; Umhang, Gérald; Oudni-M'rad, Myriam; Acosta-Jamett, Gerardo; Rehbein, Steffen; Saarma, Urmas

    2017-08-01

    Cystic echinococcosis, a zoonotic disease caused by Echinococcus granulosus sensu lato (s. l.), is a significant global public health concern. Echinococcus granulosus s. l. is currently divided into numerous genotypes (G1-G8 and G10) of which G1-G3 are the most frequently implicated genotypes in human infections. Although it has been suggested that G1-G3 could be regarded as a distinct species E. granulosus sensu stricto (s. s.), the evidence to support this is inconclusive. Most importantly, data from nuclear DNA that provide means to investigate the exchange of genetic material between G1-G3 is lacking as none of the published nuclear DNA studies have explicitly included G2 or G3. Moreover, the commonly used relatively short mtDNA sequences, including the complete cox1 gene, have not allowed unequivocal differentiation of genotypes G1-G3. Therefore, significantly longer mtDNA sequences are required to distinguish these genotypes with confidence. The main aim of this study was to evaluate the phylogenetic relations and taxonomy of genotypes G1-G3 using sequences of nearly complete mitogenomes (11,443bp) and three nuclear loci (2984bp). A total of 23 G1-G3 samples were analysed, originating from 5 intermediate host species in 10 countries. The mtDNA data demonstrate that genotypes G1 and G3 are distinct mitochondrial genotypes (separated by 37 mutations), whereas G2 is not a separate genotype or even a monophyletic cluster, but belongs to G3. Nuclear data revealed no genetic separation of G1 and G3, suggesting that these genotypes form a single species due to ongoing gene flow. We conclude that: (a) in the taxonomic sense, genotypes G1 and G3 can be treated as a single species E. granulosus s. s.; (b) genotypes G1 and G3 should be regarded as distinct genotypes only in the context of mitochondrial data; (c) we recommend excluding G2 from the genotype list. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Multiple Origins of a Mitochondrial Mutation Conferring Deafness

    PubMed Central

    Hutchin, T. P.; Cortopassi, G. A.

    1997-01-01

    A point mutation (1555G) in the smaller ribosomal subunit of the mitochondrial DNA (mtDNA) has been associated with maternally inherited traits of hypersensitivity to streptomycin and sensorineural deafness in a number of families from China, Japan, Israel, and Africa. To determine whether this distribution was the result of a single or multiple mutational events, we carried out genetic distance analysis and phylogenetic analysis of 10 independent mtDNA D-loop sequences from Africa and Asia. The mtDNA sequence diversity was high (2.21%). Phylogenetic analysis assigned 1555G-bearing haplotypes at very divergent points in the human mtDNA evolutionary tree, and the 1555G mutations occur in many cases on race-specific mtDNA haplotypes, both facts are inconsistent with a recent introgression of the mutation into these races. The simplest interpretation of the available data is that there have been multiple origins of the 1555G mutation. The genetic distance among mtDNAs bearing the pathogenic 1555G mutation is much larger than among mtDNAs bearing either evolutionarily neutral or weakly deleterious nucleotide substitutions (such as the 4336G mutation). These results are consistent with the view that pathogenic mtDNA haplotypes such as 1555G arise on disparate mtDNA lineages which because of negative natural selection leave relatively few related descendants. The co-existence of the same mutation with deafness in individuals with very different nuclear and mitochondrial genetic backgrounds confirms the pathogenicity of the 1555G mutation. PMID:9055086

  2. MitoAge: a database for comparative analysis of mitochondrial DNA, with a special focus on animal longevity.

    PubMed

    Toren, Dmitri; Barzilay, Thomer; Tacutu, Robi; Lehmann, Gilad; Muradian, Khachik K; Fraifeld, Vadim E

    2016-01-04

    Mitochondria are the only organelles in the animal cells that have their own genome. Due to a key role in energy production, generation of damaging factors (ROS, heat), and apoptosis, mitochondria and mtDNA in particular have long been considered one of the major players in the mechanisms of aging, longevity and age-related diseases. The rapidly increasing number of species with fully sequenced mtDNA, together with accumulated data on longevity records, provides a new fascinating basis for comparative analysis of the links between mtDNA features and animal longevity. To facilitate such analyses and to support the scientific community in carrying these out, we developed the MitoAge database containing calculated mtDNA compositional features of the entire mitochondrial genome, mtDNA coding (tRNA, rRNA, protein-coding genes) and non-coding (D-loop) regions, and codon usage/amino acids frequency for each protein-coding gene. MitoAge includes 922 species with fully sequenced mtDNA and maximum lifespan records. The database is available through the MitoAge website (www.mitoage.org or www.mitoage.info), which provides the necessary tools for searching, browsing, comparing and downloading the data sets of interest for selected taxonomic groups across the Kingdom Animalia. The MitoAge website assists in statistical analysis of different features of the mtDNA and their correlative links to longevity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. [Application of mtDNA polymorphism in species identification of sarcosaphagous insects].

    PubMed

    Li, Xiang; Cai, Ji-feng

    2011-04-01

    Species identification of sarcosaphagous insects is one of the important steps in forensic research based on the knowledge of entomology. Recent studies reveal that the application of molecular biology, especially the mtDNA sequences analysis, works well in the species identification of sarcosaphagous insects. The molecular biology characteristics, structures, polymorphism of mtDNA of sarcosaphagous insects, and the recent studies in species identification of sarcosaphagous insects are reviewed in this article.

  4. SAM: String-based sequence search algorithm for mitochondrial DNA database queries

    PubMed Central

    Röck, Alexander; Irwin, Jodi; Dür, Arne; Parsons, Thomas; Parson, Walther

    2011-01-01

    The analysis of the haploid mitochondrial (mt) genome has numerous applications in forensic and population genetics, as well as in disease studies. Although mtDNA haplotypes are usually determined by sequencing, they are rarely reported as a nucleotide string. Traditionally they are presented in a difference-coded position-based format relative to the corrected version of the first sequenced mtDNA. This convention requires recommendations for standardized sequence alignment that is known to vary between scientific disciplines, even between laboratories. As a consequence, database searches that are vital for the interpretation of mtDNA data can suffer from biased results when query and database haplotypes are annotated differently. In the forensic context that would usually lead to underestimation of the absolute and relative frequencies. To address this issue we introduce SAM, a string-based search algorithm that converts query and database sequences to position-free nucleotide strings and thus eliminates the possibility that identical sequences will be missed in a database query. The mere application of a BLAST algorithm would not be a sufficient remedy as it uses a heuristic approach and does not address properties specific to mtDNA, such as phylogenetically stable but also rapidly evolving insertion and deletion events. The software presented here provides additional flexibility to incorporate phylogenetic data, site-specific mutation rates, and other biologically relevant information that would refine the interpretation of mitochondrial DNA data. The manuscript is accompanied by freeware and example data sets that can be used to evaluate the new software (http://stringvalidation.org). PMID:21056022

  5. Genetic variability among Schistosoma japonicum isolates from the Philippines, Japan and China revealed by sequence analysis of three mitochondrial genes.

    PubMed

    Chen, Fen; Li, Juan; Sugiyama, Hiromu; Zhou, Dong-Hui; Song, Hui-Qun; Zhao, Guang-Hui; Zhu, Xing-Quan

    2015-02-01

    The present study examined sequence variability in the mitochondrial (mt) protein-coding genes cytochrome b (cytb), NADH dehydrogenase subunits 2 and 6 (nad2 and nad6) among 24 isolates of Schistosoma japonicum from different endemic regions in the Philippines, Japan and China. The complete cytb, nad2 and nad6 genes were amplified and sequenced separately from individual schistosome. Sequence variations for isolates from the Philippines were 0-0.5% for cytb, 0-0.6% for nad2, and 0-0.9% for nad6. Variation was 0-0.5%, 0.1-0.8%, 0-0.7% for corresponding genes for schistosome samples from mainland China. For worms in Japan, genetic variations were 0-0.2%, 0.1-0.2% and 0 for the three genes, respectively. Sequence variations were 0-1.0%, 0-1.8% and 0-1.1% for cytb, nad2 and nad6, respectively, among schistosome isolates from different geographical strains in the Philippines, Japan and China. Of the three countries, lowest sequence variations were found between isolates from mainland China and the Philippines and highest were detected between Japan and the Philippines in three mtDNA genes. Phylogenetic analyses based on the combined sequences of cytb, nad2 and nad6 revealed that all isolates in the Philippines clustered together sistered to samples from Yunnan and Zhejiang provinces in China, while isolates from Yamanashi in Japan were in a solitary clade. These results demonstrated the usefulness of the combined three mtDNA sequences for studying genetic diversity and population structure among S. japonicum isolates from the Philippines, China and Japan.

  6. Re-examination of population structure and phylogeography of hawksbill turtles in the wider Caribbean using longer mtDNA sequences.

    PubMed

    Leroux, Robin A; Dutton, Peter H; Abreu-Grobois, F Alberto; Lagueux, Cynthia J; Campbell, Cathi L; Delcroix, Eric; Chevalier, Johan; Horrocks, Julia A; Hillis-Starr, Zandy; Troëng, Sebastian; Harrison, Emma; Stapleton, Seth

    2012-01-01

    Management of the critically endangered hawksbill turtle in the Wider Caribbean (WC) has been hampered by knowledge gaps regarding stock structure. We carried out a comprehensive stock structure re-assessment of 11 WC hawksbill rookeries using longer mtDNA sequences, larger sample sizes (N = 647), and additional rookeries compared to previous surveys. Additional variation detected by 740 bp sequences between populations allowed us to differentiate populations such as Barbados-Windward and Guadeloupe (F (st) = 0.683, P < 0.05) that appeared genetically indistinguishable based on shorter 380 bp sequences. POWSIM analysis showed that longer sequences improved power to detect population structure and that when N < 30, increasing the variation detected was as effective in increasing power as increasing sample size. Geographic patterns of genetic variation suggest a model of periodic long-distance colonization coupled with region-wide dispersal and subsequent secondary contact within the WC. Mismatch analysis results for individual clades suggest a general population expansion in the WC following a historic bottleneck about 100 000-300 000 years ago. We estimated an effective female population size (N (ef)) of 6000-9000 for the WC, similar to the current estimated numbers of breeding females, highlighting the importance of these regional rookeries to maintaining genetic diversity in hawksbills. Our results provide a basis for standardizing future work to 740 bp sequence reads and establish a more complete baseline for determining stock boundaries in this migratory marine species. Finally, our findings illustrate the value of maintaining an archive of specimens for re-analysis as new markers become available.

  7. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing.

    PubMed

    Coon, Keith D; Valla, Jon; Szelinger, Szabolics; Schneider, Lonnie E; Niedzielko, Tracy L; Brown, Kevin M; Pearson, John V; Halperin, Rebecca; Dunckley, Travis; Papassotiropoulos, Andreas; Caselli, Richard J; Reiman, Eric M; Stephan, Dietrich A

    2006-08-01

    The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and our proposed analysis paradigm, which utilizes the availability of raw signal intensity values for each of the four potential alleles to facilitate quantitative estimates of mtDNA heteroplasmy. This information provides a potential new target for burgeoning diagnostics and therapeutics that could truly assist those suffering from this devastating disorder.

  8. Co-occurrence of m.1555A>G and m.11778G>A mitochondrial DNA mutations in two Indian families with strikingly different clinical penetrance of Leber hereditary optic neuropathy

    PubMed Central

    Khan, Nahid Akhtar; Govindaraj, Periyasamy; Jyothi, Vuskamalla; Meena, Angamuthu K

    2013-01-01

    Background Mitochondrial DNA (mtDNA) mutations are known to cause Leber hereditary optic neuropathy (LHON). However, the co-occurrence of double pathogenic mutations with different pathological significance in pedigrees is a rare event. Methods Detailed clinical investigation and complete mtDNA sequencing analysis was performed for two Indian families with LHON. The haplogroup was constructed based on evolutionarily important mtDNA variants. Results We observed the existence of double pathogenic mutations (m.11778G>A and m.1555A>G) in two Indian LHON families, who are from different haplogroup backgrounds (M5a and U2e1), with different clinical penetrance of the disease (visual impairment). The m.11778G>A mutation in the MT-ND4 gene is associated primarily with LHON; whereas, m.1555A>G in the 12S rRNA gene has been reported with aminoglycoside-induced non-syndromic hearing loss. Conclusions The absence of hearing abnormality and widely varying clinical expression of LHON suggest additional nuclear modifier genes, environmental factors, and population heterogeneity might play an important role in the expression of visual impairment in these families. PMID:23805034

  9. Comparative mitogenomic analysis of Aposthonia borneensis and Aposthonia japonica (Embioptera: Oligotomidae) reveals divergent evolution of webspinners.

    PubMed

    Chen, Zhi-Teng; Lü, Liang; Lu, Ming-Xing; Du, Yu-Zhou

    2017-08-15

    In this study, we report the complete mitochondrial genome (mitogenome, mtDNA) of Aposthonia borneensis and compare it with another sequenced webspinner, Aposthonia japonica. The A. borneensis mitogenome is smaller than A. japonica, but the size of each gene and the A + T content of protein-coding genes (PCGs) are almost identical in the two mitogenomes. Among the PCGs, atp6 shows the highest evolutionary rate and cox1 the lowest. The mtDNA map in A. borneensis is similar to Drosophila yakuba, but distinctly different from A. japonica, which has extensive rearrangement. Phylogenetic analyses dated the divergence time of the two webspinners at ca. 103 Ma. We speculate that the most recent common ancestor (MRCA) of A. borneensis and A. japonica was divided into several geographic groups during the Pangea breakup. Geographic isolation between the Japanese islands and the continental southeastern Asia resulted in the divergent evolution of A. borneensis and A. japonica, thus generating mtDNA structural variations between the two species. Based on the phylogenetic analyses and specific distributional features, the genus Aposthonia was supported as non-monophyly, and we speculate that both highly rearranged and relatively conserved mitogenomes exist in other webspinners.

  10. Sequence polymorphism data of the hypervariable regions of mitochondrial DNA in the Yadav population of Haryana.

    PubMed

    Verma, Kapil; Sharma, Sapna; Sharma, Arun; Dalal, Jyoti; Bhardwaj, Tapeshwar

    2018-06-01

    Genetic variations among humans occur both within and among populations and range from single nucleotide changes to multiple-nucleotide variants. These multiple-nucleotide variants are useful for studying the relationships among individuals or various population groups. The study of human genetic variations can help scientists understand how different population groups are biologically related to one another. Sequence analysis of hypervariable regions of human mitochondrial DNA (mtDNA) has been successfully used for the genetic characterization of different population groups for forensic purposes. It is well established that different ethnic or population groups differ significantly in their mtDNA distributions. In the last decade, very little research has been conducted on mtDNA variations in the Indian population, although such data would be useful for elucidating the history of human population expansion across the world. Moreover, forensic studies on mtDNA variations in the Indian subcontinent are also scarce, particularly in the northern part of India. In this report, variations in the hypervariable regions of mtDNA were analyzed in the Yadav population of Haryana. Different molecular diversity indices were computed. Further, the obtained haplotypes were classified into different haplogroups and the phylogenetic relationship between different haplogroups was inferred.

  11. SG-ADVISER mtDNA: a web server for mitochondrial DNA annotation with data from 200 samples of a healthy aging cohort.

    PubMed

    Rueda, Manuel; Torkamani, Ali

    2017-08-18

    Whole genome and exome sequencing usually include reads containing mitochondrial DNA (mtDNA). Yet, state-of-the-art pipelines and services for human nuclear genome variant calling and annotation do not handle mitochondrial genome data appropriately. As a consequence, any researcher desiring to add mtDNA variant analysis to their investigations is forced to explore the literature for mtDNA pipelines, evaluate them, and implement their own instance of the desired tool. This task is far from trivial, and can be prohibitive for non-bioinformaticians. We have developed SG-ADVISER mtDNA, a web server to facilitate the analysis and interpretation of mtDNA genomic data coming from next generation sequencing (NGS) experiments. The server was built in the context of our SG-ADVISER framework and on top of the MtoolBox platform (Calabrese et al., Bioinformatics 30(21):3115-3117, 2014), and includes most of its functionalities (i.e., assembly of mitochondrial genomes, heteroplasmic fractions, haplogroup assignment, functional and prioritization analysis of mitochondrial variants) as well as a back-end and a front-end interface. The server has been tested with unpublished data from 200 individuals of a healthy aging cohort (Erikson et al., Cell 165(4):1002-1011, 2016) and their data is made publicly available here along with a preliminary analysis of the variants. We observed that individuals over ~90 years old carried low levels of heteroplasmic variants in their genomes. SG-ADVISER mtDNA is a fast and functional tool that allows for variant calling and annotation of human mtDNA data coming from NGS experiments. The server was built with simplicity in mind, and builds on our own experience in interpreting mtDNA variants in the context of sudden death and rare diseases. Our objective is to provide an interface for non-bioinformaticians aiming to acquire (or contrast) mtDNA annotations via MToolBox. SG-ADVISER web server is freely available to all users at https://genomics.scripps.edu/mtdna .

  12. Molecular studies on larvae of Pseudoterranova parasite of Trichiurus lepturus Linnaeus, 1758 and Pomatomus saltatrix (Linnaeus, 1766) off Brazilian waters.

    PubMed

    Borges, Juliana N; Cunha, Luiz F G; Miranda, Daniele F; Monteiro-Neto, Cassiano; Santos, Cláudia P

    2015-12-01

    Pseudoterranova larvae parasitizing cutlassfish Trichiurus lepturus and bluefish Pomatomus saltatrix from Southwest Atlantic coast of Brazil were studied in this work by morphological, ultrastructural and molecular approaches. The genetic analysis were performed for the ITS2 intergenic region specific for Pseudoterranova decipiens, the partial 28S (LSU) of ribosomal DNA and the mtDNA cox-1 region. We obtained results for the 28S region and mtDNA cox-1 that was amplified using the polymerase chain reaction and sequenced to evaluate the phylogenetic relationships between sequences of this study and sequences from the GenBank. The morphological profile indicated that all the nine specimens collected from both fish were L3 larvae of Pseudoterranova sp. The genetic profile confirmed the generic level but due to the absence of similar sequences for adult parasites on GenBank for the regions amplifyied, it was not possible to identify them to the species level. The sequences obtained presented 89% of similarity with Pseudoterranova decipiens (28S sequences) and Contracaecum osculatum B (mtDNA cox-1). The low similarity allied to the fact that the amplification with the specific primer for P. decipiens didn't occur, lead us to conclude that our sequences don't belong to P. decipiens complex.

  13. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing

    PubMed Central

    Just, Rebecca S.; Irwin, Jodi A.; Parson, Walther

    2015-01-01

    Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation. However, in several instances, contamination and other sources of mixed mtDNA data have been erroneously identified as heteroplasmy. Well vetted mtGenome datasets based on both Sanger and MPS sequences have found authentic point heteroplasmy in approximately 25% of individuals when minor component detection thresholds are in the range of 10–20%, along with positional distribution patterns in the coding region that differ from patterns of point heteroplasmy in the well-studied control region. A few recent studies that examined very low-level heteroplasmy are concordant with these observations when the data are examined at a common level of resolution. In this review we provide an overview of considerations related to the use of MPS technologies to detect mtDNA heteroplasmy. In addition, we examine published reports on point heteroplasmy to characterize features of the data that will assist in the evaluation of future mtGenome data developed by any typing method. PMID:26009256

  14. The complete mitochondrial genome of the Tibetan fox (Vulpes ferrilata) and implications for the phylogeny of Canidae.

    PubMed

    Zhao, Chao; Zhang, Honghai; Liu, Guangshuai; Yang, Xiufeng; Zhang, Jin

    2016-02-01

    Canidae is a family of carnivores comprises about 36 extant species that have been defined as three distinct monophyletic groups based on multi-gene data sets. The Tibetan fox (Vulpes ferrilata) is a member of the family Canidae that is endemic to the Tibetan Plateau and has seldom been in the focus of phylogenetic analyses. To clarify the phylogenic relationship of V. ferrilata between other canids, we sequenced the mitochondrial genome and firstly attempted to clarify the relative phylogenetic position of V. ferrilata in canids using the complete mitochondrial genome data. The mitochondrial genome of the Tibetan fox was 16,667 bp, including 37 genes (13 protein-coding genes, 2 rRNA, and 22 tRNA) and a control region. A comparison analysis among the sequenced data of canids indicated that they shared a similar arrangement, codon usage, and other aspects. A phylogenetic analysis on the basis of the nearly complete mtDNA genomes of canids agreed with three monophyletic clades, and the Tibetan fox was highly supported as a sister group of the corsac fox within Vulpes. The estimation of the divergence time suggested a recent split between the Tibetan fox and the corsac fox and rapid evolution in canids. There was no genetic evidence for positive selection related to high-altitude adaption for the Tibetan fox in mtDNA and following studies should pay more attention to the detection of positive signals in nuclear genes involved in energy and oxygen metabolisms. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  15. Molecular characterization of the canine mitochondrial DNA control region for forensic applications.

    PubMed

    Eichmann, Cordula; Parson, Walther

    2007-09-01

    The canine mitochondrial DNA (mtDNA) control region of 133 dogs living in the area around Innsbruck, Austria was sequenced. A total of 40 polymorphic sites were observed in the first hypervariable segment and 15 in the second, which resulted in the differentiation of 40 distinct haplotypes. We observed five nucleotide positions that were highly polymorphic within different haplogroups, and they represent good candidates for mtDNA screening. We found five point heteroplasmic positions; all located in HVS-I and a polythymine region in HVS-II, the latter often being associated with length heteroplasmy. In contrast to human mtDNA, the canine control region contains a hypervariable 10 nucleotide repeat region, which is located between the two hypervariable regions. In our population sample, we observed eight different repeat types, which we characterized by direct sequencing and fragment length analysis. The discrimination power of the canine mtDNA control region was 0.93, not taking the polymorphic repeat region into consideration.

  16. Evidence for mitochondrial DNA recombination in a human population of island Melanesia.

    PubMed Central

    Hagelberg, E; Goldman, N; Lió, P; Whelan, S; Schiefenhövel, W; Clegg, J B; Bowden, D K

    1999-01-01

    Mitochondrial DNA (mtDNA) analysis has proved useful in studies of recent human evolution and the genetic affinities of human groups of different geographical regions. As part of an extensive survey of mtDNA diversity in present-day Pacific populations, we obtained sequence information of the hypervariable mtDNA control region of 452 individuals from various localities in the western Pacific. The mtDNA types fell into three major groups which reflect the settlement history of the area. Interestingly, we detected an extremely rare point mutation at high frequency in the small island of Nguna in the Melanesian archipelago of Vanuatu. Phylogenetic analysis of the mtDNA data indicated that the mutation was present in individuals of separate mtDNA lineages. We propose that the multiple occurrence of a rare mutation event in one isolated locality is highly improbable, and that recombination between different mtDNA types is a more likely explanation for our observation. If correct, this conclusion has important implications for the use of mtDNA in phylogenetic and evolutionary studies. PMID:10189712

  17. Evidence for mitochondrial DNA recombination in a human population of island Melanesia.

    PubMed

    Hagelberg, E; Goldman, N; Lió, P; Whelan, S; Schiefenhövel, W; Clegg, J B; Bowden, D K

    1999-03-07

    Mitochondrial DNA (mtDNA) analysis has proved useful in studies of recent human evolution and the genetic affinities of human groups of different geographical regions. As part of an extensive survey of mtDNA diversity in present-day Pacific populations, we obtained sequence information of the hypervariable mtDNA control region of 452 individuals from various localities in the western Pacific. The mtDNA types fell into three major groups which reflect the settlement history of the area. Interestingly, we detected an extremely rare point mutation at high frequency in the small island of Nguna in the Melanesian archipelago of Vanuatu. Phylogenetic analysis of the mtDNA data indicated that the mutation was present in individuals of separate mtDNA lineages. We propose that the multiple occurrence of a rare mutation event in one isolated locality is highly improbable, and that recombination between different mtDNA types is a more likely explanation for our observation. If correct, this conclusion has important implications for the use of mtDNA in phylogenetic and evolutionary studies.

  18. Identification of Forensic Samples via Mitochondrial DNA in the Undergraduate Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Millard, Julie T.; Pilon, André M.

    2003-04-01

    A recent forensic approach for identification of unknown biological samples is mitochondrial DNA (mtDNA) sequencing. We describe a laboratory exercise suitable for an undergraduate biochemistry course in which the polymerase chain reaction is used to amplify a 440 base pair hypervariable region of human mtDNA from a variety of "crime scene" samples (e.g., teeth, hair, nails, cigarettes, envelope flaps, toothbrushes, and chewing gum). Amplification is verified via agarose gel electrophoresis and then samples are subjected to cycle sequencing. Sequence alignments are made via the program CLUSTAL W, allowing students to compare samples and solve the "crime."

  19. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus).

    PubMed

    Girman, D J; Vilà, C; Geffen, E; Creel, S; Mills, M G; McNutt, J W; Ginsberg, J; Kat, P W; Mamiya, K H; Wayne, R K

    2001-07-01

    African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.

  20. MtDNA mutations are a common cause of severe disease phenotypes in children with Leigh syndrome.

    PubMed

    Naess, Karin; Freyer, Christoph; Bruhn, Helene; Wibom, Rolf; Malm, Gunilla; Nennesmo, Inger; von Döbeln, Ulrika; Larsson, Nils-Göran

    2009-05-01

    Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations.

  1. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data.

    PubMed

    Sturk-Andreaggi, Kimberly; Peck, Michelle A; Boysen, Cecilie; Dekker, Patrick; McMahon, Timothy P; Marshall, Charla K

    2017-11-01

    The feasibility of generating mitochondrial DNA (mtDNA) data has expanded considerably with the advent of next-generation sequencing (NGS), specifically in the generation of entire mtDNA genome (mitogenome) sequences. However, the analysis of these data has emerged as the greatest challenge to implementation in forensics. To address this need, a custom toolkit for use in the CLC Genomics Workbench (QIAGEN, Hilden, Germany) was developed through a collaborative effort between the Armed Forces Medical Examiner System - Armed Forces DNA Identification Laboratory (AFMES-AFDIL) and QIAGEN Bioinformatics. The AFDIL-QIAGEN mtDNA Expert, or AQME, generates an editable mtDNA profile that employs forensic conventions and includes the interpretation range required for mtDNA data reporting. AQME also integrates an mtDNA haplogroup estimate into the analysis workflow, which provides the analyst with phylogenetic nomenclature guidance and a profile quality check without the use of an external tool. Supplemental AQME outputs such as nucleotide-per-position metrics, configurable export files, and an audit trail are produced to assist the analyst during review. AQME is applied to standard CLC outputs and thus can be incorporated into any mtDNA bioinformatics pipeline within CLC regardless of sample type, library preparation or NGS platform. An evaluation of AQME was performed to demonstrate its functionality and reliability for the analysis of mitogenome NGS data. The study analyzed Illumina mitogenome data from 21 samples (including associated controls) of varying quality and sample preparations with the AQME toolkit. A total of 211 tool edits were automatically applied to 130 of the 698 total variants reported in an effort to adhere to forensic nomenclature. Although additional manual edits were required for three samples, supplemental tools such as mtDNA haplogroup estimation assisted in identifying and guiding these necessary modifications to the AQME-generated profile. Along with profile generation, AQME reported accurate haplogroups for 18 of the 19 samples analyzed. The single errant haplogroup assignment, although phylogenetically close, identified a bug that only affects partial mitogenome data. Future adjustments to AQME's haplogrouping tool will address this bug as well as enhance the overall scoring strategy to better refine and automate haplogroup assignments. As NGS enables broader use of the mtDNA locus in forensics, the availability of AQME and other forensic-focused mtDNA analysis tools will ease the transition and further support mitogenome analysis within routine casework. Toward this end, the AFMES-AFDIL has utilized the AQME toolbox in conjunction with the CLC Genomics Workbench to successfully validate and implement two NGS mitogenome methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Capillary electrophoresis of Big-Dye terminator sequencing reactions for human mtDNA Control Region haplotyping in the identification of human remains.

    PubMed

    Montesino, Marta; Prieto, Lourdes

    2012-01-01

    Cycle sequencing reaction with Big-Dye terminators provides the methodology to analyze mtDNA Control Region amplicons by means of capillary electrophoresis. DNA sequencing with ddNTPs or terminators was developed by (1). The progressive automation of the method by combining the use of fluorescent-dye terminators with cycle sequencing has made it possible to increase the sensibility and efficiency of the method and hence has allowed its introduction into the forensic field. PCR-generated mitochondrial DNA products are the templates for sequencing reactions. Different set of primers can be used to generate amplicons with different sizes according to the quality and quantity of the DNA extract providing sequence data for different ranges inside the Control Region.

  3. Mitochondrial DNA perspective of Serbian genetic diversity.

    PubMed

    Davidovic, Slobodan; Malyarchuk, Boris; Aleksic, Jelena M; Derenko, Miroslava; Topalovic, Vladanka; Litvinov, Andrey; Stevanovic, Milena; Kovacevic-Grujicic, Natasa

    2015-03-01

    Although south-Slavic populations have been studied to date from various aspects, the population of Serbia, occupying the central part of the Balkan Peninsula, is still genetically understudied at least at the level of mitochondrial DNA (mtDNA) variation. We analyzed polymorphisms of the first and the second mtDNA hypervariable segments (HVS-I and HVS-II) and informative coding-region markers in 139 Serbians to shed more light on their mtDNA variability, and used available data on other Slavic and neighboring non-Slavic populations to assess their interrelations in a broader European context. The contemporary Serbian mtDNA profile is consistent with the general European maternal landscape having a substantial proportion of shared haplotypes with eastern, central, and southern European populations. Serbian population was characterized as an important link between easternmost and westernmost south-Slavic populations due to the observed lack of genetic differentiation with all other south-Slavic populations and its geographical positioning within the Balkan Peninsula. An increased heterogeneity of south Slavs, most likely mirroring turbulent demographic events within the Balkan Peninsula over time (i.e., frequent admixture and differential introgression of various gene pools), and a marked geographical stratification of Slavs to south-, east-, and west-Slavic groups, were also found. A phylogeographic analyses of 20 completely sequenced Serbian mitochondrial genomes revealed not only the presence of mtDNA lineages predominantly found within the Slavic gene pool (U4a2a*, U4a2a1, U4a2c, U4a2g, HV10), supporting a common Slavic origin, but also lineages that may have originated within the southern Europe (H5*, H5e1, H5a1v) and the Balkan Peninsula in particular (H6a2b and L2a1k). © 2014 Wiley Periodicals, Inc.

  4. Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity.

    PubMed

    Gomes, Sibylle M; Bodner, Martin; Souto, Luis; Zimmermann, Bettina; Huber, Gabriela; Strobl, Christina; Röck, Alexander W; Achilli, Alessandro; Olivieri, Anna; Torroni, Antonio; Côrte-Real, Francisco; Parson, Walther

    2015-02-14

    Distinct, partly competing, "waves" have been proposed to explain human migration in(to) today's Island Southeast Asia and Australia based on genetic (and other) evidence. The paucity of high quality and high resolution data has impeded insights so far. In this study, one of the first in a forensic environment, we used the Ion Torrent Personal Genome Machine (PGM) for generating complete mitogenome sequences via stand-alone massively parallel sequencing and describe a standard data validation practice. In this first representative investigation on the mitochondrial DNA (mtDNA) variation of East Timor (Timor-Leste) population including >300 individuals, we put special emphasis on the reconstruction of the initial settlement, in particular on the previously poorly resolved haplogroup P1, an indigenous lineage of the Southwest Pacific region. Our results suggest a colonization of southern Sahul (Australia) >37 kya, limited subsequent exchange, and a parallel incubation of initial settlers in northern Sahul (New Guinea) followed by westward migrations <28 kya. The temporal proximity and possible coincidence of these latter dispersals, which encompassed autochthonous haplogroups, with the postulated "later" events of (South) East Asian origin pinpoints a highly dynamic migratory phase.

  5. Hybridization and massive mtDNA unidirectional introgression between the closely related Neotropical toads Rhinella marina and R. schneideri inferred from mtDNA and nuclear markers

    PubMed Central

    2011-01-01

    Background The classical perspective that interspecific hybridization in animals is rare has been changing due to a growing list of empirical examples showing the occurrence of gene flow between closely related species. Using sequence data from cyt b mitochondrial gene and three intron nuclear genes (RPL9, c-myc, and RPL3) we investigated patterns of nucleotide polymorphism and divergence between two closely related toad species R. marina and R. schneideri. By comparing levels of differentiation at nuclear and mtDNA levels we were able to describe patterns of introgression and infer the history of hybridization between these species. Results All nuclear loci are essentially concordant in revealing two well differentiated groups of haplotypes, corresponding to the morphologically-defined species R. marina and R. schneideri. Mitochondrial DNA analysis also revealed two well-differentiated groups of haplotypes but, in stark contrast with the nuclear genealogies, all R. schneideri sequences are clustered with sequences of R. marina from the right Amazon bank (RAB), while R. marina sequences from the left Amazon bank (LAB) are monophyletic. An Isolation-with-Migration (IM) analysis using nuclear data showed that R. marina and R. schneideri diverged at ≈ 1.69 Myr (early Pleistocene), while R. marina populations from LAB and RAB diverged at ≈ 0.33 Myr (middle Pleistocene). This time of divergence is not consistent with the split between LAB and RAB populations obtained with mtDNA data (≈ 1.59 Myr), which is notably similar to the estimate obtained with nuclear genes between R. marina and R. schneideri. Coalescent simulations of mtDNA phylogeny under the speciation history inferred from nuclear genes rejected the hypothesis of incomplete lineage sorting to explain the conflicting signal between mtDNA and nuclear-based phylogenies. Conclusions The cytonuclear discordance seems to reflect the occurrence of interspecific hybridization between these two closely related toad species. Overall, our results suggest a phenomenon of extensive mtDNA unidirectional introgression from the previously occurring R. schneideri into the invading R. marina. We hypothesize that climatic-induced range shifts during the Pleistocene/Holocene may have played an important role in the observed patterns of introgression. PMID:21939538

  6. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs

    PubMed Central

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10−13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  7. A Signal, from Human mtDNA, of Postglacial Recolonization in Europe

    PubMed Central

    Torroni, Antonio; Bandelt, Hans-Jürgen; Macaulay, Vincent; Richards, Martin; Cruciani, Fulvio; Rengo, Chiara; Martinez-Cabrera, Vicente; Villems, Richard; Kivisild, Toomas; Metspalu, Ene; Parik, Jüri; Tolk, Helle-Viivi; Tambets, Kristiina; Forster, Peter; Karger, Bernd; Francalacci, Paolo; Rudan, Pavao; Janicijevic, Branka; Rickards, Olga; Savontaus, Marja-Liisa; Huoponen, Kirsi; Laitinen, Virpi; Koivumäki, Satu; Sykes, Bryan; Hickey, Eileen; Novelletto, Andrea; Moral, Pedro; Sellitto, Daniele; Coppa, Alfredo; Al-Zaheri, Nadia; Santachiara-Benerecetti, A. Silvana; Semino, Ornella; Scozzari, Rosaria

    2001-01-01

    Mitochondrial HVS-I sequences from 10,365 subjects belonging to 56 populations/geographical regions of western Eurasia and northern Africa were first surveyed for the presence of the T→C transition at nucleotide position 16298, a mutation which has previously been shown to characterize haplogroup V mtDNAs. All mtDNAs with this mutation were then screened for a number of diagnostic RFLP sites, revealing two major subsets of mtDNAs. One is haplogroup V proper, and the other has been termed “pre*V,” since it predates V phylogenetically. The rather uncommon pre*V tends to be scattered throughout Europe (and northwestern Africa), whereas V attains two peaks of frequency: one situated in southwestern Europe and one in the Saami of northern Scandinavia. Geographical distributions and ages support the scenario that pre*V originated in Europe before the Last Glacial Maximum (LGM), whereas the more recently derived haplogroup V arose in a southwestern European refugium soon after the LGM. The arrival of V in eastern/central Europe, however, occurred much later, possibly with (post-)Neolithic contacts. The distribution of haplogroup V mtDNAs in modern European populations would thus, at least in part, reflect the pattern of postglacial human recolonization from that refugium, affecting even the Saami. Overall, the present study shows that the dissection of mtDNA variation into small and well-defined evolutionary units is an essential step in the identification of spatial frequency patterns. Mass screening of a few markers identified using complete mtDNA sequences promises to be an efficient strategy for inferring features of human prehistory. PMID:11517423

  8. mtDNA diversity in Azara's owl monkeys (Aotus azarai azarai) of the Argentinean Chaco.

    PubMed

    Babb, Paul L; Fernandez-Duque, Eduardo; Baiduc, Caitlin A; Gagneux, Pascal; Evans, Sian; Schurr, Theodore G

    2011-10-01

    Owl monkeys (Aotus spp.) inhabit much of South America yet represent an enigmatic evolutionary branch among primates. While morphological, cytogenetic, and immunological evidence suggest that owl monkey populations have undergone isolation and diversification since their emergence in the New World, problems with adjacent species ranges, and sample provenance have complicated efforts to characterize genetic variation within the genus. As a result, the phylogeographic history of owl monkey species and subspecies remains unclear, and the extent of genetic diversity at the population level is unknown. To explore these issues, we analyzed mitochondrial DNA (mt DNA) variation in a population of wild Azara's owl monkeys (Aotus azarai azarai) living in the Gran Chaco region of Argentina. We sequenced the complete mitochondrial genome from one individual (16,585 base pairs (bp)) and analyzed 1,099 bp of the hypervariable control region (CR) and 696 bp of the cytochrome oxidase II (COII) gene in 117 others. In addition, we sequenced the mitochondrial genome (16,472 bp) of one Nancy Ma's owl monkey (A. nancymaae). Based on the whole mtDNA and COII data, we observed an ancient phylogeographic discontinuity among Aotus species living north, south, and west of the Amazon River that began more than eight million years ago. Our population analyses identified three major CR lineages and detected a high level of haplotypic diversity within A. a. azarai. These data point to a recent expansion of Azara's owl monkeys into the Argentinean Chaco. Overall, we provide a detailed view of owl monkey mtDNA variation at genus, species, and population levels. Copyright © 2011 Wiley-Liss, Inc.

  9. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs.

    PubMed

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs.

  10. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development.

    PubMed

    Ross, Jaime M; Stewart, James B; Hagström, Erik; Brené, Stefan; Mourier, Arnaud; Coppotelli, Giuseppe; Freyer, Christoph; Lagouge, Marie; Hoffer, Barry J; Olson, Lars; Larsson, Nils-Göran

    2013-09-19

    Ageing is due to an accumulation of various types of damage, and mitochondrial dysfunction has long been considered to be important in this process. There is substantial sequence variation in mammalian mitochondrial DNA (mtDNA), and the high mutation rate is counteracted by different mechanisms that decrease maternal transmission of mutated mtDNA. Despite these protective mechanisms, it is becoming increasingly clear that low-level mtDNA heteroplasmy is quite common and often inherited in humans. We designed a series of mouse mutants to investigate the extent to which inherited mtDNA mutations can contribute to ageing. Here we report that maternally transmitted mtDNA mutations can induce mild ageing phenotypes in mice with a wild-type nuclear genome. Furthermore, maternally transmitted mtDNA mutations lead to anticipation of reduced fertility in mice that are heterozygous for the mtDNA mutator allele (PolgA(wt/mut)) and aggravate premature ageing phenotypes in mtDNA mutator mice (PolgA(mut/mut)). Unexpectedly, a combination of maternally transmitted and somatic mtDNA mutations also leads to stochastic brain malformations. Our findings show that a pre-existing mutation load will not only allow somatic mutagenesis to create a critically high total mtDNA mutation load sooner but will also increase clonal expansion of mtDNA mutations to enhance the normally occurring mosaic respiratory chain deficiency in ageing tissues. Our findings suggest that maternally transmitted mtDNA mutations may have a similar role in aggravating aspects of normal human ageing.

  11. Length Variation, Heteroplasmy and Sequence Divergence in the Mitochondrial DNA of Four Species of Sturgeon (Acipenser)

    PubMed Central

    Brown, J. R.; Beckenbach, K.; Beckenbach, A. T.; Smith, M. J.

    1996-01-01

    The extent of mtDNA length variation and heteroplasmy as well as DNA sequences of the control region and two tRNA genes were determined for four North American sturgeon species: Acipenser transmontanus, A. medirostris, A. fulvescens and A. oxyrhnychus. Across the Continental Divide, a division in the occurrence of length variation and heteroplasmy was observed that was concordant with species biogeography as well as with phylogenies inferred from restriction fragment length polymorphisms (RFLP) of whole mtDNA and pairwise comparisons of unique sequences of the control region. In all species, mtDNA length variation was due to repeated arrays of 78-82-bp sequences each containing a D-loop strand synthesis termination associated sequence (TAS). Individual repeats showed greater sequence conservation within individuals and species rather than between species, which is suggestive of concerted evolution. Differences in the frequencies of multiple copy genomes and heteroplasmy among the four species may be ascribed to differences in the rates of recurrent mutation. A mechanism that may offset the high rate of mutation for increased copy number is suggested on the basis that an increase in the number of functional TAS motifs might reduce the frequency of successfully initiated H-strand replications. PMID:8852850

  12. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides.

    PubMed

    Martín-Navarro, Antonio; Gaudioso-Simón, Andrés; Álvarez-Jarreta, Jorge; Montoya, Julio; Mayordomo, Elvira; Ruiz-Pesini, Eduardo

    2017-03-07

    Several methods have been developed to predict the pathogenicity of missense mutations but none has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors. Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but their performance must be improved. We have developed a SVM classifier (Mitoclass.1) specific for mtDNA missense variants. Training and validation of the model was executed with 2,835 mtDNA damaging and neutral amino acid substitutions, previously curated by a set of rigorous pathogenicity criteria with high specificity. Each instance is described by a set of three attributes based on evolutionary conservation in Eukaryota of wildtype and mutant amino acids as well as coevolution and a novel evolutionary analysis of specific substitutions belonging to the same domain of mitochondrial polypeptides. Our classifier has performed better than other web-available tested predictors. We checked performance of three broadly used predictors with the total mutations of our curated dataset. PolyPhen-2 showed the best results for a screening proposal with a good sensitivity. Nevertheless, the number of false positive predictions was too high. Our method has an improved sensitivity and better specificity in relation to PolyPhen-2. We also publish predictions for the complete set of 24,201 possible missense variants in the 13 human mtDNA-encoded polypeptides. Mitoclass.1 allows a better selection of candidate damaging missense variants from mtDNA. A careful search of discriminatory attributes and a training step based on a curated dataset of amino acid substitutions belonging exclusively to human mtDNA genes allows an improved performance. Mitoclass.1 accuracy could be improved in the future when more mtDNA missense substitutions will be available for updating the attributes and retraining the model.

  13. A compositional segmentation of the human mitochondrial genome is related to heterogeneities in the guanine mutation rate

    PubMed Central

    Samuels, David C.; Boys, Richard J.; Henderson, Daniel A.; Chinnery, Patrick F.

    2003-01-01

    We applied a hidden Markov model segmentation method to the human mitochondrial genome to identify patterns in the sequence, to compare these patterns to the gene structure of mtDNA and to see whether these patterns reveal additional characteristics important for our understanding of genome evolution, structure and function. Our analysis identified three segmentation categories based upon the sequence transition probabilities. Category 2 segments corresponded to the tRNA and rRNA genes, with a greater strand-symmetry in these segments. Category 1 and 3 segments covered the protein- coding genes and almost all of the non-coding D-loop. Compared to category 1, the mtDNA segments assigned to category 3 had much lower guanine abundance. A comparison to two independent databases of mitochondrial mutations and polymorphisms showed that the high substitution rate of guanine in human mtDNA is largest in the category 3 segments. Analysis of synonymous mutations showed the same pattern. This suggests that this heterogeneity in the mutation rate is partly independent of respiratory chain function and is a direct property of the genome sequence itself. This has important implications for our understanding of mtDNA evolution and its use as a ‘molecular clock’ to determine the rate of population and species divergence. PMID:14530452

  14. [Application of multiple polymorphism genetic markers in determination of half sibling sharing a same mother].

    PubMed

    Que, Ting-zhi; Zhao, Shu-min; Li, Cheng-tao

    2010-08-01

    Determination strategies for half sibling sharing a same mother were investigated through the detection of autosomal and X-chromosomal STR (X-STR) loci and polymorphisms on hypervariable (HV) region of mitochondrial DNA (mtDNA). Genomic DNA were extracted from blood stain samples of the 3 full siblings and one dubious half sibling sharing the same mother with them. Fifteen autosomal STR loci were genotyped by Sinofiler kit, and 19 X-STR loci were genotyped by Mentype Argus X-8 kit and 16 plex in-house system. Polymorphisms of mtDNA HV-I and HV-II were also detected with sequencing technology. Full sibling relationship between the dubious half sibling and each of the 3 full siblings were excluded based on the results of autosomal STR genotyping and calculation of full sibling index (FSI) and half sibling index (HIS). Results of sequencing for mtDNA HV-I and HV-II showed that all of the 4 samples came from a same maternal line. X-STR genotyping results determined that the dubious half sibling shared a same mother with the 3 full siblings. It is reliable to combine three different genotyping technologies including autosomal STR, X-STR and sequencing of mtDNA HV-I and HV-II for determination of half sibling sharing a same mother.

  15. Toward a mtDNA locus-specific mutation database using the LOVD platform.

    PubMed

    Elson, Joanna L; Sweeney, Mary G; Procaccio, Vincent; Yarham, John W; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H; Pitceathly, Robert D S; Thorburn, David R; Lott, Marie T; Wallace, Douglas C; Taylor, Robert W; McFarland, Robert

    2012-09-01

    The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. © 2012 Wiley Periodicals, Inc.

  16. Toward a mtDNA Locus-Specific Mutation Database Using the LOVD Platform

    PubMed Central

    Elson, Joanna L.; Sweeney, Mary G.; Procaccio, Vincent; Yarham, John W.; Salas, Antonio; Kong, Qing-Peng; van der Westhuizen, Francois H.; Pitceathly, Robert D.S.; Thorburn, David R.; Lott, Marie T.; Wallace, Douglas C.; Taylor, Robert W.; McFarland, Robert

    2015-01-01

    The Human Variome Project (HVP) is a global effort to collect and curate all human genetic variation affecting health. Mutations of mitochondrial DNA (mtDNA) are an important cause of neurogenetic disease in humans; however, identification of the pathogenic mutations responsible can be problematic. In this article, we provide explanations as to why and suggest how such difficulties might be overcome. We put forward a case in support of a new Locus Specific Mutation Database (LSDB) implemented using the Leiden Open-source Variation Database (LOVD) system that will not only list primary mutations, but also present the evidence supporting their role in disease. Critically, we feel that this new database should have the capacity to store information on the observed phenotypes alongside the genetic variation, thereby facilitating our understanding of the complex and variable presentation of mtDNA disease. LOVD supports fast queries of both seen and hidden data and allows storage of sequence variants from high-throughput sequence analysis. The LOVD platform will allow construction of a secure mtDNA database; one that can fully utilize currently available data, as well as that being generated by high-throughput sequencing, to link genotype with phenotype enhancing our understanding of mitochondrial disease, with a view to providing better prognostic information. PMID:22581690

  17. Modified midi- and mini-multiplex PCR systems for mitochondrial DNA control region sequence analysis in degraded samples.

    PubMed

    Kim, Na Young; Lee, Hwan Young; Park, Sun Joo; Yang, Woo Ick; Shin, Kyoung-Jin

    2013-05-01

    Two multiplex polymerase chain reaction (PCR) systems (Midiplex and Miniplex) were developed for the amplification of the mitochondrial DNA (mtDNA) control region, and the efficiencies of the multiplexes for amplifying degraded DNA were validated using old skeletal remains. The Midiplex system consisted of two multiplex PCRs to amplify six overlapping amplicons ranging in length from 227 to 267 bp. The Miniplex system consisted of three multiplex PCRs to amplify 10 overlapping short amplicons ranging in length from 142 to 185 bp. Most mtDNA control region sequences of several 60-year-old and 400-500-year-old skeletal remains were successfully obtained using both PCR systems and consistent with those previously obtained by monoplex amplification. The multiplex system consisting of smaller amplicons is effective for mtDNA sequence analyses of ancient and forensic degraded samples, saving time, cost, and the amount of DNA sample consumed during analysis. © 2013 American Academy of Forensic Sciences.

  18. Rapid Mitochondrial Genome Evolution through Invasion of Mobile Elements in Two Closely Related Species of Arbuscular Mycorrhizal Fungi

    PubMed Central

    Beaudet, Denis; Nadimi, Maryam; Iffis, Bachir; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially, due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences. This variation makes it possible to design reliable intra- and inter-specific markers. PMID:23637766

  19. Rapid mitochondrial genome evolution through invasion of mobile elements in two closely related species of arbuscular mycorrhizal fungi.

