Sample records for complete quantum theory

  1. Superadditivity of two quantum information resources

    PubMed Central

    Nawareg, Mohamed; Muhammad, Sadiq; Horodecki, Pawel; Bourennane, Mohamed

    2017-01-01

    Entanglement is one of the most puzzling features of quantum theory and a principal resource for quantum information processing. It is well known that in classical information theory, the addition of two classical information resources will not lead to any extra advantages. On the contrary, in quantum information, a spectacular phenomenon of the superadditivity of two quantum information resources emerges. It shows that quantum entanglement, which was completely absent in any of the two resources separately, emerges as a result of combining them together. We present the first experimental demonstration of this quantum phenomenon with two photonic three-partite nondistillable entangled states shared between three parties Alice, Bob, and Charlie, where the entanglement was completely absent between Bob and Charlie. PMID:28951886

  2. Quantum criticality and black holes.

    PubMed

    Sachdev, Subir; Müller, Markus

    2009-04-22

    Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance.

  3. Is a description deeper than the quantum one possible?

    NASA Astrophysics Data System (ADS)

    Ghirardi, GianCarlo; Romano, Raffaele

    2014-12-01

    Recently, it has been argued that quantum mechanics is a complete theory, and that different quantum states do necessarily correspond to different elements of reality, under the assumptions that quantum mechanics is correct and that measurement settings can be freely chosen. In this work, we prove that this result is a consequence of an unnecessarily strong mathematical expression of the free choice assumption, which embodies more conditions than explicitly stated. The issues of the completeness of quantum mechanics, and of the interpretation of the state vector, are by no means resolved. Taking this perspective, we describe how the recently introduced class of crypto-nonlocal hidden variables theories can be used to characterize the maximal possible departure from quantum mechanics, when the system consists of a pair of qubits.

  4. Making classical and quantum canonical general relativity computable through a power series expansion in the inverse cosmological constant.

    PubMed

    Gambini, R; Pullin, J

    2000-12-18

    We consider general relativity with a cosmological constant as a perturbative expansion around a completely solvable diffeomorphism invariant field theory. This theory is the lambda --> infinity limit of general relativity. This allows an explicit perturbative computational setup in which the quantum states of the theory and the classical observables can be explicitly computed. An unexpected relationship arises at a quantum level between the discrete spectrum of the volume operator and the allowed values of the cosmological constant.

  5. An Introduction to Quantum Theory

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff

    2017-02-01

    Written in a lucid and engaging style, the author takes readers from an overview of classical mechanics and the historical development of quantum theory through to advanced topics. The mathematical aspects of quantum theory necessary for a firm grasp of the subject are developed in the early chapters, but an effort is made to motivate that formalism on physical grounds. Including animated figures and their respective Mathematica® codes, this book provides a complete and comprehensive text for students in physics, maths, chemistry and engineering needing an accessible introduction to quantum mechanics. Supplementary Mathematica codes available within Book Information

  6. Resource Theory of Quantum Memories and Their Faithful Verification with Minimal Assumptions

    NASA Astrophysics Data System (ADS)

    Rosset, Denis; Buscemi, Francesco; Liang, Yeong-Cherng

    2018-04-01

    We provide a complete set of game-theoretic conditions equivalent to the existence of a transformation from one quantum channel into another one, by means of classically correlated preprocessing and postprocessing maps only. Such conditions naturally induce tests to certify that a quantum memory is capable of storing quantum information, as opposed to memories that can be simulated by measurement and state preparation (corresponding to entanglement-breaking channels). These results are formulated as a resource theory of genuine quantum memories (correlated in time), mirroring the resource theory of entanglement in quantum states (correlated spatially). As the set of conditions is complete, the corresponding tests are faithful, in the sense that any non-entanglement-breaking channel can be certified. Moreover, they only require the assumption of trusted inputs, known to be unavoidable for quantum channel verification. As such, the tests we propose are intrinsically different from the usual process tomography, for which the probes of both the input and the output of the channel must be trusted. An explicit construction is provided and shown to be experimentally realizable, even in the presence of arbitrarily strong losses in the memory or detectors.

  7. Simplicity constraints: A 3D toy model for loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Charles, Christoph

    2018-05-01

    In loop quantum gravity, tremendous progress has been made using the Ashtekar-Barbero variables. These variables, defined in a gauge fixing of the theory, correspond to a parametrization of the solutions of the so-called simplicity constraints. Their geometrical interpretation is however unsatisfactory as they do not constitute a space-time connection. It would be possible to resolve this point by using a full Lorentz connection or, equivalently, by using the self-dual Ashtekar variables. This leads however to simplicity constraints or reality conditions which are notoriously difficult to implement in the quantum theory. We explore in this paper the possibility of using completely degenerate actions to impose such constraints at the quantum level in the context of canonical quantization. To do so, we define a simpler model, in 3D, with similar constraints by extending the phase space to include an independent vielbein. We define the classical model and show that a precise quantum theory by gauge unfixing can be defined out of it, completely equivalent to the standard 3D Euclidean quantum gravity. We discuss possible future explorations around this model as it could help as a stepping stone to define full-fledged covariant loop quantum gravity.

  8. Einstein-Podolsky-Rosen-entangled motion of two massive objects

    NASA Astrophysics Data System (ADS)

    Schnabel, Roman

    2015-07-01

    In 1935, Einstein, Podolsky, and Rosen (EPR) considered two particles in an entangled state of motion to illustrate why they questioned the completeness of quantum theory. In past decades, microscopic systems with entanglement in various degrees of freedom have successfully been generated, representing compelling evidence to support the completeness of quantum theory. Today, the generation of an EPR-entangled state of motion of two massive objects of up to the kilogram scale seems feasible with state-of-the-art technology. Recently, the generation and verification of EPR-entangled mirror motion in interferometric gravitational wave detectors was proposed, with the aim of testing quantum theory in the regime of macroscopic objects, and to make available nonclassical probe systems for future tests of modified quantum theories that include (nonrelativistic) gravity. The work presented here builds on these earlier results and proposes a specific Michelson interferometer that includes two high-quality laser mirrors of about 0.1 kg mass each. The mirrors are individually suspended as pendula and located close to each other, and cooled to about 4 K. The physical concepts for the generation of the EPR-entangled center-of-mass motion of these two mirrors are described. Apart from a test of quantum mechanics in the macroscopic world, the setup is envisioned to test predictions of yet-to-be-elaborated modified quantum theories that include gravitational effects.

  9. Can Quantum-Mechanical Description of Physical Reality Be Considered Correct?

    NASA Astrophysics Data System (ADS)

    Brassard, Gilles; Méthot, André Allan

    2010-04-01

    In an earlier paper written in loving memory of Asher Peres, we gave a critical analysis of the celebrated 1935 paper in which Einstein, Podolsky and Rosen (EPR) challenged the completeness of quantum mechanics. There, we had pointed out logical shortcomings in the EPR paper. Now, we raise additional questions concerning their suggested program to find a theory that would “provide a complete description of the physical reality”. In particular, we investigate the extent to which the EPR argumentation could have lead to the more dramatic conclusion that quantum mechanics is in fact incorrect. With this in mind, we propose a speculation, made necessary by a logical shortcoming in the EPR paper caused by the lack of a necessary condition for “elements of reality”, and surmise that an eventually complete theory would either be inconsistent with quantum mechanics, or would at least violate Heisenberg’s Uncertainty Principle.

  10. Symmetry restoration and quantumness reestablishment.

    PubMed

    Zeng, Guo-Mo; Wu, Lian-Ao; Xing, Hai-Jun

    2014-09-18

    A realistic quantum many-body system, characterized by a generic microscopic Hamiltonian, is accessible only through approximation methods. The mean field theories, as the simplest practices of approximation methods, commonly serve as a powerful tool, but unfortunately often violate the symmetry of the Hamiltonian. The conventional BCS theory, as an excellent mean field approach, violates the particle number conservation and completely erases quantumness characterized by concurrence and quantum discord between different modes. We restore the symmetry by using the projected BCS theory and the exact numerical solution and find that the lost quantumness is synchronously reestablished. We show that while entanglement remains unchanged with the particle numbers, quantum discord behaves as an extensive quantity with respect to the system size. Surprisingly, discord is hardly dependent on the interaction strengths. The new feature of discord offers promising applications in modern quantum technologies.

  11. Completeness of the Coulomb Wave Functions in Quantum Mechanics

    ERIC Educational Resources Information Center

    Mukunda, N.

    1978-01-01

    Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)

  12. Application of Canonical Effective Methods to Background-Independent Theories

    NASA Astrophysics Data System (ADS)

    Buyukcam, Umut

    Effective formalisms play an important role in analyzing phenomena above some given length scale when complete theories are not accessible. In diverse exotic but physically important cases, the usual path-integral techniques used in a standard Quantum Field Theory approach seldom serve as adequate tools. This thesis exposes a new effective method for quantum systems, called the Canonical Effective Method, which owns particularly wide applicability in backgroundindependent theories as in the case of gravitational phenomena. The central purpose of this work is to employ these techniques to obtain semi-classical dynamics from canonical quantum gravity theories. Application to non-associative quantum mechanics is developed and testable results are obtained. Types of non-associative algebras relevant for magnetic-monopole systems are discussed. Possible modifications of hypersurface deformation algebra and the emergence of effective space-times are presented. iii.

  13. Introduction

    NASA Astrophysics Data System (ADS)

    Bub, Jeffrey; Fuchs, Christopher A.

    The great debate between Einstein and Bohr on the interpretation of quantum mechanics culminated with the Einstein-Podolsky-Rosen (EPR) paper in 1935, "Can quantum-mechanical description of physical reality be considered complete?" (Einstein, Podolsky, & Rosen, 1935, and Bohr's reply, 1935). EPR showed that composite quantum systems, consisting of widely separated subsystems, could exist in certain quantum states that they thought spelled trouble for the Copenhagen interpretation. Specifically, they argued that for such states, the correlations between the outcomes of measurements on the subsystems were incompatible with the assumption that the quantum state was a complete description of the system. They concluded that quantum mechanics was an incomplete theory-that the quantum state could not be the whole story about a system.

  14. Quantum entanglement helps in improving economic efficiency

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Ju, Chenyong; Li, Hui

    2005-02-01

    We propose an economic regulation approach based on quantum game theory for the government to reduce the abuses of oligopolistic competition. Theoretical analysis shows that this approach can help government improve the economic efficiency of the oligopolistic market, and help prevent monopoly due to incorrect information. These advantages are completely attributed to the quantum entanglement, a unique quantum mechanical character.

  15. Group field theories for all loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Ryan, James P.; Thürigen, Johannes

    2015-02-01

    Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.

  16. Quantum learning of classical stochastic processes: The completely positive realization problem

    NASA Astrophysics Data System (ADS)

    Monràs, Alex; Winter, Andreas

    2016-01-01

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651-664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print arXiv:1303.3771(2013)].

  17. Introducing the Qplex: a novel arena for quantum theory

    NASA Astrophysics Data System (ADS)

    Appleby, Marcus; Fuchs, Christopher A.; Stacey, Blake C.; Zhu, Huangjun

    2017-07-01

    We reconstruct quantum theory starting from the premise that, as Asher Peres remarked, "Unperformed experiments have no results." The tools of quantum information theory, and in particular the symmetric informationally complete (SIC) measurements, provide a concise expression of how exactly Peres's dictum holds true. That expression is a constraint on how the probability distributions for outcomes of different, hypothetical and mutually exclusive experiments ought to mesh together, a type of constraint not foreseen in classical thinking. Taking this as our foundational principle, we show how to reconstruct the formalism of quantum theory in finite-dimensional Hilbert spaces. The central variety of mathematical entity in our reconstruction is the qplex, a very particular type of subset of a probability simplex. Along the way, by closely studying the symmetry properties of qplexes, we derive a condition for the existence of a d-dimensional SIC.

  18. The Nature of Quantum Truth: Logic, Set Theory, & Mathematics in the Context of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Frey, Kimberly

    The purpose of this dissertation is to construct a radically new type of mathematics whose underlying logic differs from the ordinary classical logic used in standard mathematics, and which we feel may be more natural for applications in quantum mechanics. Specifically, we begin by constructing a first order quantum logic, the development of which closely parallels that of ordinary (classical) first order logic --- the essential differences are in the nature of the logical axioms, which, in our construction, are motivated by quantum theory. After showing that the axiomatic first order logic we develop is sound and complete (with respect to a particular class of models), this logic is then used as a foundation on which to build (axiomatic) mathematical systems --- and we refer to the resulting new mathematics as "quantum mathematics." As noted above, the hope is that this form of mathematics is more natural than classical mathematics for the description of quantum systems, and will enable us to address some foundational aspects of quantum theory which are still troublesome --- e.g. the measurement problem --- as well as possibly even inform our thinking about quantum gravity. After constructing the underlying logic, we investigate properties of several mathematical systems --- e.g. axiom systems for abstract algebras, group theory, linear algebra, etc. --- in the presence of this quantum logic. In the process, we demonstrate that the resulting quantum mathematical systems have some strange, but very interesting features, which indicates a richness in the structure of mathematics that is classically inaccessible. Moreover, some of these features do indeed suggest possible applications to foundational questions in quantum theory. We continue our investigation of quantum mathematics by constructing an axiomatic quantum set theory, which we show satisfies certain desirable criteria. Ultimately, we hope that such a set theory will lead to a foundation for quantum mathematics in a sense which parallels the foundational role of classical set theory in classical mathematics. One immediate application of the quantum set theory we develop is to provide a foundation on which to construct quantum natural numbers, which are the quantum analog of the classical counting numbers. It turns out that in a special class of models, there exists a 1-1 correspondence between the quantum natural numbers and bounded observables in quantum theory whose eigenvalues are (ordinary) natural numbers. This 1-1 correspondence is remarkably satisfying, and not only gives us great confidence in our quantum set theory, but indicates the naturalness of such models for quantum theory itself. We go on to develop a Peano-like arithmetic for these new "numbers," as well as consider some of its consequences. Finally, we conclude by summarizing our results, and discussing directions for future work.

  19. Quantum Field Theories Coupled to Supergravity: AdS/CFT and Local Couplings

    NASA Astrophysics Data System (ADS)

    Große, Johannes

    2007-11-01

    This article is based on my PhD thesis and covers the following topics: Holographic meson spectra in a dilaton flow background, the mixed Coulomb-Higgs branch in terms of instantons on D7 branes, and a dual description of heavy-light mesons. Moreover, in a second part the conformal anomaly of four dimensional supersymmetric quantum field theories coupled to classical N=1 supergravity is explored in a superfield formulation. The complete basis for the anomaly and consistency conditions, which arise from cohomological considerations, are given. Possible implications for an extension of Zamolodchikov's c-theorem to four dimensional supersymmetric quantum field theories are discussed.

  20. The Misapplication of Probability Theory in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Racicot, Ronald

    2014-03-01

    This article is a revision of two papers submitted to the APS in the past two and a half years. In these papers, arguments and proofs are summarized for the following: (1) The wrong conclusion by EPR that Quantum Mechanics is incomplete, perhaps requiring the addition of ``hidden variables'' for completion. Theorems that assume such ``hidden variables,'' such as Bell's theorem, are also wrong. (2) Quantum entanglement is not a realizable physical phenomenon and is based entirely on assuming a probability superposition model for quantum spin. Such a model directly violates conservation of angular momentum. (3) Simultaneous multiple-paths followed by a quantum particle traveling through space also cannot possibly exist. Besides violating Noether's theorem, the multiple-paths theory is based solely on probability calculations. Probability calculations by themselves cannot possibly represent simultaneous physically real events. None of the reviews of the submitted papers actually refuted the arguments and evidence that was presented. These analyses should therefore be carefully evaluated since the conclusions reached have such important impact in quantum mechanics and quantum information theory.

  1. Decoherence and thermalization of a pure quantum state in quantum field theory.

    PubMed

    Giraud, Alexandre; Serreau, Julien

    2010-06-11

    We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.

  2. Quantum optics. Gravity meets quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.

    2015-02-27

    Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.

  3. Separability and Non-Individuality: Is It Possible to Conciliate (At Least A Form Of) Einstein's Realism with Quantum Mechanics?

    NASA Astrophysics Data System (ADS)

    Krause, Décio; Arenhart, Jonas R. B.

    2014-12-01

    In this paper we argue that physical theories, including quantum mechanics, refer to some kind of `objects', even if only implicitly. We raise questions about the logico-mathematical apparatuses commonly employed in such theories, bringing to light some metaphysical presuppositions underlying such apparatuses. We point out to some incongruities in the discourse holding that quantum objects would be entities of some `new kind' while still adhering to the logico-mathematical framework we use to deal with classical objects. The use of such apparatus would hinder us from being in complete agreement with the ontological novelties the theories of quanta seem to advance. Thus, we join those who try to investigate a `logic of quantum mechanics', but from a different point of view: looking for a formal foundation for a supposed new ontology. As a consequence of this move, we can revisit Einstein's ideas on physical reality and propose that, by considering a new kind of object traditionally termed `non-individuals', it is possible to sustain that they still obey some of Einstein's conditions for `physical realities', so that it will be possible to talk of a `principle of separability' in a sense which is not in complete disagreement with quantum mechanics. So, Einstein's departure from quantum mechanics might be softened at least concerning a form of his realism, which sees separated physical objects as distinct `physical realities'.

  4. Quantum learning of classical stochastic processes: The completely positive realization problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monràs, Alex; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543; Winter, Andreas

    2016-01-15

    Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece inmore » the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print http://arxiv.org/abs/1303.3771 (2013)].« less

  5. Quantum Rényi relative entropies affirm universality of thermodynamics.

    PubMed

    Misra, Avijit; Singh, Uttam; Bera, Manabendra Nath; Rajagopal, A K

    2015-10-01

    We formulate a complete theory of quantum thermodynamics in the Rényi entropic formalism exploiting the Rényi relative entropies, starting from the maximum entropy principle. In establishing the first and second laws of quantum thermodynamics, we have correctly identified accessible work and heat exchange in both equilibrium and nonequilibrium cases. The free energy (internal energy minus temperature times entropy) remains unaltered, when all the entities entering this relation are suitably defined. Exploiting Rényi relative entropies we have shown that this "form invariance" holds even beyond equilibrium and has profound operational significance in isothermal process. These results reduce to the Gibbs-von Neumann results when the Rényi entropic parameter α approaches 1. Moreover, it is shown that the universality of the Carnot statement of the second law is the consequence of the form invariance of the free energy, which is in turn the consequence of maximum entropy principle. Further, the Clausius inequality, which is the precursor to the Carnot statement, is also shown to hold based on the data processing inequalities for the traditional and sandwiched Rényi relative entropies. Thus, we find that the thermodynamics of nonequilibrium state and its deviation from equilibrium together determine the thermodynamic laws. This is another important manifestation of the concepts of information theory in thermodynamics when they are extended to the quantum realm. Our work is a substantial step towards formulating a complete theory of quantum thermodynamics and corresponding resource theory.

  6. Causality re-established.

    PubMed

    D'Ariano, Giacomo Mauro

    2018-07-13

    Causality has never gained the status of a 'law' or 'principle' in physics. Some recent literature has even popularized the false idea that causality is a notion that should be banned from theory. Such misconception relies on an alleged universality of the reversibility of the laws of physics, based either on the determinism of classical theory, or on the multiverse interpretation of quantum theory, in both cases motivated by mere interpretational requirements for realism of the theory. Here, I will show that a properly defined unambiguous notion of causality is a theorem of quantum theory, which is also a falsifiable proposition of the theory. Such a notion of causality appeared in the literature within the framework of operational probabilistic theories. It is a genuinely theoretical notion, corresponding to establishing a definite partial order among events, in the same way as we do by using the future causal cone on Minkowski space. The notion of causality is logically completely independent of the misidentified concept of 'determinism', and, being a consequence of quantum theory, is ubiquitous in physics. In addition, as classical theory can be regarded as a restriction of quantum theory, causality holds also in the classical case, although the determinism of the theory trivializes it. I then conclude by arguing that causality naturally establishes an arrow of time. This implies that the scenario of the 'block Universe' and the connected 'past hypothesis' are incompatible with causality, and thus with quantum theory: they are both doomed to remain mere interpretations and, as such, are not falsifiable, similar to the hypothesis of 'super-determinism'.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  7. Delirium Quantum Or, where I will take quantum mechanics if it will let me

    NASA Astrophysics Data System (ADS)

    Fuchs, Christopher A.

    2007-02-01

    Once again, I take advantage of the wonderfully liberal and tolerant mood Andrei Khrennikov sets at his yearly conferences by submitting a nonstandard paper for the proceedings. This pseudo-paper consists of excerpts drawn from two of my samizdats [Quantum States: What the Hell Are They? and Darwinism All the Way Down (and Probabilism All the Way Back Up)] that I think best summarize what I am aiming for on the broadest scale with my quantum foundations program. Section 1 tries to draw a picture of a physical world whose essence is "Darwinism all the way down." Section 2 outlines how quantum theory should be viewed in light of that, i.e., as being an expression of probabilism (in Bruno de Finetti or Richard Jeffrey's sense) all the way back up. Section 3 describes how the idea of "identical" quantum measurement outcomes, though sounding atomistic in character, nonetheless meshes well with a William Jamesian style "radical pluralism." Sections 4 and 5 further detail how quantum theory should not be viewed so much as a "theory of the world," but rather as a theory of decision-making for agents immersed within a quantum world—that is, a world in continual creation. Finally, Sections 6 and 7 attempt to sketch once again the very positive sense in which quantum theory is incomplete, but still just as complete is it can be. In total, I hope these heady speculations convey some of the excitement and potential I see for the malleable world quantum mechanics hints of.

  8. Jones index, secret sharing and total quantum dimension

    NASA Astrophysics Data System (ADS)

    Fiedler, Leander; Naaijkens, Pieter; Osborne, Tobias J.

    2017-02-01

    We study the total quantum dimension in the thermodynamic limit of topologically ordered systems. In particular, using the anyons (or superselection sectors) of such models, we define a secret sharing scheme, storing information invisible to a malicious party, and argue that the total quantum dimension quantifies how well we can perform this task. We then argue that this can be made mathematically rigorous using the index theory of subfactors, originally due to Jones and later extended by Kosaki and Longo. This theory provides us with a ‘relative entropy’ of two von Neumann algebras and a quantum channel, and we argue how these can be used to quantify how much classical information two parties can hide form an adversary. We also review the total quantum dimension in finite systems, in particular how it relates to topological entanglement entropy. It is known that the latter also has an interpretation in terms of secret sharing schemes, although this is shown by completely different methods from ours. Our work provides a different and independent take on this, which at the same time is completely mathematically rigorous. This complementary point of view might be beneficial, for example, when studying the stability of the total quantum dimension when the system is perturbed.

  9. Probing finite coarse-grained virtual Feynman histories with sequential weak values

    NASA Astrophysics Data System (ADS)

    Georgiev, Danko; Cohen, Eliahu

    2018-05-01

    Feynman's sum-over-histories formulation of quantum mechanics has been considered a useful calculational tool in which virtual Feynman histories entering into a coherent quantum superposition cannot be individually measured. Here we show that sequential weak values, inferred by consecutive weak measurements of projectors, allow direct experimental probing of individual virtual Feynman histories, thereby revealing the exact nature of quantum interference of coherently superposed histories. Because the total sum of sequential weak values of multitime projection operators for a complete set of orthogonal quantum histories is unity, complete sets of weak values could be interpreted in agreement with the standard quantum mechanical picture. We also elucidate the relationship between sequential weak values of quantum histories with different coarse graining in time and establish the incompatibility of weak values for nonorthogonal quantum histories in history Hilbert space. Bridging theory and experiment, the presented results may enhance our understanding of both weak values and quantum histories.

  10. From Einstein's theorem to Bell's theorem: a history of quantum non-locality

    NASA Astrophysics Data System (ADS)

    Wiseman, H. M.

    2006-04-01

    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.

  11. Quantum field theory with infinite component local fields as an alternative to the string theories

    NASA Astrophysics Data System (ADS)

    Krasnikov, N. V.

    1987-09-01

    We show that the introduction of the infinite component local fields with higher-order derivatives in the interaction makes the theory completely ultraviolet finite. For the γ5-anomalous theories the introduction of the infinite component field makes the theory renormalizable or even superrenormalizable. I am indebted to J. Ambjōrn, P. Di Vecchia, H.B. Nielsen and L. Rozhansky for useful discussions. It is a pleasure to thank the Niels Bohr Institute (Copenhagen) where this work was completed for kind hospitality.

  12. Operational resource theory of total quantum coherence

    NASA Astrophysics Data System (ADS)

    Yang, Si-ren; Yu, Chang-shui

    2018-01-01

    Quantum coherence is an essential feature of quantum mechanics and is an important physical resource in quantum information. Recently, the resource theory of quantum coherence has been established parallel with that of entanglement. In the resource theory, a resource can be well defined if given three ingredients: the free states, the resource, the (restricted) free operations. In this paper, we study the resource theory of coherence in a different light, that is, we consider the total coherence defined by the basis-free coherence maximized among all potential basis. We define the distillable total coherence and the total coherence cost and in both the asymptotic regime and the single-copy regime show the reversible transformation between a state with certain total coherence and the state with the unit reference total coherence. Extensively, we demonstrate that the total coherence can also be completely converted to the total correlation with the equal amount by the free operations. We also provide the alternative understanding of the total coherence, respectively, based on the entanglement and the total correlation in a different way.

  13. Gauge assisted quadratic gravity: A framework for UV complete quantum gravity

    NASA Astrophysics Data System (ADS)

    Donoghue, John F.; Menezes, Gabriel

    2018-06-01

    We discuss a variation of quadratic gravity in which the gravitational interaction remains weakly coupled at all energies, but is assisted by a Yang-Mills gauge theory which becomes strong at the Planck scale. The Yang-Mills interaction is used to induce the usual Einstein-Hilbert term, which was taken to be small or absent in the original action. We study the spin-two propagator in detail, with a focus on the high mass resonance which is shifted off the real axis by the coupling to real decay channels. We calculate scattering in the J =2 partial wave and show explicitly that unitarity is satisfied. The theory will in general have a large cosmological constant and we study possible solutions to this, including a unimodular version of the theory. Overall, the theory satisfies our present tests for being a ultraviolet completion of quantum gravity.

  14. Philosophical Concepts in Physics

    NASA Astrophysics Data System (ADS)

    Cushing, James T.

    1998-01-01

    Preface; Part I. The Scientific Enterprise: 1. Ways of knowing; 2. Aristotle and Francis Bacon; 3. Science and metaphysics; Part II. Ancient and Modern Models of the Universe: 4. Observational astronomy and the Ptolemaic model; 5. The Copernican model and Kepler's laws; 6. Galileo on motion; Part III. The Newtonian Universe: 7. Newton's Principia; 8. Newton's law of universal gravitation; 9. Some old questions revisited; Part IV. A Perspective: 10. Galileo's Letter to the Grand Duchess; 11. An overarching Newtonian framework; 12. A view of the world based on science: determinism; Part V. Mechanical Versus Electrodynamical World Views: 13. Models of the aether; 14. Maxwell's theory; 15. The Kaufmann experiments; Part VI. The Theory of Relativity: 16. The background to and essentials of special relativity; 17. Further logical consequences of Einstein's postulates; 18. General relativity and the expanding universe; Part VII. The Quantum World and the Completeness of Quantum Mechanics: 19. The road to quantum mechanics; 20. 'Copenhage' quantum mechanics; 21. Is quantum mechanics complete?; Part VIII. Some Philosophical Lessons from Quantum Mechanics: 22. The EPR paper and Bell's theorem; 23. An alternative version of quantum mechanics; 24. An essential role for historical contingency?; Part IX. A Retrospective: 25. The goals of science and the status of its knowledge; Notes; General references; Bibliography; Author index; Subject index.

  15. Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management

    NASA Astrophysics Data System (ADS)

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María

    2017-10-01

    The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir. Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  16. Nonparadoxical loss of information in black hole evaporation in a quantum collapse model

    NASA Astrophysics Data System (ADS)

    Modak, Sujoy K.; Ortíz, Leonardo; Peña, Igor; Sudarsky, Daniel

    2015-06-01

    We consider a novel approach to address the black hole information paradox. The idea is based on adapting, to the situation at hand, the modified versions of quantum theory involving spontaneous stochastic dynamical collapse of quantum states, which have been considered in attempts to deal with shortcomings of the standard Copenhagen interpretation of quantum mechanics, in particular, the issue known as "the measurement problem." The new basic hypothesis is that the modified quantum behavior is enhanced in the region of high curvature so that the information encoded in the initial quantum state of the matter fields is rapidly erased as the black hole singularity is approached. We show that in this manner the complete evaporation of the black hole via Hawking radiation can be understood as involving no paradox. Calculations are performed using a modified version of quantum theory known as "continuous spontaneous localization" (CSL), which was originally developed in the context of many-particle nonrelativistic quantum mechanics. We use a version of CSL tailored to quantum field theory and applied in the context of the two -dimensional Callan-Giddings-Harvey-Strominger model. Although the role of quantum gravity in this picture is restricted to the resolution of the singularity, related studies suggest that there might be further connections.

  17. The Behavioral Changes That Can Be Realized When Leaders Are Exposed to the Theories and Metaphors Found in Quantum Physics

    ERIC Educational Resources Information Center

    Godfrey, David Wayne

    2009-01-01

    Many are beginning to see the promise that the quantum world has offered those who manage and lead organizations (Wheatley, 1992; Zohar, 1997). The Newtonian world is one in which all "things" are reduced to their smallest parts, separated, divided, and analyzed with predictability, with complete control being the ultimate goal. The quantum world…

  18. Flint and the British Tradition of Relativity Theory

    NASA Astrophysics Data System (ADS)

    Beichler, James

    2009-03-01

    Most scientists and scholars are familiar with Sir Arthur Eddington's role in verifying General Relativity in 1919. A few less are aware of his work introducing the theory to the English scientific community. Still less know of Eddington's extensions of relativity theory, especially his attempts to develop a unified field theory. But very few scholars, historians or even physicists are aware of the important role played by other English scientists in the acceptance and development of relativity. In fact, H.T. Flint and his colleagues published more than thirty-five articles in peer reviewed journals in Britain over a period of four decades in an attempt to extend relativity to include electromagnetism and the quantum. Yet his work and that of his close associates is almost completely unknown today, in spite of the fact that he published a book describing his complete unified field theory in the 1960s, well before most quantum theorists even began thinking along the lines of unification. In a world filled with speculations about gravitons, superstrings, quantum loops and other unification models, Flint did it first, but his work has all but disappeared from the scientific consciousness. From Eddington to Flint, the English school of relativists has produced ardent supporters of relativity and numerous advances beyond the standard interpretations of general relativity.

  19. Braided Categories of Endomorphisms as Invariants for Local Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Giorgetti, Luca; Rehren, Karl-Henning

    2018-01-01

    We want to establish the "braided action" (defined in the paper) of the DHR category on a universal environment algebra as a complete invariant for completely rational chiral conformal quantum field theories. The environment algebra can either be a single local algebra, or the quasilocal algebra, both of which are model-independent up to isomorphism. The DHR category as an abstract structure is captured by finitely many data (superselection sectors, fusion, and braiding), whereas its braided action encodes the full dynamical information that distinguishes models with isomorphic DHR categories. We show some geometric properties of the "duality pairing" between local algebras and the DHR category that are valid in general (completely rational) chiral CFTs. Under some additional assumptions whose status remains to be settled, the braided action of its DHR category completely classifies a (prime) CFT. The approach does not refer to the vacuum representation, or the knowledge of the vacuum state.

  20. Quantum Physics

    NASA Astrophysics Data System (ADS)

    Le Bellac, Michel

    2006-03-01

    Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students. Completely original and contemporary approach, using algebra and symmetry principles Introduces recent developments at an early stage, including many topics that cannot be found in standard textbooks. Contains 130 physically relevant exercises

  1. Two new constructions of approximately SIC-POVMs from multiplicative characters

    NASA Astrophysics Data System (ADS)

    Luo, Gaojun; Cao, Xiwang

    2017-12-01

    In quantum information theory, symmetric informationally complete positive operator-valued measures (SIC-POVMs) are relevant to quantum state tomography [8], quantum cryptography [15], and foundational studies [16]. In general, it is hard to construct SIC-POVMs and only a few classes of them existed, as we know. Moreover, we do not know whether there exists an infinite class of them. Many researchers tried to construct approximately symmetric informationally complete positive operator-valued measures (ASIC-POVMs). In this paper, we propose two new constructions of ASIC-POVMs for prime power dimensions only by using multiplicative characters over finite fields.

  2. Probability and Locality: Determinism Versus Indeterminism in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Dickson, William Michael

    1995-01-01

    Quantum mechanics is often taken to be necessarily probabilistic. However, this view of quantum mechanics appears to be more the result of historical accident than of careful analysis. Moreover, quantum mechanics in its usual form faces serious problems. Although the mathematical core of quantum mechanics--quantum probability theory- -does not face conceptual difficulties, the application of quantum probability to the physical world leads to problems. In particular, quantum mechanics seems incapable of describing our everyday macroscopic experience. Therefore, several authors have proposed new interpretations --including (but not limited to) modal interpretations, spontaneous localization interpretations, the consistent histories approach, and the Bohm theory--each of which deals with quantum-mechanical probabilities differently. Each of these interpretations promises to describe our macroscopic experience and, arguably, each succeeds. Is there any way to compare them? Perhaps, if we turn to another troubling aspect of quantum mechanics, non-locality. Non -locality is troubling because prima facie it threatens the compatibility of quantum mechanics with special relativity. This prima facie threat is mitigated by the no-signalling theorems in quantum mechanics, but nonetheless one may find a 'conflict of spirit' between nonlocality in quantum mechanics and special relativity. Do any of these interpretations resolve this conflict of spirit?. There is a strong relation between how an interpretation deals with quantum-mechanical probabilities and how it deals with non-locality. The main argument here is that only a completely deterministic interpretation can be completely local. That is, locality together with the empirical predictions of quantum mechanics (specifically, its strict correlations) entails determinism. But even with this entailment in hand, comparison of the various interpretations requires a look at each, to see how non-locality arises, or in the case of deterministic interpretations, whether it arises. The result of this investigation is that, at the least, deterministic interpretations are no worse off with respect to special relativity than indeterministic interpretations. This conclusion runs against a common view that deterministic interpretations, specifically the Bohm theory, have more difficulty with special relativity than other interpretations.

  3. The gravity duals of modular Hamiltonians

    DOE PAGES

    Jafferis, Daniel L.; Suh, S. Josephine

    2016-09-12

    In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-likemore » to the causal completion of the region.« less

  4. The gravity duals of modular Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafferis, Daniel L.; Suh, S. Josephine

    In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-likemore » to the causal completion of the region.« less

  5. Can chaos be observed in quantum gravity?

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Höhn, Philipp A.; Koslowski, Tim A.; Nelson, Mike I.

    2017-06-01

    Full general relativity is almost certainly 'chaotic'. We argue that this entails a notion of non-integrability: a generic general relativistic model, at least when coupled to cosmologically interesting matter, likely possesses neither differentiable Dirac observables nor a reduced phase space. It follows that the standard notion of observable has to be extended to include non-differentiable or even discontinuous generalized observables. These cannot carry Poisson-algebraic structures and do not admit a standard quantization; one thus faces a quantum representation problem of gravitational observables. This has deep consequences for a quantum theory of gravity, which we investigate in a simple model for a system with Hamiltonian constraint that fails to be completely integrable. We show that basing the quantization on standard topology precludes a semiclassical limit and can even prohibit any solutions to the quantum constraints. Our proposed solution to this problem is to refine topology such that a complete set of Dirac observables becomes continuous. In the toy model, it turns out that a refinement to a polymer-type topology, as e.g. used in loop gravity, is sufficient. Basing quantization of the toy model on this finer topology, we find a complete set of quantum Dirac observables and a suitable semiclassical limit. This strategy is applicable to realistic candidate theories of quantum gravity and thereby suggests a solution to a long-standing problem which implies ramifications for the very concept of quantization. Our work reveals a qualitatively novel facet of chaos in physics and opens up a new avenue of research on chaos in gravity which hints at deep insights into the structure of quantum gravity.

  6. Black holes in loop quantum gravity: the complete space-time.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2008-10-17

    We consider the quantization of the complete extension of the Schwarzschild space-time using spherically symmetric loop quantum gravity. We find an exact solution corresponding to the semiclassical theory. The singularity is eliminated but the space-time still contains a horizon. Although the solution is known partially numerically and therefore a proper global analysis is not possible, a global structure akin to a singularity-free Reissner-Nordström space-time including a Cauchy horizon is suggested.

  7. Time and a physical Hamiltonian for quantum gravity.

    PubMed

    Husain, Viqar; Pawłowski, Tomasz

    2012-04-06

    We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society

  8. Anomaly-free cosmological perturbations in effective canonical quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrau, Aurelien; Bojowald, Martin; Kagan, Mikhail

    2015-05-01

    This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.

  9. A Quantum Universe Before the Big Bang(s)?

    NASA Astrophysics Data System (ADS)

    Veneziano, Gabriele

    2017-08-01

    The predictions of general relativity have been verified by now in a variety of different situations, setting strong constraints on any alternative theory of gravity. Nonetheless, there are strong indications that general relativity has to be regarded as an approximation of a more complete theory. Indeed theorists have long been looking for ways to connect general relativity, which describes the cosmos and the infinitely large, to quantum physics, which has been remarkably successful in explaining the infinitely small world of elementary particles. These two worlds, however, come closer and closer to each other as we go back in time all the way up to the big bang. Actually, modern cosmology has changed completely the old big bang paradigm: we now have to talk about (at least) two (big?) bangs. If we know quite something about the one closer to us, at the end of inflation, we are much more ignorant about the one that may have preceded inflation and possibly marked the beginning of time. No one doubts that quantum mechanics plays an essential role in answering these questions: unfortunately a unified theory of gravity and quantum mechanics is still under construction. Finding such a synthesis and confirming it experimentally will no doubt be one of the biggest challenges of this century’s physics.

  10. Enhanced Communication with the Assistance of Indefinite Causal Order

    NASA Astrophysics Data System (ADS)

    Ebler, Daniel; Salek, Sina; Chiribella, Giulio

    2018-03-01

    In quantum Shannon theory, the way information is encoded and decoded takes advantage of the laws of quantum mechanics, while the way communication channels are interlinked is assumed to be classical. In this Letter, we relax the assumption that quantum channels are combined classically, showing that a quantum communication network where quantum channels are combined in a superposition of different orders can achieve tasks that are impossible in conventional quantum Shannon theory. In particular, we show that two identical copies of a completely depolarizing channel become able to transmit information when they are combined in a quantum superposition of two alternative orders. This finding runs counter to the intuition that if two communication channels are identical, using them in different orders should not make any difference. The failure of such intuition stems from the fact that a single noisy channel can be a random mixture of elementary, noncommuting processes, whose order (or lack thereof) can affect the ability to transmit information.

  11. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.

    PubMed

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-15

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory-such as Hall's marriage problem-are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  12. Enhanced Communication with the Assistance of Indefinite Causal Order.