    PubMed

    Beaudet, Denis; Nadimi, Maryam; Iffis, Bachir; Hijri, Mohamed

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) are common and important plant symbionts. They have coenocytic hyphae and form multinucleated spores. The nuclear genome of AMF is polymorphic and its organization is not well understood, which makes the development of reliable molecular markers challenging. In stark contrast, their mitochondrial genome (mtDNA) is homogeneous. To assess the intra- and inter-specific mitochondrial variability in closely related Glomus species, we performed 454 sequencing on total genomic DNA of Glomus sp. isolate DAOM-229456 and we compared its mtDNA with two G. irregulare isolates. We found that the mtDNA of Glomus sp. is homogeneous, identical in gene order and, with respect to the sequences of coding regions, almost identical to G. irregulare. However, certain genomic regions vary substantially, due to insertions/deletions of elements such as introns, mitochondrial plasmid-like DNA polymerase genes and mobile open reading frames. We found no evidence of mitochondrial or cytoplasmic plasmids in Glomus species, and mobile ORFs in Glomus are responsible for the formation of four gene hybrids in atp6, atp9, cox2, and nad3, which are most probably the result of horizontal gene transfer and are expressed at the mRNA level. We found evidence for substantial sequence variation in defined regions of mtDNA, even among closely related isolates with otherwise identical coding gene sequences. This variation makes it possible to design reliable intra- and inter-specific markers.

  20. The numbers of individual mitochondrial DNA molecules and mitochondrial DNA nucleoids in yeast are co-regulated by the general amino acid control pathway.

    PubMed

    MacAlpine, D M; Perlman, P S; Butow, R A

    2000-02-15

    Mitochondrial DNA (mtDNA) is inherited as a protein-DNA complex (the nucleoid). We show that activation of the general amino acid response pathway in rho(+) and rho(-) petite cells results in an increased number of nucleoids without an increase in mtDNA copy number. In rho(-) cells, activation of the general amino acid response pathway results in increased intramolecular recombination between tandemly repeated sequences of rho(-) mtDNA to produce small, circular oligomers that are packaged into individual nucleoids, resulting in an approximately 10-fold increase in nucleoid number. The parsing of mtDNA into nucleoids due to general amino acid control requires Ilv5p, a mitochondrial protein that also functions in branched chain amino acid biosynthesis, and one or more factors required for mtDNA recombination. Two additional proteins known to function in mtDNA recombination, Abf2p and Mgt1p, are also required for parsing mtDNA into a larger number of nucleoids, although expression of these proteins is not under general amino acid control. Increased nucleoid number leads to increased mtDNA transmission, suggesting a mechanism to enhance mtDNA inheritance under amino acid starvation conditions.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loopmore » regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.« less

  2. Phylogeography, intraspecific structure and sex-biased dispersal of Dall's porpoise, Phocoenoides dalli, revealed by mitochondrial and microsatellite DNA analyses.

    PubMed

    Escorza-Treviño, S; Dizon, A E

    2000-08-01

    Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.

  3. A large homozygous deletion in the SAMHD1 gene causes atypical Aicardi–Goutiéres syndrome associated with mtDNA deletions

    PubMed Central

    Leshinsky-Silver, Esther; Malinger, Gustavo; Ben-Sira, Liat; Kidron, Dvora; Cohen, Sarit; Inbar, Shani; Bezaleli, Tali; Levine, Arie; Vinkler, Chana; Lev, Dorit; Lerman-Sagie, Tally

    2011-01-01

    Aicardi–Goutiéres syndrome (AGS) is a genetic neurodegenerative disorder with clinical symptoms mimicking a congenital viral infection. Five causative genes have been described: three prime repair exonuclease1 (TREX1), ribonucleases H2A, B and C, and most recently SAM domain and HD domain 1 (SAMHD1). We performed a detailed clinical and molecular characterization of a family with autosomal recessive neurodegenerative disorder showing white matter destruction and calcifications, presenting in utero and associated with multiple mtDNA deletions. A muscle biopsy was normal and did not show any evidence of respiratory chain dysfunction. Southern blot analysis of tissue from a living child and affected fetuses demonstrated multiple mtDNA deletions. Molecular analysis of genes involved in mtDNA synthesis and maintenance (POLGα, POLGβ, Twinkle, ANT1, TK2, SUCLA1 and DGOUK) revealed normal sequences. Sequencing of TREX1 and ribonucleases H2A, B and C failed to reveal any mutations. Whole-genome homozygosity mapping revealed a candidate region containing the SAMHD1 gene. Sequencing of the gene in the affected child and two affected fetuses revealed a large deletion (9 kb), spanning the promoter, exon1 and intron 1. The parents were found to be heterozygous for this deletion. The identification of a homozygous large deletion in the SAMHD1 gene causing atypical AGS with multiple mtDNA deletions may add information regarding the involvement of mitochondria in self-activation of innate immunity by cell intrinsic components. PMID:21102625

  4. Multiplexed SNP typing of ancient DNA clarifies the origin of Andaman mtDNA haplogroups amongst South Asian tribal populations.

    PubMed

    Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J

    2006-12-20

    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups approximately 30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity.

  5. Multiplexed SNP Typing of Ancient DNA Clarifies the Origin of Andaman mtDNA Haplogroups amongst South Asian Tribal Populations

    PubMed Central

    Endicott, Phillip; Metspalu, Mait; Stringer, Chris; Macaulay, Vincent; Cooper, Alan; Sanchez, Juan J.

    2006-01-01

    The issue of errors in genetic data sets is of growing concern, particularly in population genetics where whole genome mtDNA sequence data is coming under increased scrutiny. Multiplexed PCR reactions, combined with SNP typing, are currently under-exploited in this context, but have the potential to genotype whole populations rapidly and accurately, significantly reducing the amount of errors appearing in published data sets. To show the sensitivity of this technique for screening mtDNA genomic sequence data, 20 historic samples of the enigmatic Andaman Islanders and 12 modern samples from three Indian tribal populations (Chenchu, Lambadi and Lodha) were genotyped for 20 coding region sites after provisional haplogroup assignment with control region sequences. The genotype data from the historic samples significantly revise the topologies for the Andaman M31 and M32 mtDNA lineages by rectifying conflicts in published data sets. The new Indian data extend the distribution of the M31a lineage to South Asia, challenging previous interpretations of mtDNA phylogeography. This genetic connection between the ancestors of the Andamanese and South Asian tribal groups ∼30 kya has important implications for the debate concerning migration routes and settlement patterns of humans leaving Africa during the late Pleistocene, and indicates the need for more detailed genotyping strategies. The methodology serves as a low-cost, high-throughput model for the production and authentication of data from modern or ancient DNA, and demonstrates the value of museum collections as important records of human genetic diversity. PMID:17218991

  6. Yeast aconitase binds and provides metabolically coupled protection to mitochondrial DNA.

    PubMed

    Chen, Xin Jie; Wang, Xiaowen; Butow, Ronald A

    2007-08-21

    Aconitase (Aco1p) is a multifunctional protein: It is an enzyme of the tricarboxylic acid cycle. In animal cells, Aco1p also is a cytosolic protein binding to mRNAs to regulate iron metabolism. In yeast, Aco1p was identified as a component of mtDNA nucleoids. Here we show that yeast Aco1p protects mtDNA from excessive accumulation of point mutations and ssDNA breaks and suppresses reductive recombination of mtDNA. Aconitase binds to both ds- and ssDNA, with a preference for GC-containing sequences. Therefore, mitochondria are opportunistic organelles that seize proteins, such as metabolic enzymes, for construction of the nucleoid, an mtDNA maintenance/segregation apparatus.

  7. No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline

    PubMed Central

    Hagström, Erik; Freyer, Christoph; Battersby, Brendan J.; Stewart, James B.; Larsson, Nils-Göran

    2014-01-01

    Variants of mitochondrial DNA (mtDNA) are commonly used as markers to track human evolution because of the high sequence divergence and exclusive maternal inheritance. It is assumed that the inheritance is clonal, i.e. that mtDNA is transmitted between generations without germline recombination. In contrast to this assumption, a number of studies have reported the presence of recombinant mtDNA molecules in cell lines and animal tissues, including humans. If germline recombination of mtDNA is frequent, it would strongly impact phylogenetic and population studies by altering estimates of coalescent time and branch lengths in phylogenetic trees. Unfortunately, this whole area is controversial and the experimental approaches have been widely criticized as they often depend on polymerase chain reaction (PCR) amplification of mtDNA and/or involve studies of transformed cell lines. In this study, we used an in vivo mouse model that has had germline heteroplasmy for a defined set of mtDNA mutations for more than 50 generations. To assess recombination, we adapted and validated a method based on cloning of single mtDNA molecules in the λ phage, without prior PCR amplification, followed by subsequent mutation analysis. We screened 2922 mtDNA molecules and found no germline recombination after transmission of mtDNA under genetically and evolutionary relevant conditions in mammals. PMID:24163253

  8. Insertion of a self-splicing intron into the mtDNA of atriploblastic animal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valles, Y.; Halanych, K.; Boore, J.L.

    2006-04-14

    Nephtys longosetosa is a carnivorous polychaete worm that lives in the intertidal and subtidal zones with worldwide distribution (pleijel&rouse2001). Its mitochondrial genome has the characteristics typical of most metazoans: 37 genes; circular molecule; almost no intergenic sequence; and no significant gene rearrangements when compared to other annelid mtDNAs (booremoritz19981995). Ubiquitous features as small intergenic regions and lack of introns suggested that metazoan mtDNAs are under strong selective pressures to reduce their genome size allowing for faster replication requirements (booremoritz19981995Lynch2005). Yet, in 1996 two type I introns were found in the mtDNA of the basal metazoan Metridium senile (FigureX). Breaking amore » long-standing rule (absence of introns in metazoan mtDNA), this finding was later supported by the further presence of group I introns in other cnidarians. Interestingly, only the class Anthozoa within cnidarians seems to harbor such introns. Although several hundreds of triploblastic metazoan mtDNAs have been sequenced, this study is the first evidence of mitochondrial introns in triploblastic metazoans. The cox1 gene of N. longosetosa has an intron of almost 2 kbs in length. This finding represents as well the first instance of a group II intron (anthozoans harbor group I introns) in all metazoan lineages. Opposite trends are observed within plants, fungi and protist mtDNAs, where introns (both group I and II) and other non-coding sequences are widespread. Plant, fungal and protist mtDNA structure and organization differ enormously from that of metazoan mtDNA. Both, plant and fungal mtDNA are dynamic molecules that undergo high rates of recombination, contain long intergenic spacer regions and harbor both group I and group II introns. However, as metazoans they have a conserved gene content. Protists, on the other hand have a striking variation of gene content and introns that account for the genome size variation. In contrast to this mtDNA structure and organization diversity, current genome level studies point to a monophyletic origin of the mitochondria (REFS), raising questions such as: what are the pressures at work shaping the evolution of the mitochondrial genome at 'higher' levels? What drives the absence of introns and other non-coding spacers in metazoan mtDNA? What characteristics must have an intron to be maintained in an environment where 'extra chromosomes' are usually selected against?« less

  9. Behavioral vs. molecular sources of conflict between nuclear and mitochondrial DNA: The role of male-biased dispersal in a Holarctic sea duck

    USGS Publications Warehouse

    Peters, Jeffrey L.; Bolender, Kimberly A.; Pearce, John M.

    2012-01-01

    Genetic studies of waterfowl (Anatidae) have observed the full spectrum of mitochondrial (mt) DNA population divergence, from apparent panmixia to deep, reciprocally monophyletic lineages. Yet, these studies often found weak or no nuclear (nu) DNA structure, which was often attributed to male-biased gene flow, a common behaviour within this family. An alternative explanation for this ‘conflict’ is that the smaller effective population size and faster sorting rate of mtDNA relative to nuDNA lead to different signals of population structure. We tested these alternatives by sequencing 12 nuDNA introns for a Holarctic pair of waterfowl subspecies, the European goosander (Mergus merganser merganser) and the North American common merganser (M. m. americanus), which exhibit strong population structure in mtDNA. We inferred effective population sizes, gene flow and divergence times from published mtDNA sequences and simulated expected differentiation for nuDNA based on those histories. Between Europe and North America, nuDNA ФST was 3.4-fold lower than mtDNA ФST, a result consistent with differences in sorting rates. However, despite geographically structured and monophyletic mtDNA lineages within continents, nuDNA ФST values were generally zero and significantly lower than predicted. This between- and within-continent contrast held when comparing mtDNA and nuDNA among published studies of ducks. Thus, male-mediated gene flow is a better explanation than slower sorting rates for limited nuDNA differentiation within continents, which is also supported by nonmolecular data. This study illustrates the value of quantitatively testing discrepancies between mtDNA and nuDNA to reject the null hypothesis that conflict simply reflects different sorting rates.

  10. Impact of Somatic Mutations in the D-Loop of Mitochondrial DNA on the Survival of Oral Squamous Cell Carcinoma Patients

    PubMed Central

    Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-Yi; Liu, Shih-An

    2015-01-01

    Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence differences were recognized as somatic mutations. Results Somatic mutations in the D-loop of mtDNA were identified in 75 (62.5%) oral squamous cell carcinoma patients and most of them occurred in the poly-C tract. Although there were no significant differences in demographic and tumor-related features between participants with and without somatic mutation, the mutation group had a better survival rate (5 year disease-specific survival rate: 64.0% vs. 43.0%, P = 0.0266). Conclusion Somatic mutation in D-loop of mtDNA was associated with a better survival in oral squamous cell carcinoma patients. PMID:25906372

  11. Reduced Mtdna Diversity in the Ngobe Amerinds of Panama

    PubMed Central

    Kolman, C. J.; Bermingham, E.; Cooke, R.; Ward, R. H.; Arias, T. D.; Guionneau-Sinclair, F.

    1995-01-01

    Mitochondrial DNA (mtDNA) haplotype diversity was determined for 46 Ngobe Amerinds sampled widely across their geographic range in western Panama. The Ngobe data were compared with mtDNA control region I sequences from two additional Amerind groups located at the northern and southern extremes of Amerind distribution, the Nuu-Chah-Nulth of the Pacific Northwest and the Chilean Mapuche and from one Na-Dene group, the Haida of the Pacific Northwest. The Ngobe exhibit the lowest mtDNA control region sequence diversity yet reported for an Amerind group. Moreover, they carry only two of the four Amerind founding lineages first described by Wallace and coworkers. We posit that the Ngobe passed through a population bottleneck caused by ethnogenesis from a small founding population and/or European conquest and colonization. Dating of the Ngobe population expansion using the HARPENDING et al. approach to the analysis of pairwise genetic differences indicates a Ngobe expansion at roughly 6800 years before present (range: 1850-14,000 years before present), a date more consistent with a bottleneck at Chibcha ethnogenesis than a conquest-based event. PMID:7635293

  12. Deep sequencing shows that oocytes are not prone to accumulate mtDNA heteroplasmic mutations during ovarian ageing.

    PubMed

    Boucret, L; Bris, C; Seegers, V; Goudenège, D; Desquiret-Dumas, V; Domin-Bernhard, M; Ferré-L'Hotellier, V; Bouet, P E; Descamps, P; Reynier, P; Procaccio, V; May-Panloup, P

    2017-10-01

    Does ovarian ageing increase the number of heteroplasmic mitochondrial DNA (mtDNA) point mutations in oocytes? Our results suggest that oocytes are not subject to the accumulation of mtDNA point mutations during ovarian ageing. Ageing is associated with the alteration of mtDNA integrity in various tissues. Primary oocytes, present in the ovary since embryonic life, may accumulate mtDNA mutations during the process of ovarian ageing. This was an observational study of 53 immature oocyte-cumulus complexes retrieved from 35 women undergoing IVF at the University Hospital of Angers, France, from March 2013 to March 2014. The women were classified in two groups, one including 19 women showing signs of ovarian ageing objectified by a diminished ovarian reserve (DOR), and the other, including 16 women with a normal ovarian reserve (NOR), which served as a control group. mtDNA was extracted from isolated oocytes, and from their corresponding cumulus cells (CCs) considered as a somatic cell compartment. The average mtDNA content of each sample was assessed by using a quantitative real-time PCR technique. Deep sequencing was performed using the Ion Torrent Proton for Next-Generation Sequencing. Signal processing and base calling were done by the embedded pre-processing pipeline and the variants were analyzed using an in-house workflow. The distribution of the different variants between DOR and NOR patients, on one hand, and oocyte and CCs, on the other, was analyzed with the generalized mixed linear model to take into account the cluster of cells belonging to a given mother. There were no significant differences between the numbers of mtDNA variants between the DOR and the NOR patients, either in the oocytes (P = 0.867) or in the surrounding CCs (P = 0.154). There were also no differences in terms of variants with potential functional consequences. De-novo mtDNA variants were found in 28% of the oocytes and in 66% of the CCs with the mean number of variants being significantly different (respectively 0.321, SD = 0.547 and 1.075, SD = 1.158) (P < 0.0001). Variants with a potential functional consequence were also overrepresented in CCs compared with oocytes (P = 0.0019). N/A. Limitations may be due to the use of immature oocytes discarded during the assisted reproductive technology procedure, the small size of the sample, and the high-throughput sequencing technology that might not have detected heteroplasmy levels lower than 2%. The alteration of mtDNA integrity in oocytes during ovarian ageing is a recurring question to which our pilot study suggests a reassuring answer. This work was supported by the University Hospital of Angers, the University of Angers, France, and the French national research centers, INSERM and the CNRS. There are nocompeting interests. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. Clarification of the Concept of Ganoderma orbiforme with High Morphological Plasticity

    PubMed Central

    Wang, Dong-Mei; Wu, Sheng-Hua; Yao, Yi-Jian

    2014-01-01

    Ganoderma has been considered a very difficult genus among the polypores to classify and is currently in a state of taxonomic chaos. In a study of Ganoderma collections including numerous type specimens, we found that six species namely G. cupreum, G. densizonatum, G. limushanense, G. mastoporum, G. orbiforme, G. subtornatum, and records of G. fornicatum from Mainland China and Taiwan are very similar to one another in basidiocarp texture, pilear cuticle structure, context color, pore color and basidiospore characteristics. Further, we sequenced the nrDNA ITS region (ITS1 and ITS2) and partial mtDNA SSU region of the studied materials, and performed phylogenetic analyses based on these sequence data. The nrDNA ITS sequence analysis results show that the eight nrDNA ITS sequences derived from this study have single-nucleotide polymorphisms in ITS1 and/or ITS2 at inter- and intra-individual levels. In the nrDNA ITS phylogenetic trees, all the sequences from this study are grouped together with those of G. cupreum and G. mastoporum retrieved from GenBank to form a distinct clade. The mtDNA SSU sequence analysis results reveal that the five mtDNA SSU sequences derived from this study are clustered together with those of G. cupreum retrieved from GenBank and also form a distinct clade in the mtDNA SSU phylogenetic trees. Based on morphological and molecular data, we conclude that the studied taxa are conspecific. Among the names assigned to this species, G. fornicatum given to Asian collections has nomenclatural priority over the others. However, the type of G. fornicatum from Brazil is probably lost and a modern description based on the type lacks. The identification of the Asian collections to G. fornicatum therefore cannot be confirmed. To the best of our knowledge, G. orbiforme is the earliest valid name for use. PMID:24875218

  14. Mitochondrial DNA Variant in COX1 Subunit Significantly Alters Energy Metabolism of Geographically Divergent Wild Isolates in Caenorhabditis elegans

    PubMed Central

    Dingley, Stephen D.; Polyak, Erzsebet; Ostrovsky, Julian; Srinivasan, Satish; Lee, Icksoo; Rosenfeld, Amy B.; Tsukikawa, Mai; Xiao, Rui; Selak, Mary A.; Coon, Joshua J.; Hebert, Alexander S.; Grimsrud, Paul A.; Kwon, Young Joon; Pagliarini, David J.; Gai, Xiaowu; Schurr, Theodore G.; Hüttemann, Maik; Nakamaru-Ogiso, Eiko; Falk, Marni J.

    2014-01-01

    Mitochondrial DNA (mtDNA) sequence variation can influence the penetrance of complex diseases and climatic adaptation. While studies in geographically defined human populations suggest that mtDNA mutations become fixed when they have conferred metabolic capabilities optimally suited for a specific environment, it has been challenging to definitively assign adaptive functions to specific mtDNA sequence variants in mammals. We investigated whether mtDNA genome variation functionally influences Caenorhabditis elegans wild isolates of distinct mtDNA lineages and geographic origins. We found that, relative to N2 (England) wild-type nematodes, CB4856 wild isolates from a warmer native climate (Hawaii) had a unique p.A12S amino acid substitution in the mtDNA-encoded COX1 core catalytic subunit of mitochondrial complex IV (CIV). Relative to N2, CB4856 worms grown at 20 °C had significantly increased CIV enzyme activity, mitochondrial matrix oxidant burden, and sensitivity to oxidative stress but had significantly reduced lifespan and mitochondrial membrane potential. Interestingly, mitochondrial membrane potential was significantly increased in CB4856 grown at its native temperature of 25 °C. A transmitochondrial cybrid worm strain, chpIR (M, CB4856 > N2), was bred as homoplasmic for the CB4856 mtDNA genome in the N2 nuclear background. The cybrid strain also displayed significantly increased CIV activity, demonstrating that this difference results from the mtDNA-encoded p.A12S variant. However, chpIR (M, CB4856 > N2) worms had significantly reduced median and maximal lifespan relative to CB4856, which may relate to their nuclear– mtDNA genome mismatch. Overall, these data suggest that C. elegans wild isolates of varying geographic origins may adapt to environmental challenges through mtDNA variation to modulate critical aspects of mitochondrial energy metabolism. PMID:24534730

  15. Microevolution in prehistoric Andean populations: chronologic mtDNA variation in the desert valleys of northern Chile.

    PubMed

    Moraga, Mauricio; Santoro, Calogero M; Standen, Vivien G; Carvallo, Pilar; Rothhammer, Francisco

    2005-06-01

    Archeological evidence suggests that the iconographic and technological developments that took place in the highlands around Lake Titicaca in the Central Andean region had an influence on the cultural elaborations of the human groups in the valleys and the Pacific coast of northern Chile. In a previous communication, we were able to show, by means of a distance analysis, that a craniofacial differentiation accompanied the process of cultural evolution in the valleys (Rothhammer and Santoro [2001] Lat. Am. Antiq. 12:59-66). Recently, numerous South Amerindian mtDNA studies were published, and more accurate molecular techniques to study ancient mtDNA are available. In view of these recent developments, we decided 1) to study chronological changes of ancient mtDNA haplogroup frequencies in the nearby Lluta, Azapa, and Camarones Valleys, 2) to identify microevolutionary forces responsible for such changes, and 3) to compare ancient mtDNA haplogroup frequencies with previous data in order to validate craniometrical results and to reconstruct the biological history of the prehistoric valley groups in the context of their interaction with culturally more developed highland populations. From a total of 97 samples from 83 individuals, 68 samples (61 individuals) yielded amplifications for the fragments that harbor classical mtDNA markers. The haplogroup distribution among the total sample was as follows: 26.2%, haplogroup A; 34.4%, haplogroup B; 14.8%, haplogroup C; 3.3%, haplogroup D; and 21.3%, other haplogroups. Haplogroup B tended to increase, and haplogroup A to decrease during a 3,900-year time interval. The sequence data are congruent with the haplogroup analysis. In fact, the sequencing of hypervariable region I of 30 prehistoric individuals revealed 43 polymorphic sites. Sequence alignment and subsequent phylogenetic tree construction showed two major clusters associated with the most common restriction haplogroups. Individuals belonging to haplogroups C and D tended to cluster together with nonclassical lineages. 2004 Wiley-Liss, Inc.

  16. Evolutionary history of continental southeast Asians: "early train" hypothesis based on genetic analysis of mitochondrial and autosomal DNA data.

    PubMed

    Jinam, Timothy A; Hong, Lih-Chun; Phipps, Maude E; Stoneking, Mark; Ameen, Mahmood; Edo, Juli; Saitou, Naruya

    2012-11-01

    The population history of the indigenous populations in island Southeast Asia is generally accepted to have been shaped by two major migrations: the ancient "Out of Africa" migration ∼50,000 years before present (YBP) and the relatively recent "Out of Taiwan" expansion of Austronesian agriculturalists approximately 5,000 YBP. The Negritos are believed to have originated from the ancient migration, whereas the majority of island Southeast Asians are associated with the Austronesian expansion. We determined 86 mitochondrial DNA (mtDNA) complete genome sequences in four indigenous Malaysian populations, together with a reanalysis of published autosomal single-nucleotide polymorphism (SNP) data of Southeast Asians to test the plausibility and impact of those migration models. The three Austronesian groups (Bidayuh, Selatar, and Temuan) showed high frequencies of mtDNA haplogroups, which originated from the Asian mainland ∼30,000-10,000 YBP, but low frequencies of "Out of Taiwan" markers. Principal component analysis and phylogenetic analysis using autosomal SNP data indicate a dichotomy between continental and island Austronesian groups. We argue that both the mtDNA and autosomal data suggest an "Early Train" migration originating from Indochina or South China around the late-Pleistocene to early-Holocene period, which predates, but may not necessarily exclude, the Austronesian expansion.

  17. Distinguishing Echinococcus granulosus sensu stricto genotypes G1 and G3 with confidence: A practical guide.

    PubMed

    Kinkar, Liina; Laurimäe, Teivi; Acosta-Jamett, Gerardo; Andresiuk, Vanessa; Balkaya, Ibrahim; Casulli, Adriano; Gasser, Robin B; González, Luis Miguel; Haag, Karen L; Zait, Houria; Irshadullah, Malik; Jabbar, Abdul; Jenkins, David J; Manfredi, Maria Teresa; Mirhendi, Hossein; M'rad, Selim; Rostami-Nejad, Mohammad; Oudni-M'rad, Myriam; Pierangeli, Nora Beatriz; Ponce-Gordo, Francisco; Rehbein, Steffen; Sharbatkhori, Mitra; Kia, Eshrat Beigom; Simsek, Sami; Soriano, Silvia Viviana; Sprong, Hein; Šnábel, Viliam; Umhang, Gérald; Varcasia, Antonio; Saarma, Urmas

    2018-06-21

    Cystic echinococcosis (CE), a zoonotic disease caused by tapeworms of the species complex Echinococcus granulosus sensu lato, represents a substantial global health and economic burden. Within this complex, E. granulosus sensu stricto (genotypes G1 and G3) is the most frequent causative agent of human CE. Currently, there is no fully reliable method for assigning samples to genotypes G1 and G3, as the commonly used mitochondrial cox1 and nad1 genes are not sufficiently consistent for the identification and differentiation of these genotypes. Thus, a new genetic assay is required for the accurate assignment of G1 and G3. Here we use a large dataset of near-complete mtDNA sequences (n = 303) to reveal the extent of genetic variation of G1 and G3 on a broad geographical scale and to identify reliable informative positions for G1 and G3. Based on extensive sampling and sequencing data, we developed a new method, that is simple and cost-effective, to designate samples to genotypes G1 and G3. We found that the nad5 is the best gene in mtDNA to differentiate between G1 and G3, and developed new primers for the analysis. Our results also highlight problems related to the commonly used cox1 and nad1. To guarantee consistent identification of G1 and G3, we suggest using the sequencing of the nad5 gene region (680 bp). This region contains six informative positions within a relatively short fragment of the mtDNA, allowing differentiation of G1 and G3 with confidence. Our method offers clear advantages over the previous ones, providing a significantly more consistent means to distinguish G1 and G3 than the commonly used cox1 and nad1. Copyright © 2018. Published by Elsevier B.V.

  18. The phylogenetic position of the roughskin skate Dipturus trachyderma (Krefft & Stehmann, 1975) (Rajiformes, Rajidae) inferred from the mitochondrial genome.

    PubMed

    Vargas-Caro, Carolina; Bustamante, Carlos; Lamilla, Julio; Bennett, Michael B; Ovenden, Jennifer R

    2016-07-01

    The complete mitochondrial genome of the roughskin skate Dipturus trachyderma is described from 1 455 724 sequences obtained using Illumina NGS technology. Total length of the mitogenome was 16 909 base pairs, comprising 2 rRNAs, 13 protein-coding genes, 22 tRNAs and 2 non-coding regions. Phylogenetic analysis based on mtDNA revealed low genetic divergence among longnose skates, in particular, those dwelling the continental shelf and slope off the coasts of Chile and Argentina.

  19. Heterozygous SSBP1 start loss mutation co-segregates with hearing loss and the m.1555A>G mtDNA variant in a large multigenerational family.

    PubMed

    Kullar, Peter J; Gomez-Duran, Aurora; Gammage, Payam A; Garone, Caterina; Minczuk, Michal; Golder, Zoe; Wilson, Janet; Montoya, Julio; Häkli, Sanna; Kärppä, Mikko; Horvath, Rita; Majamaa, Kari; Chinnery, Patrick F

    2018-01-01

    The m.1555A>G mtDNA variant causes maternally inherited deafness, but the reasons for the highly variable clinical penetrance are not known. Exome sequencing identified a heterozygous start loss mutation in SSBP1, encoding the single stranded binding protein 1 (SSBP1), segregating with hearing loss in a multi-generational family transmitting m.1555A>G, associated with mtDNA depletion and multiple deletions in skeletal muscle. The SSBP1 mutation reduced steady state SSBP1 levels leading to a perturbation of mtDNA metabolism, likely compounding the intra-mitochondrial translation defect due to m.1555A>G in a tissue-specific manner. This family demonstrates the importance of rare trans-acting genetic nuclear modifiers in the clinical expression of mtDNA disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  20. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud.

    PubMed

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-07-08

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Diversity of mitochondrial DNA lineages in South Siberia.

    PubMed

    Derenko, M V; Grzybowski, T; Malyarchuk, B A; Dambueva, I K; Denisova, G A; Czarny, J; Dorzhu, C M; Kakpakov, V T; Miścicka-Sliwka, D; Woźniak, M; Zakharov, I A

    2003-09-01

    To investigate the origin and evolution of aboriginal populations of South Siberia, a comprehensive mitochondrial DNA (mtDNA) analysis (HVR1 sequencing combined with RFLP typing) of 480 individuals, representing seven Altaic-speaking populations (Altaians, Khakassians, Buryats, Sojots, Tuvinians, Todjins and Tofalars), was performed. Additionally, HVR2 sequence information was obtained for 110 Altaians, providing, in particular, some novel details of the East Asian mtDNA phylogeny. The total sample revealed 81% East Asian (M*, M7, M8, M9, M10, C, D, G, Z, A, B, F, N9a, Y) and 17% West Eurasian (H, U, J, T, I, N1a, X) matrilineal genetic contribution, but with regional differences within South Siberia. The highest influx of West Eurasian mtDNAs was observed in populations from the East Sayan and Altai regions (from 12.5% to 34.5%), whereas in populations from the Baikal region this contribution was markedly lower (less than 10%). The considerable substructure within South Siberian haplogroups B, F, and G, together with the high degree of haplogroup C and D diversity revealed there, allows us to conclude that South Siberians carry the genetic imprint of early-colonization phase of Eurasia. Statistical analyses revealed that South Siberian populations contain high levels of mtDNA diversity and high heterogeneity of mtDNA sequences among populations (Fst = 5.05%) that might be due to geography but not due to language and anthropological features.

  2. The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny.

    PubMed

    Kayal, Ehsan; Lavrov, Dennis V

    2008-02-29

    The 16,314-nuceotide sequence of the linear mitochondrial DNA (mtDNA) molecule of Hydra oligactis (Cnidaria, Hydrozoa)--the first from the class Hydrozoa--has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs, as is typical for cnidarians. All genes have the same transcriptional orientation and their arrangement in the genome is similar to that of the jellyfish Aurelia aurita. In addition, a partial copy of cox1 is present at one end of the molecule in a transcriptional orientation opposite to the rest of the genes, forming a part of inverted terminal repeat characteristic of linear mtDNA and linear mitochondrial plasmids. The sequence close to at least one end of the molecule contains several homonucleotide runs as well as small inverted repeats that are able to form strong secondary structures and may be involved in mtDNA maintenance and expression. Phylogenetic analysis of mitochondrial genes of H. oligactis and other cnidarians supports the Medusozoa hypothesis but also suggests that Anthozoa may be paraphyletic, with octocorallians more closely related to the Medusozoa than to the Hexacorallia. The latter inference implies that Anthozoa is paraphyletic and that the polyp (rather than a medusa) is the ancestral body type in Cnidaria.

  3. Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion

    PubMed Central

    Osman, Christof; Noriega, Thomas R.; Okreglak, Voytek; Fung, Jennifer C.; Walter, Peter

    2015-01-01

    Mitochondrial DNA (mtDNA) is essential for mitochondrial and cellular function. In Saccharomyces cerevisiae, mtDNA is organized in nucleoprotein structures termed nucleoids, which are distributed throughout the mitochondrial network and are faithfully inherited during the cell cycle. How the cell distributes and inherits mtDNA is incompletely understood although an involvement of mitochondrial fission and fusion has been suggested. We developed a LacO-LacI system to noninvasively image mtDNA dynamics in living cells. Using this system, we found that nucleoids are nonrandomly spaced within the mitochondrial network and observed the spatiotemporal events involved in mtDNA inheritance. Surprisingly, cells deficient in mitochondrial fusion and fission distributed and inherited mtDNA normally, pointing to alternative pathways involved in these processes. We identified such a mechanism, where we observed fission-independent, but F-actin–dependent, tip generation that was linked to the positioning of mtDNA to the newly generated tip. Although mitochondrial fusion and fission were dispensable for mtDNA distribution and inheritance, we show through a combination of genetics and next-generation sequencing that their absence leads to an accumulation of mitochondrial genomes harboring deleterious structural variations that cluster at the origins of mtDNA replication, thus revealing crucial roles for mitochondrial fusion and fission in maintaining the integrity of the mitochondrial genome. PMID:25730886

  4. The first complete organellar genomes of an Antarctic red alga, Pyropia endiviifolia: insights into its genome architecture and phylogenetic position within genus Pyropia (Bangiales, Rhodophyta)

    NASA Astrophysics Data System (ADS)

    Xu, Kuipeng; Tang, Xianghai; Bi, Guiqi; Cao, Min; Wang, Lu; Mao, Yunxiang

    2017-08-01

    Pyropia species grow in the intertidal zone and are cold-water adapted. To date, most of the information about the whole plastid and mitochondrial genomes (ptDNA and mtDNA) of this genus is limited to Northern Hemisphere species. Here, we report the sequencing of the ptDNA and mtDNA of the Antarctic red alga Pyropia endiviifolia using the Illumina platform. The plastid genome (195 784 bp, 33.28% GC content) contains 210 protein-coding genes, 37 tRNA genes and 6 rRNA genes. The mitochondrial genome (34 603 bp, 30.5% GC content) contains 26 protein-coding genes, 25 tRNA genes and 2 rRNA genes. Our results suggest that the organellar genomes of Py. endiviifolia have a compact organization. Although the collinearity of these genomes is conserved compared with other Pyropia species, the genome sizes show significant differences, mainly because of the different copy numbers of rDNA operons in the ptDNA and group II introns in the mtDNA. The other Pyropia species have 2u20133 distinct intronic ORFs in their cox 1 genes, but Py. endiviifolia has no introns in its cox 1 gene. This has led to a smaller mtDNA than in other Pyropia species. The phylogenetic relationships within Pyropia were examined using concatenated gene sets from most of the available organellar genomes with both the maximum likelihood and Bayesian methods. The analysis revealed a sister taxa affiliation between the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis.

  5. Major Population Expansion of East Asians Began before Neolithic Time: Evidence of mtDNA Genomes

    PubMed Central

    Qin, Zhen-Dong; Wang, Yi; Tan, Jing-Ze; Li, Hui; Jin, Li

    2011-01-01

    It is a major question in archaeology and anthropology whether human populations started to grow primarily after the advent of agriculture, i.e., the Neolithic time, especially in East Asia, which was one of the centers of ancient agricultural civilization. To answer this question requires an accurate estimation of the time of lineage expansion as well as that of population expansion in a population sample without ascertainment bias. In this study, we analyzed all available mtDNA genomes of East Asians ascertained by random sampling, a total of 367 complete mtDNA sequences generated by the 1000 Genome Project, including 249 Chinese (CHB, CHD, and CHS) and 118 Japanese (JPT). We found that major mtDNA lineages underwent expansions, all of which, except for two JPT-specific lineages, including D4, D4b2b, D4a, D4j, D5a2a, A, N9a, F1a1'4, F2, B4, B4a, G2a1 and M7b1'2'4, occurred before 10 kya, i.e., before the Neolithic time (symbolized by Dadiwan Culture at 7.9 kya) in East Asia. Consistent to this observation, the further analysis showed that the population expansion in East Asia started at 13 kya and lasted until 4 kya. The results suggest that the population growth in East Asia constituted a need for the introduction of agriculture and might be one of the driving forces that led to the further development of agriculture. PMID:21998705

  6. DNA recombination-initiation plays a role in the extremely biased inheritance of yeast [rho-] mitochondrial DNA that contains the replication origin ori5.

    PubMed

    Ling, Feng; Hori, Akiko; Shibata, Takehiko

    2007-02-01

    Hypersuppressiveness, as observed in Saccharomyces cerevisiae, is an extremely biased inheritance of a small mitochondrial DNA (mtDNA) fragment that contains a replication origin (HS [rho(-)] mtDNA). Our previous studies showed that concatemers (linear head-to-tail multimers) are obligatory intermediates for mtDNA partitioning and are primarily formed by rolling-circle replication mediated by Mhr1, a protein required for homologous mtDNA recombination. In this study, we found that Mhr1 is required for the hypersuppressiveness of HS [ori5] [rho(-)] mtDNA harboring ori5, one of the replication origins of normal ([rho(+)]) mtDNA. In addition, we detected an Ntg1-stimulated double-strand break at the ori5 locus. Purified Ntg1, a base excision repair enzyme, introduced a double-stranded break by itself into HS [ori5] [rho(-)] mtDNA at ori5 isolated from yeast cells. Both hypersuppressiveness and concatemer formation of HS [ori5] [rho(-)] mtDNA are simultaneously suppressed by the ntg1 null mutation. These results support a model in which, like homologous recombination, rolling-circle HS [ori5] [rho(-)] mtDNA replication is initiated by double-stranded breakage in ori5, followed by Mhr1-mediated homologous pairing of the processed nascent DNA ends with circular mtDNA. The hypersuppressiveness of HS [ori5] [rho(-)] mtDNA depends on a replication advantage furnished by the higher density of ori5 sequences and on a segregation advantage furnished by the higher genome copy number on transmitted concatemers.

  7. Mitochondrial Genome Diversity of Native Americans Supports a Single Early Entry of Founder Populations into America

    PubMed Central

    Silva Jr., Wilson A.; Bonatto, Sandro L.; Holanda, Adriano J.; Ribeiro-dos-Santos, Andrea K.; Paixão, Beatriz M.; Goldman, Gustavo H.; Abe-Sandes, Kiyoko; Rodriguez-Delfin, Luis; Barbosa, Marcela; Paçó-Larson, Maria Luiza; Petzl-Erler, Maria Luiza; Valente, Valeria; Santos, Sidney E. B.; Zago, Marco A.

    2002-01-01

    There is general agreement that the Native American founder populations migrated from Asia into America through Beringia sometime during the Pleistocene, but the hypotheses concerning the ages and the number of these migrations and the size of the ancestral populations are surrounded by controversy. DNA sequence variations of several regions of the genome of Native Americans, especially in the mitochondrial DNA (mtDNA) control region, have been studied as a tool to help answer these questions. However, the small number of nucleotides studied and the nonclocklike rate of mtDNA control-region evolution impose several limitations to these results. Here we provide the sequence analysis of a continuous region of 8.8 kb of the mtDNA outside the D-loop for 40 individuals, 30 of whom are Native Americans whose mtDNA belongs to the four founder haplogroups. Haplogroups A, B, and C form monophyletic clades, but the five haplogroup D sequences have unstable positions and usually do not group together. The high degree of similarity in the nucleotide diversity and time of differentiation (i.e., ∼21,000 years before present) of these four haplogroups support a common origin for these sequences and suggest that the populations who harbor them may also have a common history. Additional evidence supports the idea that this age of differentiation coincides with the process of colonization of the New World and supports the hypothesis of a single and early entry of the ancestral Asian population into the Americas. PMID:12022039

  8. Are mutagenic non D-loop direct repeat motifs in mitochondrial DNA under a negative selection pressure?

    PubMed Central

    Lakshmanan, Lakshmi Narayanan; Gruber, Jan; Halliwell, Barry; Gunawan, Rudiyanto

    2015-01-01

    Non D-loop direct repeats (DRs) in mitochondrial DNA (mtDNA) have been commonly implicated in the mutagenesis of mtDNA deletions associated with neuromuscular disease and ageing. Further, these DRs have been hypothesized to put a constraint on the lifespan of mammals and are under a negative selection pressure. Using a compendium of 294 mammalian mtDNA, we re-examined the relationship between species lifespan and the mutagenicity of such DRs. Contradicting the prevailing hypotheses, we found no significant evidence that long-lived mammals possess fewer mutagenic DRs than short-lived mammals. By comparing DR counts in human mtDNA with those in selectively randomized sequences, we also showed that the number of DRs in human mtDNA is primarily determined by global mtDNA properties, such as the bias in synonymous codon usage (SCU) and nucleotide composition. We found that SCU bias in mtDNA positively correlates with DR counts, where repeated usage of a subset of codons leads to more frequent DR occurrences. While bias in SCU and nucleotide composition has been attributed to nucleotide mutational bias, mammalian mtDNA still exhibit higher SCU bias and DR counts than expected from such mutational bias, suggesting a lack of negative selection against non D-loop DRs. PMID:25855815

  9. Mitochondrial DNA sequence context in the penetrance of mitochondrial t-RNA mutations: A study across multiple lineages with diagnostic implications

    PubMed Central

    Queen, Rachel A.; Steyn, Jannetta S.; Lord, Phillip

    2017-01-01

    Mitochondrial DNA (mtDNA) mutations are well recognized as an important cause of inherited disease. Diseases caused by mtDNA mutations exhibit a high degree of clinical heterogeneity with a complex genotype-phenotype relationship, with many such mutations exhibiting incomplete penetrance. There is evidence that the spectrum of mutations causing mitochondrial disease might differ between different mitochondrial lineages (haplogroups) seen in different global populations. This would point to the importance of sequence context in the expression of mutations. To explore this possibility, we looked for mutations which are known to cause disease in humans, in animals of other species unaffected by mtDNA disease. The mt-tRNA genes are the location of many pathogenic mutations, with the m.3243A>G mutation on the mt-tRNA-Leu(UUR) being the most frequently seen mutation in humans. This study looked for the presence of m.3243A>G in 2784 sequences from 33 species, as well as any of the other mutations reported in association with disease located on mt-tRNA-Leu(UUR). We report a number of disease associated variations found on mt-tRNA-Leu(UUR) in other chordates, as the major population variant, with m.3243A>G being seen in 6 species. In these, we also found a number of mutations which appear compensatory and which could prevent the pathogenicity associated with this change in humans. This work has important implications for the discovery and diagnosis of mtDNA mutations in non-European populations. In addition, it might provide a partial explanation for the conflicting results in the literature that examines the role of mtDNA variants in complex traits. PMID:29161289

  10. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule.

    PubMed

    Palumbi, S R; Cipriano, F; Hare, M P

    2001-05-01

    Coalescence theory predicts when genetic drift at nuclear loci will result in fixation of sequence differences to produce monophyletic gene trees. However, the theory is difficult to apply to particular taxa because it hinges on genetically effective population size, which is generally unknown. Neutral theory also predicts that evolution of monophyly will be four times slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. Variation in mitochondrial DNA (mtDNA) within and between species has been studied extensively, but can these mtDNA data be used to predict coalescence in nuclear loci? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The "three-times rule" states that, on average, most nuclear loci will be monophyletic when the branch length leading to the mtDNA sequences of a species is three times longer than the average mtDNA sequence diversity observed within that species. A test using mitochondrial and nuclear intron data from seven species of whales and dolphins suggests general agreement with predictions of the three-times rule. We define the coalescence ratio as the mitochondrial branch length for a species divided by intraspecific mtDNA diversity. We show that species with high coalescence ratios show nuclear monophyly, whereas species with low ratios have polyphyletic nuclear gene trees. As expected, species with intermediate coalescence ratios show a variety of patterns. Especially at very high or low coalescence ratios, the three-times rule predicts nuclear gene patterns that can help detect the action of selection. The three-times rule may be useful as an empirical benchmark for evaluating evolutionary processes occurring at multiple loci.

  11. Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe

    PubMed Central

    Lenglez, Sandrine; Hermand, Damien; Decottignies, Anabelle

    2010-01-01

    Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments into chromosomal breaks. NUMT formation is ongoing and was reported to cause de novo human genetic diseases. Study of NUMTs is likely to contribute to the understanding of naturally occurring chromosomal breaks. We show that Schizosaccharomyces pombe NUMTs are exclusively located in noncoding regions with no preference for gene promoters and, when located into promoters, do not affect gene transcription level. Strikingly, most noncoding regions comprising NUMTs are also associated with a DNA replication origin (ORI). Chromatin immunoprecipitation experiments revealed that chromosomal NUMTs are probably not acting as ORI on their own but that mtDNA insertions occurred directly next to ORIs, suggesting that these loci may be prone to DSB formation. Accordingly, induction of excessive DNA replication origin firing, a phenomenon often associated with human tumor formation, resulted in frequent nucleotide deletion events within ORI3001 subtelomeric chromosomal locus, illustrating a novel aspect of DNA replication-driven genomic instability. How mtDNA is fragmented is another important issue that we addressed by sequencing experimentally induced NUMTs. This highlighted regions of S. pombe mtDNA prone to breaking. Together with an analysis of human NUMTs, we propose that these fragile sites in mtDNA may correspond to replication pause sites. PMID:20688779

  12. The effects of mitochondrial genotype on hypoxic survival and gene expression in a hybrid population of the killifish, Fundulus heteroclitus

    PubMed Central

    Flight, Patrick A.; Nacci, Diane; Champlin, Denise; Whitehead, Andrew; Rand, David M.

    2012-01-01

    The physiological link between oxygen availability and mitochondrial function is well established. However, whether or not fitness variation is associated with mitochondrial genotypes in the field remains a contested topic in evolutionary biology. In this study we draw on a population of the teleost fish, Fundulus heteroclitus, where functionally distinct subspecies hybridize, likely as a result of past glacial events. We had two specific aims: 1) to determine the effect of mtDNA genotype on survivorship of male and female fish under hypoxic stress; 2) to determine the effect of hypoxic stress, sex and mtDNA genotype on gene expression. We found an unexpected and highly significant effect of sex on survivorship under hypoxic conditions, but no significant effect of mtDNA genotype. Gene expression analyses revealed hundreds of transcripts differentially regulated by sex and hypoxia. Mitochondrial transcripts and other predicted pathways were among those influenced by hypoxic stress, and a transcript corresponding to the mtDNA control region was the most highly suppressed transcript under conditions of hypoxia. An RT-PCR experiment on the control region was consistent with microarray results. Effects of mtDNA sequence variation on genome expression were limited, however a potentially important epistasis between mtDNA sequence and expression of a nuclear-encoded mitochondrial translation protein was discovered. Overall, these results confirm that mitochondrial regulation is a major component of hypoxia tolerance and further suggest that purifying selection has been the predominant selective force on mitochondrial genomes in these two subspecies. PMID:21980951

  13. Molecular insights into the colonization and chromosomal diversification of Madeiran house mice.

    PubMed

    Förster, D W; Gündüz, I; Nunes, A C; Gabriel, S; Ramalhinho, M G; Mathias, M L; Britton-Davidian, J; Searle, J B

    2009-11-01

    The colonization history of Madeiran house mice was investigated by analysing the complete mitochondrial (mt) D-loop sequences of 156 mice from the island of Madeira and mainland Portugal, extending on previous studies. The numbers of mtDNA haplotypes from Madeira and mainland Portugal were substantially increased (17 and 14 new haplotypes respectively), and phylogenetic analysis confirmed the previously reported link between the Madeiran archipelago and northern Europe. Sequence analysis revealed the presence of four mtDNA lineages in mainland Portugal, of which one was particularly common and widespread (termed the 'Portugal Main Clade'). There was no support for population bottlenecks during the formation of the six Robertsonian chromosome races on the island of Madeira, and D-loop sequence variation was not found to be structured according to karyotype. The colonization time of the Madeiran archipelago by Mus musculus domesticus was approached using two molecular dating methods (mismatch distribution and Bayesian skyline plot). Time estimates based on D-loop sequence variation at mainland sites (including previously published data from France and Turkey) were evaluated in the context of the zooarchaeological record of M. m. domesticus. A range of values for mutation rate (mu) and number of mouse generations per year was considered in these analyses because of the uncertainty surrounding these two parameters. The colonization of Portugal and Madeira by house mice is discussed in the context of the best-supported parameter values. In keeping with recent studies, our results suggest that mutation rate estimates based on interspecific divergence lead to gross overestimates concerning the timing of recent within-species events.