    PubMed

    Ebler, Daniel; Salek, Sina; Chiribella, Giulio

    2018-03-23

    In quantum Shannon theory, the way information is encoded and decoded takes advantage of the laws of quantum mechanics, while the way communication channels are interlinked is assumed to be classical. In this Letter, we relax the assumption that quantum channels are combined classically, showing that a quantum communication network where quantum channels are combined in a superposition of different orders can achieve tasks that are impossible in conventional quantum Shannon theory. In particular, we show that two identical copies of a completely depolarizing channel become able to transmit information when they are combined in a quantum superposition of two alternative orders. This finding runs counter to the intuition that if two communication channels are identical, using them in different orders should not make any difference. The failure of such intuition stems from the fact that a single noisy channel can be a random mixture of elementary, noncommuting processes, whose order (or lack thereof) can affect the ability to transmit information.

  13. Quantum Bayesian perspective for intelligence reservoir characterization, monitoring and management.

    PubMed

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia; de Jesús Correa, María

    2017-11-13

    The paper starts with a brief review of the literature about uncertainty in geological, geophysical and petrophysical data. In particular, we present the viewpoints of experts in geophysics on the application of Bayesian inference and subjective probability. Then we present arguments that the use of classical probability theory (CP) does not match completely the structure of geophysical data. We emphasize that such data are characterized by contextuality and non-Kolmogorovness (the impossibility to use the CP model), incompleteness as well as incompatibility of some geophysical measurements. These characteristics of geophysical data are similar to the characteristics of quantum physical data. Notwithstanding all this, contextuality can be seen as a major deviation of quantum theory from classical physics. In particular, the contextual probability viewpoint is the essence of the Växjö interpretation of quantum mechanics. We propose to use quantum probability (QP) for decision-making during the characterization, modelling, exploring and management of the intelligent hydrocarbon reservoir Quantum Bayesianism (QBism), one of the recently developed information interpretations of quantum theory, can be used as the interpretational basis for such QP decision-making in geology, geophysics and petroleum projects design and management.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  14. Designing quantum information processing via structural physical approximation.

    PubMed

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  15. Designing quantum information processing via structural physical approximation

    NASA Astrophysics Data System (ADS)

    Bae, Joonwoo

    2017-10-01

    In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.

  16. Quantum cosmology: a review.

    PubMed

    Bojowald, Martin

    2015-02-01

    In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity. De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting 'microscopic' degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.

  17. Intrinsic retrieval efficiency for quantum memories: A three-dimensional theory of light interaction with an atomic ensemble

    NASA Astrophysics Data System (ADS)

    Gujarati, Tanvi P.; Wu, Yukai; Duan, Luming

    2018-03-01

    Duan-Lukin-Cirac-Zoller quantum repeater protocol, which was proposed to realize long distance quantum communication, requires usage of quantum memories. Atomic ensembles interacting with optical beams based on off-resonant Raman scattering serve as convenient on-demand quantum memories. Here, a complete free space, three-dimensional theory of the associated read and write process for this quantum memory is worked out with the aim of understanding intrinsic retrieval efficiency. We develop a formalism to calculate the transverse mode structure for the signal and the idler photons and use the formalism to study the intrinsic retrieval efficiency under various configurations. The effects of atomic density fluctuations and atomic motion are incorporated by numerically simulating this system for a range of realistic experimental parameters. We obtain results that describe the variation in the intrinsic retrieval efficiency as a function of the memory storage time for skewed beam configuration at a finite temperature, which provides valuable information for optimization of the retrieval efficiency in experiments.

  18. The solution of the sixth Hilbert problem: the ultimate Galilean revolution

    NASA Astrophysics Data System (ADS)

    D'Ariano, Giacomo Mauro

    2018-04-01

    I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: `physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as `clock', `rigid rod', `force', `inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory. This article is part of the theme issue `Hilbert's sixth problem'.

  19. The solution of the sixth Hilbert problem: the ultimate Galilean revolution.

    PubMed

    D'Ariano, Giacomo Mauro

    2018-04-28

    I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: 'physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as 'clock', 'rigid rod', 'force', 'inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  20. Some remarks on the genesis of scalar-tensor theories

    NASA Astrophysics Data System (ADS)

    Goenner, Hubert

    2012-08-01

    Between 1941 and 1962, scalar-tensor theories of gravitation were suggested four times by different scientists in four different countries. The earliest originator, the Swiss mathematician W. Scherrer, was virtually unknown until now whereas the chronologically latest pair gave their names to a multitude of publications on Brans-Dicke theory. P. Jordan, one of the pioneers of quantum mechanics and quantum field theory, and Y. Thiry, known by his book on celestial mechanics, a student of the mathematician Lichnerowicz, complete the quartet. Diverse motivations for and conceptual interpretations of their theories will be discussed as well as relations among them. Also, external factors like language, citation habits, or closeness to the mainstream are considered. It will become clear why Brans-Dicke theory, although structurally a déjà-vu, superseded all the other approaches.

  1. Communication Games Reveal Preparation Contextuality.

    PubMed

    Hameedi, Alley; Tavakoli, Armin; Marques, Breno; Bourennane, Mohamed

    2017-12-01

    A communication game consists of distributed parties attempting to jointly complete a task with restricted communication. Such games are useful tools for studying limitations of physical theories. A theory exhibits preparation contextuality whenever its predictions cannot be explained by a preparation noncontextual model. Here, we show that communication games performed in operational theories reveal the preparation contextuality of that theory. For statistics obtained in a particular family of communication games, we show a direct correspondence with correlations in spacelike separated events obeying the no-signaling principle. Using this, we prove that all mixed quantum states of any finite dimension are preparation contextual. We report on an experimental realization of a communication game involving three-level quantum systems from which we observe a strong violation of the constraints of preparation noncontextuality.

  2. Communication Games Reveal Preparation Contextuality

    NASA Astrophysics Data System (ADS)

    Hameedi, Alley; Tavakoli, Armin; Marques, Breno; Bourennane, Mohamed

    2017-12-01

    A communication game consists of distributed parties attempting to jointly complete a task with restricted communication. Such games are useful tools for studying limitations of physical theories. A theory exhibits preparation contextuality whenever its predictions cannot be explained by a preparation noncontextual model. Here, we show that communication games performed in operational theories reveal the preparation contextuality of that theory. For statistics obtained in a particular family of communication games, we show a direct correspondence with correlations in spacelike separated events obeying the no-signaling principle. Using this, we prove that all mixed quantum states of any finite dimension are preparation contextual. We report on an experimental realization of a communication game involving three-level quantum systems from which we observe a strong violation of the constraints of preparation noncontextuality.

  3. Logarithmic corrections to entropy of magnetically charged AdS4 black holes

    NASA Astrophysics Data System (ADS)

    Jeon, Imtak; Lal, Shailesh

    2017-11-01

    Logarithmic terms are quantum corrections to black hole entropy determined completely from classical data, thus providing a strong check for candidate theories of quantum gravity purely from physics in the infrared. We compute these terms in the entropy associated to the horizon of a magnetically charged extremal black hole in AdS4×S7 using the quantum entropy function and discuss the possibility of matching against recently derived microscopic expressions.

  4. Several foundational and information theoretic implications of Bell’s theorem

    NASA Astrophysics Data System (ADS)

    Kar, Guruprasad; Banik, Manik

    2016-08-01

    In 1935, Albert Einstein and two colleagues, Boris Podolsky and Nathan Rosen (EPR) developed a thought experiment to demonstrate what they felt was a lack of completeness in quantum mechanics (QM). EPR also postulated the existence of more fundamental theory where physical reality of any system would be completely described by the variables/states of that fundamental theory. This variable is commonly called hidden variable and the theory is called hidden variable theory (HVT). In 1964, John Bell proposed an empirically verifiable criterion to test for the existence of these HVTs. He derived an inequality, which must be satisfied by any theory that fulfill the conditions of locality and reality. He also showed that QM, as it violates this inequality, is incompatible with any local-realistic theory. Later it has been shown that Bell’s inequality (BI) can be derived from different set of assumptions and it also find applications in useful information theoretic protocols. In this review, we will discuss various foundational as well as information theoretic implications of BI. We will also discuss about some restricted nonlocal feature of quantum nonlocality and elaborate the role of Uncertainty principle and Complementarity principle in explaining this feature.

  5. Replicating the benefits of Deutschian closed timelike curves without breaking causality

    NASA Astrophysics Data System (ADS)

    Yuan, Xiao; Assad, Syed M.; Thompson, Jayne; Haw, Jing Yan; Vedral, Vlatko; Ralph, Timothy C.; Lam, Ping Koy; Weedbrook, Christian; Gu, Mile

    2015-11-01

    In general relativity, closed timelike curves can break causality with remarkable and unsettling consequences. At the classical level, they induce causal paradoxes disturbing enough to motivate conjectures that explicitly prevent their existence. At the quantum level such problems can be resolved through the Deutschian formalism, however this induces radical benefits—from cloning unknown quantum states to solving problems intractable to quantum computers. Instinctively, one expects these benefits to vanish if causality is respected. Here we show that in harnessing entanglement, we can efficiently solve NP-complete problems and clone arbitrary quantum states—even when all time-travelling systems are completely isolated from the past. Thus, the many defining benefits of Deutschian closed timelike curves can still be harnessed, even when causality is preserved. Our results unveil a subtle interplay between entanglement and general relativity, and significantly improve the potential of probing the radical effects that may exist at the interface between relativity and quantum theory.

  6. Conformal field theory out of equilibrium: a review

    NASA Astrophysics Data System (ADS)

    Bernard, Denis; Doyon, Benjamin

    2016-06-01

    We provide a pedagogical review of the main ideas and results in non-equilibrium conformal field theory and connected subjects. These concern the understanding of quantum transport and its statistics at and near critical points. Starting with phenomenological considerations, we explain the general framework, illustrated by the example of the Heisenberg quantum chain. We then introduce the main concepts underlying conformal field theory (CFT), the emergence of critical ballistic transport, and the CFT scattering construction of non-equilibrium steady states. Using this we review the theory for energy transport in homogeneous one-dimensional critical systems, including the complete description of its large deviations and the resulting (extended) fluctuation relations. We generalize some of these ideas to one-dimensional critical charge transport and to the presence of defects, as well as beyond one-dimensional criticality. We describe non-equilibrium transport in free-particle models, where connections are made with generalized Gibbs ensembles, and in higher-dimensional and non-integrable quantum field theories, where the use of the powerful hydrodynamic ideas for non-equilibrium steady states is explained. We finish with a list of open questions. The review does not assume any advanced prior knowledge of conformal field theory, large-deviation theory or hydrodynamics.

  7. Noncontextual Wirings.

    PubMed

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-30

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory-a concrete, explicit form of free operations of contextuality-was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  8. Book Review:

    NASA Astrophysics Data System (ADS)

    Giannetto, E.

    2005-08-01

    This book is a sort of tribute to Rob Clifton (1964 2002), Associate Professor of Philosophy and Associate Director of the Center for Philosophy of Science at the University of Pittsburgh, philosopher of physics and editor of the journal Studies in the History and Philosophy of Modern Physics, who tragically died of cancer. It contains fourteen papers by Clifton, for the most part written in collaboration with other authors (Jeffrey Bub (2), Sheldon Goldstein, Michael Dickson, Hans Halvorson (6), Adrian Kent (2)), published between 1995 and 2002. The choice of papers made by the editors is very impressive. They concern the foundations of quantum mechanics and quantum field theory. Among the issues discussed are the modal interpretations of quantum mechanics, the problems of hidden variables theories, non-locality, Bell's inequality, the Einstein Podolsky Rosen paradox, Lorentz invariance, de-coherence, non-contextuality, complementarity, entanglement and quantum information. A consequence of such investigations is that non-separability is a more complex issue than violation of Bell's inequality. Apart from the perspective one can follow—whether one agrees or not with Clifton—these papers are effective contributions to an understanding of the problems involved in the foundations of quantum mechanics. The most interesting parts, in my opinion, are related to the extension of the discussion of foundational problems to quantum field theory: on the algebraic approach, and on the twin concepts of particle and vacuum. Non-locality appears to be `worse' in relativistic quantum field theory than in non-relativistic quantum mechanics. All the papers deal with relevant epistemological and even historical aspects of quantum mechanics interpretations, but all the issues are discussed from a technical, logical and mathematical approach. A complete bibliography of Clifton's papers is given at the end of the volume.

  9. Quantum field theory of interacting dark matter and dark energy: Dark monodromies

    DOE PAGES

    D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less

  10. Quantum field theory in spaces with closed timelike curves

    NASA Astrophysics Data System (ADS)

    Boulware, David G.

    1992-11-01

    Gott spacetime has closed timelike curves, but no locally anomalous stress energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 2π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the noncausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the noncausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  11. Relating the Resource Theories of Entanglement and Quantum Coherence.

    PubMed

    Chitambar, Eric; Hsieh, Min-Hsiu

    2016-07-08

    Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.

  12. Relating the Resource Theories of Entanglement and Quantum Coherence

    NASA Astrophysics Data System (ADS)

    Chitambar, Eric; Hsieh, Min-Hsiu

    2016-07-01

    Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.

  13. Quantum Mechanics: Myths and Facts

    NASA Astrophysics Data System (ADS)

    Nikolić, Hrvoje

    2007-11-01

    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.

  14. Quantum field theory of interacting dark matter and dark energy: Dark monodromies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less

  15. Quantum Linear Systems Theory

    DTIC Science & Technology

    2013-02-15

    Matthew James, Andre Carvalho and Michael Hush completed some work analyzing cross-phase modulation using single photon quantum filtering techniques...ANU Michael Hush January – June, 2012, Postdoc, ANU Matthew R. James Professor, Australian National University Ian R. Petersen Professor...appear, IEEE Trans. Aut. Control., 2013. A. R. R. Carvalho, M. R. Hush , and M. R. James, “Cavity driven by a single photon: Conditional dynamics and

  16. The quantum theory of free automorphic fields

    NASA Astrophysics Data System (ADS)

    Banach, R.

    1980-06-01

    Heuristic spectral theory is developed for a symmetric operator on the universal covering space of a multiply connected static spacetime and is used to construct the quantum field theory of a multiplet of scalar fields in the customary sum-over-modes fashion. The non-local symmetries necessary to the theory are explicitly constructed, as are the projection on the field operators. The non-existence of a standard charge conjugation for certain types of representation is noted. Gauge transformations are used to give a simple and complete classification of automorphic field theories. The relationship between the unprojected and projected field algebras is clarified, and the implications for Fock space (vacuum degeneracy, etc.) are discussed - earlier work being criticized. The analogy to black hole physics is pointed out, and the possible role of the Reeh-Schlieder theorems is speculated upon.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradler, Kamil; Hayden, Patrick; Touchette, Dave

    Coding theorems in quantum Shannon theory express the ultimate rates at which a sender can transmit information over a noisy quantum channel. More often than not, the known formulas expressing these transmission rates are intractable, requiring an optimization over an infinite number of uses of the channel. Researchers have rarely found quantum channels with a tractable classical or quantum capacity, but when such a finding occurs, it demonstrates a complete understanding of that channel's capabilities for transmitting classical or quantum information. Here we show that the three-dimensional capacity region for entanglement-assisted transmission of classical and quantum information is tractable formore » the Hadamard class of channels. Examples of Hadamard channels include generalized dephasing channels, cloning channels, and the Unruh channel. The generalized dephasing channels and the cloning channels are natural processes that occur in quantum systems through the loss of quantum coherence or stimulated emission, respectively. The Unruh channel is a noisy process that occurs in relativistic quantum information theory as a result of the Unruh effect and bears a strong relationship to the cloning channels. We give exact formulas for the entanglement-assisted classical and quantum communication capacity regions of these channels. The coding strategy for each of these examples is superior to a naieve time-sharing strategy, and we introduce a measure to determine this improvement.« less

  18. Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.

    PubMed

    Fradkin, Eduardo; Moore, Joel E

    2006-08-04

    The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.

  19. Locality for quantum systems on graphs depends on the number field

    NASA Astrophysics Data System (ADS)

    Hall, H. Tracy; Severini, Simone

    2013-07-01

    Adapting a definition of Aaronson and Ambainis (2005 Theory Comput. 1 47-79), we call a quantum dynamics on a digraph saturated Z-local if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.

  20. REVIEWS OF TOPICAL PROBLEMS: Concept of consciousness in the context of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Menskii, Mikhail B.

    2005-04-01

    Conceptual problems of the quantum theory of measurement are considered, which are embodied in well-known paradoxes and in Bell's inequalities. Arguments are advanced in favor of the viewpoint that these problems may hardly be solved without direct inclusion of the observer's consciousness in the theoretical description of a quantum measurement. Discussed in this connection is the so-called many-worlds interpretation of quantum mechanics proposed by Everett, as is the extension of Everett's concept, which consists in the assumption that separating the quantum state components corresponding to alternative measurements is not only associated with the observer's consciousness but is completely identified with it. This approach is shown to open up qualitatively new avenues for the unification of physics and psychology and, more broadly, of the sciences and the humanities. This may lead to an extension of the theory of consciousness and shed light on significant and previously misunderstood phenomena in the sphere of consciousness.

  1. Simple derivation of the Lindblad equation

    NASA Astrophysics Data System (ADS)

    Pearle, Philip

    2012-07-01

    The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is ‘simple’ in that all it uses is the expression of a Hermitian matrix in terms of its orthonormal eigenvectors and real eigenvalues. Thus, it is appropriate for students who have learned the algebra of quantum theory. Where helpful, arguments are first given in a two-dimensional Hilbert space.

  2. Compatible quantum theory

    NASA Astrophysics Data System (ADS)

    Friedberg, R.; Hohenberg, P. C.

    2014-09-01

    Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The completion of the theory requires a macroscopic mechanism for selecting a physical framework, which is part of the macroscopic theory (MAQM). The selection of a physical framework involves the breaking of the microscopic ‘framework symmetry’, which can proceed either phenomenologically as in the standard quantum measurement theory, or more fundamentally by considering the quantum system under study to be a subsystem of a macroscopic quantum system. The decoherent histories formulation of Gell-Mann and Hartle, as well as that of Omnès, are theories of this fundamental type, where the physical framework is selected by a coarse-graining procedure in which the physical phenomenon of decoherence plays an essential role. Various well-known interpretations of QM are described from the perspective of CQT. Detailed definitions and proofs are presented in the appendices.

  3. Many-Body Theory of Proton-Generated Point Defects for Losses of Electron Energy and Photons in Quantum Wells

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Iurov, Andrii; Gao, Fei; Gumbs, Godfrey; Cardimona, D. A.

    2018-02-01

    The effects of point defects on the loss of either energies of ballistic electron beams or incident photons are studied by using a many-body theory in a multi-quantum-well system. This theory includes the defect-induced vertex correction to a bare polarization function of electrons within the ladder approximation, and the intralayer and interlayer screening of defect-electron interactions is also taken into account in the random-phase approximation. The numerical results of defect effects on both energy-loss and optical-absorption spectra are presented and analyzed for various defect densities, numbers of quantum wells, and wave vectors. The diffusion-reaction equation is employed for calculating distributions of point defects in a layered structure. For completeness, the production rate for Frenkel-pair defects and their initial concentration are obtained based on atomic-level molecular-dynamics simulations. By combining the defect-effect, diffusion-reaction, and molecular-dynamics models with an available space-weather-forecast model, it will be possible in the future to enable specific designing for electronic and optoelectronic quantum devices that will be operated in space with radiation-hardening protection and, therefore, effectively extend the lifetime of these satellite onboard electronic and optoelectronic devices. Specifically, this theory can lead to a better characterization of quantum-well photodetectors not only for high quantum efficiency and low dark current density but also for radiation tolerance or mitigating the effects of the radiation.

  4. Book Review:

    NASA Astrophysics Data System (ADS)

    Das, Ashok

    2007-01-01

    It is not usual for someone to write a book on someone else's Ph.D. thesis, but then Feynman was not a usual physicist. He was without doubt one of the most original physicists of the twentieth century, who has strongly influenced the developments in quantum field theory through his many ingenious contributions. Path integral approach to quantum theories is one such contribution which pervades almost all areas of physics. What is astonishing is that he developed this idea as a graduate student for his Ph.D. thesis which has been printed, for the first time, in the present book along with two other related articles. The early developments in quantum theory, by Heisenberg and Schrödinger, were based on the Hamiltonian formulation, where one starts with the Hamiltonian description of a classical system and then promotes the classical observables to noncommuting quantum operators. However, Dirac had already stressed in an article in 1932 (this article is also reproduced in the present book) that the Lagrangian is more fundamental than the Hamiltonian, at least from the point of view of relativistic invariance and he wondered how the Lagrangian may enter into the quantum description. He had developed this idea through his 'transformation matrix' theory and had even hinted on how the action of the classical theory may enter such a description. However, although the brief paper by Dirac contained the basic essential ideas, it did not fully develop the idea of a Lagrangian description in detail in the functional language. Feynman, on the other hand, was interested in the electromagnetic interactions of the electron from a completely different point of view rooted in a theory involving action-at-a-distance. His theory (along with John Wheeler) did not have a Hamiltonian description and, in order to quantize such a theory, he needed an alternative formulation of quantum mechanics. When the article by Dirac was brought to his attention, he immediately realized what he was looking for and developed fully what is known today as the path integral approach to quantum theories. Although his main motivation was in the study of theories involving the concept of action-at-a-distance, as he emphasizes in his thesis, his formulation of quantum theories applies to any theory in general. The thesis develops quite systematically and in detail all the concepts of functionals necessary for this formulation. The motivation and the physical insights are described in the brilliant 'Feynman' style. It is incredible that even at that young age, the signs of his legendary teaching style were evident in his presentation of the material in the thesis. The path integral approach is now something that every graduate student in theoretical physics is supposed to know. There are several books on the subject, even one by Feynman himself (and Hibbs). Nonetheless, the thesis provides a very good background for the way these ideas came about. The two companion articles, although available in print, also gives a complete picture of the development of this line of thinking. The helpful introductory remarks by the editor also puts things in the proper historical perspective. This book would be very helpful to anyone interested in the development of modern ideas in physics.

  5. Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco

    2008-11-01

    The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.

  6. Quantum X waves with orbital angular momentum in nonlinear dispersive media

    NASA Astrophysics Data System (ADS)

    Ornigotti, Marco; Conti, Claudio; Szameit, Alexander

    2018-06-01

    We present a complete and consistent quantum theory of generalised X waves with orbital angular momentum in dispersive media. We show that the resulting quantised light pulses are affected by neither dispersion nor diffraction and are therefore resilient against external perturbations. The nonlinear interaction of quantised X waves in quadratic and Kerr nonlinear media is also presented and studied in detail.

  7. Loop Quantum Gravity and the Meaning of Diffeomorphism Invariance

    NASA Astrophysics Data System (ADS)

    Rovelli, Carlo; Gaul, Marcus

    This series of lectures gives an introduction to the non-perturbative and background-independent formulation for a quantum theory of gravitation which is called loop quantum gravity . The Hilbert space of kinematical quantum states is constructed and a complete basis of spin network states is introduced. Afterwards an application of the formalism is provided by the spectral analysis of the area operator, which is the quantum analogue of the classical area function. This leads to one of the key results of loop quantum gravity obtained in the last few years: the derivation of the discreteness of the geometry and the computation of the quanta of area. Special importance is attached to the role played by the diffeomorphism group in order to clarify the notion of observability in general relativity - a concept far from being trivial. Finally an outlock onto a possible dynamical extension of the theory is given, leading to a "sum over histories" approach, namely a so-called spin foam model . Throughout the whole lecture great significance is attached to conceptual and interpretational issues.

  8. Quantum Structure of Space and Time

    NASA Astrophysics Data System (ADS)

    Duff, M. J.; Isham, C. J.

    2012-07-01

    Foreword Abdus Salam; Preface; List of participants; Part I. Quantum Gravity, Fields and Topology: 1. Some remarks on gravity and quantum mechanics Roger Penrose; 2. An experimental test of quantum gravity Don N. Page and C. D. Geilker; 3. Quantum mechanical origin of the sandwich theorem in classical gravitation theory Claudio Teitelboim; 4. θ-States induced by the diffeomorphism group in canonically quantized gravity C. J. Isham; 5. Strong coupling quantum gravity: an introduction Martin Pilati; 6. Quantizing fourth order gravity theories S. M. Christensen; 7. Green's functions, states and renormalisation M. R. Brown and A. C. Ottewill; 8. Introduction to quantum regge calculus Martin Roček and Ruth Williams; 9. Spontaneous symmetry breaking in curved space-time D. J. Toms; 10. Spontaneous symmetry breaking near a black hole M. S. Fawcett and B. F. Whiting; 11. Yang-Mills vacua in a general three-space G. Kunstatter; 12. Fermion fractionization in physics R. Jackiw; Part II. Supergravity: 13. The new minimal formulation of N=1 supergravity and its tensor calculus M. F. Sohnius and P. C. West; 14. A new deteriorated energy-momentum tensor M. J. Duff and P. K. Townsend; 15. Off-shell N=2 and N=4 supergravity in five dimensions P. Howe; 16. Supergravity in high dimensions P. van Niewenhuizen; 17. Building linearised extended supergravities J. G. Taylor; 18. (Super)gravity in the complex angular momentum plane M. T. Grisaru; 19. The multiplet structure of solitons in the O(2) supergravity theory G. W. Gibbons; 20. Ultra-violet properties of supersymmetric gauge theory S. Ferrara; 21. Extended supercurrents and the ultra-violet finiteness of N=4 supersymmetric Yang-Mills theories K. S. Stelle; 22. Duality rotations B. Zumino; Part III. Cosmology and the Early Universe: 23. Energy, stability and cosmological constant S. Deser; 24. Phase transitions in the early universe T. W. B. Kibble; 25. Complete cosmological theories L. P. Grishchuk and Ya. B. Zeldovich; 26. The cosmological constant and the weak anthropic principle S. W. Hawking.

  9. Open quantum systems and error correction

    NASA Astrophysics Data System (ADS)

    Shabani Barzegar, Alireza

    Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC) that applies to any linear map, in particular maps that are not completely positive (CP). This is a complementary to the second chapter which is published in [Shabani and Lidar, 2007]. In the last chapter 7 before the conclusion, a formulation for evaluating the performance of quantum error correcting codes for a general error model is presented, also published in [Shabani, 2005]. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery.

  10. Finite Geometries in Quantum Theory:. from Galois (fields) to Hjelmslev (rings)

    NASA Astrophysics Data System (ADS)

    Saniga, Metod; Planat, Michel

    Geometries over Galois fields (and related finite combinatorial structures/algebras) have recently been recognized to play an ever-increasing role in quantum theory, especially when addressing properties of mutually unbiased bases (MUBs). The purpose of this contribution is to show that completely new vistas open up if we consider a generalized class of finite (projective) geometries, viz. those defined over Galois rings and/or other finite Hjelmslev rings. The case is illustrated by demonstrating that the basic combinatorial properties of a complete set of MUBs of a q-dimensional Hilbert space { H}q, q = pr with p being a prime and r a positive integer, are qualitatively mimicked by the configuration of points lying on a proper conic in a projective Hjelmslev plane defined over a Galois ring of characteristic p2 and rank r. The q vectors of a basis of { H}q correspond to the q points of a (so-called) neighbour class and the q + 1 MUBs answer to the total number of (pairwise disjoint) neighbour classes on the conic. Although this remarkable analogy is still established at the level of cardinalities only, we currently work on constructing an explicit mapping by associating a MUB to each neighbour class of the points of the conic and a state vector of this MUB to a particular point of the class. Further research in this direction may prove to be of great relevance for many areas of quantum information theory, in particular for quantum information processing.

  11. Weak Measurement and Quantum Smoothing of a Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Tan, Dian

    In quantum mechanics, the measurement outcome of an observable in a quantum system is intrinsically random, yielding a probability distribution. The state of the quantum system can be described by a density matrix rho(t), which depends on the information accumulated until time t, and represents our knowledge about the system. The density matrix rho(t) gives probabilities for the outcomes of measurements at time t. Further probing of the quantum system allows us to refine our prediction in hindsight. In this thesis, we experimentally examine a quantum smoothing theory in a superconducting qubit by introducing an auxiliary matrix E(t) which is conditioned on information obtained from time t to a final time T. With the complete information before and after time t, the pair of matrices [rho(t), E(t)] can be used to make smoothed predictions for the measurement outcome at time t. We apply the quantum smoothing theory in the case of continuous weak measurement unveiling the retrodicted quantum trajectories and weak values. In the case of strong projective measurement, while the density matrix rho(t) with only diagonal elements in a given basis |n〉 may be treated as a classical mixture, we demonstrate a failure of this classical mixture description in determining the smoothed probabilities for the measurement outcome at time t with both diagonal rho(t) and diagonal E(t). We study the correlations between quantum states and weak measurement signals and examine aspects of the time symmetry of continuous quantum measurement. We also extend our study of quantum smoothing theory to the case of resonance fluorescence of a superconducting qubit with homodyne measurement and observe some interesting effects such as the modification of the excited state probabilities, weak values, and evolution of the predicted and retrodicted trajectories.

  12. Multireference quantum chemistry through a joint density matrix renormalization group and canonical transformation theory.

    PubMed

    Yanai, Takeshi; Kurashige, Yuki; Neuscamman, Eric; Chan, Garnet Kin-Lic

    2010-01-14

    We describe the joint application of the density matrix renormalization group and canonical transformation theory to multireference quantum chemistry. The density matrix renormalization group provides the ability to describe static correlation in large active spaces, while the canonical transformation theory provides a high-order description of the dynamic correlation effects. We demonstrate the joint theory in two benchmark systems designed to test the dynamic and static correlation capabilities of the methods, namely, (i) total correlation energies in long polyenes and (ii) the isomerization curve of the [Cu(2)O(2)](2+) core. The largest complete active spaces and atomic orbital basis sets treated by the joint DMRG-CT theory in these systems correspond to a (24e,24o) active space and 268 atomic orbitals in the polyenes and a (28e,32o) active space and 278 atomic orbitals in [Cu(2)O(2)](2+).

  13. Quantum synchronization in an optomechanical system based on Lyapunov control.

    PubMed

    Li, Wenlin; Li, Chong; Song, Heshan

    2016-06-01

    We extend the concepts of quantum complete synchronization and phase synchronization, which were proposed in A. Mari et al., Phys. Rev. Lett. 111, 103605 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.103605, to more widespread quantum generalized synchronization. Generalized synchronization can be considered a necessary condition or a more flexible derivative of complete synchronization, and its criterion and synchronization measure are proposed and analyzed in this paper. As examples, we consider two typical generalized synchronizations in a designed optomechanical system. Unlike the effort to construct a special coupling synchronization system, we purposefully design extra control fields based on Lyapunov control theory. We find that the Lyapunov function can adapt to more flexible control objectives, which is more suitable for generalized synchronization control, and the control fields can be achieved simply with a time-variant voltage. Finally, the existence of quantum entanglement in different generalized synchronizations is also discussed.

  14. Self-consistent quantum kinetic theory of diatomic molecule formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrey, Robert C.

    2015-07-14

    A quantum kinetic theory of molecule formation is presented which includes three-body recombination and radiative association for a thermodynamically closed system which may or may not exchange energy with its surrounding at a constant temperature. The theory uses a Sturmian representation of a two-body continuum to achieve a steady-state solution of a governing master equation which is self-consistent in the sense that detailed balance between all bound and unbound states is rigorously enforced. The role of quasibound states in catalyzing the molecule formation is analyzed in complete detail. The theory is used to make three predictions which differ from conventionalmore » kinetic models. These predictions suggest significant modifications may be needed to phenomenological rate constants which are currently in wide use. Implications for models of low and high density systems are discussed.« less

  15. Full-band quantum simulation of electron devices with the pseudopotential method: Theory, implementation, and applications

    NASA Astrophysics Data System (ADS)

    Pala, M. G.; Esseni, D.

    2018-03-01

    This paper presents the theory, implementation, and application of a quantum transport modeling approach based on the nonequilibrium Green's function formalism and a full-band empirical pseudopotential Hamiltonian. We here propose to employ a hybrid real-space/plane-wave basis that results in a significant reduction of the computational complexity compared to a full plane-wave basis. To this purpose, we provide a theoretical formulation in the hybrid basis of the quantum confinement, the self-energies of the leads, and the coupling between the device and the leads. After discussing the theory and the implementation of the new simulation methodology, we report results for complete, self-consistent simulations of different electron devices, including a silicon Esaki diode, a thin-body silicon field effect transistor (FET), and a germanium tunnel FET. The simulated transistors have technologically relevant geometrical features with a semiconductor film thickness of about 4 nm and a channel length ranging from 10 to 17 nm. We believe that the newly proposed formalism may find applications also in transport models based on ab initio Hamiltonians, as those employed in density functional theory methods.

  16. Phase structure of completely asymptotically free SU(Nc) models with quarks and scalar quarks

    NASA Astrophysics Data System (ADS)

    Hansen, F. F.; Janowski, T.; Langæble, K.; Mann, R. B.; Sannino, F.; Steele, T. G.; Wang, Z. W.

    2018-03-01

    We determine the phase diagram of completely asymptotically free SU (Nc) gauge theories featuring Ns complex scalars and Nf Dirac quarks transforming according to the fundamental representation of the gauge group. The analysis is performed at the maximum known order in perturbation theory. We unveil a very rich dynamics and associated phase structure. Intriguingly, we discover that the completely asymptotically free conditions guarantee that the infrared dynamics displays long-distance conformality, and in a regime when perturbation theory is applicable. We conclude our analysis by determining the quantum corrected potential of the model and summarizing the possible patterns of radiative symmetry breaking. These models are of potential phenomenological interest as either elementary or composite ultraviolet finite extensions of the standard model.

  17. On space of integrable quantum field theories

    DOE PAGES

    Smirnov, F. A.; Zamolodchikov, A. B.

    2016-12-21

    Here, we study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as “effective field theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields X s, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars X s are built from the components of the associated conserved currents in a universal way. The first of these scalars, X 1, coincides with the composite field View the MathMLmore » source(TT¯) built from the components of the energy–momentum tensor. The deformations of quantum field theories generated by X 1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations X s are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators X s in sine-Gordon theory. Lastly, we also make some remarks on the problem of UV completeness of such integrable deformations.« less

  18. Quantum field theory in spaces with closed time-like curves

    NASA Astrophysics Data System (ADS)

    Boulware, D. G.

    Gott spacetime has closed timelike curves, but no locally anomalous stress-energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 27(pi). A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the acausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the acausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.

  19. Transition operators in electromagnetic-wave diffraction theory - General theory

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1992-01-01

    A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.

  20. Chemical accuracy from quantum Monte Carlo for the benzene dimer.

    PubMed

    Azadi, Sam; Cohen, R E

    2015-09-14

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimal VMC and DMC binding energies of -2.3(4) and -2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is -2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.

  1. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels

    NASA Astrophysics Data System (ADS)

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-01

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p →q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  2. Gaussian States Minimize the Output Entropy of One-Mode Quantum Gaussian Channels.

    PubMed

    De Palma, Giacomo; Trevisan, Dario; Giovannetti, Vittorio

    2017-04-21

    We prove the long-standing conjecture stating that Gaussian thermal input states minimize the output von Neumann entropy of one-mode phase-covariant quantum Gaussian channels among all the input states with a given entropy. Phase-covariant quantum Gaussian channels model the attenuation and the noise that affect any electromagnetic signal in the quantum regime. Our result is crucial to prove the converse theorems for both the triple trade-off region and the capacity region for broadcast communication of the Gaussian quantum-limited amplifier. Our result extends to the quantum regime the entropy power inequality that plays a key role in classical information theory. Our proof exploits a completely new technique based on the recent determination of the p→q norms of the quantum-limited amplifier [De Palma et al., arXiv:1610.09967]. This technique can be applied to any quantum channel.

  3. Particles and strings in six-dimensional (2, 0) theory

    NASA Astrophysics Data System (ADS)

    Henningson, Måns

    2004-11-01

    In 1995, we learned of the rather surprising existence of a completely new class of quantum theories in six space-time dimensions with(2,0)superconformal symmetry. Some important reasons to study these theories are: (i) Finding the right conceptual framework to define them is a very challenging problem, that will probably take a long time to solve. It is likely to involve new interesting mathematical structures with connections in particular to algebra and geometry. (ii) They give rise to certain Yang-Mills theories with maximally extended supersymmetry upon compactification on a two-torus. This may be a way to find an S-dual formulation of these lower dimensional theories. (iii) They arise within string/ M-theory as decoupled subsectors localized on certain space-time impurities such as branes or singularities. (This is in fact how these theories were first discovered (see Witten, hep-th/9507121).) This may provide an opportunity to study aspects of these higher dimensional theories without having to deal with the conceptual subtleties of quantum gravity. To cite this article: M. Henningson, C. R. Physique 5 (2004).

  4. Quantum chemical methods for the investigation of photoinitiated processes in biological systems: theory and applications.

    PubMed

    Dreuw, Andreas

    2006-11-13

    With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.

    We report an accurate study of interactions between benzene molecules using variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo (DMC) methods. We compare these results with density functional theory using different van der Waals functionals. In our quantum Monte Carlo (QMC) calculations, we use accurate correlated trial wave functions including three-body Jastrow factors and backflow transformations. We consider two benzene molecules in the parallel displaced geometry, and find that by highly optimizing the wave function and introducing more dynamical correlation into the wave function, we compute the weak chemical binding energy between aromatic rings accurately. We find optimalmore » VMC and DMC binding energies of −2.3(4) and −2.7(3) kcal/mol, respectively. The best estimate of the coupled-cluster theory through perturbative triplets/complete basis set limit is −2.65(2) kcal/mol [Miliordos et al., J. Phys. Chem. A 118, 7568 (2014)]. Our results indicate that QMC methods give chemical accuracy for weakly bound van der Waals molecular interactions, comparable to results from the best quantum chemistry methods.« less

  6. Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrennikov, Andrei

    2010-08-15

    One of the crucial differences between mathematical models of classical and quantum mechanics (QM) is the use of the tensor product of the state spaces of subsystems as the state space of the corresponding composite system. (To describe an ensemble of classical composite systems, one uses random variables taking values in the Cartesian product of the state spaces of subsystems.) We show that, nevertheless, it is possible to establish a natural correspondence between the classical and the quantum probabilistic descriptions of composite systems. Quantum averages for composite systems (including entangled) can be represented as averages with respect to classical randommore » fields. It is essentially what Albert Einstein dreamed of. QM is represented as classical statistical mechanics with infinite-dimensional phase space. While the mathematical construction is completely rigorous, its physical interpretation is a complicated problem. We present the basic physical interpretation of prequantum classical statistical field theory in Sec. II. However, this is only the first step toward real physical theory.« less

  7. Philosophical perspectives on quantum chaos: Models and interpretations

    NASA Astrophysics Data System (ADS)

    Bokulich, Alisa Nicole

    2001-09-01

    The problem of quantum chaos is a special case of the larger problem of understanding how the classical world emerges from quantum mechanics. While we have learned that chaos is pervasive in classical systems, it appears to be almost entirely absent in quantum systems. The aim of this dissertation is to determine what implications the interpretation of quantum mechanics has for attempts to explain the emergence of classical chaos. There are three interpretations of quantum mechanics that have set out programs for solving the problem of quantum chaos: the standard interpretation, the statistical interpretation, and the deBroglie-Bohm causal interpretation. One of the main conclusions of this dissertation is that an interpretation alone is insufficient for solving the problem of quantum chaos and that the phenomenon of decoherence must be taken into account. Although a completely satisfactory solution of the problem of quantum chaos is still outstanding, I argue that the deBroglie-Bohm interpretation with the help of decoherence outlines the most promising research program to pursue. In addition to making a contribution to the debate in the philosophy of physics concerning the interpretation of quantum mechanics, this dissertation reveals two important methodological lessons for the philosophy of science. First, issues of reductionism and intertheoretic relations cannot be divorced from questions concerning the interpretation of the theories involved. Not only is the exploration of intertheoretic relations a central part of the articulation and interpretation of an individual theory, but the very terms used to discuss intertheoretic relations, such as `state' and `classical limit', are themselves defined by particular interpretations of the theory. The second lesson that emerges is that, when it comes to characterizing the relationship between classical chaos and quantum mechanics, the traditional approaches to intertheoretic relations, namely reductionism and theoretical pluralism, are inadequate. The fruitful ways in which models have been used in quantum chaos research point to the need for a new framework for addressing intertheoretic relations that focuses on models rather than laws.

  8. JOURNAL SCOPE GUIDELINES: Paper classification scheme

    NASA Astrophysics Data System (ADS)

    2005-06-01

    This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas

  9. Hierarchies in Quantum Gravity: Large Numbers, Small Numbers, and Axions

    NASA Astrophysics Data System (ADS)

    Stout, John Eldon

    Our knowledge of the physical world is mediated by relatively simple, effective descriptions of complex processes. By their very nature, these effective theories obscure any phenomena outside their finite range of validity, discarding information crucial to understanding the full, quantum gravitational theory. However, we may gain enormous insight into the full theory by understanding how effective theories with extreme characteristics--for example, those which realize large-field inflation or have disparate hierarchies of scales--can be naturally realized in consistent theories of quantum gravity. The work in this dissertation focuses on understanding the quantum gravitational constraints on these "extreme" theories in well-controlled corners of string theory. Axion monodromy provides one mechanism for realizing large-field inflation in quantum gravity. These models spontaneously break an axion's discrete shift symmetry and, assuming that the corrections induced by this breaking remain small throughout the excursion, create a long, quasi-flat direction in field space. This weakly-broken shift symmetry has been used to construct a dynamical solution to the Higgs hierarchy problem, dubbed the "relaxion." We study this relaxion mechanism and show that--without major modifications--it can not be naturally embedded within string theory. In particular, we find corrections to the relaxion potential--due to the ten-dimensional backreaction of monodromy charge--that conflict with naive notions of technical naturalness and render the mechanism ineffective. The super-Planckian field displacements necessary for large-field inflation may also be realized via the collective motion of many aligned axions. However, it is not clear that string theory provides the structures necessary for this to occur. We search for these structures by explicitly constructing the leading order potential for C4 axions and computing the maximum possible field displacement in all compactifications of type IIB string theory on toric Calabi-Yau hypersurfaces with h1,1 ≤ 4 in the Kreuzer-Skarke database. While none of these examples can sustain a super-Planckian displacement--the largest possible is 0.3 Mpl--we find an alignment mechanism responsible for large displacements in random matrix models at large h 1,1 >> 1, indicating that large-field inflation may be feasible in compactifications with tens or hundreds of axions. These results represent a modest step toward a complete understanding of large hierarchies and naturalness in quantum gravity.

  10. The Formalism of Quantum Mechanics Specified by Covariance Properties

    NASA Astrophysics Data System (ADS)

    Nisticò, G.

    2009-03-01

    The known methods, due for instance to G.W. Mackey and T.F. Jordan, which exploit the transformation properties with respect to the Euclidean and Galileian group to determine the formalism of the Quantum Theory of a localizable particle, fail in the case that the considered transformations are not symmetries of the physical system. In the present work we show that the formalism of standard Quantum Mechanics for a particle without spin can be completely recovered by exploiting the covariance properties with respect to the group of Euclidean transformations, without requiring that these transformations are symmetries of the physical system.

  11. Faster quantum walk search on a weighted graph

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.

    2015-09-01

    A randomly walking quantum particle evolving by Schrödinger's equation searches for a unique marked vertex on the "simplex of complete graphs" in time Θ (N3 /4) . We give a weighted version of this graph that preserves vertex transitivity, and we show that the time to search on it can be reduced to nearly Θ (√{N }) . To prove this, we introduce two extensions to degenerate perturbation theory: an adjustment that distinguishes the weights of the edges and a method to determine how precisely the jumping rate of the quantum walk must be chosen.

  12. Quantum Field Theory Approach to Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Marino, Eduardo C.

    2017-09-01

    Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.

  13. Information Theoretic Characterization of Physical Theories with Projective State Space

    NASA Astrophysics Data System (ADS)

    Zaopo, Marco

    2015-08-01

    Probabilistic theories are a natural framework to investigate the foundations of quantum theory and possible alternative or deeper theories. In a generic probabilistic theory, states of a physical system are represented as vectors of outcomes probabilities and state spaces are convex cones. In this picture the physics of a given theory is related to the geometric shape of the cone of states. In quantum theory, for instance, the shape of the cone of states corresponds to a projective space over complex numbers. In this paper we investigate geometric constraints on the state space of a generic theory imposed by the following information theoretic requirements: every non completely mixed state of a system is perfectly distinguishable from some other state in a single shot measurement; information capacity of physical systems is conserved under making mixtures of states. These assumptions guarantee that a generic physical system satisfies a natural principle asserting that the more a state of the system is mixed the less information can be stored in the system using that state as logical value. We show that all theories satisfying the above assumptions are such that the shape of their cones of states is that of a projective space over a generic field of numbers. Remarkably, these theories constitute generalizations of quantum theory where superposition principle holds with coefficients pertaining to a generic field of numbers in place of complex numbers. If the field of numbers is trivial and contains only one element we obtain classical theory. This result tells that superposition principle is quite common among probabilistic theories while its absence gives evidence of either classical theory or an implausible theory.

  14. Connected components of irreducible maps and 1D quantum phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szehr, Oleg, E-mail: oleg.szehr@posteo.de; Wolf, Michael M., E-mail: wolf@ma.tum.de

    We investigate elementary topological properties of sets of completely positive (CP) maps that arise in quantum Perron-Frobenius theory. We prove that the set of primitive CP maps of fixed Kraus rank is path-connected and we provide a complete classification of the connected components of irreducible CP maps at given Kraus rank and fixed peripheral spectrum in terms of a multiplicity index. These findings are then applied to analyse 1D quantum phases by studying equivalence classes of translational invariant matrix product states that correspond to the connected components of the respective CP maps. Our results extend the previously obtained picture inmore » that they do not require blocking of physical sites, they lead to analytic paths, and they allow us to decompose into ergodic components and to study the breaking of translational symmetry.« less

  15. On the possibility of complete revivals after quantum quenches to a critical point

    NASA Astrophysics Data System (ADS)

    Najafi, K.; Rajabpour, M. A.

    2017-07-01

    In a recent letter [J. Cardy, Phys. Rev. Lett. 112, 220401 (2014), 10.1103/PhysRevLett.112.220401], the author made a very interesting observation that complete revivals of quantum states after quantum quench can happen in a period that is a fraction of the system size. This is possible for critical systems that can be described by minimal conformal field theories with central charge c <1 . In this paper, we show that these complete revivals are impossible in microscopic realizations of those minimal models. We will prove the absence of the mentioned complete revivals for the critical transverse field Ising chain analytically, and present numerical results for the critical line of the XY chain. In particular, for the considered initial states, we will show that criticality has no significant effect in partial revivals. We also comment on the applicability of quasiparticle picture to determine the period of the partial revivals qualitatively. In particular, we detect a regime in the phase diagram of the XY chain in which one can not determine the period of the partial revivals using the quasiparticle picture.

  16. Bukhvostov-Lipatov model and quantum-classical duality

    NASA Astrophysics Data System (ADS)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.

    2018-02-01

    The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  17. Classical geometric resolution of the Einstein—Podolsky—Rosen paradox

    PubMed Central

    Ne'eman, Yuval

    1983-01-01

    I show that, in the geometry of a fiber bundle describing a gauge theory, curvature and parallel transport ensure and impose nonseparability. The “Einstein—Podolsky—Rosen paradox” is thus resolved “classically.” I conjecture that the ostentatiously “implausible” features of the quantum treatment are due to the fact that space—time separability, a basic assumption of single-particle nonrelativistic quantum mechanics, does not fit the bundle geometry of the complete physics. PMID:16593392

  18. Bohrian Complementarity in the Light of Kantian Teleology

    NASA Astrophysics Data System (ADS)

    Pringe, Hernán

    2014-03-01

    The Kantian influences on Bohr's thought and the relationship between the perspective of complementarity in physics and in biology seem at first sight completely unrelated issues. However, the goal of this work is to show their intimate connection. We shall see that Bohr's views on biology shed light on Kantian elements of his thought, which enables a better understanding of his complementary interpretation of quantum theory. For this purpose, we shall begin by discussing Bohr's views on the analogies concerning the epistemological situation in biology and in physics. Later, we shall compare the Bohrian and the Kantian approaches to the science of life in order to show their close connection. On this basis, we shall finally turn to the issue of complementarity in quantum theory in order to assess what we can learn about the epistemological problems in the quantum realm from a consideration of Kant's views on teleology.

  19. Being qua becoming: Aristotle's "Metaphysics", quantum physics, and Process Philosophy

    NASA Astrophysics Data System (ADS)

    Johnson, David Kelley

    In Aristotle's First Philosophy, science and philosophy were partners, but with the rise of empiricism, went their separate ways. Metaphysics combined the rational and irrational (i.e. final cause/unmoved mover) elements of existence to equate being with substance, postulating prime matter as pure potential that was actuated by form to create everything. Modern science reveres pure reason and postulates its theory of being by a rigorous scientific methodology. The Standard Model defines matter as energy formed into fundamental particles via forces contained in fields. Science has proved Aristotle's universe wrong in many ways, but as physics delves deeper into the quantum world, empiricism is reaching its limits concerning fundamental questions of existence. To achieve its avowed mission of explaining existence completely, physics must reunite with philosophy in a metascience modeled on the First Philosophy of Aristotle. One theory of being that integrates quantum physics and metaphysics is Process Philosophy.

  20. Opening Talk: Opening Talk

    NASA Astrophysics Data System (ADS)

    Doebner, H.-D.

    2008-02-01

    Ladies and Gentlemen Dear Friends and Colleagues I welcome you at the 5th International Symposium `Quantum Theory and Symmetries, QTS5' in Valladolid as Chairman of the Conference Board of this biannual series. The aim of the series is to arrange an international meeting place for scientists working in theoretical and mathematical physics, in mathematics, in mathematical biology and chemistry and in other sciences for the presentation and discussion of recent developments in connection with quantum physics and chemistry, material science and related further fields, like life sciences and engineering, which are based on mathematical methods which can be applied to model and to understand microphysical and other systems through inherent symmetries in their widest sense. These systems include, e.g., foundations and extensions of quantum theory; quantum probability; quantum optics and quantum information; the description of nonrelativistic, finite dimensional and chaotic systems; quantum field theory, particle physics, string theory and quantum gravity. Symmetries in their widest sense describe properties of a system which could be modelled, e.g., through geometry, group theory, topology, algebras, differential geometry, noncommutative geometry, functional analysis and approximation methods; numerical evaluation techniques are necessary to connect such symmetries with experimental results. If you ask for a more detailed characterisation of this notion a hand waving indirect answer is: Collect titles and contents of the contributions of the proceedings of QTS4 and get a characterisation through semantic closure. Quantum theory and its Symmetries was and is a diversified and rapidly growing field. The number of and the types of systems with an internal symmetry and the corresponding mathematical models develop fast. This is reflected in the content of the five former international symposia of this series: The first symposium, QTS1-1999, was organized in Goslar (Germany) with 170 participants and 89 contributions in the proceedings; it was centred on the foundations and extensions of quantum theory, on quantisation methods and on q-algebras. In QTS2-2001 in Cracow (Poland) with 175 participants and 81 contributions; the main topics were applications of quantum mechanics, representations of algebras and group theoretical techniques in physics. In the symposium QTS3-2003 in Cincinnati (USA) with 145 participants and 92 contributions, quantum field theory, loop quantum gravity, string and brane theory was discussed. The focus in QTS4-2005 in Varna (Bulgaria) with 228 participant and 105 contributions, was on conformal field theory, quantum gravity, noncommutative geometry and quantum groups. Three proceedings volumes were published with World Scientific and one volume with Heron Press. The promising and interesting programme for QTS5-2007 in Valladolid (Spain) attracted more than 200 participants; the contributions will be published in a special issue of Journal of Physics A: Mathematical and Theoretical and a volume of Journal of Physics: Conference Series. This shows the wide scope of symmetry in connection with quantum physics and related sciences. In the background of the symposia series is the Conference Board with presently 13 members. The Board encourages scientists and Institutions to present detailed proposals for a QTS symposium; it agrees to one proposal and is prepared to assist in matters of organisation; the local organisers are responsible for the scientific programme and for the organisation, including the budget. The Board decided that the next symposium QTS6 will be held 2009 at the University of Kentucky in Lexington (USA); Alan Shapere is the chairman of the Local Organizing committee. In the name of all of you I express my appreciation and my thanks to the members of the Local Organizing Committee of QTS5, especially to Mariano del Olmo. The programme is outstanding; it covers recent and new developments in our field. The organization is very effective and complete. We have all the necessary condition for a successful and smooth meeting. Thank you again Mariano. H-D Doebner Chairman of the Conference Board of QTS5

  1. Symmetric polynomials in information theory: Entropy and subentropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozsa, Richard; Mitchison, Graeme

    2015-06-15

    Entropy and other fundamental quantities of information theory are customarily expressed and manipulated as functions of probabilities. Here we study the entropy H and subentropy Q as functions of the elementary symmetric polynomials in the probabilities and reveal a series of remarkable properties. Derivatives of all orders are shown to satisfy a complete monotonicity property. H and Q themselves become multivariate Bernstein functions and we derive the density functions of their Levy-Khintchine representations. We also show that H and Q are Pick functions in each symmetric polynomial variable separately. Furthermore, we see that H and the intrinsically quantum informational quantitymore » Q become surprisingly closely related in functional form, suggesting a special significance for the symmetric polynomials in quantum information theory. Using the symmetric polynomials, we also derive a series of further properties of H and Q.« less

  2. Quantum market games: implementing tactics via measurements

    NASA Astrophysics Data System (ADS)

    Pakula, I.; Piotrowski, E. W.; Sladkowski, J.

    2006-02-01

    A major development in applying quantum mechanical formalism to various fields has been made during the last few years. Quantum counterparts of Game Theory, Economy, as well as diverse approaches to Quantum Information Theory have been found and currently are being explored. Using connections between Quantum Game Theory and Quantum Computations, an application of the universality of a measurement based computation in Quantum Market Theory is presented.

  3. Beable-guided quantum theories: Generalizing quantum probability laws

    NASA Astrophysics Data System (ADS)

    Kent, Adrian

    2013-02-01

    Beable-guided quantum theories (BGQT) are generalizations of quantum theory, inspired by Bell's concept of beables. They modify the quantum probabilities for some specified set of fundamental events, histories, or other elements of quasiclassical reality by probability laws that depend on the realized configuration of beables. For example, they may define an additional probability weight factor for a beable configuration, independent of the quantum dynamics. Beable-guided quantum theories can be fitted to observational data to provide foils against which to compare explanations based on standard quantum theory. For example, a BGQT could, in principle, characterize the effects attributed to dark energy or dark matter, or any other deviation from the predictions of standard quantum dynamics, without introducing extra fields or a cosmological constant. The complexity of the beable-guided theory would then parametrize how far we are from a standard quantum explanation. Less conservatively, we give reasons for taking suitably simple beable-guided quantum theories as serious phenomenological theories in their own right. Among these are the possibility that cosmological models defined by BGQT might in fact fit the empirical data better than any standard quantum explanation, and the fact that BGQT suggest potentially interesting nonstandard ways of coupling quantum matter to gravity.

  4. K-theoretic Gromov-Witten invariants in genus 0 and integrable hierarchies

    NASA Astrophysics Data System (ADS)

    Milanov, Todor; Tonita, Valentin

    2018-06-01

    We prove that the genus 0 invariants in K-theoretic Gromov-Witten theory are governed by an integrable hierarchy of hydrodynamic type. If the K-theoretic quantum product is semisimple, then we also prove the completeness of the hierarchy.

  5. Quantum Field Theory in (0 + 1) Dimensions

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  6. Physical explanation of the periodic table.

    PubMed

    Ostrovsky, V N

    2003-05-01

    The Periodic Table of the elements, the most important generalization in chemistry, is often considered as a representative special case in the study of the relation between chemistry and physics. Its quantum interpretation was initiated, but not completed, by Niels Bohr. In this paper, post-Bohr conceptual developments are discussed from historical and epistemological points of view. The difference between high-precision numerical calculations for individual atoms and the theory of the periodic system as a whole is emphasized. Periodic laws met in Nature are not restricted to the chemical Periodic Table. A comparative study of these laws makes it possible to single out essential features that define the particular pattern of periodicity. It is shown that the periodic system of neutral ground state atoms now has a firm nonempirical quantum-theoretical basis. Alternative approaches, based on group theory and other mathematical schemes, are briefly discussed. It is argued that, while quantum theory is capable of fully accurate calculations for relatively simple atoms or molecular objects, the complexity of polyatomic molecules and chemical reactions guarantees the flourishing of chemistry as a separate scientific discipline.

  7. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Cui, Ping

    The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO) systems, and its closely related solvation mode transformation of system-bath coupling Hamiltonian in general. The exact QDT of DBO systems is also used to clarify the validity of conventional QDT formulations that involve Markovian approximation. In Chapter 3, we develop three nonequivalent but all complete second-order QDT (CS-QDT) formulations. Two of them are of the conventional prescriptions in terms of time-local dissipation and memory kernel, respectively. The third one is called the correlated driving-dissipation equations of motion (CODDE). This novel CS-QDT combines the merits of the former two for its advantages in both the application and numerical implementation aspects. Also highlighted is the importance of correlated driving-dissipation effects on the dynamics of the reduced system. In Chapter 4, we construct an exact QDT formalism via the calculus on path integrals. The new theory aims at the efficient evaluation of non-Markovian dissipation beyond the weak system-bath interaction regime in the presence of time-dependent external field. By adopting exponential-like expansions for bath correlation function, hierarchical equations of motion formalism and continued fraction Liouville-space Green's function formalism are established. The latter will soon be used together with the Dyson equation technique for an efficient evaluation of non-perturbative reduced density matrix dynamics. The interplay between system-bath interaction strength, non-Markovian property, and the required level of hierarchy is also studied with the aid of simple spin-boson systems, together with the three proposed schemes to truncate the infinite hierarchy. In Chapter 5, we develop a nonperturbative theory of electron transfer (ET) in Debye solvents. The resulting exact and analytical rate expression is constructed on the basis of the aforementioned continued fraction Liouville-space Green's function formalism, together with the Dyson equation technique. Not only does it recover the celebrated Marcus' inversion and Kramers' turnover behaviors, the new theory also shows some distinct quantum solvation effects that can alter the ET mechanism. Moreover, the present theory predicts further for the ET reaction thermodynamics, such as equilibrium Gibbs free-energy and entropy, some interesting solvent-dependent features that are calling for experimental verification. In Chapter 6, we discuss the constructed QDTs, in terms of their unified mathematical structure that supports a linear dynamics space, and thus facilitates their applications to various physical problems. The involving details are exemplified with the CODDE form of QDT. As the linear space is concerned, we identify the Schrodinger versus Heisenberg picture and the forward versus backward propagation of the reduced, dissipative Liouville dynamics. For applications we discuss the reduced linear response theory and the optimal control problems, in which the correlated effects of non-Markovian dissipation and field driving are shown to be important. In Chapter 7, we turn to quantum transport, i.e., electric current through molecular or mesoscopic systems under finite applied voltage. By viewing the nonequilibrium transport setup as a quantum open system, we develop a reduced-density-matrix approach to quantum transport. The resulting current is explicitly expressed in terms of the molecular reduced density matrix by tracing out the degrees of freedom of the electrodes at finite bias and temperature. We propose a conditional quantum master equation theory, which is an extension of the conventional (or unconditional) QDT by tracing out the well-defined bath subsets individually, instead of the entire bath degrees of freedom. Both the current and the noise spectrum can be conveniently analyzed in terms of the conditional reduced density matrix dynamics. By far, the QDT (including the conditional one) has only been exploited in second-order form. A self-consistent Born approximation for the system-electrode coupling is further proposed to recover all existing nonlinear current-voltage behaviors including the nonequilibrium Kondo effect. Transport theory based on the exact QDT formalism will be developed in future. In Chapter 8, we study the quantum measurement of a qubit with a quantum-point-contact detector. On the basis of a unified quantum master equation (a form of QDT), we study the measurement-induced relaxation and dephasing of the qubit. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. We also derive a conditional quantum master equation for quantum measurement in general, and study the readout characteristics of the qubit measurement. Our theory is applicable to the quantum measurement at arbitrary voltage and temperature. A number of remarkable new features are found and highlighted in concern with their possible relevance to future experiments. In Chapter 9, we discuss the further development of QDT, aiming at an efficient evaluation of many-electron systems. This will be carried out by reducing the many-particle (Fermion or Boson) QDT to a single-particle one by exploring, e.g. the Wick's contraction theorem. It also results in a time-dependent density functional theory (TDDFT) for transport through complex large-scale (e.g. molecules) systems. Primary results of the TDDFT-QDT are reported. In Chapter 10, we summary the thesis, and comment and remark on the future work on both the theoretical and application aspects of QDT.

  8. Conceptual Foundations of Quantum Mechanics:. the Role of Evidence Theory, Quantum Sets, and Modal Logic

    NASA Astrophysics Data System (ADS)

    Resconi, Germano; Klir, George J.; Pessa, Eliano

    Recognizing that syntactic and semantic structures of classical logic are not sufficient to understand the meaning of quantum phenomena, we propose in this paper a new interpretation of quantum mechanics based on evidence theory. The connection between these two theories is obtained through a new language, quantum set theory, built on a suggestion by J. Bell. Further, we give a modal logic interpretation of quantum mechanics and quantum set theory by using Kripke's semantics of modal logic based on the concept of possible worlds. This is grounded on previous work of a number of researchers (Resconi, Klir, Harmanec) who showed how to represent evidence theory and other uncertainty theories in terms of modal logic. Moreover, we also propose a reformulation of the many-worlds interpretation of quantum mechanics in terms of Kripke's semantics. We thus show how three different theories — quantum mechanics, evidence theory, and modal logic — are interrelated. This opens, on one hand, the way to new applications of quantum mechanics within domains different from the traditional ones, and, on the other hand, the possibility of building new generalizations of quantum mechanics itself.

  9. On the break down of reality at superluminal velocities, Quantum entanglement and Singularities (Complex Universe)

    NASA Astrophysics Data System (ADS)

    Estakhr, Ahmad Reza

    2017-09-01

    In the real world nothing can move faster than the speed of light. But what convinces you that our world is all real? I realized that reality break down at superluminal velocities (By studying the physics of tachyonic neutrinos), Quantum entanglement and Singularities of Black Holes, I realized that infact our world is complex and has two parts, one part of the world is real (the part that nothing can move faster than the speed of light) but the other part of the world is imaginary. z = a + ib Einstein was wrong because he thought our world is completely real (Of course he was not alone in this belief almost all physicists believe that our world is completely real) Eventually his false interpretation of reality censored imaginary part of the universe. Einstein's Second Postulate of special theory of relativity was a misleading guide to the true nature of reality. He `expected' the true nature of reality will follow to his (false) postulate, But the true nature of reality is unlike what anyone ever `expected'!. Einstein twist facts to suit his theory of relativity instead of theories to suit facts!. This is a dramatic revisions to our conception of the theory of relativity, Reality is complex but We always perceive its real part.

  10. String theory, gauge theory and quantum gravity. Proceedings. Trieste Spring School and Workshop on String Theory, Gauge Theory and Quantum Gravity, Trieste (Italy), 11 - 22 Apr 1994.

    NASA Astrophysics Data System (ADS)

    1995-04-01

    The following topics were dealt with: string theory, gauge theory, quantum gravity, quantum geometry, black hole physics and information loss, second quantisation of the Wilson loop, 2D Yang-Mills theory, topological field theories, equivariant cohomology, superstring theory and fermion masses, supergravity, topological gravity, waves in string cosmology, superstring theories, 4D space-time.

  11. New Methods in Non-Perturbative QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unsal, Mithat

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), andmore » there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.« less

  12. A Non-Critical String (Liouville) Approach to Brain Microtubules:. State Vector Reduction, Memory Coding and Capacity

    NASA Astrophysics Data System (ADS)

    Mavromatos, N. E.; Nanopoulos, D. V.

    Microtubule (MT) networks, subneural paracrystalline cytoskeletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a (1+1)-dimensional noncritical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental friction effects. We suggest, thus, that the MTs are the microsites, in the brain, for the emergence of stable, macroscopic quantum coherent states, identifiable with the preconscious states. Quantum space-time effects, as described by noncritical string theory, trigger then an organized collapse of the coherent states down to a specific or conscious state. The whole process we estimate to take { O}(1 sec), in excellent agreement with a plethora of experimental/observational findings. The microscopic arrow of time, endemic in noncritical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age-old problem of how the, central to our feelings of awareness, sensation of the progression of time is generated. In addition, the complete integrability of the stringy model for MT we advocate in this work proves sufficient in providing a satisfactory solution to memory coding and capacity. Such features might turn out to be important for a model of the brain as a quantum computer.

  13. Diagonal couplings of quantum Markov chains

    NASA Astrophysics Data System (ADS)

    Kümmerer, Burkhard; Schwieger, Kay

    2016-05-01

    In this paper we extend the coupling method from classical probability theory to quantum Markov chains on atomic von Neumann algebras. In particular, we establish a coupling inequality, which allow us to estimate convergence rates by analyzing couplings. For a given tensor dilation we construct a self-coupling of a Markov operator. It turns out that the coupling is a dual version of the extended dual transition operator studied by Gohm et al. We deduce that this coupling is successful if and only if the dilation is asymptotically complete.

  14. The future (and past) of quantum theory after the Higgs boson: a quantum-informational viewpoint.

    PubMed

    Plotnitsky, Arkady

    2016-05-28

    Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting anon-realistinterpretation, in 'the spirit of Copenhagen', of quantum theory and quantum phenomena themselves. The article argues that the 'events' in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT. © 2016 The Author(s).

  15. No extension of quantum theory can have improved predictive power.

    PubMed

    Colbeck, Roger; Renner, Renato

    2011-08-02

    According to quantum theory, measurements generate random outcomes, in stark contrast with classical mechanics. This raises the question of whether there could exist an extension of the theory that removes this indeterminism, as suspected by Einstein, Podolsky and Rosen. Although this has been shown to be impossible, existing results do not imply that the current theory is maximally informative. Here we ask the more general question of whether any improved predictions can be achieved by any extension of quantum theory. Under the assumption that measurements can be chosen freely, we answer this question in the negative: no extension of quantum theory can give more information about the outcomes of future measurements than quantum theory itself. Our result has significance for the foundations of quantum mechanics, as well as applications to tasks that exploit the inherent randomness in quantum theory, such as quantum cryptography.

  16. No extension of quantum theory can have improved predictive power

    PubMed Central

    Colbeck, Roger; Renner, Renato

    2011-01-01

    According to quantum theory, measurements generate random outcomes, in stark contrast with classical mechanics. This raises the question of whether there could exist an extension of the theory that removes this indeterminism, as suspected by Einstein, Podolsky and Rosen. Although this has been shown to be impossible, existing results do not imply that the current theory is maximally informative. Here we ask the more general question of whether any improved predictions can be achieved by any extension of quantum theory. Under the assumption that measurements can be chosen freely, we answer this question in the negative: no extension of quantum theory can give more information about the outcomes of future measurements than quantum theory itself. Our result has significance for the foundations of quantum mechanics, as well as applications to tasks that exploit the inherent randomness in quantum theory, such as quantum cryptography. PMID:21811240

  17. A quantum annealing architecture with all-to-all connectivity from local interactions.

    PubMed

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-10-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.

  18. A quantum annealing architecture with all-to-all connectivity from local interactions

    PubMed Central

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-01-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316

  19. Ground state energy of solid molecular hydrogen at high pressure

    NASA Technical Reports Server (NTRS)

    Ebner, C.; Sung, C. C.

    1972-01-01

    The present status of the theoretical equation of state of solid molecular hydrogen is reviewed. Different quantum mechanical calculations by several groups lead to results which generally agree with each other but which disagree systematically with the measured pressure-volume curve at pressures larger than about 3000 atm. A new calculation of this curve is presented including the effect of the anisotropic interaction between H2 molecules within a completely quantum-mechanical formalism. The results show that inclusion of this interaction removes the discrepancy between theory and experiment at high pressures and that a quantum-mechanical treatment is necessary to realize its full effect.

  20. A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.

    NASA Astrophysics Data System (ADS)

    Tate, Ranjeet Shekhar

    1992-01-01

    General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact) general relativity, the Hamiltonian is constrained to vanish. I present various approaches one can take to obtain an interpretation of the quantum theory of such "dynamically constrained" systems. I apply some of these ideas to the Bianchi I cosmology, and analyze the issue of the initial singularity in quantum theory.

  1. Generalized graph states based on Hadamard matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Shawn X.; Yu, Nengkun; Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1

    2015-07-15

    Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study themore » entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.« less

  2. Construction of mutually unbiased bases with cyclic symmetry for qubit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyfarth, Ulrich; Ranade, Kedar S.

    2011-10-15

    For the complete estimation of arbitrary unknown quantum states by measurements, the use of mutually unbiased bases has been well established in theory and experiment for the past 20 years. However, most constructions of these bases make heavy use of abstract algebra and the mathematical theory of finite rings and fields, and no simple and generally accessible construction is available. This is particularly true in the case of a system composed of several qubits, which is arguably the most important case in quantum information science and quantum computation. In this paper, we close this gap by providing a simple andmore » straightforward method for the construction of mutually unbiased bases in the case of a qubit register. We show that our construction is also accessible to experiments, since only Hadamard and controlled-phase gates are needed, which are available in most practical realizations of a quantum computer. Moreover, our scheme possesses the optimal scaling possible, i.e., the number of gates scales only linearly in the number of qubits.« less

  3. A gist of comprehensive review of hadronic chemistry and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangde, Vijay M.

    20{sup th} century theories of Quantum Mechanics and Quantum Chemistry are exactly valid only when considered to represent the atomic structures. While considering the more general aspects of atomic combinations these theories fail to explain all the related experimental data from first unadulterated axiomatic principles. According to Quantum Chemistry two valence electrons should repel each other and as such there is no mathematical representation of a strong attractive forces between such valence electrons. In view of these and other insufficiencies of Quantum Chemistry, an Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustainedmore » research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures. Professor R M Santilli first formulated the iso-, geno- and hyper- mathematics [1, 2, 3, 4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli’s mathematics[3, 4, 5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6, 7, 8]. In the present discussion, a comprehensive review of Hadronic Chemistry is presented that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary, stepwise successes of Hadronic Chemistry and its application in development of a new chemical species called Magnecules.« less

  4. Operational Resource Theory of Coherence.

    PubMed

    Winter, Andreas; Yang, Dong

    2016-03-25

    We establish an operational theory of coherence (or of superposition) in quantum systems, by focusing on the optimal rate of performance of certain tasks. Namely, we introduce the two basic concepts-"coherence distillation" and "coherence cost"-in the processing quantum states under so-called incoherent operations [Baumgratz, Cramer, and Plenio, Phys. Rev. Lett. 113, 140401 (2014)]. We, then, show that, in the asymptotic limit of many copies of a state, both are given by simple single-letter formulas: the distillable coherence is given by the relative entropy of coherence (in other words, we give the relative entropy of coherence its operational interpretation), and the coherence cost by the coherence of formation, which is an optimization over convex decompositions of the state. An immediate corollary is that there exists no bound coherent state in the sense that one would need to consume coherence to create the state, but no coherence could be distilled from it. Further, we demonstrate that the coherence theory is generically an irreversible theory by a simple criterion that completely characterizes all reversible states.

  5. Generalized Causal Quantum Theories

    NASA Astrophysics Data System (ADS)

    Parmeggiani, Claudio

    2007-12-01

    We shall show that is always possible to construct causal Quantum Theories fully equivalent (as predictive tools) to acausal, standard Quantum Theory, relativistic or not relativistic; we re-obtain, as a particular case, the usual Quantum Bohmian Theory. Then we consider the measurement process, in causal theories, and we conclude that the state of affairs is not really improved, with respect to standard theories.

  6. Approximate reversibility in the context of entropy gain, information gain, and complete positivity

    NASA Astrophysics Data System (ADS)

    Buscemi, Francesco; Das, Siddhartha; Wilde, Mark M.

    2016-06-01

    There are several inequalities in physics which limit how well we can process physical systems to achieve some intended goal, including the second law of thermodynamics, entropy bounds in quantum information theory, and the uncertainty principle of quantum mechanics. Recent results provide physically meaningful enhancements of these limiting statements, determining how well one can attempt to reverse an irreversible process. In this paper, we apply and extend these results to give strong enhancements to several entropy inequalities, having to do with entropy gain, information gain, entropic disturbance, and complete positivity of open quantum systems dynamics. Our first result is a remainder term for the entropy gain of a quantum channel. This result implies that a small increase in entropy under the action of a subunital channel is a witness to the fact that the channel's adjoint can be used as a recovery map to undo the action of the original channel. We apply this result to pure-loss, quantum-limited amplifier, and phase-insensitive quantum Gaussian channels, showing how a quantum-limited amplifier can serve as a recovery from a pure-loss channel and vice versa. Our second result regards the information gain of a quantum measurement, both without and with quantum side information. We find here that a small information gain implies that it is possible to undo the action of the original measurement if it is efficient. The result also has operational ramifications for the information-theoretic tasks known as measurement compression without and with quantum side information. Our third result shows that the loss of Holevo information caused by the action of a noisy channel on an input ensemble of quantum states is small if and only if the noise can be approximately corrected on average. We finally establish that the reduced dynamics of a system-environment interaction are approximately completely positive and trace preserving if and only if the data processing inequality holds approximately.

  7. Free Quantum Field Theory from Quantum Cellular Automata

    NASA Astrophysics Data System (ADS)

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro

    2015-10-01

    After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).

  8. Higher-Order Interference in Extensions of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Lee, Ciarán M.; Selby, John H.

    2017-01-01

    Quantum interference, manifest in the two slit experiment, lies at the heart of several quantum computational speed-ups and provides a striking example of a quantum phenomenon with no classical counterpart. An intriguing feature of quantum interference arises in a variant of the standard two slit experiment, in which there are three, rather than two, slits. The interference pattern in this set-up can be written in terms of the two and one slit patterns obtained by blocking one, or more, of the slits. This is in stark contrast with the standard two slit experiment, where the interference pattern cannot be written as a sum of the one slit patterns. This was first noted by Rafael Sorkin, who raised the question of why quantum theory only exhibits irreducible interference in the two slit experiment. One approach to this problem is to compare the predictions of quantum theory to those of operationally-defined `foil' theories, in the hope of determining whether theories that do exhibit higher-order interference suffer from pathological—or at least undesirable—features. In this paper two proposed extensions of quantum theory are considered: the theory of Density Cubes proposed by Dakić, Paterek and Brukner, which has been shown to exhibit irreducible interference in the three slit set-up, and the Quartic Quantum Theory of Życzkowski. The theory of Density Cubes will be shown to provide an advantage over quantum theory in a certain computational task and to posses a well-defined mechanism which leads to the emergence of quantum theory—analogous to the emergence of classical physics from quantum theory via decoherence. Despite this, the axioms used to define Density Cubes will be shown to be insufficient to uniquely characterise the theory. In comparison, Quartic Quantum Theory is a well-defined theory and we demonstrate that it exhibits irreducible interference to all orders. This feature of Życzkowski's theory is argued not to be a genuine phenomenon, but to arise from an ambiguity in the current definition of higher-order interference in operationally-defined theories. Thus, to begin to understand why quantum theory is limited to a certain kind of interference, a new definition of higher-order interference is needed that is applicable to, and makes good operational sense in, arbitrary operationally-defined theories.

  9. Relativistic quantum information

    NASA Astrophysics Data System (ADS)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from special relativity, quantum optics, general relativity, quantum communication and quantum computation. The high level of current interest in these subjects is exemplified by the recent award of the 2012 Nobel Prize in Physics to Serge Haroche and David J Wineland for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems. It is our hope that this issue will encourage new researchers to enter this rapidly developing and exciting new field. R B Mann and T C RalphGuest Editors

  10. Generalized probabilistic theories and conic extensions of polytopes

    NASA Astrophysics Data System (ADS)

    Fiorini, Samuel; Massar, Serge; Patra, Manas K.; Tiwary, Hans Raj

    2015-01-01

    Generalized probabilistic theories (GPT) provide a general framework that includes classical and quantum theories. It is described by a cone C and its dual C*. We show that whether some one-way communication complexity problems can be solved within a GPT is equivalent to the recently introduced cone factorization of the corresponding communication matrix M. We also prove an analogue of Holevo's theorem: when the cone C is contained in {{{R}}n}, the classical capacity of the channel realized by sending GPT states and measuring them is bounded by log n. Polytopes and optimising functions over polytopes arise in many areas of discrete mathematics. A conic extension of a polytope is the intersection of a cone C with an affine subspace whose projection onto the original space yields the desired polytope. Extensions of polytopes can sometimes be much simpler geometric objects than the polytope itself. The existence of a conic extension of a polytope is equivalent to that of a cone factorization of the slack matrix of the polytope, on the same cone. We show that all 0/1 polytopes whose vertices can be recognized by a polynomial size circuit, which includes as a special case the travelling salesman polytope and many other polytopes from combinatorial optimization, have small conic extension complexity when the cone is the completely positive cone. Using recent exponential lower bounds on the linear extension complexity of polytopes, this provides an exponential gap between the communication complexity of GPT based on the completely positive cone and classical communication complexity, and a conjectured exponential gap with quantum communication complexity. Our work thus relates the communication complexity of generalizations of quantum theory to questions of mainstream interest in the area of combinatorial optimization.

  11. Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2; Point form relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Klink, William H.; Schweiger, Wolfgang

    2018-03-01

    This book covers relativistic quantum theory from the point of view of a particle theory, based on the irreducible representations of the Poincaré group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; this book develops what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A chapter is devoted to applications of point form quantum mechanics to nuclear physics.