  14. The Control Region of Mitochondrial DNA Shows an Unusual CpG and Non-CpG Methylation Pattern

    PubMed Central

    Bellizzi, Dina; D'Aquila, Patrizia; Scafone, Teresa; Giordano, Marco; Riso, Vincenzo; Riccio, Andrea; Passarino, Giuseppe

    2013-01-01

    DNA methylation is a common epigenetic modification of the mammalian genome. Conflicting data regarding the possible presence of methylated cytosines within mitochondrial DNA (mtDNA) have been reported. To clarify this point, we analysed the methylation status of mtDNA control region (D-loop) on human and murine DNA samples from blood and cultured cells by bisulphite sequencing and methylated/hydroxymethylated DNA immunoprecipitation assays. We found methylated and hydroxymethylated cytosines in the L-strand of all samples analysed. MtDNA methylation particularly occurs within non-C-phosphate-G (non-CpG) nucleotides, mainly in the promoter region of the heavy strand and in conserved sequence blocks, suggesting its involvement in regulating mtDNA replication and/or transcription. We observed DNA methyltransferases within the mitochondria, but the inactivation of Dnmt1, Dnmt3a, and Dnmt3b in mouse embryonic stem (ES) cells results in a reduction of the CpG methylation, while the non-CpG methylation shows to be not affected. This suggests that D-loop epigenetic modification is only partially established by these enzymes. Our data show that DNA methylation occurs in the mtDNA control region of mammals, not only at symmetrical CpG dinucleotides, typical of nuclear genome, but in a peculiar non-CpG pattern previously reported for plants and fungi. The molecular mechanisms responsible for this pattern remain an open question. PMID:23804556

  15. Mitochondrial Variation among the Aymara and the Signatures of Population Expansion in the Central Andes

    PubMed Central

    BATAI, KEN; WILLIAMS, SLOAN R.

    2015-01-01

    Objectives The exploitation of marine resources and intensive agriculture led to a marked population increase early in central Andean prehistory. Constant historic and prehistoric population movements also characterize this region. These features undoubtedly affected regional genetic variation, but the exact nature of these effects remains uncertain. Methods Mitochondrial DNA (mtDNA) hypervariable region I sequence variation in 61 Aymara individuals from La Paz, Bolivia, was analyzed and compared to sequences from 47 other South American populations to test hypotheses of whether increased female effective population size and gene flow influenced the mtDNA variation among central Andean populations. Results The Aymara and Quechua were genetically diverse showing evidence of population expansion and large effective population size, and a demographic expansion model fits the mtDNA variation found among central Andean populations well. Estimated migration rates and the results of AMOVA and multidimensional scaling analysis suggest that female gene flow was also an important factor, influencing genetic variation among the central Andeans as well as lowland populations from western South America. mtDNA variation in south central Andes correlated better with geographic proximity than with language, and fit a population continuity model. Conclusion The mtDNA data suggests that the central Andeans experienced population expansion, most likely because of rapid demographic expansion after introduction of intensive agriculture, but roles of female gene flow need to be further explored. PMID:24449040

  16. Heterologous mitochondrial DNA recombination in human cells.

    PubMed

    D'Aurelio, Marilena; Gajewski, Carl D; Lin, Michael T; Mauck, William M; Shao, Leon Z; Lenaz, Giorgio; Moraes, Carlos T; Manfredi, Giovanni

    2004-12-15

    Inter-molecular heterologous mitochondrial DNA (mtDNA) recombination is known to occur in yeast and plants. Nevertheless, its occurrence in human cells is still controversial. To address this issue we have fused two human cytoplasmic hybrid cell lines, each containing a distinct pathogenic mtDNA mutation and specific sets of genetic markers. In this hybrid model, we found direct evidence of recombination between these two mtDNA haplotypes. Recombinant mtDNA molecules in the hybrid cells were identified using three independent experimental approaches. First, recombinant molecules containing genetic markers from both parental alleles were demonstrated with restriction fragment length polymorphism of polymerase chain reaction products, by measuring the relative frequencies of each marker. Second, fragments of recombinant mtDNA were cloned and sequenced to identify the regions involved in the recombination events. Finally, recombinant molecules were demonstrated directly by Southern blot using appropriate combinations of polymorphic restriction sites and probes. This combined approach confirmed the existence of heterogeneous species of recombinant mtDNA molecules in the hybrid cells. These findings have important implications for mtDNA-related diseases, the interpretation of human evolution and population genetics and forensic analyses based on mtDNA genotyping.

  17. Mitochondrial gene arrangement of the horseshoe crab Limulus polyphemus L.: conservation of major features among arthropod classes

    NASA Technical Reports Server (NTRS)

    Staton, J. L.; Daehler, L. L.; Brown, W. M.; Jacobs, D. K. (Principal Investigator)

    1997-01-01

    Numerous complete mitochondrial DNA sequences have been determined for species within two arthropod groups, insects and crustaceans, but there are none for a third, the chelicerates. Most mitochondrial gene arrangements reported for crustaceans and insect species are identical or nearly identical to that of Drosophila yakuba. Sequences across 36 of the gene boundaries in the mitochondrial DNA (mtDNA) of a representative chelicerate. Limulus polyphemus L., also reveal an arrangement like that of Drosophila yakuba. Only the position of the tRNA(LEU)(UUR) gene differs; in Limulus it is between the genes for tRNA(LEU)(CUN) and ND1. This positioning is also found in onychophorans, mollusks, and annelids, but not in insects and crustaceans, and indicates that tRNA(LEU)(CUN)-tRNA(LEU)(UUR)-ND1 was the ancestral gene arrangement for these groups, as suggested earlier. There are no differences in the relative arrangements of protein-coding and ribosomal RNA genes between Limulus and Drosophila, and none have been observed within arthropods. The high degree of similarity of mitochondrial gene arrangements within arthropods is striking, since some taxa last shared a common ancestor before the Cambrian, and contrasts with the extensive mtDNA rearrangements occasionally observed within some other metazoan phyla (e.g., mollusks and nematodes).

  18. Post-glacial recolonization of the Great Lakes region by the common gartersnake (Thamnophis sirtalis) inferred from mtDNA sequences.

    PubMed

    Placyk, John S; Burghardt, Gordon M; Small, Randall L; King, Richard B; Casper, Gary S; Robinson, Jace W

    2007-05-01

    Pleistocene events played an important role in the differentiation of North American vertebrate populations. Michigan, in particular, and the Great Lakes region, in general, were greatly influenced by the last glaciation. While several hypotheses regarding the recolonization of this region have been advanced, none have been strongly supported. We generated 148 complete ND2 mitochondrial DNA (mtDNA) sequences from common gartersnake (Thamnophis sirtalis) populations throughout the Great Lakes region to evaluate phylogeographic patterns and population structure and to determine whether the distribution of haplotypic variants is related to the post-Pleistocene retreat of the Wisconsinan glacier. The common gartersnake was utilized, as it is believed to have been one of the primary vertebrate invaders of the Great Lakes region following the most recent period of glacial retreat and because it has been a model species for a variety of evolutionary, ecological, behavioral, and physiological studies. Several genetically distinct evolutionary lineages were supported by both genealogical and molecular population genetic analyses, although to different degrees. The geographic distribution of the majority of these lineages is interpreted as reflecting post-glacial recolonization dynamics during the late Pleistocene. These findings generally support previous hypotheses of range expansion in this region.

  19. The complete sequence of the mitochondrial genome of the African Penguin (Spheniscus demersus).

    PubMed

    Labuschagne, Christiaan; Kotzé, Antoinette; Grobler, J Paul; Dalton, Desiré L

    2014-01-15

    The complete mitochondrial genome of the African Penguin (Spheniscus demersus) was sequenced. The molecule was sequenced via next generation sequencing and primer walking. The size of the genome is 17,346 bp in length. Comparison with the mitochondrial DNA of two other penguin genomes that have so far been reported was conducted namely; Little blue penguin (Eudyptula minor) and the Rockhopper penguin (Eudyptes chrysocome). This analysis made it possible to identify common penguin mitochondrial DNA characteristics. The S. demersus mtDNA genome is very similar, both in composition and length to both the E. chrysocome and E. minor genomes. The gene content of the African penguin mitochondrial genome is typical of vertebrates and all three penguin species have the standard gene order originally identified in the chicken. The control region for S. demersus is located between tRNA-Glu and tRNA-Phe and all three species of penguins contain two sets of similar repeats with varying copy numbers towards the 3' end of the control region, accounting for the size variance. This is the first report of the complete nucleotide sequence for the mitochondrial genome of the African penguin, S. demersus. These results can be subsequently used to provide information for penguin phylogenetic studies and insights into the evolution of genomes. © 2013 Elsevier B.V. All rights reserved.

  20. mtDNA sequence diversity in Africa.

    PubMed Central

    Watson, E.; Bauer, K.; Aman, R.; Weiss, G.; von Haeseler, A.; Pääbo, S.

    1996-01-01

    mtDNA sequences were determined from 241 individuals from nine ethnic groups in Africa. When they were compared with published data from other groups, it was found that the !Kung, Mbuti, and Biaka show on the order of 10 times more sequence differences between the three groups, as well as between those and the other groups (the Fulbe, Hausa, Tuareg, Songhai, Kanuri, Yoruba, Mandenka, Somali, Tukana, and Kikuyu), than these other groups do between one other. Furthermore, the pairwise sequence distributions, patterns of coalescence events, and numbers of variable positions relative to the mean sequence difference indicate that the former three groups have been of constant size over time, whereas the latter have expanded in size. We suggest that this reflects subsistence patterns in that the populations that have expanded in size are food producers whereas those that have not are hunters and gatherers. PMID:8755932

  1. Random Mutagenesis, Clonal Events, and Embryonic or Somatic Origin Determine the mtDNA Variant Type and Load in Human Pluripotent Stem Cells.

    PubMed

    Zambelli, Filippo; Mertens, Joke; Dziedzicka, Dominika; Sterckx, Johan; Markouli, Christina; Keller, Alexander; Tropel, Philippe; Jung, Laura; Viville, Stephane; Van de Velde, Hilde; Geens, Mieke; Seneca, Sara; Sermon, Karen; Spits, Claudia

    2018-06-07

    In this study, we deep-sequenced the mtDNA of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) and their source cells and found that the majority of variants pre-existed in the cells used to establish the lines. Early-passage hESCs carried few and low-load heteroplasmic variants, similar to those identified in oocytes and inner cell masses. The number and heteroplasmic loads of these variants increased with prolonged cell culture. The study of 120 individual cells of early- and late-passage hESCs revealed a significant diversity in mtDNA heteroplasmic variants at the single-cell level and that the variants that increase during time in culture are always passenger to the appearance of chromosomal abnormalities. We found that early-passage hiPSCs carry much higher loads of mtDNA variants than hESCs, which single-fibroblast sequencing proved pre-existed in the source cells. Finally, we show that these variants are stably transmitted during short-term differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Mitochondrial DNA variations in ova and blastocyst: implications in assisted reproduction.

    PubMed

    Shamsi, Monis Bilal; Govindaraj, Periyasamy; Chawla, Latika; Malhotra, Neena; Singh, Neeta; Mittal, Suneeta; Talwar, Pankaj; Thangaraj, Kumarasamy; Dada, Rima

    2013-03-01

    Mitochondrial DNA (mtDNA) of oocyte is critical for its function, embryo quality and development. Analysis of complete mtDNA of 49 oocytes and 18 blastocysts from 67 females opting for IVF revealed 437 nucleotide variations. 40.29% samples had either disease associated or non-synonymous novel or pathogenic mutation in evolutionarily conserved regions. Samples with disease associated mtDNA mutations had low fertilization rate and poor embryo quality, however no difference in implantation or clinical pregnancy rate was observed. Screening mtDNA from oocyte/blastocyst is a simple, clinically reliable method for diagnostic evaluation of female infertility and may reduce risk of mtDNA disease transmission. Copyright © 2013 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  3. Molecular phylogeny and ecological diversification in a clade of New World songbirds (genus Vireo).

    PubMed

    Cicero, C; Johnson, N K

    1998-10-01

    We constructed a molecular phylogeny for a clade of eye-ringed vireos (Vireo flavifrons and the V. solitarius complex) to examine existing hypotheses of speciation and ecological diversification. Complete sequences of the mtDNA cytochrome b gene were obtained from 47 individuals of this group plus four vireonid outgroups. Mean levels of sequence divergence in the clade varied from 0.29% to 5.7%. Differences were greatest between V. flavifrons and four taxa of 'V. solitarius'. The latter separated into three taxonomic, geographical and ecological groups: V. plumbeus plumbeus, V. cassinii cassinii, and V. solitarius solitarius plus V. solitarius alticola. These differed by an average of 2.6-3.2%. Populations within each group revealed low levels of sequence variation (x = 0.20%) and little geographical structuring. The mtDNA data generally corroborate results from allozymes. V. plumbeus shows a loss of yellow-green carotenoid pigmentation from the ancestral condition. The occupancy of relatively dry habitats by this species and V. cassinii represents a derived ecological shift from more-humid environments occupied by other species of vireonids. Ecological divergence in this clade occurred in allopatry and is associated with generic-level stability in morphometrics and foraging styles. Migratory behaviour and seasonal habitat shifts apparently evolved multiple times in vireos breeding in temperate environments. Present geographical and ecological distributions, and low levels of intrataxon genetic divergence, are hypothesized to be the result of postglacial regionalization of climate-plant associations and rapid northward expansion of breeding ranges.

  4. Divergence with gene flow within the recent chipmunk radiation (Tamias)

    PubMed Central

    Sullivan, J; Demboski, J R; Bell, K C; Hird, S; Sarver, B; Reid, N; Good, J M

    2014-01-01

    Increasing data have supported the importance of divergence with gene flow (DGF) in the generation of biological diversity. In such cases, lineage divergence occurs on a shorter timescale than does the completion of reproductive isolation. Although it is critical to explore the mechanisms driving divergence and preventing homogenization by hybridization, it is equally important to document cases of DGF in nature. Here we synthesize data that have accumulated over the last dozen or so years on DGF in the chipmunk (Tamias) radiation with new data that quantify very high rates of mitochondrial DNA (mtDNA) introgression among para- and sympatric species in the T. quadrivittatus group in the central and southern Rocky Mountains. These new data (188 cytochrome b sequences) bring the total number of sequences up to 1871; roughly 16% (298) of the chipmunks we have sequenced exhibit introgressed mtDNA. This includes ongoing introgression between subspecies and between both closely related and distantly related taxa. In addition, we have identified several taxa that are apparently fixed for ancient introgressions and in which there is no evidence of ongoing introgression. A recurrent observation is that these introgressions occur between ecologically and morphologically diverged, sometimes non-sister taxa that engage in well-documented niche partitioning. Thus, the chipmunk radiation in western North America represents an excellent mammalian example of speciation in the face of recurrent gene flow among lineages and where biogeography, habitat differentiation and mating systems suggest important roles for both ecological and sexual selection. PMID:24781803

  5. MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features

    PubMed Central

    Li, Xiaoran; Zhong, Yali; Lu, Jie; Axcrona, Karol; Eide, Lars; Syljuåsen, Randi G.; Peng, Qian; Wang, Junbai; Zhang, Hongquan; Goscinski, Mariusz Adam; Kvalheim, Gunnar; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Reducing mtDNA content was considered as a critical step in the metabolism restructuring for cell stemness restoration and further neoplastic development. However, the connections between mtDNA depletion and metabolism reprograming-based cancer cell stemness in prostate cancers are still lack of studies. Here, we demonstrated that human CRPC cell line PC3 tolerated high concentration of the mtDNA replication inhibitor ethidium bromide (EtBr) and the mtDNA depletion triggered a universal metabolic remodeling process. Failure in completing that process caused lethal consequences. The mtDNA depleted (MtDP) PC3 cells could be steadily maintained in the special medium in slow cycling status. The MtDP PC3 cells contained immature mitochondria and exhibited Warburg effect. Furthermore, the MtDP PC3 cells were resistant to therapeutic treatments and contained greater cancer stem cell-like subpopulations: CD44+, ABCG2+, side-population and ALDHbright. In conclusion, these results highlight the association of mtDNA content, mitochondrial function and cancer cell stemness features. PMID:27248169

  6. Traces of archaic mitochondrial lineages persist in Austronesian-speaking Formosan populations.

    PubMed

    Trejaut, Jean A; Kivisild, Toomas; Loo, Jun Hun; Lee, Chien Liang; He, Chun Lin; Hsu, Chia Jung; Lee, Zheng Yan; Li, Zheng Yuan; Lin, Marie

    2005-08-01

    Genetic affinities between aboriginal Taiwanese and populations from Oceania and Southeast Asia have previously been explored through analyses of mitochondrial DNA (mtDNA), Y chromosomal DNA, and human leukocyte antigen loci. Recent genetic studies have supported the "slow boat" and "entangled bank" models according to which the Polynesian migration can be seen as an expansion from Melanesia without any major direct genetic thread leading back to its initiation from Taiwan. We assessed mtDNA variation in 640 individuals from nine tribes of the central mountain ranges and east coast regions of Taiwan. In contrast to the Han populations, the tribes showed a low frequency of haplogroups D4 and G, and an absence of haplogroups A, C, Z, M9, and M10. Also, more than 85% of the maternal lineages were nested within haplogroups B4, B5a, F1a, F3b, E, and M7. Although indicating a common origin of the populations of insular Southeast Asia and Oceania, most mtDNA lineages in Taiwanese aboriginal populations are grouped separately from those found in China and the Taiwan general (Han) population, suggesting a prevalence in the Taiwanese aboriginal gene pool of its initial late Pleistocene settlers. Interestingly, from complete mtDNA sequencing information, most B4a lineages were associated with three coding region substitutions, defining a new subclade, B4a1a, that endorses the origin of Polynesian migration from Taiwan. Coalescence times of B4a1a were 13.2 +/- 3.8 thousand years (or 9.3 +/- 2.5 thousand years in Papuans and Polynesians). Considering the lack of a common specific Y chromosomal element shared by the Taiwanese aboriginals and Polynesians, the mtDNA evidence provided here is also consistent with the suggestion that the proto-Oceanic societies would have been mainly matrilocal.

  7. Selfish Little Circles: Transmission Bias and Evolution of Large Deletion-Bearing Mitochondrial DNA in Caenorhabditis briggsae Nematodes

    PubMed Central

    Clark, Katie A.; Howe, Dana K.; Gafner, Kristin; Kusuma, Danika; Ping, Sita; Estes, Suzanne; Denver, Dee R.

    2012-01-01

    Selfish DNA poses a significant challenge to genome stability and organismal fitness in diverse eukaryotic lineages. Although selfish mitochondrial DNA (mtDNA) has known associations with cytoplasmic male sterility in numerous gynodioecious plant species and is manifested as petite mutants in experimental yeast lab populations, examples of selfish mtDNA in animals are less common. We analyzed the inheritance and evolution of mitochondrial DNA bearing large heteroplasmic deletions including nad5 gene sequences (nad5Δ mtDNA), in the nematode Caenorhabditis briggsae. The deletion is widespread in C. briggsae natural populations and is associated with deleterious organismal effects. We studied the inheritance patterns of nad5Δ mtDNA using eight sets of C. briggsae mutation-accumulation (MA) lines, each initiated from a different natural strain progenitor and bottlenecked as single hermaphrodites across generations. We observed a consistent and strong drive toward higher levels of deletion-bearing molecules in the heteroplasmic pool of mtDNA after ten generations of bottlenecking. Our results demonstrate a uniform transmission bias whereby nad5Δ mtDNA accumulates to higher levels relative to intact mtDNA in multiple genetically diverse natural strains of C. briggsae. We calculated an average 1% per-generation transmission bias for deletion-bearing mtDNA relative to intact genomes. Our study, coupled with known deleterious phenotypes associated with high deletion levels, shows that nad5Δ mtDNA are selfish genetic elements that have evolved in natural populations of C. briggsae, offering a powerful new system to study selfish mtDNA dynamics in metazoans. PMID:22859984

  8. Development and validation of a D-loop mtDNA SNP assay for the screening of specimens in forensic casework.

    PubMed

    Chemale, Gustavo; Paneto, Greiciane Gaburro; Menezes, Meiga Aurea Mendes; de Freitas, Jorge Marcelo; Jacques, Guilherme Silveira; Cicarelli, Regina Maria Barretto; Fagundes, Paulo Roberto

    2013-05-01

    Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) to be typed using SNaPShot(TM) (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010). All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. A somatic T15091C mutation in the Cytb gene of mouse mitochondrial DNA dominantly induces respiration defects.

    PubMed

    Hayashi, Chisato; Takibuchi, Gaku; Shimizu, Akinori; Mito, Takayuki; Ishikawa, Kaori; Nakada, Kazuto; Hayashi, Jun-Ichi

    2015-08-07

    Our previous studies provided evidence that mammalian mitochondrial DNA (mtDNA) mutations that cause mitochondrial respiration defects behave in a recessive manner, because the induction of respiration defects could be prevented with the help of a small proportion (10%-20%) of mtDNA without the mutations. However, subsequent studies found the induction of respiration defects by the accelerated accumulation of a small proportion of mtDNA with various somatic mutations, indicating the presence of mtDNA mutations that behave in a dominant manner. Here, to provide the evidence for the presence of dominant mutations in mtDNA, we used mouse lung carcinoma P29 cells and examined whether some mtDNA molecules possess somatic mutations that dominantly induce respiration defects. Cloning and sequence analysis of 40-48 mtDNA molecules from P29 cells was carried out to screen for somatic mutations in protein-coding genes, because mutations in these genes could dominantly regulate respiration defects by formation of abnormal polypeptides. We found 108 missense mutations existing in one or more of 40-48 mtDNA molecules. Of these missense mutations, a T15091C mutation in the Cytb gene was expected to be pathogenic due to the presence of its orthologous mutation in mtDNA from a patient with cardiomyopathy. After isolation of many subclones from parental P29 cells, we obtained subclones with various proportions of T15091C mtDNA, and showed that the respiration defects were induced in a subclone with only 49% T15091C mtDNA. Because the induction of respiration defects could not be prevented with the help of the remaining 51% mtDNA without the T15091C mutation, the results indicate that the T15091C mutation in mtDNA dominantly induced the respiration defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. High-resolution phylogeography of zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1 with an emphasis on its distribution in Turkey, Italy and Spain.

    PubMed

    Kinkar, Liina; Laurimäe, Teivi; Simsek, Sami; Balkaya, Ibrahim; Casulli, Adriano; Manfredi, Maria Teresa; Ponce-Gordo, Francisco; Varcasia, Antonio; Lavikainen, Antti; González, Luis Miguel; Rehbein, Steffen; VAN DER Giessen, Joke; Sprong, Hein; Saarma, Urmas

    2016-11-01

    Echinococcus granulosus is the causative agent of cystic echinococcosis. The disease is a significant global public health concern and human infections are most commonly associated with E. granulosus sensu stricto (s. s.) genotype G1. The objectives of this study were to: (i) analyse the genetic variation and phylogeography of E. granulosus s. s. G1 in part of its main distribution range in Europe using 8274 bp of mtDNA; (ii) compare the results with those derived from previously used shorter mtDNA sequences and highlight the major differences. We sequenced a total of 91 E. granulosus s. s. G1 isolates from six different intermediate host species, including humans. The isolates originated from seven countries representing primarily Turkey, Italy and Spain. Few samples were also from Albania, Greece, Romania and from a patient originating from Algeria, but diagnosed in Finland. The analysed 91 sequences were divided into 83 haplotypes, revealing complex phylogeography and high genetic variation of E. granulosus s. s. G1 in Europe, particularly in the high-diversity domestication centre of western Asia. Comparisons with shorter mtDNA datasets revealed that 8274 bp sequences provided significantly higher phylogenetic resolution and thus more power to reveal the genetic relations between different haplotypes.

  11. Genetic Evidence for Elevated Pathogenicity of Mitochondrial DNA Heteroplasmy in Autism Spectrum Disorder.

    PubMed

    Wang, Yiqin; Picard, Martin; Gu, Zhenglong

    2016-10-01

    Increasing clinical and biochemical evidence implicate mitochondrial dysfunction in the pathophysiology of Autism Spectrum Disorder (ASD), but little is known about the biological basis for this connection. A possible cause of ASD is the genetic variation in the mitochondrial DNA (mtDNA) sequence, which has yet to be thoroughly investigated in large genomic studies of ASD. Here we evaluated mtDNA variation, including the mixture of different mtDNA molecules in the same individual (i.e., heteroplasmy), using whole-exome sequencing data from mother-proband-sibling trios from simplex families (n = 903) where only one child is affected by ASD. We found that heteroplasmic mutations in autistic probands were enriched at non-polymorphic mtDNA sites (P = 0.0015), which were more likely to confer deleterious effects than heteroplasmies at polymorphic mtDNA sites. Accordingly, we observed a ~1.5-fold enrichment of nonsynonymous mutations (P = 0.0028) as well as a ~2.2-fold enrichment of predicted pathogenic mutations (P = 0.0016) in autistic probands compared to their non-autistic siblings. Both nonsynonymous and predicted pathogenic mutations private to probands conferred increased risk of ASD (Odds Ratio, OR[95% CI] = 1.87[1.14-3.11] and 2.55[1.26-5.51], respectively), and their influence on ASD was most pronounced in families with probands showing diminished IQ and/or impaired social behavior compared to their non-autistic siblings. We also showed that the genetic transmission pattern of mtDNA heteroplasmies with high pathogenic potential differed between mother-autistic proband pairs and mother-sibling pairs, implicating developmental and possibly in utero contributions. Taken together, our genetic findings substantiate pathogenic mtDNA mutations as a potential cause for ASD and synergize with recent work calling attention to their unique metabolic phenotypes for diagnosis and treatment of children with ASD.

  12. Mitochondrial DNA mutation screening of male patients with obstructive sleep apnea-hypopnea syndrome.

    PubMed

    Huang, Xiao-Ying; Li, Hong; Xu, Xiao-Mei; Wang, Liang-Xing

    2014-08-01

    The aim of the present study was to analyze the differences between the genes of the mitochondrial DNA (mtDNA) displacement loop (D-loop) region and the Cambridge Reference sequence, in order to screen the mutation sites and investigate the correlation between mutations, clinical parameters and complications associated with obstructive sleep apnea-hypopnea syndrome (OSAHS). mtDNA was obtained from male patients with OSAHS in the Zhejiang Province. In total, 60 male patients with OSAHS and 102 healthy adults were assessed to determine the levels of fasting blood glucose, total cholesterol, triglyceride (TG) and high-density and low-density lipoproteins (LDL). Furthermore, peripheral mtDNA was extracted and bidirectional sequencing was conducted to enable mutation screening. In the mtDNA D-loop region, 178 mutation sites were identified, of which 115 sites were present in the two groups. The number of non-common sites in the OSAHS group was significantly higher compared with the control group (P<0.05). No statistically significant difference was observed in the mutations among the mild, moderate and severe OSAHS groups (P>0.05). A total of 21 cases in the severe OSAHS group exhibited mutation rates of >10%. In the control group, there were 24 cases where the np73A-G and np263A-G mutations were predominant. The np303-np315 region was identified to be the highly variable region and various mutation forms were observed. Statistically significant differences were observed in the neck perimeter, TG and LDL levels among the OSAHS-no-mutation subgroups (P<0.05) and LDL was shown to be associated with an mtDNA mutation in the OSAHS group. Numerous polymorphic mutation sites were identified in the mtDNA D-loop region of the OSAHS group. Therefore, mtDNA mutation sites may be closely associated with the clinical manifestations and complications of OSAHS.

  13. mtDNA variation predicts population size in humans and reveals a major Southern Asian chapter in human prehistory.

    PubMed

    Atkinson, Quentin D; Gray, Russell D; Drummond, Alexei J

    2008-02-01

    The relative timing and size of regional human population growth following our expansion from Africa remain unknown. Human mitochondrial DNA (mtDNA) diversity carries a legacy of our population history. Given a set of sequences, we can use coalescent theory to estimate past population size through time and draw inferences about human population history. However, recent work has challenged the validity of using mtDNA diversity to infer species population sizes. Here we use Bayesian coalescent inference methods, together with a global data set of 357 human mtDNA coding-region sequences, to infer human population sizes through time across 8 major geographic regions. Our estimates of relative population sizes show remarkable concordance with the contemporary regional distribution of humans across Africa, Eurasia, and the Americas, indicating that mtDNA diversity is a good predictor of population size in humans. Plots of population size through time show slow growth in sub-Saharan Africa beginning 143-193 kya, followed by a rapid expansion into Eurasia after the emergence of the first non-African mtDNA lineages 50-70 kya. Outside Africa, the earliest and fastest growth is inferred in Southern Asia approximately 52 kya, followed by a succession of growth phases in Northern and Central Asia (approximately 49 kya), Australia (approximately 48 kya), Europe (approximately 42 kya), the Middle East and North Africa (approximately 40 kya), New Guinea (approximately 39 kya), the Americas (approximately 18 kya), and a second expansion in Europe (approximately 10-15 kya). Comparisons of relative regional population sizes through time suggest that between approximately 45 and 20 kya most of humanity lived in Southern Asia. These findings not only support the use of mtDNA data for estimating human population size but also provide a unique picture of human prehistory and demonstrate the importance of Southern Asia to our recent evolutionary past.

  14. Development of a Multiplex Single Base Extension Assay for Mitochondrial DNA Haplogroup Typing

    PubMed Central

    Nelson, Tahnee M.; Just, Rebecca S.; Loreille, Odile; Schanfield, Moses S.; Podini, Daniele

    2007-01-01

    Aim To provide a screening tool to reduce time and sample consumption when attempting mtDNA haplogroup typing. Methods A single base primer extension assay was developed to enable typing, in a single reaction, of twelve mtDNA haplogroup specific polymorphisms. For validation purposes a total of 147 samples were tested including 73 samples successfully haplogroup typed using mtDNA control region (CR) sequence data, 21 samples inconclusively haplogroup typed by CR data, 20 samples previously haplogroup typed using restriction fragment length polymorphism (RFLP) analysis, and 31 samples of known ancestral origin without previous haplogroup typing. Additionally, two highly degraded human bones embalmed and buried in the early 1950s were analyzed using the single nucleotide polymorphisms (SNP) multiplex. Results When the SNP multiplex was used to type the 96 previously CR sequenced specimens, an increase in haplogroup or macrohaplogroup assignment relative to conventional CR sequence analysis was observed. The single base extension assay was also successfully used to assign a haplogroup to decades-old, embalmed skeletal remains dating to World War II. Conclusion The SNP multiplex was successfully used to obtain haplogroup status of highly degraded human bones, and demonstrated the ability to eliminate possible contributors. The SNP multiplex provides a low-cost, high throughput method for typing of mtDNA haplogroups A, B, C, D, E, F, G, H, L1/L2, L3, M, and N that could be useful for screening purposes for human identification efforts and anthropological studies. PMID:17696300

  15. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera).

    PubMed

    Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang

    2016-05-01

    Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer.

    PubMed

    Goremykin, Vadim V; Salamini, Francesco; Velasco, Riccardo; Viola, Roberto

    2009-01-01

    The mitochondrial genome of grape (Vitis vinifera), the largest organelle genome sequenced so far, is presented. The genome is 773,279 nt long and has the highest coding capacity among known angiosperm mitochondrial DNAs (mtDNAs). The proportion of promiscuous DNA of plastid origin in the genome is also the largest ever reported for an angiosperm mtDNA, both in absolute and relative terms. In all, 42.4% of chloroplast genome of Vitis has been incorporated into its mitochondrial genome. In order to test if horizontal gene transfer (HGT) has also contributed to the gene content of the grape mtDNA, we built phylogenetic trees with the coding sequences of mitochondrial genes of grape and their homologs from plant mitochondrial genomes. Many incongruent gene tree topologies were obtained. However, the extent of incongruence between these gene trees is not significantly greater than that observed among optimal trees for chloroplast genes, the common ancestry of which has never been in doubt. In both cases, we attribute this incongruence to artifacts of tree reconstruction, insufficient numbers of characters, and gene paralogy. This finding leads us to question the recent phylogenetic interpretation of Bergthorsson et al. (2003, 2004) and Richardson and Palmer (2007) that rampant HGT into the mtDNA of Amborella best explains phylogenetic incongruence between mitochondrial gene trees for angiosperms. The only evidence for HGT into the Vitis mtDNA found involves fragments of two coding sequences stemming from two closteroviruses that cause the leaf roll disease of this plant. We also report that analysis of sequences shared by both chloroplast and mitochondrial genomes provides evidence for a previously unknown gene transfer route from the mitochondrion to the chloroplast.

  17. Genetic divergence and fine scale population structure of the common bottlenose dolphin (Tursiops truncatus, Montagu) found in the Gulf of Guayaquil, Ecuador

    PubMed Central

    Bayas-Rea, Rosa de los Ángeles; Félix, Fernando

    2018-01-01

    The common bottlenose dolphin, Tursiops truncatus, is widely distributed along the western coast of South America. In Ecuador, a resident population of bottlenose dolphins inhabits the inner estuarine area of the Gulf of Guayaquil located in the southwestern part of the country and is under threat from different human activities in the area. Only one genetic study on South American common bottlenose dolphins has been carried out to date, and understanding genetic variation of wildlife populations, especially species that are identified as threatened, is crucial for defining conservation units and developing appropriate conservation strategies. In order to evaluate the evolutionary link of this population, we assessed the phylogenetic relationships, phylogeographic patterns, and population structure using mitochondrial DNA (mtDNA). The sampling comprised: (i) 31 skin samples collected from free-ranging dolphins at three locations in the Gulf of Guayaquil inner estuary, (ii) 38 samples from stranded dolphins available at the collection of the “Museo de Ballenas de Salinas,” (iii) 549 mtDNA control region (mtDNA CR) sequences from GenBank, and (iv) 66 concatenated sequences from 7-mtDNA regions (12S rRNA, 16S rRNA, NADH dehydrogenase subunit I–II, cytochrome oxidase I and II, cytochrome b, and CR) obtained from mitogenomes available in GenBank. Our analyses indicated population structure between both inner and outer estuary dolphin populations as well as with distinct populations of T. truncatus using mtDNA CR. Moreover, the inner estuary bottlenose dolphin (estuarine bottlenose dolphin) population exhibited lower levels of genetic diversity than the outer estuary dolphin population according to the mtDNA CR. Finally, the estuarine bottlenose dolphin population was genetically distinct from other T. truncatus populations based on mtDNA CR and 7-mtDNA regions. From these results, we suggest that the estuarine bottlenose dolphin population should be considered a distinct lineage. This dolphin population faces a variety of anthropogenic threats in this area; thus, we highlight its fragility and urge authorities to issue prompt management and conservation measures. PMID:29707430

  18. Ancestral Polymorphisms and Sex-Biased Migration Shaped the Demographic History of Brown Bears and Polar Bears

    PubMed Central

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA. PMID:24236053

  19. Mitochondrial-DNA variation among subspecies and populations of sea otters (Enhydra lutris)

    USGS Publications Warehouse

    Cronin, Matthew A.; Bodkin, James L.; Ballachey, Brenda E.; Estes, James A.; Patton, John C.

    1996-01-01

    We used restriction-enzyme analysis of polymerase-chain reaction-amplified, mitochondrial DNA (mtDNA) to assess genetic differentiation of subspecies and populations of sea otters, Enhydra lutris, throughout the range of the species. There were several haplotypes of mtDNA in each subspecies and geographically separate populations. MtDNA sequence divergence of haplotypes of sea otters was 0.0004–0.0041 base substitutions per nucleotide. E. L nereis appears to have monophyletic mitochondrial DNA, while E. I. lutris and E. I. kenyoni do not. Different frequencies of haplotypes of mtDNA among populations reflect current restriction of gene flow and the unique histories of different populations. There are two or three haplotypes of mtDNA and diversity of haplotypes is 0.1376–0.5854 in each population of otters. This is consistent with theoretical work, which suggests that population bottlenecks of sea otters probably did not result in major losses of genetic variation for individual populations, or the species as a whole.

  20. Ancestral polymorphisms and sex-biased migration shaped the demographic history of brown bears and polar bears.

    PubMed

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-01-01

    Recent studies have reported discordant gene trees in the evolution of brown bears and polar bears. Genealogical histories are different among independent nuclear loci and between biparentally inherited autosomal DNA (aDNA) and matrilineal mitochondrial DNA (mtDNA). Based on multi-locus genomic sequences from aDNA and mtDNA, we inferred the population demography of brown and polar bears and found that brown bears have 6 times (aDNA) or more than 14 times (mtDNA) larger population sizes than polar bears and that polar bear lineage is derived from within brown bear diversity. In brown bears, the effective population size ratio of mtDNA to aDNA was at least 0.62, which deviated from the expected value of 0.25, suggesting matriarchal population due to female philopatry and male-biased migration. These results emphasize that ancestral polymorphisms and sex-biased migration may have contributed to conflicting branching patterns in brown and polar bears across aDNA genes and mtDNA.

  1. Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples.

    PubMed

    Gorden, Erin M; Sturk-Andreaggi, Kimberly; Marshall, Charla

    2018-05-01

    DNA sequence damage from cytosine deamination is well documented in degraded samples, such as those from ancient and forensic contexts. This study examined the effect of a DNA repair treatment on mitochondrial DNA (mtDNA) from aged and degraded skeletal samples. DNA extracts from 21 non-probative, degraded skeletal samples (aged 50-70 years) were utilized for the analysis. A portion of each sample extract was subjected to DNA repair using a commercial repair kit, the New England BioLabs' NEBNext FFPE DNA Repair Kit (Ipswich, MA). MtDNA was enriched using PCR and targeted capture in a side-by-side experiment of untreated and repaired DNA. Sequencing was performed using both traditional (Sanger-type; STS) and next-generation sequencing (NGS) methods Although cytosine deamination was evident in the mtDNA sequence data, the observed level of damaged bases varied by sequencing method as well as by enrichment type. The STS PCR amplicon data did not show evidence of cytosine deamination that could be distinguished from background signal in either the untreated or repaired sample set. However, the same PCR amplicons showed 850 C → T/G → A substitutions consistent with cytosine deamination with variant frequencies (VFs) of up to 25% when sequenced using NGS methods The occurrence of base misincorporation due to cytosine deamination was reduced by 98% (to 10) in the NGS amplicon data after repair. The NGS capture data indicated low levels (1-2%) of cytosine deamination in mtDNA fragments that was effectively mitigated by DNA repair. The observed difference in the level of cytosine deamination between the PCR and capture enrichment methods can be attributed to the greater propensity for stochastic effects from the PCR enrichment technique employed (e.g., low template input, increased PCR cycles). Altogether these results indicate that DNA repair may be required when sequencing PCR-amplified DNA from degraded forensic case samples with NGS methods. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with themore » latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.« less

  3. East Asian mtDNA haplogroup determination in Koreans: haplogroup-level coding region SNP analysis and subhaplogroup-level control region sequence analysis.

    PubMed

    Lee, Hwan Young; Yoo, Ji-Eun; Park, Myung Jin; Chung, Ukhee; Kim, Chong-Youl; Shin, Kyoung-Jin

    2006-11-01

    The present study analyzed 21 coding region SNP markers and one deletion motif for the determination of East Asian mitochondrial DNA (mtDNA) haplogroups by designing three multiplex systems which apply single base extension methods. Using two multiplex systems, all 593 Korean mtDNAs were allocated into 15 haplogroups: M, D, D4, D5, G, M7, M8, M9, M10, M11, R, R9, B, A, and N9. As the D4 haplotypes occurred most frequently in Koreans, the third multiplex system was used to further define D4 subhaplogroups: D4a, D4b, D4e, D4g, D4h, and D4j. This method allowed the complementation of coding region information with control region mutation motifs and the resultant findings also suggest reliable control region mutation motifs for the assignment of East Asian mtDNA haplogroups. These three multiplex systems produce good results in degraded samples as they contain small PCR products (101-154 bp) for single base extension reactions. SNP scoring was performed in 101 old skeletal remains using these three systems to prove their utility in degraded samples. The sequence analysis of mtDNA control region with high incidence of haplogroup-specific mutations and the selective scoring of highly informative coding region SNPs using the three multiplex systems are useful tools for most applications involving East Asian mtDNA haplogroup determination and haplogroup-directed stringent quality control.

  4. An Analysis of Enzyme Kinetics Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors

    PubMed Central

    Wendelsdorf, Katherine V.; Song, Zhuo; Cao, Yang; Samuels, David C.

    2009-01-01

    Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication. PMID:19132079

  5. Mutational load of the mitochondrial genome predicts pathological features and biochemical recurrence in prostate cancer.

    PubMed

    Kalsbeek, Anton M F; Chan, Eva F K; Grogan, Judith; Petersen, Desiree C; Jaratlerdsiri, Weerachai; Gupta, Ruta; Lyons, Ruth J; Haynes, Anne-Maree; Horvath, Lisa G; Kench, James G; Stricker, Phillip D; Hayes, Vanessa M

    2016-10-05

    Prostate cancer management is complicated by extreme disease heterogeneity, which is further limited by availability of prognostic biomarkers. Recognition of prostate cancer as a genetic disease has prompted a focus on the nuclear genome for biomarker discovery, with little attention given to the mitochondrial genome. While it is evident that mitochondrial DNA (mtDNA) mutations are acquired during prostate tumorigenesis, no study has evaluated the prognostic value of mtDNA variation. Here we used next-generation sequencing to interrogate the mitochondrial genomes from prostate tissue biopsies and matched blood of 115 men having undergone a radical prostatectomy for which there was a mean of 107 months clinical follow-up. We identified 74 unique prostate cancer specific somatic mtDNA variants in 50 patients, providing significant expansion to the growing catalog of prostate cancer mtDNA mutations. While no single variant or variant cluster showed recurrence across multiple patients, we observe a significant positive correlation between the total burden of acquired mtDNA variation and elevated Gleason Score at diagnosis and biochemical relapse. We add to accumulating evidence that total acquired genomic burden, rather than specific mtDNA mutations, has diagnostic value. This is the first study to demonstrate the prognostic potential of mtDNA mutational burden in prostate cancer.

  6. Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload.

    PubMed

    Fetterman, Jessica L; Zelickson, Blake R; Johnson, Larry W; Moellering, Douglas R; Westbrook, David G; Pompilius, Melissa; Sammy, Melissa J; Johnson, Michelle; Dunham-Snary, Kimberly J; Cao, Xuemei; Bradley, Wayne E; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G; Kesterson, Robert A; Dell'italia, Louis J; Darley-Usmar, Victor M; Welch, Danny R; Ballinger, Scott W

    2013-10-15

    Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.

  7. Mitochondrial Genetic Background Modulates Bioenergetics and Susceptibility to Acute Cardiac Volume – Overload

    PubMed Central

    Fetterman, Jessica L.; Zelickson, Blake R.; Johnson, Larry W.; Moellering, Douglas R.; Westbrook, David G.; Pompilius, Melissa; Sammy, Melissa J.; Johnson, Michelle; Dunham-Snary, Kimberly J.; Cao, Xuemei; Bradley, Wayne E.; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G.; Kesterson, Robert A.; Dell’Italia, Louis J.; Darley-Usmar, Victor M.; Welch, Danny R.; Ballinger, Scott W.

    2013-01-01

    Synopsis Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mitochondrial DNA (mtDNA) sequence variation contributes to disease susceptibility. In this study we present a novel animal model of mtDNA polymorphisms, the mitochondrial nuclear exchange mouse (MNX), in which the mtDNA from C3H/HeN mouse has been inserted onto the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harboring the C57/BL6J mtDNA generate more reactive oxygen species (ROS) and have a higher mitochondrial membrane potential relative to those having the C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the “mitochondrial paradigm” for the development of disease susceptibility, and show that the mtDNA modulates, cellular bioenergetics, mitochondrial reactive oxygen species generation and susceptibility to cardiac stress. PMID:23924350

  8. Genetic differentiation among North Atlantic killer whale populations.

    PubMed

    Foote, Andrew D; Vilstrup, Julia T; De Stephanis, Renaud; Verborgh, Philippe; Abel Nielsen, Sandra C; Deaville, Robert; Kleivane, Lars; Martín, Vidal; Miller, Patrick J O; Oien, Nils; Pérez-Gil, Monica; Rasmussen, Morten; Reid, Robert J; Robertson, Kelly M; Rogan, Emer; Similä, Tiu; Tejedor, Maria L; Vester, Heike; Víkingsson, Gísli A; Willerslev, Eske; Gilbert, M Thomas P; Piertney, Stuart B

    2011-02-01

    Population genetic structure of North Atlantic killer whale samples was resolved from differences in allele frequencies of 17 microsatellite loci, mtDNA control region haplotype frequencies and for a subset of samples, using complete mitogenome sequences. Three significantly differentiated populations were identified. Differentiation based on microsatellite allele frequencies was greater between the two allopatric populations than between the two pairs of partially sympatric populations. Spatial clustering of individuals within each of these populations overlaps with the distribution of particular prey resources: herring, mackerel and tuna, which each population has been seen predating. Phylogenetic analyses using complete mitogenomes suggested two populations could have resulted from single founding events and subsequent matrilineal expansion. The third population, which was sampled at lower latitudes and lower density, consisted of maternal lineages from three highly divergent clades. Pairwise population differentiation was greater for estimates based on mtDNA control region haplotype frequencies than for estimates based on microsatellite allele frequencies, and there were no mitogenome haplotypes shared among populations. This suggests low or no female migration and that gene flow was primarily male mediated when populations spatially and temporally overlap. These results demonstrate that genetic differentiation can arise through resource specialization in the absence of physical barriers to gene flow. © 2010 Blackwell Publishing Ltd.

  9. mtDNA mutation C1494T, haplogroup A, and hearing loss in Chinese

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Chengye; Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming 650091; Graduate University of the Chinese Academy of Sciences, Beijing 100039

    2006-09-22

    Mutation C1494T in mitochondrial 12S rRNA gene was recently reported in two large Chinese families with aminoglycoside-induced and nonsyndromic hearing loss (AINHL) and was claimed to be pathogenic. This mutation, however, was first reported in a sample from central China in our previous study that was aimed to reconstruct East Asian mtDNA phylogeny. All these three mtDNAs formed a subclade defined by mutation C1494T in mtDNA haplogroup A. It thus seems that mutation C1494T is a haplogroup A-associated mutation and this matrilineal background may contribute a high risk for the penetrance of mutation C1494T in Chinese with AINHL. To testmore » this hypothesis, we first genotyped mutation C1494T in 553 unrelated individuals from three regional Chinese populations and performed an extensive search for published complete or near-complete mtDNA data sets (>3000 mtDNAs), we then screened the C1494T mutation in 111 mtDNAs with haplogroup A status that were identified from 1823 subjects across China. The search for published mtDNA data sets revealed no other mtDNA besides the above-mentioned three carrying mutation C1494T. None of the 553 randomly selected individuals and the 111 haplogroup A mtDNAs was found to bear this mutation. Therefore, our results suggest that C1494T is a very rare event. The mtDNA haplogroup A background in general is unlikely to play an active role in the penetrance of mutation C1494T in AINHL.« less

  10. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    PubMed

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  11. Cigarette smoking and hOGG1 Ser326Cys polymorphism are associated with 8-OHdG accumulation on mitochondrial DNA in thoracic esophageal squamous cell carcinoma.

    PubMed

    Lin, Chen-Sung; Wang, Liang-Shun; Chou, Teh-Ying; Hsu, Wen-Hu; Lin, Hui-Chen; Lee, Shu-Yu; Lee, Mau-Hua; Chang, Shi-Chuan; Wei, Yau-Huei

    2013-12-01

    We examined whether cigarette smoking affects the degrees of oxidative damage (8-hydroxyl-2'-deoxyguanosine [8-OHdG]) on mitochondrial DNA (mtDNA), whether the degree of 8-OHdG accumulation on mtDNA is related to the increased total mtDNA copy number, and whether human 8-oxoguanine DNA glycosylase 1 (hOGG1) Ser326Cys polymorphisms affect the degrees of 8-OHdG accumulation on mtDNA in thoracic esophageal squamous cell carcinoma (TESCC). DNA extracted from microdissected tissues of paired noncancerous esophageal muscles, noncancerous esophageal mucosa, and cancerous TESCC nests (n = 74) along with metastatic lymph nodes (n = 38) of 74 TESCC patients was analyzed. Both the mtDNA copy number and mtDNA integrity were analyzed by quantitative real-time polymerase chain reaction (PCR). The hOGG1 Ser326Cys polymorphisms were identified by restriction fragment length polymorphism PCR and PCR-based direct sequencing. Among noncancerous esophageal mucosa, cancerous TESCC nests, and metastatic lymph nodes, the mtDNA integrity decreased (95.2 to 47.9 to 18.6 %; P < 0.001) and the mtDNA copy number disproportionally increased (0.163 to 0.204 to 0.207; P = 0.026). In TESCC, higher indexes of cigarette smoking (0, 0-20, 20-40, and >40 pack-years) were related to an advanced pathologic N category (P = 0.038), elevated mtDNA copy number (P = 0.013), higher mtDNA copy ratio (P = 0.028), and increased mtDNA integrity (P = 0.069). The TESCC mtDNA integrity in patients with Ser/Ser, Ser/Cys, and Cys/Cys hOGG1 variants decreased stepwise from 65.2 to 52.1 to 41.3 % (P = 0.051). Elevated 8-OHdG accumulations on mtDNA in TESCC were observed. Such accumulations were associated with a compensatory increase in total mtDNA copy number, indexes of cigarette smoking, and hOGG1 Ser326Cys polymorphisms.