  12. Measurement contextuality is implied by macroscopic realism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Zeqian; Montina, A.; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, N2L 2Y5

    2011-04-15

    Ontological theories of quantum mechanics provide a realistic description of single systems by means of well-defined quantities conditioning the measurement outcomes. In order to be complete, they should also fulfill the minimal condition of macroscopic realism. Under the assumption of outcome determinism and for Hilbert space dimension greater than 2, they were all proved to be contextual for projective measurements. In recent years a generalized concept of noncontextuality was introduced that applies also to the case of outcome indeterminism and unsharp measurements. It was pointed out that the Beltrametti-Bugajski model is an example of measurement noncontextual indeterminist theory. Here wemore » provide a simple proof that this model is the only one with such a feature for projective measurements and Hilbert space dimension greater than 2. In other words, there is no extension of quantum theory providing more accurate predictions of outcomes and simultaneously preserving the minimal labeling of events through projective operators. As a corollary, noncontextuality for projective measurements implies noncontextuality for unsharp measurements. By noting that the condition of macroscopic realism requires an extension of quantum theory, unless a breaking of unitarity is invoked, we arrive at the conclusion that the only way to solve the measurement problem in the framework of an ontological theory is by relaxing the hypothesis of measurement noncontextuality in its generalized sense.« less

  13. Ordinary matter, dark matter, and dark energy on normal Zeeman space-times

    NASA Astrophysics Data System (ADS)

    Imre Szabó, Zoltán

    2017-01-01

    Zeeman space-times are new, relativistic, and operator based Hamiltonian models representing multi-particle systems. They are established on Lorentzian pseudo Riemannian manifolds whose Laplacian immediately appears in the form of original quantum physical wave operators. In classical quantum theory they emerge, differently, from the Hamilton formalism and the correspondence principle. Nonetheless, this new model does not just reiterate the well known conceptions but holds the key to solving open problems of quantum theory. Most remarkably, it represents the dark matter, dark energy, and ordinary matter by the same ratios how they show up in experiments. Another remarkable agreement with reality is that the ordinary matter appears to be non-expanding and is described in consent with observations. The theory also explains gravitation, moreover, the Hamilton operators of all energy and matter formations, together with their physical properties, are solely derived from the Laplacian of the Zeeman space-time. By this reason, it is called Monistic Wave Laplacian which symbolizes an all-comprehensive unification of all matter and energy formations. This paper only outlines the normal case where the particles do not have proper spin but just angular momentum. The complete anomalous theory is detailed in [Sz2, Sz3, Sz4, Sz5, Sz6, Sz7].

  14. Superconducting quantum circuits theory and application

    NASA Astrophysics Data System (ADS)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons states. The model and toolbox are engineered with a superconducting quantum circuit where two superconducting resonators are coupled via the UQDP circuit. Using fourth order perturbation theory one can realize a complete set of quantum operations between these two photon modes. This helps open a new field to treat photon modes as qubits. Additional, a three-wave mixing scheme using phase qubits permits one to engineer the coupling Hamiltonian using a phase qubit as a tunable coupler. Along with Feynman's idea using quantum to simulate quantum, superconducting quantum simulators have been studied intensively recently. Taking the advantage of mesoscopic size of superconducting circuit and local tunability, we came out the idea to simulate quantum phase transition due to disorder. Our first paper was to propose a superconducting quantum simulator of Bose-Hubbard model to do site-wise manipulation and observe Mott-insulator to superfluid phase transition. The side-band cooling of an array of superconducting resonators is solved after the paper was published. In light of the developed technology in manipulating quantum information with superconducting circuit, one can couple other quantum oscillator system to superconducting resonators in order manipulation of its quantum states or parametric amplification of weak quantum signal. A theory that works for different coupling schemes has been studied in chapter 5. This will be a platform for further research.

  15. Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2016-10-01

    We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules. These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics as probability rules: Bayes' rule (measurement), marginalization (partial tracing), independence (tensor product). To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.

  16. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity

    PubMed Central

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong

    2016-01-01

    Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding. PMID:27424767

  17. Quantum computation based on photonic systems with two degrees of freedom assisted by the weak cross-Kerr nonlinearity.

    PubMed

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong

    2016-07-18

    Most of previous quantum computations only take use of one degree of freedom (DoF) of photons. An experimental system may possess various DoFs simultaneously. In this paper, with the weak cross-Kerr nonlinearity, we investigate the parallel quantum computation dependent on photonic systems with two DoFs. We construct nearly deterministic controlled-not (CNOT) gates operating on the polarization spatial DoFs of the two-photon or one-photon system. These CNOT gates show that two photonic DoFs can be encoded as independent qubits without auxiliary DoF in theory. Only the coherent states are required. Thus one half of quantum simulation resources may be saved in quantum applications if more complicated circuits are involved. Hence, one may trade off the implementation complexity and simulation resources by using different photonic systems. These CNOT gates are also used to complete various applications including the quantum teleportation and quantum superdense coding.

  18. Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Gu, Xuemei; Zeilinger, Anton

    2017-12-01

    We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory—such as Hall's marriage problem—are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).

  19. Quantum Sets and Clifford Algebras

    NASA Astrophysics Data System (ADS)

    Finkelstein, David

    1982-06-01

    The mathematical language presently used for quantum physics is a high-level language. As a lowest-level or basic language I construct a quantum set theory in three stages: (1) Classical set theory, formulated as a Clifford algebra of “ S numbers” generated by a single monadic operation, “bracing,” Br = {…}. (2) Indefinite set theory, a modification of set theory dealing with the modal logical concept of possibility. (3) Quantum set theory. The quantum set is constructed from the null set by the familiar quantum techniques of tensor product and antisymmetrization. There are both a Clifford and a Grassmann algebra with sets as basis elements. Rank and cardinality operators are analogous to Schroedinger coordinates of the theory, in that they are multiplication or “ Q-type” operators. “ P-type” operators analogous to Schroedinger momenta, in that they transform the Q-type quantities, are bracing (Br), Clifford multiplication by a set X, and the creator of X, represented by Grassmann multiplication c( X) by the set X. Br and its adjoint Br* form a Bose-Einstein canonical pair, and c( X) and its adjoint c( X)* form a Fermi-Dirac or anticanonical pair. Many coefficient number systems can be employed in this quantization. I use the integers for a discrete quantum theory, with the usual complex quantum theory as limit. Quantum set theory may be applied to a quantum time space and a quantum automaton.

  20. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    NASA Astrophysics Data System (ADS)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical approaches based on an approximate, yet systematically improved account of quantum correlations.

  1. Quantum algorithms for quantum field theories.

    PubMed

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

  2. Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Yao, Xi-Wei; Wang, Hengyan; Liao, Zeyang; Chen, Ming-Cheng; Pan, Jian; Li, Jun; Zhang, Kechao; Lin, Xingcheng; Wang, Zhehui; Luo, Zhihuang; Zheng, Wenqiang; Li, Jianzhong; Zhao, Meisheng; Peng, Xinhua; Suter, Dieter

    2017-07-01

    Processing of digital images is continuously gaining in volume and relevance, with concomitant demands on data storage, transmission, and processing power. Encoding the image information in quantum-mechanical systems instead of classical ones and replacing classical with quantum information processing may alleviate some of these challenges. By encoding and processing the image information in quantum-mechanical systems, we here demonstrate the framework of quantum image processing, where a pure quantum state encodes the image information: we encode the pixel values in the probability amplitudes and the pixel positions in the computational basis states. Our quantum image representation reduces the required number of qubits compared to existing implementations, and we present image processing algorithms that provide exponential speed-up over their classical counterparts. For the commonly used task of detecting the edge of an image, we propose and implement a quantum algorithm that completes the task with only one single-qubit operation, independent of the size of the image. This demonstrates the potential of quantum image processing for highly efficient image and video processing in the big data era.

  3. Simple Derivation of the Lindblad Equation

    ERIC Educational Resources Information Center

    Pearle, Philip

    2012-01-01

    The Lindblad equation is an evolution equation for the density matrix in quantum theory. It is the general linear, Markovian, form which ensures that the density matrix is Hermitian, trace 1, positive and completely positive. Some elementary examples of the Lindblad equation are given. The derivation of the Lindblad equation presented here is…

  4. The Possibility of a New Metaphysics for Quantum Mechanics from Meinong's Theory of Objects

    NASA Astrophysics Data System (ADS)

    Graffigna, Matías

    According to de Ronde it was Bohr's interpretation of Quantum Mechanics (QM) which closed the possibility of understanding physical reality beyond the realm of the actual, so establishing the Orthodox Line of Research. In this sense, it is not the task of any physical theory to look beyond the language and metaphysics supposed by classical physics, in order to account for what QM describes. If one wishes to maintain a realist position (though not nave) regarding physical theories, one seems then to be trapped by an array of concepts that do not allow to understand the main principles involved in the most successful physical theory thus far, mainly: the quantum postulate, the principle of indetermination and the superposition principle. If de Ronde is right in proposing QM can only be completed as a physical theory by the introduction of `new concepts' that admit as real a domain beyond actuality, then a new ontology that goes beyond Aristotelian and Newtonian actualism is needed. It was already in the early 20th century that misunderstood philosopher Alexius von Meinong proposed a Theory of Objects that admits a domain of being beyond existence-actuality. Member of the so called `School of Brentano', Meinong's concerns were oriented to provide an ontology of everything that can be thought of, and at the same time an intentionality theory of how objects are thought of. I wish to argue that in Meinong's theory of objects we find the rudiments of the ontology and the intentionality theory we need to account for QM's basic principles: mainly the possibility of predicating properties of non-entities, or in other words, the possibility of objectively describing a domain of what is, that is different from the domain of actual existence.

  5. Chern-Simons expectation values and quantum horizons from loop quantum gravity and the Duflo map.

    PubMed

    Sahlmann, Hanno; Thiemann, Thomas

    2012-03-16

    We report on a new approach to the calculation of Chern-Simons theory expectation values, using the mathematical underpinnings of loop quantum gravity, as well as the Duflo map, a quantization map for functions on Lie algebras. These new developments can be used in the quantum theory for certain types of black hole horizons, and they may offer new insights for loop quantum gravity, Chern-Simons theory and the theory of quantum groups.

  6. Horizon Entropy from Quantum Gravity Condensates.

    PubMed

    Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo

    2016-05-27

    We construct condensate states encoding the continuum spherically symmetric quantum geometry of a horizon in full quantum gravity, i.e., without any classical symmetry reduction, in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced density matrix manifestly exhibits a holographic behavior. We derive a complete orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon entanglement entropy. By imposing consistency with the horizon boundary conditions and semiclassical thermodynamical properties, we recover the Bekenstein-Hawking entropy formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.

  7. Location-oblivious data transfer with flying entangled qudits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian

    2011-07-15

    We present a simple and practical quantum protocol involving two mistrustful agencies in Minkowski space, which allows Alice to transfer data to Bob at a space-time location that neither can predict in advance. The location depends on both Alice's and Bob's actions. The protocol guarantees unconditionally to Alice that Bob learns the data at a randomly determined location; it guarantees to Bob that Alice will not learn the transfer location even after the protocol is complete. The task implemented, transferring data at a space-time location that remains hidden from the transferrer, has no precise analog in nonrelativistic quantum cryptography. Itmore » illustrates further the scope for novel cryptographic applications of relativistic quantum theory.« less

  8. Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2015-10-01

    These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.

  9. Einstein's ``Spooky Action at a Distance'' in the Light of Kant's Transcendental Doctrine of Space and Time

    NASA Astrophysics Data System (ADS)

    Hacyan, Shahen

    2006-11-01

    Since the famous Einstein-Podolsky-Rosen (EPR) paper, it is clear that there is a serious incompatibility between local realism and quantum mechanics. Einstein believed that a complete quantum theory should be free of what he once called "spooky actions at distance". However, all experiments in quantum optics and atomic physics performed in the last two decades confirm the existence of quantum correlations that seem to contradict local realism. According to Bohr, the apparent contradictions disclose only the inadequacy of our customary concepts for the description of the quantum world. Are space and time such customary concepts? In this presentation, I argue that the Copenhagen interpretation is compatible with Kant's transcendental idealism and that, in particular, EPR type paradoxes are consistent with Kant's transcendental aesthetics, according to which space and time have no objective reality but are pure forms of sensible intuition.

  10. On the 'principle of the quantumness', the quantumness of Relativity, and the computational grand-unification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ariano, Giacomo Mauro

    2010-05-04

    I will argue that the proposal of establishing operational foundations of Quantum Theory should have top-priority, and that the Lucien Hardy's program on Quantum Gravity should be paralleled by an analogous program on Quantum Field Theory (QFT), which needs to be reformulated, notwithstanding its experimental success. In this paper, after reviewing recently suggested operational 'principles of the quantumness', I address the problem on whether Quantum Theory and Special Relativity are unrelated theories, or instead, if the one implies the other. I show how Special Relativity can be indeed derived from causality of Quantum Theory, within the computational paradigm 'the universemore » is a huge quantum computer', reformulating QFT as a Quantum-Computational Field Theory (QCFT). In QCFT Special Relativity emerges from the fabric of the computational network, which also naturally embeds gauge invariance. In this scheme even the quantization rule and the Planck constant can in principle be derived as emergent from the underlying causal tapestry of space-time. In this way Quantum Theory remains the only theory operating the huge computer of the universe.Is the computational paradigm only a speculative tautology (theory as simulation of reality), or does it have a scientific value? The answer will come from Occam's razor, depending on the mathematical simplicity of QCFT. Here I will just start scratching the surface of QCFT, analyzing simple field theories, including Dirac's. The number of problems and unmotivated recipes that plague QFT strongly motivates us to undertake the QCFT project, since QCFT makes all such problems manifest, and forces a re-foundation of QFT.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, S B; Weiss, M S

    Edward Teller was one of the great physicists of the twentieth century. His career began just after the key ideas of the quantum revolution of the 1920's were completed, opening vast areas of physics and chemistry to detailed understanding. Thus, his early work in theoretical physics focused on applying the new quantum theory to the understanding of diverse phenomena. These topics included chemical physics, diamagnetism, and nuclear physics. Later, he made key contributions to statistical mechanics, surface physics, solid state, and plasma physics. In many cases, the ideas in these papers are still rich with important ramifications.

  12. Invariant measure of the one-loop quantum gravitational backreaction on inflation

    NASA Astrophysics Data System (ADS)

    Miao, S. P.; Tsamis, N. C.; Woodard, R. P.

    2017-06-01

    We use dimensional regularization in pure quantum gravity on a de Sitter background to evaluate the one-loop expectation value of an invariant operator which gives the local expansion rate. We show that the renormalization of this nonlocal composite operator can be accomplished using the counterterms of a simple local theory of gravity plus matter, at least at one-loop order. This renormalization completely absorbs the one-loop correction, which accords with the prediction that the lowest secular backreaction should be a two-loop effect.

  13. Twistor approach to string compactifications: A review

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei

    2013-01-01

    We review a progress in obtaining the complete non-perturbative effective action of type II string theory compactified on a Calabi-Yau manifold. This problem is equivalent to understanding quantum corrections to the metric on the hypermultiplet moduli space. We show how all these corrections, which include D-brane and NS5-brane instantons, are incorporated in the framework of the twistor approach, which provides a powerful mathematical description of hyperkähler and quaternion-Kähler manifolds. We also present new insights on S-duality, quantum mirror symmetry, connections to integrable models and topological strings.

  14. Coherent states for the quantum complete rigid rotor

    NASA Astrophysics Data System (ADS)

    Fontanari, Daniele; Sadovskií, Dmitrií A.

    2018-07-01

    Motivated by the possibility to describe orientations of quantum triaxial rigid rotors, such as molecules, with respect to both internal (body-fixed) and external (laboratory) frames, we go through the theory of coherent states and design the appropriate family of coherent states on T∗ SO(3) , the classical phase space of the freely rotating rigid body (the Euler top). We pay particular attention to the resolution of identity property in order to establish the explicit relation between the parameters of the coherent states and classical phase-space variables, actions and angles.

  15. Measurement theory in local quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, Kazuya, E-mail: okamura@math.cm.is.nagoya-u.ac.jp; Ozawa, Masanao, E-mail: ozawa@is.nagoya-u.ac.jp

    In this paper, we aim to establish foundations of measurement theory in local quantum physics. For this purpose, we discuss a representation theory of completely positive (CP) instruments on arbitrary von Neumann algebras. We introduce a condition called the normal extension property (NEP) and establish a one-to-one correspondence between CP instruments with the NEP and statistical equivalence classes of measuring processes. We show that every CP instrument on an atomic von Neumann algebra has the NEP, extending the well-known result for type I factors. Moreover, we show that every CP instrument on an injective von Neumann algebra is approximated bymore » CP instruments with the NEP. The concept of posterior states is also discussed to show that the NEP is equivalent to the existence of a strongly measurable family of posterior states for every normal state. Two examples of CP instruments without the NEP are obtained from this result. It is thus concluded that in local quantum physics not every CP instrument represents a measuring process, but in most of physically relevant cases every CP instrument can be realized by a measuring process within arbitrary error limits, as every approximately finite dimensional von Neumann algebra on a separable Hilbert space is injective. To conclude the paper, the concept of local measurement in algebraic quantum field theory is examined in our framework. In the setting of the Doplicher-Haag-Roberts and Doplicher-Roberts theory describing local excitations, we show that an instrument on a local algebra can be extended to a local instrument on the global algebra if and only if it is a CP instrument with the NEP, provided that the split property holds for the net of local algebras.« less

  16. Interference of quantum market strategies

    NASA Astrophysics Data System (ADS)

    Piotrowski, Edward W.; Sładkowski, Jan; Syska, Jacek

    2003-02-01

    Recent development in quantum computation and quantum information theory allows to extend the scope of game theory for the quantum world. The paper is devoted to the analysis of interference of quantum strategies in quantum market games.

  17. String theory, quantum phase transitions, and the emergent Fermi liquid.

    PubMed

    Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2009-07-24

    A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.

  18. A channel-based framework for steering, non-locality and beyond

    NASA Astrophysics Data System (ADS)

    Hoban, Matty J.; Belén Sainz, Ana

    2018-05-01

    Non-locality and steering are both non-classical phenomena witnessed in nature as a result of quantum entanglement. It is now well-established that one can study non-locality independently of the formalism of quantum mechanics, in the so-called device-independent framework. With regards to steering, although one cannot study it completely independently of the quantum formalism, ‘post-quantum steering’ has been described, which is steering that cannot be reproduced by measurements on entangled states but does not lead to superluminal signalling. In this work we present a framework based on the study of quantum channels in which one can study steering (and non-locality) in quantum theory and beyond. In this framework, we show that kinds of steering, whether quantum or post-quantum, are directly related to particular families of quantum channels that have been previously introduced by Beckman et al (2001 Phys. Rev. A 64 052309). Utilizing this connection we also demonstrate new analytical examples of post-quantum steering, give a quantum channel interpretation of almost quantum non-locality and steering, easily recover and generalize the celebrated Gisin–Hughston–Jozsa–Wootters theorem, and initiate the study of post-quantum Buscemi non-locality and non-classical teleportation. In this way, we see post-quantum non-locality and steering as just two aspects of a more general phenomenon.

  19. Bell's Inequalities, Superquantum Correlations, and String Theory

    DOE PAGES

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; ...

    2011-01-01

    We offermore » an interpretation of superquantum correlations in terms of a “doubly” quantum theory. We argue that string theory, viewed as a quantum theory with two deformation parameters, the string tension α ' , and the string coupling constant g s , is such a superquantum theory that transgresses the usual quantum violations of Bell's inequalities. We also discuss the ℏ → ∞ limit of quantum mechanics in this context. As a superquantum theory, string theory should display distinct experimentally observable supercorrelations of entangled stringy states.« less

  20. Quantum-Bayesian coherence

    NASA Astrophysics Data System (ADS)

    Fuchs, Christopher A.; Schack, Rüdiger

    2013-10-01

    In the quantum-Bayesian interpretation of quantum theory (or QBism), the Born rule cannot be interpreted as a rule for setting measurement-outcome probabilities from an objective quantum state. But if not, what is the role of the rule? In this paper, the argument is given that it should be seen as an empirical addition to Bayesian reasoning itself. Particularly, it is shown how to view the Born rule as a normative rule in addition to usual Dutch-book coherence. It is a rule that takes into account how one should assign probabilities to the consequences of various intended measurements on a physical system, but explicitly in terms of prior probabilities for and conditional probabilities consequent upon the imagined outcomes of a special counterfactual reference measurement. This interpretation is exemplified by representing quantum states in terms of probabilities for the outcomes of a fixed, fiducial symmetric informationally complete measurement. The extent to which the general form of the new normative rule implies the full state-space structure of quantum mechanics is explored.

  1. Modern Quantum Field Theory II - Proceeeings of the International Colloquium

    NASA Astrophysics Data System (ADS)

    Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.

    1995-08-01

    The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory * Finite Quantum Physics and Noncommutative Geometry * Higgs as Gauge Field and the Standard Model * Canonical Quantisation of an Off-Conformal Theory * Deterministic Quantum Mechanics in One Dimension * Spin-Statistics Relations for Topological Geons in 2+1 Quantum Gravity * Generalized Fock Spaces * Geometrical Expression for Short Distance Singularities in Field Theory * 5. Mathematics and Quantum Field Theory * Knot Invariants from Quantum Field Theories * Infinite Grassmannians and Moduli Spaces of G-Bundles * A Review of an Algebraic Geometry Approach to a Model Quantum Field Theory on a Curve (Abstract) * 6. Integrable Models * Spectral Representation of Correlation Functions in Two-Dimensional Quantum Field Theories * On Various Avatars of the Pasquier Algebra * Supersymmetric Integrable Field Theories and Eight Vertex Free Fermion Models (Abstract) * 7. Lattice Field Theory * From Kondo Model and Strong Coupling Lattice QCD to the Isgur-Wise Function * Effective Confinement from a Logarithmically Running Coupling (Abstract)

  2. Quantum cellular automata and free quantum field theory

    NASA Astrophysics Data System (ADS)

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-02-01

    In a series of recent papers [1-4] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.

  3. From the Gyration of Electrons to Cosmic Magnetic Fields

    ERIC Educational Resources Information Center

    Wang, Xia-Wei

    2010-01-01

    Employing Bohr's quantum theory, the author deduces three limits, which correspond to the magnetic fields of white dwarfs, neutron stars and the strongest in the universe. The author discusses the possible origins of magnetic fields due to collapse of stars, which produces a magnetic field of 10[superscript 8] T. Although the complete analysis…

  4. Hacking the quantum revolution: 1925-1975

    NASA Astrophysics Data System (ADS)

    Schweber, Silvan S.

    2015-01-01

    I argue that the quantum revolution should be seen as an Ian Hacking type of scientific revolution: a profound, longue durée, multidisciplinary process of transforming our understanding of physical nature, with deep-rooted social components from the start. The "revolution" exhibits a characteristic style of reasoning - the hierarchization of physical nature - and developed and uses a specific language - quantum field theory (QFT). It is by virtue of that language that the quantum theory has achieved some of its deepest insights into the description of the dynamics of the physical world. However, the meaning of what a quantum field theory is and what it describes has deeply altered, and one now speaks of "effective" quantum field theories. Interpreting all present day quantum field theories as but "effective" field theories sheds additional light on Phillip Anderson's assertion that "More is different". This important element is addressed in the last part of the paper.

  5. Quantum and classical behavior in interacting bosonic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertzberg, Mark P.

    It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular differencemore » in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that in fact the classical theory can describe the quantum behavior in the high occupancy regime, even when interactions are large. The connection is that the expectation values of quantum operators in a single quantum micro-state are approximated by a corresponding classical ensemble average over many classical micro-states. Furthermore, by the ergodic theorem, a classical ensemble average of local fields with statistical translation invariance is the spatial average of a single micro-state. So the correlation functions of the quantum and classical field theories of a single micro-state approximately agree at high occupancy, even in interacting systems. Furthermore, both quantum and classical field theories can thermalize, when appropriate coarse graining is introduced, with the classical case requiring a cutoff on low occupancy UV modes. We discuss applications of our results.« less

  6. The geometrical structure of quantum theory as a natural generalization of information geometry

    NASA Astrophysics Data System (ADS)

    Reginatto, Marcel

    2015-01-01

    Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.

  7. Extracting Information about the Initial State from the Black Hole Radiation.

    PubMed

    Lochan, Kinjalk; Padmanabhan, T

    2016-02-05

    The crux of the black hole information paradox is related to the fact that the complete information about the initial state of a quantum field in a collapsing spacetime is not available to future asymptotic observers, belying the expectations from a unitary quantum theory. We study the imprints of the initial quantum state contained in a specific class of distortions of the black hole radiation and identify the classes of in states that can be partially or fully reconstructed from the information contained within. Even for the general in state, we can uncover some specific information. These results suggest that a classical collapse scenario ignores this richness of information in the resulting spectrum and a consistent quantum treatment of the entire collapse process might allow us to retrieve much more information from the spectrum of the final radiation.

  8. Grover Search and the No-Signaling Principle

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Bouland, Adam; Jordan, Stephen P.

    2016-09-01

    Two of the key properties of quantum physics are the no-signaling principle and the Grover search lower bound. That is, despite admitting stronger-than-classical correlations, quantum mechanics does not imply superluminal signaling, and despite a form of exponential parallelism, quantum mechanics does not imply polynomial-time brute force solution of NP-complete problems. Here, we investigate the degree to which these two properties are connected. We examine four classes of deviations from quantum mechanics, for which we draw inspiration from the literature on the black hole information paradox. We show that in these models, the physical resources required to send a superluminal signal scale polynomially with the resources needed to speed up Grover's algorithm. Hence the no-signaling principle is equivalent to the inability to solve NP-hard problems efficiently by brute force within the classes of theories analyzed.

  9. A quantum-classical theory with nonlinear and stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Burić, N.; Popović, D. B.; Radonjić, M.; Prvanović, S.

    2014-12-01

    The method of constrained dynamical systems on the quantum-classical phase space is utilized to develop a theory of quantum-classical hybrid systems. Effects of the classical degrees of freedom on the quantum part are modeled using an appropriate constraint, and the interaction also includes the effects of neglected degrees of freedom. Dynamical law of the theory is given in terms of nonlinear stochastic differential equations with Hamiltonian and gradient terms. The theory provides a successful dynamical description of the collapse during quantum measurement.

  10. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics

    NASA Astrophysics Data System (ADS)

    Kretchmer, Joshua S.; Chan, Garnet Kin-Lic

    2018-02-01

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  11. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics.

    PubMed

    Kretchmer, Joshua S; Chan, Garnet Kin-Lic

    2018-02-07

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  12. Relativistic harmonic oscillator revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bars, Itzhak

    2009-02-15

    The familiar Fock space commonly used to describe the relativistic harmonic oscillator, for example, as part of string theory, is insufficient to describe all the states of the relativistic oscillator. We find that there are three different vacua leading to three disconnected Fock sectors, all constructed with the same creation-annihilation operators. These have different spacetime geometric properties as well as different algebraic symmetry properties or different quantum numbers. Two of these Fock spaces include negative norm ghosts (as in string theory), while the third one is completely free of ghosts. We discuss a gauge symmetry in a worldline theory approachmore » that supplies appropriate constraints to remove all the ghosts from all Fock sectors of the single oscillator. The resulting ghost-free quantum spectrum in d+1 dimensions is then classified in unitary representations of the Lorentz group SO(d,1). Moreover, all states of the single oscillator put together make up a single infinite dimensional unitary representation of a hidden global symmetry SU(d,1), whose Casimir eigenvalues are computed. Possible applications of these new results in string theory and other areas of physics and mathematics are briefly mentioned.« less

  13. Quantum Field Theory in Two Dimensions: Light-front Versus Space-like Solutions

    NASA Astrophysics Data System (ADS)

    Martinovic̆, L'ubomír

    2017-07-01

    A few non-perturbative topics of quantum field theory in D=1+1 are studied in both the conventional (SL) and light-front (LF) versions. First, we give a concise review of the recently proposed quantization of the two-dimensional massless LF fields. The LF version of bosonization follows in a simple and natural way including the bosonized form of the Thirring model. As a further application, we demonstrate the closeness of the 2D massless LF quantum fields to conformal field theory (CFT). We calculate several correlation functions including those between the components of the LF energy-momentum tensor and derive the LF version of the Virasoro algebra. Using the Euclidean time variable, we can immediately transform calculated quantities to the (anti)holomorphic form. The results found are in agreement with those from CFT. Finally, we show that the proposed framework provides us with the elements needed for an independent LF study of exactly solvable models. We compute the non-perturbative correlation functions from the exact operator solution of the LF Thirring model and compare it to the analogous results in the SL theory. While the vacuum effects are automatically taken into account in the LF case, the non-trivial vacuum structure has to be incorported by an explicit diagonalization of the SL Hamiltonians, to obtain the equivalently complete solution.

  14. Dynamics of correlations in long-range quantum systems follwing a quantum quench

    NASA Astrophysics Data System (ADS)

    Cevolani, Lorenzo; Carleo, Giuseppe; Sanchez-Palencia, Laurent

    We study how and how fast correlations can spread in a quantum system abruptly driven out of equilibrium by a quantum quench. This protocol can be experimentally realized and it allow to address fundamental questions concerning the quasi-locality principle in isolated quantum systems with both short- and long-range interactions. We focus on two different models describing, respectively, lattice bosons, and spins. Our study is based on a combined approach, based on one hand on accurate many-body numerical calculations and on the other hand on a quasi-particle microscopic theory. We find that, for sufficiently fast decaying interaction potential the propagation is ballistic and the Lieb-Robinson bounds for long-range interactions are never attained. When the interactions are really long-range, the scenario is completely different in the two cases. In the bosonic system the locality is preserved and a ballistic propagation is still present while in the spin system an instantaneous propagation of correlations completely destroys locality. Using the microscopic point of view we can quantitatively describe all the different regimes, from instantaneous to ballistic, found in the spin model and we explain how locality is protected in the bosonic model leading to a ballistic propagation. ERC (FP7/2007-2013 No. 256294), QUIC (H2020 No. 641122).

  15. Noncontextual Wirings

    NASA Astrophysics Data System (ADS)

    Amaral, Barbara; Cabello, Adán; Cunha, Marcelo Terra; Aolita, Leandro

    2018-03-01

    Contextuality is a fundamental feature of quantum theory necessary for certain models of quantum computation and communication. Serious steps have therefore been taken towards a formal framework for contextuality as an operational resource. However, the main ingredient of a resource theory—a concrete, explicit form of free operations of contextuality—was still missing. Here we provide such a component by introducing noncontextual wirings: a class of contextuality-free operations with a clear operational interpretation and a friendly parametrization. We characterize them completely for general black-box measurement devices with arbitrarily many inputs and outputs. As applications, we show that the relative entropy of contextuality is a contextuality monotone and that maximally contextual boxes that serve as contextuality bits exist for a broad class of scenarios. Our results complete a unified resource-theoretic framework for contextuality and Bell nonlocality.

  16. Research on active imaging information transmission technology of satellite borne quantum remote sensing

    NASA Astrophysics Data System (ADS)

    Bi, Siwen; Zhen, Ming; Yang, Song; Lin, Xuling; Wu, Zhiqiang

    2017-08-01

    According to the development and application needs of Remote Sensing Science and technology, Prof. Siwen Bi proposed quantum remote sensing. Firstly, the paper gives a brief introduction of the background of quantum remote sensing, the research status and related researches at home and abroad on the theory, information mechanism and imaging experiments of quantum remote sensing and the production of principle prototype.Then, the quantization of pure remote sensing radiation field, the state function and squeezing effect of quantum remote sensing radiation field are emphasized. It also describes the squeezing optical operator of quantum light field in active imaging information transmission experiment and imaging experiments, achieving 2-3 times higher resolution than that of coherent light detection imaging and completing the production of quantum remote sensing imaging prototype. The application of quantum remote sensing technology can significantly improve both the signal-to-noise ratio of information transmission imaging and the spatial resolution of quantum remote sensing .On the above basis, Prof.Bi proposed the technical solution of active imaging information transmission technology of satellite borne quantum remote sensing, launched researches on its system composition and operation principle and on quantum noiseless amplifying devices, providing solutions and technical basis for implementing active imaging information technology of satellite borne Quantum Remote Sensing.

  17. Perturbative quantum field theory in the framework of the fermionic projector

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2014-04-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  18. Two-Photon Quantum Entanglement from Type-II Spontaneous Parametric Down-Conversion

    NASA Astrophysics Data System (ADS)

    Pittman, Todd Butler

    The concept of two (or more) particle entanglement lies at the heart of many fascinating questions concerning the foundations of quantum mechanics. The counterintuitive nonlocal behavior of entangled states led Einstein, Podolsky, and Rosen (EPR) to ask their famous 1935 question, "Can quantum mechanical description of reality be considered complete?". Although the debate has been raging on for more than 60 years, there is still no absolutely conclusive answer to this question. For if entangled states exist and can be observed, then accepting quantum mechanics as a complete theory requires a drastic overhaul of one's physical intuition with regards to the common sense notions of locality and reality put forth by EPR. Contained herein are the results of research investigating various non-classical features of the two-photon entangled states produced in Type-II Spontaneous Parametric Down -Conversion (SPDC). Through a series of experiments we have manifest the nonlocal nature of the quantum mechanical "two-photon effective wavefunction" (or Biphoton) realized by certain photon-counting coincidence measurements performed on these states. In particular, we examine a special double entanglement, in which the states are seen to be simultaneously entangled in both spin and space-time variables. The observed phenomena based on this double entanglement lead to many interesting results which defy classical explanation, but are well described within the framework of quantum mechanics. The implications provide a unique perspective concerning the nature of the photon, and the concept of quantum entanglement.

  19. On the theory of time dilation in chemical kinetics

    NASA Astrophysics Data System (ADS)

    Baig, Mirza Wasif

    2017-10-01

    The rates of chemical reactions are not absolute but their magnitude depends upon the relative speeds of the moving observers. This has been proved by unifying basic theories of chemical kinetics, which are transition state theory, collision theory, RRKM and Marcus theory, with the special theory of relativity. Boltzmann constant and energy spacing between permitted quantum levels of molecules are quantum mechanically proved to be Lorentz variant. The relativistic statistical thermodynamics has been developed to explain quasi-equilibrium existing between reactants and activated complex. The newly formulated Lorentz transformation of the rate constant from Arrhenius equation, of the collision frequency and of the Eyring and Marcus equations renders the rate of reaction to be Lorentz variant. For a moving observer moving at fractions of the speed of light along the reaction coordinate, the transition state possess less kinetic energy to sweep translation over it. This results in the slower transformation of reactants into products and in a stretched time frame for the chemical reaction to complete. Lorentz transformation of the half-life equation explains time dilation of the half-life period of chemical reactions and proves special theory of relativity and presents theory in accord with each other. To demonstrate the effectiveness of the present theory, the enzymatic reaction of methylamine dehydrogenase and radioactive disintegration of Astatine into Bismuth are considered as numerical examples.

  20. Quantum resource theories in the single-shot regime

    NASA Astrophysics Data System (ADS)

    Gour, Gilad

    2017-06-01

    One of the main goals of any resource theory such as entanglement, quantum thermodynamics, quantum coherence, and asymmetry, is to find necessary and sufficient conditions that determine whether one resource can be converted to another by the set of free operations. Here we find such conditions for a large class of quantum resource theories which we call affine resource theories. Affine resource theories include the resource theories of athermality, asymmetry, and coherence, but not entanglement. Remarkably, the necessary and sufficient conditions can be expressed as a family of inequalities between resource monotones (quantifiers) that are given in terms of the conditional min-entropy. The set of free operations is taken to be (1) the maximal set (i.e., consists of all resource nongenerating quantum channels) or (2) the self-dual set of free operations (i.e., consists of all resource nongenerating maps for which the dual map is also resource nongenerating). As an example, we apply our results to quantum thermodynamics with Gibbs preserving operations, and several other affine resource theories. Finally, we discuss the applications of these results to resource theories that are not affine and, along the way, provide the necessary and sufficient conditions that a quantum resource theory consists of a resource destroying map.

  1. Seventy Years of the EPR Paradox

    NASA Astrophysics Data System (ADS)

    Kupczynski, Marian

    2006-11-01

    In spite of the fact that statistical predictions of quantum theory (QT) can only be tested if large amount of data is available a claim has been made that QT provides the most complete description of an individual physical system. Einstein's opposition to this claim and the paradox he presented in the article written together with Podolsky and Rosen in 1935 inspired generations of physicists in their quest for better understanding of QT. Seventy years after EPR article it is clear that without deep understanding of the character and limitations of QT one may not hope to find a meaningful unified theory of all physical interactions, manipulate qubits or construct a quantum computer.. In this paper we present shortly the EPR paper, the discussion, which followed it and Bell inequalities (BI). To avoid various paradoxes we advocate purely statistical contextual interpretation (PSC) of QT. According to PSC a state vector is not an attribute of a single electron, photon, trapped ion or quantum dot. A value of an observable assigned to a physical system has only a meaning in a context of a particular physical experiment PSC does not provide any mental space-time picture of sub phenomena. The EPR paradox is avoided because the reduction of the state vector in the measurement process is a passage from a description of the whole ensemble of the experimental results to a particular sub-ensemble of these results. We show that the violation of BI is neither a proof of the completeness of QT nor of its non-locality. Therefore we rephrase the EPR question and ask whether QT is "predictably "complete or in other words does it provide the complete description of experimental data. To test the "predictable completeness" it is not necessary to perform additional experiments it is sufficient to analyze more in detail the existing experimental data by using various non-parametric purity tests and other specific statistical tools invented to study the fine structure the time-series.

  2. Triboelectric effect: A new perspective on electron transfer process

    NASA Astrophysics Data System (ADS)

    Pan, Shuaihang; Zhang, Zhinan

    2017-10-01

    As interest in the triboelectric effect increases in line with the development of tribo-electrification related devices, the mechanisms involved in this phenomenon require more systematic review from the dual perspectives of developed classical insights and emerging quantum understanding. In this paper, the clear energy changing and transferring process of electrons have been proposed from the quantum point of view as the trigger for the charging initiation process in the triboelectric effect, and the phonon modes on the friction surfaces are believed to hold great importance as one of the main driving forces. Compatible with Maxwell Displacement Current theory, the complete consideration for charging steady state, i.e., the competition mechanisms between the breakdown process and the continuously charging process, and the balance mechanisms of phonon-electron interaction, built voltage, and induced polarization, are illustrated. In brief, the proposed theory emphasizes the fundamental role of electron transferring in tribo-electrical fields. By comparing certain experimental results from the previous studies, the theory is justified.

  3. First principles study of edge carboxylated graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  4. Possible States Theory and Human Destiny in the Cosmos

    NASA Astrophysics Data System (ADS)

    Thomson, Shelley; Brandenburg, John

    Possible States Theory posits a universe of unique objects and unique collections of interactions between them. The interactions are designated the possible states. The states include past, future and possible interactions. The theory concerns the propagation of change in the collections of possible states. Using a few simple assumptions, it becomes possible to generalize about the occurrence of change. The theory is consistent with quantum electrodynamics in a finite and discrete environment; however, in the possible states universe, an interaction does not cause alternative possibilities to disappear. The picture of the universe yielded by the theory differs from the conventional viewpoint in important ways. Past, future and possible states may interact with one another; interactions occur without reference to location in space-time. Given that all possibilities are present, the possible states universe is complete. Per Gšdel's incompleteness theorems, the universe cannot be unambiguously described as information. Many truths, some contradicting each other, can simultaneously exist. The human future already participates in the present, opening possibilities never previously envisaged. To imagine the future, therefore, is to quantum mechanically assemble it. Accordingly, humanity prepares its path to the stars by dreaming of it.