  12. Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics.

    PubMed

    Paula, Débora P; Linard, Benjamin; Andow, David A; Sujii, Edison R; Pires, Carmen S S; Vogler, Alfried P

    2015-07-01

    DNA methods are useful to identify ingested prey items from the gut of predators, but reliable detection is hampered by low amounts of degraded DNA. PCR-based methods can retrieve minute amounts of starting material but suffer from amplification biases and cross-reactions with the predator and related species genomes. Here, we use PCR-free direct shotgun sequencing of total DNA isolated from the gut of the harlequin ladybird Harmonia axyridis at five time points after feeding on a single pea aphid Acyrthosiphon pisum. Sequence reads were matched to three reference databases: Insecta mitogenomes of 587 species, including H. axyridis sequenced here; A. pisum nuclear genome scaffolds; and scaffolds and complete genomes of 13 potential bacterial symbionts. Immediately after feeding, multicopy mtDNA of A. pisum was detected in tens of reads, while hundreds of matches to nuclear scaffolds were detected. Aphid nuclear DNA and mtDNA decayed at similar rates (0.281 and 0.11 h(-1) respectively), and the detectability periods were 32.7 and 23.1 h. Metagenomic sequencing also revealed thousands of reads of the obligate Buchnera aphidicola and facultative Regiella insecticola aphid symbionts, which showed exponential decay rates significantly faster than aphid DNA (0.694 and 0.80 h(-1) , respectively). However, the facultative aphid symbionts Hamiltonella defensa, Arsenophonus spp. and Serratia symbiotica showed an unexpected temporary increase in population size by 1-2 orders of magnitude in the predator guts before declining. Metagenomics is a powerful tool that can reveal complex relationships and the dynamics of interactions among predators, prey and their symbionts. © 2014 John Wiley & Sons Ltd.

  13. Molecular phylogeny of grey mullets (Teleostei: Mugilidae) in Greece: evidence from sequence analysis of mtDNA segments.

    PubMed

    Papasotiropoulos, Vasilis; Klossa-Kilia, Elena; Alahiotis, Stamatis N; Kilias, George

    2007-08-01

    Mitochondrial DNA sequence analysis has been used to explore genetic differentiation and phylogenetic relationships among five species of the Mugilidae family, Mugil cephalus, Chelon labrosus, Liza aurata, Liza ramada, and Liza saliens. DNA was isolated from samples originating from the Messolongi Lagoon in Greece. Three mtDNA segments (12s rRNA, 16s rRNA, and CO I) were PCR amplified and sequenced. Sequencing analysis revealed that the greatest genetic differentiation was observed between M. cephalus and all the other species studied, while C. labrosus and L. aurata were the closest taxa. Dendrograms obtained by the neighbor-joining method and Bayesian inference analysis exhibited the same topology. According to this topology, M. cephalus is the most distinct species and the remaining taxa are clustered together, with C. labrosus and L. aurata forming a single group. The latter result brings into question the monophyletic origin of the genus Liza.

  14. A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae).

    PubMed

    Hwang, Dae-Sik; Ki, Jang-Seu; Jeong, Dong-Hyuk; Kim, Bo-Hyun; Lee, Bae-Keun; Han, Sang-Hoon; Lee, Jae-Seong

    2008-08-01

    In the present paper, we describe the mitochondrial genome sequence of the Asiatic black bear (Ursus thibetanus ussuricus) with particular emphasis on the control region (CR), and compared with mitochondrial genomes on molecular relationships among the bears. The mitochondrial genome sequence of U. thibetanus ussuricus was 16,700 bp in size with mostly conserved structures (e.g. 13 protein-coding, two rRNA genes, 22 tRNA genes). The CR consisted of several typical conserved domains such as F, E, D, and C boxes, and a conserved sequence block. Nucleotide sequences and the repeated motifs in the CR were different among the bear species, and their copy numbers were also variable according to populations, even within F1 generations of U. thibetanus ussuricus. Comparative analyses showed that the CR D1 region was highly informative for the discrimination of the bear family. These findings suggest that nucleotide sequences of both repeated motifs and CR D1 in the bear family are good markers for species discriminations.

  15. Characterization and phylogenetic analysis of complete mitochondrial genomes for two desert cyprinodontoid fishes, Empetrichthys latos and Crenichthys baileyi.

    PubMed

    Jimenez, Miguel; Goodchild, Shawn C; Stockwell, Craig A; Lema, Sean C

    2017-08-30

    The Pahrump poolfish (Empetrichthys latos) and White River springfish (Crenichthys baileyi) are small-bodied teleost fishes (order Cyprinodontiformes) endemic to the arid Great Basin and Mojave Desert regions of western North America. These taxa survive as small, isolated populations in remote streams and springs and evolved to tolerate extreme conditions of high temperature and low dissolved oxygen. Both species have experienced severe population declines over the last 50-60years that led to some subspecies being categorized with protected status under the U.S. Endangered Species Act. Here we report the first sequencing of the complete mitochondrial DNA genomes for both E. l. latos and the moapae subspecies of C. baileyi. Complete mitogenomes of 16,546bp nucleotides were obtained from two E. l. latos individuals collected from introduced populations at Spring Mountain Ranch State Park and Shoshone Ponds Natural Area, Nevada, USA, while a single mitogenome of 16,537bp was sequenced for C. b. moapae. The mitogenomes of both species contain 13 protein-encoding genes, twenty-two tRNAs, and two rRNAs (12S and 18S) following the syntenic arrangement typical of Actinopterygiian fish mitogenomes, as well as D-loop control regions of 858bp for E. latos and 842bp for C. baileyi moapae. The two E. latos individuals exhibited only 0.0181% nucleotide sequence divergence across the entire mitogenome, implying little intraspecific mtDNA genetic variation. Comparative phylogenetic analysis of the poolfish and springfish mitochondrial genomes to available mitogenomes of other Cyprinodontoid fishes confirmed the close relationship of these oviparous Empetrichthys and Crenichthys genera to the viviparous goodeid fishes of central Mexico, and showed the combined clade of these fishes to be a sister group to the Profundulidae killifishes. Despite several significant life history and morphological differences between the Empetrichthyinae and Goodienae, estimates of evolutionary genetic distances using two partial regions of mtDNA point to inclusion of the Empetrichthys and Crenichthys genera within the family Goodeidae along with the goodeid fishes of central Mexico. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. MitoBreak: the mitochondrial DNA breakpoints database.

    PubMed

    Damas, Joana; Carneiro, João; Amorim, António; Pereira, Filipe

    2014-01-01

    Mitochondrial DNA (mtDNA) rearrangements are key events in the development of many diseases. Investigations of mtDNA regions affected by rearrangements (i.e. breakpoints) can lead to important discoveries about rearrangement mechanisms and can offer important clues about the causes of mitochondrial diseases. Here, we present the mitochondrial DNA breakpoints database (MitoBreak; http://mitobreak.portugene.com), a free, web-accessible comprehensive list of breakpoints from three classes of somatic mtDNA rearrangements: circular deleted (deletions), circular partially duplicated (duplications) and linear mtDNAs. Currently, MitoBreak contains >1400 mtDNA rearrangements from seven species (Homo sapiens, Mus musculus, Rattus norvegicus, Macaca mulatta, Drosophila melanogaster, Caenorhabditis elegans and Podospora anserina) and their associated phenotypic information collected from nearly 400 publications. The database allows researchers to perform multiple types of data analyses through user-friendly interfaces with full or partial datasets. It also permits the download of curated data and the submission of new mtDNA rearrangements. For each reported case, MitoBreak also documents the precise breakpoint positions, junction sequences, disease or associated symptoms and links to the related publications, providing a useful resource to study the causes and consequences of mtDNA structural alterations.

  17. Population genetics inside a cell: Mutations and mitochondrial genome maintenance

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha; Shraiman, Boris; Gottschling, Dan

    2012-02-01

    In realistic ecological and evolutionary systems natural selection acts on multiple levels, i.e. it acts on individuals as well as on collection of individuals. An understanding of evolutionary dynamics of such systems is limited in large part due to the lack of experimental systems that can challenge theoretical models. Mitochondrial genomes (mtDNA) are subjected to selection acting on cellular as well as organelle levels. It is well accepted that mtDNA in yeast Saccharomyces cerevisiae is unstable and can degrade over time scales comparable to yeast cell division time. We utilize a recent technology designed in Gottschling lab to extract DNA from populations of aged yeast cells and deep sequencing to characterize mtDNA variation in a population of young and old cells. In tandem, we developed a stochastic model that includes the essential features of mitochondrial biology that provides a null model for expected mtDNA variation. Overall, we find approximately 2% of the polymorphic loci that show significant increase in frequency as cells age providing direct evidence for organelle level selection. Such quantitative study of mtDNA dynamics is absolutely essential to understand the propagation of mtDNA mutations linked to a spectrum of age-related diseases in humans.

  18. Genetic features of ancient West Siberian people of the Middle Ages, revealed by mitochondrial DNA haplogroup analysis.

    PubMed

    Sato, Takehiro; Razhev, Dmitry; Amano, Tetsuya; Masuda, Ryuichi

    2011-08-01

    In order to investigate the genetic features of ancient West Siberian people of the Middle Ages, we studied ancient DNA from bone remains excavated from two archeological sites in West Siberia: Saigatinsky 6 (eighth to eleventh centuries) and Zeleny Yar (thirteenth century). Polymerase chain reaction amplification and nucleotide sequencing of mitochondrial DNA (mtDNA) succeeded for 9 of 67 specimens examined, and the sequences were assigned to mtDNA haplogroups B4, C4, G2, H and U. This distribution pattern of mtDNA haplogroups in medieval West Siberian people was similar to those previously reported in modern populations living in West Siberia, such as the Mansi, Ket and Nganasan. Exact tests of population differentiation showed no significant differences between the medieval people and modern populations in West Siberia. The findings suggest that some medieval West Siberian people analyzed in the present study are included in direct ancestral lineages of modern populations native to West Siberia.

  19. Complete mtDNA genomes of Filipino ethnolinguistic groups: a melting pot of recent and ancient lineages in the Asia-Pacific region

    PubMed Central

    Delfin, Frederick; Min-Shan Ko, Albert; Li, Mingkun; Gunnarsdóttir, Ellen D; Tabbada, Kristina A; Salvador, Jazelyn M; Calacal, Gayvelline C; Sagum, Minerva S; Datar, Francisco A; Padilla, Sabino G; De Ungria, Maria Corazon A; Stoneking, Mark

    2014-01-01

    The Philippines is a strategic point in the Asia-Pacific region for the study of human diversity, history and origins, as it is a cross-road for human migrations and consequently exhibits enormous ethnolinguistic diversity. Following on a previous in-depth study of Y-chromosome variation, here we provide new insights into the maternal genetic history of Filipino ethnolinguistic groups by surveying complete mitochondrial DNA (mtDNA) genomes from a total of 14 groups (11 groups in this study and 3 groups previously published) including previously published mtDNA hypervariable segment (HVS) data from Filipino regional center groups. Comparison of HVS data indicate genetic differences between ethnolinguistic and regional center groups. The complete mtDNA genomes of 14 ethnolinguistic groups reveal genetic aspects consistent with the Y-chromosome, namely: diversity and heterogeneity of groups, no support for a simple dichotomy between Negrito and non-Negrito groups, and different genetic affinities with Asia-Pacific groups that are both ancient and recent. Although some mtDNA haplogroups can be associated with the Austronesian expansion, there are others that associate with South Asia, Near Oceania and Australia that are consistent with a southern migration route for ethnolinguistic group ancestors into the Asia-Pacific, with a timeline that overlaps with the initial colonization of the Asia-Pacific region, the initial colonization of the Philippines and a possible separate post-colonization migration into the Philippine archipelago. PMID:23756438

  20. Genetic Ancestry of the Extinct Javan and Bali Tigers

    PubMed Central

    Xue, Hao-Ran; Yamaguchi, Nobuyuki; Driscoll, Carlos A.; Han, Yu; Bar-Gal, Gila Kahila; Zhuang, Yan; Mazak, Ji H.; Macdonald, David W.; O’Brien, Stephen J.

    2015-01-01

    The Bali (Panthera tigris balica) and Javan (P. t. sondaica) tigers are recognized as distinct tiger subspecies that went extinct in the 1940s and 1980s, respectively. Yet their genetic ancestry and taxonomic status remain controversial. Following ancient DNA procedures, we generated concatenated 1750bp mtDNA sequences from 23 museum samples including 11 voucher specimens from Java and Bali and compared these to diagnostic mtDNA sequences from 122 specimens of living tiger subspecies and the extinct Caspian tiger. The results revealed a close genetic affinity of the 3 groups from the Sunda Islands (Bali, Javan, and Sumatran tigers P. t. sumatrae). Bali and Javan mtDNA haplotypes differ from Sumatran haplotypes by 1–2 nucleotides, and the 3 island populations define a monophyletic assemblage distinctive and equidistant from other mainland subspecies. Despite this close phylogenetic relationship, no mtDNA haplotype was shared between Sumatran and Javan/Bali tigers, indicating little or no matrilineal gene flow among the islands after they were colonized. The close phylogenetic relationship among Sunda tiger subspecies suggests either recent colonization across the islands, or else a once continuous tiger population that had subsequently isolated into different island subspecies. This supports the hypothesis that the Sumatran tiger is the closest living relative to the extinct Javan and Bali tigers. PMID:25754539

  1. Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris).

    PubMed

    Zhang, Wenping; Zhang, Zhihe; Shen, Fujun; Hou, Rong; Lv, Xiaoping; Yue, Bisong

    2006-08-01

    Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) of Panthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8-17 million years ago in the tiger and 4.6-16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular 'fossils' that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup.

  2. ACCELERATED EVOLUTION OF LAND SNAILS MANDARINA IN THE OCEANIC BONIN ISLANDS: EVIDENCE FROM MITOCHONDRIAL DNA SEQUENCES.

    PubMed

    Chiba, Satoshi

    1999-04-01

    An endemic land snail genus Mandarina of the oceanic Bonin (Ogasawara) Islands shows exceptionally rapid evolution not only of morphological and ecological traits, but of DNA sequence. A phylogenetic relationship based on mitochondrial DNA (mtDNA) sequences suggests that morphological differences equivalent to the differences between families were produced between Mandarina and its ancestor during the Pleistocene. The inferred phylogeny shows that species with similar morphologies and life habitats appeared repeatedly and independently in different lineages and islands at different times. Sequential adaptive radiations occurred in different islands of the Bonin Islands and species occupying arboreal, semiarboreal, and terrestrial habitat arose independently in each island. Because of a close relationship between shell morphology and life habitat, independent evolution of the same life habitat in different islands created species possesing the same shell morphology in different islands and lineages. This rapid evolution produced some incongruences between phylogenetic relationship and species taxonomy. Levels of sequence divergence of mtDNA among the species of Mandarina is extremely high. The maximum level of sequence divergence at 16S and 12S ribosomal RNA sequence within Mandarina are 18.7% and 17.7%, respectively, and this suggests that evolution of mtDNA of Mandarina is extremely rapid, more than 20 times faster than the standard rate in other animals. The present examination reveals that evolution of morphological and ecological traits occurs at extremely high rates in the time of adaptive radiation, especially in fragmented environments. © 1999 The Society for the Study of Evolution.

  3. A New Phylogeographic Pattern of Endemic Bufo bankorensis in Taiwan Island Is Attributed to the Genetic Variation of Populations

    PubMed Central

    Yu, Teng-Lang; Lin, Hung-Du; Weng, Ching-Feng

    2014-01-01

    Aim To comprehend the phylogeographic patterns of genetic variation in anurans at Taiwan Island, this study attempted to examine (1) the existence of various geological barriers (Central Mountain Ranges, CMRs); and (2) the genetic variation of Bufo bankorensis using mtDNA sequences among populations located in different regions of Taiwan, characterized by different climates and existing under extreme conditions when compared available sequences of related species B. gargarizans of mainland China. Methodology/Principal Findings Phylogenetic analyses of the dataset with mitochondrial DNA (mtDNA) D-loop gene (348 bp) recovered a close relationship between B. bankorensis and B. gargarizans, identified three distinct lineages. Furthermore, the network of mtDNA D-loop gene (564 bp) amplified (279 individuals, 27 localities) from Taiwan Island indicated three divergent clades within B. bankorensis (Clade W, E and S), corresponding to the geography, thereby verifying the importance of the CMRs and Kaoping River drainage as major biogeographic barriers. Mismatch distribution analysis, neutrality tests and Bayesian skyline plots revealed that a significant population expansion occurred for the total population and Clade W, with horizons dated to approximately 0.08 and 0.07 Mya, respectively. These results suggest that the population expansion of Taiwan Island species B. bankorensis might have resulted from the release of available habitat in post-glacial periods, the genetic variation on mtDNA showing habitat selection, subsequent population dispersal, and co-distribution among clades. Conclusions The multiple origins (different clades) of B. bankorensis mtDNA sequences were first evident in this study. The divergent genetic clades found within B. bankorensis could be independent colonization by previously diverged lineages; inferring B. bankorensis originated from B. gargarizans of mainland China, then dispersal followed by isolation within Taiwan Island. Highly divergent clades between W and E of B. bankorensis, implies that the CMRs serve as a genetic barrier and separated the whole island into the western and eastern phylogroups. PMID:24853679

  4. The benefits of analysing complete mitochondrial genomes: Deep insights into the phylogeny and population structure of Echinococcus granulosus sensu lato genotypes G6 and G7.

    PubMed

    Laurimäe, Teivi; Kinkar, Liina; Romig, Thomas; Omer, Rihab A; Casulli, Adriano; Umhang, Gérald; Gasser, Robin B; Jabbar, Abdul; Sharbatkhori, Mitra; Mirhendi, Hossein; Ponce-Gordo, Francisco; Lazzarini, Lorena E; Soriano, Silvia V; Varcasia, Antonio; Nejad, Mohammad Rostami; Andresiuk, Vanessa; Maravilla, Pablo; González, Luis Miguel; Dybicz, Monika; Gawor, Jakub; Šarkūnas, Mindaugas; Šnábel, Viliam; Kuzmina, Tetiana; Saarma, Urmas

    2018-06-12

    Cystic echinococcosis (CE) is a zoonotic disease caused by the larval stage of the species complex Echinococcus granulosus sensu lato. Within this complex, genotypes G6 and G7 have been frequently associated with human CE worldwide. Previous studies exploring the genetic variability and phylogeography of genotypes G6 and G7 have been based on relatively short mtDNA sequences, and the resolution of these studies has often been low. Moreover, using short sequences, the distinction between G6 and G7 has in some cases remained challenging. The aim here was to sequence complete mitochondrial genomes (mitogenomes) to obtain deeper insight into the genetic diversity, phylogeny and population structure of genotypes G6 and G7. We sequenced complete mitogenomes of 94 samples collected from 15 different countries worldwide. The results demonstrated that (i) genotypes G6 and G7 can be clearly distinguished when mitogenome sequences are used; (ii) G7 is represented by two major haplogroups, G7a and G7b, the latter being specific to islands of Corsica and Sardinia; (iii) intensive animal trade, but also geographical isolation, have likely had the largest impact on shaping the genetic structure and distribution of genotypes G6 and G7. In addition, we found phylogenetically highly divergent haplotype from Mongolia (Gmon), which had a higher affinity to G6. Copyright © 2017. Published by Elsevier B.V.

  5. Recovering complete mitochondrial genome sequences from RNA-Seq: A case study of Polytomella non-photosynthetic green algae.

    PubMed

    Tian, Yao; Smith, David Roy

    2016-05-01

    Thousands of mitochondrial genomes have been sequenced, but there are comparatively few available mitochondrial transcriptomes. This might soon be changing. High-throughput RNA sequencing (RNA-Seq) techniques have made it fast and cheap to generate massive amounts of mitochondrial transcriptomic data. Here, we explore the utility of RNA-Seq for assembling mitochondrial genomes and studying their expression patterns. Specifically, we investigate the mitochondrial transcriptomes from Polytomella non-photosynthetic green algae, which have among the smallest, most reduced mitochondrial genomes from the Archaeplastida as well as fragmented rRNA-coding regions, palindromic genes, and linear chromosomes with telomeres. Isolation of whole genomic RNA from the four known Polytomella species followed by Illumina paired-end sequencing generated enough mitochondrial-derived reads to easily recover almost-entire mitochondrial genome sequences. Read-mapping and coverage statistics also gave insights into Polytomella mitochondrial transcriptional architecture, revealing polycistronic transcripts and the expression of telomeres and palindromic genes. Ultimately, RNA-Seq is a promising, cost-effective technique for studying mitochondrial genetics, but it does have drawbacks, which are discussed. One of its greatest potentials, as shown here, is that it can be used to generate near-complete mitochondrial genome sequences, which could be particularly useful in situations where there is a lack of available mtDNA data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Genetic signs of multiple colonization events in Baltic ciscoes with radiation into sympatric spring- and autumn-spawners confined to early postglacial arrival

    PubMed Central

    Delling, Bo; Palm, Stefan; Palkopoulou, Eleftheria; Prestegaard, Tore

    2014-01-01

    Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring- or winter-spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring- and autumn-spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C. sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring-spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C. sardinella were confirmed. However, the inclusion of Siberian C. sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C. albula clades and were clearly distinct from those in North American C. sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized. PMID:25540695

  7. Genetic signs of multiple colonization events in Baltic ciscoes with radiation into sympatric spring- and autumn-spawners confined to early postglacial arrival.

    PubMed

    Delling, Bo; Palm, Stefan; Palkopoulou, Eleftheria; Prestegaard, Tore

    2014-11-01

    Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring- or winter-spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring- and autumn-spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C. sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring-spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C. sardinella were confirmed. However, the inclusion of Siberian C. sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C. albula clades and were clearly distinct from those in North American C. sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized.

  8. Leber's hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Min; Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003; Guan, Minqiang

    2009-06-05

    We report here the clinical, genetic and molecular characterization of four Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age-of-onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T3394C (Y30H) mutation, which localized at a highly conserved tyrosine at position 30 of ND1, and distinct sets of mtDNA polymorphisms belonging to haplogroups D4b and M9a. The occurrence of T3394C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicatesmore » that this mutation is involved in the pathogenesis of visual impairment. However, there was the absence of functionally significant mtDNA mutations in these four Chinese pedigrees carrying the T3394C mutation. Therefore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic expression of the LHON-associated T3394C mutation.« less

  9. Reassessing the evolutionary history of ass-like equids: insights from patterns of genetic variation in contemporary extant populations.

    PubMed

    Rosenbom, Sónia; Costa, Vânia; Chen, Shanyuan; Khalatbari, Leili; Yusefi, Gholam Hosein; Abdukadir, Ablimit; Yangzom, Chamba; Kebede, Fanuel; Teclai, Redae; Yohannes, Hagos; Hagos, Futsum; Moehlman, Patricia D; Beja-Pereira, Albano

    2015-04-01

    All extant equid species are grouped in a single genus - Equus. Among those, ass-like equids have remained particularly unstudied and their phylogenetic relations were poorly understood, most probably because they inhabit extreme environments in remote geographic areas. To gain further insights into the evolutionary history of ass-like equids, we have used a non-invasive sampling approach to collect representative fecal samples of extant African and Asiatic ass-like equid populations across their distribution range and mitochondrial DNA (mtDNA) sequencing analyses to examine intraspecific genetic diversity and population structure, and to reconstruct phylogenetic relations among wild ass species/subspecies. Sequence analyses of 410 base pairs of the fast evolving mtDNA control region identified the Asiatic wild ass population of Kalamaili (China) as the one displaying the highest diversity among all wild ass populations. Phylogenetic analyses of complete cytochrome b sequences revealed that African and Asiatic wild asses shared a common ancestor approximately 2.3Mya and that diversification in both groups occurred much latter, probably driven by climatic events during the Pleistocene. Inferred genetic relationships among Asiatic wild ass species do not support E. kiang monophyly, highlighting the need of more extensive studies in order to clarify the taxonomic status of species/subspecies belonging to this branch of the Equus phylogeny. These results highlight the importance of re-assessing the evolutionary history of ass-like equid species, and urge to extend studies at the population level to efficiently design conservation and management actions for these threatened species. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Mitochondrial DNA polymorphisms associated with longevity in a Finnish population.

    PubMed

    Niemi, Anna-Kaisa; Hervonen, Antti; Hurme, Mikko; Karhunen, Pekka J; Jylhä, Marja; Majamaa, Kari

    2003-01-01

    Sequence variation in mitochondrial DNA (mtDNA) may cause slight differences both in the functioning of the respiratory chain and in free radical production, and an association between certain mtDNA haplogroups and longevity has been suggested. In order to determine further the role of mtDNA in longevity, we studied the frequencies of mtDNA haplogroups and haplogroup clusters among elderly subjects and controls in a Finnish population. Samples were obtained from 225 persons aged 90-91 years (Vitality 90+) and from 400 middle-aged controls and 257 infants. MtDNA haplogroups were determined by restriction fragment length polymorphism. The haplogroup frequencies of the Vitality 90+ group differed from both those of the middle-aged controls ( P=0.01) and the infants ( P=0.00005), haplogroup H being less frequent than among the middle-aged subjects ( P=0.001) and infants ( P=0.00001), whereas haplogroups U and J were more frequent. Haplogroup clusters also differed between Vitality 90+ and both the middle-aged subjects ( P=0.002) and infants ( P=0.00001), the frequency of haplogroup cluster HV being lower in the former and that of UK and WIX being higher. These data suggest an association between certain mtDNA haplogroups or haplogroup clusters and longevity. Furthermore, our data appear to favour the presence of advantageous polymorphisms and support a role for mitochondria and mtDNA in the degenerative processes involved in ageing.

  11. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial–nuclear interactions

    PubMed Central

    Cristina Kenney, M.; Chwa, Marilyn; Atilano, Shari R.; Falatoonzadeh, Payam; Ramirez, Claudio; Malik, Deepika; Tarek, Mohamed; Cáceres-del-Carpio, Javier; Nesburn, Anthony B.; Boyer, David S.; Kuppermann, Baruch D.; Vawter, Marquis; Michal Jazwinski, S.; Miceli, Michael; Wallace, Douglas C.; Udar, Nitin

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of vision loss in developed countries. While linked to genetic polymorphisms in the complement pathway, there are many individuals with high risk alleles that do not develop AMD, suggesting that other ‘modifiers’ may be involved. Mitochondrial (mt) haplogroups, defined by accumulations of specific mtDNA single nucleotide polymorphisms (SNPs) which represent population origins, may be one such modifier. J haplogroup has been associated with high risk for AMD while the H haplogroup is protective. It has been difficult to assign biological consequences for haplogroups so we created human ARPE-19 cybrids (cytoplasmic hybrids), which have identical nuclei but mitochondria of either J or H haplogroups, to investigate their effects upon bioenergetics and molecular pathways. J cybrids have altered bioenergetic profiles compared with H cybrids. Q-PCR analyses show significantly lower expression levels for seven respiratory complex genes encoded by mtDNA. J and H cybrids have significantly altered expression of eight nuclear genes of the alternative complement, inflammation and apoptosis pathways. Sequencing of the entire mtDNA was carried out for all the cybrids to identify haplogroup and non-haplogroup defining SNPs. mtDNA can mediate cellular bioenergetics and expression levels of nuclear genes related to complement, inflammation and apoptosis. Sequencing data suggest that observed effects are not due to rare mtDNA variants but rather the combination of SNPs representing the J versus H haplogroups. These findings represent a paradigm shift in our concepts of mt–nuclear interactions. PMID:24584571

  12. Future of human mitochondrial DNA editing technologies.

    PubMed

    Verechshagina, N; Nikitchina, N; Yamada, Y; Harashima, Н; Tanaka, M; Orishchenko, K; Mazunin, I

    2018-05-15

    ATP and other metabolites, which are necessary for the development, maintenance, and functioning of bodily cells are all synthesized in the mitochondria. Multiple copies of the genome, present within the mitochondria, together with its maternal inheritance, determine the clinical manifestation and spreading of mutations in mitochondrial DNA (mtDNA). The main obstacle in the way of thorough understanding of mitochondrial biology and the development of gene therapy methods for mitochondrial diseases is the absence of systems that allow to directly change mtDNA sequence. Here, we discuss existing methods of manipulating the level of mtDNA heteroplasmy, as well as the latest systems, that could be used in the future as tools for human mitochondrial genome editing.

  13. Mitochondrial DNA (mtDNA) haplogroups in 1526 unrelated individuals from 11 Departments of Colombia

    PubMed Central

    Yunis, Juan J.; Yunis, Emilio J.

    2013-01-01

    The frequencies of four mitochondrial Native American DNA haplogroups were determined in 1526 unrelated individuals from 11 Departments of Colombia and compared to the frequencies previously obtained for Amerindian and Afro-Colombian populations. Amerindian mtDNA haplogroups ranged from 74% to 97%. The lowest frequencies were found in Departments on the Caribbean coast and in the Pacific region, where the frequency of Afro-Colombians is higher, while the highest mtDNA Amerindian haplogroup frequencies were found in Departments that historically have a strong Amerindian heritage. Interestingly, all four mtDNA haplogroups were found in all Departments, in contrast to the complete absence of haplogroup D and high frequencies of haplogroup A in Amerindian populations in the Caribbean region of Colombia. Our results indicate that all four Native American mtDNA haplogroups were widely distributed in Colombia at the time of the Spanish conquest. PMID:24130438

  14. Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta

    PubMed Central

    Ahrens, Michael E; Shoemaker, Dewayne

    2005-01-01

    Background Wolbachia are endosymbiotic bacteria that commonly infect numerous arthropods. Despite their broad taxonomic distribution, the transmission patterns of these bacteria within and among host species are not well understood. We sequenced a portion of the wsp gene from the Wolbachia genome infecting 138 individuals from eleven geographically distributed native populations of the fire ant Solenopsis invicta. We then compared these wsp sequence data to patterns of mitochondrial DNA (mtDNA) variation of both infected and uninfected host individuals to infer the transmission patterns of Wolbachia in S. invicta. Results Three different Wolbachia (wsp) variants occur within S. invicta, all of which are identical to previously described strains in fire ants. A comparison of the distribution of Wolbachia variants within S. invicta to a phylogeny of mtDNA haplotypes suggests S. invicta has acquired Wolbachia infections on at least three independent occasions. One common Wolbachia variant in S. invicta (wSinvictaB) is associated with two divergent mtDNA haplotype clades. Further, within each of these clades, Wolbachia-infected and uninfected individuals possess virtually identical subsets of mtDNA haplotypes, including both putative derived and ancestral mtDNA haplotypes. The same pattern also holds for wSinvictaA, where at least one and as many as three invasions into S. invicta have occurred. These data suggest that the initial invasions of Wolbachia into host ant populations may be relatively ancient and have been followed by multiple secondary losses of Wolbachia in different infected lineages over time. Finally, our data also provide additional insights into the factors responsible for previously reported variation in Wolbachia prevalence among S. invicta populations. Conclusion The history of Wolbachia infections in S. invicta is rather complex and involves multiple invasions or horizontal transmission events of Wolbachia into this species. Although these Wolbachia infections apparently have been present for relatively long time periods, these data clearly indicate that Wolbachia infections frequently have been secondarily lost within different lineages. Importantly, the uncoupled transmission of the Wolbachia and mtDNA genomes suggests that the presumed effects of Wolbachia on mtDNA evolution within S. invicta are less severe than originally predicted. Thus, the common concern that use of mtDNA markers for studying the evolutionary history of insects is confounded by maternally inherited endosymbionts such as Wolbachia may be somewhat unwarranted in the case of S. invicta. PMID:15927071

  15. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda

    PubMed Central

    Tay, Wee Tek; Walsh, Thomas K.; Kanyesigye, Dalton; Adumo, Stella; Abongosi, Joseph; Ochen, Stephen; Sserumaga, Julius; Alibu, Simon; Abalo, Grace; Asea, Godfrey; Agona, Ambrose

    2018-01-01

    The fall armyworm (FAW) Spodoptera frugiperda (J. E. Smith) is a species native to the Americas. This polyphagous lepidopteran pest was first reported in Nigeria and the Democratic Republic of São Tomé and Principe in 2016, but its presence in eastern Africa has not been confirmed via molecular characterisation. In this study, FAW specimens from western and central Uganda were identified based on the partial mtDNA COI gene sequences, with mtDNA COI haplotypes matching those identified in Nigeria and São Tomé. In this study, we sequence an additional partial mtDNA Cyt b gene and also the partial mtDNA COIII gene in Ugandan FAW samples. We detected identical mitochondrial DNA haplotypes for both the mtDNA Cyt b and COI partial genes, while combining the mtDNA COI/Cyt b haplotypes and mtDNA COIII haplotypes enabled a new maternal lineage in the Ugandan corn-preferred FAW samples to be identified. Our results suggested that the African incursions of S. frugiperda involved at least three maternal lineages. Recent full genome, phylogenetic and microsatellite analyses provided evidence to support S. frugiperda as likely consisted of two sympatric sister species known as the corn-preferred and rice-preferred strains. In our Ugandan FAW populations, we identified the presence of mtDNA haplotypes representative of both sister species. It is not known if both FAW sister species were originally introduced together or separately, and whether they have since spread as a single population. Further analyses of additional specimens originally collected from São Tomé, Nigeria and throughout Africa would be required to clarify this issue. Importantly, our finding showed that the genetic diversity of the African corn-preferred FAW species is higher than previously reported. This potentially contributed to the success of FAW establishment in Africa. Furthermore, with the additional maternal lineages detected, there is likely an increase in paternal lineages, thereby increasing the diversity of the African FAW population. Knowledge of the FAW genetic diversity will be needed to assess the risks of introducing Bt-resistance traits and to understand the FAW incursion pathways into the Old World and its potential onward spread. The agricultural implications of the presence of two evolutionary divergent FAW lineages (the corn and the rice lineage) in the African continent are further considered and discussed. PMID:29614067

  16. Detection of sister-species in invasive populations of the fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Uganda.

    PubMed

    Otim, Michael H; Tay, Wee Tek; Walsh, Thomas K; Kanyesigye, Dalton; Adumo, Stella; Abongosi, Joseph; Ochen, Stephen; Sserumaga, Julius; Alibu, Simon; Abalo, Grace; Asea, Godfrey; Agona, Ambrose

    2018-01-01

    The fall armyworm (FAW) Spodoptera frugiperda (J. E. Smith) is a species native to the Americas. This polyphagous lepidopteran pest was first reported in Nigeria and the Democratic Republic of São Tomé and Principe in 2016, but its presence in eastern Africa has not been confirmed via molecular characterisation. In this study, FAW specimens from western and central Uganda were identified based on the partial mtDNA COI gene sequences, with mtDNA COI haplotypes matching those identified in Nigeria and São Tomé. In this study, we sequence an additional partial mtDNA Cyt b gene and also the partial mtDNA COIII gene in Ugandan FAW samples. We detected identical mitochondrial DNA haplotypes for both the mtDNA Cyt b and COI partial genes, while combining the mtDNA COI/Cyt b haplotypes and mtDNA COIII haplotypes enabled a new maternal lineage in the Ugandan corn-preferred FAW samples to be identified. Our results suggested that the African incursions of S. frugiperda involved at least three maternal lineages. Recent full genome, phylogenetic and microsatellite analyses provided evidence to support S. frugiperda as likely consisted of two sympatric sister species known as the corn-preferred and rice-preferred strains. In our Ugandan FAW populations, we identified the presence of mtDNA haplotypes representative of both sister species. It is not known if both FAW sister species were originally introduced together or separately, and whether they have since spread as a single population. Further analyses of additional specimens originally collected from São Tomé, Nigeria and throughout Africa would be required to clarify this issue. Importantly, our finding showed that the genetic diversity of the African corn-preferred FAW species is higher than previously reported. This potentially contributed to the success of FAW establishment in Africa. Furthermore, with the additional maternal lineages detected, there is likely an increase in paternal lineages, thereby increasing the diversity of the African FAW population. Knowledge of the FAW genetic diversity will be needed to assess the risks of introducing Bt-resistance traits and to understand the FAW incursion pathways into the Old World and its potential onward spread. The agricultural implications of the presence of two evolutionary divergent FAW lineages (the corn and the rice lineage) in the African continent are further considered and discussed.

  17. Recent Mitochondrial DNA Mutations Increase the Risk of Developing Common Late-Onset Human Diseases

    PubMed Central

    Hudson, Gavin; Gomez-Duran, Aurora; Wilson, Ian J.; Chinnery, Patrick F.

    2014-01-01

    Mitochondrial DNA (mtDNA) is highly polymorphic at the population level, and specific mtDNA variants affect mitochondrial function. With emerging evidence that mitochondrial mechanisms are central to common human diseases, it is plausible that mtDNA variants contribute to the “missing heritability” of several complex traits. Given the central role of mtDNA genes in oxidative phosphorylation, the same genetic variants would be expected to alter the risk of developing several different disorders, but this has not been shown to date. Here we studied 38,638 individuals with 11 major diseases, and 17,483 healthy controls. Imputing missing variants from 7,729 complete mitochondrial genomes, we captured 40.41% of European mtDNA variation. We show that mtDNA variants modifying the risk of developing one disease also modify the risk of developing other diseases, thus providing independent replication of a disease association in different case and control cohorts. High-risk alleles were more common than protective alleles, indicating that mtDNA is not at equilibrium in the human population, and that recent mutations interact with nuclear loci to modify the risk of developing multiple common diseases. PMID:24852434

  18. Human Heart Mitochondrial DNA Is Organized in Complex Catenated Networks Containing Abundant Four-way Junctions and Replication Forks*

    PubMed Central

    Pohjoismäki, Jaakko L. O.; Goffart, Steffi; Tyynismaa, Henna; Willcox, Smaranda; Ide, Tomomi; Kang, Dongchon; Suomalainen, Anu; Karhunen, Pekka J.; Griffith, Jack D.; Holt, Ian J.; Jacobs, Howard T.

    2009-01-01

    Analysis of human heart mitochondrial DNA (mtDNA) by electron microscopy and agarose gel electrophoresis revealed a complete absence of the θ-type replication intermediates seen abundantly in mtDNA from all other tissues. Instead only Y- and X-junctional forms were detected after restriction digestion. Uncut heart mtDNA was organized in tangled complexes of up to 20 or more genome equivalents, which could be resolved to genomic monomers, dimers, and linear fragments by treatment with the decatenating enzyme topoisomerase IV plus the cruciform-cutting T7 endonuclease I. Human and mouse brain also contained a population of such mtDNA forms, which were absent, however, from mouse, rabbit, or pig heart. Overexpression in transgenic mice of two proteins involved in mtDNA replication, namely human mitochondrial transcription factor A or the mouse Twinkle DNA helicase, generated abundant four-way junctions in mtDNA of heart, brain, and skeletal muscle. The organization of mtDNA of human heart as well as of mouse and human brain in complex junctional networks replicating via a presumed non-θ mechanism is unprecedented in mammals. PMID:19525233

  19. Mito-nuclear discord in six congeneric lineages of Holarctic ducks (genus Anas).

    PubMed

    Peters, Jeffrey L; Winker, Kevin; Millam, Kendra C; Lavretsky, Philip; Kulikova, Irina; Wilson, Robert E; Zhuravlev, Yuri N; McCracken, Kevin G

    2014-06-01

    Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation. © 2014 John Wiley & Sons Ltd.

  20. eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies.

    PubMed

    Weissensteiner, Hansi; Schönherr, Sebastian; Specht, Günther; Kronenberg, Florian; Brandstätter, Anita

    2010-03-09

    Mitochondrial DNA (mtDNA) is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle), security aspects (by using database technology) and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs). It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt.

  1. eCOMPAGT integrates mtDNA: import, validation and export of mitochondrial DNA profiles for population genetics, tumour dynamics and genotype-phenotype association studies

    PubMed Central

    2010-01-01

    Background Mitochondrial DNA (mtDNA) is widely being used for population genetics, forensic DNA fingerprinting and clinical disease association studies. The recent past has uncovered severe problems with mtDNA genotyping, not only due to the genotyping method itself, but mainly to the post-lab transcription, storage and report of mtDNA genotypes. Description eCOMPAGT, a system to store, administer and connect phenotype data to all kinds of genotype data is now enhanced by the possibility of storing mtDNA profiles and allowing their validation, linking to phenotypes and export as numerous formats. mtDNA profiles can be imported from different sequence evaluation programs, compared between evaluations and their haplogroup affiliations stored. Furthermore, eCOMPAGT has been improved in its sophisticated transparency (support of MySQL and Oracle), security aspects (by using database technology) and the option to import, manage and store genotypes derived from various genotyping methods (SNPlex, TaqMan, and STRs). It is a software solution designed for project management, laboratory work and the evaluation process all-in-one. Conclusions The extended mtDNA version of eCOMPAGT was designed to enable error-free post-laboratory data handling of human mtDNA profiles. This software is suited for small to medium-sized human genetic, forensic and clinical genetic laboratories. The direct support of MySQL and the improved database security options render eCOMPAGT a powerful tool to build an automated workflow architecture for several genotyping methods. eCOMPAGT is freely available at http://dbis-informatik.uibk.ac.at/ecompagt. PMID:20214782

  2. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck.

    PubMed

    Wilson, Ian J; Carling, Phillipa J; Alston, Charlotte L; Floros, Vasileios I; Pyle, Angela; Hudson, Gavin; Sallevelt, Suzanne C E H; Lamperti, Costanza; Carelli, Valerio; Bindoff, Laurence A; Samuels, David C; Wonnapinij, Passorn; Zeviani, Massimo; Taylor, Robert W; Smeets, Hubert J M; Horvath, Rita; Chinnery, Patrick F

    2016-03-01

    With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in ∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother-child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations. © The Author 2016. Published by Oxford University Press.

  3. Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs.

    PubMed

    Plötner, J; Uzzell, T; Beerli, P; Spolsky, C; Ohst, T; Litvinchuk, S N; Guex, G-D; Reyer, H-U; Hotz, H

    2008-05-01

    Interspecies transfer of mitochondrial (mt) DNA is a common phenomenon in plants, invertebrates and vertebrates, normally linked with hybridization of closely related species in zones of sympatry or parapatry. In central Europe, in an area north of 48 degrees N latitude and between 8 degrees and 22 degrees E longitude, western Palaearctic water frogs show massive unidirectional introgression of mtDNA: 33.7% of 407 Rana ridibunda possessed mtDNA specific for Rana lessonae. By contrast, no R. lessonae with R. ridibunda mtDNA was observed. That R. ridibunda with introgressed mitochondrial genomes were found exclusively within the range of the hybrid Rana esculenta and that most hybrids had lessonae mtDNA (90.4% of 335 individuals investigated) is evidence that R. esculenta serves as a vehicle for transfer of lessonae mtDNA into R. ridibunda. Such introgression has occurred several times independently. The abundance and wide distribution of individuals with introgressed mitochondrial genomes show that R. lessonae mt genomes work successfully in a R. ridibunda chromosomal background despite their high sequence divergence from R. ridibunda mtDNAs (14.2-15.2% in the ND2/ND3 genes). Greater effectiveness of enzymes encoded by R. lessonae mtDNA may be advantageous to individuals of R. ridibunda and probably R. esculenta in the northern parts of their ranges.

  4. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma

    PubMed Central

    Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D.; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-01-01

    Background Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Results Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. Conclusions The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as ‘passengers’ and consequently have no discernible effect in this type of cancer. PMID:27351283

  5. Eurasian otters, Lutra lutra, have a dominant mtDNA haplotype from the Iberian Peninsula to Scandinavia.

    PubMed

    Ferrando, Ainhoa; Ponsà, Montserrat; Marmi, Josep; Domingo-Roura, Xavier

    2004-01-01

    The Eurasian otter, Lutra lutra, has a Palaearctic distribution and has suffered a severe decline throughout Europe during the last century. Previous studies in this and other mustelids have shown reduced levels of variability in mitochondrial DNA, although otter phylogeographic studies were restricted to central-western Europe. In this work we have sequenced 361 bp of the mtDNA control region in 73 individuals from eight countries and added our results to eight sequences available from GenBank and the literature. The range of distribution has been expanded in relation to previous works north towards Scandinavia, east to Russia and Belarus, and south to the Iberian Peninsula. We found a single dominant haplotype in 91.78% of the samples, and six more haplotypes deviating a maximum of two mutations from the dominant haplotype restricted to a single country. Variability was extremely low in western Europe but higher in eastern countries. This, together with the lack of phylogeographical structuring, supports the postglacial recolonization of Europe from a single refugium. The Eurasian otter mtDNA control region has a 220-bp variable minisatellite in Domain III that we sequenced in 29 otters. We found a total of 19 minisatellite haplotypes, but they showed no phylogenetic information.

  6. A Critical Reassessment of the Role of Mitochondria in Tumorigenesis

    PubMed Central

    Salas, Antonio; Yao, Yong-Gang; Macaulay, Vincent; Vega, Ana; Carracedo, Ángel; Bandelt, Hans-Jürgen

    2005-01-01

    Background Mitochondrial DNA (mtDNA) is being analyzed by an increasing number of laboratories in order to investigate its potential role as an active marker of tumorigenesis in various types of cancer. Here we question the conclusions drawn in most of these investigations, especially those published in high-rank cancer research journals, under the evidence that a significant number of these medical mtDNA studies are based on obviously flawed sequencing results. Methods and Findings In our analyses, we take a phylogenetic approach and employ thorough database searches, which together have proven successful for detecting erroneous sequences in the fields of human population genetics and forensics. Apart from conceptual problems concerning the interpretation of mtDNA variation in tumorigenesis, in most cases, blocks of seemingly somatic mutations clearly point to contamination or sample mix-up and, therefore, have nothing to do with tumorigenesis. Conclusion The role of mitochondria in tumorigenesis remains unclarified. Our findings of laboratory errors in many contributions would represent only the tip of the iceberg since most published studies do not provide the raw sequence data for inspection, thus hindering a posteriori evaluation of the results. There is no precedent for such a concatenation of errors and misconceptions affecting a whole subfield of medical research. PMID:16187796

  7. Of mice and (Viking?) men: phylogeography of British and Irish house mice.

    PubMed

    Searle, Jeremy B; Jones, Catherine S; Gündüz, Islam; Scascitelli, Moira; Jones, Eleanor P; Herman, Jeremy S; Rambau, R Victor; Noble, Leslie R; Berry, R J; Giménez, Mabel D; Jóhannesdóttir, Fríoa

    2009-01-22

    The west European subspecies of house mouse (Mus musculus domesticus) has gained much of its current widespread distribution through commensalism with humans. This means that the phylogeography of M. m. domesticus should reflect patterns of human movements. We studied restriction fragment length polymorphism (RFLP) and DNA sequence variations in mouse mitochondrial (mt) DNA throughout the British Isles (328 mice from 105 localities, including previously published data). There is a major mtDNA lineage revealed by both RFLP and sequence analyses, which is restricted to the northern and western peripheries of the British Isles, and also occurs in Norway. This distribution of the 'Orkney' lineage fits well with the sphere of influence of the Norwegian Vikings and was probably generated through inadvertent transport by them. To form viable populations, house mice would have required large human settlements such as the Norwegian Vikings founded. The other parts of the British Isles (essentially most of mainland Britain) are characterized by house mice with different mtDNA sequences, some of which are also found in Germany, and which probably reflect both Iron Age movements of people and mice and earlier development of large human settlements. MtDNA studies on house mice have the potential to reveal novel aspects of human history.