  5. Optimal control of quantum rings by terahertz laser pulses.

    PubMed

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  6. Hybrid Semiclassical Theory of Quantum Quenches in One-Dimensional Systems

    NASA Astrophysics Data System (ADS)

    Moca, Cǎtǎlin Paşcu; Kormos, Márton; Zaránd, Gergely

    2017-09-01

    We develop a hybrid semiclassical method to study the time evolution of one-dimensional quantum systems in and out of equilibrium. Our method handles internal degrees of freedom completely quantum mechanically by a modified time-evolving block decimation method while treating orbital quasiparticle motion classically. We can follow dynamics up to time scales well beyond the reach of standard numerical methods to observe the crossover between preequilibrated and locally phase equilibrated states. As an application, we investigate the quench dynamics and phase fluctuations of a pair of tunnel-coupled one-dimensional Bose condensates. We demonstrate the emergence of soliton-collision-induced phase propagation, soliton-entropy production, and multistep thermalization. Our method can be applied to a wide range of gapped one-dimensional systems.

  7. Extended Gravity: State of the Art and Perspectives

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; de Laurentis, Mariafelicia

    2015-01-01

    Several issues coming from Cosmology, Astrophysics and Quantum Field Theory suggest to extend the General Relativity in order to overcome several shortcomings emerging at conceptual and experimental level. From one hand, standard Einstein theory fails as soon as one wants to achieve a full quantum description of space-time. In fact, the lack of a final self-consistent Quantum Gravity Theory can be considered one of the starting points for alternative theories of gravity. Specifically, the approach based on corrections and enlargements of the Einstein scheme, have become a sort of paradigm in the study of gravitational interaction. On the other hand, such theories have acquired great interest in cosmology since they "naturally" exhibit inflationary behaviours which can overcome the shortcomings of standard cosmology. From an astrophysical point of view, Extended Theories of Gravity do not require to find candidates for dark energy and dark matter at fundamental level; the approach starts from taking into account only the "observed" ingredients (i.e., gravity, radiation and baryonic matter); it is in full agreement with the early spirit of General Relativity but one has to relax the strong hypothesis that gravity acts at same way at all scales. Several scalar-tensor and f(R)-models agree with observed cosmology, extragalactic and galactic observations and Solar System tests, and give rise to new effects capable of explaining the observed acceleration of cosmic fluid and the missing matter effect of self-gravitating structures. Despite these preliminary results, no final model addressing all the open issues is available at the moment, however the paradigm seems promising in order to achieve a complete and self-consistent theory working coherently at all interaction scales.

  8. Quantum Sensors for the Generating Functional of Interacting Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Bermudez, A.; Aarts, G.; Müller, M.

    2017-10-01

    Difficult problems described in terms of interacting quantum fields evolving in real time or out of equilibrium abound in condensed-matter and high-energy physics. Addressing such problems via controlled experiments in atomic, molecular, and optical physics would be a breakthrough in the field of quantum simulations. In this work, we present a quantum-sensing protocol to measure the generating functional of an interacting quantum field theory and, with it, all the relevant information about its in- or out-of-equilibrium phenomena. Our protocol can be understood as a collective interferometric scheme based on a generalization of the notion of Schwinger sources in quantum field theories, which make it possible to probe the generating functional. We show that our scheme can be realized in crystals of trapped ions acting as analog quantum simulators of self-interacting scalar quantum field theories.

  9. The geometrical structure of quantum theory as a natural generalization of information geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reginatto, Marcel

    2015-01-13

    Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed usingmore » geometrical quantities. This suggests that quantum theory has its roots in information geometry.« less

  10. Ordinary versus PT-symmetric Φ³ quantum field theory

    DOE PAGES

    Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele

    2012-04-02

    A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum fieldmore » theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.« less

  11. Diffuse reflectance of the ocean - The theory of its augmentation by chlorophyll a fluorescence at 685 nm

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1979-01-01

    The radiative transfer equation is modified to include the effect of fluorescent substances and solved in the quasi-single scattering approximation for a homogeneous ocean containing fluorescent particles with wavelength independent quantum efficiency and a Gaussian shaped emission line. The results are applied to the in vivo fluorescence of chlorophyll a (in phytoplankton) in the ocean to determine if the observed quantum efficiencies are large enough to explain the enhancement of the ocean's diffuse reflectance near 685 nm in chlorophyll rich waters without resorting to anomalous dispersion. The computations indicate that the required efficiencies are sufficiently low to account completely for the enhanced reflectance. The validity of the theory is further demonstrated by deriving values for the upwelling irradiance attenuation coefficient at 685 nm which are in close agreement with the observations.

  12. Holographic description of a quantum black hole on a computer

    NASA Astrophysics Data System (ADS)

    Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun

    2014-05-01

    Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics.

  13. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer

    NASA Astrophysics Data System (ADS)

    Garner, Andrew J. P.; Müller, Markus P.; Dahlsten, Oscar C. O.

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  14. The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer.

    PubMed

    Garner, Andrew J P; Müller, Markus P; Dahlsten, Oscar C O

    2017-12-01

    The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.

  15. The Place of Learning Quantum Theory in Physics Teacher Education: Motivational Elements Arising from the Context

    ERIC Educational Resources Information Center

    Körhasan, Nilüfer Didis

    2015-01-01

    Quantum theory is one of the most successful theories in physics. Because of its abstract, mathematical, and counter-intuitive nature, many students have problems learning the theory, just as teachers experience difficulty in teaching it. Pedagogical research on quantum theory has mainly focused on cognitive issues. However, affective issues about…

  16. Gravitational decoherence, alternative quantum theories and semiclassical gravity

    NASA Astrophysics Data System (ADS)

    Hu, B. L.

    2014-04-01

    In this report we discuss three aspects: 1) Semiclassical gravity theory (SCG): 4 levels of theories describing the interaction of quantum matter with classical gravity. 2) Alternative Quantum Theories: Discerning those which are derivable from general relativity (GR) plus quantum field theory (QFT) from those which are not 3) Gravitational Decoherence: derivation of a master equation and examination of the assumptions which led to the claims of observational possibilities. We list three sets of corresponding problems worthy of pursuit: a) Newton-Schrödinger Equations in relation to SCG; b) Master equation of gravity-induced effects serving as discriminator of 2); and c) Role of gravity in macroscopic quantum phenomena.

  17. Quantum information cannot be completely hidden in correlations: implications for the black-hole information paradox.

    PubMed

    Braunstein, Samuel L; Pati, Arun K

    2007-02-23

    Can quantum-information theory shed light on black-hole evaporation? By entangling the in-fallen matter with an external system we show that the black-hole information paradox becomes more severe, even for cosmologically sized black holes. We rule out the possibility that the information about the in-fallen matter might hide in correlations between the Hawking radiation and the internal states of the black hole. As a consequence, either unitarity or Hawking's semiclassical predictions must break down. Any resolution of the black-hole information crisis must elucidate one of these possibilities.

  18. The turning point for Einstein's Annus mirabilis

    NASA Astrophysics Data System (ADS)

    Rynasiewicz, Robert; Renn, Jürgen

    The year 1905 has been called Einstein's Annus mirabilis because of three ground-breaking works completed over the span of a few months-the light-quantum paper, the Brownian motion paper, and the paper on the electrodynamics of moving bodies introducing the special theory of relativity. There are prima facie reasons for thinking that the origins of these papers cannot be understood in isolation from one another. Due to space limitations, we concentrate primarily on the light quantum paper, since, in key respects, it marks the turning point for the Annus mirabilis. The task is to probe, not just how the idea of the light quantum might have occurred to Einstein, but, more importantly, what convinced him that the idea was not just a quixotic hypothesis, but an unavoidable and demonstrable feature of radiation. The crucial development, we suggest, arose from comparing the energy fluctuations that follow rigorously from the Stefan-Boltzmann law, as well as from Wien's distribution formula for blackbody radiation, with what it is reasonable to expect from Maxwell's electromagnetic theory of light. A special case of this is addressed in Einstein's one paper from 1904, "Zur allgemeinen molekularen Theorie der Wärme". Annalen der Physik, 14, 355-362 (Also in CPAE, Vol. 2, Doc. 5)]. The outcome for the general case leads naturally to the central theoretical argument of the light quantum paper, the expectation of Brownian-like motion, and several of the key results for the electrodynamics of moving bodies.

  19. Resource Theory of Superposition

    NASA Astrophysics Data System (ADS)

    Theurer, T.; Killoran, N.; Egloff, D.; Plenio, M. B.

    2017-12-01

    The superposition principle lies at the heart of many nonclassical properties of quantum mechanics. Motivated by this, we introduce a rigorous resource theory framework for the quantification of superposition of a finite number of linear independent states. This theory is a generalization of resource theories of coherence. We determine the general structure of operations which do not create superposition, find a fundamental connection to unambiguous state discrimination, and propose several quantitative superposition measures. Using this theory, we show that trace decreasing operations can be completed for free which, when specialized to the theory of coherence, resolves an outstanding open question and is used to address the free probabilistic transformation between pure states. Finally, we prove that linearly independent superposition is a necessary and sufficient condition for the faithful creation of entanglement in discrete settings, establishing a strong structural connection between our theory of superposition and entanglement theory.

  20. Asymptotic quantum elastic generalized Lorenz Mie theory

    NASA Astrophysics Data System (ADS)

    Gouesbet, G.

    2006-10-01

    The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane-wave illumination. In a recent paper, we established that, if we restrict ourselves to the study of cross-sections, both for elastic and inelastic scatterings, a macroscopic sphere in Lorenz-Mie theory is formally equivalent to a quantum-like radial potential. To generalize this result, a prerequisite is to possess an asymptotic quantum generalized Lorenz-Mie theory expressing cross-sections in the case of a quantum radial potential interacting with a sub-class of quantum arbitrary wave-packets. Such a theory, restricted however to elastic scattering, is presented in this paper.

  1. Astrophysical observations: lensing and eclipsing Einstein's theories.

    PubMed

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  2. The Future of Theoretical Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.

    2009-08-01

    Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space: 31. Adventures in de Sitter space Raphael Bousso; 32. de Sitter space in non-critical string theory Andrew Strominger; 33. Supergravity, M theory and cosmology Renata Kallosh; Part VIII. Quantum Cosmology: 34. The state of the universe James B. Hartle; 35. Quantum cosmology Don Page; 36. Quantum cosmology and eternal inflation A. Vilenkin; 37. Probability in the deterministic theory known as quantum mechanics Bryce de Witt; 38. The interpretation of quantum cosmology and the problem of time J. Halliwell; 39. What local supersymmetry can do for quantum cosmology Peter D'Eath; Part IX. Cosmology: 40. Inflation and cosmological perturbations Alan Guth; 41. The future of cosmology: observational and computational prospects Paul Shellard; 42. The ekpyrotic universe and its cyclic extension Neil Turok; 43. Inflationary theory versus the ekpyrotic/cyclic scenario Andrei Linde; 44. Brane (new) worlds Pierre Binetruy; 45. Publications of Stephen Hawking; Index.

  3. Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies

    PubMed Central

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-01-01

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects. PMID:24851858

  4. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.

    PubMed

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette

    2014-05-22

    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  5. Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.

    PubMed

    Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao

    2017-01-01

    Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.

  6. The potential of using quantum theory to build models of cognition.

    PubMed

    Wang, Zheng; Busemeyer, Jerome R; Atmanspacher, Harald; Pothos, Emmanuel M

    2013-10-01

    Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, a brief introduction to quantum probability theory and a concrete example is provided to illustrate how a quantum cognitive model can be developed to explain paradoxical empirical findings in psychological literature. © 2013 Cognitive Science Society, Inc.

  7. Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger: the origins of the principles of uncertainty and complementarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehra, J.

    1987-05-01

    In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger during 1920-1927 are treated. From the formulation of quantum mechanics in 1925-1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory - formulated in fall 1926 by Dirac, London, and Jordan - Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publiclymore » enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of quantum mechanics and of physical theory as such - formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930 - were continued during the next decades. All these aspects are briefly summarized.« less

  8. Holographic description of a quantum black hole on a computer.

    PubMed

    Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun

    2014-05-23

    Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics. Copyright © 2014, American Association for the Advancement of Science.

  9. Quantum Chemical Studies of Actinides and Lanthanides: From Small Molecules to Nanoclusters

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Bess

    Research into actinides is of high interest because of their potential applications as an energy source and for the environmental implications therein. Global concern has arisen since the development of the actinide concept in the 1940s led to the industrial scale use of the commercial nuclear energy cycle and nuclear weapons production. Large quantities of waste have been generated from these processes inspiring efforts to address fundamental questions in actinide science. In this regard, the objective of this work is to use theory to provide insight and predictions into actinide chemistry, where experimental work is extremely challenging because of the intrinsic difficulties of the experiments themselves and the safety issues associated with this type of chemistry. This thesis is a collection of theoretical studies of actinide chemistry falling into three categories: quantum chemical and matrix isolation studies of small molecules, the electronic structure of organoactinide systems, and uranyl peroxide nanoclusters and other solid state actinide compounds. The work herein not only spans a wide range of systems size but also investigates a range of chemical problems. Various quantum chemical approaches have been employed. Wave function-based methods have been used to study the electronic structure of actinide containing molecules of small to middle-size. Among these methods, the complete active space self consistent field (CASSCF) approach with corrections from second-order perturbation theory (CASPT2), the generalized active space SCF (GASSCF) approach, and Moller-Plesset second-order perturbation theory (MP2) have been employed. Likewise, density functional theory (DFT) has been used along with analysis tools like bond energy decomposition, bond orders, and Bader's Atoms in Molecules. From these quantum chemical results, comparison with experimentally obtained structures and spectra are made.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erol, V.; Netas Telecommunication Inc., Istanbul

    Entanglement has been studied extensively for understanding the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known monotones for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. The study on these monotones has been a hot topic in quantum information [1-7] in order to understand the role of entanglement in this discipline. It can be observed that from any arbitrary quantum pure state a mixed state can obtained. A natural generalization of this observation would be to consider local operations classical communication (LOCC)more » transformations between general pure states of two parties. Although this question is a little more difficult, a complete solution has been developed using the mathematical framework of the majorization theory [8]. In this work, we analyze the relation between entanglement monotones concurrence and negativity with respect to majorization for general two-level quantum systems of two particles.« less

  11. Non-Markovian quantum processes: Complete framework and efficient characterization

    NASA Astrophysics Data System (ADS)

    Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan

    2018-01-01

    Currently, there is no systematic way to describe a quantum process with memory solely in terms of experimentally accessible quantities. However, recent technological advances mean we have control over systems at scales where memory effects are non-negligible. The lack of such an operational description has hindered advances in understanding physical, chemical, and biological processes, where often unjustified theoretical assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective description of memory-bearing open-system evolutions.

  12. Quantum Groups, Property (T), and Weak Mixing

    NASA Astrophysics Data System (ADS)

    Brannan, Michael; Kerr, David

    2018-06-01

    For second countable discrete quantum groups, and more generally second countable locally compact quantum groups with trivial scaling group, we show that property (T) is equivalent to every weakly mixing unitary representation not having almost invariant vectors. This is a generalization of a theorem of Bekka and Valette from the group setting and was previously established in the case of low dual by Daws, Skalski, and Viselter. Our approach uses spectral techniques and is completely different from those of Bekka-Valette and Daws-Skalski-Viselter. By a separate argument we furthermore extend the result to second countable nonunimodular locally compact quantum groups, which are shown in particular not to have property (T), generalizing a theorem of Fima from the discrete setting. We also obtain quantum group versions of characterizations of property (T) of Kerr and Pichot in terms of the Baire category theory of weak mixing representations and of Connes and Weiss in terms of the prevalence of strongly ergodic actions.

  13. Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges

    PubMed Central

    Yunger Halpern, Nicole; Faist, Philippe; Oppenheim, Jonathan; Winter, Andreas

    2016-01-01

    The grand canonical ensemble lies at the core of quantum and classical statistical mechanics. A small system thermalizes to this ensemble while exchanging heat and particles with a bath. A quantum system may exchange quantities represented by operators that fail to commute. Whether such a system thermalizes and what form the thermal state has are questions about truly quantum thermodynamics. Here we investigate this thermal state from three perspectives. First, we introduce an approximate microcanonical ensemble. If this ensemble characterizes the system-and-bath composite, tracing out the bath yields the system's thermal state. This state is expected to be the equilibrium point, we argue, of typical dynamics. Finally, we define a resource-theory model for thermodynamic exchanges of noncommuting observables. Complete passivity—the inability to extract work from equilibrium states—implies the thermal state's form, too. Our work opens new avenues into equilibrium in the presence of quantum noncommutation. PMID:27384494

  14. A Philosophical Approach to Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2018-01-01

    Preface; Acknowledgements; 1. Approach to quantum field theory; 2. Scalar field theory; 3. Quantum electrodynamics; 4. Perspectives; Appendix A. An efficient perturbation scheme; Appendix B. Properties of Dirac matrices; Appendix C. Baker-Campbell-Hausdorff formulas; References; Author index; Subject index.

  15. Bare Quantum Null Energy Condition.

    PubMed

    Fu, Zicao; Marolf, Donald

    2018-02-16

    The quantum null energy condition (QNEC) is a conjectured relation between a null version of quantum field theory energy and derivatives of quantum field theory von Neumann entropy. In some cases, divergences cancel between these two terms and the QNEC is intrinsically finite. We study the more general case here where they do not and argue that a QNEC can still hold for bare (unrenormalized) quantities. While the original QNEC applied only to locally stationary null congruences in backgrounds that solve semiclassical theories of quantum gravity, at least in the formal perturbation theory at a small Planck length, the quantum focusing conjecture can be viewed as the special case of our bare QNEC for which the metric is on shell.

  16. Bare Quantum Null Energy Condition

    NASA Astrophysics Data System (ADS)

    Fu, Zicao; Marolf, Donald

    2018-02-01

    The quantum null energy condition (QNEC) is a conjectured relation between a null version of quantum field theory energy and derivatives of quantum field theory von Neumann entropy. In some cases, divergences cancel between these two terms and the QNEC is intrinsically finite. We study the more general case here where they do not and argue that a QNEC can still hold for bare (unrenormalized) quantities. While the original QNEC applied only to locally stationary null congruences in backgrounds that solve semiclassical theories of quantum gravity, at least in the formal perturbation theory at a small Planck length, the quantum focusing conjecture can be viewed as the special case of our bare QNEC for which the metric is on shell.

  17. Interferometric Computation Beyond Quantum Theory

    NASA Astrophysics Data System (ADS)

    Garner, Andrew J. P.

    2018-03-01

    There are quantum solutions for computational problems that make use of interference at some stage in the algorithm. These stages can be mapped into the physical setting of a single particle travelling through a many-armed interferometer. There has been recent foundational interest in theories beyond quantum theory. Here, we present a generalized formulation of computation in the context of a many-armed interferometer, and explore how theories can differ from quantum theory and still perform distributed calculations in this set-up. We shall see that quaternionic quantum theory proves a suitable candidate, whereas box-world does not. We also find that a classical hidden variable model first presented by Spekkens (Phys Rev A 75(3): 32100, 2007) can also be used for this type of computation due to the epistemic restriction placed on the hidden variable.

  18. Renormalization in Quantum Field Theory and the Riemann-Hilbert Problem I: The Hopf Algebra Structure of Graphs and the Main Theorem

    NASA Astrophysics Data System (ADS)

    Connes, Alain; Kreimer, Dirk

    This paper gives a complete selfcontained proof of our result announced in [6] showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra which is commutative as an algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of . We shall then show that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop where C is a small circle of complex dimensions around the integer dimension D of space-time. Our main result is that the renormalized theory is just the evaluation at z=D of the holomorphic part γ+ of the Birkhoff decomposition of γ. We begin to analyse the group G and show that it is a semi-direct product of an easily understood abelian group by a highly non-trivial group closely tied up with groups of diffeomorphisms. The analysis of this latter group as well as the interpretation of the renormalization group and of anomalous dimensions are the content of our second paper with the same overall title.

  19. ODE/IM correspondence and the Argyres-Douglas theory

    NASA Astrophysics Data System (ADS)

    Ito, Katsushi; Shu, Hongfei

    2017-08-01

    We study the quantum spectral curve of the Argyres-Douglas theories in the Nekrasov-Sahashvili limit of the Omega-background. Using the ODE/IM correspondence we investigate the quantum integrable model corresponding to the quantum spectral curve. We show that the models for the A 2 N -type theories are non-unitary coset models ( A 1)1 × ( A 1) L /( A 1) L+1 at the fractional level L=2/2N+1-2 , which appear in the study of the 4d/2d correspondence of N = 2 superconformal field theories. Based on the WKB analysis, we clarify the relation between the Y-functions and the quantum periods and study the exact Bohr-Sommerfeld quantization condition for the quantum periods. We also discuss the quantum spectral curves for the D and E type theories.

  20. Autonomous Quantum Clocks: Does Thermodynamics Limit Our Ability to Measure Time?

    NASA Astrophysics Data System (ADS)

    Erker, Paul; Mitchison, Mark T.; Silva, Ralph; Woods, Mischa P.; Brunner, Nicolas; Huber, Marcus

    2017-07-01

    Time remains one of the least well-understood concepts in physics, most notably in quantum mechanics. A central goal is to find the fundamental limits of measuring time. One of the main obstacles is the fact that time is not an observable and thus has to be measured indirectly. Here, we explore these questions by introducing a model of time measurements that is complete and autonomous. Specifically, our autonomous quantum clock consists of a system out of thermal equilibrium—a prerequisite for any system to function as a clock—powered by minimal resources, namely, two thermal baths at different temperatures. Through a detailed analysis of this specific clock model, we find that the laws of thermodynamics dictate a trade-off between the amount of dissipated heat and the clock's performance in terms of its accuracy and resolution. Our results furthermore imply that a fundamental entropy production is associated with the operation of any autonomous quantum clock, assuming that quantum machines cannot achieve perfect efficiency at finite power. More generally, autonomous clocks provide a natural framework for the exploration of fundamental questions about time in quantum theory and beyond.

  1. Novel symmetries in N=2 supersymmetric quantum mechanical models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, R.P., E-mail: malik@bhu.ac.in; DST-CIMS, Faculty of Science, BHU-Varanasi-221 005; Khare, Avinash, E-mail: khare@iiserpune.ac.in

    We demonstrate the existence of a novel set of discrete symmetries in the context of the N=2 supersymmetric (SUSY) quantum mechanical model with a potential function f(x) that is a generalization of the potential of the 1D SUSY harmonic oscillator. We perform the same exercise for the motion of a charged particle in the X–Y plane under the influence of a magnetic field in the Z-direction. We derive the underlying algebra of the existing continuous symmetry transformations (and corresponding conserved charges) and establish its relevance to the algebraic structures of the de Rham cohomological operators of differential geometry. We showmore » that the discrete symmetry transformations of our present general theories correspond to the Hodge duality operation. Ultimately, we conjecture that any arbitrary N=2 SUSY quantum mechanical system can be shown to be a tractable model for the Hodge theory. -- Highlights: •Discrete symmetries of two completely different kinds of N=2 supersymmetric quantum mechanical models have been discussed. •The discrete symmetries provide physical realizations of Hodge duality. •The continuous symmetries provide the physical realizations of de Rham cohomological operators. •Our work sheds a new light on the meaning of the above abstract operators.« less

  2. A pedestrian approach to the measurement problem in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Boughn, Stephen; Reginatto, Marcel

    2013-09-01

    The quantum theory of measurement has been a matter of debate for over eighty years. Most of the discussion has focused on theoretical issues with the consequence that other aspects (such as the operational prescriptions that are an integral part of experimental physics) have been largely ignored. This has undoubtedly exacerbated attempts to find a solution to the "measurement problem". How the measurement problem is defined depends to some extent on how the theoretical concepts introduced by the theory are interpreted. In this paper, we fully embrace the minimalist statistical (ensemble) interpretation of quantum mechanics espoused by Einstein, Ballentine, and others. According to this interpretation, the quantum state description applies only to a statistical ensemble of similarly prepared systems rather than representing an individual system. Thus, the statistical interpretation obviates the need to entertain reduction of the state vector, one of the primary dilemmas of the measurement problem. The other major aspect of the measurement problem, the necessity of describing measurements in terms of classical concepts that lay outside of quantum theory, remains. A consistent formalism for interacting quantum and classical systems, like the one based on ensembles on configuration space that we refer to in this paper, might seem to eliminate this facet of the measurement problem; however, we argue that the ultimate interface with experiments is described by operational prescriptions and not in terms of the concepts of classical theory. There is no doubt that attempts to address the measurement problem have yielded important advances in fundamental physics; however, it is also very clear that the measurement problem is still far from being resolved. The pedestrian approach presented here suggests that this state of affairs is in part the result of searching for a theoretical/mathematical solution to what is fundamentally an experimental/observational question. It suggests also that the measurement problem is, in some sense, ill-posed and might never be resolved. This point of view is tenable so long as one is willing to view physical theories as providing models of nature rather than complete descriptions of reality. Among other things, these considerations lead us to suggest that the Copenhagen interpretation's insistence on the classicality of the measurement apparatus should be replaced by the requirement that a measurement, which is specified operationally, should simply be of sufficient precision.

  3. Wave theory of turbulence in compressible media

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    An acoustical theory of turbulence was developed to aid in the study of the generation of sound in turbulent flows. The statistical framework adopted is a quantum-like wave dynamical formulation in terms of complex distribution functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. This system of nonlinear equations is closed and complete. The technique of analysis was chosen such that direct applications to practical problems can be obtained with relative ease.

  4. Hořava Gravity is Asymptotically Free in 2+1 Dimensions.

    PubMed

    Barvinsky, Andrei O; Blas, Diego; Herrero-Valea, Mario; Sibiryakov, Sergey M; Steinwachs, Christian F

    2017-11-24

    We compute the β functions of marginal couplings in projectable Hořava gravity in 2+1 spacetime dimensions. We show that the renormalization group flow has an asymptotically free fixed point in the ultraviolet (UV), establishing the theory as a UV-complete model with dynamical gravitational degrees of freedom. Therefore, this theory may serve as a toy model to study fundamental aspects of quantum gravity. Our results represent a step forward towards understanding the UV properties of realistic versions of Hořava gravity.

  5. Quantum theory and human perception of the macro-world.

    PubMed

    Aerts, Diederik

    2014-01-01

    We investigate the question of 'why customary macroscopic entities appear to us humans as they do, i.e., as bounded entities occupying space and persisting through time', starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new 'conceptual quantum interpretation', including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing-light as a geometric theory-and human touching-only ruled by Pauli's exclusion principle-plays a role in our perception of macroscopic entities as ontologically stable entities in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects-as they occur in smaller entities-appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping ultimately with separated entities, meaning that a more general theory will be needed.

  6. Quantum mechanical treatment of large spin baths

    NASA Astrophysics Data System (ADS)

    Röhrig, Robin; Schering, Philipp; Gravert, Lars B.; Fauseweh, Benedikt; Uhrig, Götz S.

    2018-04-01

    The electronic spin in quantum dots can be described by central spin models (CSMs) with a very large number Neff≈104 to 106 of bath spins posing a tremendous challenge to theoretical simulations. Here, a fully quantum mechanical theory is developed for the limit Neff→∞ by means of iterated equations of motion (iEoM). We find that the CSM can be mapped to a four-dimensional impurity coupled to a noninteracting bosonic bath in this limit. Remarkably, even for infinite bath the CSM does not become completely classical. The data obtained by the proposed iEoM approach are tested successfully against data from other, established approaches. Thus the iEoM mapping extends the set of theoretical tools that can be used to understand the spin dynamics in large CSMs.

  7. Understanding Molecular Conduction: Old Wine in a New Bottle?

    NASA Astrophysics Data System (ADS)

    Ghosh, Avik

    2007-03-01

    Molecules provide an opportunity to test our understanding of fundamental non-equilibrium transport processes, as well as explore new device possibilities. We have developed a unified approach to nanoscale conduction, coupling bandstructure and electrostatics of the channel and contacts with a quantum kinetic theory of current flow. This allows us to describe molecular conduction at various levels of detail, -- from quantum corrected compact models, to semi-empirical models for quick physical insights, and `first-principles' calculations of current-voltage (I-V) characteristics with no adjustable parameters. Using this suite of tools, we can quantitatively explain various experimental I-Vs, including complex reconstructed silicon substrates. We find that conduction in most molecules is contact dominated, and limited by fundamental electrostatic and thermodynamic restrictions quite analogous to those faced by the silicon industry, barring a few interesting exceptions. The distinction between molecular and silicon electronics must therefore be probed at a more fundamental level. Ultra-short molecules are unique in that they possess large Coulomb energies as well as anomalous vibronic couplings with current flow -- in other words, strong non-equilibrium electron-electron and electron-phonon correlations. These effects yield prominent experimental signatures, but require a completely different modeling approach -- in fact, popular approaches to include correlation typically do not work for non-equilibrium. Molecules exhibit rich physics, including the ability to function both as weakly interacting current conduits (quantum wires) as well as strongly correlated charge storage centers (quantum dots). Theoretical treatment of the intermediate coupling regime is particularly challenging, with a large `fine structure constant' for transport that negates orthodox theories of Coulomb Blockade and phonon-assisted tunneling. It is in this regime that the scientific and technological merits of molecular conductors may need to be explored. For instance, the tunable quantum coupling of current flow in silicon transistors with engineered molecular scatterers could lead to devices that operate on completely novel principles.

  8. Equilibration of quantum hall edge states and its conductance fluctuations in graphene p-n junctions

    NASA Astrophysics Data System (ADS)

    Kumar, Chandan; Kuiri, Manabendra; Das, Anindya

    2018-02-01

    We report an observation of conductance fluctuations (CFs) in the bipolar regime of quantum hall (QH) plateaus in graphene (p-n-p/n-p-n) devices. The CFs in the bipolar regime are shown to decrease with increasing bias and temperature. At high temperature (above 7 K) the CFs vanishes completely and the flat quantized plateaus are recovered in the bipolar regime. The values of QH plateaus are in theoretical agreement based on full equilibration of chiral channels at the p-n junction. The amplitude of CFs for different filling factors follows a trend predicted by the random matrix theory. Although, there are mismatch in the values of CFs between the experiment and theory but at higher filling factors the experimental values become closer to the theoretical prediction. The suppression of CFs and its dependence has been understood in terms of time dependent disorders present at the p-n junctions.

  9. Semiclassical transport in nearly symmetric quantum dots. II. Symmetry breaking due to asymmetric leads.

    PubMed

    Whitney, Robert S; Schomerus, Henning; Kopp, Marten

    2009-11-01

    In this work-the second of a pair of articles-we consider transport through spatially symmetric quantum dots with leads whose widths or positions do not obey the spatial symmetry. We use the semiclassical theory of transport to find the symmetry-induced contributions to weak localization corrections and universal conductance fluctuations for dots with left-right, up-down, inversion, and fourfold symmetries. We show that all these contributions are suppressed by asymmetric leads; however, they remain finite whenever leads intersect with their images under the symmetry operation. For an up-down symmetric dot, this means that the contributions can be finite even if one of the leads is completely asymmetric. We find that the suppression of the contributions to universal conductance fluctuations is the square of the suppression of contributions to weak localization. Finally, we develop a random-matrix theory model which enables us to numerically confirm these results.

  10. Avoiding irreversible dynamics in quantum systems

    NASA Astrophysics Data System (ADS)

    Karasik, Raisa Iosifovna

    2009-10-01

    Devices that exploit laws of quantum physics offer revolutionary advances in computation and communication. However, building such devices presents an enormous challenge, since it would require technologies that go far beyond current capabilities. One of the main obstacles to building a quantum computer and devices needed for quantum communication is decoherence or noise that originates from the interaction between a quantum system and its environment, and which leads to the destruction of the fragile quantum information. Encoding into decoherence-free subspaces (DFS) provides an important strategy for combating decoherence effects in quantum systems and constitutes the focus of my dissertation. The theory of DFS relies on the existence of certain symmetries in the decoherence process, which allow some states of a quantum system to be completely decoupled from the environment and thus to experience no decoherence. In this thesis I describe various approaches to DFS that are developed in the current literature. Although the general idea behind various approaches to DFS is the same, I show that different mathematical definitions of DFS actually have different physical meaning. I provide a rigorous definition of DFS for every approach, explaining its physical meaning and relation to other definitions. I also examine the theory of DFS for Markovian systems. These are systems for which the environment has no memory, i.e., any change in the environment affects the quantum system instantaneously. Examples of such systems include many systems in quantum optics that have been proposed for implementation of a quantum computer, such as atomic and molecular gases, trapped ions, and quantum dots. Here I develop a rigorous theory that provides necessary and sufficient conditions for the existence of DFS. This theory allows us to identify a special new class of DFS that was not known before. Under particular circumstances, dynamics of a quantum system can connive together with the interactions between the system and its environment in a special way to reduce decoherence. This property is used to discover new DFS that rely on rather counterintuitive phenomenon, which I call an "incoherent generation of coherences." I also provide examples of physical systems that support such states. These DFS can be used to suppress & coherence, but may not be sufficient for performing full quantum computation. I also explore the possibility of physically generating the DFS that are useful for quantum computation. For quantum computation we need to preserve at least two quantum states to encode the quantum analogue of classical bits. Here I aim to generate DFS in a system composed from a large collection of atoms or molecules and I need to determine how one should position atoms or molecules in 3D space so that the overall system possesses a DFS with at least two states (i.e., non-trivial DFS). I show that for many Markovian systems, non-trivial DFS can exist only when particles are located in exactly the same position in space. This, of course, is not possible in the real world. For these systems, I also show that states in DFS are states with infinite lifetime. However, for all practical applications we just need long-lived states. Thus in reality, we do just need to bring quantum particles close together to generate an imperfect DFS, i.e. a collection of long-lived states. This can be achieved, for example, for atoms within a single molecule.

  11. Towards topological quantum computer

    NASA Astrophysics Data System (ADS)

    Melnikov, D.; Mironov, A.; Mironov, S.; Morozov, A.; Morozov, An.

    2018-01-01

    Quantum R-matrices, the entangling deformations of non-entangling (classical) permutations, provide a distinguished basis in the space of unitary evolutions and, consequently, a natural choice for a minimal set of basic operations (universal gates) for quantum computation. Yet they play a special role in group theory, integrable systems and modern theory of non-perturbative calculations in quantum field and string theory. Despite recent developments in those fields the idea of topological quantum computing and use of R-matrices, in particular, practically reduce to reinterpretation of standard sets of quantum gates, and subsequently algorithms, in terms of available topological ones. In this paper we summarize a modern view on quantum R-matrix calculus and propose to look at the R-matrices acting in the space of irreducible representations, which are unitary for the real-valued couplings in Chern-Simons theory, as the fundamental set of universal gates for topological quantum computer. Such an approach calls for a more thorough investigation of the relation between topological invariants of knots and quantum algorithms.

  12. Quantum Probability -- A New Direction for Modeling in Cognitive Science

    NASA Astrophysics Data System (ADS)

    Roy, Sisir

    2014-07-01

    Human cognition is still a puzzling issue in research and its appropriate modeling. It depends on how the brain behaves at that particular instance and identifies and responds to a signal among myriads of noises that are present in the surroundings (called external noise) as well as in the neurons themselves (called internal noise). Thus it is not surprising to assume that the functionality consists of various uncertainties, possibly a mixture of aleatory and epistemic uncertainties. It is also possible that a complicated pathway consisting of both types of uncertainties in continuum play a major role in human cognition. For more than 200 years mathematicians and philosophers have been using probability theory to describe human cognition. Recently in several experiments with human subjects, violation of traditional probability theory has been clearly revealed in plenty of cases. Literature survey clearly suggests that classical probability theory fails to model human cognition beyond a certain limit. While the Bayesian approach may seem to be a promising candidate to this problem, the complete success story of Bayesian methodology is yet to be written. The major problem seems to be the presence of epistemic uncertainty and its effect on cognition at any given time. Moreover the stochasticity in the model arises due to the unknown path or trajectory (definite state of mind at each time point), a person is following. To this end a generalized version of probability theory borrowing ideas from quantum mechanics may be a plausible approach. A superposition state in quantum theory permits a person to be in an indefinite state at each point of time. Such an indefinite state allows all the states to have the potential to be expressed at each moment. Thus a superposition state appears to be able to represent better, the uncertainty, ambiguity or conflict experienced by a person at any moment demonstrating that mental states follow quantum mechanics during perception and cognition of ambiguous figures.

  13. Assessing the quantum physics impacts on future x-ray free-electron lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Mark J.; Anisimov, Petr Mikhaylovich

    A new quantum mechanical theory of x-ray free electron lasers (XFELs) has been successfully developed that has placed LANL at the forefront of the understanding of quantum effects in XFELs. Our quantum theory describes the interaction of relativistic electrons with x-ray radiation in the periodic magnetic field of an undulator using the same mathematical formalism as classical XFEL theory. This places classical and quantum treatments on the same footing and allows for a continuous transition from one regime to the other eliminating the disparate analytical approaches previously used. Moreover, Dr. Anisimov, the architect of this new theory, is now consideredmore » a resource in the international FEL community for assessing quantum effects in XFELs.« less

  14. Quantum-like model of unconscious–conscious dynamics

    PubMed Central

    Khrennikov, Andrei

    2015-01-01

    We present a quantum-like model of sensation–perception dynamics (originated in Helmholtz theory of unconscious inference) based on the theory of quantum apparatuses and instruments. We illustrate our approach with the model of bistable perception of a particular ambiguous figure, the Schröder stair. This is a concrete model for unconscious and conscious processing of information and their interaction. The starting point of our quantum-like journey was the observation that perception dynamics is essentially contextual which implies impossibility of (straightforward) embedding of experimental statistical data in the classical (Kolmogorov, 1933) framework of probability theory. This motivates application of nonclassical probabilistic schemes. And the quantum formalism provides a variety of the well-approved and mathematically elegant probabilistic schemes to handle results of measurements. The theory of quantum apparatuses and instruments is the most general quantum scheme describing measurements and it is natural to explore it to model the sensation–perception dynamics. In particular, this theory provides the scheme of indirect quantum measurements which we apply to model unconscious inference leading to transition from sensations to perceptions. PMID:26283979

  15. Quantum optical effective-medium theory and transformation quantum optics for metamaterials

    NASA Astrophysics Data System (ADS)

    Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing; Mortensen, N. Asger

    2016-09-01

    While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions trans- form under coordinate transformations. Spontaneous-emission rates can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material profile of the cloak enables the directional control of spontaneous emission.

  16. Supersymmetric interactions of a six-dimensional self-dual tensor and fixed-shape second quantized strings

    NASA Astrophysics Data System (ADS)

    Ganor, Ori J.

    2018-02-01

    "Curvepole (2,0)-theory" is a deformation of the (2,0)-theory with nonlocal interactions. A curvepole is defined as a two-dimensional generalization of a dipole. It is an object of fixed two-dimensional shape of which the boundary is a charged curve that interacts with a 2-form gauge field. Curvepole theory was previously only defined indirectly via M-theory. Here, we propose a supersymmetric Lagrangian, constructed explicitly up to quartic terms, for an "Abelian" curvepole theory, which is an interacting deformation of the free (2,0) tensor multiplet. This theory contains fields of which the quanta are curvepoles (i.e., fixed-shape strings). Supersymmetry is preserved (at least up to quartic terms) if the shape of the curvepoles is (two-dimensional) planar. This nonlocal six-dimensional quantum field theory may also serve as a UV completion for certain (local) five-dimensional gauge theories.