  8. Of mice and (Viking?) men: phylogeography of British and Irish house mice

    PubMed Central

    Searle, Jeremy B.; Jones, Catherine S.; Gündüz, İslam; Scascitelli, Moira; Jones, Eleanor P.; Herman, Jeremy S.; Rambau, R. Victor; Noble, Leslie R.; Berry, R.J.; Giménez, Mabel D.; Jóhannesdóttir, Fríða

    2008-01-01

    The west European subspecies of house mouse (Mus musculus domesticus) has gained much of its current widespread distribution through commensalism with humans. This means that the phylogeography of M. m. domesticus should reflect patterns of human movements. We studied restriction fragment length polymorphism (RFLP) and DNA sequence variations in mouse mitochondrial (mt) DNA throughout the British Isles (328 mice from 105 localities, including previously published data). There is a major mtDNA lineage revealed by both RFLP and sequence analyses, which is restricted to the northern and western peripheries of the British Isles, and also occurs in Norway. This distribution of the ‘Orkney’ lineage fits well with the sphere of influence of the Norwegian Vikings and was probably generated through inadvertent transport by them. To form viable populations, house mice would have required large human settlements such as the Norwegian Vikings founded. The other parts of the British Isles (essentially most of mainland Britain) are characterized by house mice with different mtDNA sequences, some of which are also found in Germany, and which probably reflect both Iron Age movements of people and mice and earlier development of large human settlements. MtDNA studies on house mice have the potential to reveal novel aspects of human history. PMID:18826939

  9. The Matrilineal Ancestry of Ashkenazi Jewry: Portrait of a Recent Founder Event

    PubMed Central

    Behar, Doron M.; Metspalu, Ene; Kivisild, Toomas; Achilli, Alessandro; Hadid, Yarin; Tzur, Shay; Pereira, Luisa; Amorim, Antonio; Quintana-Murci, Lluís; Majamaa, Kari; Herrnstadt, Corinna; Howell, Neil; Balanovsky, Oleg; Kutuev, Ildus; Pshenichnov, Andrey; Gurwitz, David; Bonne-Tamir, Batsheva; Torroni, Antonio; Villems, Richard; Skorecki, Karl

    2006-01-01

    Both the extent and location of the maternal ancestral deme from which the Ashkenazi Jewry arose remain obscure. Here, using complete sequences of the maternally inherited mitochondrial DNA (mtDNA), we show that close to one-half of Ashkenazi Jews, estimated at 8,000,000 people, can be traced back to only 4 women carrying distinct mtDNAs that are virtually absent in other populations, with the important exception of low frequencies among non-Ashkenazi Jews. We conclude that four founding mtDNAs, likely of Near Eastern ancestry, underwent major expansion(s) in Europe within the past millennium. PMID:16404693

  10. Repatriation and Identification of Finnish World War II Soldiers

    PubMed Central

    Palo, Jukka U.; Hedman, Minttu; Söderholm, Niklas; Sajantila, Antti

    2007-01-01

    Aim To present a summary of the organization, field search, repatriation, forensic anthropological examination, and DNA analysis for the purpose of identification of Finnish soldiers with unresolved fate in World War II. Methods Field searches were organized, executed, and financed by the Ministry of Education and the Association for Cherishing the Memory of the Dead of the War. Anthropological examination conducted on human remains retrieved in the field searches was used to establish the minimum number of individuals and description of the skeletal diseases, treatment, anomalies, or injuries. DNA tests were performed by extracting DNA from powdered bones and blood samples from relatives. Mitochondrial DNA (mtDNA) sequence comparisons, together with circumstantial evidence, were used to connect the remains to the putative family members. Results At present, the skeletal remains of about a thousand soldiers have been found and repatriated. In forensic anthropological examination, several injuries related to death were documented. For the total of 181 bone samples, mtDNA HVR-1 and HVR-2 sequences were successfully obtained for 167 (92.3%) and 148 (81.8%) of the samples, respectively. Five samples yielded no reliable sequence data. Our data suggests that mtDNA preserves at least for 60 years in the boreal acidic soil. The quality of the obtained mtDNA sequence data varied depending on the sample bone type, with long compact bones (femur, tibia and humerus) having significantly better (90.0%) success rate than other bones (51.2%). Conclusion Although more than 60 years have passed since the World War II, our experience is that resolving the fate of soldiers missing in action is still of uttermost importance for people having lost their relatives in the war. Although cultural and individual differences may exist, our experience presented here gives a good perspective on the importance of individual identification performed by forensic professionals. PMID:17696308

  11. The ability of human nuclear DNA to cause false positive low-abundance heteroplasmy calls varies across the mitochondrial genome.

    PubMed

    Albayrak, Levent; Khanipov, Kamil; Pimenova, Maria; Golovko, George; Rojas, Mark; Pavlidis, Ioannis; Chumakov, Sergei; Aguilar, Gerardo; Chávez, Arturo; Widger, William R; Fofanov, Yuriy

    2016-12-12

    Low-abundance mutations in mitochondrial populations (mutations with minor allele frequency ≤ 1%), are associated with cancer, aging, and neurodegenerative disorders. While recent progress in high-throughput sequencing technology has significantly improved the heteroplasmy identification process, the ability of this technology to detect low-abundance mutations can be affected by the presence of similar sequences originating from nuclear DNA (nDNA). To determine to what extent nDNA can cause false positive low-abundance heteroplasmy calls, we have identified mitochondrial locations of all subsequences that are common or similar (one mismatch allowed) between nDNA and mitochondrial DNA (mtDNA). Performed analysis revealed up to a 25-fold variation in the lengths of longest common and longest similar (one mismatch allowed) subsequences across the mitochondrial genome. The size of the longest subsequences shared between nDNA and mtDNA in several regions of the mitochondrial genome were found to be as low as 11 bases, which not only allows using these regions to design new, very specific PCR primers, but also supports the hypothesis of the non-random introduction of mtDNA into the human nuclear DNA. Analysis of the mitochondrial locations of the subsequences shared between nDNA and mtDNA suggested that even very short (36 bases) single-end sequencing reads can be used to identify low-abundance variation in 20.4% of the mitochondrial genome. For longer (76 and 150 bases) reads, the proportion of the mitochondrial genome where nDNA presence will not interfere found to be 44.5 and 67.9%, when low-abundance mutations at 100% of locations can be identified using 417 bases long single reads. This observation suggests that the analysis of low-abundance variations in mitochondria population can be extended to a variety of large data collections such as NCBI Sequence Read Archive, European Nucleotide Archive, The Cancer Genome Atlas, and International Cancer Genome Consortium.

  12. Taenia solium cysticercosis in Bali, Indonesia: serology and mtDNA analysis.

    PubMed

    Sudewi, A A R; Wandra, T; Artha, A; Nkouawa, A; Ito, A

    2008-01-01

    An active Taenia solium cysticercosis case in Bali, Indonesia, was followed-up by serology and computed tomography. Serology using semi-purified glycoprotein and recombinant antigens showed a drastic drop in titers after calcification of the cysts. Three paraffin-embedded cysts, prepared for histopathological examination, from three other patients were used for mtDNA analysis. The sequences of cox1 gene from T. solium cysticerci from Bali differed from those in Papua and other Asian countries.

  13. Genetic ancestry of the extinct Javan and Bali tigers.

    PubMed

    Xue, Hao-Ran; Yamaguchi, Nobuyuki; Driscoll, Carlos A; Han, Yu; Bar-Gal, Gila Kahila; Zhuang, Yan; Mazak, Ji H; Macdonald, David W; O'Brien, Stephen J; Luo, Shu-Jin

    2015-01-01

    The Bali (Panthera tigris balica) and Javan (P. t. sondaica) tigers are recognized as distinct tiger subspecies that went extinct in the 1940s and 1980s, respectively. Yet their genetic ancestry and taxonomic status remain controversial. Following ancient DNA procedures, we generated concatenated 1750bp mtDNA sequences from 23 museum samples including 11 voucher specimens from Java and Bali and compared these to diagnostic mtDNA sequences from 122 specimens of living tiger subspecies and the extinct Caspian tiger. The results revealed a close genetic affinity of the 3 groups from the Sunda Islands (Bali, Javan, and Sumatran tigers P. t. sumatrae). Bali and Javan mtDNA haplotypes differ from Sumatran haplotypes by 1-2 nucleotides, and the 3 island populations define a monophyletic assemblage distinctive and equidistant from other mainland subspecies. Despite this close phylogenetic relationship, no mtDNA haplotype was shared between Sumatran and Javan/Bali tigers, indicating little or no matrilineal gene flow among the islands after they were colonized. The close phylogenetic relationship among Sunda tiger subspecies suggests either recent colonization across the islands, or else a once continuous tiger population that had subsequently isolated into different island subspecies. This supports the hypothesis that the Sumatran tiger is the closest living relative to the extinct Javan and Bali tigers. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Genes for cytochrome c oxidase subunit I, URF2, and three tRNAs in Drosophila mitochondrial DNA.

    PubMed Central

    Clary, D O; Wolstenholme, D R

    1983-01-01

    Genes for URF2, tRNAtrp, tRNAcys, tRNAtyr and cytochrome c oxidase subunit I (COI) have been identified within a sequenced segment of the Drosophila yakuba mtDNA molecule. The five genes are arranged in the order given. Transcription of the tRNAcys and tRNAtyr genes is in the same direction as replication, while transcription of the URF2, tRNAtrp and COI genes is in the opposite direction. A similar arrangement of these genes is found in mammalian mtDNA except that in the latter, the tRNAala and tRNAasn genes are located between the tRNAtrp and tRNAcys genes. Also, a sequence found between the tRNAasn and tRNAcys genes in mammalian mtDNA, which is associated with the initiation of second strand DNA synthesis, is not found in this region of the D. yakuba mtDNA molecule. As the D. yakuba COI gene lacks a standard translation initiation codon, we consider the possibility that the quadruplet ATAA may serve this function. As in other D. yakuba mitochondrial polypeptide genes, AGA codons in the URF2 and COI genes do not correspond in position to arginine-specifying codons in the equivalent genes of mouse and yeast mtDNAs, but do most frequently correspond to serine-specifying codons. PMID:6314262

  15. Evolutionary Analyses of Entire Genomes Do Not Support the Association of mtDNA Mutations with Ras/MAPK Pathway Syndromes

    PubMed Central

    Cerezo, María; Balboa, Emilia; Heredia, Claudia; Castro-Feijóo, Lidia; Rica, Itxaso; Barreiro, Jesús; Eirís, Jesús; Cabanas, Paloma; Martínez-Soto, Isabel; Fernández-Toral, Joaquín; Castro-Gago, Manuel; Pombo, Manuel; Carracedo, Ángel; Barros, Francisco

    2011-01-01

    Background There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). Methods/Principal Findings The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. Conclusions/Significance As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS. PMID:21526175

  16. Brown and polar bear Y chromosomes reveal extensive male-biased gene flow within brother lineages.

    PubMed

    Bidon, Tobias; Janke, Axel; Fain, Steven R; Eiken, Hans Geir; Hagen, Snorre B; Saarma, Urmas; Hallström, Björn M; Lecomte, Nicolas; Hailer, Frank

    2014-06-01

    Brown and polar bears have become prominent examples in phylogeography, but previous phylogeographic studies relied largely on maternally inherited mitochondrial DNA (mtDNA) or were geographically restricted. The male-specific Y chromosome, a natural counterpart to mtDNA, has remained underexplored. Although this paternally inherited chromosome is indispensable for comprehensive analyses of phylogeographic patterns, technical difficulties and low variability have hampered its application in most mammals. We developed 13 novel Y-chromosomal sequence and microsatellite markers from the polar bear genome and screened these in a broad geographic sample of 130 brown and polar bears. We also analyzed a 390-kb-long Y-chromosomal scaffold using sequencing data from published male ursine genomes. Y chromosome evidence support the emerging understanding that brown and polar bears started to diverge no later than the Middle Pleistocene. Contrary to mtDNA patterns, we found 1) brown and polar bears to be reciprocally monophyletic sister (or rather brother) lineages, without signals of introgression, 2) male-biased gene flow across continents and on phylogeographic time scales, and 3) male dispersal that links the Alaskan ABC islands population to mainland brown bears. Due to female philopatry, mtDNA provides a highly structured estimate of population differentiation, while male-biased gene flow is a homogenizing force for nuclear genetic variation. Our findings highlight the importance of analyzing both maternally and paternally inherited loci for a comprehensive view of phylogeographic history, and that mtDNA-based phylogeographic studies of many mammals should be reevaluated. Recent advances in sequencing technology render the analysis of Y-chromosomal variation feasible, even in nonmodel organisms. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Wolbachia association with the tsetse fly, Glossina fuscipes fuscipes, reveals high levels of genetic diversity and complex evolutionary dynamics

    PubMed Central

    2013-01-01

    Background Wolbachia pipientis, a diverse group of α-proteobacteria, can alter arthropod host reproduction and confer a reproductive advantage to Wolbachia-infected females (cytoplasmic incompatibility (CI)). This advantage can alter host population genetics because Wolbachia-infected females produce more offspring with their own mitochondrial DNA (mtDNA) haplotypes than uninfected females. Thus, these host haplotypes become common or fixed (selective sweep). Although simulations suggest that for a CI-mediated sweep to occur, there must be a transient phase with repeated initial infections of multiple individual hosts by different Wolbachia strains, this has not been observed empirically. Wolbachia has been found in the tsetse fly, Glossina fuscipes fuscipes, but it is not limited to a single host haplotype, suggesting that CI did not impact its population structure. However, host population genetic differentiation could have been generated if multiple Wolbachia strains interacted in some populations. Here, we investigated Wolbachia genetic variation in G. f. fuscipes populations of known host genetic composition in Uganda. We tested for the presence of multiple Wolbachia strains using Multi-Locus Sequence Typing (MLST) and for an association between geographic region and host mtDNA haplotype using Wolbachia DNA sequence from a variable locus, groEL (heat shock protein 60). Results MLST demonstrated that some G. f. fuscipes carry Wolbachia strains from two lineages. GroEL revealed high levels of sequence diversity within and between individuals (Haplotype diversity = 0.945). We found Wolbachia associated with 26 host mtDNA haplotypes, an unprecedented result. We observed a geographical association of one Wolbachia lineage with southern host mtDNA haplotypes, but it was non-significant (p = 0.16). Though most Wolbachia-infected host haplotypes were those found in the contact region between host mtDNA groups, this association was non-significant (p = 0.17). Conclusions High Wolbachia sequence diversity and the association of Wolbachia with multiple host haplotypes suggest that different Wolbachia strains infected G. f. fuscipes multiple times independently. We suggest that these observations reflect a transient phase in Wolbachia evolution that is influenced by the long gestation and low reproductive output of tsetse. Although G. f. fuscipes is superinfected with Wolbachia, our data does not support that bidirectional CI has influenced host genetic diversity in Uganda. PMID:23384159

  18. Testing models of female reproductive migratory behaviour and population structure in the Caribbean hawksbill turtle, Eretmochelys imbricata, with mtDNA sequences.

    PubMed

    Bass, A L; Good, D A; Bjorndal, K A; Richardson, J I; Hillis, Z M; Horrocks, J A; Bowen, B W

    1996-06-01

    Information on the reproductive behaviour and population structure of female hawksbill turtles, Eretmochelys imbricata, is necessary to define conservation priorities for this highly endangered species. Two hypotheses to explain female nest site choice, natal homing and social facilitation, were tested by analyzing mtDNA control region sequences of 103 individuals from seven nesting colonies in the Caribbean and western Atlantic. Under the social facilitation model, newly mature females follow older females to a nesting location, and subsequently use this site for future nesting. This model generates an expectation that female lineages will be homogenized among regional nesting colonies. Contrary to expectations of the social facilitation model, mtDNA lineages were highly structured among western Atlantic nesting colonies. These analyses identified at least 6 female breeding stocks in the Caribbean and western Atlantic and support a natal homing model for recruitment of breeding females. Reproductive populations are effectively isolated over ecological time scales, and recovery plans for this species should include protection at the level of individual nesting colonies.

  19. mtDNA variation of the critically endangered hawksbill turtle (Eretmochelys imbricata) nesting on Iranian islands of the Persian Gulf.

    PubMed

    Tabib, M; Zolgharnein, H; Mohammadi, M; Salari-Aliabadi, M A; Qasemi, A; Roshani, S; Rajabi-Maham, H; Frootan, F

    2011-01-01

    Genetic diversity of sea turtles (hawksbill turtle) was studied using sequencing of mitochondrial DNA (mtDNA, D-loop region). Thirty dead embryos were collected from the Kish and Qeshm Islands in the Persian Gulf. Analysis of sequence variation over 890 bp of the mtDNA control region revealed five haplotypes among 30 individuals. This is the first time that Iranian haplotypes have been recorded. Nucleotide and haplotype diversity was 0.77 and 0.001 for Qeshm Island and 0.64 and 0.002 for Kish Island, respectively. Total haplotype diversity was calculated as 0.69, which demonstrates low genetic diversity in this area. The data also indicated very high rates of migration between the populations of these two islands. A comparison of our data with data from previous studies downloaded from a gene bank showed that turtles of the Persian Gulf migrated from the Pacific and the Sea of Oman into this area. On the other hand, evidence of migration from populations to the West was not found.

  20. Probing the phylogenetic relationships of a few newly recorded intertidal zoanthids of Gujarat coast (India) with mtDNA COI sequences.

    PubMed

    Joseph, Sneha; Poriya, Paresh; Kundu, Rahul

    2016-11-01

    The present study reports the phylogenetic relationship of six zoanthid species belonging to three genera, Isaurus, Palythoa, and Zoanthus identified using systematic computational analysis of mtDNA gene sequences. All six species are first recorded from the coasts of Kathiawar Peninsula, India. Genus: Isaurus is represented by Isaurus tuberculatus, genus Zoanthus is represented by Zoanthus kuroshio and Zoanthus sansibaricus, while genus Palythoa is represented by Palythoa tuberculosa, P. sp. JVK-2006 and Palythoa heliodiscus. Results of the present study revealed that among the various species observed along the coastline, a minimum of 99% sequence divergence and a maximum of 96% sequence divergence were seen. An interspecific divergence of 1-4% and negligible intraspecific divergence was observed. These results not only highlighted the efficiency of the COI gene region in species identification but also demonstrated the genetic variability of zoanthids along the Saurashtra coastline of the west coast of India.

  1. Variability in triactinomyxon production from Tubifex tubifex populations from the same mitochondrial DNA lineage infected with Myxobolus cerebralis, the causative agent of whirling disease in salmonids

    USGS Publications Warehouse

    Rasmussen, C.; Zickovich, J.; Winton, J.R.; Kerans, B.L.

    2008-01-01

    Myxobolus cerebralis, the causative agent of whirling disease, infects both salmonid fish and an aquatic oligochaete, Tubifex tubifex. Although M. cerebralis has been detected in river drainages throughout the United States, disease severity among wild fish populations has been highly variable. Tubifex tubifex populations have been genetically characterized using sequences from the 16S mitochondrial DNA (mtDNA) gene, the 18S ribosomal RNA gene, the internal transcribed spacer region 1 (ITS1), and randomly amplified polymorphic DNA (RAPD). Our earlier work indicated that large differences in compatibility between the parasite and populations of T. tubifex may play a substantial role in the distribution of whirling disease and resulting mortality in different watersheds. In the present study, we examined 4 laboratory populations of T. tubifex belonging to 16S mtDNA lineage III and 1 population belonging to 16S mtDNA lineage I for triactinomyxon (TAM) production after infection with M. cerebralis myxospores. All 4 16S mtDNA lineage III populations produced TAMs, but statistically significant differences in TAM production were observed. Most individuals in the 16S mtDNA lineage III-infected populations produced TAMs. The 16S mtDNA lineage I population produced few TAMs. Further genetic characterization of the 16S mtDNA lineage III populations with RAPD markers indicated that populations producing similar levels of TAMs had more genetic similarity. ?? American Society of Parasitologists 2008.

  2. Patterns of linkage disequilibrium in mitochondrial DNA of 16 ruminant populations.

    PubMed

    Slate, J; Phua, S H

    2003-03-01

    Mitochondrial DNA (mtDNA) is a widely employed molecular tool in phylogeography, in the inference of human evolutionary history, in dating the domestication of livestock and in forensic science. In humans and other vertebrates the popularity of mtDNA can be partially attributed to an assumption of strict maternal inheritance, such that there is no recombination between mitochondrial lineages. The recent demonstration that linkage disequilibrium (LD) declines as a function of distance between polymorphic sites in hominid mitochondrial genomes has been interpreted as evidence of recombination between mtDNA haplotypes, and hence nonclonal inheritance. However, critics of mtDNA recombination have suggested that this association is an artefact of an inappropriate measure of LD or of sequencing error, and subsequent studies of other populations have failed to replicate the initial finding. Here we report the analysis of 16 ruminant populations and present evidence that LD significantly declines with distance in five of them. A meta-analysis of the data indicates a nonsignificant trend of LD declining with distance. Most of the earlier criticisms of patterns between LD and distance in hominid mtDNA are not applicable to this data set. Our results suggest that either ruminant mtDNA is not strictly clonal or that compensatory selection has influenced patterns of variation at closely linked sites within the mitochondrial control region. The potential impact of these processes should be considered when using mtDNA as a tool in vertebrate population genetic, phylogenetic and forensic studies.

  3. Tinnitus in patients with hearing loss due to mitochondrial DNA pathogenic variants.

    PubMed

    Lechowicz, Urszula; Pollak, Agnieszka; Raj-Koziak, Danuta; Dziendziel, Beata; Skarżyński, Piotr Henryk; Skarżyński, Henryk; Ołdak, Monika

    2018-06-23

    Tinnitus described as individual perception of phantom sound constitutes a significant medical problem and has become an essential subject of many studies conducted worldwide. In the study, we aimed to examine the prevalence of tinnitus among Polish hearing loss (HL) patients with identified mitochondrial DNA (mtDNA) variants. Among the selected group of unrelated HL patients with known mtDNA pathogenic variants, two questionnaires were conducted, i.e. Tinnitus Handicap Inventory translated into Polish (THI-POL) and Visual Analogue Scale (VAS) for measuring subjectively perceived tinnitus loudness, distress, annoyance and possibility of coping with this condition (VASs). Pathogenic mtDNA variants were detected with real-time PCR and sequencing of the whole mtDNA. This is the first extensive tinnitus characterization using THI-POL and VASs questionnaires in HL patients due to mtDNA variants. We have established the prevalence of tinnitus among the studied group at 23.5%. We found that there are no statistically significant differences in the prevalence of tinnitus and its characteristic features between HL patients with known HL mtDNA variants and the general Polish population. In Polish HL patients with tinnitus, m.7511T>C was significantly more frequent than in patients without tinnitus. We observed that the prevalence of tinnitus is lower in Polish patients with m.1555A>G as compared to other available data. Our data suggest that the mtDNA variants causative of HL may affect tinnitus development but this effect seems to be ethnic-specific.

  4. Fine structure of the 21S ribosomal RNA region on yeast mitochondrial DNA. III. Physical location of mitochondrial genetic markers and the molecular nature of omega.

    PubMed

    Heyting, C; Menke, H H

    1979-01-11

    1. We have determined the physical location of mitochondrial genetic markers in the 21S region of yeast mtDNA by genetic analysis of petite mutants whose mtDNA has been physically mapped on the wild-type mtDNA. 2. The order of loci, determined in this study, is in agreement with the order deduced from recombination analysis and coretention analysis except for the position of omega+: we conclude that omega+ is located between C321 (RIB-1) and E514 (RIB-3). 3. The marker E514 (RIB-3) has been localized on a DNA segment of 3800 bp, and the markers E354, E553 and cs23 (RIB-2) on a DNA segment of 1100 base pairs; both these segments overlap the 21S rRNA cistron. The marker C321 (RIB-1) has been localized within a segment of 240 bp which also overlaps the 21S rRNA cistron, and we infer on the basis of indirect evidence that this marker lies within this cistron. 4. In all our rho+ as well as rho- strains there is a one-to-one correlation between the omega+ phenotype, the ability to transmit the omega+ allele and the presence of a mtDNA segment of about 1000 bp long, located between sequences specifying RIB-3 and sequences corresponding to the loci RIB-1 and RIB-2. This segment may be inserted at this same position into omega- mtDNA by recombination. 5. The role which the different allelic forms of omega may play in the polarity of recombination is discussed.

  5. Cross-species amplification of mitochondrial DNA sequence-tagged-site markers in conifers: the nature of polymorphism and variation within and among species in Picea.

    PubMed

    Jaramillo-Correa, J P; Bousquet, J; Beaulieu, J; Isabel, N; Perron, M; Bouillé, M

    2003-05-01

    Primers previously developed to amplify specific non-coding regions of the mitochondrial genome in Angiosperms, and new primers for additional non-coding mtDNA regions, were tested for their ability to direct DNA amplification in 12 conifer taxa and to detect sequence-tagged-site (STS) polymorphisms within and among eight species in Picea. Out of 12 primer pairs, nine were successful at amplifying mtDNA in most of the taxa surveyed. In conifers, indels and substitutions were observed for several loci, allowing them to distinguish between families, genera and, in some cases, between species within genera. In Picea, interspecific polymorphism was detected for four loci, while intraspecific variation was observed for three of the mtDNA regions studied. One of these (SSU rRNA V1 region) exhibited indel polymorphisms, and the two others ( nad1 intron b/c and nad5 intron1) revealed restriction differences after digestion with Sau3AI (PCR-RFLP). A fourth locus, the nad4L- orf25 intergenic region, showed a multibanding pattern for most of the spruce species, suggesting a possible gene duplication. Maternal inheritance, expected for mtDNA in conifers, was observed for all polymorphic markers except the intergenic region nad4L- orf25. Pooling of the variation observed with the remaining three markers resulted in two to six different mtDNA haplotypes within the different species of Picea. Evidence for intra-genomic recombination was observed in at least two taxa. Thus, these mitotypes are likely to be more informative than single-locus haplotypes. They should be particularly useful for the study of biogeography and the dynamics of hybrid zones.

  6. The Complete Mitochondrial Genome of Galba pervia (Gastropoda: Mollusca), an Intermediate Host Snail of Fasciola spp

    PubMed Central

    Huang, Wei-Yi; Zhao, Guang-Hui; Wei, Shu-Jun; Song, Hui-Qun; Xu, Min-Jun; Lin, Rui-Qing; Zhou, Dong-Hui; Zhu, Xing-Quan

    2012-01-01

    Complete mitochondrial (mt) genomes and the gene rearrangements are increasingly used as molecular markers for investigating phylogenetic relationships. Contributing to the complete mt genomes of Gastropoda, especially Pulmonata, we determined the mt genome of the freshwater snail Galba pervia, which is an important intermediate host for Fasciola spp. in China. The complete mt genome of G. pervia is 13,768 bp in length. Its genome is circular, and consists of 37 genes, including 13 genes for proteins, 2 genes for rRNA, 22 genes for tRNA. The mt gene order of G. pervia showed novel arrangement (tRNA-His, tRNA-Gly and tRNA-Tyr change positions and directions) when compared with mt genomes of Pulmonata species sequenced to date, indicating divergence among different species within the Pulmonata. A total of 3655 amino acids were deduced to encode 13 protein genes. The most frequently used amino acid is Leu (15.05%), followed by Phe (11.24%), Ser (10.76%) and IIe (8.346%). Phylogenetic analyses using the concatenated amino acid sequences of the 13 protein-coding genes, with three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian analysis), all revealed that the families Lymnaeidae and Planorbidae are closely related two snail families, consistent with previous classifications based on morphological and molecular studies. The complete mt genome sequence of G. pervia showed a novel gene arrangement and it represents the first sequenced high quality mt genome of the family Lymnaeidae. These novel mtDNA data provide additional genetic markers for studying the epidemiology, population genetics and phylogeographics of freshwater snails, as well as for understanding interplay between the intermediate snail hosts and the intra-mollusca stages of Fasciola spp.. PMID:22844544

  7. Mitochondrial DNA variation and phylogenetic relationships among five tuna species based on sequencing of D-loop region.

    PubMed

    Kumar, Girish; Kocour, Martin; Kunal, Swaraj Priyaranjan

    2016-05-01

    In order to assess the DNA sequence variation and phylogenetic relationship among five tuna species (Auxis thazard, Euthynnus affinis, Katsuwonus pelamis, Thunnus tonggol, and T. albacares) out of all four tuna genera, partial sequences of the mitochondrial DNA (mtDNA) D-loop region were analyzed. The estimate of intra-specific sequence variation in studied species was low, ranging from 0.027 to 0.080 [Kimura's two parameter distance (K2P)], whereas values of inter-specific variation ranged from 0.049 to 0.491. The longtail tuna (T. tonggol) and yellowfin tuna (T. albacares) were found to share a close relationship (K2P = 0.049) while skipjack tuna (K. pelamis) was most divergent studied species. Phylogenetic analysis using Maximum-Likelihood (ML) and Neighbor-Joining (NJ) methods supported the monophyletic origin of Thunnus species. Similarly, phylogeny of Auxis and Euthynnus species substantiate the monophyly. However, results showed a distinct origin of K. pelamis from genus Thunnus as well as Auxis and Euthynnus. Thus, the mtDNA D-loop region sequence data supports the polyphyletic origin of tuna species.

  8. High occurrence of mitochondrial heteroplasmy in nepalese indigenous sheep (Ovis aries) compared to chinese sheep.

    PubMed

    Gorkhali, Neena Amatya; Jiang, Lin; Shrestha, Bhola Shankar; He, Xiao-Hong; Junzhao, Qian; Han, Jian-Lin; Ma, Yue-Hui

    2016-07-01

    Heteroplasmy due to length polymorphism with tandem repeats in mtDNAs within individual was hardly studied in domestic animals. In the present study, we identified intra-individual length variation in the control region of mtDNAs in Nepalese sheep by molecular cloning and sequencing techniques. We observed one to four tandem repeats of a 75-bp nucleotide sequences in the mtDNA control region in 45% of the total Nepalese sheep sampled in contrast to the Chinese sheep, indicating that the heteroplasmy is specific to Nepalese sheep. The high rate of heteroplasmy in Nepalese sheep could be a resultant of the mtDNA mutation and independent segregation at intra-individual level or a strand slippage and mispairing during the replication.

  9. Things fall apart: biological species form unconnected parsimony networks.

    PubMed

    Hart, Michael W; Sunday, Jennifer

    2007-10-22

    The generality of operational species definitions is limited by problematic definitions of between-species divergence. A recent phylogenetic species concept based on a simple objective measure of statistically significant genetic differentiation uses between-species application of statistical parsimony networks that are typically used for population genetic analysis within species. Here we review recent phylogeographic studies and reanalyse several mtDNA barcoding studies using this method. We found that (i) alignments of DNA sequences typically fall apart into a separate subnetwork for each Linnean species (but with a higher rate of true positives for mtDNA data) and (ii) DNA sequences from single species typically stick together in a single haplotype network. Departures from these patterns are usually consistent with hybridization or cryptic species diversity.

  10. Direct observation of iron-induced conformational changes of mitochondrial DNA by high-resolution field-emission in-lens scanning electron microscopy.

    PubMed Central

    Yaffee, M; Walter, P; Richter, C; Müller, M

    1996-01-01

    When respiring rat liver mitochondria are incubated in the presence of Fe(III) gluconate, their DNA (mtDNA) relaxes from the supercoiled to the open circular form dependent on the iron dose. Anaerobiosis or antioxidants fail to completely inhibit the unwinding. High-resolution field-emission in-lens scanning electron microscopy imaging, in concert with backscattered electron detection, pinpoints nanometer-range iron colloids bound to mtDNA isolated from iron-exposed mitochondria. High-resolution field-emission in-lens scanning electron microscopy with backscattered electron detection imaging permits simultaneous detailed visual analysis of DNA topology, iron dose-dependent mtDNA unwinding, and assessment of iron colloid formation on mtDNA strands. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8643576

  11. Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis.

    PubMed

    Lukoschek, V; Waycott, M; Keogh, J S

    2008-07-01

    Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.

  12. Early zygote-specific nuclease in mitochondria of the true slime mold Physarum polycephalum.

    PubMed

    Moriyama, Yohsuke; Yamazaki, Tomokazu; Nomura, Hideo; Sasaki, Narie; Kawano, Shigeyuki

    2005-11-01

    The active, selective digestion of mtDNA from one parent is a possible molecular mechanism for the uniparental inheritance of mtDNA. In Physarum polycephalum, mtDNA is packed by DNA-binding protein Glom, which packs mtDNA into rod-shaped mt-nucleoids. After the mating, mtDNA from one parent is selectively digested, and the Glom began to disperse. Dispersed Glom was retained for at least 6 h after mtDNA digestion, but disappeared completely by about 12 h after mixing two strains. We identified two novel nucleases using DNA zymography with native-PAGE and SDS-PAGE. One is a Ca2+-dependent, high-molecular-weight nuclease complex (about 670 kDa), and the other is a Mn2+-dependent, high-molecular-weight nuclease complex (440-670 kDa); the activity of the latter was detected as a Mn2+-dependent, 13-kDa DNase band on SDS-PAGE. All mitochondria isolated from myxamoebae had mt-nucleoids, whereas half of the mitochondria isolated from the zygotes at 12 h after mixing had lost the mt-nucleoids. The activity of the Mn2+-dependent nuclease in the isolated mitochondria was detected at least 8 h after mixing of two strains. The timing and localization of the Mn2+-dependent DNase activity matched the selective digestion of mtDNA.

  13. Historically low mitochondrial DNA diversity in koalas (Phascolarctos cinereus)

    PubMed Central

    2012-01-01

    Background The koala (Phascolarctos cinereus) is an arboreal marsupial that was historically widespread across eastern Australia until the end of the 19th century when it suffered a steep population decline. Hunting for the fur trade, habitat conversion, and disease contributed to a precipitous reduction in koala population size during the late 1800s and early 1900s. To examine the effects of these reductions in population size on koala genetic diversity, we sequenced part of the hypervariable region of mitochondrial DNA (mtDNA) in koala museum specimens collected in the 19th and 20th centuries, hypothesizing that the historical samples would exhibit greater genetic diversity. Results The mtDNA haplotypes present in historical museum samples were identical to haplotypes found in modern koala populations, and no novel haplotypes were detected. Rarefaction analyses suggested that the mtDNA genetic diversity present in the museum samples was similar to that of modern koalas. Conclusions Low mtDNA diversity may have been present in koala populations prior to recent population declines. When considering management strategies, low genetic diversity of the mtDNA hypervariable region may not indicate recent inbreeding or founder events but may reflect an older historical pattern for koalas. PMID:23095716

  14. The origin of Chinese domestic horses revealed with novel mtDNA variants.

    PubMed

    Yang, Yunzhou; Zhu, Qiyun; Liu, Shuqin; Zhao, Chunjiang; Wu, Changxin

    2017-01-01

    The origin of domestic horses in China was a controversial issue and several hypotheses including autochthonous domestication, introduction from other areas, and multiple-origins from both introduction and local wild horse introgression have been proposed, but none of them have been fully supported by DNA data. In the present study, mitochondrial DNA (mtDNA) sequences of 714 Chinese indigenous horses were analyzed. The results showed that Chinese domestic horses harbor some novel mtDNA haplogroups and suggested that local domestication events may have occurred, but they are not the dominant haplogroups and the geographical distributions of the novel mtDNA haplogroups were rather restricted. Conclusively, our results support the hypothesis that the domestic horses in China originated from both the introduced horses from outside of China and the local wild horses' introgression into the domestic populations. Results of genetic diversity analysis suggested a possibility that the introduced horses entered China through northern regions from the Eurasian steppe. © 2016 Japanese Society of Animal Science.

  15. Genetic characterization of Common Eiders breeding in the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; McCracken, Kevin G.

    2007-01-01

    We assessed population genetic subdivision among four colonies of Common Eiders (Somateria mollissima v-nigrum) breeding in the Yukon-Kuskokwim Delta (YKD), Alaska, using microsatellite genotypes and DNA sequences with differing modes of inheritance. Significant, albeit low, levels of genetic differentiation were observed between mainland populations and Kigigak Island for nuclear intron lamin A and mitochondrial DNA (mtDNA) control region. Intercolony variation in haplotypic frequencies also was observed at mtDNA. Positive growth signatures assayed from microsatellites, nuclear introns, and mtDNA indicate recent colonization of the YKD, and may explain the low levels of structuring observed. Gene flow estimates based on microsatellites, nuclear introns, and mtDNA suggest asymmetrical gene flow between mainland colonies and Kigigak Island, with more individuals on average dispersing from mainland populations to Kigigak Island than vice versa. The directionality of gene flow observed may be explained by the colonization of the YKD from northern glacial refugia or by YKD metapopulation dynamics.

  16. Comparative mtDNA analyses of three sympatric macropodids from a conservation area on the Huon Peninsula, Papua New Guinea.

    PubMed

    McGreevy, Thomas J; Dabek, Lisa; Husband, Thomas P

    2016-07-01

    Matschie's tree kangaroo (Dendrolagus matschiei), New Guinea pademelon (Thylogale browni), and small dorcopsis (Dorcopsulus vanheurni) are sympatric macropodid taxa, of conservation concern, that inhabit the Yopno-Urawa-Som (YUS) Conservation Area on the Huon Peninsula, Papua New Guinea. We sequenced three partial mitochondrial DNA (mtDNA) genes from the three taxa to (i) investigate network structure; and (ii) identify conservation units within the YUS Conservation Area. All three taxa displayed a similar pattern in the spatial distribution of their mtDNA haplotypes and the Urawa and Som rivers on the Huon may have acted as a barrier to maternal gene flow. Matschie's tree kangaroo and New Guinea pademelon within the YUS Conservation Area should be managed as single conservation units because mtDNA nucleotides were not fixed for a given geographic area. However, two distinct conservation units were identified for small dorcopsis from the two different mountain ranges within the YUS Conservation Area.

  17. mtDNA and Y-chromosome polymorphisms in four Native American populations from southern Mexico.

    PubMed Central

    Torroni, A.; Chen, Y. S.; Semino, O.; Santachiara-Beneceretti, A. S.; Scott, C. R.; Lott, M. T.; Winter, M.; Wallace, D. C.

    1994-01-01

    mtDNA sequence variation was examined in 60 Native Americans (Mixtecs from the Alta, Mixtecs from the Baja, Valley Zapotecs, and Highland Mixe) from southern Mexico by PCR amplification and high-resolution restriction endonuclease analysis. Four groups of mtDNA haplotypes (haplogroups A, B, C, and D) characterize Amerind populations, but only three (haplogroups A, B, and C) were observed in these Mexican populations. The comparison of their mtDNA variation with that observed in other populations from Mexico and Central America permits a clear distinction among the different Middle American tribes and raises questions about some of their linguistic affiliations. The males of these population samples were also analyzed for Y-chromosome RFLPs with the probes 49a, 49f, and 12f2. This analysis suggests that certain Y-chromosome haplotypes were brought from Asia during the colonization of the Americas, and a differential gene flow was introduced into Native American populations from European males and females. Images Figure 4 PMID:8304347

  18. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences.

    PubMed

    Zhang, Cheng; Li, Qingqing; Wu, Xugan; Liu, Qing; Cheng, Yongxu

    2017-11-20

    The Chinese mitten crab, Eriocheir sinensis, is one of the important native crab species in East Asian region, which has been widely cultured throughout China, particularly in river basins of Yangtze, Huanghe and Liaohe. This study was designed to evaluate the genetic diversity and genetic structure of cultured and wild E. sinensis populations from the three river basins based on mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b). The results showed that there were 62 variable sites and 30 parsimony informative sites in the 647 bp of sequenced mtDNA COI from 335 samples. Similarly, a 637 bp segment of Cyt b provided 59 variable sites and 26 parsimony informative sites. AMOVA showed that the levels of genetic differentiation were low among six populations. Although the haplotype diversity and nucleotide diversity of Huanghe wild population had slightly higher than the other populations, there were no significant differences. There was no significant differentiation between the genetic and geographic distance of the six populations, and haplotype network diagram indicated that there may exist genetic hybrids of E. sinensis from different river basins. The results of clustering and neutrality tests revealed that the distance of geographical locations were not completely related to their genetic distance values for the six populations. In conclusion, these results have great significance for the evaluation and exploitation of germplasm resources of E. sinensis.

  19. Genealogy of the nuclear beta-fibrinogen locus in a highly structured lizard species: comparison with mtDNA and evidence for intragenic recombination in the hybrid zone.

    PubMed

    Godinho, R; Mendonça, B; Crespo, E G; Ferrand, N

    2006-06-01

    The study of nuclear genealogies in natural populations of nonmodel organisms is expected to provide novel insights into the evolutionary history of populations, especially when developed in the framework of well-established mtDNA phylogeographical scenarios. In the Iberian Peninsula, the endemic Schreiber's green lizard Lacerta schreiberi exhibits two highly divergent and allopatric mtDNA lineages that started to split during the late Pliocene. In this work, we performed a fine-scale analysis of the putative mtDNA contact zone together with a global analysis of the patterns of variation observed at the nuclear beta-fibrinogen intron 7 (beta-fibint7). Using a combination of DNA sequencing with single-strand conformational polymorphism (SSCP) analysis, we show that the observed genealogy at the beta-fibint7 locus reveals extensive admixture between two formerly isolated lizard populations while the two mtDNA lineages remain essentially allopatric. In addition, a private beta-fibint7 haplotype detected in the single population where both mtDNA lineages were found in sympatry is probably the result of intragenic recombination between the two more common and divergent beta-fibint7 haplotypes. Our results suggest that the progressive incorporation of nuclear genealogies in investigating the ancient demography and admixture dynamics of divergent genomes will be necessary to obtain a more comprehensive picture of the evolutionary history of organisms.

  20. Mitochondrial DNA transfer to the nucleus generates extensive insertion site variation in maize.

    PubMed

    Lough, Ashley N; Roark, Leah M; Kato, Akio; Ream, Thomas S; Lamb, Jonathan C; Birchler, James A; Newton, Kathleen J

    2008-01-01

    Mitochondrial DNA (mtDNA) insertions into nuclear chromosomes have been documented in a number of eukaryotes. We used fluorescence in situ hybridization (FISH) to examine the variation of mtDNA insertions in maize. Twenty overlapping cosmids, representing the 570-kb maize mitochondrial genome, were individually labeled and hybridized to root tip metaphase chromosomes from the B73 inbred line. A minimum of 15 mtDNA insertion sites on nine chromosomes were detectable using this method. One site near the centromere on chromosome arm 9L was identified by a majority of the cosmids. To examine variation in nuclear mitochondrial DNA sequences (NUMTs), a mixture of labeled cosmids was applied to chromosome spreads of ten diverse inbred lines: A188, A632, B37, B73, BMS, KYS, Mo17, Oh43, W22, and W23. The number of detectable NUMTs varied dramatically among the lines. None of the tested inbred lines other than B73 showed the strong hybridization signal on 9L, suggesting that there is a recent mtDNA insertion at this site in B73. Different sources of B73 and W23 were examined for NUMT variation within inbred lines. Differences were detectable, suggesting either that mtDNA is being incorporated or lost from the maize nuclear genome continuously. The results indicate that mtDNA insertions represent a major source of nuclear chromosomal variation.

  1. Phylogenetic relationships among North American Alosa species (Clupeidae)

    Treesearch

    B.R. Bowen; B.R. Kreiser; P.F. Mickel; J.F. Schaefer; S.B. Adams

    2008-01-01

    A phylogeny of the six North American species in the genus Alosa, with representatives of three Eurasian species, was generated using mtDNA sequences. This was accomplished by obtaining sequences for three North American species and additional geographical sampling of the other three species. The subgenus Alosa, including the...

  2. Mitochondrial DNA ancestry, HPV infection and the risk of cervical cancer in a multiethnic population of northeastern Argentina

    PubMed Central

    Totaro, Maria E.; Rubinstein, Samara; Gili, Juan A.; Liotta, Domingo J.; Picconi, Maria A.; Campos, Rodolfo H.; Schurr, Theodore G.

    2018-01-01

    Background Misiones Province in northeastern Argentina is considered to be a region with a high prevalence of HPV infection and a high mortality rate due to cervical cancer. The reasons for this epidemiological trend are not completely understood. To gain insight into this problem, we explored the relationship between mitochondrial DNA (mtDNA) ancestry, HPV infection, and development of cervical lesions/cancer in women from the city of Posadas in Misiones Province. Methods Two hundred and sixty-one women, including 92 cases of patients diagnosed with cervical lesions and 169 controls, were analyzed. mtDNA ancestry was assessed through HVS1 sequencing, while the detection and typing of HPV infection was conducted through nested multiplex PCR analysis. Multivariate logistic regression was conducted with the resulting data to estimate the odds ratios (ORs) adjusted by socio-demographic variables. Results The study participants showed 68.6% Amerindian, 26.1% European and 5.3% African mtDNA ancestry, respectively. Multiple regression analysis showed that women with African mtDNAs were three times more likely to develop a cervical lesion than those with Native American or European mtDNAs [OR of 3.8 (1.2–11.5) for ancestry and OR of 3.5 (1.0–12.0) for L haplogroups], although the associated p values were not significant when tested under more complex multivariate models. HPV infection and the development of cervical lesions/cancer were significant for all tested models, with the highest OR values for HPV16 [OR of 24.2 (9.3–62.7)] and HPV-58 [OR of 19.0 (2.4–147.7)]. Conclusion HPV infection remains a central risk factor for cervical cancer in the Posadas population. The potential role of African mtDNA ancestry opens a new avenue for future medical association studies in multiethnic populations, and will require further confirmation in large-scale studies. PMID:29329337

  3. Complete mitochondrial DNA genome of bonnethead shark, Sphyrna tiburo, and phylogenetic relationships among main superorders of modern elasmobranchs

    PubMed Central

    Díaz-Jaimes, Píndaro; Bayona-Vásquez, Natalia J.; Adams, Douglas H.; Uribe-Alcocer, Manuel

    2015-01-01

    Elasmobranchs are one of the most diverse groups in the marine realm represented by 18 orders, 55 families and about 1200 species reported, but also one of the most vulnerable to exploitation and to climate change. Phylogenetic relationships among main orders have been controversial since the emergence of the Hypnosqualean hypothesis by Shirai (1992) that considered batoids as a sister group of sharks. The use of the complete mitochondrial DNA (mtDNA) may shed light to further validate this hypothesis by increasing the number of informative characters. We report the mtDNA genome of the bonnethead shark Sphyrna tiburo, and compare it with mitogenomes of other 48 species to assess phylogenetic relationships. The mtDNA genome of S. tiburo, is quite similar in size to that of congeneric species but also similar to the reported mtDNA genome of other Carcharhinidae species. Like most vertebrate mitochondrial genomes, it contained 13 protein coding genes, two rRNA genes and 22 tRNA genes and the control region of 1086 bp (D-loop). The Bayesian analysis of the 49 mitogenomes supported the view that sharks and batoids are separate groups. PMID:27014583

  4. Targeted exome sequencing of suspected mitochondrial disorders

    PubMed Central

    Lieber, Daniel S.; Calvo, Sarah E.; Shanahan, Kristy; Slate, Nancy G.; Liu, Shangtao; Hershman, Steven G.; Gold, Nina B.; Chapman, Brad A.; Thorburn, David R.; Berry, Gerard T.; Schmahmann, Jeremy D.; Borowsky, Mark L.; Mueller, David M.; Sims, Katherine B.

    2013-01-01

    Objective: To evaluate the utility of targeted exome sequencing for the molecular diagnosis of mitochondrial disorders, which exhibit marked phenotypic and genetic heterogeneity. Methods: We considered a diverse set of 102 patients with suspected mitochondrial disorders based on clinical, biochemical, and/or molecular findings, and whose disease ranged from mild to severe, with varying age at onset. We sequenced the mitochondrial genome (mtDNA) and the exons of 1,598 nuclear-encoded genes implicated in mitochondrial biology, mitochondrial disease, or monogenic disorders with phenotypic overlap. We prioritized variants likely to underlie disease and established molecular diagnoses in accordance with current clinical genetic guidelines. Results: Targeted exome sequencing yielded molecular diagnoses in established disease loci in 22% of cases, including 17 of 18 (94%) with prior molecular diagnoses and 5 of 84 (6%) without. The 5 new diagnoses implicated 2 genes associated with canonical mitochondrial disorders (NDUFV1, POLG2), and 3 genes known to underlie other neurologic disorders (DPYD, KARS, WFS1), underscoring the phenotypic and biochemical overlap with other inborn errors. We prioritized variants in an additional 26 patients, including recessive, X-linked, and mtDNA variants that were enriched 2-fold over background and await further support of pathogenicity. In one case, we modeled patient mutations in yeast to provide evidence that recessive mutations in ATP5A1 can underlie combined respiratory chain deficiency. Conclusion: The results demonstrate that targeted exome sequencing is an effective alternative to the sequential testing of mtDNA and individual nuclear genes as part of the investigation of mitochondrial disease. Our study underscores the ongoing challenge of variant interpretation in the clinical setting. PMID:23596069

  5. The last Viking King: a royal maternity case solved by ancient DNA analysis.

    PubMed

    Dissing, Jørgen; Binladen, Jonas; Hansen, Anders; Sejrsen, Birgitte; Willerslev, Eske; Lynnerup, Niels

    2007-02-14

    The last of the Danish Viking Kings, Sven Estridsen, died in a.d. 1074 and is entombed in Roskilde Cathedral with other Danish kings and queens. Sven's mother, Estrid, is entombed in a pillar across the chancel. However, while there is no reasonable doubt about the identity of Sven, there have been doubts among historians whether the woman entombed was indeed Estrid. To shed light on this problem, we have extracted and analysed mitochondrial DNA (mtDNA) from pulp of teeth from each of the two royals. Four overlapping DNA-fragments covering about 400bp of hypervariable region 1 (HVR-1) of the D-loop were PCR amplified, cloned and a number of clones with each segment were sequenced. Also a segment containing the H/non-H specific nucleotide 7028 was sequenced. Consensus sequences were determined and D-loop results were replicated in an independent laboratory. This allowed the assignment of King Sven Estridsen to haplogroup H; Estrid's sequence differed from that of Sven at two positions in HVR-1, 16093T-->C and 16304T-->C, indicating that she belongs to subgroup H5a. Given the maternal inheritance of mtDNA, offspring will have the same mtDNA sequence as their mother with the exception of rare cases where the sequence has been altered by a germ line mutation. Therefore, the observation of two sequence differences makes it highly unlikely that the entombed woman was the mother of Sven. In addition, physical examination of the skeleton and the teeth strongly indicated that this woman was much younger (approximately 35 years) at the time of death than the 70 years history records tell. Although the entombed woman cannot be the Estrid, she may well be one of Sven's two daughters-in-law who were also called Estrid and who both became queens.

  6. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.

    PubMed

    Hasegawa, M; Kishino, H; Yano, T

    1985-01-01

    A new statistical method for estimating divergence dates of species from DNA sequence data by a molecular clock approach is developed. This method takes into account effectively the information contained in a set of DNA sequence data. The molecular clock of mitochondrial DNA (mtDNA) was calibrated by setting the date of divergence between primates and ungulates at the Cretaceous-Tertiary boundary (65 million years ago), when the extinction of dinosaurs occurred. A generalized least-squares method was applied in fitting a model to mtDNA sequence data, and the clock gave dates of 92.3 +/- 11.7, 13.3 +/- 1.5, 10.9 +/- 1.2, 3.7 +/- 0.6, and 2.7 +/- 0.6 million years ago (where the second of each pair of numbers is the standard deviation) for the separation of mouse, gibbon, orangutan, gorilla, and chimpanzee, respectively, from the line leading to humans. Although there is some uncertainty in the clock, this dating may pose a problem for the widely believed hypothesis that the pipedal creature Australopithecus afarensis, which lived some 3.7 million years ago at Laetoli in Tanzania and at Hadar in Ethiopia, was ancestral to man and evolved after the human-ape splitting. Another likelier possibility is that mtDNA was transferred through hybridization between a proto-human and a proto-chimpanzee after the former had developed bipedalism.

  7. Control control control: a reassessment and comparison of GenBank and chromatogram mtDNA sequence variation in Baltic grey seals (Halichoerus grypus).

    PubMed

    Fietz, Katharina; Graves, Jeff A; Olsen, Morten Tange

    2013-01-01

    Genetic data can provide a powerful tool for those interested in the biology, management and conservation of wildlife, but also lead to erroneous conclusions if appropriate controls are not taken at all steps of the analytical process. This particularly applies to data deposited in public repositories such as GenBank, whose utility relies heavily on the assumption of high data quality. Here we report on an in-depth reassessment and comparison of GenBank and chromatogram mtDNA sequence data generated in a previous study of Baltic grey seals. By re-editing the original chromatogram data we found that approximately 40% of the grey seal mtDNA haplotype sequences posted in GenBank contained errors. The re-analysis of the edited chromatogram data yielded overall similar results and conclusions as the original study. However, a significantly different outcome was observed when using the uncorrected dataset based on the GenBank haplotypes. We therefore suggest disregarding the existing GenBank data and instead using the correct haplotypes reported here. Our study serves as an illustrative example reiterating the importance of quality control through every step of a research project, from data generation to interpretation and submission to an online repository. Errors conducted in any step may lead to biased results and conclusions, and could impact management decisions.

  8. Control Control Control: A Reassessment and Comparison of GenBank and Chromatogram mtDNA Sequence Variation in Baltic Grey Seals (Halichoerus grypus)

    PubMed Central

    Fietz, Katharina; Graves, Jeff A.; Olsen, Morten Tange

    2013-01-01

    Genetic data can provide a powerful tool for those interested in the biology, management and conservation of wildlife, but also lead to erroneous conclusions if appropriate controls are not taken at all steps of the analytical process. This particularly applies to data deposited in public repositories such as GenBank, whose utility relies heavily on the assumption of high data quality. Here we report on an in-depth reassessment and comparison of GenBank and chromatogram mtDNA sequence data generated in a previous study of Baltic grey seals. By re-editing the original chromatogram data we found that approximately 40% of the grey seal mtDNA haplotype sequences posted in GenBank contained errors. The re-analysis of the edited chromatogram data yielded overall similar results and conclusions as the original study. However, a significantly different outcome was observed when using the uncorrected dataset based on the GenBank haplotypes. We therefore suggest disregarding the existing GenBank data and instead using the correct haplotypes reported here. Our study serves as an illustrative example reiterating the importance of quality control through every step of a research project, from data generation to interpretation and submission to an online repository. Errors conducted in any step may lead to biased results and conclusions, and could impact management decisions. PMID:23977362

  9. Nucleotide variation in the mitochondrial genome provides evidence for dual routes of postglacial recolonization and genetic recombination in the northeastern brook trout (Salvelinus fontinalis).

    PubMed

    Pilgrim, B L; Perry, R C; Barron, J L; Marshall, H D

    2012-09-26

    Levels and patterns of mitochondrial DNA (mtDNA) variation were examined to investigate the population structure and possible routes of postglacial recolonization of the world's northernmost native populations of brook trout (Salvelinus fontinalis), which are found in Labrador, Canada. We analyzed the sequence diversity of a 1960-bp portion of the mitochondrial genome (NADH dehydrogenase 1 gene and part of cytochrome oxidase 1) of 126 fish from 32 lakes distributed throughout seven regions of northeastern Canada. These populations were found to have low levels of mtDNA diversity, a characteristic trait of populations at northern extremes, with significant structuring at the level of the watershed. Upon comparison of northeastern brook trout sequences to the publicly available brook trout whole mitochondrial genome (GenBank AF154850), we infer that the GenBank sequence is from a fish whose mtDNA has recombined with that of Arctic charr (S. alpinus). The haplotype distribution provides evidence of two different postglacial founding groups contributing to present-day brook trout populations in the northernmost part of their range; the evolution of the majority of the haplotypes coincides with the timing of glacier retreat from Labrador. Our results exemplify the strong influence that historical processes such as glaciations have had on shaping the current genetic structure of northern species such as the brook trout.

  10. The somatic genomic landscape of chromophobe renal cell carcinoma

    PubMed Central

    Davis, Caleb F.; Ricketts, Christopher; Wang, Min; Yang, Lixing; Cherniack, Andrew D.; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C.; Hacker, Kathryn E.; Bhanot, Gyan; Gordenin, Dmitry A.; Chu, Andy; Gunaratne, Preethi H.; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A.; Bristow, Christopher A.; Donehower, Lawrence A.; Wallen, Eric M.; Smith, Angela B.; Tickoo, Satish K.; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S.; Hsieh, James J.; Choueiri, Toni K.; Hakimi, A. Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A. Gordon; Laird, Peter W.; Henske, Elizabeth P.; Kwiatkowski, David J.; Park, Peter J.; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A.; Linehan, W. Marston; Gibbs, Richard A.; Rathmell, W. Kimryn; Creighton, Chad J.

    2014-01-01

    Summary We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) based on multidimensional and comprehensive characterization, including mitochondrial DNA (mtDNA) and whole genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared to other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT up-regulation in cancer distinct from previously-observed amplifications and point mutations. PMID:25155756

  11. Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination.

    PubMed

    Bonnefoy, Nathalie; Fox, Thomas D

    2007-01-01

    Saccharomyces cerevisiae is currently the only species in which genetic transformation of mitochondria can be used to generate a wide variety of defined alterations in mitochondrial deoxyribonucleic acid (mtDNA). DNA sequences can be delivered into yeast mitochondria by microprojectile bombardment (biolistic transformation) and subsequently incorporated into mtDNA by the highly active homologous recombination machinery present in the organelle. Although transformation frequencies are relatively low, the availability of strong mitochondrial selectable markers for the yeast system, both natural and synthetic, makes the isolation of transformants routine. The strategies and procedures reviewed here allow the researcher to insert defined mutations into endogenous mitochondrial genes and to insert new genes into mtDNA. These methods provide powerful in vivo tools for the study of mitochondrial biology.

  12. The somatic genomic landscape of chromophobe renal cell carcinoma.

    PubMed

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-09-08

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme.

    PubMed

    Vidone, Michele; Clima, Rosanna; Santorsola, Mariangela; Calabrese, Claudia; Girolimetti, Giulia; Kurelac, Ivana; Amato, Laura Benedetta; Iommarini, Luisa; Trevisan, Elisa; Leone, Marco; Soffietti, Riccardo; Morra, Isabella; Faccani, Giuliano; Attimonelli, Marcella; Porcelli, Anna Maria; Gasparre, Giuseppe

    2015-06-01

    Glioblastoma multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 45 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations was detected, we report that the large majority of them does not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Molecular and morphological systematics of the sandfly Sergentomyia (Sintonius) clydei Sinton, 1928 and questions about its record in the Seychelles.

    PubMed

    Depaquit, J; Randrianambinintsoa, F J; Jaouadi, K; Payard, J; Bounamous, A; Augot, D; Krueger, A; Brengues, C; Couloux, A; Robert, V; Léger, N

    2014-01-01

    In the Phlebotomine sandflies, a few molecular studies related on the genus Sergentomyia have been published. The present study explored the genetic variability within Sergentomyia (Sintonius) clydei (Diptera, Psychodidae). The sampling included 15 populations originating from 12 countries. A morphological approach was coupled to the sequencing of two molecular markers (cytochrome b mtDNA and cacophony nuclear DNA). The most variable morphological characters resided in the cibarium of the females, especially (i) the pigment patch pattern and (ii) the number of cibarial teeth and denticles in the armature. However this morphological approach was unable to individualize any population within S. clydei. The NJ trees based on both molecular markers individualized the specimens from the Aldabra group of islands in the Seychelles. Surprisingly, cyt b variability was not compatible with the known data about the complete submersion of Aldabra occurring relatively recently some 125,000 years ago. The settlement of these islands by S. clydei from continental Africa, the Middle East or Asia, and the value of mtDNA markers are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. The Molecular Dissection of mtDNA Haplogroup H Confirms That the Franco-Cantabrian Glacial Refuge Was a Major Source for the European Gene Pool

    PubMed Central

    Achilli, Alessandro; Rengo, Chiara; Magri, Chiara; Battaglia, Vincenza; Olivieri, Anna; Scozzari, Rosaria; Cruciani, Fulvio; Zeviani, Massimo; Briem, Egill; Carelli, Valerio; Moral, Pedro; Dugoujon, Jean-Michel; Roostalu, Urmas; Loogväli, Eva-Liis; Kivisild, Toomas; Bandelt, Hans-Jürgen; Richards, Martin; Villems, Richard; Santachiara-Benerecetti, A. Silvana; Semino, Ornella; Torroni, Antonio

    2004-01-01

    Complete sequencing of 62 mitochondrial DNAs (mtDNAs) belonging (or very closely related) to haplogroup H revealed that this mtDNA haplogroup—by far the most common in Europe—is subdivided into numerous subhaplogroups, with at least 15 of them (H1–H15) identifiable by characteristic mutations. All the haplogroup H mtDNAs found in 5,743 subjects from 43 populations were then screened for diagnostic markers of subhaplogroups H1 and H3. This survey showed that both subhaplogroups display frequency peaks, centered in Iberia and surrounding areas, with distributions declining toward the northeast and southeast—a pattern extremely similar to that previously reported for mtDNA haplogroup V. Furthermore, the coalescence ages of H1 and H3 (∼11,000 years) are close to that previously reported for V. These findings have major implications for the origin of Europeans, since they attest that the Franco-Cantabrian refuge area was indeed the source of late-glacial expansions of hunter-gatherers that repopulated much of Central and Northern Europe from ∼15,000 years ago. This has also some implications for disease studies. For instance, the high occurrence of H1 and H3 in Iberia led us to re-evaluate the haplogroup distribution in 50 Spanish families affected by nonsyndromic sensorineural deafness due to the A1555G mutation. The survey revealed that the previously reported excess of H among these families is caused entirely by H3 and is due to a major, probably nonrecent, founder event. PMID:15382008

  16. The congruence between matrilineal genetic (mtDNA) and geographic diversity of Iranians and the territorial populations

    PubMed Central

    Bahmanimehr, Ardeshir; Eskandari, Ghafar; Nikmanesh, Fatemeh

    2015-01-01

    Objective(s): From the ancient era, emergence of Agriculture in the connecting region of Mesopotamia and the Iranian plateau at the foothills of the Zagros Mountains, made Iranian gene pool as an important source of populating the region. It has differentiated the population spread and different language groups. In order to trace the maternal genetic affinity between Iranians and other populations of the area and to establish the place of Iranians in a broad framework of ethnically and linguistically diverse groups of Middle Eastern and South Asian populations, a comparative study of territorial groups was designed and used in the population statistical analysis. Materials and Methods: Mix of 616 samples was sequenced for complete mtDNA or hyper variable regions in this study. A published dataset of neighboring populations was used as a comparison in the Iranian matrilineal lineage study based on mtDNA haplogroups. Results: Statistical analyses data, demonstrate a close genetic structure of all Iranian populations, thus suggesting their origin from a common maternal ancestral gene pool and show that the diverse maternal genetic structure does not reflect population differentiation in the region in their language. Conclusion: In the aggregate of the eastward spreads of proto-Elamo-Dravidian language from the Southwest region of Iran, the Elam province, a reasonable degree of homogeneity has been observed among Iranians in this study. The approach will facilitate our perception of the more detailed relationship of the ethnic groups living in Iran with the other ancient peoples of the area, testing linguistic hypothesis and population movements. PMID:25810873

  17. Phylogenetic status of brown trout Salmo trutta populations in five rivers from the southern Caspian Sea and two inland lake basins, Iran: a morphogenetic approach.

    PubMed

    Hashemzadeh Segherloo, I; Farahmand, H; Abdoli, A; Bernatchez, L; Primmer, C R; Swatdipong, A; Karami, M; Khalili, B

    2012-10-01

    Interrelationships, origin and phylogenetic affinities of brown trout Salmo trutta populations from the southern Caspian Sea basin, Orumieh and Namak Lake basins in Iran were analysed from complete mtDNA control region sequences, 12 microsatellite loci and morphological characters. Among 129 specimens from six populations, seven haplotypes were observed. Based on mtDNA haplotype data, the Orumieh and southern Caspian populations did not differ significantly, but the Namak basin-Karaj population presented a unique haplotype closely related to the haplotypes of the other populations (0·1% Kimura two-parameter, K2P divergence). All Iranian haplotypes clustered as a distinct group within the Danube phylogenetic grouping, with an average K2P distance of 0·41% relative to other Danubian haplotypes. The Karaj haplotype in the Namak basin was related to a haplotype (Da26) formerly identified in the Tigris basin in Turkey, to a Salmo trutta oxianus haplotype from the Aral Sea basin, and to haplotype Da1a with two mutational steps, as well as to other Iranian haplotypes with one to two mutational steps, which may indicate a centre of origin in the Caspian basin. In contrast to results of the mtDNA analysis, more pronounced differentiation was observed among the populations studied in the morphological and microsatellite DNA data, except for the two populations from the Orumieh basin, which were similar, possibly due to anthropogenic causes. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  18. Recent Southeast Asian domestication and Lapita dispersal of sacred male pseudohermaphroditic “tuskers” and hairless pigs of Vanuatu

    PubMed Central

    Lum, J. Koji; McIntyre, James K.; Greger, Douglas L.; Huffman, Kirk W.; Vilar, Miguel G.

    2006-01-01

    Recent analyses of global pig populations revealed strict correlations between mtDNA phylogenies and geographic locations. An exception was the monophyletic “Pacific clade” (PC) of pigs not previously linked to any specific location. We examined mtDNA sequences of two varieties of Vanuatu sacred pigs, the male pseudohermaphroditic Narave from the island of Malo (n = 9) and the hairless Kapia from the island of Tanna (n = 9), as well as control pigs (n = 21) from the islands of Malo, Tanna, and Epi and compared them with GenBank sequences to determine (i) the distribution of PC and introduced domestic lineages within Vanuatu, (ii) relationship between the Narave and Kapia, and (iii) origin of the PC. All of the Narave share two PC mtDNA sequences, one of which matches the sequence of a Narave collected in 1927, consistent with an unbroken maternal descent of these intersex pigs from the original pigs brought to Vanuatu 3,200 years ago. One-third of the Kapia share a single PC lineage also found in the Narave. The remaining Kapia lineages are associated with recently introduced, globally distributed domestic breeds. The predominant Narave lineage is also shared with two wild boars from Vietnam. These data suggest that PC pigs were recently domesticated within Southeast Asia and dispersed during the human colonization of Remote Oceania associated with the Lapita cultural complex. More extensive sampling of Southeast Asian wild boar diversity may refine the location of Pacific pig domestication and potentially the proximate homeland of the Lapita cultural complex. PMID:17088556

  19. HmtDB 2016: data update, a better performing query system and human mitochondrial DNA haplogroup predictor

    PubMed Central

    Clima, Rosanna; Preste, Roberto; Calabrese, Claudia; Diroma, Maria Angela; Santorsola, Mariangela; Scioscia, Gaetano; Simone, Domenico; Shen, Lishuang; Gasparre, Giuseppe; Attimonelli, Marcella

    2017-01-01

    The HmtDB resource hosts a database of human mitochondrial genome sequences from individuals with healthy and disease phenotypes. The database is intended to support both population geneticists as well as clinicians undertaking the task to assess the pathogenicity of specific mtDNA mutations. The wide application of next-generation sequencing (NGS) has provided an enormous volume of high-resolution data at a low price, increasing the availability of human mitochondrial sequencing data, which called for a cogent and significant expansion of HmtDB data content that has more than tripled in the current release. We here describe additional novel features, including: (i) a complete, user-friendly restyling of the web interface, (ii) links to the command-line stand-alone and web versions of the MToolBox package, an up-to-date tool to reconstruct and analyze human mitochondrial DNA from NGS data and (iii) the implementation of the Reconstructed Sapiens Reference Sequence (RSRS) as mitochondrial reference sequence. The overall update renders HmtDB an even more handy and useful resource as it enables a more rapid data access, processing and analysis. HmtDB is accessible at http://www.hmtdb.uniba.it/. PMID:27899581

  20. Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii.

    PubMed

    Wang, Zixuan; Wilson, Amanda; Xu, Jianping

    2015-02-01

    The inheritance of mitochondrial DNA (mtDNA) is predominantly uniparental in most sexual eukaryotes. In this study, we examined the mitochondrial inheritance pattern of Cryptococcus gattii, a basidiomycetous yeast responsible for the recent and ongoing outbreak of cryptococcal infections in the US Pacific Northwest and British Columbia (especially Vancouver Island) in Canada. Using molecular markers, we analyzed the inheritance of mtDNA in 14 crosses between strains within and between divergent lineages in C. gattii. Consistent with results from recent studies, our analyses identified significant variations in mtDNA inheritance patterns among strains and crosses, ranging from strictly uniparental to biparental. For two of the crosses that showed uniparental mitochondrial inheritance in standard laboratory conditions, we further investigated the effects of the following environmental variables on mtDNA inheritance: UV exposure, temperature, and treatments with the methylation inhibitor 5-aza-2'-deoxycytidine and with the ubiquitination inhibitor ammonium chloride. Interestingly, one of these crosses showed no response to these environmental variables while the other exhibited diverse patterns ranging from complete uniparental inheritance of the MATa parent mtDNA, to biparental inheritance, and to a significant bias toward inheritance of the MATα parental mtDNA. Our results indicate that mtDNA inheritance in C. gattii differs from that in its closely related species Cryptococcus neoformans. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The complete mitochondrial genome of Koerneria sudhausi (Diplogasteromorpha: Nematoda) supports monophyly of Diplogasteromorpha within Rhabditomorpha.

    PubMed

    Kim, Taeho; Kim, Jiyeon; Nadler, Steven A; Park, Joong-Ki

    2016-05-01

    Testing hypotheses of monophyly for different nematode groups in the context of broad representation of nematode diversity is central to understanding the patterns and processes of nematode evolution. Herein sequence information from mitochondrial genomes is used to test the monophyly of diplogasterids, which includes an important nematode model organism. The complete mitochondrial genome sequence of Koerneria sudhausi, a representative of Diplogasteromorpha, was determined and used for phylogenetic analyses along with 60 other nematode species. The mtDNA of K. sudhausi is comprised of 16,005 bp that includes 36 genes (12 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes) encoded in the same direction. Phylogenetic trees inferred from amino acid and nucleotide sequence data for the 12 protein-coding genes strongly supported the sister relationship of K. sudhausi with Pristionchus pacificus, supporting Diplogasteromorpha. The gene order of K. sudhausi is identical to that most commonly found in members of the Rhabditomorpha + Ascaridomorpha + Diplogasteromorpha clade, with an exception of some tRNA translocations. Both the gene order pattern and sequence-based phylogenetic analyses support a close relationship between the diplogasterid species and Rhabditomorpha. The nesting of the two diplogasteromorph species within Rhabditomorpha is consistent with most molecular phylogenies for the group, but inconsistent with certain morphology-based hypotheses that asserted phylogenetic affinity between diplogasteromorphs and tylenchomorphs. Phylogenetic analysis of mitochondrial genome sequences strongly supports monophyly of the diplogasteromorpha.

  2. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrialmore » dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.« less

  3. Founding Amerindian mitochondrial DNA lineages in ancient Maya from Xcaret, Quintana Roo.

    PubMed

    González-Oliver, A; Márquez-Morfín, L; Jiménez, J C; Torre-Blanco, A

    2001-11-01

    Ancient DNA from the bone remains of 25 out of 28 pre-Columbian individuals from the Late Classic-Postclassic Maya site of Xcaret, Quintana Roo, was recovered, and mitochondrial DNA (mtDNA) was amplified by using the polymerase chain reaction. The presence of the four founding Amerindian mtDNA lineages was investigated by restriction analysis and by direct sequencing in selected individuals. The mtDNA lineages A, B, and C were found in this population. Eighty-four percent of the individuals were lineage A, whereas lineages B and C were present at low frequencies, 4% and 8%, respectively. Lineage D was absent from our sample. One individual did not possess any of the four lineages. Six skeletons out of 7 dated from the Late Classic period were haplotype A, whereas 11 skeletons out of 16 dated from the Postclassic period were also haplotype A. The distribution of mtDNA lineages in the Xcaret population contrasts sharply with that found in ancient Maya from Copán, which lack lineages A and B. On the other hand, our results resemble more closely the frequencies of mtDNA lineages found in contemporary Maya from the Yucatán Peninsula and in other Native American contemporary populations of Mesoamerican origin. Copyright 2001 Wiley-Liss, Inc.

  4. Mitochondrial and nuclear genetic relationships of deer (Odocoileus spp.) in western North America

    USGS Publications Warehouse

    Cronin, Matthew A.

    1991-01-01

    Odocoileus hemionus (mule deer and black-tailed deer) and Odocoileus virginanus (white-tailed deer) are sympatric in western North America and are characterized by distinct morphology, behavior, and allozyme allele frequencies. However, there is discordance among nuclear and mitochondrial genetic relationships, as mule deer (O. h. hemionus) and white-tailed deer have similar mitochondrial DNA (mtDNA) which is very different from that of black-tailed deer (O. h. columbianus, O. h. sitkensis). I expanded previous studies to clarify the genetic relationships of these groups by determining mtDNA haplotype and allozyme genotypes for 667 deer from several locations in northwestern North America. Different mtDNA haplotypes in mule deer, black-tailed deer, and white-tailed deer indicate that mitochondrial gene flow is restricted. Allozyme allele frequencies indicate that there is also restriction of nuclear gene flow between O. virginianus and O. hemionus, and to a lesser extent between mule deer and black-tailed deer. There is a low level of introgressive hybridization of mtDNA from mule deer and black-tailed deer into white-tailed deer populations and considerable interbreeding of mule deer and black-tailed deer in a contact zone. The discordance of mitochondrial and nuclear genomes is apparent only if mtDNA sequence divergences, and not haplotype frequencies, are considered.

  5. A rare variant of the mtDNA HVS1 sequence in the hairs of Napoléon's family.

    PubMed

    Lucotte, Gérard

    2010-10-04

    This paper describes the finding of a rare variant in the sequence of the hypervariable segment (HVS1) of mitochondrial (mtDNA) extracted from two preserved hairs, authenticated as belonging to the French Emperor Napoléon I (Napoléon Bonaparte). This rare variant is a mutation that changes the base C to T at position 16,184 (16184C→T), and it constitutes the only mutation found in this HVS1 sequence. This mutation is rare, because it was not found in a reference database (P < 0.05). In a personal database (M. Pala) comprising 37,000 different sequences, the 16184C→T mutation was found in only three samples, thus in this database the mutation frequency was 0.00008%. This mutation 16184C→T was also the only variant found subsequently in the HVS1 sequences of mtDNAs extracted from Napoléon's mother (Letizia) and from his youngest sister (Caroline), confirming that this mutation is maternally inherited. This 16184C→T variant could be used for genetic verification to authenticate any doubtful material and determine whether it should indeed be attributed to Napoléon.

  6. A rare variant of the mtDNA HVS1 sequence in the hairs of Napoléon's family

    PubMed Central

    2010-01-01

    This paper describes the finding of a rare variant in the sequence of the hypervariable segment (HVS1) of mitochondrial (mtDNA) extracted from two preserved hairs, authenticated as belonging to the French Emperor Napoléon I (Napoléon Bonaparte). This rare variant is a mutation that changes the base C to T at position 16,184 (16184C→T), and it constitutes the only mutation found in this HVS1 sequence. This mutation is rare, because it was not found in a reference database (P < 0.05). In a personal database (M. Pala) comprising 37,000 different sequences, the 16184C→T mutation was found in only three samples, thus in this database the mutation frequency was 0.00008%. This mutation 16184C→T was also the only variant found subsequently in the HVS1 sequences of mtDNAs extracted from Napoléon's mother (Letizia) and from his youngest sister (Caroline), confirming that this mutation is maternally inherited. This 16184C→T variant could be used for genetic verification to authenticate any doubtful material and determine whether it should indeed be attributed to Napoléon. PMID:21092341

  7. Complete mitochondrial genomes of Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga from giant panda, red panda and polar bear.

    PubMed

    Xie, Yue; Zhang, Zhihe; Wang, Chengdong; Lan, Jingchao; Li, Yan; Chen, Zhigang; Fu, Yan; Nie, Huaming; Yan, Ning; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2011-08-15

    Roundworms of the genus Baylisascaris are the most common parasitic nematodes of the intestinal tracts of wild mammals, and most of them have significant impacts in veterinary and public health. Mitochondrial (mt) genomes provide a foundation for studying epidemiology and ecology of these parasites and therefore may be used to assist in the control of Baylisascariasis. Here, we determined the complete sequences of mtDNAs for Baylisascaris schroederi, Baylisascaris ailuri and Baylisascaris transfuga, with 14,778 bp, 14,657 bp and 14,898 bp in size, respectively. Each mtDNA encodes 12 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs, typical for other chromadorean nematodes. The gene arrangements for the three Baylisascaris species are the same as those of the Ascaridata species, but radically different from those of the Spirurida species. Phylogenetic analysis based on concatenated amino acid sequences of 12 protein-coding genes from nine nematode species indicated that the three Baylisascaris species are more closely related to Ascaris suum than to the three Toxocara species (Toxocara canis, Toxocara cati and Toxocara malaysiensis) and Anisakis simplex, and that B. ailuri is more closely related to B. transfuga than to B. schroeder. The determination of the complete mt genome sequences for these three Baylisascaris species (the first members of the genus Baylisascaris ever sequenced) is of importance in refining the phylogenetic relationships within the order Ascaridida, and provides new molecular data for population genetic, systematic, epidemiological and ecological studies of parasitic nematodes of socio-economic importance in wildlife. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Molecular ecology of the big brown bat (Eptesicus fuscus): Genetic and natural history variation in a hybrid zone

    USGS Publications Warehouse

    Neubaum, M.A.; Douglas, M.R.; Douglas, M.E.; O'Shea, T.J.

    2007-01-01

    Several geographically distinct mitochondrial DNA (mtDNA) lineages of the big brown bat (Eptesicus fuscus) have been documented in North America. Individuals from 2 of these lineages, an eastern and a western form, co-occur within maternity colonies in Colorado. The discovery of 2 divergent mtDNA lineages in sympatry prompted a set of questions regarding possible biological differences between haplotypes. We captured big brown bats at maternity roosts in Colorado and recorded data on body size, pelage color, litter size, roosting and overwintering behaviors, and local distributions. Wing biopsies were collected for genetic analysis. The ND2 region of the mtDNA molecule was used to determine lineage of the bats. In addition, nuclear DNA (nDNA) intron 1 of the ??-globin gene was used to determine if mtDNA lineages are hybridizing. Eastern and western mtDNA lineages differed by 10.3% sequence divergence and examination of genetic data suggests recent population expansion for both lineages. Differences in distribution occur along the Colorado Front Range, with an increasing proportion of western haplotypes farther south. Results from nDNA analyses demonstrated hybridization between the 2 lineages. Additionally, no outstanding distinctiveness was found between the mtDNA lineages in natural history characters examined. We speculate that historical climate changes separated this species into isolated eastern and western populations, and that secondary contact with subsequent interbreeding was facilitated by European settlement. ?? 2007 American Society of Mammalogists.

  9. Mitochondrial genome maintenance: roles for nuclear nonhomologous end-joining proteins in Saccharomyces cerevisiae.

    PubMed

    Kalifa, Lidza; Quintana, Daniel F; Schiraldi, Laura K; Phadnis, Naina; Coles, Garry L; Sia, Rey A; Sia, Elaine A

    2012-03-01

    Mitochondrial DNA (mtDNA) deletions are associated with sporadic and inherited diseases and age-associated neurodegenerative disorders. Approximately 85% of mtDNA deletions identified in humans are flanked by short directly repeated sequences; however, mechanisms by which these deletions arise are unknown. A limitation in deciphering these mechanisms is the essential nature of the mitochondrial genome in most living cells. One exception is budding yeast, which are facultative anaerobes and one of the few organisms for which directed mtDNA manipulation is possible. Using this model system, we have developed a system to simultaneously monitor spontaneous direct-repeat-mediated deletions (DRMDs) in the nuclear and mitochondrial genomes. In addition, the mitochondrial DRMD reporter contains a unique KpnI restriction endonuclease recognition site that is not present in otherwise wild-type (WT) mtDNA. We have expressed KpnI fused to a mitochondrial localization signal to induce a specific mitochondrial double-strand break (mtDSB). Here we report that loss of the MRX (Mre11p, Rad50p, Xrs2p) and Ku70/80 (Ku70p, Ku80p) complexes significantly impacts the rate of spontaneous deletion events in mtDNA, and these proteins contribute to the repair of induced mtDSBs. Furthermore, our data support homologous recombination (HR) as the predominant pathway by which mtDNA deletions arise in yeast, and suggest that the MRX and Ku70/80 complexes are partially redundant in mitochondria.

  10. Mitochondrial Genome Maintenance: Roles for Nuclear Nonhomologous End-Joining Proteins in Saccharomyces cerevisiae

    PubMed Central

    Kalifa, Lidza; Quintana, Daniel F.; Schiraldi, Laura K.; Phadnis, Naina; Coles, Garry L.; Sia, Rey A.; Sia, Elaine A.

    2012-01-01

    Mitochondrial DNA (mtDNA) deletions are associated with sporadic and inherited diseases and age-associated neurodegenerative disorders. Approximately 85% of mtDNA deletions identified in humans are flanked by short directly repeated sequences; however, mechanisms by which these deletions arise are unknown. A limitation in deciphering these mechanisms is the essential nature of the mitochondrial genome in most living cells. One exception is budding yeast, which are facultative anaerobes and one of the few organisms for which directed mtDNA manipulation is possible. Using this model system, we have developed a system to simultaneously monitor spontaneous direct-repeat–mediated deletions (DRMDs) in the nuclear and mitochondrial genomes. In addition, the mitochondrial DRMD reporter contains a unique KpnI restriction endonuclease recognition site that is not present in otherwise wild-type (WT) mtDNA. We have expressed KpnI fused to a mitochondrial localization signal to induce a specific mitochondrial double-strand break (mtDSB). Here we report that loss of the MRX (Mre11p, Rad50p, Xrs2p) and Ku70/80 (Ku70p, Ku80p) complexes significantly impacts the rate of spontaneous deletion events in mtDNA, and these proteins contribute to the repair of induced mtDSBs. Furthermore, our data support homologous recombination (HR) as the predominant pathway by which mtDNA deletions arise in yeast, and suggest that the MRX and Ku70/80 complexes are partially redundant in mitochondria. PMID:22214610

  11. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2007-01-01

    Background The Streptophyta comprises all land plants and six groups of charophycean green algae. The scaly biflagellate Mesostigma viride (Mesostigmatales) and the sarcinoid Chlorokybus atmophyticus (Chlorokybales) represent the earliest diverging lineages of this phylum. In trees based on chloroplast genome data, these two charophycean green algae are nested in the same clade. To validate this relationship and gain insight into the ancestral state of the mitochondrial genome in the Charophyceae, we sequenced the mitochondrial DNA (mtDNA) of Chlorokybus and compared this genome sequence with those of three other charophycean green algae and the bryophytes Marchantia polymorpha and Physcomitrella patens. Results The Chlorokybus genome differs radically from its 42,424-bp Mesostigma counterpart in size, gene order, intron content and density of repeated elements. At 201,763-bp, it is the largest mtDNA yet reported for a green alga. The 70 conserved genes represent 41.4% of the genome sequence and include nad10 and trnL(gag), two genes reported for the first time in a streptophyte mtDNA. At the gene order level, the Chlorokybus genome shares with its Chara, Chaetosphaeridium and bryophyte homologues eight to ten gene clusters including about 20 genes. Notably, some of these clusters exhibit gene linkages not previously found outside the Streptophyta, suggesting that they originated early during streptophyte evolution. In addition to six group I and 14 group II introns, short repeated sequences accounting for 7.5% of the genome were identified. Mitochondrial trees were unable to resolve the correct position of Mesostigma, due to analytical problems arising from accelerated sequence evolution in this lineage. Conclusion The Chlorokybus and Mesostigma mtDNAs exemplify the marked fluidity of the mitochondrial genome in charophycean green algae. The notion that the mitochondrial genome was constrained to remain compact during charophycean evolution is no longer tenable. Our data raise the possibility that the emergence of land plants was not associated with a substantial gain of intergenic sequences by the mitochondrial genome. PMID:17537252

  12. The Neandertal type site revisited: Interdisciplinary investigations of skeletal remains from the Neander Valley, Germany

    PubMed Central

    Schmitz, Ralf W.; Serre, David; Bonani, Georges; Feine, Susanne; Hillgruber, Felix; Krainitzki, Heike; Pääbo, Svante; Smith, Fred H.

    2002-01-01

    The 1856 discovery of the Neandertal type specimen (Neandertal 1) in western Germany marked the beginning of human paleontology and initiated the longest-standing debate in the discipline: the role of Neandertals in human evolutionary history. We report excavations of cave sediments that were removed from the Feldhofer caves in 1856. These deposits have yielded over 60 human skeletal fragments, along with a large series of Paleolithic artifacts and faunal material. Our analysis of this material represents the first interdisciplinary analysis of Neandertal remains incorporating genetic, direct dating, and morphological dimensions simultaneously. Three of these skeletal fragments fit directly on Neandertal 1, whereas several others have distinctively Neandertal features. At least three individuals are represented in the skeletal sample. Radiocarbon dates for Neandertal 1, from which a mtDNA sequence was determined in 1997, and a second individual indicate an age of ≈40,000 yr for both. mtDNA analysis on the same second individual yields a sequence that clusters with other published Neandertal sequences. PMID:12232049

  13. Genetic stability of progeny from an artificial allotetraploid carp using sperm from five fish species.

    PubMed

    Ye, Yuzhen; Wang, Zhongwei; Zhou, Jianfeng; Wu, Qingjiang

    2009-08-01

    Microsatellite markers and D-loop sequences of mtDNA from a female allotetraploid parent carp and her progenies of generations 1 and 2 induced by sperm of five distant fish species were analyzed. Eleven microsatellite markers were used to identify 48 alleles from the allotetraploid female. The same number of alleles (48) appeared in the first and second generations of the gynogenetic offspring, regardless of the source of the sperm used as an activator. The mtDNA D-loop analysis was performed on the female tetraploid parent, 25 gynogenetic offspring, and 5 sperm-donor species. Fourteen variable sites from the 1,018 bp sequences were observed in the offspring as compared to the female tetraploid parent. Results from D-loop sequence and microsatellite marker analysis showed exclusive maternal transmission, and no genetic information was derived from the father. Our study suggests that progenies of artificial tetraploid carp are genetically stable, which is important for genetic breeding of this tetraploid fish.

  14. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice

    PubMed Central

    Safdar, Adeel; Bourgeois, Jacqueline M.; Ogborn, Daniel I.; Little, Jonathan P.; Hettinga, Bart P.; Akhtar, Mahmood; Thompson, James E.; Melov, Simon; Mocellin, Nicholas J.; Kujoth, Gregory C.; Prolla, Tomas A.; Tarnopolsky, Mark A.

    2011-01-01

    A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities. PMID:21368114

  15. The creation of cybrids harboring mitochondrial haplogroups in the Taiwanese population of ethnic Chinese background: an extensive in vitro tool for the study of mitochondrial genomic variations.

    PubMed

    Lin, Tsu-Kung; Lin, Hung-Yu; Chen, Shang-Der; Chuang, Yao-Chung; Chuang, Jiin-Haur; Wang, Pei-Wen; Huang, Sheng-Teng; Tiao, Mao-Meng; Chen, Jin-Bor; Liou, Chia-Wei

    2012-01-01

    Mitochondrial DNA (mtDNA) haplogroups may contribute to the development of aging-related diseases. A reliable in vitro cellular system for investigating the physiologic significance of mtDNA haplogroups is essential. This study aims to construct and characterize a series of cybrid cell lines harboring variant mtDNA haplogroups collected from healthy Taiwanese volunteers. Cybrid cells harboring different mtDNA haplogroups like B4a, B4b, B4c, B4d, B5, R, F1a, F2, D4e, D4a, D5b, D5a, E, M8, C, and N9a were prepared. Luminex 1000 and full-length mtDNA sequencing were used to confirm that mtDNA haplogroups of transmitochondrial cybrids were identical to their original donors. Cybrid B4b had a significantly lower oxygen consumption rate and higher mitochondrial membrane potential compared to F1a, B5, D5a, D4a, and N9a but had more susceptibility to H(2)O(2)-induced oxidative stress than cybrid F1a, D4a, and N9a. Cybrid N9a had better oxygen consumption and H(2)O(2)-challenged viability compared to B4b, F1a, B5, D5a, and D4a. A series of cybrid cells harboring the main haplogroups of the Taiwanese population with ethnic Chinese background has been developed in vitro. With this mtDNA haplogroup population, the underlying mechanisms of aging-related diseases may be better understood, and therapeutic interventions can be accelerated.

  16. More introgression with less gene flow: chloroplast vs. mitochondrial DNA in the Picea asperata complex in China, and comparison with other Conifers.

    PubMed

    Du, Fang K; Petit, Rémy J; Liu, Jian Quan

    2009-04-01

    Recent work has suggested that rates of introgression should be inversely related to levels of gene flow because introgressed populations cannot be 'rescued' by intraspecific gene flow if it is too low. Mitochondrial and chloroplast DNA (mtDNA and cpDNA) experience very different levels of gene flow in conifers due to their contrasted maternal and paternal modes of transmission, hence the prediction that mtDNA should introgress more readily than cpDNA in this group. Here, we use sequence data from both mtDNA and cpDNA to test this hypothesis in a group of closely related spruces species, the Picea asperata complex from China. Nine mitochondrial and nine chloroplast haplotypes were recovered from 459 individuals in 46 natural populations belonging to five species of the Picea asperata complex. Low variation was found in the two mtDNA introns along with a high level of differentiation among populations (G(ST) = 0.90). In contrast, we detected higher variation and lower differentiation among populations at cpDNA markers (G(ST) = 0.56), a trend shared by most conifer species studied so far. We found that cpDNA variation, although far from being fully diagnostic, is more species-specific than mtDNA variation: four groups of populations were identified using cpDNA markers, all of them related to species or groups of species, whereas for mtDNA, geographical variation prevails over species differentiation. The literature suggests that mtDNA haplotypes are often shared among related conifer species, whereas cpDNA haplotypes are more species-specific. Hence, increased intraspecific gene flow appears to decrease differentiation within species but not among species.

  17. Correlational study on mitochondrial DNA mutations as potential risk factors in breast cancer.

    PubMed

    Li, Linhai; Chen, Lidan; Li, Jun; Zhang, Weiyun; Liao, Yang; Chen, Jianyun; Sun, Zhaohui

    2016-05-24

    The presented study performed an mtDNA genome-wide association analysis to screen the peripheral blood of breast cancer patients for high-risk germline mutations. Unlike previous studies, which have used breast tissue in analyzing somatic mutations, we looked for germline mutations in our study, since they are better predictors of breast cancer in high-risk groups, facilitate early, non-invasive diagnoses of breast cancer and may provide a broader spectrum of therapeutic options. The data comprised 22 samples of healthy group and 83 samples from breast cancer patients. The sequencing data showed 170 mtDNA mutations in the healthy group and 393 mtDNA mutations in the disease group. Of these, 283 mtDNA mutations (88 in the healthy group and 232 in the disease group) had never been reported in the literature. Moreover, correlation analysis indicated there was a significant difference in 32 mtDNA mutations. According to our relative risk analysis of these 32 mtDNA mutations, 27 of the total had odds ratio values (ORs) of less than 1, meaning that these mutations have a potentially protective role to play in breast cancer. The remaining 5 mtDNA mutations, RNR2-2463 indelA, COX1-6296 C>A, COX1-6298 indelT, ATP6-8860 A>G, and ND5-13327 indelA, whose ORs were 8.050, 4.464, 4.464, 5.254 and 4.853, respectively, were regarded as risk factors of increased breast cancer. The five mutations identified here may serve as novel indicators of breast cancer and may have future therapeutic applications. In addition, the use of peripheral blood samples was procedurally simple and could be applied as a non-invasive diagnostic technique.

  18. The History of Slavs Inferred from Complete Mitochondrial Genome Sequences

    PubMed Central

    Mielnik-Sikorska, Marta; Daca, Patrycja; Malyarchuk, Boris; Derenko, Miroslava; Skonieczna, Katarzyna; Perkova, Maria; Dobosz, Tadeusz; Grzybowski, Tomasz

    2013-01-01

    To shed more light on the processes leading to crystallization of a Slavic identity, we investigated variability of complete mitochondrial genomes belonging to haplogroups H5 and H6 (63 mtDNA genomes) from the populations of Eastern and Western Slavs, including new samples of Poles, Ukrainians and Czechs presented here. Molecular dating implies formation of H5 approximately 11.5–16 thousand years ago (kya) in the areas of southern Europe. Within ancient haplogroup H6, dated at around 15–28 kya, there is a subhaplogroup H6c, which probably survived the last glaciation in Europe and has undergone expansion only 3–4 kya, together with the ancestors of some European groups, including the Slavs, because H6c has been detected in Czechs, Poles and Slovaks. Detailed analysis of complete mtDNAs allowed us to identify a number of lineages that seem specific for Central and Eastern Europe (H5a1f, H5a2, H5a1r, H5a1s, H5b4, H5e1a, H5u1, some subbranches of H5a1a and H6a1a9). Some of them could possibly be traced back to at least ∼4 kya, which indicates that some of the ancestors of today's Slavs (Poles, Czechs, Slovaks, Ukrainians and Russians) inhabited areas of Central and Eastern Europe much earlier than it was estimated on the basis of archaeological and historical data. We also sequenced entire mitochondrial genomes of several non-European lineages (A, C, D, G, L) found in contemporary populations of Poland and Ukraine. The analysis of these haplogroups confirms the presence of Siberian (C5c1, A8a1) and Ashkenazi-specific (L2a1l2a) mtDNA lineages in Slavic populations. Moreover, we were able to pinpoint some lineages which could possibly reflect the relatively recent contacts of Slavs with nomadic Altaic peoples (C4a1a, G2a, D5a2a1a1). PMID:23342138

  19. Forensics and mitochondrial DNA: applications, debates, and foundations.

    PubMed

    Budowle, Bruce; Allard, Marc W; Wilson, Mark R; Chakraborty, Ranajit

    2003-01-01

    Debate on the validity and reliability of scientific methods often arises in the courtroom. When the government (i.e., the prosecution) is the proponent of evidence, the defense is obliged to challenge its admissibility. Regardless, those who seek to use DNA typing methodologies to analyze forensic biological evidence have a responsibility to understand the technology and its applications so a proper foundation(s) for its use can be laid. Mitochondrial DNA (mtDNA), an extranuclear genome, has certain features that make it desirable for forensics, namely, high copy number, lack of recombination, and matrilineal inheritance. mtDNA typing has become routine in forensic biology and is used to analyze old bones, teeth, hair shafts, and other biological samples where nuclear DNA content is low. To evaluate results obtained by sequencing the two hypervariable regions of the control region of the human mtDNA genome, one must consider the genetically related issues of nomenclature, reference population databases, heteroplasmy, paternal leakage, recombination, and, of course, interpretation of results. We describe the approaches, the impact some issues may have on interpretation of mtDNA analyses, and some issues raised in the courtroom.

  20. Analysis of variable sites between two complete South China tiger (Panthera tigris amoyensis) mitochondrial genomes.

    PubMed

    Zhang, Wenping; Yue, Bisong; Wang, Xiaofang; Zhang, Xiuyue; Xie, Zhong; Liu, Nonglin; Fu, Wenyuan; Yuan, Yaohua; Chen, Daqing; Fu, Danghua; Zhao, Bo; Yin, Yuzhong; Yan, Xiahui; Wang, Xinjing; Zhang, Rongying; Liu, Jie; Li, Maoping; Tang, Yao; Hou, Rong; Zhang, Zhihe

    2011-10-01

    In order to investigate the mitochondrial genome of Panthera tigris amoyensis, two South China tigers (P25 and P27) were analyzed following 15 cymt-specific primer sets. The entire mtDNA sequence was found to be 16,957 bp and 17,001 bp long for P25 and P27 respectively, and this difference in length between P25 and P27 occurred in the number of tandem repeats in the RS-3 segment of the control region. The structural characteristics of complete P. t. amoyensis mitochondrial genomes were also highly similar to those of P. uncia. Additionally, the rate of point mutation was only 0.3% and a total of 59 variable sites between P25 and P27 were found. Out of the 59 variable sites, 6 were located in 6 different tRNA genes, 6 in the 2 rRNA genes, 7 in non-coding regions (one located between tRNA-Asn and tRNA-Tyr and six in the D-loop), and 40 in 10 protein-coding genes. COI held the largest amount of variable sites (9 sites) and Cytb contained the highest variable rate (0.7%) in the complete sequences. Moreover, out of the 40 variable sites located in 10 protein-coding genes, 12 sites were nonsynonymous.

  1. The complete mitochondrial genomes of five Eimeria species infecting domestic rabbits.

    PubMed

    Liu, Guo-Hua; Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-12-01

    Rabbit coccidiosis caused by members of the genus Eimeria can cause enormous economic impact worldwide, but the genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced and annotated the complete mitochondrial (mt) genomes of five Eimeria species that commonly infect the domestic rabbits. The complete mt genomes of Eimeria intestinalis, Eimeria flavescens, Eimeria media, Eimeria vejdovskyi and Eimeria irresidua were 6261bp, 6258bp, 6168bp, 6254bp, 6259bp in length, respectively. All of the mt genomes consist of 3 genes for proteins (cytb, cox1, and cox3), 14 gene fragments for the large subunit (LSU) rRNA and 11 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA (tRNA) genes. The gene order of the mt genomes is similar to that of Plasmodium, but distinct from Haemosporida and Theileria. Phylogenetic analyses based on full nucleotide sequences using Bayesian analysis revealed that the monophyly of the Eimeria of rabbits was strongly statistically supported with a Bayesian posterior probabilities. These data provide novel mtDNA markers for studying the population genetics and molecular epidemiology of the Eimeria species, and should have implications for the molecular diagnosis, prevention and control of coccidiosis in rabbits. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Identifications of captive and wild tilapia species existing in Hawaii by mitochondrial DNA control region sequence.