  17. Generalized probability theories: what determines the structure of quantum theory?

    NASA Astrophysics Data System (ADS)

    Janotta, Peter; Hinrichsen, Haye

    2014-08-01

    The framework of generalized probabilistic theories is a powerful tool for studying the foundations of quantum physics. It provides the basis for a variety of recent findings that significantly improve our understanding of the rich physical structure of quantum theory. This review paper tries to present the framework and recent results to a broader readership in an accessible manner. To achieve this, we follow a constructive approach. Starting from a few basic physically motivated assumptions we show how a given set of observations can be manifested in an operational theory. Furthermore, we characterize consistency conditions limiting the range of possible extensions. In this framework classical and quantum theory appear as special cases, and the aim is to understand what distinguishes quantum mechanics as the fundamental theory realized in nature. It turns out that non-classical features of single systems can equivalently result from higher-dimensional classical theories that have been restricted. Entanglement and non-locality, however, are shown to be genuine non-classical features.

  18. Problems in particle theory. Technical report - 1993--1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, S.L.; Wilczek, F.

    This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed abovemore » (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) Acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition. (2) Construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space.« less

  19. What is Quantum Mechanics? A Minimal Formulation

    NASA Astrophysics Data System (ADS)

    Friedberg, R.; Hohenberg, P. C.

    2018-03-01

    This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called "microscopic theory", applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen-Specker-Bell theorem and Gleason's theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.

  20. Emergent Geometry from Entropy and Causality

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta

    In this thesis, we investigate the connections between the geometry of spacetime and aspects of quantum field theory such as entanglement entropy and causality. This work is motivated by the idea that spacetime geometry is an emergent phenomenon in quantum gravity, and that the physics responsible for this emergence is fundamental to quantum field theory. Part I of this thesis is focused on the interplay between spacetime and entropy, with a special emphasis on entropy due to entanglement. In general spacetimes, there exist locally-defined surfaces sensitive to the geometry that may act as local black hole boundaries or cosmological horizons; these surfaces, known as holographic screens, are argued to have a connection with the second law of thermodynamics. Holographic screens obey an area law, suggestive of an association with entropy; they are also distinguished surfaces from the perspective of the covariant entropy bound, a bound on the total entropy of a slice of the spacetime. This construction is shown to be quite general, and is formulated in both classical and perturbatively quantum theories of gravity. The remainder of Part I uses the Anti-de Sitter/ Conformal Field Theory (AdS/CFT) correspondence to both expand and constrain the connection between entanglement entropy and geometry. The AdS/CFT correspondence posits an equivalence between string theory in the "bulk" with AdS boundary conditions and certain quantum field theories. In the limit where the string theory is simply classical General Relativity, the Ryu-Takayanagi and more generally, the Hubeny-Rangamani-Takayanagi (HRT) formulae provide a way of relating the geometry of surfaces to entanglement entropy. A first-order bulk quantum correction to HRT was derived by Faulkner, Lewkowycz and Maldacena. This formula is generalized to include perturbative quantum corrections in the bulk at any (finite) order. Hurdles to spacetime emergence from entanglement entropy as described by HRT and its quantum generalizations are discussed, both at the classical and perturbatively quantum limits. In particular, several No Go Theorems are proven, indicative of a conclusion that supplementary approaches or information may be necessary to recover the full spacetime geometry. Part II of this thesis involves the relation between geometry and causality, the property that information cannot travel faster than light. Requiring this of any quantum field theory results in constraints on string theory setups that are dual to quantum field theories via the AdS/CFT correspondence. At the level of perturbative quantum gravity, it is shown that causality in the field theory constraints the causal structure in the bulk. At the level of nonperturbative quantum string theory, we find that constraints on causal signals restrict the possible ways in which curvature singularities can be resolved in string theory. Finally, a new program of research is proposed for the construction of bulk geometry from the divergences of correlation functions in the dual field theory. This divergence structure is linked to the causal structure of the bulk and of the field theory.

  1. Irreversibility of Asymptotic Entanglement Manipulation Under Quantum Operations Completely Preserving Positivity of Partial Transpose.

    PubMed

    Wang, Xin; Duan, Runyao

    2017-11-03

    We demonstrate the irreversibility of asymptotic entanglement manipulation under quantum operations that completely preserve the positivity of partial transpose (PPT), resolving a major open problem in quantum information theory. Our key tool is a new efficiently computable additive lower bound for the asymptotic relative entropy of entanglement with respect to PPT states, which can be used to evaluate the entanglement cost under local operations and classical communication (LOCC). We find that for any rank-two mixed state supporting on the 3⊗3 antisymmetric subspace, the amount of distillable entanglement by PPT operations is strictly smaller than one entanglement bit (ebit) while its entanglement cost under PPT operations is exactly one ebit. As a by-product, we find that for this class of states, both the Rains's bound and its regularization are strictly less than the asymptotic relative entropy of entanglement. So, in general, there is no unique entanglement measure for the manipulation of entanglement by PPT operations. We further show a computable sufficient condition for the irreversibility of entanglement distillation by LOCC (or PPT) operations.

  2. Quantum mechanics without the projection postulate and its realistic interpretation

    NASA Astrophysics Data System (ADS)

    Dieks, D.

    1989-11-01

    It is widely held that quantum mechanics is the first scientific theory to present scientifically internal, fundamental difficulties for a realistic interpretation (in the philosophical sense). The standard (Copenhagen) interpretation of the quantum theory is often described as the inevitable instrumentalistic response. It is the purpose of the present article to argue that quantum theory does not present fundamental new problems to a realistic interpretation. The formalism of quantum theory has the same states—it will be argued—as the formalisms of older physical theories and is capable of the same kinds of philosophical interpretation. This result is reached via an analysis of what it means to give a realistic interpretation to a theory. The main point of difference between quantum mechanics and other theories—as far as the possibilities of interpretation are concerned—is the special treatment given to measurement by the “projection postulate.” But it is possible to do without this postulate. Moreover, rejection of the projection postulate does not, in spite of what is often maintained in the literature, automatically lead to the many-worlds interpretation of quantum mechanics. A realistic interpretation is possible in which only the reality of one (our) world is recognized. It is argued that the Copenhagen interpretation as expounded by Bohr is not in conflict with the here proposed realistic interpretation of quantum theory.

  3. Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Gang; Duan, Yi-Shi

    General relativity and quantum mechanism are two separate rules of modern physics explaining how nature works. Both theories are accurate, but the direct connection between two theories was not yet clarified. Recently, researchers blur the line between classical and quantum physics by connecting chaos and entanglement equation. Here in this paper, we showed the Duan's extended HM theory, which has the solution of the general relativity, can also have the solutions of the classic chaos equations and even the solution of Schrödinger equation in quantum physics, suggesting the extended theory of harmonic maps may act as a universal theory ofmore » physics.« less

  4. Asymptotic quantum inelastic generalized Lorenz Mie theory

    NASA Astrophysics Data System (ADS)

    Gouesbet, G.

    2007-10-01

    The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane wave illumination. In a recent paper, we consider (i) elastic cross-sections in electromagnetic generalized Lorenz-Mie theory and (ii) elastic cross-sections in an associated quantum generalized Lorenz-Mie theory. We demonstrated that the electromagnetic problem is equivalent to a superposition of two effective quantum problems. We now intend to generalize this result from elastic cross-sections to inelastic cross-sections. A prerequisite is to build an asymptotic quantum inelastic generalized Lorenz-Mie theory, which is presented in this paper.

  5. Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism

    DOE PAGES

    Ren, Gang; Duan, Yi-Shi

    2017-07-20

    General relativity and quantum mechanism are two separate rules of modern physics explaining how nature works. Both theories are accurate, but the direct connection between two theories was not yet clarified. Recently, researchers blur the line between classical and quantum physics by connecting chaos and entanglement equation. Here in this paper, we showed the Duan's extended HM theory, which has the solution of the general relativity, can also have the solutions of the classic chaos equations and even the solution of Schrödinger equation in quantum physics, suggesting the extended theory of harmonic maps may act as a universal theory ofmore » physics.« less

  6. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular tomore » an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.« less

  7. Renormalization Group Theory, the Epsilon Expansion and Ken Wilson as I knew Him

    NASA Astrophysics Data System (ADS)

    Fisher, Michael E.

    The tasks posed for renormalization group theory (RGT) within statistical physics by critical phenomena theory in the 1960's are set out briefly in contradistinction to quantum field theory (QFT), which was the origin for Ken Wilson's concerns. Kadanoff's 1966 block spin scaling picture and its difficulties are presented;Wilson's early vision of flows is described from the author's perspective. How Wilson's subsequent breakthrough ideas, published in 1971, led to the epsilon expansion and the resulting clarity is related. Concluding sections complete the general picture of flows in a space of Hamiltonians, universality and scaling. The article represents a 40% condensation (but with added items) of an earlier account: Rev. Mod. Phys. 70, 653-681 (1998).

  8. Exact Solution of a Strongly Coupled Gauge Theory in 0 +1 Dimensions

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Kumar, K. V. Pavan

    2018-05-01

    Gauged tensor models are a class of strongly coupled quantum mechanical theories. We present the exact analytic solution of a specific example of such a theory: namely, the smallest colored tensor model due to Gurau and Witten that exhibits nonlinearities. We find explicit analytic expressions for the eigenvalues and eigenstates, and the former agree precisely with previous numerical results on (a subset of) eigenvalues of the ungauged theory. The physics of the spectrum, despite the smallness of N , exhibits rudimentary signatures of chaos. This Letter is a summary of our main results: the technical details will appear in companion paper [C. Krishnan and K. V. Pavan Kumar, Complete solution of a gauged tensor model, arXiv:1804.10103].

  9. Applied Mathematical Methods in Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Masujima, Michio

    2005-04-01

    All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.

  10. Quantum Approach to Informatics

    NASA Astrophysics Data System (ADS)

    Stenholm, Stig; Suominen, Kalle-Antti

    2005-08-01

    An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.

  11. Ultraviolet divergences in non-renormalizable supersymmetric theories

    NASA Astrophysics Data System (ADS)

    Smilga, A.

    2017-03-01

    We present a pedagogical review of our current understanding of the ultraviolet structure of N = (1,1) 6D supersymmetric Yang-Mills theory and of N = 8 4 D supergravity. These theories are not renormalizable, they involve power ultraviolet divergences and, in all probability, an infinite set of higherdimensional counterterms that contribute to on-mass-shell scattering amplitudes. A specific feature of supersymmetric theories (especially, of extended supersymmetric theories) is that these counterterms may not be invariant off shell under the full set of supersymmetry transformations. The lowest-dimensional nontrivial counterterm is supersymmetric on shell. Still higher counterterms may lose even the on-shell invariance. On the other hand, the full effective Lagrangian, generating the amplitudes and representing an infinite sum of counterterms, still enjoys the complete symmetry of original theory. We also discuss simple supersymmetric quantum-mechanical models that exhibit the same behaviour.

  12. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4-

    NASA Astrophysics Data System (ADS)

    Sharma, Prachi; Truhlar, Donald G.; Gagliardi, Laura

    2018-03-01

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  13. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4.

    PubMed

    Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura

    2018-03-28

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  14. Transition operators in acoustic-wave diffraction theory. I - General theory. II - Short-wavelength behavior, dominant singularities of Zk0 and Zk0 exp -1

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    1991-01-01

    A formal theory of the scattering of time-harmonic acoustic scalar waves from impenetrable, immobile obstacles is established. The time-independent formal scattering theory of nonrelativistic quantum mechanics, in particular the theory of the complete Green's function and the transition (T) operator, provides the model. The quantum-mechanical approach is modified to allow the treatment of acoustic-wave scattering with imposed boundary conditions of impedance type on the surface (delta-Omega) of an impenetrable obstacle. With k0 as the free-space wavenumber of the signal, a simplified expression is obtained for the k0-dependent T operator for a general case of homogeneous impedance boundary conditions for the acoustic wave on delta-Omega. All the nonelementary operators entering the expression for the T operator are formally simple rational algebraic functions of a certain invertible linear radiation impedance operator which maps any sufficiently well-behaved complex-valued function on delta-Omega into another such function on delta-Omega. In the subsequent study, the short-wavelength and the long-wavelength behavior of the radiation impedance operator and its inverse (the 'radiation admittance' operator) as two-point kernels on a smooth delta-Omega are studied for pairs of points that are close together.

  15. Unification of quantum information theory

    NASA Astrophysics Data System (ADS)

    Abeyesinghe, Anura

    We present the unification of many previously disparate results in noisy quantum Shannon theory and the unification of all of noiseless quantum Shannon theory. More specifically we deal here with bipartite, unidirectional, and memoryless quantum Shannon theory. We find all the optimal protocols and quantify the relationship between the resources used, both for the one-shot and for the ensemble case, for what is arguably the most fundamental task in quantum information theory: sharing entangled states between a sender and a receiver. We find that all of these protocols are derived from our one-shot superdense coding protocol and relate nicely to each other. We then move on to noisy quantum information theory and give a simple, direct proof of the "mother" protocol, or rather her generalization to the Fully Quantum Slepian-Wolf protocol (FQSW). FQSW simultaneously accomplishes two goals: quantum communication-assisted entanglement distillation, and state transfer from the sender to the receiver. As a result, in addition to her other "children," the mother protocol generates the state merging primitive of Horodecki, Oppenheim, and Winter as well as a new class of distributed compression protocols for correlated quantum sources, which are optimal for sources described by separable density operators. Moreover, the mother protocol described here is easily transformed into the so-called "father" protocol, demonstrating that the division of single-sender/single-receiver protocols into two families was unnecessary: all protocols in the family are children of the mother.

  16. Numerical studies on antiferromagnetic skyrmions in nanodisks by means of a new quantum simulation approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhaosen; Ian, Hou

    2016-04-01

    We employ a new quantum simulation approach to study the magnetism of nanodisks with Dzyaloshinsky-Moriya (DM) interaction. We find that a weak external magnetic field normal to the disk plane cannot obviously affect the single AFM skyrmion structure on small disk; but if it is sufficiently strong, it can destroy the AFM skyrmion completely. By increasing DM interaction, more self-organized magnetic domains appear, the average distance of the neighboring domains agrees well with a grid theory. In this case, a magnetic anisotropy normal to the disk plane can re-construct AFM skyrmion, providing a way for experimentalists to create AMF skyrmions.

  17. Generalized Quantum Field Theory Based on a Nonlinear Deformed Heisenberg Algebra

    NASA Astrophysics Data System (ADS)

    Ribeiro-Silva, C. I.; Oliveira-Neto, N. M.

    We consider a quantum field theory based on a nonlinear Heisenberg algebra which describes phenomenologically a composite particle. Perturbative computation, considering the λϕ4 interaction was done and we also performed some comparison with a quantum field theory based on the q-oscillator algebra.

  18. Non-Markovian generalization of the Lindblad theory of open quantum systems

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter

    2007-02-01

    A systematic approach to the non-Markovian quantum dynamics of open systems is given by the projection operator techniques of nonequilibrium statistical mechanics. Combining these methods with concepts from quantum information theory and from the theory of positive maps, we derive a class of correlated projection superoperators that take into account in an efficient way statistical correlations between the open system and its environment. The result is used to develop a generalization of the Lindblad theory to the regime of highly non-Markovian quantum processes in structured environments.

  19. Emergent "Quantum" Theory in Complex Adaptive Systems.

    PubMed

    Minic, Djordje; Pajevic, Sinisa

    2016-04-30

    Motivated by the question of stability, in this letter we argue that an effective quantum-like theory can emerge in complex adaptive systems. In the concrete example of stochastic Lotka-Volterra dynamics, the relevant effective "Planck constant" associated with such emergent "quantum" theory has the dimensions of the square of the unit of time. Such an emergent quantum-like theory has inherently non-classical stability as well as coherent properties that are not, in principle, endangered by thermal fluctuations and therefore might be of crucial importance in complex adaptive systems.

  20. Single-World Theory of the Extended Wigner's Friend Experiment

    NASA Astrophysics Data System (ADS)

    Sudbery, Anthony

    2017-05-01

    Frauchiger and Renner have recently claimed to prove that "Single-world interpretations of quantum theory cannot be self-consistent". This is contradicted by a construction due to Bell, inspired by Bohmian mechanics, which shows that any quantum system can be modelled in such a way that there is only one "world" at any time, but the predictions of quantum theory are reproduced. This Bell-Bohmian theory is applied to the experiment proposed by Frauchiger and Renner, and their argument is critically examined. It is concluded that it is their version of "standard quantum theory", incorporating state vector collapse upon measurement, that is not self-consistent.

  1. The Importance of Electron Correlation on Stacking Interaction of Adenine-Thymine Base-Pair Step in B-DNA: A Quantum Monte Carlo Study.

    PubMed

    Hongo, Kenta; Cuong, Nguyen Thanh; Maezono, Ryo

    2013-02-12

    We report fixed-node diffusion Monte Carlo (DMC) calculations of stacking interaction energy between two adenine(A)-thymine(T) base pairs in B-DNA (AA:TT), for which reference data are available, obtained from a complete basis set estimate of CCSD(T) (coupled-cluster with singles, doubles, and perturbative triples). We consider four sets of nodal surfaces obtained from self-consistent field calculations and examine how the different nodal surfaces affect the DMC potential energy curves of the AA:TT molecule and the resulting stacking energies. We find that the DMC potential energy curves using the different nodes look similar to each other as a whole. We also benchmark the performance of various quantum chemistry methods, including Hartree-Fock (HF) theory, second-order Møller-Plesset perturbation theory (MP2), and density functional theory (DFT). The DMC and recently developed DFT results of the stacking energy reasonably agree with the reference, while the HF, MP2, and conventional DFT methods give unsatisfactory results.

  2. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    NASA Astrophysics Data System (ADS)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  3. 3D quantum gravity and effective noncommutative quantum field theory.

    PubMed

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  4. Generalized classical and quantum signal theories

    NASA Astrophysics Data System (ADS)

    Rundblad, E.; Labunets, V.; Novak, P.

    2005-05-01

    In this paper we develop two topics and show their inter- and cross-relation. The first centers on general notions of the generalized classical signal theory on finite Abelian hypergroups. The second concerns the generalized quantum hyperharmonic analysis of quantum signals (Hermitean operators associated with classical signals). We study classical and quantum generalized convolution hypergroup algebras of classical and quantum signals.

  5. Quantum chemistry simulation on quantum computers: theories and experiments.

    PubMed

    Lu, Dawei; Xu, Boruo; Xu, Nanyang; Li, Zhaokai; Chen, Hongwei; Peng, Xinhua; Xu, Ruixue; Du, Jiangfeng

    2012-07-14

    It has been claimed that quantum computers can mimic quantum systems efficiently in the polynomial scale. Traditionally, those simulations are carried out numerically on classical computers, which are inevitably confronted with the exponential growth of required resources, with the increasing size of quantum systems. Quantum computers avoid this problem, and thus provide a possible solution for large quantum systems. In this paper, we first discuss the ideas of quantum simulation, the background of quantum simulators, their categories, and the development in both theories and experiments. We then present a brief introduction to quantum chemistry evaluated via classical computers followed by typical procedures of quantum simulation towards quantum chemistry. Reviewed are not only theoretical proposals but also proof-of-principle experimental implementations, via a small quantum computer, which include the evaluation of the static molecular eigenenergy and the simulation of chemical reaction dynamics. Although the experimental development is still behind the theory, we give prospects and suggestions for future experiments. We anticipate that in the near future quantum simulation will become a powerful tool for quantum chemistry over classical computations.

  6. The Oxford Questions on the foundations of quantum physics

    PubMed Central

    Briggs, G. A. D.; Butterfield, J. N.; Zeilinger, A.

    2013-01-01

    The twentieth century saw two fundamental revolutions in physics—relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment. PMID:24062626

  7. The Oxford Questions on the foundations of quantum physics.

    PubMed

    Briggs, G A D; Butterfield, J N; Zeilinger, A

    2013-09-08

    The twentieth century saw two fundamental revolutions in physics-relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment.

  8. Rough set classification based on quantum logic

    NASA Astrophysics Data System (ADS)

    Hassan, Yasser F.

    2017-11-01

    By combining the advantages of quantum computing and soft computing, the paper shows that rough sets can be used with quantum logic for classification and recognition systems. We suggest the new definition of rough set theory as quantum logic theory. Rough approximations are essential elements in rough set theory, the quantum rough set model for set-valued data directly construct set approximation based on a kind of quantum similarity relation which is presented here. Theoretical analyses demonstrate that the new model for quantum rough sets has new type of decision rule with less redundancy which can be used to give accurate classification using principles of quantum superposition and non-linear quantum relations. To our knowledge, this is the first attempt aiming to define rough sets in representation of a quantum rather than logic or sets. The experiments on data-sets have demonstrated that the proposed model is more accuracy than the traditional rough sets in terms of finding optimal classifications.

  9. Quantum space and quantum completeness

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron

    2018-05-01

    Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.

  10. Can quantum approaches benefit biology of decision making?

    PubMed

    Takahashi, Taiki

    2017-11-01

    Human decision making has recently been focused in the emerging fields of quantum decision theory and neuroeconomics. The former discipline utilizes mathematical formulations developed in quantum theory, while the latter combines behavioral economics and neurobiology. In this paper, the author speculates on possible future directions unifying the two approaches, by contrasting the roles of quantum theory in the birth of molecular biology of the gene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Quasi-Continuum Reduction of Field Theories: A Route to Seamlessly Bridge Quantum and Atomistic Length-Scales with Continuum

    DTIC Science & Technology

    2016-04-01

    AFRL-AFOSR-VA-TR-2016-0145 Quasi-continuum reduction of field theories: A route to seamlessly bridge quantum and atomistic length-scales with...field theories: A route to seamlessly bridge quantum and atomistic length-scales with continuum Principal Investigator: Vikram Gavini Department of...calculations on tens of thousands of atoms, and enable continuing efforts towards a seamless bridging of the quantum and continuum length-scales

  12. The quantum epoché.

    PubMed

    Pylkkänen, Paavo

    2015-12-01

    The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.

  13. Shock Response and Phase Transitions of MgO at Planetary Impact Conditions.

    PubMed

    Root, Seth; Shulenburger, Luke; Lemke, Raymond W; Dolan, Daniel H; Mattsson, Thomas R; Desjarlais, Michael P

    2015-11-06

    The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth's mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories' Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42 000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solid and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. The high pressure required for complete shock melting has implications for a broad range of planetary collision events.

  14. Shock response and phase transitions of MgO at planetary impact conditions

    DOE PAGES

    Root, Seth; Shulenburger, Luke; Lemke, Raymond W.; ...

    2015-11-04

    The moon-forming impact and the subsequent evolution of the proto-Earth is strongly dependent on the properties of materials at the extreme conditions generated by this violent collision. We examine the high pressure behavior of MgO, one of the dominant constituents in Earth’s mantle, using high-precision, plate impact shock compression experiments performed on Sandia National Laboratories’ Z Machine and extensive quantum calculations using density functional theory (DFT) and quantum Monte Carlo (QMC) methods. The combined data span from ambient conditions to 1.2 TPa and 42,000 K, showing solid-solid and solid-liquid phase boundaries. Furthermore our results indicate that under impact the solidmore » and liquid phases coexist for more than 100 GPa, pushing complete melting to pressures in excess of 600 GPa. Furthermore, the high pressure required for complete shock melting has implications for a broad range of planetary collision events.« less

  15. Foundations of Space and Time

    NASA Astrophysics Data System (ADS)

    Murugan, Jeff; Weltman, Amanda; Ellis, George F. R.

    2012-07-01

    1. The problem with quantum gravity Jeff Murugan, Amanda Weltman and George F. R. Eliis; 2. A dialogue on the nature of gravity Thanu Padmanabhan; 3. Effective theories and modifications of gravity Cliff Burgess; 4. The small scale structure of spacetime Steve Carlip; 5. Ultraviolet divergences in supersymmetric theories Kellog Stelle; 6. Cosmological quantum billiards Axel Kleinschmidt and Hermann Nicolai; 7. Progress in RNS string theory and pure spinors Dimitri Polyakov; 8. Recent trends in superstring phenomenology Massimo Bianchi; 9. Emergent spacetime Robert de Mello Koch and Jeff Murugan; 10. Loop quantum gravity Hanno Sahlmann; 11. Loop quantum gravity and cosmology Martin Bojowald; 12. The microscopic dynamics of quantum space as a group field theory Daniele Oriti; 13. Causal dynamical triangulations and the quest for quantum gravity Jan Ambjørn, J. Jurkiewicz and Renate Loll; 14. Proper time is stochastic time in 2D quantum gravity Jan Ambjorn, Renate Loll, Y. Watabiki, W. Westra and S. Zohren; 15. Logic is to the quantum as geometry is to gravity Rafael Sorkin; 16. Causal sets: discreteness without symmetry breaking Joe Henson; 17. The Big Bang, quantum gravity, and black-hole information loss Roger Penrose; Index.

  16. Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom: Application to 1H NMR reversion experiments in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Segnorile, H. H.; Zamar, R. C.

    2013-10-01

    An experimental study of NMR spin decoherence in nematic liquid crystals is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the irreversible quantum decoherence in liquid crystals, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the quantum spin decoherence of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic decoherence. In order to contrast experiment and theory, the theory was adapted to obtain the decoherence function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments, and the presence of non-reverted spin interaction terms are analysed in detail within this framework, and their effects on the observed signal decay are numerically estimated. It is found that though all these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behaviour of the irreversible spin decoherence. As unique characteristic of decoherence, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of decoherence associated with a quantum open spin system in liquid crystals. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and lead to conclude that the quasi-equilibrium is a definite stage of the spin dynamics during its evolution towards equilibrium.

  17. Experimental test of state-independent quantum contextuality of an indivisible quantum system

    NASA Astrophysics Data System (ADS)

    Li, Meng; Huang, Yun-Feng; Cao, Dong-Yang; Zhang, Chao; Zhang, Yong-Sheng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2014-05-01

    Since the quantum mechanics was born, quantum mechanics was argued among scientists because the differences between quantum mechanics and the classical physics. Because of this, some people give hidden variable theory. One of the hidden variable theory is non-contextual hidden variable theory, and KS inequalities are famous in non-contextual hidden variable theory. But the original KS inequalities have 117 directions to measure, so it is almost impossible to test the KS inequalities in experiment. However bout two years ago, Sixia Yu and C.H. Oh point out that for a single qutrit, we only need to measure 13 directions, then we can test the KS inequalities. This makes it possible to test the KS inequalities in experiment. We use the polarization and the path of single photon to construct a qutrit, and we use the half-wave plates, the beam displacers and polar beam splitters to prepare the quantum state and finish the measurement. And the result prove that quantum mechanics is right and non-contextual hidden variable theory is wrong.

  18. The Analysis of Analogy Use in the Teaching of Introductory Quantum Theory

    ERIC Educational Resources Information Center

    Didis, Nilufer

    2015-01-01

    This study analyzes the analogies used in the teaching of introductory quantum theory concepts. Over twelve weeks, the researcher observed each class for a semester and conducted interviews with the students and the instructor. In the interviews, students answered questions about quantum theory concepts, which the instructor had taught them using…

  19. Thermodynamics and the structure of quantum theory

    NASA Astrophysics Data System (ADS)

    Krumm, Marius; Barnum, Howard; Barrett, Jonathan; Müller, Markus P.

    2017-04-01

    Despite its enormous empirical success, the formalism of quantum theory still raises fundamental questions: why is nature described in terms of complex Hilbert spaces, and what modifications of it could we reasonably expect to find in some regimes of physics? Here we address these questions by studying how compatibility with thermodynamics constrains the structure of quantum theory. We employ two postulates that any probabilistic theory with reasonable thermodynamic behaviour should arguably satisfy. In the framework of generalised probabilistic theories, we show that these postulates already imply important aspects of quantum theory, like self-duality and analogues of projective measurements, subspaces and eigenvalues. However, they may still admit a class of theories beyond quantum mechanics. Using a thought experiment by von Neumann, we show that these theories admit a consistent thermodynamic notion of entropy, and prove that the second law holds for projective measurements and mixing procedures. Furthermore, we study additional entropy-like quantities based on measurement probabilities and convex decomposition probabilities, and uncover a relation between one of these quantities and Sorkin’s notion of higher-order interference.

  20. Nonrelativistic Yang-Mills theory for a naturally light Higgs boson

    NASA Astrophysics Data System (ADS)

    Berthier, Laure; Grosvenor, Kevin T.; Yan, Ziqi

    2017-11-01

    We continue the study of the nonrelativistic short-distance completions of a naturally light Higgs, focusing on the interplay between the gauge symmetries and the polynomial shift symmetries. We investigate the naturalness of nonrelativistic scalar quantum electrodynamics with a dynamical critical exponent z =3 by computing leading power law divergences to the scalar propagator in this theory. We find that power law divergences exhibit a more refined structure in theories that lack boost symmetries. Finally, in this toy model, we show that it is possible to preserve a fairly large hierarchy between the scalar mass and the high-energy naturalness scale across 7 orders of magnitude, while accommodating a gauge coupling of order 0.1.

  1. Finite-block-length analysis in classical and quantum information theory.

    PubMed

    Hayashi, Masahito

    2017-01-01

    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects.

  2. Finite-block-length analysis in classical and quantum information theory

    PubMed Central

    HAYASHI, Masahito

    2017-01-01

    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects. PMID:28302962

  3. New constructions of approximately SIC-POVMs via difference sets

    NASA Astrophysics Data System (ADS)

    Luo, Gaojun; Cao, Xiwang

    2018-04-01

    In quantum information theory, symmetric informationally complete positive operator-valued measures (SIC-POVMs) are related to quantum state tomography (Caves et al., 2004), quantum cryptography (Fuchs and Sasaki, 2003) [1], and foundational studies (Fuchs, 2002) [2]. However, constructing SIC-POVMs is notoriously hard. Although some SIC-POVMs have been constructed numerically, there does not exist an infinite class of them. In this paper, we propose two constructions of approximately SIC-POVMs, where a small deviation from uniformity of the inner products is allowed. We employ difference sets to present the first construction and the dimension of the approximately SIC-POVMs is q + 1, where q is a prime power. Notably, the dimension of this framework is new. The second construction is based on partial geometric difference sets and works whenever the dimension of the framework is a prime power.

  4. Optical communication with two-photon coherent stages. I - Quantum-state propagation and quantum-noise reduction

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Shapiro, J. H.

    1978-01-01

    To determine the ultimate performance limitations imposed by quantum effects, it is also essential to consider optimum quantum-state generation. Certain 'generalized' coherent states of the radiation field possess novel quantum noise characteristics that offer the potential for greatly improved optical communications. These states have been called two-photon coherent states because they can be generated, in principle, by stimulated two-photon processes. The use of two-photon coherent state (TCS) radiation in free-space optical communications is considered. A simple theory of quantum state propagation is developed. The theory provides the basis for representing the free-space channel in a quantum-mechanical form convenient for communication analysis. The new theory is applied to TCS radiation.

  5. Aligning the Quantum Perspective of Learning to Instructional Design: Exploring the Seven Definitive Questions

    ERIC Educational Resources Information Center

    Janzen, Katherine J.; Perry, Beth; Edwards, Margaret

    2011-01-01

    This paper builds upon a foundational paper (under review) which explores the rudiments of the quantum perspective of learning. The quantum perspective of learning uses the principles of exchange theory or borrowed theory from the field of quantum holism pioneered by quantum physicist David Bohm (1971, 1973) to understand learning in a new way.…

  6. Quantum clocks and the foundations of relativity

    NASA Astrophysics Data System (ADS)

    Davies, Paul C. W.

    2004-05-01

    The conceptual foundations of the special and general theories of relativity differ greatly from those of quantum mechanics. Yet in all cases investigated so far, quantum mechanics seems to be consistent with the principles of relativity theory, when interpreted carefully. In this paper I report on a new investigation of this consistency using a model of a quantum clock to measure time intervals; a topic central to all metric theories of gravitation, and to cosmology. Results are presented for two important scenarios related to the foundations of relativity theory: the speed of light as a limiting velocity and the weak equivalence principle (WEP). These topics are investigated in the light of claims of superluminal propagation in quantum tunnelling and possible violations of WEP. Special attention is given to the role of highly non-classical states. I find that by using a definition of time intervals based on a precise model of a quantum clock, ambiguities are avoided and, at least in the scenarios investigated, there is consistency with the theory of relativity, albeit with some subtleties.

  7. Experimental violation of a Bell's inequality with efficient detection.

    PubMed

    Rowe, M A; Kielpinski, D; Meyer, V; Sackett, C A; Itano, W M; Monroe, C; Wineland, D J

    2001-02-15

    Local realism is the idea that objects have definite properties whether or not they are measured, and that measurements of these properties are not affected by events taking place sufficiently far away. Einstein, Podolsky and Rosen used these reasonable assumptions to conclude that quantum mechanics is incomplete. Starting in 1965, Bell and others constructed mathematical inequalities whereby experimental tests could distinguish between quantum mechanics and local realistic theories. Many experiments have since been done that are consistent with quantum mechanics and inconsistent with local realism. But these conclusions remain the subject of considerable interest and debate, and experiments are still being refined to overcome 'loopholes' that might allow a local realistic interpretation. Here we have measured correlations in the classical properties of massive entangled particles (9Be+ ions): these correlations violate a form of Bell's inequality. Our measured value of the appropriate Bell's 'signal' is 2.25 +/- 0.03, whereas a value of 2 is the maximum allowed by local realistic theories of nature. In contrast to previous measurements with massive particles, this violation of Bell's inequality was obtained by use of a complete set of measurements. Moreover, the high detection efficiency of our apparatus eliminates the so-called 'detection' loophole.

  8. Mutually orthogonal Latin squares from the inner products of vectors in mutually unbiased bases

    NASA Astrophysics Data System (ADS)

    Hall, Joanne L.; Rao, Asha

    2010-04-01

    Mutually unbiased bases (MUBs) are important in quantum information theory. While constructions of complete sets of d + 1 MUBs in {\\bb C}^d are known when d is a prime power, it is unknown if such complete sets exist in non-prime power dimensions. It has been conjectured that complete sets of MUBs only exist in {\\bb C}^d if a maximal set of mutually orthogonal Latin squares (MOLS) of side length d also exists. There are several constructions (Roy and Scott 2007 J. Math. Phys. 48 072110; Paterek, Dakić and Brukner 2009 Phys. Rev. A 79 012109) of complete sets of MUBs from specific types of MOLS, which use Galois fields to construct the vectors of the MUBs. In this paper, two known constructions of MUBs (Alltop 1980 IEEE Trans. Inf. Theory 26 350-354 Wootters and Fields 1989 Ann. Phys. 191 363-381), both of which use polynomials over a Galois field, are used to construct complete sets of MOLS in the odd prime case. The MOLS come from the inner products of pairs of vectors in the MUBs.

  9. Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution.

    PubMed

    Melkikh, Alexey V; Khrennikov, Andrei

    2017-11-01

    A review of the mechanisms of speciation is performed. The mechanisms of the evolution of species, taking into account the feedback of the state of the environment and mechanisms of the emergence of complexity, are considered. It is shown that these mechanisms, at the molecular level, cannot work steadily in terms of classical mechanics. Quantum mechanisms of changes in the genome, based on the long-range interaction potential between biologically important molecules, are proposed as one of possible explanation. Different variants of interactions of the organism and environment based on molecular recognition and leading to new species origins are considered. Experiments to verify the model are proposed. This bio-physical study is completed by the general operational model of based on quantum information theory. The latter is applied to model of epigenetic evolution. We briefly present the basics of the quantum-like approach to modeling of bio-informational processes. This approach is illustrated by the quantum-like model of epigenetic evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables

    NASA Astrophysics Data System (ADS)

    Andrews, D. L.

    2018-03-01

    To properly represent the interplay and coupling of optical and material chirality at the photon-molecule or photon-nanoparticle level invites a recognition of quantum facets in the fundamental aspects and mechanisms of light-matter interaction. It is therefore appropriate to cast theory in a general quantum form, one that is applicable to both linear and nonlinear optics as well as various forms of chiroptical interaction including chiral optomechanics. Such a framework, fully accounting for both radiation and matter in quantum terms, facilitates the scrutiny and identification of key issues concerning spatial and temporal parity, scale, dissipation and measurement. Furthermore it fully provides for describing the interactions of structured or twisted light beams with a vortex character, and it leads to the complete identification of symmetry conditions for materials to provide for chiral discrimination. Quantum considerations also lend a distinctive perspective to the very different senses in which other aspects of chirality are recognized in metamaterials. Duly attending to the symmetry principles governing allowed or disallowed forms of chiral discrimination supports an objective appraisal of the experimental possibilities and developing applications.

  11. Non-local Effects of Conformal Anomaly

    NASA Astrophysics Data System (ADS)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2018-03-01

    It is shown that the nonlocal anomalous effective actions corresponding to the quantum breaking of the conformal symmetry can lead to observable modifications of Einstein's equations. The fact that Einstein's general relativity is in perfect agreement with all observations including cosmological or recently observed gravitational waves imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. It is shown that a complete cancellation of conformal anomalies in D=4 for both the C^2 invariant and the Euler (Gauss-Bonnet) invariant can only be achieved for N-extended supergravity multiplets with N ≥ 5.

  12. [Ortega and the theory of relativity].

    PubMed

    González de Posada, Francisco

    2006-01-01

    Ortega y Gasset's thinking on Einstein and relativity, set out in the course of his extensive works, is constructed in the light of three of his fundamental ideas: 1) science, a special form of belief; 2) physics, a science par excellence; and 3) relativity, the intellectual fact of the highest order of its time; dedicating special attention to the essay: "The historical meaning of Einstein's theory". And it is completed with his critical attitude to the so-called "fundamental crisis" and his diagnosis of the grave problems suffered by physics in the wake of the relativistic and quantum revolutions.

  13. Almost-Quantum Correlations Violate the No-Restriction Hypothesis

    NASA Astrophysics Data System (ADS)

    Sainz, Ana Belén; Guryanova, Yelena; Acín, Antonio; Navascués, Miguel

    2018-05-01

    To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.

  14. Almost-Quantum Correlations Violate the No-Restriction Hypothesis.

    PubMed

    Sainz, Ana Belén; Guryanova, Yelena; Acín, Antonio; Navascués, Miguel

    2018-05-18

    To identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations. Therefore, any theory whose correlations are exactly, or very close to, the almost-quantum correlations necessarily requires a rule limiting the possible measurements. Our results suggest that the no-restriction hypothesis may play a fundamental role in singling out the set of quantum correlations among other nonsignaling ones.

  15. Can violations of Bell's inequalities be considered as a final proof of quantum physics?

    NASA Astrophysics Data System (ADS)

    Hénault, François

    2013-10-01

    Nowadays, it is commonly admitted that the experimental violation of Bell's inequalities that was successfully demonstrated in the last decades by many experimenters, are indeed the ultimate proof of quantum physics and of its ability to describe the whole microscopic world and beyond. But the historical and scientific story may not be envisioned so clearly: it starts with the original paper of Einstein, Podolsky and Rosen (EPR) aiming at demonstrating that the formalism of quantum theory is incomplete. It then goes through the works of D. Bohm, to finally proceed to the famous John Bell's relationships providing an experimental setup to solve the EPR paradox. In this communication is proposed an alternative reading of this history, showing that modern experiments based on correlations between light polarizations significantly deviate from the original spirit of the EPR paper. It is concluded that current experimental violations of Bell's inequalities cannot be considered as an ultimate proof of the completeness of quantum physics models.

  16. Investigation of possible observable e ects in a proposed theory of physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freidan, Daniel

    2015-03-31

    The work supported by this grant produced rigorous mathematical results on what is possible in quantum field theory. Quantum field theory is the well-established mathematical language for fundamental particle physics, for critical phenomena in condensed matter physics, and for Physical Mathematics (the numerous branches of Mathematics that have benefitted from ideas, constructions, and conjectures imported from Theoretical Physics). Proving rigorous constraints on what is possible in quantum field theories thus guides the field, puts actual constraints on what is physically possible in physical or mathematical systems described by quantum field theories, and saves the community the effort of trying tomore » do what is proved impossible. Results were obtained in two dimensional qft (describing, e.g., quantum circuits) and in higher dimensional qft. Rigorous bounds were derived on basic quantities in 2d conformal field theories, i.e., in 2d critical phenomena. Conformal field theories are the basic objects in quantum field theory, the scale invariant theories describing renormalization group fixed points from which all qfts flow. The first known lower bounds on the 2d boundary entropy were found. This is the entropy- information content- in junctions in critical quantum circuits. For dimensions d > 2, a no-go theorem was proved on the possibilities of Cauchy fields, which are the analogs of the holomorphic fields in d = 2 dimensions, which have had enormously useful applications in Physics and Mathematics over the last four decades. This closed o the possibility of finding analogously rich theories in dimensions above 2. The work of two postdoctoral research fellows was partially supported by this grant. Both have gone on to tenure track positions.« less

  17. Cosmology from group field theory formalism for quantum gravity.

    PubMed

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2013-07-19

    We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.

  18. Conditional and unconditional Gaussian quantum dynamics

    NASA Astrophysics Data System (ADS)

    Genoni, Marco G.; Lami, Ludovico; Serafini, Alessio

    2016-07-01

    This article focuses on the general theory of open quantum systems in the Gaussian regime and explores a number of diverse ramifications and consequences of the theory. We shall first introduce the Gaussian framework in its full generality, including a classification of Gaussian (also known as 'general-dyne') quantum measurements. In doing so, we will give a compact proof for the parametrisation of the most general Gaussian completely positive map, which we believe to be missing in the existing literature. We will then move on to consider the linear coupling with a white noise bath, and derive the diffusion equations that describe the evolution of Gaussian states under such circumstances. Starting from these equations, we outline a constructive method to derive general master equations that apply outside the Gaussian regime. Next, we include the general-dyne monitoring of the environmental degrees of freedom and recover the Riccati equation for the conditional evolution of Gaussian states. Our derivation relies exclusively on the standard quantum mechanical update of the system state, through the evaluation of Gaussian overlaps. The parametrisation of the conditional dynamics we obtain is novel and, at variance with existing alternatives, directly ties in to physical detection schemes. We conclude our study with two examples of conditional dynamics that can be dealt with conveniently through our formalism, demonstrating how monitoring can suppress the noise in optical parametric processes as well as stabilise systems subject to diffusive scattering.

  19. Quantum structure in economics: The Ellsberg paradox

    NASA Astrophysics Data System (ADS)

    Aerts, Diederik; Sozzo, Sandro

    2012-03-01

    The expected utility hypothesis and Savage's Sure-Thing Principle are violated in real life decisions, as shown by the Allais and Ellsberg paradoxes. The popular explanation in terms of ambiguity aversion is not completely accepted. As a consequence, uncertainty is still problematical in economics. To overcome these difficulties a distinction between risk and ambiguity has been introduced which depends on the existence of a Kolmogorovian probabilistic structure modeling these uncertainties. On the other hand, evidence of everyday life suggests that context plays a fundamental role in human decisions under uncertainty. Moreover, it is well known from physics that any probabilistic structure modeling contextual interactions between entities structurally needs a non-Kolmogorovian framework admitting a quantum-like representation. For this reason, we have recently introduced a notion of contextual risk to mathematically capture situations in which ambiguity occurs. We prove in this paper that the contextual risk approach can be applied to the Ellsberg paradox, and elaborate a sphere model within our hidden measurement formalism which reveals that it is the overall conceptual landscape that is responsible of the disagreement between actual human decisions and the predictions of expected utility theory, which generates the paradox. This result points to the presence of a quantum conceptual layer in human thought which is superposed to the usually assumed classical logical layer, and conceptually supports the thesis of several authors suggesting the presence of quantum structure in economics and decision theory.

  20. Theory and spectroscopy

    NASA Astrophysics Data System (ADS)

    Stanton, John F.

    2015-05-01

    The interaction between quantum-mechanical theory and spectroscopy is one of the most fertile interfaces in all of science, and has a richly storied history. Of course it was spectroscopy that provided essentially all of the evidence that not all was well (or, perhaps more correctly put, complete) with the world of 19th century classical physics. From the discoveries of the dark lines in the solar spectrum by Fraunhöfer in 1814 to the curiously simple geometric formula discovered seventy years later that described the hydrogen atom spectrum, spectroscopy and spectroscopists have consistently identified the areas of atomic and molecular science that are most in need of hard thinking by theoreticians. The rest of the story, of course, is well-known: spectroscopic results were used to understand and motivate the theory of radioactivity and ultimately the quantum theory, first in its immature form that was roughly contemporaneous with the first World War, and then the Heisenberg-Schrödinger-Dirac version that has withstood the test of time. Since the basic principles of quantum mechanics ware first understood, the subject has been successfully used to understand the patterns found in spectra, and how these relate to molecular structure, symmetry, energy levels, and dynamics. But further understanding required to attain these intellectual achievements has often come only as a result of vital and productive interactions between theoreticians and spectroscopists (of course, many people have strengths in both areas). And indeed, a field that might be termed "theoretical spectroscopy" was cultivated and is now an important part of modern molecular science.

  1. Karl Popper's Quantum Ghost

    NASA Astrophysics Data System (ADS)

    Shields, William

    2004-05-01

    Karl Popper, though not trained as a physicist and embarrassed early in his career by a physics error pointed out by Einstein and Bohr, ultimately made substantial contributions to the interpretation of quantum mechanics. As was often the case, Popper initially formulated his position by criticizing the views of others - in this case Niels Bohr and Werner Heisenberg. Underlying Popper's criticism was his belief that, first, the "standard interpretation" of quantum mechanics, sometimes called the Copenhagen interpretation, abandoned scientific realism and second, the assertion that quantum theory was "complete" (an assertion rejected by Einstein among others) amounted to an unfalsifiable claim. Popper insisted that the most basic predictions of quantum mechanics should continue to be tested, with an eye towards falsification rather than mere adding of decimal places to confirmatory experiments. His persistent attacks on the Copenhagen interpretation were aimed not at the uncertainty principle itself and the formalism from which it was derived, but at the acceptance by physicists of an unclear epistemology and ontology that left critical questions unanswered. In 1999, physicists at the University of Maryland conducted a version of Popper's Experiment, re-igniting the debate over quantum predictions and the role of locality in physics.

  2. The Madelung Picture as a Foundation of Geometric Quantum Theory

    NASA Astrophysics Data System (ADS)

    Reddiger, Maik

    2017-10-01

    Despite its age, quantum theory still suffers from serious conceptual difficulties. To create clarity, mathematical physicists have been attempting to formulate quantum theory geometrically and to find a rigorous method of quantization, but this has not resolved the problem. In this article we argue that a quantum theory recursing to quantization algorithms is necessarily incomplete. To provide an alternative approach, we show that the Schrödinger equation is a consequence of three partial differential equations governing the time evolution of a given probability density. These equations, discovered by Madelung, naturally ground the Schrödinger theory in Newtonian mechanics and Kolmogorovian probability theory. A variety of far-reaching consequences for the projection postulate, the correspondence principle, the measurement problem, the uncertainty principle, and the modeling of particle creation and annihilation are immediate. We also give a speculative interpretation of the equations following Bohm, Vigier and Tsekov, by claiming that quantum mechanical behavior is possibly caused by gravitational background noise.

  3. Supergeometry in Locally Covariant Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Hack, Thomas-Paul; Hanisch, Florian; Schenkel, Alexander

    2016-03-01

    In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc to S* Alg to the category of super-*-algebras, which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc to eS* Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the enriched framework. As examples we analyze the superparticle in 1|1-dimensions and the free Wess-Zumino model in 3|2-dimensions.

  4. Quantum-classical correspondence for the inverted oscillator

    NASA Astrophysics Data System (ADS)

    Maamache, Mustapha; Ryeol Choi, Jeong

    2017-11-01

    While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)

  5. Quantum theory for 1D X-ray free electron laser

    DOE PAGES

    Anisimov, Petr Mikhaylovich

    2017-09-19

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classicalmore » theory, which allows for immediate transfer of knowledge between the two regimes. In conclusion, we exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.« less

  6. Quantum theory for 1D X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Anisimov, Petr M.

    2018-06-01

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classical theory, which allows for immediate transfer of knowledge between the two regimes. We exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.

  7. Is wave-particle objectivity compatible with determinism and locality?

    PubMed

    Ionicioiu, Radu; Jennewein, Thomas; Mann, Robert B; Terno, Daniel R

    2014-09-26

    Wave-particle duality, superposition and entanglement are among the most counterintuitive features of quantum theory. Their clash with our classical expectations motivated hidden-variable (HV) theories. With the emergence of quantum technologies, we can test experimentally the predictions of quantum theory versus HV theories and put strong restrictions on their key assumptions. Here, we study an entanglement-assisted version of the quantum delayed-choice experiment and show that the extension of HV to the controlling devices only exacerbates the contradiction. We compare HV theories that satisfy the conditions of objectivity (a property of photons being either particles or waves, but not both), determinism and local independence of hidden variables with quantum mechanics. Any two of the above conditions are compatible with it. The conflict becomes manifest when all three conditions are imposed and persists for any non-zero value of entanglement. We propose an experiment to test our conclusions.

  8. Is wave–particle objectivity compatible with determinism and locality?

    PubMed Central

    Ionicioiu, Radu; Jennewein, Thomas; Mann, Robert B.; Terno, Daniel R.

    2014-01-01

    Wave–particle duality, superposition and entanglement are among the most counterintuitive features of quantum theory. Their clash with our classical expectations motivated hidden-variable (HV) theories. With the emergence of quantum technologies, we can test experimentally the predictions of quantum theory versus HV theories and put strong restrictions on their key assumptions. Here, we study an entanglement-assisted version of the quantum delayed-choice experiment and show that the extension of HV to the controlling devices only exacerbates the contradiction. We compare HV theories that satisfy the conditions of objectivity (a property of photons being either particles or waves, but not both), determinism and local independence of hidden variables with quantum mechanics. Any two of the above conditions are compatible with it. The conflict becomes manifest when all three conditions are imposed and persists for any non-zero value of entanglement. We propose an experiment to test our conclusions. PMID:25256419

  9. Numerical methods for studying anharmonic oscillator approximations to the phi super 4 sub 2 quantum field theory

    NASA Technical Reports Server (NTRS)

    Isaacson, D.; Marchesin, D.; Paes-Leme, P. J.

    1980-01-01

    This paper is an expanded version of a talk given at the 1979 T.I.C.O.M. conference. It is a self-contained introduction, for applied mathematicians and numerical analysts, to quantum mechanics and quantum field theory. It also contains a brief description of the authors' numerical approach to the problems of quantum field theory, which may best be summarized by the question; Can we compute the eigenvalues and eigenfunctions of Schrodinger operators in infinitely many variables.

  10. Tests of alternative quantum theories with neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sponar, S.; Durstberger-Rennhofer, K.; Badurek, G.

    2014-12-04

    According to Bell’s theorem, every theory based on local realism is at variance with certain predictions of quantum mechanics. A theory that maintains realism but abandons reliance on locality, which has been proposed by Leggett, is incompatible with experimentally observable quantum correlations. In our experiment correlation measurements of spin-energy entangled single-neutrons violate a Leggett-type inequality by more than 7.6 standard deviations. The experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics.

  11. Quantum non-objectivity from performativity of quantum phenomena

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei; Schumann, Andrew

    2014-12-01

    We analyze the logical foundations of quantum mechanics (QM) by stressing non-objectivity of quantum observables, which is a consequence of the absence of logical atoms in QM. We argue that the matter of quantum non-objectivity is that, on the one hand, the formalism of QM constructed as a mathematical theory is self-consistent, but, on the other hand, quantum phenomena as results of experimenters’ performances are not self-consistent. This self-inconsistency is an effect of the language of QM differing greatly from the language of human performances. The former is the language of a mathematical theory that uses some Aristotelian and Russellian assumptions (e.g., the assumption that there are logical atoms). The latter language consists of performative propositions that are self-inconsistent only from the viewpoint of conventional mathematical theory, but they satisfy another logic that is non-Aristotelian. Hence, the representation of quantum reality in linguistic terms may be different: the difference between a mathematical theory and a logic of performative propositions. To solve quantum self-inconsistency, we apply the formalism of non-classical self-referent logics.

  12. Philosophy and Quantum Mechanics in Science Teaching

    NASA Astrophysics Data System (ADS)

    Pospiech, Gesche

    Research in physics has its impact on world view; physics influences the image of nature. On the other hand philosophy thinks about nature and the role of man. The insight that philosophy might indicate the frontiers of human possibilities of thought makes it highly desirable to teach these aspects in physics education. One of the most exciting examples is quantum theory which v. Weizsäcker called a fundamental philosophical advance. I give some hints to implementing philosophical aspects into a course on quantum theory. For this purpose I designed a dialogue between three philosophers - from the Antique, the Enlightenment and a quantum philosopher - discussing results of quantum theory on the background of important philosophical terms. Especially the views of Aristotle are reviewed. This idea has been carried out in a supplementary course on quantum theory for interested teacher students and for in-service training of teachers.

  13. Measurement incompatibility and Schrödinger-Einstein-Podolsky-Rosen steering in a class of probabilistic theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banik, Manik, E-mail: manik11ju@gmail.com

    Steering is one of the most counter intuitive non-classical features of bipartite quantum system, first noticed by Schrödinger at the early days of quantum theory. On the other hand, measurement incompatibility is another non-classical feature of quantum theory, initially pointed out by Bohr. Recently, Quintino et al. [Phys. Rev. Lett. 113, 160402 (2014)] and Uola et al. [Phys. Rev. Lett. 113, 160403 (2014)] have investigated the relation between these two distinct non-classical features. They have shown that a set of measurements is not jointly measurable (i.e., incompatible) if and only if they can be used for demonstrating Schrödinger-Einstein-Podolsky-Rosen steering. Themore » concept of steering has been generalized for more general abstract tensor product theories rather than just Hilbert space quantum mechanics. In this article, we discuss that the notion of measurement incompatibility can be extended for general probability theories. Further, we show that the connection between steering and measurement incompatibility holds in a border class of tensor product theories rather than just quantum theory.« less

  14. BOOK REVIEW: Modern Canonical Quantum General Relativity

    NASA Astrophysics Data System (ADS)

    Kiefer, Claus

    2008-06-01

    The open problem of constructing a consistent and experimentally tested quantum theory of the gravitational field has its place at the heart of fundamental physics. The main approaches can be roughly divided into two classes: either one seeks a unified quantum framework of all interactions or one starts with a direct quantization of general relativity. In the first class, string theory (M-theory) is the only known example. In the second class, one can make an additional methodological distinction: while covariant approaches such as path-integral quantization use the four-dimensional metric as an essential ingredient of their formalism, canonical approaches start with a foliation of spacetime into spacelike hypersurfaces in order to arrive at a Hamiltonian formulation. The present book is devoted to one of the canonical approaches—loop quantum gravity. It is named modern canonical quantum general relativity by the author because it uses connections and holonomies as central variables, which are analogous to the variables used in Yang Mills theories. In fact, the canonically conjugate variables are a holonomy of a connection and the flux of a non-Abelian electric field. This has to be contrasted with the older geometrodynamical approach in which the metric of three-dimensional space and the second fundamental form are the fundamental entities, an approach which is still actively being pursued. It is the author's ambition to present loop quantum gravity in a way in which every step is formulated in a mathematically rigorous form. In his own words: 'loop quantum gravity is an attempt to construct a mathematically rigorous, background-independent, non-perturbative quantum field theory of Lorentzian general relativity and all known matter in four spacetime dimensions, not more and not less'. The formal Leitmotiv of loop quantum gravity is background independence. Non-gravitational theories are usually quantized on a given non-dynamical background. In contrast, due to the geometrical nature of gravity, no such background exists in quantum gravity. Instead, the notion of a background is supposed to emerge a posteriori as an approximate notion from quantum states of geometry. As a consequence, the standard ultraviolet divergences of quantum field theory do not show up because there is no limit of Δx → 0 to be taken in a given spacetime. On the other hand, it is open whether the theory is free of any type of divergences and anomalies. A central feature of any canonical approach, independent of the choice of variables, is the existence of constraints. In geometrodynamics, these are the Hamiltonian and diffeomorphism constraints. They also hold in loop quantum gravity, but are supplemented there by the Gauss constraint, which emerges due to the use of triads in the formalism. These constraints capture all the physics of the quantum theory because no spacetime is present anymore (analogous to the absence of trajectories in quantum mechanics), so no additional equations of motion are needed. This book presents a careful and comprehensive discussion of these constraints. In particular, the constraint algebra is calculated in a transparent and explicit way. The author makes the important assumption that a Hilbert-space structure is still needed on the fundamental level of quantum gravity. In ordinary quantum theory, such a structure is needed for the probability interpretation, in particular for the conservation of probability with respect to external time. It is thus interesting to see how far this concept can be extrapolated into the timeless realm of quantum gravity. On the kinematical level, that is, before the constraints are imposed, an essentially unique Hilbert space can be constructed in terms of spin-network states. Potentially problematic features are the implementation of the diffeomorphism and Hamiltonian constraints. The Hilbert space Hdiff defined on the diffeomorphism subspace can throw states out of the kinematical Hilbert space and is thus not contained in it. Moreover, the Hamiltonian constraint does not seem to preserve Hdiff, so its implementation remains open. To avoid some of these problems, the author proposes his 'master constraint programme' in which the infinitely many local Hamiltonian constraints are combined into one master constraint. This is a subject of his current research. With regard to this situation, it is not surprising that the main results in loop quantum gravity are found on the kinematical level. An especially important feature are the discrete spectra of geometric operators such as the area operator. This quantifies the earlier heuristic ideas about a discreteness at the Planck scale. The hope is that these results survive the consistent implementation of all constraints. The status of loop quantum gravity is concisely and competently summarized in this volume, whose author is himself one of the pioneers of this approach. What is the relation of this book to the other monograph on loop quantum gravity, written by Carlo Rovelli and published in 2004 under the title Quantum Gravity with the same company? In the words of the present author: 'the two books are complementary in the sense that they can be regarded almost as volume I ('introduction and conceptual framework') and volume II ('mathematical framework and applications') of a general presentation of quantum general relativity in general and loop quantum gravity in particular'. In fact, the present volume gives a complete and self-contained presentation of the required mathematics, especially on the approximately 200 pages of chapters 18 33. As for the physical applications, the main topic is the microscopic derivation of the black-hole entropy. This is presented in a clear and detailed form. Employing the concept of an isolated horizon (a local generalization of an event horizon), the counting of surface states gives an entropy proportional to the horizon area. It also contains the Barbero Immirzi parameter β, which is a free parameter of the theory. Demanding, on the other hand, that the entropy be equal to the Bekenstein Hawking entropy would fix this parameter. Other applications such as loop quantum cosmology are only briefly touched upon. Since loop quantum gravity is a very active field of research, the author warns that the present book can at best be seen as a snapshot. Part of the overall picture may thus in the future be subject to modifications. For example, recent work by the author using a concept of dust time is not yet covered here. Nevertheless, I expect that this volume will continue to serve as a valuable introduction and reference book. It is essential reading for everyone working on loop quantum gravity.

  15. History of the 3 Theories of Light

    NASA Astrophysics Data System (ADS)

    Boyd, Jeffrey

    2010-02-01

    Plato, Euclid, & Ptolemy said that when we see a flower, something is emitted from our eyes that travels out to apprehend the flower. The alternative was called the intromission theory: something from the flower comes into our eye, which is how we see. The latter was an unpopular minority view defended by Aristotle, Lucretius and Galen. It wasn't widely accepted until 1021 (Ibn al-Haytham's Book of Optics). Einstein & DeBroglie assumed the intromission theory (wave-particle duality). That was fruitful but led to quantum weirdness, Schr"odinger's cat, & a sense that only mathematical formulas are ``real.'' In 2007 PhysicsWeb said, ``Quantum physics says goodbye to reality.'' The first hybrid emission-intromission theory was introduced by Little in 1996. Little says a wave goes out from your retina to the flower, & is followed backward by a photon. This theory has a weakness stated by Aristotle: ``Then how do we see the stars?'' What's the advantage of this theory? If quantum waves travel in the reverse direction from photons, then most of quantum physics can be explained without quantum weirdness or Schr"odinger's cat. Quantum mathematics would be unchanged. The diffraction pattern on the screen of the double slit experiment is the same. )

  16. Space and time in the quantum universe.

    NASA Astrophysics Data System (ADS)

    Smolin, L.

    This paper is devoted to the problem of constructing a quantum theory that could describe a closed system - a quantum cosmology. The author argues that this problem is an aspect of a much older problem - that of how to eliminate from the physical theories "ideal elements", which are elements of the mathematical structure whose interpretation requires the existence of things outside the dynamical system described by the theory. This discussion is aimed at uncovering criteria that a theory of quantum cosmology must satisfy, if it is to give physically sensible predictions. The author proposes three such criteria and shows that conventional quantum cosmology can only satisfy them, if there is an intrinsic time coordinate on the phase space of the theory. It is shown that approaches based on correlations in the wave function, that do not use an inner product, cannot satisfy these criteria. As example, the author discusses the problem of quantizing a class of relational dynamical models invented by Barbour and Bertotti. The dynamical structure of these theories is closely analogous to general relativity, and the problem of their measurement theory is also similar. It is concluded that these theories can only be sensibly quantized if they contain an intrinsic time.

  17. Quantum probability and quantum decision-making.

    PubMed

    Yukalov, V I; Sornette, D

    2016-01-13

    A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary. © 2015 The Author(s).

  18. Proposed Test of Relative Phase as Hidden Variable in Quantum Mechanics

    DTIC Science & Technology

    2012-01-01

    implicitly due to its ubiquity in quantum theory , but searches for dependence of measurement outcome on other parameters have been lacking. For a two -state...implemen- tation for the specific case of an atomic two -state system with laser-induced fluores- cence for measurement. Keywords Quantum measurement...Measurement postulate · Born rule 1 Introduction 1.1 Problems with Quantum Measurement Quantum theory prescribes probabilities for outcomes of measurements

  19. Universal entanglement spectra of gapped one-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Ludwig, Andreas W. W.; Ryu, Shinsei

    2017-03-01

    We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the "scaling limit" (correlation length ξ much larger than microscopic "lattice" scale "a "), and can be thought of as a CFT perturbed by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of length Lξ=ln(ξ /a ) with certain boundary conditions. In particular, the low-lying entanglement spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition, maps into a particular boundary condition. A similar property has been known to hold for Baxter's corner transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite interval of length 2 R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the system size R crosses the correlation length from the "critical regime'' R ≪ξ to the "gapped regime'' R ≫ξ , the physical spectrum on a finite interval of length R with the same boundary conditions, on the other hand, is known to undergo a dramatic reorganization during the same crossover from being discrete to being continuous.

  20. Dual gauge field theory of quantum liquid crystals in two dimensions

    NASA Astrophysics Data System (ADS)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; Liu, Ke; Slager, Robert-Jan; Nussinov, Zohar; Cvetkovic, Vladimir; Zaanen, Jan

    2017-04-01

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (;stress photons;), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, giving rise to the Anderson-Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this 'deconfined' mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Their special properties inherited from spatial symmetry breaking show up mostly at finite momentum, and should be accessible by momentum-sensitive spectroscopy.

  1. Quantum theory and human perception of the macro-world

    PubMed Central

    Aerts, Diederik

    2014-01-01

    We investigate the question of ‘why customary macroscopic entities appear to us humans as they do, i.e., as bounded entities occupying space and persisting through time’, starting from our knowledge of quantum theory, how it affects the behavior of such customary macroscopic entities, and how it influences our perception of them. For this purpose, we approach the question from three perspectives. Firstly, we look at the situation from the standard quantum angle, more specifically the de Broglie wavelength analysis of the behavior of macroscopic entities, indicate how a problem with spin and identity arises, and illustrate how both play a fundamental role in well-established experimental quantum-macroscopical phenomena, such as Bose-Einstein condensates. Secondly, we analyze how the question is influenced by our result in axiomatic quantum theory, which proves that standard quantum theory is structurally incapable of describing separated entities. Thirdly, we put forward our new ‘conceptual quantum interpretation’, including a highly detailed reformulation of the question to confront the new insights and views that arise with the foregoing analysis. At the end of the final section, a nuanced answer is given that can be summarized as follows. The specific and very classical perception of human seeing—light as a geometric theory—and human touching—only ruled by Pauli's exclusion principle—plays a role in our perception of macroscopic entities as ontologically stable entities in space. To ascertain quantum behavior in such macroscopic entities, we will need measuring apparatuses capable of its detection. Future experimental research will have to show if sharp quantum effects—as they occur in smaller entities—appear to be ontological aspects of customary macroscopic entities. It remains a possibility that standard quantum theory is an incomplete theory, and hence incapable of coping ultimately with separated entities, meaning that a more general theory will be needed. PMID:25009510

  2. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore, their special properties inherited from spatial symmetry breaking show up mostly at finite momentum, and should be accessible by momentum-sensitive spectroscopy.« less

  3. Dual gauge field theory of quantum liquid crystals in two dimensions

    DOE PAGES

    Beekman, Aron J.; Nissinen, Jaakko; Wu, Kai; ...

    2017-04-18

    We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (“stress photons”), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, givingmore » rise to the Anderson–Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. After providing the necessary background knowledge, including the order parameter theory of two-dimensional quantum liquid crystals and the dual theory of stress gauge bosons in bosonic crystals, the theory of melting is developed step-by-step via the disorder theory of dislocation-mediated melting. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this ‘deconfined’ mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Furthermore, their special properties inherited from spatial symmetry breaking show up mostly at finite momentum, and should be accessible by momentum-sensitive spectroscopy.« less

  4. Generalizing Prototype Theory: A Formal Quantum Framework

    PubMed Central

    Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro

    2016-01-01

    Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436

  5. Quantum theory of the generalised uncertainty principle

    NASA Astrophysics Data System (ADS)

    Bruneton, Jean-Philippe; Larena, Julien

    2017-04-01

    We extend significantly previous works on the Hilbert space representations of the generalized uncertainty principle (GUP) in 3 + 1 dimensions of the form [X_i,P_j] = i F_{ij} where F_{ij} = f({{P}}^2) δ _{ij} + g({{P}}^2) P_i P_j for any functions f. However, we restrict our study to the case of commuting X's. We focus in particular on the symmetries of the theory, and the minimal length that emerge in some cases. We first show that, at the algebraic level, there exists an unambiguous mapping between the GUP with a deformed quantum algebra and a quadratic Hamiltonian into a standard, Heisenberg algebra of operators and an aquadratic Hamiltonian, provided the boost sector of the symmetries is modified accordingly. The theory can also be mapped to a completely standard Quantum Mechanics with standard symmetries, but with momentum dependent position operators. Next, we investigate the Hilbert space representations of these algebraically equivalent models, and focus specifically on whether they exhibit a minimal length. We carry the functional analysis of the various operators involved, and show that the appearance of a minimal length critically depends on the relationship between the generators of translations and the physical momenta. In particular, because this relationship is preserved by the algebraic mapping presented in this paper, when a minimal length is present in the standard GUP, it is also present in the corresponding Aquadratic Hamiltonian formulation, despite the perfectly standard algebra of this model. In general, a minimal length requires bounded generators of translations, i.e. a specific kind of quantization of space, and this depends on the precise shape of the function f defined previously. This result provides an elegant and unambiguous classification of which universal quantum gravity corrections lead to the emergence of a minimal length.

  6. Pressure broadening of the electric dipole and Raman lines of CO2 by argon: Stringent test of the classical impact theory at different temperatures on a benchmark system

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergey V.; Buzykin, Oleg G.

    2016-12-01

    A classical approach is applied to calculate pressure broadening coefficients of CO2 vibration-rotational spectral lines perturbed by Ar. Three types of spectra are examined: electric dipole (infrared) absorption; isotropic and anisotropic Raman Q branches. Simple and explicit formulae of the classical impact theory are used along with exact 3D Hamilton equations for CO2-Ar molecular motion. The calculations utilize vibrationally independent most accurate ab initio potential energy surface (PES) of Hutson et al. expanded in Legendre polynomial series up to lmax = 24. New improved algorithm of classical rotational frequency selection is applied. The dependences of CO2 half-widths on rotational quantum number J up to J=100 are computed for the temperatures between 77 and 765 K and compared with available experimental data as well as with the results of fully quantum dynamical calculations performed on the same PES. To make the picture complete, the predictions of two independent variants of the semi-classical Robert-Bonamy formalism for dipole absorption lines are included. This method. however, has demonstrated poor accuracy almost for all temperatures. On the contrary, classical broadening coefficients are in excellent agreement both with measurements and with quantum results at all temperatures. The classical impact theory in its present variant is capable to produce quickly and accurately the pressure broadening coefficients of spectral lines of linear molecules for any J value (including high Js) using full-dimensional ab initio - based PES in the cases where other computational methods are either extremely time consuming (like the quantum close coupling method) or give erroneous results (like semi-classical methods).

  7. Von Neumann's impossibility proof: Mathematics in the service of rhetorics

    NASA Astrophysics Data System (ADS)

    Dieks, Dennis

    2017-11-01

    According to what has become a standard history of quantum mechanics, in 1932 von Neumann persuaded the physics community that hidden variables are impossible as a matter of principle, after which leading proponents of the Copenhagen interpretation put the situation to good use by arguing that the completeness of quantum mechanics was undeniable. This state of affairs lasted, so the story continues, until Bell in 1966 exposed von Neumann's proof as obviously wrong. The realization that von Neumann's proof was fallacious then rehabilitated hidden variables and made serious foundational research possible again. It is often added in recent accounts that von Neumann's error had been spotted almost immediately by Grete Hermann, but that her discovery was of no effect due to the dominant Copenhagen Zeitgeist. We shall attempt to tell a story that is more historically accurate and less ideologically charged. Most importantly, von Neumann never claimed to have shown the impossibility of hidden variables tout court, but argued that hidden-variable theories must possess a structure that deviates fundamentally from that of quantum mechanics. Both Hermann and Bell appear to have missed this point; moreover, both raised unjustified technical objections to the proof. Von Neumann's argument was basically that hidden-variables schemes must violate the ;quantum principle; that physical quantities are to be represented by operators in a Hilbert space. As a consequence, hidden-variables schemes, though possible in principle, necessarily exhibit a certain kind of contextuality. As we shall illustrate, early reactions to Bohm's theory are in agreement with this account. Leading physicists pointed out that Bohm's theory has the strange feature that pre-existing particle properties do not generally reveal themselves in measurements, in accordance with von Neumann's result. They did not conclude that the ;impossible was done; and that von Neumann had been shown wrong.

  8. Introduction

    NASA Astrophysics Data System (ADS)

    Cohen, E. G. D.

    Lecture notes are organized around the key word dissipation, while focusing on a presentation of modern theoretical developments in the study of irreversible phenomena. A broad cross-disciplinary perspective towards non-equilibrium statistical mechanics is backed by the general theory of nonlinear and complex dynamical systems. The classical-quantum intertwine and semiclassical dissipative borderline issue (decoherence, "classical out of quantum") are here included . Special emphasis is put on links between the theory of classical and quantum dynamical systems (temporal disorder, dynamical chaos and transport processes) with central problems of non-equilibrium statistical mechanics like e.g. the connection between dynamics and thermodynamics, relaxation towards equilibrium states and mechanisms capable to drive and next maintain the physical system far from equilibrium, in a non-equilibrium steady (stationary) state. The notion of an equilibrium state - towards which a system naturally evolves if left undisturbed - is a fundamental concept of equilibrium statistical mechanics. Taken as a primitive point of reference that allows to give an unambiguous status to near equilibrium and far from equilibrium systems, together with the dynamical notion of a relaxation (decay) towards a prescribed asymptotic invariant measure or probability distribution (properties of ergodicity and mixing are implicit). A related issue is to keep under control the process of driving a physical system away from an initial state of equilibrium and either keeping it in another (non-equilibrium) steady state or allowing to restore the initial data (return back, relax). To this end various models of environment (heat bath, reservoir, thermostat, measuring instrument etc.), and the environment - system coupling are analyzed. The central theme of the book is the dynamics of dissipation and various mechanisms responsible for the irreversible behaviour (transport properties) of open systems on classical and quantum levels of description. A distinguishing feature of these lecture notes is that microscopic foundations of irreversibility are investigated basically in terms of "small" systems, when the "system" and/or "environment" may have a finite (and small) number of degrees of freedom and may be bounded. This is to be contrasted with the casual understanding of statistical mechanics which is regarded to refer to systems with a very large number of degrees of freedom. In fact, it is commonly accepted that the accumulation of effects due to many (range of the Avogadro number) particles is required for statistical mechanics reasoning. Albeit those large numbers are not at all sufficient for transport properties. A helpful hint towards this conceptual turnover comes from the observation that for chaotic dynamical systems the random time evolution proves to be compatible with the underlying purely deterministic laws of motion. Chaotic features of the classical dynamics already appear in systems with two degrees of freedom and such systems need to be described in statistical terms, if we wish to quantify the dynamics of relaxation towards an invariant ergodic measure. The relaxation towards equilibrium finds a statistical description through an analysis of statistical ensembles. This entails an extension of the range of validity of statistical mechanics to small classical systems. On the other hand, the dynamics of fluctuations in macroscopic dissipative systems (due to their molecular composition and thermal mobility) may render a characterization of such systems as being chaotic. That motivates attempts of understanding the role of microscopic chaos and various "chaotic hypotheses" - dynamical systems approach is being pushed down to the level of atoms, molecules and complex matter constituents, whose natural substitute are low-dimensional model subsystems (encompassing as well the mesoscopic "quantum chaos") - in non-equilibrium transport phenomena. On the way a number of questions is addressed like e.g.: is there, or what is the nature of a connection between chaos (modern theory of dynamical systems) and irreversible thermodynamics; can really quantum chaos explain some peculiar features of quantum transport? The answer in both cases is positive, modulo a careful discrimination between viewing the dynamical chaos as a necessary or sufficient basis for irreversibility. In those dynamical contexts, another key term dynamical semigroups refers to major technical tools appropriate for the "dissipative mathematics", modelling irreversible behaviour on the classical and quantum levels of description. Dynamical systems theory and "quantum chaos" research involve both a high level of mathematical sophistication and heavy computer "experimentation". One of the present volume specific flavors is a tutorial access to quite advanced mathematical tools. They gradually penetrate the classical and quantum dynamical semigroup description, while culminating in the noncommutative Brillouin zone construction as a prerequisite to understand transport in aperiodic solids. Lecture notes are structured into chapters to give a better insight into major conceptual streamlines. Chapter I is devoted to a discussion of non-equilibrium steady states and, through so-called chaotic hypothesis combined with suitable fluctuation theorems, elucidates the role of Sinai-Ruelle-Bowen distribution in both equilibrium and non-equilibrium statistical physics frameworks (E. G. D. Cohen). Links between dynamics and statistics (Boltzmann versus Tsallis) are also discussed. Fluctuation relations and a survey of deterministic thermostats are given in the context of non-equilibrium steady states of fluids (L. Rondoni). Response of systems driven far from equilibrium is analyzed on the basis of a central assertion about the existence of the statistical representation in terms of an ensemble of dynamical realizations of the driving process. Non-equilibrium work relation is deduced for irreversible processes (C. Jarzynski). The survey of non-equilibrium steady states in statistical mechanics of classical and quantum systems employs heat bath models and the random matrix theory input. The quantum heat bath analysis and derivation of fluctuation-dissipation theorems is performed by means of the influence functional technique adopted to solve quantum master equations (D. Kusnezov). Chapter II deals with an issue of relaxation and its dynamical theory in both classical and quantum contexts. Pollicott-Ruelle resonance background for the exponential decay scenario is discussed for irreversible processes of diffusion in the Lorentz gas and multibaker models (P. Gaspard). The Pollicott-Ruelle theory reappears as a major inspiration in the survey of the behaviour of ensembles of chaotic systems, with a focus on model systems for which no rigorous results concerning the exponential decay of correlations in time is available (S. Fishman). The observation, that non-equilibrium transport processes in simple classical chaotic systems can be described in terms of fractal structures developing in the system phase space, links their formation and properties with the entropy production in the course of diffusion processes displaying a low dimensional deterministic (chaotic) origin (J. R. Dorfman). Chapter III offers an introduction to the theory of dynamical semigroups. Asymptotic properties of Markov operators and Markov semigroups acting in the set of probability densities (statistical ensemble notion is implicit) are analyzed. Ergodicity, mixing, strong (complete) mixing and sweeping are discussed in the familiar setting of "noise, chaos and fractals" (R. Rudnicki). The next step comprises a passage to quantum dynamical semigroups and completely positive dynamical maps, with an ultimate goal to introduce a consistent framework for the analysis of irreversible phenomena in open quantum systems, where dissipation and decoherence are crucial concepts (R. Alicki). Friction and damping in classical and quantum mechanics of finite dissipative systems is analyzed by means of Markovian quantum semigroups with special emphasis on the issue of complete positivity (M. Fannes). Specific two-level model systems of elementary particle physics (kaons) and rudiments of neutron interferometry are employed to elucidate a distinction between positivity and complete positivity (F. Benatti). Quantization of dynamics of stochastic models related to equilibrium Gibbs states results in dynamical maps which form quantum stochastic dynamical semigroups (W. A. Majewski). Chapter IV addresses diverse but deeply interrelated features of driven chaotic (mesoscopic) classical and quantum systems, their dissipative properties, notions of quantum irreversibility, entanglement, dephasing and decoherence. A survey of non-perturbative quantum effects for open quantum systems is concluded by outlining the discrepancies between random matrix theory and non-perturbative semiclassical predictions (D. Cohen). As a useful supplement to the subject of bounded open systems, methods of quantum state control in a cavity (coherent versus incoherent dynamics and dissipation) are described for low dimensional quantum systems (A. Buchleitner). The dynamics of open quantum systems can be alternatively described by means of non-Markovian stochastic Schrödinger equation, jointly for an open system and its environment, which moves us beyond the Linblad evolution scenario of Markovian dynamical semigroups. The quantum Brownian motion is considered (W. Strunz) . Chapter V enforces a conceptual transition 'from "small" to "large" systems with emphasis on irreversible thermodynamics of quantum transport. Typical features of the statistical mechanics of infinitely extended systems and the dynamical (small) systems approach are described by means of representative examples of relaxation towards asymptotic steady states: quantum one-dimensional lattice conductor and an open multibaker map (S. Tasaki). Dissipative transport in aperiodic solids is reviewed by invoking methods on noncommutative geometry. The anomalous Drude formula is derived. The occurence of quantum chaos is discussed together with its main consequences (J. Bellissard). The chapter is concluded by a survey of scaling limits of the N-body Schrödinger quantum dynamics, where classical evolution equations of irreversible statistical mechanics (linear Boltzmann, Hartree, Vlasov) emerge "out of quantum". In particular, a scaling limit of one body quantum dynamics with impurities (static random potential) and that of quantum dynamics with weakly coupled phonons are shown to yield the linear Boltzmann equation (L. Erdös). Various interrelations between chapters and individual lectures, plus a detailed fine-tuned information about the subject matter coverage of the volume, can be recovered by examining an extensive index.