    PubMed

    Wu, Liang; Yang, Jinzeng

    2012-01-01

    The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species identification. The suspected tilapia hybrids that consist of O. niloticus are present in captive and wild populations in Hawaii.

  3. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    PubMed Central

    2011-01-01

    Background DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes) from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus) were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region) were investigated for larger sample sets. Results In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski) using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP) reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73%) already existed before the beginning of domestication about 5,000 years ago. Conclusions Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the time depth of the domestic horse mtDNA gene pool. PMID:22082251

  4. Identifications of Captive and Wild Tilapia Species Existing in Hawaii by Mitochondrial DNA Control Region Sequence

    PubMed Central

    Wu, Liang; Yang, Jinzeng

    2012-01-01

    Background The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. Methodology/Principal Findings In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. Conclusions/Significance This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species identification. The suspected tilapia hybrids that consist of O. niloticus are present in captive and wild populations in Hawaii. PMID:23251613

  5. The mitochondrial plasmid of the true slime mold Physarum polycephalum bypasses uniparental inheritance by promoting mitochondrial fusion.

    PubMed

    Sakurai, Rakusa; Nomura, Hideo; Moriyam, Yohsuke; Kawano, Shigeyuki

    2004-08-01

    Mitochondrial DNA (mtDNA) is inherited maternally in most eukaryotes. Linear mitochondrial plasmids in higher plants and fungi are also transmitted from the maternal parent to the progeny. However, mF, which is a mitochondrial linear plasmid of Physarum polycephalum, evades uniparental mitochondrial inheritance. We examined 36 myxamoebal strains of Physarum and isolated three novel mF+ strains (JE8, TU111, NG111) that harbored free mF plasmids. These strains were mated with the mF- strain KM88. Of the three mF- x mF+ crosses, only KM88 x JE8 displayed complete uniparental inheritance. However, in KM88 x TU111 and KM88 x NG111, the mtDNA of KM88 and mF of TU111 and NG111 were inherited by the plasmodia and showed recombination. For example, although the mtDNA of TU111 was eliminated, the mF of TU111 persisted and became inserted into the mtDNA of KM88, such that recombinant mtDNA represented 80% of the total mtDNA. The parental mitochondria fused to yield giant mitochondria with two or more mitochondrial nucleoids. The mF appears to exchange mitochondria from the recipient (paternal) to the donor (maternal) by promoting mitochondrial fusion.

  6. Application of a time-dependent coalescence process for inferring the history of population size changes from DNA sequence data.

    PubMed

    Polanski, A; Kimmel, M; Chakraborty, R

    1998-05-12

    Distribution of pairwise differences of nucleotides from data on a sample of DNA sequences from a given segment of the genome has been used in the past to draw inferences about the past history of population size changes. However, all earlier methods assume a given model of population size changes (such as sudden expansion), parameters of which (e.g., time and amplitude of expansion) are fitted to the observed distributions of nucleotide differences among pairwise comparisons of all DNA sequences in the sample. Our theory indicates that for any time-dependent population size, N(tau) (in which time tau is counted backward from present), a time-dependent coalescence process yields the distribution, p(tau), of the time of coalescence between two DNA sequences randomly drawn from the population. Prediction of p(tau) and N(tau) requires the use of a reverse Laplace transform known to be unstable. Nevertheless, simulated data obtained from three models of monotone population change (stepwise, exponential, and logistic) indicate that the pattern of a past population size change leaves its signature on the pattern of DNA polymorphism. Application of the theory to the published mtDNA sequences indicates that the current mtDNA sequence variation is not inconsistent with a logistic growth of the human population.

  7. Meta-Analysis of Mitochondrial DNA Variation in the Iberian Peninsula.

    PubMed

    Barral-Arca, Ruth; Pischedda, Sara; Gómez-Carballa, Alberto; Pastoriza, Ana; Mosquera-Miguel, Ana; López-Soto, Manuel; Martinón-Torres, Federico; Álvarez-Iglesias, Vanesa; Salas, Antonio

    2016-01-01

    The Iberian Peninsula has been the focus of attention of numerous studies dealing with mitochondrial DNA (mtDNA) variation, most of them targeting the control region segment. In the present study we sequenced the control region of 3,024 Spanish individuals from areas where available data were still limited. We also compiled mtDNA haplotypes from the literature involving 4,588 sequences and 28 population groups or small regions. We meta-analyzed all these data in order to shed further light on patterns of geographic variation, taking advantage of the large sample size and geographic coverage, in contrast with the atomized sampling strategy of previous work. The results indicate that the main mtDNA haplogroups show primarily clinal geographic patterns across the Iberian geography, roughly along a North-South axis. Haplogroup HV0 (where haplogroup U is nested) is more prevalent in the Franco Cantabrian region, in good agreement with previous findings that identified this area as a climate refuge during the Last Glacial Maximum (LGM), prior to a subsequent demographic re-expansion towards Central Europe and the Mediterranean. Typical sub-Saharan and North African lineages are slightly more prevalent in South Iberia, although at low frequencies; this pattern has been shaped mainly by the transatlantic slave trade and the Arab invasion of the Iberian Peninsula. The results also indicate that summary statistics that aim to measure molecular variation, or AMOVA, have limited sensitivity to detect population substructure, in contrast to patterns revealed by phylogeographic analysis. Overall, the results suggest that mtDNA variation in Iberia is substantially stratified. These patterns might be relevant in biomedical studies given that stratification is a common cause of false positives in case-control mtDNA association studies, and should be also considered when weighting the DNA evidence in forensic casework, which is strongly dependent on haplotype frequencies.

  8. Temporal fluctuation in North East Baltic Sea region cattle population revealed by mitochondrial and Y-chromosomal DNA analyses.

    PubMed

    Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Harjula, Janne; Nyström Edmark, Veronica; Rannamäe, Eve; Lõugas, Lembi; Sajantila, Antti; Lidén, Kerstin; Taavitsainen, Jussi-Pekka

    2015-01-01

    Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies. Bones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples). The diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle.

  9. Meta-Analysis of Mitochondrial DNA Variation in the Iberian Peninsula

    PubMed Central

    Barral-Arca, Ruth; Pischedda, Sara; Gómez-Carballa, Alberto; Pastoriza, Ana; Mosquera-Miguel, Ana; López-Soto, Manuel; Martinón-Torres, Federico; Álvarez-Iglesias, Vanesa; Salas, Antonio

    2016-01-01

    The Iberian Peninsula has been the focus of attention of numerous studies dealing with mitochondrial DNA (mtDNA) variation, most of them targeting the control region segment. In the present study we sequenced the control region of 3,024 Spanish individuals from areas where available data were still limited. We also compiled mtDNA haplotypes from the literature involving 4,588 sequences and 28 population groups or small regions. We meta-analyzed all these data in order to shed further light on patterns of geographic variation, taking advantage of the large sample size and geographic coverage, in contrast with the atomized sampling strategy of previous work. The results indicate that the main mtDNA haplogroups show primarily clinal geographic patterns across the Iberian geography, roughly along a North-South axis. Haplogroup HV0 (where haplogroup U is nested) is more prevalent in the Franco Cantabrian region, in good agreement with previous findings that identified this area as a climate refuge during the Last Glacial Maximum (LGM), prior to a subsequent demographic re-expansion towards Central Europe and the Mediterranean. Typical sub-Saharan and North African lineages are slightly more prevalent in South Iberia, although at low frequencies; this pattern has been shaped mainly by the transatlantic slave trade and the Arab invasion of the Iberian Peninsula. The results also indicate that summary statistics that aim to measure molecular variation, or AMOVA, have limited sensitivity to detect population substructure, in contrast to patterns revealed by phylogeographic analysis. Overall, the results suggest that mtDNA variation in Iberia is substantially stratified. These patterns might be relevant in biomedical studies given that stratification is a common cause of false positives in case-control mtDNA association studies, and should be also considered when weighting the DNA evidence in forensic casework, which is strongly dependent on haplotype frequencies. PMID:27441366

  10. Temporal Fluctuation in North East Baltic Sea Region Cattle Population Revealed by Mitochondrial and Y-Chromosomal DNA Analyses

    PubMed Central

    Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Harjula, Janne; Nyström Edmark, Veronica; Rannamäe, Eve; Lõugas, Lembi; Sajantila, Antti; Lidén, Kerstin; Taavitsainen, Jussi-Pekka

    2015-01-01

    Background Ancient DNA analysis offers a way to detect changes in populations over time. To date, most studies of ancient cattle have focused on their domestication in prehistory, while only a limited number of studies have analysed later periods. Conversely, the genetic structure of modern cattle populations is well known given the undertaking of several molecular and population genetic studies. Results Bones and teeth from ancient cattle populations from the North-East Baltic Sea region dated to the Prehistoric (Late Bronze and Iron Age, 5 samples), Medieval (14), and Post-Medieval (26) periods were investigated by sequencing 667 base pairs (bp) from the mitochondrial DNA (mtDNA) and 155 bp of intron 19 in the Y-chromosomal UTY gene. Comparison of maternal (mtDNA haplotypes) genetic diversity in ancient cattle (45 samples) with modern cattle populations in Europe and Asia (2094 samples) revealed 30 ancient mtDNA haplotypes, 24 of which were shared with modern breeds, while 6 were unique to the ancient samples. Of seven Y-chromosomal sequences determined from ancient samples, six were Y2 and one Y1 haplotype. Combined data including Swedish samples from the same periods (64 samples) was compared with the occurrence of Y-chromosomal haplotypes in modern cattle (1614 samples). Conclusions The diversity of haplogroups was highest in the Prehistoric samples, where many haplotypes were unique. The Medieval and Post-Medieval samples also show a high diversity with new haplotypes. Some of these haplotypes have become frequent in modern breeds in the Nordic Countries and North-Western Russia while other haplotypes have remained in only a few local breeds or seem to have been lost. A temporal shift in Y-chromosomal haplotypes from Y2 to Y1 was detected that corresponds with the appearance of new mtDNA haplotypes in the Medieval and Post-Medieval period. This suggests a replacement of the Prehistoric mtDNA and Y chromosomal haplotypes by new types of cattle. PMID:25992976

  11. Mansonella ozzardi mitogenome and pseudogene characterisation provides new perspectives on filarial parasite systematics and CO-1 barcoding.

    PubMed

    Crainey, James Lee; Marín, Michel Abanto; Silva, Túllio Romão Ribeiro da; de Medeiros, Jansen Fernandes; Pessoa, Felipe Arley Costa; Santos, Yago Vinícius; Vicente, Ana Carolina Paulo; Luz, Sérgio Luiz Bessa

    2018-04-18

    Despite the broad distribution of M. ozzardi in Latin America and the Caribbean, there is still very little DNA sequence data available to study this neglected parasite's epidemiology. Mitochondrial DNA (mtDNA) sequences, especially the cytochrome oxidase (CO1) gene's barcoding region, have been targeted successfully for filarial diagnostics and for epidemiological, ecological and evolutionary studies. MtDNA-based studies can, however, be compromised by unrecognised mitochondrial pseudogenes, such as Numts. Here, we have used shot-gun Illumina-HiSeq sequencing to recover the first complete Mansonella genus mitogenome and to identify several mitochondrial-origin pseudogenes. Mitogenome phylogenetic analysis placed M. ozzardi in the Onchocercidae "ONC5" clade and suggested that Mansonella parasites are more closely related to Wuchereria and Brugia genera parasites than they are to Loa genus parasites. DNA sequence alignments, BLAST searches and conceptual translations have been used to compliment phylogenetic analysis showing that M. ozzardi from the Amazon and Caribbean regions are near-identical and that previously reported Peruvian M. ozzardi CO1 reference sequences are probably of pseudogene origin. In addition to adding a much-needed resource to the Mansonella genus's molecular tool-kit and providing evidence that some M. ozzardi CO1 sequence deposits are pseudogenes, our results suggest that all Neotropical M. ozzardi parasites are closely related.

  12. Genetic population structure in the yellow mongoose, Cynictis penicillata.

    PubMed

    Van Vuuren, B J; Robinson, T J

    1997-12-01

    Phylogeographic structure was determined for the yellow mongoose, Cynictis penicillata, using mtDNA RFLPs and control region sequences. The RFLP analysis revealed 13 haplotypes which showed weak geographical patterning consistent with a recent range expansion from a refugial population(s). An analysis of molecular variance (AMOVA) revealed no correspondence between mtDNA phylogeography and subspecies delimitation, nor between matrilines and areas characterized by a high incidence of the viverrid-type rabies, of which the yellow mongoose is the principal vector. The lack of structure was also shown by control region sequences although four of the maternal lineages shared a near-perfect 81 bp repeat. We speculate that regional hot spots of the viverrid rabies biotype reflect population density differences in the yellow mongoose that are not underscored by genetic partitioning, at least at the level of resolution provided by our analyses.

  13. Myoclonus epilepsy, retinitis pigmentosa, leukoencephalopathy and cerebral calcifications associated with a novel m.5513G>A mutation in the MT-TW gene.

    PubMed

    Cardaioli, Elena; Mignarri, Andrea; Cantisani, Teresa Anna; Malandrini, Alessandro; Nesti, Claudia; Rubegni, Anna; Funel, Niccola; Federico, Antonio; Santorelli, Filippo Maria; Dotti, Maria Teresa

    2018-06-02

    We sequenced the mitochondrial genome from a 40-year-old woman with myoclonus epilepsy, retinitis pigmentosa, leukoencephalopathy and cerebral calcifications. Histological and biochemical features of mitochondrial respiratory chain dysfunction were present. Direct sequencing showed a novel heteroplasmic mutation at nucleotide 5513 in the MT-TW gene that encodes tRNA Trp . Restriction Fragment Length Polymorphism analysis confirmed that about 80% of muscle mtDNA harboured the mutation while it was present in minor percentages in mtDNA from other tissues. The mutation is predicted to disrupt a highly conserved base pair within the aminoacyl acceptor stem of the tRNA. This is the 17° mutation in MT-TW gene and expands the known causes of late-onset mitochondrial diseases. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Cytogenetic and Sequence Analyses of Mitochondrial DNA Insertions in Nuclear Chromosomes of Maize

    PubMed Central

    Lough, Ashley N.; Faries, Kaitlyn M.; Koo, Dal-Hoe; Hussain, Abid; Roark, Leah M.; Langewisch, Tiffany L.; Backes, Teresa; Kremling, Karl A. G.; Jiang, Jiming; Birchler, James A.; Newton, Kathleen J.

    2015-01-01

    The transfer of mitochondrial DNA (mtDNA) into nuclear genomes is a regularly occurring process that has been observed in many species. Few studies, however, have focused on the variation of nuclear-mtDNA sequences (NUMTs) within a species. This study examined mtDNA insertions within chromosomes of a diverse set of Zea mays ssp. mays (maize) inbred lines by the use of fluorescence in situ hybridization. A relatively large NUMT on the long arm of chromosome 9 (9L) was identified at approximately the same position in four inbred lines (B73, M825, HP301, and Oh7B). Further examination of the similarly positioned 9L NUMT in two lines, B73 and M825, indicated that the large size of these sites is due to the presence of a majority of the mitochondrial genome; however, only portions of this NUMT (∼252 kb total) were found in the publically available B73 nuclear sequence for chromosome 9. Fiber-fluorescence in situ hybridization analysis estimated the size of the B73 9L NUMT to be ∼1.8 Mb and revealed that the NUMT is methylated. Two regions of mtDNA (2.4 kb and 3.3 kb) within the 9L NUMT are not present in the B73 mitochondrial NB genome; however, these 2.4-kb and 3.3-kb segments are present in other Zea mitochondrial genomes, including that of Zea mays ssp. parviglumis, a progenitor of domesticated maize. PMID:26333837

  15. Analysis of common deafness gene mutations in deaf people from unique ethnic groups in Gansu Province, China.

    PubMed

    Xu, Bai-Cheng; Bian, Pan-Pan; Liu, Xiao-Wen; Zhu, Yi-Ming; Yang, Xiao-Long; Ma, Jian-Li; Chen, Xing-Jian; Wang, Yan-Li; Guo, Yu-Fen

    2014-09-01

    The GJB2 gene mutation characteristic of Dongxiang was the interaction result of ethnic background and geographical environment, and Yugur exhibited the typical founder effect. The SLC26A4 gene mutation characteristic of Dongxiang was related to caucasian backgrounds and selection of purpose exons, i.e. ethnic background and the penetrance of ethnic specificity caused the low mtDNA1555A>G mutation frequency in Dongxiang. To determine the prevalence of GJB2 and SLC26A4 genes and mtDNA1555A>G mutations and analyze the ethnic specificity in the non-syndromic sensorineural hearing loss (NSHL) of unique ethnic groups in Gansu Province. Peripheral blood samples were obtained from Dongxiang, Yugur, Bonan, and ethnic Han groups with moderately severe to profound NSHL in Gansu Province. Bidirectional sequencing (or enzyme digestion) was applied to identify the sequence variations. The pathogenic allele frequency of the three gene mutations was different. The frequency of the GJB2 gene among the Dongxiang, Yugur, Bonan, and ethnic Han groups was 9.03%, 12.5%, 5.88%, and 12.17%, respectively. No difference was found between the ethnic groups. The frequencies of the SLC26A4 genes were 3.23%, 8.33%, 0%, and 9.81%, respectively. The mutation frequency of mtDNA1555A>G was 0%, 0%, 0%, and 6.03%, respectively. No difference was found between the ethnic groups, except for the Dongxiang and ethnic Han groups, both in SLC26A4 gene and mtDNA1555A>G.

  16. The use of next generation sequencing technology to study the effect of radiation therapy on mitochondrial DNA mutation.

    PubMed

    Guo, Yan; Cai, Qiuyin; Samuels, David C; Ye, Fei; Long, Jirong; Li, Chung-I; Winther, Jeanette F; Tawn, E Janet; Stovall, Marilyn; Lähteenmäki, Päivi; Malila, Nea; Levy, Shawn; Shaffer, Christian; Shyr, Yu; Shu, Xiao-Ou; Boice, John D

    2012-05-15

    The human mitochondrial genome has an exclusively maternal mode of inheritance. Mitochondrial DNA (mtDNA) is particularly vulnerable to environmental insults due in part to an underdeveloped DNA repair system, limited to base excision and homologous recombination repair. Radiation exposure to the ovaries may cause mtDNA mutations in oocytes, which may in turn be transmitted to offspring. We hypothesized that the children of female cancer survivors who received radiation therapy may have an increased rate of mtDNA heteroplasmy mutations, which conceivably could increase their risk of developing cancer and other diseases. We evaluated 44 DNA blood samples from 17 Danish and 1 Finnish families (18 mothers and 26 children). All mothers had been treated for cancer as children and radiation doses to their ovaries were determined based on medical records and computational models. DNA samples were sequenced for the entire mitochondrial genome using the Illumina GAII system. Mother's age at sample collection was positively correlated with mtDNA heteroplasmy mutations. There was evidence of heteroplasmy inheritance in that 9 of the 18 families had at least one child who inherited at least one heteroplasmy site from his or her mother. No significant difference in single nucleotide polymorphisms between mother and offspring, however, was observed. Radiation therapy dose to ovaries also was not significantly associated with the heteroplasmy mutation rate among mothers and children. No evidence was found that radiotherapy for pediatric cancer is associated with the mitochondrial genome mutation rate in female cancer survivors and their children. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Identification of the polypeptides encoded in the unassigned reading frames 2, 4, 4L, and 5 of human mitochondrial DNA.

    PubMed Central

    Mariottini, P; Chomyn, A; Riley, M; Cottrell, B; Doolittle, R F; Attardi, G

    1986-01-01

    In previous work, antibodies prepared against chemically synthesized peptides predicted from the DNA sequence were used to identify the polypeptides encoded in three of the eight unassigned reading frames (URFs) of human mitochondrial DNA (mtDNA). In the present study, this approach has been extended to other human mtDNA URFs. In particular, antibodies directed against the NH2-terminal octapeptide of the putative URF2 product specifically precipitated component 11 of the HeLa cell mitochondrial translation products, the reaction being inhibited by the specific peptide. Similarly, antibodies directed against the COOH-terminal nonapeptide of the putative URF4 product reacted specifically with components 4 and 5, and antibodies against a COOH-terminal heptapeptide of the presumptive URF4L product reacted specifically with component 26. Antibodies against the NH2-terminal heptapeptide of the putative product of URF5 reacted with component 1, but only to a marginal extent; however, the results of a trypsin fingerprinting analysis of component 1 point strongly to this component as being the authentic product of URF5. The polypeptide assignments to the mtDNA URFs analyzed here are supported by the relative electrophoretic mobilities of proteins 11, 4-5, 26, and 1, which are those expected for the molecular weights predicted from the DNA sequence for the products of URF2, URF4, URF4L, and URF5, respectively. With the present assignment, seven of the eight human mtDNA URFs have been shown to be expressed in HeLa cells. Images PMID:3456601

  18. Complete mitochondrial genome from South American catfish Pseudoplatystoma reticulatum (Eigenmann & Eigenmann) and its impact in Siluriformes phylogenetic tree.

    PubMed

    Villela, Luciana Cristine Vasques; Alves, Anderson Luis; Varela, Eduardo Sousa; Yamagishi, Michel Eduardo Beleza; Giachetto, Poliana Fernanda; da Silva, Naiara Milagres Augusto; Ponzetto, Josi Margarete; Paiva, Samuel Rezende; Caetano, Alexandre Rodrigues

    2017-02-01

    The cachara (Pseudoplatystoma reticulatum) is a Neotropical freshwater catfish from family Pimelodidae (Siluriformes) native to Brazil. The species is of relative economic importance for local aquaculture production and basic biological information is under development to help boost efforts to domesticate and raise the species in commercial systems. The complete cachara mitochondrial genome was obtained by assembling Illumina RNA-seq data from pooled samples. The full mitogenome was found to be 16,576 bp in length, showing the same basic structure, order, and genetic organization observed in other Pimelodidae, with 13 protein-coding genes, 2 rNA genes, 22 trNAs, and a control region. Observed base composition was 24.63% T, 28.47% C, 31.45% A, and 15.44% G. With the exception of NAD6 and eight tRNAs, all of the observed mitochondrial genes were found to be coded on the H strand. A total of 107 SNPs were identified in P. reticulatum mtDNA, 67 of which were located in coding regions. Of these SNPs, 10 result in amino acid changes. Analysis of the obtained sequence with 94 publicly available full Siluriformes mitogenomes resulted in a phylogenetic tree that generally agreed with available phylogenetic proposals for the order. The first report of the complete Pseudoplatystoma reticulatum mitochondrial genome sequence revealed general gene organization, structure, content, and order similar to most vertebrates. Specific sequence and content features were observed and may have functional attributes which are now available for further investigation.

  19. Effect of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA damage and seizures induced by kainic acid in mice.

    PubMed

    Yamamoto, Hiro-aki; Mohanan, Parayanthala V

    2003-07-20

    The effects of alpha-ketoglutarate and oxaloacetate on brain mitochondrial DNA (mtDNA) damage and seizures induced by kainic acid were examined both in vivo and in vitro. An intraperitoneal (ip) injection of kainic acid (45 mg/kg) produced broad-spectrum limbic and severe sustained seizures in all of the treated mice. The seizures were abolished when alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg) was injected intraperitoneally in the animals 1 min before kainic acid administration. In addition, the administration of kainic acid caused damage to mtDNA in brain frontal and middle cortex of mice. These effects were completely abolished by the ip preinjection of alpha-ketoglutarate (2 g/kg) or oxaloacetate (1 g/kg). In vitro exposure of kainic acid (0.25, 0.5 or 1.0 mM) to brain homogenate inflicted damage to mtDNA in a concentration-dependent manner. The damage of mtDNA induced by 1.0 mM kainic acid was attenuated by the co-treatment with alpha-ketoglutarate (2.5 or 5.0 mM) or oxaloacetate (0.75 or 1.0 mM). Furthermore, in vivo and in vitro exposure of kainic acid elicited an increase in lipid peroxidation. However, the increased lipid peroxidation was completely inhibited by cotreatment of alpha-ketoglutarate or oxaloacetate. These results suggest that alpha-keto acids such as alpha-ketoglutarate and oxaloacetate play a role in the inhibition of seizures and subsequent mtDNA damage induced by the excitotoxic/neurotoxic agent, kainic acid.

  20. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.

    PubMed

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects.

  1. Rapid Sequencing of the Bamboo Mitochondrial Genome Using Illumina Technology and Parallel Episodic Evolution of Organelle Genomes in Grasses

    PubMed Central

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Background Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. Methodology/Principal Findings We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Conclusions/Significance Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects. PMID:22272330

  2. Fellow travellers: a concordance of colonization patterns between mice and men in the North Atlantic region.

    PubMed

    Jones, E P; Skirnisson, K; McGovern, T H; Gilbert, M T P; Willerslev, E; Searle, J B

    2012-03-19

    House mice (Mus musculus) are commensals of humans and therefore their phylogeography can reflect human colonization and settlement patterns. Previous studies have linked the distribution of house mouse mitochondrial (mt) DNA clades to areas formerly occupied by the Norwegian Vikings in Norway and the British Isles. Norwegian Viking activity also extended further westwards in the North Atlantic with the settlement of Iceland, short-lived colonies in Greenland and a fleeting colony in Newfoundland in 1000 AD. Here we investigate whether house mouse mtDNA sequences reflect human history in these other regions as well. House mice samples from Iceland, whether from archaeological Viking Age material or from modern-day specimens, had an identical mtDNA haplotype to the clade previously linked with Norwegian Vikings. From mtDNA and microsatellite data, the modern-day Icelandic mice also share the low genetic diversity shown by their human hosts on Iceland. Viking Age mice from Greenland had an mtDNA haplotype deriving from the Icelandic haplotype, but the modern-day Greenlandic mice belong to an entirely different mtDNA clade. We found no genetic association between modern Newfoundland mice and the Icelandic/ancient Greenlandic mice (no ancient Newfoundland mice were available). The modern day Icelandic and Newfoundland mice belong to the subspecies M. m. domesticus, the Greenlandic mice to M. m. musculus. In the North Atlantic region, human settlement history over a thousand years is reflected remarkably by the mtDNA phylogeny of house mice. In Iceland, the mtDNA data show the arrival and continuity of the house mouse population to the present day, while in Greenland the data suggest the arrival, subsequent extinction and recolonization of house mice--in both places mirroring the history of the European human host populations. If house mice arrived in Newfoundland with the Viking settlers at all, then, like the humans, their presence was also fleeting and left no genetic trace. The continuity of mtDNA haplotype in Iceland over 1000 years illustrates that mtDNA can retain the signature of the ancestral house mouse founders. We also show that, in terms of genetic variability, house mouse populations may also track their host human populations.

  3. Plasmodium falciparum-like parasites infecting wild apes in southern Cameroon do not represent a recurrent source of human malaria

    PubMed Central

    Sundararaman, Sesh A.; Liu, Weimin; Keele, Brandon F.; Learn, Gerald H.; Bittinger, Kyle; Mouacha, Fatima; Ahuka-Mundeke, Steve; Manske, Magnus; Sherrill-Mix, Scott; Li, Yingying; Malenke, Jordan A.; Delaporte, Eric; Laurent, Christian; Mpoudi Ngole, Eitel; Kwiatkowski, Dominic P.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Sharp, Paul M.; Bushman, Frederic D.; Hahn, Beatrice H.

    2013-01-01

    Wild-living chimpanzees and gorillas harbor a multitude of Plasmodium species, including six of the subgenus Laverania, one of which served as the progenitor of Plasmodium falciparum. Despite the magnitude of this reservoir, it is unknown whether apes represent a source of human infections. Here, we used Plasmodium species-specific PCR, single-genome amplification, and 454 sequencing to screen humans from remote areas of southern Cameroon for ape Laverania infections. Among 1,402 blood samples, we found 1,000 to be Plasmodium mitochondrial DNA (mtDNA) positive, all of which contained human parasites as determined by sequencing and/or restriction enzyme digestion. To exclude low-abundance infections, we subjected 514 of these samples to 454 sequencing, targeting a region of the mtDNA genome that distinguishes ape from human Laverania species. Using algorithms specifically developed to differentiate rare Plasmodium variants from 454-sequencing error, we identified single and mixed-species infections with P. falciparum, Plasmodium malariae, and/or Plasmodium ovale. However, none of the human samples contained ape Laverania parasites, including the gorilla precursor of P. falciparum. To characterize further the diversity of P. falciparum in Cameroon, we used single-genome amplification to amplify 3.4-kb mtDNA fragments from 229 infected humans. Phylogenetic analysis identified 62 new variants, all of which clustered with extant P. falciparum, providing further evidence that P. falciparum emerged following a single gorilla-to-human transmission. Thus, unlike Plasmodium knowlesi-infected macaques in southeast Asia, African apes harboring Laverania parasites do not seem to serve as a recurrent source of human malaria, a finding of import to ongoing control and eradication measures. PMID:23569255

  4. Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences

    PubMed Central

    Tanaka, Keiko; Tomita, Taketeru; Suzuki, Shingo; Hosomichi, Kazuyoshi; Sano, Kazumi; Doi, Hiroyuki; Kono, Azumi; Inoko, Hidetoshi; Kulski, Jerzy K.; Tanaka, Sho

    2013-01-01

    Hexanchiformes is regarded as a monophyletic taxon, but the morphological and genetic relationships between the five extant species within the order are still uncertain. In this study, we determined the whole mitochondrial DNA (mtDNA) sequences of seven sharks including representatives of the five Hexanchiformes, one squaliform, and one carcharhiniform and inferred the phylogenetic relationships among those species and 12 other Chondrichthyes (cartilaginous fishes) species for which the complete mitogenome is available. The monophyly of Hexanchiformes and its close relation with all other Squaliformes sharks were strongly supported by likelihood and Bayesian phylogenetic analysis of 13,749 aligned nucleotides of 13 protein coding genes and two rRNA genes that were derived from the whole mDNA sequences of the 19 species. The phylogeny suggested that Hexanchiformes is in the superorder Squalomorphi, Chlamydoselachus anguineus (frilled shark) is the sister species to all other Hexanchiformes, and the relations within Hexanchiformes are well resolved as Chlamydoselachus, (Notorynchus, (Heptranchias, (Hexanchus griseus, H. nakamurai))). Based on our phylogeny, we discussed evolutionary scenarios of the jaw suspension mechanism and gill slit numbers that are significant features in the sharks. PMID:24089661

  5. Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples.

    PubMed

    Churchill, Jennifer D; Stoljarova, Monika; King, Jonathan L; Budowle, Bruce

    2018-02-22

    The mitochondrial genome has a number of characteristics that provide useful information to forensic investigations. Massively parallel sequencing (MPS) technologies offer improvements to the quantitative analysis of the mitochondrial genome, specifically the interpretation of mixed mitochondrial samples. Two-person mixtures with nuclear DNA ratios of 1:1, 5:1, 10:1, and 20:1 of individuals from different and similar phylogenetic backgrounds and three-person mixtures with nuclear DNA ratios of 1:1:1 and 5:1:1 were prepared using the Precision ID mtDNA Whole Genome Panel and Ion Chef, and sequenced on the Ion PGM or Ion S5 sequencer (Thermo Fisher Scientific, Waltham, MA, USA). These data were used to evaluate whether and to what degree MPS mixtures could be deconvolved. Analysis was effective in identifying the major contributor in each instance, while SNPs from the minor contributor's haplotype only were identified in the 1:1, 5:1, and 10:1 two-person mixtures. While the major contributor was identified from the 5:1:1 mixture, analysis of the three-person mixtures was more complex, and the mixed haplotypes could not be completely parsed. These results indicate that mixed mitochondrial DNA samples may be interpreted with the use of MPS technologies.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torroni, A.; Chen, Yu.S.; Lott, M.T.

    mtDNA sequence variation was examined in 60 Native Americans (Mixtecs from the Alta, Mixtecs from the Baja, Valley Zapotecs, and Highland Mixe) from southern Mexico by PCR amplification and high-resolution restriction endonuclease analysis. Four groups of mtDNA haplotypes (haplogroups A,B,C, and D) characterize Amerind populations. The comparison of their mtDNA variation with that observed in other populations from Mexico and Central America permits a clear distinction among the different Middle American tribes and raises questions about some of their linguistic affiliations. The males of these population samples were also analyzed for Y-chromosome RFLPs with the probes 49a, 49f, and 12f2.more » This analysis suggests that certain Y-chromosome haplotypes were brought from Asia during the colonization of the Americas, and a differential gene flow was introduced into Native American populations from European males and females. 31 refs., 4 figs., 5 tabs.« less

  7. A broad survey of recombination in animal mitochondria.

    PubMed

    Piganeau, Gwenaël; Gardner, Michael; Eyre-Walker, Adam

    2004-12-01

    Recombination in mitochondrial DNA (mtDNA) remains a controversial topic. Here we present a survey of 279 animal mtDNA data sets, of which 12 were from asexual species. Using four separate tests, we show that there is widespread evidence of recombination; for one test as many as 14.2% of the data sets reject a model of clonal inheritance and in several data sets, including primates, the recombinants can be identified visually. We show that none of the tests give significant results for obligate clonal species (apomictic pathogens) and that the sexual species show significantly greater evidence of recombination than asexual species. For some data sets, such as Macaca nemestrina, additional data sets suggest that the recombinants are not artifacts. For others, it cannot be determined whether the recombinants are real or produced by laboratory error. Either way, the results have important implications for how mtDNA is sequenced and used.

  8. Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers.

    PubMed

    Østbye, K; Bernatchez, L; Naesje, T F; Himberg, K-J M; Hindar, K

    2005-12-01

    We compared mitochondrial DNA and gill-raker number variation in populations of the European whitefish Coregonus lavaretus (L.) species complex to illuminate their evolutionary history, and discuss mechanisms behind diversification. Using single-strand conformation polymorphism (SSCP) and sequencing 528 bp of combined parts of the cytochrome oxidase b (cyt b) and NADH dehydrogenase subunit 3 (ND3) mithochondrial DNA (mtDNA) regions, we documented phylogeographic relationships among populations and phylogeny of mtDNA haplotypes. Demographic events behind geographical distribution of haplotypes were inferred using nested clade analysis (NCA) and mismatch distribution. Concordance between operational taxonomical groups, based on gill-raker numbers, and mtDNA patterns was tested. Three major mtDNA clades were resolved in Europe: a North European clade from northwest Russia to Denmark, a Siberian clade from the Arctic Sea to southwest Norway, and a South European clade from Denmark to the European Alps, reflecting occupation in different glacial refugia. Demographic events inferred from NCA were isolation by distance, range expansion, and fragmentation. Mismatch analysis suggested that clades which colonized Fennoscandia and the Alps expanded in population size 24 500-5800 years before present, with minute female effective population sizes, implying small founder populations during colonization. Gill-raker counts did not commensurate with hierarchical mtDNA clades, and poorly with haplotypes, suggesting recent origin of gill-raker variation. Whitefish designations based on gill-raker numbers were not associated with ancient clades. Lack of congruence in morphology and evolutionary lineages implies that the taxonomy of this species complex should be reconsidered.

  9. The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization.

    PubMed

    Turchi, Chiara; Stanciu, Florin; Paselli, Giorgia; Buscemi, Loredana; Parson, Walther; Tagliabracci, Adriano

    2016-09-01

    To evaluate the pattern of Romanian population from a mitochondrial perspective and to establish an appropriate mtDNA forensic database, we generated a high-quality mtDNA control region dataset from 407 Romanian subjects belonging to four major historical regions: Moldavia, Transylvania, Wallachia and Dobruja. The entire control region (CR) was analyzed by Sanger-type sequencing assays and the resulting 306 different haplotypes were classified into haplogroups according to the most updated mtDNA phylogeny. The Romanian gene pool is mainly composed of West Eurasian lineages H (31.7%), U (12.8%), J (10.8%), R (10.1%), T (9.1%), N (8.1%), HV (5.4%),K (3.7%), HV0 (4.2%), with exceptions of East Asian haplogroup M (3.4%) and African haplogroup L (0.7%). The pattern of mtDNA variation observed in this study indicates that the mitochondrial DNA pool is geographically homogeneous across Romania and that the haplogroup composition reveals signals of admixture of populations of different origin. The PCA scatterplot supported this scenario, with Romania located in southeastern Europe area, close to Bulgaria and Hungary, and as a borderland with respect to east Mediterranean and other eastern European countries. High haplotype diversity (0.993) and nucleotide diversity indices (0.00838±0.00426), together with low random match probability (0.0087) suggest the usefulness of this control region dataset as a forensic database in routine forensic mtDNA analysis and in the investigation of maternal genetic lineages in the Romanian population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The Basque Paradigm: Genetic Evidence of a Maternal Continuity in the Franco-Cantabrian Region since Pre-Neolithic Times

    PubMed Central

    Behar, Doron M.; Harmant, Christine; Manry, Jeremy; van Oven, Mannis; Haak, Wolfgang; Martinez-Cruz, Begoña; Salaberria, Jasone; Oyharçabal, Bernard; Bauduer, Frédéric; Comas, David; Quintana-Murci, Lluis

    2012-01-01

    Different lines of evidence point to the resettlement of much of western and central Europe by populations from the Franco-Cantabrian region during the Late Glacial and Postglacial periods. In this context, the study of the genetic diversity of contemporary Basques, a population located at the epicenter of the Franco-Cantabrian region, is particularly useful because they speak a non-Indo-European language that is considered to be a linguistic isolate. In contrast with genome-wide analysis and Y chromosome data, where the problem of poor time estimates remains, a new timescale has been established for the human mtDNA and makes this genome the most informative marker for studying European prehistory. Here, we aim to increase knowledge of the origins of the Basque people and, more generally, of the role of the Franco-Cantabrian refuge in the postglacial repopulation of Europe. We thus characterize the maternal ancestry of 908 Basque and non-Basque individuals from the Basque Country and immediate adjacent regions and, by sequencing 420 complete mtDNA genomes, we focused on haplogroup H. We identified six mtDNA haplogroups, H1j1, H1t1, H2a5a1, H1av1, H3c2a, and H1e1a1, which are autochthonous to the Franco-Cantabrian region and, more specifically, to Basque-speaking populations. We detected signals of the expansion of these haplogroups at ∼4,000 years before present (YBP) and estimated their separation from the pan-European gene pool at ∼8,000 YBP, antedating the Indo-European arrival to the region. Our results clearly support the hypothesis of a partial genetic continuity of contemporary Basques with the preceding Paleolithic/Mesolithic settlers of their homeland. PMID:22365151

  11. Origins of domestic dog in southern East Asia is supported by analysis of Y-chromosome DNA.

    PubMed

    Ding, Z-L; Oskarsson, M; Ardalan, A; Angleby, H; Dahlgren, L-G; Tepeli, C; Kirkness, E; Savolainen, P; Zhang, Y-P

    2012-05-01

    Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog-wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14,437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13-24 wolf founders, but there was no indication of post-domestication dog-wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog-wolf hybridisation contributed modestly to the dog gene pool.

  12. Origins of domestic dog in Southern East Asia is supported by analysis of Y-chromosome DNA

    PubMed Central

    Ding, Z-L; Oskarsson, M; Ardalan, A; Angleby, H; Dahlgren, L-G; Tepeli, C; Kirkness, E; Savolainen, P; Zhang, Y-P

    2012-01-01

    Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog–wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14 437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13–24 wolf founders, but there was no indication of post-domestication dog–wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog–wolf hybridisation contributed modestly to the dog gene pool. PMID:22108628

  13. Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus) and humans.

    PubMed

    Zsurka, Gábor; Kudina, Tatiana; Peeva, Viktoriya; Hallmann, Kerstin; Elger, Christian E; Khrapko, Konstantin; Kunz, Wolfram S

    2010-09-02

    We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.

  14. Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus) and humans

    PubMed Central

    2010-01-01

    Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee) individuals to assess the detailed mitochondrial DNA (mtDNA) phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i) Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii) A comparison of the ratios of non-synonymous to synonymous changes (dN/dS) among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans. PMID:20813043

  15. The Expansion of mtDNA Haplogroup L3 within and out of Africa.

    PubMed

    Soares, Pedro; Alshamali, Farida; Pereira, Joana B; Fernandes, Verónica; Silva, Nuno M; Afonso, Carla; Costa, Marta D; Musilová, Eliska; Macaulay, Vincent; Richards, Martin B; Cerny, Viktor; Pereira, Luísa

    2012-03-01

    Although fossil remains show that anatomically modern humans dispersed out of Africa into the Near East ∼100 to 130 ka, genetic evidence from extant populations has suggested that non-Africans descend primarily from a single successful later migration. Within the human mitochondrial DNA (mtDNA) tree, haplogroup L3 encompasses not only many sub-Saharan Africans but also all ancient non-African lineages, and its age therefore provides an upper bound for the dispersal out of Africa. An analysis of 369 complete African L3 sequences places this maximum at ∼70 ka, virtually ruling out a successful exit before 74 ka, the date of the Toba volcanic supereruption in Sumatra. The similarity of the age of L3 to its two non-African daughter haplogroups, M and N, suggests that the same process was likely responsible for both the L3 expansion in Eastern Africa and the dispersal of a small group of modern humans out of Africa to settle the rest of the world. The timing of the expansion of L3 suggests a link to improved climatic conditions after ∼70 ka in Eastern and Central Africa rather than to symbolically mediated behavior, which evidently arose considerably earlier. The L3 mtDNA pool within Africa suggests a migration from Eastern Africa to Central Africa ∼60 to 35 ka and major migrations in the immediate postglacial again linked to climate. The largest population size increase seen in the L3 data is 3-4 ka in Central Africa, corresponding to Bantu expansions, leading diverse L3 lineages to spread into Eastern and Southern Africa in the last 3-2 ka.

  16. Phylogeography of Canada Geese (Branta canadensis) in western North America

    USGS Publications Warehouse

    Scribner, K.T.; Talbot, S.L.; Pearce, J.M.; Pierson, Barbara J.; Bollinger, K.S.; Derksen, D.V.

    2003-01-01

    Using molecular genetic markers that differ in mode of inheritance and rate of evolution, we examined levels and partitioning of genetic variation for seven nominal subspecies (11 breeding populations) of Canada Geese (Branta canadensis) in western North America. Gene trees constructed from mtDNA control region sequence data show that subspecies of Canada Geese do not have distinct mtDNA. Large- and small-bodied forms of Canada Geese were highly diverged (0. 077 average sequence divergence) and represent monophyletic groups. A majority (65%) of 20 haplotypes resolved were observed in single breeding locales. However, within both large- and small-bodied forms certain haplotypes occurred across multiple subspecies. Population trees for both nuclear (microsatellites) and mitochondrial markers were generally concordant and provide resolution of population and subspecific relationships indicating incomplete lineage sorting. All populations and subspecies were genetically diverged, but to varying degrees. Analyses of molecular variance, nested-clade and coalescence-based analyses of mtDNA suggest that both historical (past fragmentation) and contemporary forces have been important in shaping current spatial genetic distributions. Gene flow appears to be ongoing though at different rates, even among currently recognized subspecies. The efficacy of current subspecific taxonomy is discussed in light of hypothesized historical vicariance and current demographic trends of management and conservation concern.

  17. MITOCHONDRIAL DNA DEPLETION SYNDROME DUE TO MUTATIONS IN THE RRM2B GENE

    PubMed Central

    Bornstein, Belén; Area, Estela; Flanigan, Kevin M.; Ganesh, Jaya; Jayakar, Parul; Swoboda, Kathryn J.; Coku, Jorida; Naini, Ali; Shanske, Sara; Tanji, Kurenai; Hirano, Michio; DiMauro, Salvatore

    2014-01-01

    Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in The RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in 7 infants from 4 families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at three months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exon 6, 8 and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy. PMID:18504129

  18. Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene.

    PubMed

    Bornstein, Belén; Area, Estela; Flanigan, Kevin M; Ganesh, Jaya; Jayakar, Parul; Swoboda, Kathryn J; Coku, Jorida; Naini, Ali; Shanske, Sara; Tanji, Kurenai; Hirano, Michio; DiMauro, Salvatore

    2008-06-01

    Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in the RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in seven infants from four families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at 3 months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exons 6, 8, and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy.

  19. nrDNA:mtDNA copy number ratios as a comparative metric for evolutionary and conservation genetics.

    PubMed

    Goodall-Copestake, William Paul

    2018-05-12

    Identifying genetic cues of functional relevance is key to understanding the drivers of evolution and increasingly important for the conservation of biodiversity. This study introduces nuclear ribosomal DNA (nrDNA) to mitochondrial DNA (mtDNA) copy number ratios as a metric with which to screen for this functional genetic variation prior to more extensive omics analyses. To illustrate the metric, quantitative PCR was used to estimate nrDNA (18S) to mtDNA (16S) copy number ratios in muscle tissue from samples of two zooplankton species: Salpa thompsoni caught near Elephant Island (Southern Ocean) and S. fusiformis sampled off Gough Island (South Atlantic). Average 18S:16S ratios in these samples were 9:1 and 3:1, respectively. nrDNA 45S arrays and mitochondrial genomes were then deep sequenced to uncover the sources of intra-individual genetic variation underlying these 18S:16S copy number differences. The deep sequencing profiles obtained were consistent with genetic changes resulting from adaptive processes, including an expansion of nrDNA and damage to mtDNA in S. thompsoni, potentially in response to the polar environment. Beyond this example from zooplankton, nrDNA:mtDNA copy number ratios offer a promising metric to help identify genetic variation of functional relevance in animals more broadly.

  20. Origins and genetic features of the Okhotsk people, revealed by ancient mitochondrial DNA analysis.

    PubMed

    Sato, Takehiro; Amano, Tetsuya; Ono, Hiroko; Ishida, Hajime; Kodera, Haruto; Matsumura, Hirofumi; Yoneda, Minoru; Masuda, Ryuichi

    2007-01-01

    In order to investigate the phylogenetic status of the Okhotsk people that were distributed in northern and eastern Hokkaido as well as southern Sakhalin during the fifth to the thirteenth centuries, DNA was carefully extracted from human bone and tooth remains excavated from archaeological sites. The hypervariable region 1 sequences of the mitochondrial DNA (mtDNA) control region were successfully amplified and 16 mtDNA haplotypes were identified from 37 individuals of the Okhotsk people. Of the 16 haplotypes found, 6 were unique to the Okhotsk people, whereas the other 10 were shared by northeastern Asian people that are currently distributed around Sakhalin and downstream of the Amur River. The phylogenetic relationships inferred from mtDNA sequences showed that the Okhotsk people were more closely related to the Nivkhi and Ulchi people among populations of northeastern Asia. In addition, the Okhotsk people had a relatively closer genetic affinity with the Ainu people of Hokkaido, and were likely intermediates of gene flow from the northeastern Asian people to the Ainu people. These findings support the hypothesis that the Okhotsk culture joined the Satsumon culture (direct descendants of the Jomon people) resulting in the Ainu culture, as suggested by previous archaeological and anthropological studies.

  1. Molecular identification of Taenia spp. in the Eurasian lynx (Lynx lynx) from Finland.

    PubMed

    Lavikainen, A; Haukisalmi, V; Deksne, G; Holmala, K; Lejeune, M; Isomursu, M; Jokelainen, P; Näreaho, A; Laakkonen, J; Hoberg, E P; Sukura, A

    2013-04-01

    Cestodes of the genus Taenia are parasites of mammals, with mainly carnivores as definitive and herbivores as intermediate hosts. Various medium-sized cats, Lynx spp., are involved in the life cycles of several species of Taenia. The aim of the present study was to identify Taenia tapeworms in the Eurasian lynx (Lynx lynx) from Finland. In total, 135 tapeworms from 72 lynx were subjected to molecular identification based on sequences of 2 mtDNA regions, the cytochrome c oxidase subunit 1 and the NADH dehydrogenase subunit 1 genes. Available morphological characters of the rostellar hooks and strobila were compared. Two species of Taenia were found: T. laticollis (127 samples) and an unknown Taenia sp. (5 samples). The latter could not be identified to species based on mtDNA, and the rostellar hooks were short relative to those described among other Taenia spp. recorded in felids from the Holarctic region. In the phylogenetic analyses of mtDNA sequences, T. laticollis was placed as a sister species of T. macrocystis, and the unknown Taenia sp. was closely related to T. hydatigena and T. regis. Our analyses suggest that these distinct taeniid tapeworms represent a putative new species of Taenia. The only currently recognized definitive host is L. lynx and the intermediate host is unknown.

  2. Coexistence of minicircular and a highly rearranged mtDNA molecule suggests that recombination shapes mitochondrial genome organization.

    PubMed

    Mao, Meng; Austin, Andrew D; Johnson, Norman F; Dowton, Mark

    2014-03-01

    Recombination has been proposed as a possible mechanism to explain mitochondrial (mt) gene rearrangements, although the issue of whether mtDNA recombination occurs in animals has been controversial. In this study, we sequenced the entire mt genome of the megaspilid wasp Conostigmus sp., which possessed a highly rearranged mt genome. The sequence of the A+T-rich region contained a number of different types of repeats, similar to those reported previously in the nematode Meloidogyne javanica, in which recombination was discovered. In Conostigmus, we detected the end products of recombination: a range of minicircles. However, using isolated (cloned) fragments of the A+T-rich region, we established that some of these minicircles were found to be polymerase chain reaction (PCR) artifacts. It appears that regions with repeats are prone to PCR template switching or PCR jumping. Nevertheless, there is strong evidence that one minicircle is real, as amplification primers that straddle the putative breakpoint junction produce a single strong amplicon from genomic DNA but not from the cloned A+T-rich region. The results provide support for the direct link between recombination and mt gene rearrangement. Furthermore, we developed a model of recombination which is important for our understanding of mtDNA evolution.

  3. Detection of a transient mitochondrial DNA heteroplasmy in the progeny of crossed genetically divergent isolates of arbuscular mycorrhizal fungi.

    PubMed

    de la Providencia, Ivan Enrique; Nadimi, Maryam; Beaudet, Denis; Morales, Gabriela Rodriguez; Hijri, Mohamed

    2013-10-01

    Nonself fusion and nuclear genetic exchange have been documented in arbuscular mycorrhizal fungi (AMF), particularly in Rhizophagus irregularis. However, mitochondrial transmission accompanying nonself fusion of genetically divergent isolates remains unknown. Here, we tested the hypothesis that mitochondrial DNA (mtDNA) heteroplasmy occurs in the progeny of spores, obtained by crossing genetically divergent mtDNAs in R. irregularis isolates. Three isolates of geographically distant locations were used to investigate nonself fusions and mtDNA transmission to the progeny. We sequenced two additional mtDNAs of two R. irregularis isolates and developed isolate-specific size-variable markers in intergenic regions of these isolates and those of DAOM-197198. We achieved three crossing combinations in pre-symbiotic and symbiotic phases. Progeny spores per crossing combination were genotyped using isolate-specific markers. We found evidence that nonself recognition occurs between isolates originating from different continents both in pre-symbiotic and symbiotic phases. Genotyping patterns of individual spores from the progeny clearly showed the presence of markers of the two parental mtDNA haplotypes. Our results demonstrate that mtDNA heteroplasmy occurs in the progeny of the crossed isolates. However, this heteroplasmy appears to be a transient stage because all the live progeny spores that were able to germinate showed only one mtDNA haplotype. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Adult cases of mitochondrial DNA depletion due to TK2 defect: an expanding spectrum.

    PubMed

    Béhin, A; Jardel, C; Claeys, K G; Fagart, J; Louha, M; Romero, N B; Laforêt, P; Eymard, B; Lombès, A

    2012-02-28

    In this study we aim to demonstrate the occurrence of adult forms of TK2 mutations causing progressive mitochondrial myopathy with significant muscle mitochondrial DNA (mtDNA) depletion. Patients' investigations included serum creatine kinase, blood lactate, electromyographic, echocardiographic, and functional respiratory analyses as well as TK2 gene sequencing and TK2 activity measurement. Mitochondrial activities and mtDNA were analyzed in the patients' muscle biopsy. The 3 adult patients with TK2 mutations presented with slowly progressive myopathy compatible with a fairly normal life during decades. Apart from its much slower progression, these patients' phenotype closely resembled that of pediatric cases including early onset, absence of CNS symptoms, generalized muscle weakness predominating on axial and proximal muscles but affecting facial, ocular, and respiratory muscles, typical mitochondrial myopathy with a mosaic pattern of COX-negative and ragged-red fibers, combined mtDNA-dependent respiratory complexes deficiency and mtDNA depletion. In accordance with the disease's relatively slow progression, the residual mtDNA content was higher than that observed in pediatric cases. That difference was not explained by the type of the TK2 mutations or by the residual TK2 activity. TK2 mutations can cause mitochondrial myopathy with a slow progression. Comparison of patients with similar mutations but different disease progression might address potential mechanisms of mtDNA maintenance modulation.

  5. 60,000 years of interactions between Central and Eastern Africa documented by major African mitochondrial haplogroup L2.

    PubMed

    Silva, Marina; Alshamali, Farida; Silva, Paula; Carrilho, Carla; Mandlate, Flávio; Jesus Trovoada, Maria; Černý, Viktor; Pereira, Luísa; Soares, Pedro

    2015-07-27

    Mitochondrial DNA (mtDNA) haplogroup L2 originated in Western Africa but is nowadays spread across the entire continent. L2 movements were previously postulated to be related to the Bantu expansion, but L2 expansions eastwards probably occurred much earlier. By reconstructing the phylogeny of L2 (44 new complete sequences) we provide insights on the complex net of within-African migrations in the last 60 thousand years (ka). Results show that lineages in Southern Africa cluster with Western/Central African lineages at a recent time scale, whereas, eastern lineages seem to be substantially more ancient. Three moments of expansion from a Central African source are associated to L2: (1) one migration at 70-50 ka into Eastern or Southern Africa, (2) postglacial movements (15-10 ka) into Eastern Africa; and (3) the southward Bantu Expansion in the last 5 ka. The complementary population and L0a phylogeography analyses indicate no strong evidence of mtDNA gene flow between eastern and southern populations during the later movement, suggesting low admixture between Eastern African populations and the Bantu migrants. This implies that, at least in the early stages, the Bantu expansion was mainly a demic diffusion with little incorporation of local populations.

  6. 60,000 years of interactions between Central and Eastern Africa documented by major African mitochondrial haplogroup L2

    PubMed Central

    Silva, Marina; Alshamali, Farida; Silva, Paula; Carrilho, Carla; Mandlate, Flávio; Jesus Trovoada, Maria; Černý, Viktor; Pereira, Luísa; Soares, Pedro

    2015-01-01

    Mitochondrial DNA (mtDNA) haplogroup L2 originated in Western Africa but is nowadays spread across the entire continent. L2 movements were previously postulated to be related to the Bantu expansion, but L2 expansions eastwards probably occurred much earlier. By reconstructing the phylogeny of L2 (44 new complete sequences) we provide insights on the complex net of within-African migrations in the last 60 thousand years (ka). Results show that lineages in Southern Africa cluster with Western/Central African lineages at a recent time scale, whereas, eastern lineages seem to be substantially more ancient. Three moments of expansion from a Central African source are associated to L2: (1) one migration at 70–50 ka into Eastern or Southern Africa, (2) postglacial movements (15–10 ka) into Eastern Africa; and (3) the southward Bantu Expansion in the last 5 ka. The complementary population and L0a phylogeography analyses indicate no strong evidence of mtDNA gene flow between eastern and southern populations during the later movement, suggesting low admixture between Eastern African populations and the Bantu migrants. This implies that, at least in the early stages, the Bantu expansion was mainly a demic diffusion with little incorporation of local populations. PMID:26211407

  7. Leber's hereditary optic neuropathy is associated with mitochondrial ND6 T14502C mutation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Fuxin; Zhejiang Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325003; Guan, Minqiang

    2009-11-20

    We report here the clinical, genetic, and molecular characterization of three Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age of onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T14502C (I58V) mutation, which localized at a highly conserved isoleucine at position 58 of ND6, and distinct sets of mtDNA polymorphisms belonging to haplogroups M10a, F1a1, and H2. The occurrence of T14502C mutation in these several genetically unrelated subjects affected by visualmore » impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. Here, mtDNA variants I187T in the ND1, A122V in CO1, S99A in the A6, and V254I in CO3 exhibited an evolutionary conservation, indicating a potential modifying role in the development of visual impairment associated with T14502C mutation in those families. Furthermore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic manifestation of the LHON-associated T14502C mutation in these Chinese families.« less

  8. Toward the resolution of an explosive radiation--a multilocus phylogeny of oceanic dolphins (Delphinidae).

    PubMed

    McGowen, Michael R

    2011-09-01

    Oceanic dolphins (Delphinidae) are the product of a rapid radiation that yielded ∼36 extant species of small to medium-sized cetaceans that first emerged in the Late Miocene. Although they are a charismatic group of organisms that have become poster children for marine conservation, many phylogenetic relationships within Delphinidae remain elusive due to the slow molecular evolution of the group and the difficulty of resolving short branches from successive cladogenic events. Here I combine existing and newly generated sequences from four mitochondrial (mt) genes and 20 nuclear (nu) genes to reconstruct a well-supported phylogenetic hypothesis for Delphinidae. This study compares maximum-likelihood and Bayesian inference methods of several data sets including mtDNA, combined nuDNA, gene trees of individual nuDNA loci, and concatenated mtDNA+nuDNA. In addition, I contrast these standard phylogenetic analyses with the species tree reconstruction method of Bayesian concordance analysis (BCA). Despite finding discordance between mtDNA and individual nuDNA loci, the concatenated matrix recovers a completely resolved and robustly supported phylogeny that is also broadly congruent with BCA trees. This study strongly supports groupings such as Delphininae, Lissodelphininae, Globicephalinae, Sotalia+Delphininae, Steno+Orcaella+Globicephalinae, and Leucopleurus acutus, Lagenorhynchus albirostris, and Orcinus orca as basal delphinid taxa. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Phylogeographic analyses of the pampas cat (Leopardus colocola; Carnivora, Felidae) reveal a complex demographic history

    PubMed Central

    da Silva Santos, Anelisie; Trigo, Tatiane Campos; de Oliveira, Tadeu Gomes; Silveira, Leandro

    2018-01-01

    Abstract The pampas cat is a small felid that occurs in open habitats throughout much of South America. Previous studies have revealed intriguing patterns of morphological differentiation and genetic structure among its populations, as well as molecular evidence for hybridization with the closely related L. tigrinus. Here we report phylogeographic analyses encompassing most of its distribution (focusing particularly on Brazilian specimens, which had been poorly sampled in previous studies), using a novel dataset comprising 2,143 bp of the mitogenome, along with previously reported mtDNA sequences. Our data revealed strong population strutucture and supported a west-to-east colonization process in this species’ history. We detected two population expansion events, one older (ca. 200 thousand years ago [kya]) in western South America and another more recent (ca. 60-50 kya) in eastern areas, coinciding with the expansion of savanna environments in Brazil. Analyses including L. tigrinus individuals bearing introgressed mtDNA from L. colocola showed a complete lack of shared haplotypes between species, indicating that their hybridization was ancient. Finally, we observed a close relationship between Brazilian/Uruguayan L. colocola haplotypes and those sampled in L. tigrinus, indicating that their hybridization was likely related to the demographic expansion of L. colocola into eastern South America. PMID:29668017

  10. Sequence-length variation of mtDNA HVS-I C-stretch in Chinese ethnic groups.

    PubMed

    Chen, Feng; Dang, Yong-hui; Yan, Chun-xia; Liu, Yan-ling; Deng, Ya-jun; Fulton, David J R; Chen, Teng

    2009-10-01

    The purpose of this study was to investigate mitochondrial DNA (mtDNA) hypervariable segment-I (HVS-I) C-stretch variations and explore the significance of these variations in forensic and population genetics studies. The C-stretch sequence variation was studied in 919 unrelated individuals from 8 Chinese ethnic groups using both direct and clone sequencing approaches. Thirty eight C-stretch haplotypes were identified, and some novel and population specific haplotypes were also detected. The C-stretch genetic diversity (GD) values were relatively high, and probability (P) values were low. Additionally, C-stretch length heteroplasmy was observed in approximately 9% of individuals studied. There was a significant correlation (r=-0.961, P<0.01) between the expansion of the cytosine sequence length in the C-stretch of HVS-I and a reduction in the number of upstream adenines. These results indicate that the C-stretch could be a useful genetic maker in forensic identification of Chinese populations. The results from the Fst and dA genetic distance matrix, neighbor-joining tree, and principal component map also suggest that C-stretch could be used as a reliable genetic marker in population genetics.

  11. Ecological niche modelling and nDNA sequencing support a new, morphologically cryptic beetle species unveiled by DNA barcoding.

    PubMed

    Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael

    2011-02-09

    DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species.

  12. Ecological Niche Modelling and nDNA Sequencing Support a New, Morphologically Cryptic Beetle Species Unveiled by DNA Barcoding

    PubMed Central

    Hawlitschek, Oliver; Porch, Nick; Hendrich, Lars; Balke, Michael

    2011-01-01

    Background DNA sequencing techniques used to estimate biodiversity, such as DNA barcoding, may reveal cryptic species. However, disagreements between barcoding and morphological data have already led to controversy. Species delimitation should therefore not be based on mtDNA alone. Here, we explore the use of nDNA and bioclimatic modelling in a new species of aquatic beetle revealed by mtDNA sequence data. Methodology/Principal Findings The aquatic beetle fauna of Australia is characterised by high degrees of endemism, including local radiations such as the genus Antiporus. Antiporus femoralis was previously considered to exist in two disjunct, but morphologically indistinguishable populations in south-western and south-eastern Australia. We constructed a phylogeny of Antiporus and detected a deep split between these populations. Diagnostic characters from the highly variable nuclear protein encoding arginine kinase gene confirmed the presence of two isolated populations. We then used ecological niche modelling to examine the climatic niche characteristics of the two populations. All results support the status of the two populations as distinct species. We describe the south-western species as Antiporus occidentalis sp.n. Conclusion/Significance In addition to nDNA sequence data and extended use of mitochondrial sequences, ecological niche modelling has great potential for delineating morphologically cryptic species. PMID:21347370

  13. Sequence variability in three mitochondrial genes among four roundworm species from wild animals in China.

    PubMed

    Chang, Qiao-Cheng; Gao, Jun-Feng; Sheng, Zhong-Hua; Lou, Yan; Zheng, Xu; Wang, Chun-Ren

    2015-02-01

    Sequence variability in three mitochondrial DNA (mtDNA) regions, namely portions of cytochrome c oxidase subunit 1 (pcox1), NADH dehydrogenase subunit 1 (pnad1) and NADH dehydrogenase subunit 4 (pnad4), for Toxocara canis. Baylisacaris transfuga. Ascaris suum and Parascaris equorum from Canis lupus. Ursus thibetanus. Sus scrofa and Equus burchelli in China were examined. The lengths of the sequences of pcox1, pnad1 and pnad4 were 711 bp, 648 bp and 666 bp, respectively. No intra-species differences were detected in pcox1 for the four examined ascarid species, in pnad1 for T. canis. A. suum and P. equorum, and in pnad4 for B. transfuga and P. equorum. Sequence differences in pnad4 for six roundworm samples of T. canis and P. equorum were 0-0.1% and 0-0.3%, respectively, and were 0-0.3% in pnad1 for six roundworm samples isolate of B. transfuga. The inter-specific sequence differences among four species were 8.7-12.4% for pcox1, 13.9-17.7% for pnad1, and 14.0-25.7% for pnad4. Phylogenetic analyses suggested that the three mtDNA fragments could be used to identify ascarid species in families Ascaridiae and Toxocaridae.

  14. Neanderthals in central Asia and Siberia.

    PubMed

    Krause, Johannes; Orlando, Ludovic; Serre, David; Viola, Bence; Prüfer, Kay; Richards, Michael P; Hublin, Jean-Jacques; Hänni, Catherine; Derevianko, Anatoly P; Pääbo, Svante

    2007-10-18

    Morphological traits typical of Neanderthals began to appear in European hominids at least 400,000 years ago and about 150,000 years ago in western Asia. After their initial appearance, such traits increased in frequency and the extent to which they are expressed until they disappeared shortly after 30,000 years ago. However, because most fossil hominid remains are fragmentary, it can be difficult or impossible to determine unambiguously whether a fossil is of Neanderthal origin. This limits the ability to determine when and where Neanderthals lived. To determine how far to the east Neanderthals ranged, we determined mitochondrial DNA (mtDNA) sequences from hominid remains found in Uzbekistan and in the Altai region of southern Siberia. Here we show that the DNA sequences from these fossils fall within the European Neanderthal mtDNA variation. Thus, the geographic range of Neanderthals is likely to have extended at least 2,000 km further to the east than commonly assumed.

  15. Phylogenetic patterns in populations of Chilean species of the genus Orestias (Teleostei: Cyprinodontidae): results of mitochondrial DNA analysis.

    PubMed

    Lüssen, Arne; Falk, Thomas M; Villwock, Wolfgang

    2003-10-01

    Patterns of molecular genetic differentiation among taxa of the "agassii species complex" (Parenti, 1984) were analysed based on partial mtDNA control region sequences. Special attention has been paid to Chilean populations of Orestias agassii and species from isolated lakes of northern Chile, e.g., O. agassii, Orestias chungarensis, Orestias parinacotensis, Orestias laucaensis, and Orestias ascotanensis. Orestias tschudii, Orestias luteus, and Orestias ispi were analysed comparatively. Our findings support the utility of mtDNA control region sequences for phylogenetic studies within the "agassii species complex" and confirmed the monophyly of this particular lineage, excluding O. luteus. However, the monophyly of further morphologically defined lineages within the "agassii complex" appears doubtful. No support was found for the utility of these data sets for inferring phylogenetic relationships between more distantly related taxa originating from Lake Titicaca.

  16. HmtDB 2016: data update, a better performing query system and human mitochondrial DNA haplogroup predictor.

    PubMed

    Clima, Rosanna; Preste, Roberto; Calabrese, Claudia; Diroma, Maria Angela; Santorsola, Mariangela; Scioscia, Gaetano; Simone, Domenico; Shen, Lishuang; Gasparre, Giuseppe; Attimonelli, Marcella

    2017-01-04

    The HmtDB resource hosts a database of human mitochondrial genome sequences from individuals with healthy and disease phenotypes. The database is intended to support both population geneticists as well as clinicians undertaking the task to assess the pathogenicity of specific mtDNA mutations. The wide application of next-generation sequencing (NGS) has provided an enormous volume of high-resolution data at a low price, increasing the availability of human mitochondrial sequencing data, which called for a cogent and significant expansion of HmtDB data content that has more than tripled in the current release. We here describe additional novel features, including: (i) a complete, user-friendly restyling of the web interface, (ii) links to the command-line stand-alone and web versions of the MToolBox package, an up-to-date tool to reconstruct and analyze human mitochondrial DNA from NGS data and (iii) the implementation of the Reconstructed Sapiens Reference Sequence (RSRS) as mitochondrial reference sequence. The overall update renders HmtDB an even more handy and useful resource as it enables a more rapid data access, processing and analysis. HmtDB is accessible at http://www.hmtdb.uniba.it/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Genetic variability among Trichuris ovis isolates from different hosts in Guangdong Province, China revealed by sequences of three mitochondrial genes.

    PubMed

    Wang, Yan; Liu, Guo-Hua; Li, Jia-Yuan; Xu, Min-Jun; Ye, Yong-Gang; Zhou, Dong-Hui; Song, Hui-Qun; Lin, Rui-Qing; Zhu, Xing-Quan

    2013-02-01

    This study examined sequence variation in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunit 5 (nad5) and cytochrome b (cytb), among Trichuris ovis isolates from different hosts in Guangdong Province, China. A portion of the cox1 (pcox1), nad5 (pnad5) and cytb (pcytb) genes was amplified separately from individual whipworms by PCR, and was subjected to sequencing from both directions. The size of the sequences of pcox1, pnad5 and pcytb was 618, 240 and 464 bp, respectively. Although the intra-specific sequence variations within T. ovis were 0-0.8% for pcox1, 0-0.8% for pnad5 and 0-1.9% for pcytb, the inter-specific sequence differences among members of the genus Trichuris were significantly higher, being 24.3-26.5% for pcox1, 33.7-56.4% for pnad5 and 24.8-26.1% for pcytb, respectively. Phylogenetic analyses using combined sequences of pcox1, pnad5 and pcytb, with three different computational algorithms (maximum likelihood, maximum parsimony and Bayesian inference), indicated that all of the T. ovis isolates grouped together with high statistical support. These findings demonstrated the existence of intra-specific variation in mtDNA sequences among T. ovis isolates from different hosts, and have implications for studying molecular epidemiology and population genetics of T. ovis.

  18. mtDNA variation in caste populations of Andhra Pradesh, India.

    PubMed

    Bamshad, M; Fraley, A E; Crawford, M H; Cann, R L; Busi, B R; Naidu, J M; Jorde, L B

    1996-02-01

    Various anthropological analyses have documented extensive regional variation among populations on the subcontinent of India using morphological, protein, blood group, and nuclear DNA polymorphisms. These patterns are the product of complex population structure (genetic drift, gene flow) and a population history noted for numerous branching events. As a result, the interpretation of relationships among caste populations of South India and between Indians and continental populations remains controversial. The Hindu caste system is a general model of genetic differentiation among endogamous populations stratified by social forces (e.g., religion and occupation). The mitochondrial DNA (mtDNA) molecule has unique properties that facilitate the exploration of population structure. We analyzed 36 Hindu men born in Andhra Pradesh who were unrelated matrilineally through at least 3 generations and who represent 4 caste populations: Brahmin (9), Yadava (10), Kapu (7), and Relli (10). Individuals from Africa (36), Asia (36), and Europe (36) were sampled for comparison. A 200-base-pair segment of hypervariable segment 2 (HVS2) of the mtDNA control region was sequenced in all individuals. In the Indian castes 25 distinct haplotypes are identified. Aside from the Cambridge reference sequence, only two haplotypes are shared between caste populations. Middle castes form a highly supported cluster in a neighbor-joining network. Mean nucleotide diversity within each caste is 0.015, 0.012, 0.011, and 0.012 for the Brahmin, Yadava, Kapu, and Relli, respectively. mtDNA variation is highly structured between castes (GST = 0.17; p < 0.002). The effects of social structure on mtDNA variation are much greater than those on variation measured by traditional markers. Explanations for this discordance include (1) the higher resolving power of mtDNA, (2) sex-dependent gene flow, (3) differences in male and female effective population sizes, and (4) elements of the kinship structure. Thirty distinct haplotypes are found in Africans, 17 in Asians, and 13 in Europeans. Mean nucleotide diversity is 0.019, 0.014, 0.009, and 0.007 for Africans, Indians, Asians, and Europeans, respectively. These populations are highly structured geographically (GST = 0.15; p < 0.001). The caste populations of Andhra Pradesh cluster more often with Africans than with Asians or Europeans. This is suggestive of admixture with African populations.

  19. Different mutation patterns of mitochondrial DNA displacement-loop in hepatocellular carcinomas induced by N-nitrosodiethylamine and a choline-deficient l-amino acid-defined diet in rats.

    PubMed

    Onishi, Mariko; Sokuza, Yui; Nishikawa, Tomoki; Mori, Chiharu; Uwataki, Kimiko; Honoki, Kanya; Tsujiuchi, Toshifumi

    2007-10-12

    Mutations of the mitochondria DNA (mtDNA) displacement loop (D-loop) were investigated to clarify different changes of exogenous and endogenous liver carcinogenesis in rats. We induced hepatocellular carcinomas (HCCs) in rats with N-nitrosodiethylamine (DEN) and a choline-deficient l-amino acid-defined (CDAA) diet. DNAs were extracted from 10 HCCs induced by DEN and 10 HCCs induced by the CDAA diet. To identify mutations in mtDNA D-loop, polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis, followed by nucleotide sequencing, was performed. Mutations were detected in 5 out of 10 HCCs (50%) induced by DEN. Four out of 5 mutations were G/C to A/T transitions at positions 15707, 15717, 15930, and 16087, and one T/A to C/G transition at position 15559. By contrast, no mutations were found in 10 HCCs induced by the CDAA diet. These results demonstrated that mutations in mtDNA D-loop occur in rat HCCs induced by DEN but not by the CDAA diet, suggesting that mtDNA D-loop is a target of exogenous liver carcinogenesis in rats.

  20. Siberian population of the New Stone Age: mtDNA haplotype diversity in the ancient population from the Ust'-Ida I burial ground, dated 4020-3210 BC by 14C.

    PubMed

    Naumova O, Y u; Rychkov S, Y u

    1998-03-01

    On the basis of analysis of mtDNA from skeletal remains, dated by 14C 4020-3210 BC, from the Ust'-Ida I Neolithic burial ground in Cis-Baikal area of Siberia, we obtained genetic characteristics of the ancient Mongoloid population. Using the 7 restriction enzymes for the analysis of site's polymorphism in 16,106-16,545 region of mtDNA, we studied the structure of the most frequent DNA haplotypes, and estimated the intrapopulational nucleotide diversity of the Neolithic population. Comparison of the Neolithic and modern indigeneous populations from Siberia, Mongolia and Ural showed, that the ancient Siberian population is one of the ancestors of the modern population of Siberia. From genetic distance, in the assumption of constant nucleotide substitution rate, we estimated the divergence time between the Neolithic and the modern Siberian population. This divergence time (5572 years ago) is conformed to the age of skeletal remains (5542-5652 years). With use of the 14C dates of the skeletal remains, nucleotide substitution rate in mtDNA was estimated as 1% sequence divergence for 8938-9115 years.

  1. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs.

    PubMed Central

    Horai, S; Hayasaka, K; Kondo, R; Tsugane, K; Takahata, N

    1995-01-01

    We analyzed the complete mitochondrial DNA (mtDNA) sequences of three humans (African, European, and Japanese), three African apes (common and pygmy chimpanzees, and gorilla), and one orangutan in an attempt to estimate most accurately the substitution rates and divergence times of hominoid mtDNAs. Nonsynonymous substitutions and substitutions in RNA genes have accumulated with an approximately clock-like regularity. From these substitutions and under the assumption that the orangutan and African apes diverged 13 million years ago, we obtained a divergence time for humans and chimpanzees of 4.9 million years. This divergence time permitted calibration of the synonymous substitution rate (3.89 x 10(-8)/site per year). To obtain the substitution rate in the displacement (D)-loop region, we compared the three human mtDNAs and measured the relative abundance of substitutions in the D-loop region and at synonymous sites. The estimated substitution rate in the D-loop region was 7.00 x 10(-8)/site per year. Using both synonymous and D-loop substitutions, we inferred the age of the last common ancestor of the human mtDNAs as 143,000 +/- 18,000 years. The shallow ancestry of human mtDNAs, together with the observation that the African sequence is the most diverged among humans, strongly supports the recent African origin of modern humans, Homo sapiens sapiens. PMID:7530363

  2. Multilocus Phylogeography of the Treefrog Scinax eurydice (Anura, Hylidae) Reveals a Plio-Pleistocene Diversification in the Atlantic Forest.

    PubMed

    Menezes, Lucas; Canedo, Clarissa; Batalha-Filho, Henrique; Garda, Adrian Antonio; Gehara, Marcelo; Napoli, Marcelo Felgueiras

    2016-01-01

    We aim to evaluate the genetic structure of an Atlantic Forest amphibian species, Scinax eurydice, testing the congruence among patterns identified and proposed by the literature for Pleistocene refugia, microrefugia, and geographic barriers to gene flow such as major rivers. Furthermore, we aim to evaluate predictions of such barriers and refugia on the genetic structure of the species, such as presence/absence of dispersal, timing since separation, and population expansions/contractions. We sequenced mitochondrial and nuclear genetic markers on 94 tissue samples from 41 localities. We inferred a gene tree and estimated genetic distances using mtDNA sequences. We then ran population clustering and assignment methods, AMOVA, and estimated migration rates among populations identified through mtDNA and nDNA analyses. We used a dated species tree, skyline plots, and summary statistics to evaluate concordance between population's distributions and geographic barriers and Pleistocene refugia. Scinax eurydice showed high mtDNA divergences and four clearly distinct mtDNA lineages. Species tree and population assignment tests supported the existence of two major clades corresponding to northeastern and southeastern Atlantic Forest in Brazil, each one composed of two other clades. Lineage splitting events occurred from late Pliocene to Pleistocene. We identified demographic expansions in two clades, and inexistent to low levels of migrations among different populations. Genetic patterns and demographic data support the existence of two northern Refuge and corroborate microrefugia south of the Doce/Jequitinhonha Rivers biogeographic divide. The results agree with a scenario of recent demographic expansion of lowland taxa. Scinax eurydice comprises a species complex, harboring undescribed taxa consistent with Pleistocene refugia. Two rivers lie at the boundaries among populations and endorse their role as secondary barriers to gene flow.

  3. Multilocus Phylogeography of the Treefrog Scinax eurydice (Anura, Hylidae) Reveals a Plio-Pleistocene Diversification in the Atlantic Forest

    PubMed Central

    Menezes, Lucas; Canedo, Clarissa; Batalha-Filho, Henrique; Garda, Adrian Antonio; Gehara, Marcelo; Napoli, Marcelo Felgueiras

    2016-01-01

    We aim to evaluate the genetic structure of an Atlantic Forest amphibian species, Scinax eurydice, testing the congruence among patterns identified and proposed by the literature for Pleistocene refugia, microrefugia, and geographic barriers to gene flow such as major rivers. Furthermore, we aim to evaluate predictions of such barriers and refugia on the genetic structure of the species, such as presence/absence of dispersal, timing since separation, and population expansions/contractions. We sequenced mitochondrial and nuclear genetic markers on 94 tissue samples from 41 localities. We inferred a gene tree and estimated genetic distances using mtDNA sequences. We then ran population clustering and assignment methods, AMOVA, and estimated migration rates among populations identified through mtDNA and nDNA analyses. We used a dated species tree, skyline plots, and summary statistics to evaluate concordance between population’s distributions and geographic barriers and Pleistocene refugia. Scinax eurydice showed high mtDNA divergences and four clearly distinct mtDNA lineages. Species tree and population assignment tests supported the existence of two major clades corresponding to northeastern and southeastern Atlantic Forest in Brazil, each one composed of two other clades. Lineage splitting events occurred from late Pliocene to Pleistocene. We identified demographic expansions in two clades, and inexistent to low levels of migrations among different populations. Genetic patterns and demographic data support the existence of two northern Refuge and corroborate microrefugia south of the Doce/Jequitinhonha Rivers biogeographic divide. The results agree with a scenario of recent demographic expansion of lowland taxa. Scinax eurydice comprises a species complex, harboring undescribed taxa consistent with Pleistocene refugia. Two rivers lie at the boundaries among populations and endorse their role as secondary barriers to gene flow. PMID:27248688

  4. Multi-locus DNA sequence data reveal a history of deep cryptic vicariance and habitat-driven convergence in the desert night lizard Xantusia vigilis species complex (Squamata: Xantusiidae).

    PubMed

    Leavitt, Dean H; Bezy, Robert L; Crandall, Keith A; Sites, Jack W

    2007-11-01

    The lizard genus Xantusia of southwestern North America has received recent attention in relation to delimiting species. Using more than 500 lizards from 156 localities, we further test hypothesized species boundaries and clarify phylogeographical patterns, particularly in regions of potential secondary contact. We sequenced the entire mitochondrial cytochrome b gene for every lizard in the study, plus a second mitochondrial DNA (mtDNA) region and two nuclear introns for subsets of the total sample. Phylogenetic analyses of the mtDNA recover a well-resolved, novel hypothesis for species in the Xantusia vigilis complex. The nuclear DNA (nDNA) data provide independent support for the recognition of X. arizonae, X. bezyi and X. wigginsi. Differences between the respective mtDNA and nDNA topologies result from either the effects of lineage sorting or ancient introgression. Nuclear data confirm the inference that some populations of X. vigilis in northwestern Arizona converged on rock-crevice-dwelling morphology and are not X. arizonae with an introgressed X. vigilis mtDNA genome. The historical independence of ancient cryptic lineages of Xantusia in southern California is also corroborated, though limited introgression is detected. Our proposed biogeographical scenario indicates that diversification of this group was driven by vicariance beginning in the late Miocene. Additionally, Pleistocene climatical changes influenced Xantusia distribution, and the now inhospitable Colorado Desert previously supported night lizard presence. The current taxonomy of the group likely underestimates species diversity within the group, and our results collectively show that while convergence on the rock-crevice-dwelling morphology is one hallmark of Xantusia evolution, morphological stasis is paradoxically another.

  5. Mitochondrial DNA history of Sri Lankan ethnic people: their relations within the island and with the Indian subcontinental populations.

    PubMed

    Ranaweera, Lanka; Kaewsutthi, Supannee; Win Tun, Aung; Boonyarit, Hathaichanoke; Poolsuwan, Samerchai; Lertrit, Patcharee

    2014-01-01

    Located only a short distance off the southernmost shore of the Greater Indian subcontinent, the island of Sri Lanka has long been inhabited by various ethnic populations. Mainly comprising the Vedda, Sinhalese (Up- and Low-country) and Tamil (Sri Lankan and Indian); their history of settlements on the island and the biological relationships among them have remained obscure. It has been hypothesized that the Vedda was probably the earliest inhabitants of the area, followed by Sinhalese and Tamil from the Indian mainland. This study, in which 271 individuals, representing the Sri Lankan ethnic populations mentioned, were typed for their mitochondrial DNA (mtDNA) hypervariable segment 1 (HVS-1) and part of hypervariable segment 2 (HVS-2), provides implications for their settlement history on the island. From the phylogenetic, principal coordinate and analysis of molecular variance results, the Vedda occupied a position separated from all other ethnic people of the island, who formed relatively close affiliations among themselves, suggesting a separate origin of the former. The haplotypes and analysis of molecular variance revealed that Vedda people's mitochondrial sequences are more related to the Sinhalese and Sri Lankan Tamils' than the Indian Tamils' sequences. MtDNA haplogroup analysis revealed that several West Eurasian haplogroups as well as Indian-specific mtDNA clades were found amongst the Sri Lankan populations. Through a comparison with the mtDNA HVS-1 and part of HVS-2 of Indian database, both Tamils and Sinhalese clusters were affiliated with Indian subcontinent populations than Vedda people who are believed to be the native population of the island of Sri Lanka.

  6. Capturing the Biofuel Wellhead and Powerhouse: The Chloroplast and Mitochondrial Genomes of the Leguminous Feedstock Tree Pongamia pinnata

    PubMed Central

    Kazakoff, Stephen H.; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T.; Gresshoff, Peter M.

    2012-01-01

    Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® ‘Second Generation DNA Sequencing (2GS)’ and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites. PMID:23272141

  7. Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata.

    PubMed

    Kazakoff, Stephen H; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T; Gresshoff, Peter M

    2012-01-01

    Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® 'Second Generation DNA Sequencing (2GS)' and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites.

  8. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  9. A genomic landscape of mitochondrial DNA insertions in the pig nuclear genome provides evolutionary signatures of interspecies admixture.

    PubMed

    Schiavo, Giuseppina; Hoffmann, Orsolya Ivett; Ribani, Anisa; Utzeri, Valerio Joe; Ghionda, Marco Ciro; Bertolini, Francesca; Geraci, Claudia; Bovo, Samuele; Fontanesi, Luca

    2017-10-01

    Nuclear DNA sequences of mitochondrial origin (numts) are derived by insertion of mitochondrial DNA (mtDNA), into the nuclear genome. In this study, we provide, for the first time, a genome picture of numts inserted in the pig nuclear genome. The Sus scrofa reference nuclear genome (Sscrofa10.2) was aligned with circularized and consensus mtDNA sequences using LAST software. A total of 430 numt sequences that may represent 246 different numt integration events (57 numt regions determined by at least two numt sequences and 189 singletons) were identified, covering about 0.0078% of the nuclear genome. Numt integration events were correlated (0.99) to the chromosome length. The longest numt sequence (about 11 kbp) was located on SSC2. Six numts were sequenced and PCR amplified in pigs of European commercial and local pig breeds, of the Chinese Meishan breed and in European wild boars. Three of them were polymorphic for the presence or absence of the insertion. Surprisingly, the estimated age of insertion of two of the three polymorphic numts was more ancient than that of the speciation time of the Sus scrofa, supporting that these polymorphic sites were originated from interspecies admixture that contributed to shape the pig genome. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  10. Molecular genetic and morphological analyses of the African wild dog (Lycaon pictus).

    PubMed

    Girman, D J; Kat, P W; Mills, M G; Ginsberg, J R; Borner, M; Wilson, V; Fanshawe, J H; Fitzgibbon, C; Lau, L M; Wayne, R K

    1993-01-01

    African wild dog populations have declined precipitously during the last 100 years in eastern Africa. The possible causes of this decline include a reduction in prey abundance and habitat; disease; and loss of genetic variability accompanied by inbreeding depression. We examined the levels of genetic variability and distinctiveness among populations of African wild dogs using mitochondrial DNA (mtDNA) restriction site and sequence analyses and multivariate analysis of cranial and dental measurements. Our results indicate that the genetic variability of eastern African wild dog populations is comparable to that of southern Africa and similar to levels of variability found in other large canids. Southern and eastern populations of wild dogs show about 1% divergence in mtDNA sequence and form two monophyletic assemblages containing three mtDNA genotypes each. No genotypes are shared between the two regions. With one exception, all wild dogs examined from zoos had southern African genotypes. Morphological analysis supports the distinction of eastern and southern African wild dog populations, and we suggest they should be considered separate subspecies. An eastern African wild dog breeding program should be initiated to ensure preservation of the eastern African form and to slow the loss of genetic variability that, while not yet apparent, will inevitably occur if wild populations continue to decline. Finally, we examined the phylogenetic relationships of wild dogs to other wolf-like canids through analysis of 736 base pairs (bp) of cytochrome b sequence and showed wild dogs to belong to a phylogenetically distinct lineage of the wolf-like canids.

  11. Minding the gap: Frequency of indels in mtDNA control region sequence data and influence on population genetic analyses

    USGS Publications Warehouse

    Pearce, J.M.

    2006-01-01

    Insertions and deletions (indels) result in sequences of various lengths when homologous gene regions are compared among individuals or species. Although indels are typically phylogenetically informative, occurrence and incorporation of these characters as gaps in intraspecific population genetic data sets are rarely discussed. Moreover, the impact of gaps on estimates of fixation indices, such as FST, has not been reviewed. Here, I summarize the occurrence and population genetic signal of indels among 60 published studies that involved alignments of multiple sequences from the mitochondrial DNA (mtDNA) control region of vertebrate taxa. Among 30 studies observing indels, an average of 12% of both variable and parsimony-informative sites were composed of these sites. There was no consistent trend between levels of population differentiation and the number of gap characters in a data block. Across all studies, the average influence on estimates of ??ST was small, explaining only an additional 1.8% of among population variance (range 0.0-8.0%). Studies most likely to observe an increase in ??ST with the inclusion of gap characters were those with < 20 variable sites, but a near equal number of studies with few variable sites did not show an increase. In contrast to studies at interspecific levels, the influence of indels for intraspecific population genetic analyses of control region DNA appears small, dependent upon total number of variable sites in the data block, and related to species-specific characteristics and the spatial distribution of mtDNA lineages that contain indels. ?? 2006 Blackwell Publishing Ltd.

  12. Genome Analysis of the Domestic Dog (Korean Jindo) by Massively Parallel Sequencing

    PubMed Central

    Kim, Ryong Nam; Kim, Dae-Soo; Choi, Sang-Haeng; Yoon, Byoung-Ha; Kang, Aram; Nam, Seong-Hyeuk; Kim, Dong-Wook; Kim, Jong-Joo; Ha, Ji-Hong; Toyoda, Atsushi; Fujiyama, Asao; Kim, Aeri; Kim, Min-Young; Park, Kun-Hyang; Lee, Kang Seon; Park, Hong-Seog

    2012-01-01

    Although pioneering sequencing projects have shed light on the boxer and poodle genomes, a number of challenges need to be met before the sequencing and annotation of the dog genome can be considered complete. Here, we present the DNA sequence of the Jindo dog genome, sequenced to 45-fold average coverage using Illumina massively parallel sequencing technology. A comparison of the sequence to the reference boxer genome led to the identification of 4 675 437 single nucleotide polymorphisms (SNPs, including 3 346 058 novel SNPs), 71 642 indels and 8131 structural variations. Of these, 339 non-synonymous SNPs and 3 indels are located within coding sequences (CDS). In particular, 3 non-synonymous SNPs and a 26-bp deletion occur in the TCOF1 locus, implying that the difference observed in cranial facial morphology between Jindo and boxer dogs might be influenced by those variations. Through the annotation of the Jindo olfactory receptor gene family, we found 2 unique olfactory receptor genes and 236 olfactory receptor genes harbouring non-synonymous homozygous SNPs that are likely to affect smelling capability. In addition, we determined the DNA sequence of the Jindo dog mitochondrial genome and identified Jindo dog-specific mtDNA genotypes. This Jindo genome data upgrade our understanding of dog genomic architecture and will be a very valuable resource for investigating not only dog genetics and genomics but also human and dog disease genetics and comparative genomics. PMID:22474061

  13. The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome

    PubMed Central

    Nedelcu, Aurora M.; Lee, Robert W.; Lemieux, Claude; Gray, Michael W.; Burger, Gertraud

    2000-01-01

    Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced–derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced–derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF204057.] PMID:10854413

  14. Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis.

    PubMed

    Shidara, Yujiro; Yamagata, Kumi; Kanamori, Takashi; Nakano, Kazutoshi; Kwong, Jennifer Q; Manfredi, Giovanni; Oda, Hideaki; Ohta, Shigeo

    2005-03-01

    The role of mitochondrial dysfunction in cancer has been a subject of great interest and much ongoing investigation. Although most cancer cells harbor somatic mutations in mitochondrial DNA (mtDNA), the question of whether such mutations contribute to the promotion of carcinomas remains unsolved. Here we used trans-mitochondrial hybrids (cybrids) containing a common HeLa nucleus and mtDNA of interest to compare the role of mtDNA against the common nuclear background. We constructed cybrids with or without a homoplasmic pathogenic point mutation at nucleotide position 8,993 or 9,176 in the mtDNA ATP synthase subunit 6 gene (MTATP6) derived from patients with mitochondrial encephalomyopathy. When the cybrids were transplanted into nude mice, the MTATP6 mutations conferred an advantage in the early stage of tumor growth. The mutant cybrids also increased faster than wild type in culture. To complement the mtDNA mutations, we transfected a wild-type nuclear version of MTATP, whose codons were converted to the universal genetic codes containing a mitochondrial target sequence, into the nucleus of cybrids carrying mutant MTATP6. The restoration of MTATP slowed down the growth of tumor in transplantation. Conversely, expression of a mutant nuclear version of MTATP6 in the wild-type cybrids declined respiration and accelerated the tumor growth. These findings showed that the advantage in tumor growth depended upon the MTATP6 function but was not due to secondary nuclear mutations caused by the mutant mitochondria. Because apoptosis occurred less frequently in the mutant versus wild-type cybrids in cultures and tumors, the pathogenic mtDNA mutations seem to promote tumors by preventing apoptosis.

  15. Nuclear markers confirm taxonomic status and relationships among highly endangered and closely related right whale species

    PubMed Central

    Gaines, C.A; Hare, M.P; Beck, S.E; Rosenbaum, H.C

    2005-01-01

    Right whales (genus: Eubalaena) are among the most endangered mammals, yet their taxonomy and phylogeny have been questioned. A phylogenetic hypothesis based on mitochondrial DNA (mtDNA) variation recently prompted a taxonomic revision, increasing the number of right whale species to three. We critically evaluated this hypothesis using sequence data from 13 nuclear DNA (nuDNA) loci as well as the mtDNA control region. Fixed diagnostic characters among the nuclear markers strongly support the hypothesis of three genetically distinct species, despite the lack of any diagnostic morphological characters. A phylogenetic analysis of all data produced a strict consensus cladogram with strong support at nodes that define each right whale species as well as relationships among species. Results showed very little conflict among the individual partitions as well as congruence between the mtDNA and nuDNA datasets. These data clearly demonstrate the strength of using numerous independent genetic markers during a phylogenetic analysis of closely related species. In evaluating phylogenetic support contributed by individual loci, 11 of the 14 loci provided support for at least one of the nodes of interest to this study. Only a single marker (mtDNA control region) provided support at all four nodes. A study using any single nuclear marker would have failed to support the proposed phylogeny, and a strong phylogenetic hypothesis was only revealed by the simultaneous analysis of many nuclear loci. In addition, nuDNA and mtDNA data provided complementary levels of support at nodes of different evolutionary depth indicating that the combined use of mtDNA and nuDNA data is both practical and desirable. PMID:15846869

  16. Limited Phylogeographic Signal in Sex-Linked and Autosomal Loci Despite Geographically, Ecologically, and Phenotypically Concordant Structure of mtDNA Variation in the Holarctic Avian Genus Eremophila

    PubMed Central

    Drovetski, Sergei V.; Raković, Marko; Semenov, Georgy; Fadeev, Igor V.; Red’kin, Yaroslav A.

    2014-01-01

    Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early - Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck's lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species. PMID:24498139

  17. Root-knot nematodes in golf course greens of the western United States

    USDA-ARS?s Scientific Manuscript database

    A survey of 238 golf courses in ten of the Western U.S. found root-knot nematodes (Meloidogyne spp.) in 60 % of the putting greens sampled. Sequence and phylogenetic analyses of 18S rRNA, D2-D3 of 28S rRNA, ITS-rRNA and mtDNA gene sequences were used to identify specimens from 110 golf courses. The...

  18. Fellow travellers: a concordance of colonization patterns between mice and men in the North Atlantic region

    PubMed Central

    2012-01-01

    Background House mice (Mus musculus) are commensals of humans and therefore their phylogeography can reflect human colonization and settlement patterns. Previous studies have linked the distribution of house mouse mitochondrial (mt) DNA clades to areas formerly occupied by the Norwegian Vikings in Norway and the British Isles. Norwegian Viking activity also extended further westwards in the North Atlantic with the settlement of Iceland, short-lived colonies in Greenland and a fleeting colony in Newfoundland in 1000 AD. Here we investigate whether house mouse mtDNA sequences reflect human history in these other regions as well. Results House mice samples from Iceland, whether from archaeological Viking Age material or from modern-day specimens, had an identical mtDNA haplotype to the clade previously linked with Norwegian Vikings. From mtDNA and microsatellite data, the modern-day Icelandic mice also share the low genetic diversity shown by their human hosts on Iceland. Viking Age mice from Greenland had an mtDNA haplotype deriving from the Icelandic haplotype, but the modern-day Greenlandic mice belong to an entirely different mtDNA clade. We found no genetic association between modern Newfoundland mice and the Icelandic/ancient Greenlandic mice (no ancient Newfoundland mice were available). The modern day Icelandic and Newfoundland mice belong to the subspecies M. m. domesticus, the Greenlandic mice to M. m. musculus. Conclusions In the North Atlantic region, human settlement history over a thousand years is reflected remarkably by the mtDNA phylogeny of house mice. In Iceland, the mtDNA data show the arrival and continuity of the house mouse population to the present day, while in Greenland the data suggest the arrival, subsequent extinction and recolonization of house mice - in both places mirroring the history of the European human host populations. If house mice arrived in Newfoundland with the Viking settlers at all, then, like the humans, their presence was also fleeting and left no genetic trace. The continuity of mtDNA haplotype in Iceland over 1000 years illustrates that mtDNA can retain the signature of the ancestral house mouse founders. We also show that, in terms of genetic variability, house mouse populations may also track their host human populations. PMID:22429664

  19. Integrated Analyses of Cuticular Hydrocarbons, Chromosome and mtDNA in the Neotropical Social Wasp Mischocyttarus consimilis Zikán (Hymenoptera, Vespidae).

    PubMed

    Cunha, D A S; Menezes, R S T; Costa, M A; Lima, S M; Andrade, L H C; Antonialli, W F

    2017-12-01

    In the present work, we explored multiple data from different biological levels such as cuticular hydrocarbons, chromosomal features, and mtDNA sequences in the Neotropical social wasp Mischocyttarus consimilis (J.F. Zikán). Particularly, we explored the genetic and chemical differentiation level within and between populations of this insect. Our dataset revealed shallow intraspecific differentiation in M. consimilis. The similarity among the analyzed samples can probably be due to the geographical proximity where the colonies were sampled, and we argue that Paraná River did not contribute effectively as a historical barrier to this wasp.

  20. DNA recombination protein-dependent mechanism of homoplasmy and its proposed functions.

    PubMed

    Shibata, Takehiko; Ling, Feng

    2007-01-01

    Homoplasmy is a basic genetic state of mitochondria, in which all of the hundreds to thousands of mitochondrial (mt)DNA copies within a cell or an individual have the same nucleotide-sequence. It was recently found that "vegetative segregation" to generate homoplasmic cells is an active process under genetic control. In the yeast Saccharomyces cerevisiae, the Mhr1 protein which catalyzes a key reaction in mtDNA homologous recombination, plays a pivotal role in vegetative segregation. Conversely, within the nuclear genome, homologous DNA recombination causes genetic diversity. Considering these contradictory roles of this key reaction in DNA recombination, possible functions of homoplasmy are discussed.

Top