  9. Advanced Concepts in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George

    2014-11-01

    Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.

  10. SIS (Superconductor-Insulator-Superconductor) Mixer Research.

    DTIC Science & Technology

    1988-02-01

    performed in that work was unique in that it employed the complete equations of the quantum theory of mixing in the three- frequency , low -intermediate...addition, these results cast doubt upon recent reports of low - noise single-junction 5IS rec, ivers which have extremely wide bandwidths. In conjunction...have significant and widespread implications for any active arrayed device which has a very low driving power. 3. High frequency : The third objective

  11. Remarks on Chern-Simons Invariants

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Mnëv, Pavel

    2010-02-01

    The perturbative Chern-Simons theory is studied in a finite-dimensional version or assuming that the propagator satisfies certain properties (as is the case, e.g., with the propagator defined by Axelrod and Singer). It turns out that the effective BV action is a function on cohomology (with shifted degrees) that solves the quantum master equation and is defined modulo certain canonical transformations that can be characterized completely. Out of it one obtains invariants.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir

    We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.

  13. Towards An Integrative Theory Of Consciousness: Part 2 (An Anthology Of Various Other Models)

    PubMed Central

    De Sousa, Avinash

    2013-01-01

    The study of consciousness has today moved beyond neurobiology and cognitive models. In the past few years, there has been a surge of research into various newer areas. The present article looks at the non-neurobiological and non-cognitive theories regarding this complex phenomenon, especially ones that self-psychology, self-theory, artificial intelligence, quantum physics, visual cognitive science and philosophy have to offer. Self-psychology has proposed the need to understand the self and its development, and the ramifications of the self for morality and empathy, which will help us understand consciousness better. There have been inroads made from the fields of computer science, machine technology and artificial intelligence, including robotics, into understanding the consciousness of these machines and their implications for human consciousness. These areas are explored. Visual cortex and emotional theories along with their implications are discussed. The phylogeny and evolution of the phenomenon of consciousness is also highlighted, with theories on the emergence of consciousness in fetal and neonatal life. Quantum physics and its insights into the mind, along with the implications of consciousness and physics and their interface are debated. The role of neurophilosophy to understand human consciousness, the functions of such a concept, embodiment, the dark side of consciousness, future research needs and limitations of a scientific theory of consciousness complete the review. The importance and salient features of each theory are discussed along with certain pitfalls, if present. A need for the integration of various theories to understand consciousness from a holistic perspective is stressed. PMID:23678242

  14. Towards an integrative theory of consciousness: part 2 (an anthology of various other models).

    PubMed

    De Sousa, Avinash

    2013-01-01

    The study of consciousness has today moved beyond neurobiology and cognitive models. In the past few years, there has been a surge of research into various newer areas. The present article looks at the non-neurobiological and non-cognitive theories regarding this complex phenomenon, especially ones that self-psychology, self-theory, artificial intelligence, quantum physics, visual cognitive science and philosophy have to offer. Self-psychology has proposed the need to understand the self and its development, and the ramifications of the self for morality and empathy, which will help us understand consciousness better. There have been inroads made from the fields of computer science, machine technology and artificial intelligence, including robotics, into understanding the consciousness of these machines and their implications for human consciousness. These areas are explored. Visual cortex and emotional theories along with their implications are discussed. The phylogeny and evolution of the phenomenon of consciousness is also highlighted, with theories on the emergence of consciousness in fetal and neonatal life. Quantum physics and its insights into the mind, along with the implications of consciousness and physics and their interface are debated. The role of neurophilosophy to understand human consciousness, the functions of such a concept, embodiment, the dark side of consciousness, future research needs and limitations of a scientific theory of consciousness complete the review. The importance and salient features of each theory are discussed along with certain pitfalls, if present. A need for the integration of various theories to understand consciousness from a holistic perspective is stressed.

  15. Much Polyphony but Little Harmony: Otto Sackur's Groping for a Quantum Theory of Gases

    NASA Astrophysics Data System (ADS)

    Badino, Massimiliano; Friedrich, Bretislav

    2013-09-01

    The endeavor of Otto Sackur (1880-1914) was driven, on the one hand, by his interest in Nernst's heat theorem, statistical mechanics, and the problem of chemical equilibrium and, on the other hand, by his goal to shed light on classical mechanics from the quantum vantage point. Inspired by the interplay between classical physics and quantum theory, Sackur chanced to expound his personal take on the role of the quantum in the changing landscape of physics in the turbulent 1910s. We tell the story of this enthusiastic practitioner of the old quantum theory and early contributor to quantum statistical mechanics, whose scientific ontogenesis provides a telling clue about the phylogeny of his contemporaries.

  16. Signs and stability in higher-derivative gravity

    NASA Astrophysics Data System (ADS)

    Narain, Gaurav

    2018-02-01

    Perturbatively renormalizable higher-derivative gravity in four space-time dimensions with arbitrary signs of couplings has been considered. Systematic analysis of the action with arbitrary signs of couplings in Lorentzian flat space-time for no-tachyons, fixes the signs. Feynman + i𝜖 prescription for these signs further grants necessary convergence in path-integral, suppressing the field modes with large action. This also leads to a sensible wick rotation where quantum computation can be performed. Running couplings for these sign of parameters make the massive tensor ghost innocuous leading to a stable and ghost-free renormalizable theory in four space-time dimensions. The theory has a transition point arising from renormalization group (RG) equations, where the coefficient of R2 diverges without affecting the perturbative quantum field theory (QFT). Redefining this coefficient gives a better handle over the theory around the transition point. The flow equations push the flow of parameters across the transition point. The flow beyond the transition point is analyzed using the one-loop RG equations which shows that the regime beyond the transition point has unphysical properties: there are tachyons, the path-integral loses positive definiteness, Newton’s constant G becomes negative and large, and perturbative parameters become large. These shortcomings indicate a lack of completeness beyond the transition point and need of a nonperturbative treatment of the theory beyond the transition point.

  17. Advanced tests of nonlocality with entangled photons

    NASA Astrophysics Data System (ADS)

    Christensen, Bradley G.

    In 1935, Einstein, Podolsky, and Rosen questioned whether quantum mechanics can be complete, as it seemingly does not adhere to a natural view of reality: local realism, which is the notion that an event can only be influenced by events in the past lightcone, and can only influence events in the future lightcone. This question sparked a philosophical debate that lasted for three decades, until John Bell demonstrated that not only are quantum mechanics and local realism philosophically incompatible, but they predict different statistical results for an appropriate set of measurements on entangled particles, which changed the debate to a scientific discussion. Since then, Bell inequality violations have occurred in a plethora of systems, hinting that local realism is indeed wrong. However, every experiment had imperfections that complicated the interpretation -- the experiments had so-called "loopholes" which allowed local realism to persist. In this manuscript, we present our work in using optimized sources of entangled photons to perform the long-sought loophole-free Bell test. This landmark experiment invalidates local realism to the best that science will allow. Beyond answering questions on reality, these Bell tests have a important application in generating provably-secure private random numbers, which then can be used as a seed for cryptographic applications. Not only do we demonstrate that nonlocality must exist, but we begin an experimental exploration in an attempt to understand and quantify this nonlocality. We do so by considering all theories that obey no-signaling (or relativistic causality). In our experiments, we observe the counter-intuitive feature of measuring more nonlocality with less entangled states. We also place a bound on the predictive power of any theory that obeys relativistic causality. And finally, we are able to measure quantum correlations only attainable through complex qubits. This work merely begins to probe the quantum boundary, beginning a journey that may someday find evidence of a beyond-quantum theory.

  18. Speakable and Unspeakable in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bell, J. S.; Aspect, Introduction by Alain

    2004-06-01

    List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.

  19. Hybrid quantum-classical modeling of quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  20. Scale-invariant instantons and the complete lifetime of the standard model

    NASA Astrophysics Data System (ADS)

    Andreassen, Anders; Frost, William; Schwartz, Matthew D.

    2018-03-01

    In a classically scale-invariant quantum field theory, tunneling rates are infrared divergent due to the existence of instantons of any size. While one expects such divergences to be resolved by quantum effects, it has been unclear how higher-loop corrections can resolve a problem appearing already at one loop. With a careful power counting, we uncover a series of loop contributions that dominate over the one-loop result and sum all the necessary terms. We also clarify previously incomplete treatments of related issues pertaining to global symmetries, gauge fixing, and finite mass effects. In addition, we produce exact closed-form solutions for the functional determinants over scalars, fermions, and vector bosons around the scale-invariant bounce, demonstrating manifest gauge invariance in the vector case. With these problems solved, we produce the first complete calculation of the lifetime of our Universe: 1 0139 years . With 95% confidence, we expect our Universe to last more than 1 058 years . The uncertainty is part experimental uncertainty on the top quark mass and on αs and part theory uncertainty from electroweak threshold corrections. Using our complete result, we provide phase diagrams in the mt/mh and the mt/αs planes, with uncertainty bands. To rule out absolute stability to 3 σ confidence, the uncertainty on the top quark pole mass would have to be pushed below 250 MeV or the uncertainty on αs(mZ) pushed below 0.00025.

  1. Causal fermion systems as a candidate for a unified physical theory

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Kleiner, Johannes

    2015-07-01

    The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction.

  2. Physics Meets Philosophy at the Planck Scale

    NASA Astrophysics Data System (ADS)

    Callender, Craig; Huggett, Nick

    2001-04-01

    Preface; 1. Introduction Craig Callendar and Nick Huggett; Part I. Theories of Quantum Gravity and their Philosophical Dimensions: 2. Spacetime and the philosophical challenge of quantum gravity Jeremy Butterfield and Christopher Isham; 3. Naive quantum gravity Steven Weinstein; 4. Quantum spacetime: what do we know? Carlo Rovelli; Part II. Strings: 5. Reflections on the fate of spacetime Edward Witten; 6. A philosopher looks at string theory Robert Weingard; 7. Black holes, dumb holes, and entropy William G. Unruh; Part III. Topological Quantum Field Theory: 8. Higher-dimensional algebra and Planck scale physics John C. Baez; Part IV. Quantum Gravity and the Interpretation of General Relativity: 9. On general covariance and best matching Julian B. Barbour; 10. Pre-Socratic quantum gravity Gordon Belot and John Earman; 11. The origin of the spacetime metric: Bell's 'Lorentzian Pedagogy' and its significance in general relativity Harvey R. Brown and Oliver Pooley; Part IV. Quantum Gravity and the Interpretation of Quantum Mechanics: 12. Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity Sheldon Goldstein and Stefan Teufel; 13. On gravity's role in quantum state reduction Roger Penrose; 14. Why the quantum must yield to gravity Joy Christian.

  3. Exactly solvable quantum cosmologies from two killing field reductions of general relativity

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Smolin, Lee

    1989-11-01

    An exact and, possibly, general solution to the quantum constraints is given for the sector of general relativity containing cosmological solutions with two space-like, commuting, Killing fields. The dynamics of these model space-times, which are known as Gowdy space-times, is formulated in terms of Ashtekar's new variables. The quantization is done by using the recently introduced self-dual and loop representations. On the classical phase space we find four explicit physical observables, or constants of motion, which generate a GL(2) symmetry group on the space of solutions. In the loop representations we find that a complete description of the physical state space, consisting of the simultaneous solutions to all of the constraints, is given in terms of the equivalence classes, under Diff(S1), of a pair of densities on the circle. These play the same role that the link classes play in the loop representation solution to the full 3+1 theory. An infinite dimensional algebra of physical observables is found on the physical state space, which is a GL(2) loop algebra. In addition, by freezing the local degrees of freedom of the model, we find a finite dimensional quantum system which describes a set of degenerate quantum cosmologies on T3 in which the length of one of the S1's has gone to zero, while the area of the remaining S1×S1 is quantized in units of the Planck area. The quantum kinematics of this sector of the model is identical to that of a one-plaquette SU(2) lattice gauge theory.

  4. Quantum processes: A Whiteheadian interpretation of quantum field theory

    NASA Astrophysics Data System (ADS)

    Bain, Jonathan

    Quantum processes: A Whiteheadian interpretation of quantum field theory is an ambitious and thought-provoking exercise in physics and metaphysics, combining an erudite study of the very complex metaphysics of A.N. Whitehead with a well-informed discussion of contemporary issues in the philosophy of algebraic quantum field theory. Hättich's overall goal is to construct an interpretation of quantum field theory. He does this by translating key concepts in Whitehead's metaphysics into the language of algebraic quantum field theory. In brief, this Hättich-Whitehead (H-W, hereafter) interpretation takes "actual occasions" as the fundamental ontological entities of quantum field theory. An actual occasion is the result of two types of processes: a "transition process" in which a set of initial possibly-possessed properties for the occasion (in the form of "eternal objects") is localized to a space-time region; and a "concrescence process" in which a subset of these initial possibly-possessed properties is selected and actualized to produce the occasion. Essential to these processes is the "underlying activity", which conditions the way in which properties are initially selected and subsequently actualized. In short, under the H-W interpretation of quantum field theory, an initial set of possibly-possessed eternal objects is represented by a Boolean sublattice of the lattice of projection operators determined by a von Neumann algebra R (O) associated with a region O of Minkowski space-time, and the underlying activity is represented by a state on R (O) obtained by conditionalizing off of the vacuum state. The details associated with the H-W interpretation involve imposing constraints on these representations motivated by principles found in Whitehead's metaphysics. These details are spelled out in the three sections of the book. The first section is a summary and critique of Whitehead's metaphysics, the second section introduces the formalism of algebraic quantum field theory, and the third section consists of a translation between the first two sections. This review will concentrate on the first and third sections, with an eye on making explicit the essential characteristics of the H-W interpretation.

  5. Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hong; Davidson, Ronald C.; Burby, Joshua W.

    2014-04-08

    The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a Uð2Þ element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Othermore » components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.« less

  6. Disciplines, models, and computers: the path to computational quantum chemistry.

    PubMed

    Lenhard, Johannes

    2014-12-01

    Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.

  7. Geometric descriptions of entangled states by auxiliary varieties

    NASA Astrophysics Data System (ADS)

    Holweck, Frédéric; Luque, Jean-Gabriel; Thibon, Jean-Yves

    2012-10-01

    The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 × 2 × (n + 1), for n ⩾ 1, quantum systems and a new description with the 2 × 3 × 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.

  8. Electronic-structure and quantum dynamical study of the photochromism of the aromatic Schiff base salicylideneaniline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Sanchez, Juan Manuel; Gelabert, Ricard; Moreno, Miquel

    2008-12-07

    The ultrafast proton transfer dynamics of salicylideneaniline has been theoretically analyzed in the ground and first singlet excited electronic states using density functional theory (DFT) and time-dependent DFT calculations, which predict a ({pi},{pi}*) barrierless excited state intramolecular proton transfer (ESIPT). In addition to this, the photochemistry of salicylideneaniline is experimentally known to present fast depopulation processes of the photoexcited species before and after the proton transfer reaction. Such processes are explained by means of conical intersections between the ground and first singlet ({pi},{pi}*) excited electronic states. The electronic energies obtained by the time-dependent density functional theory formalism have been fittedmore » to a monodimensional potential energy surface in order to perform quantum dynamics study of the processes. Our results show that the proton transfer and deactivation of the photoexcited species before the ESIPT processes are completed within 49.6 and 37.7 fs, respectively, which is in remarkable good agreement with experiments.« less

  9. Quantum spectral curve for arbitrary state/operator in AdS5/CFT4

    NASA Astrophysics Data System (ADS)

    Gromov, Nikolay; Kazakov, Vladimir; Leurent, Sébastien; Volin, Dmytro

    2015-09-01

    We give a derivation of quantum spectral curve (QSC) — a finite set of Riemann-Hilbert equations for exact spectrum of planar N=4 SYM theory proposed in our recent paper Phys. Rev. Lett. 112 (2014). We also generalize this construction to all local single trace operators of the theory, in contrast to the TBA-like approaches worked out only for a limited class of states. We reveal a rich algebraic and analytic structure of the QSC in terms of a so called Q-system — a finite set of Baxter-like Q-functions. This new point of view on the finite size spectral problem is shown to be completely compatible, though in a far from trivial way, with already known exact equations (analytic Y-system/TBA, or FiNLIE). We use the knowledge of this underlying Q-system to demonstrate how the classical finite gap solutions and the asymptotic Bethe ansatz emerge from our formalism in appropriate limits.

  10. Black hole evaporation: information loss but no paradox

    NASA Astrophysics Data System (ADS)

    Modak, Sujoy K.; Ortíz, Leonardo; Peña, Igor; Sudarsky, Daniel

    2015-10-01

    The process of black hole evaporation resulting from the Hawking effect has generated an intense controversy regarding its potential conflict with quantum mechanics' unitary evolution. A recent set of works by a collaboration involving one of us, have revised the controversy with the aims of, on one hand, clarifying some conceptual issues surrounding it, and, at the same time, arguing that collapse theories have the potential to offer a satisfactory resolution of the so-called paradox. Here we show an explicit calculation supporting this claim using a simplified model of black hole creation and evaporation, known as the CGHS model, together with a dynamical reduction theory, known as CSL, and some speculative, but seemingly natural ideas about the role of quantum gravity in connection with the would-be singularity. This work represents a specific realization of general ideas first discussed in Okon and Sudarsky (Found Phys 44:114-143, 2014 and a complete and detailed analysis of a model first considered in Modak et al. (Phys Rev D 91(12):124009, 2015.

  11. Book Review:

    NASA Astrophysics Data System (ADS)

    Folacci, Antoine; Jensen, Bruce

    2003-12-01

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. One knows in advance that this book can only lead to a genuine enrichment of the literature. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983 [1, 2], have had a great impact on quantum field theory. All this makes the reader keen to pick up his new work and a deeper reading confirms the reviewer's initial enthusiasm. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field (unless of course we are talking about references [1] and [2], of which the book under review is an extension and reworking). This uniqueness applies to both the scientific content and the way the ideas are presented. A quick description of this book and a brief explanation of its title should convince the reader of the book's unique quality. For DeWitt, a central concept of field theory is that of `space of histories'. For a field varphii defined on a given spacetime M, the set of all varphii(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the `space of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold [3]. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field theory. This is the so-called global approach to quantum field theory where time does not play any particular role, and quantization is then naturally realized covariantly using tools such as the Peierls bracket (a covariant generalization of Poisson bracket), the Schwinger variational principle and Feynman sums over histories. However, it should be noted that the boycott of canonical methods by DeWitt is not total: when he judges they genuinely illuminate the physics of a problem, he does not hesitate to descend from the global point of view and to use them. In a few words, we have in fact described the research program initiated by DeWitt forty years ago, which has progressively evolved in order to take into account the latest development of gauge theories. While the Les Houches Lectures of 1963 [1] were mainly concentrated on the formal structure and the quantization of Yang--Mills and gravitational fields, the present book also deals with more general gauge theories including those with open gauge algebras and structure functions, and therefore supergravity theories. More precisely, the book, more than a thousand pages in length, consists of eight parts and is completed by six appendices where certain technical aspects are singled out. An enormous variety of topics is covered, including the invariance transformations of the action functional, the Batalin--Vilkovisky formalism, Green's functions, the Peierls bracket, conservation laws, the theory of measurement, the Everett (or many worlds) interpretation of quantum mechanics, decoherence, the Schwinger variational principle and Feynman functional integrals, the heat kernel, aspects of quantization for linear systems in stationary and non-stationary backgrounds, the S-matrix, the background field method, the effective action and the Vilkovisky--DeWitt formalism, the quantization of gauge theories without ghosts, anomalies, black holes and Hawking radiation, renormalization, and more. It should be noted that DeWitt's book is rather difficult to read because of its great breadth. From the start he is faithful to his own view of field theory by developing a powerful formalism which permits him to discuss broad general features common to all field theories. He demands a considerable effort from the reader to penetrate his formalism, and a reading of Appendix~A which presents the basics of super-analysis is a prerequisite. To keep the reader on course, DeWitt offers a series of exercises on applications of global formalism in Part 8, nearly 200 pages worth. The exercises are to be worked in parallel with reading the text, starting from the beginning. It should be noted that these exercises previously appeared in references [1], [2] and [3], but here they have been worked out in some detail by the author. Before concluding, some criticisms. DeWitt has anticipated some criticism himself in the Preface, where he warns the reader that `this book is in no sense a reference book on quantum field theory and its application to particle physics. The selection of topics is idiosyncratic.' But the reviewers should add a few more remarks: (1) There are very few references. Of course, this is because the work is largely original. Even where the work of other researchers is presented, it has mostly been transformed by the DeWittian point of view. (2) There are very few diagrams, which sometimes hinders the exposition. In summary, in our opinion, this is one of the best books dealing with quantum field theory existing today. It will be of great interest for graduate and postgraduate students as well as workers in the domains of quantum field theory in flat and in curved spacetime and string theories. But we believe that the reader must have previously studied standard textbooks on quantum field theory and general relativity. Even with this preparation, it is by no means an easy book to read. However, the reward is to be able to share the deep and unique vision of the quantum theory of fields and its formalism by one of its greatest expositors. References [1] DeWitt B S 1965 Dynamical Theory of Groups and Fields (Les Houches Lectures 1963) (New York: Gordon and Breach) [2] DeWitt B S 1984 Relativity, Groups and Topology II (Les Houches Lectures 1983) ed R Stora and B S DeWitt (Amsterdam: North-Holland) [3] DeWitt B S 1994 Supermanifolds (Cambridge: Cambridge University Press)

  12. Different Levels of the Meaning of Wave-Particle Duality and a Suspensive Perspective on the Interpretation of Quantum Theory

    ERIC Educational Resources Information Center

    Cheong, Yong Wook; Song, Jinwoong

    2014-01-01

    There is no consensus on the genuine meaning of wave-particle duality and the interpretation of quantum theory. How can we teach duality and quantum theory despite this lack of consensus? This study attempts to answer this question. This research argues that reality issues are at the core of both the endless debates concerning the interpretation…

  13. Generalized Galilean transformations and the measurement problem in the entropic dynamics approach to quantum theory

    NASA Astrophysics Data System (ADS)

    Johnson, David T.

    Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in quantum theory. Furthermore, we show that the Born rule need not be postulated, but can be derived in EQD. Finally, we show how the wave function can be updated by the ME method as the phase is constructed purely in terms of probabilities.

  14. Proposed experiment to test fundamentally binary theories

    NASA Astrophysics Data System (ADS)

    Kleinmann, Matthias; Vértesi, Tamás; Cabello, Adán

    2017-09-01

    Fundamentally binary theories are nonsignaling theories in which measurements of many outcomes are constructed by selecting from binary measurements. They constitute a sensible alternative to quantum theory and have never been directly falsified by any experiment. Here we show that fundamentally binary theories are experimentally testable with current technology. For that, we identify a feasible Bell-type experiment on pairs of entangled qutrits. In addition, we prove that, for any n , quantum n -ary correlations are not fundamentally (n -1 ) -ary. For that, we introduce a family of inequalities that hold for fundamentally (n -1 ) -ary theories but are violated by quantum n -ary correlations.

  15. Quantum kinetic theory of the filamentation instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; Haas, F.

    2011-07-15

    The quantum electromagnetic dielectric tensor for a multi-species plasma is re-derived from the gauge-invariant Wigner-Maxwell system and presented under a form very similar to the classical one. The resulting expression is then applied to a quantum kinetic theory of the electromagnetic filamentation instability. Comparison is made with the quantum fluid theory including a Bohm pressure term and with the cold classical plasma result. A number of analytical expressions are derived for the cutoff wave vector, the largest growth rate, and the most unstable wave vector.

  16. Typical Local Measurements in Generalized Probabilistic Theories: Emergence of Quantum Bipartite Correlations

    NASA Astrophysics Data System (ADS)

    Kleinmann, Matthias; Osborne, Tobias J.; Scholz, Volkher B.; Werner, Albert H.

    2013-01-01

    What singles out quantum mechanics as the fundamental theory of nature? Here we study local measurements in generalized probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalization of Dvoretzky’s theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.

  17. Efficient Basis Formulation for (1 +1 )-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    NASA Astrophysics Data System (ADS)

    Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan

    2017-10-01

    We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  18. Security of a single-state semi-quantum key distribution protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qiu, Daowen; Mateus, Paulo

    2018-06-01

    Semi-quantum key distribution protocols are allowed to set up a secure secret key between two users. Compared with their full quantum counterparts, one of the two users is restricted to perform some "classical" or "semi-quantum" operations, which potentially makes them easily realizable by using less quantum resource. However, the semi-quantum key distribution protocols mainly rely on a two-way quantum channel. The eavesdropper has two opportunities to intercept the quantum states transmitted in the quantum communication stage. It may allow the eavesdropper to get more information and make the security analysis more complicated. In the past ten years, many semi-quantum key distribution protocols have been proposed and proved to be robust. However, there are few works concerning their unconditional security. It is doubted that how secure the semi-quantum ones are and how much noise they can tolerate to establish a secure secret key. In this paper, we prove the unconditional security of a single-state semi-quantum key distribution protocol proposed by Zou et al. (Phys Rev A 79:052312, 2009). We present a complete proof from information theory aspect by deriving a lower bound of the protocol's key rate in the asymptotic scenario. Using this bound, we figure out an error threshold value such that for all error rates that are less than this threshold value, the secure secret key can be established between the legitimate users definitely. Otherwise, the users should abort the protocol. We make an illustration of the protocol under the circumstance that the reverse quantum channel is a depolarizing one with parameter q. Additionally, we compare the error threshold value with some full quantum protocols and several existing semi-quantum ones whose unconditional security proofs have been provided recently.

  19. New Communitarianism Movements and Complex Utopia

    NASA Astrophysics Data System (ADS)

    Akdeniz, K. Gediz

    Simulation is a rapidly growing field in social sciences. Simulation theories in social sciences are considered to critique social dynamics and societies which are mostly simulated by media, cinema, TV, internet, etc. Recently we (Akdeniz KG, Disorder in complex human system. In: Fritzsch H, Phua KK (eds) Singapore: proceedings of the conference in Honour of Murray Gell-Mann's 80th birthday quantum mechanics, elementary particles, quantum cosmology and complexity. World Scientific Publishing, Hackensack, pp 630-637, 2009) purposed a simulation theory as a critique theory to investigate disordered human behaviors. In this theory, "Disorder-Sensitive Human Behaviors (DSHB) Simulation Theory", chaotic awareness is also considered as a reality principle in simulation world to complete Baudrillard Simulation Theory (Baudrillard J, Simulacra and simulation. University of Michigan Press, Michigan, 1995). We call the emergence of this reality as zuhur which is different than simulacra. More recently we proposed the complex utopia (Akdeniz KG, From Simulacra to Zuhur in Complex Utopia. 11th International Conference of the Utopian Studies Society, Lublin, 2010; Akdeniz KG, The new identities of the physicist: cyborg-physicist and post-physicist. In: Proceedings of the conference of world international conference of technology and education, Beirut, 2010) to critique the complex societies and communities in simulation world. The challenging agents in the complex utopia are both simulacra and zuhur. In this paper we would like to review "What is the complex utopia?" And we shall critique some global events in framework of complex utopia with particular examples in socio-economic and political contexts.

  20. Measurements and mathematical formalism of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Slavnov, D. A.

    2007-03-01

    A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.

  1. Space-time topology and quantum gravity.

    NASA Astrophysics Data System (ADS)

    Friedman, J. L.

    Characteristic features are discussed of a theory of quantum gravity that allows space-time with a non-Euclidean topology. The review begins with a summary of the manifolds that can occur as classical vacuum space-times and as space-times with positive energy. Local structures with non-Euclidean topology - topological geons - collapse, and one may conjecture that in asymptotically flat space-times non-Euclidean topology is hiden from view. In the quantum theory, large diffeos can act nontrivially on the space of states, leading to state vectors that transform as representations of the corresponding symmetry group π0(Diff). In particular, in a quantum theory that, at energies E < EPlanck, is a theory of the metric alone, there appear to be ground states with half-integral spin, and in higher-dimensional gravity, with the kinematical quantum numbers of fundamental fermions.

  2. Connection dynamics of a gauge theory of gravity coupled with matter

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Banerjee, Kinjal; Ma, Yongge

    2013-10-01

    We study the coupling of the gravitational action, which is a linear combination of the Hilbert-Palatini term and the quadratic torsion term, to the action of Dirac fermions. The system possesses local Poincare invariance and hence belongs to Poincare gauge theory (PGT) with matter. The complete Hamiltonian analysis of the theory is carried out without gauge fixing but under certain ansatz on the coupling parameters, which leads to a consistent connection dynamics with second-class constraints and torsion. After performing a partial gauge fixing, all second-class constraints can be solved, and a SU(2)-connection dynamical formalism of the theory can be obtained. Hence, the techniques of loop quantum gravity (LQG) can be employed to quantize this PGT with non-zero torsion. Moreover, the Barbero-Immirzi parameter in LQG acquires its physical meaning as the coupling parameter between the Hilbert-Palatini term and the quadratic torsion term in this gauge theory of gravity.

  3. Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers.

    PubMed

    Yuen-Zhou, Joel; Aspuru-Guzik, Alán

    2011-04-07

    Is it possible to infer the time evolving quantum state of a multichromophoric system from a sequence of two-dimensional electronic spectra (2D-ES) as a function of waiting time? Here we provide a positive answer for a tractable model system: a coupled dimer. After exhaustively enumerating the Liouville pathways associated to each peak in the 2D-ES, we argue that by judiciously combining the information from a series of experiments varying the polarization and frequency components of the pulses, detailed information at the amplitude level about the input and output quantum states at the waiting time can be obtained. This possibility yields a quantum process tomography (QPT) of the single-exciton manifold, which completely characterizes the open quantum system dynamics through the reconstruction of the process matrix. In this manuscript, we present the general theory as well as specific and numerical results for a homodimer, for which we prove that signals stemming from coherence to population transfer and vice versa vanish upon isotropic averaging, therefore, only allowing for a partial QPT in such case. However, this fact simplifies the spectra, and it follows that only two polarization controlled experiments (and no pulse-shaping requirements) suffice to yield the elements of the process matrix, which survive under isotropic averaging. Redundancies in the 2D-ES amplitudes allow for the angle between the two site transition dipole moments to be self-consistently obtained, hence simultaneously yielding structural and dynamical information of the dimer. Model calculations are presented, as well as an error analysis in terms of the angle between the dipoles and peak amplitude extraction. In the second article accompanying this study, we numerically exemplify the theory for heterodimers and carry out a detailed error analysis for such case. This investigation reveals an exciting quantum information processing (QIP) approach to spectroscopic experiments of excitonic systems, and hence, bridges an important gap between theoretical studies on excitation energy transfer from the QIP standpoint and experimental methods to study such systems in the chemical physics community.

  4. The world, entanglement, and God: Quantum theory and the Christian doctrine of creation

    NASA Astrophysics Data System (ADS)

    Wegter-McNelly, Kirk Matthew

    The adequacy of classical physics' mechanistic worldview is called into question by an "entanglement" interpretation of quantum nonlocal correlations, which suggests a relational holistic account of physical processes. Albert Einstein rejected the possibility of such behavior, but recent experiments confirm its existence in the world. The concept of entanglement provides an especially fruitful locus for appropriating quantum insights into theological reflection because it bridges two otherwise antithetical interpretations of the theory, the indeterministic "Copenhagen" version developed by Niels Bohr and the deterministic version later discovered by David Bohm. Entanglement also offers an opportunity to explore what Robert Russell has called the method of "mutual interaction," by which theology can play a legitimate heuristic role in scientific research programs even as it responds to scientific discoveries. The concept of entanglement offers rich possibilities for developing a theological program within which to situate an ecological, trinitarian understanding of creation. In particular, a theological appropriation of entanglement can strengthen an ecological approach such as that of Sallie McFague, who argues powerfully for the importance of naturalistic metaphors in crafting a cosmic vision of wholeness but whose use of "organic" metaphors does not entirely eliminate the specter of mechanism. Entanglement can also strengthen a trinitarian approach such as one finds in Wolfhart Pannenberg, whose relational understanding of creation remains mechanistic insofar as it depends primarily on classical rather than quantum field theory. According to the theological approach developed in this dissertation, a trinitarian relational God creates a universe that is entangled with itself and, as a result of the incarnation, also with God. Additionally, this theological perspective leads to the scientific prediction that no complete solution to the quantum measurement problem beyond "decoherence" will be forthcoming. Decoherence accounts for the emergence of real separation at the macroscopic level in a world that remains holistically interconnected at the quantum level, and it does so in a manner that is consonant with an ecological, trinitarian perspective. Three appendices provide: a derivation and discussion of John Bell's inequality, a summary of several key entanglement experiments, and a general time line of related scientific developments.

  5. Theories of Matter, Space and Time, Volume 2; Quantum theories

    NASA Astrophysics Data System (ADS)

    Evans, N.; King, S. F.

    2018-06-01

    This book and its prequel Theories of Matter Space and Time: Classical Theories grew out of courses that we have both taught as part of the undergraduate degree program in Physics at Southampton University, UK. Our goal was to guide the full MPhys undergraduate cohort through some of the trickier areas of theoretical physics that we expect our undergraduates to master. Here we teach the student to understand first quantized relativistic quantum theories. We first quickly review the basics of quantum mechanics which should be familiar to the reader from a prior course. Then we will link the Schrödinger equation to the principle of least action introducing Feynman's path integral methods. Next, we present the relativistic wave equations of Klein, Gordon and Dirac. Finally, we convert Maxwell's equations of electromagnetism to a wave equation for photons and make contact with quantum electrodynamics (QED) at a first quantized level. Between the two volumes we hope to move a student's understanding from their prior courses to a place where they are ready, beyond, to embark on graduate level courses on quantum field theory.

  6. [Discussion on quantum entanglement theory and acupuncture].

    PubMed

    Wang, Jun; Wu, Bin; Chen, Sheng

    2017-11-12

    The quantum entanglement is a new discovery of modern physics and has drawn a widely attention in the world. After learning the quantum entanglement, the authors have found that many characteristics of quantum are reflected in TCM, acupuncture theory and clinical practice. For example, the quantum entanglement phenomenon is mutually verified with the holism, yinyang doctrine, the theory of primary, secondary, root and knot in TCM, etc. It can be applied to interpret the clinical situations which is difficult to be explained in clinical practice, such as the instant effect of acupuncture, multi-point stimulation in one disorder and the points with specific effects. On the basis of the discovery above, the quantum entanglement theory achieved the mutual treatment among the relatives in acupuncture clinical practice and the therapeutic effects were significant. The results suggest that the coupling relationship in quantum entanglement presents between the diseases and the acupoints in the direct relative. The authors believe that the discovery in this study contributes to the exploration on the approaches to the acupuncture treatment in clinical practice and enrich the ideas on the disease prevention.

  7. Implementation of quantum game theory simulations using Python

    NASA Astrophysics Data System (ADS)

    Madrid S., A.

    2013-05-01

    This paper provides some examples about quantum games simulated in Python's programming language. The quantum games have been developed with the Sympy Python library, which permits solving quantum problems in a symbolic form. The application of these methods of quantum mechanics to game theory gives us more possibility to achieve results not possible before. To illustrate the results of these methods, in particular, there have been simulated the quantum battle of the sexes, the prisoner's dilemma and card games. These solutions are able to exceed the classic bottle neck and obtain optimal quantum strategies. In this form, python demonstrated that is possible to do more advanced and complicated quantum games algorithms.

  8. Dirac Cellular Automaton from Split-step Quantum Walk

    PubMed Central

    Mallick, Arindam; Chandrashekar, C. M.

    2016-01-01

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory. PMID:27184159

  9. The Quantum Logical Challenge: Peter Mittelstaedt's Contributions to Logic and Philosophy of Science

    NASA Astrophysics Data System (ADS)

    Beltrametti, E.; Dalla Chiara, M. L.; Giuntini, R.

    2017-12-01

    Peter Mittelstaedt's contributions to quantum logic and to the foundational problems of quantum theory have significantly realized the most authentic spirit of the International Quantum Structures Association: an original research about hard technical problems, which are often "entangled" with the emergence of important changes in our general world-conceptions. During a time where both the logical and the physical community often showed a skeptical attitude towards Birkhoff and von Neumann's quantum logic, Mittelstaedt brought into light the deeply innovating features of a quantum logical thinking that allows us to overcome some strong and unrealistic assumptions of classical logical arguments. Later on his intense research on the unsharp approach to quantum theory and to the measurement problem stimulated the increasing interest for unsharp forms of quantum logic, creating a fruitful interaction between the work of quantum logicians and of many-valued logicians. Mittelstaedt's general views about quantum logic and quantum theory seem to be inspired by a conjecture that is today more and more confirmed: there is something universal in the quantum theoretic formalism that goes beyond the limits of microphysics, giving rise to interesting applications to a number of different fields.

  10. Concepts and their dynamics: a quantum-theoretic modeling of human thought.

    PubMed

    Aerts, Diederik; Gabora, Liane; Sozzo, Sandro

    2013-10-01

    We analyze different aspects of our quantum modeling approach of human concepts and, more specifically, focus on the quantum effects of contextuality, interference, entanglement, and emergence, illustrating how each of them makes its appearance in specific situations of the dynamics of human concepts and their combinations. We point out the relation of our approach, which is based on an ontology of a concept as an entity in a state changing under influence of a context, with the main traditional concept theories, that is, prototype theory, exemplar theory, and theory theory. We ponder about the question why quantum theory performs so well in its modeling of human concepts, and we shed light on this question by analyzing the role of complex amplitudes, showing how they allow to describe interference in the statistics of measurement outcomes, while in the traditional theories statistics of outcomes originates in classical probability weights, without the possibility of interference. The relevance of complex numbers, the appearance of entanglement, and the role of Fock space in explaining contextual emergence, all as unique features of the quantum modeling, are explicitly revealed in this article by analyzing human concepts and their dynamics. © 2013 Cognitive Science Society, Inc.

  11. Correcting quantum errors with entanglement.

    PubMed

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  12. Quantum critical dynamics for a prototype class of insulating antiferromagnets

    NASA Astrophysics Data System (ADS)

    Wu, Jianda; Yang, Wang; Wu, Congjun; Si, Qimiao

    2018-06-01

    Quantum criticality is a fundamental organizing principle for studying strongly correlated systems. Nevertheless, understanding quantum critical dynamics at nonzero temperatures is a major challenge of condensed-matter physics due to the intricate interplay between quantum and thermal fluctuations. The recent experiments with the quantum spin dimer material TlCuCl3 provide an unprecedented opportunity to test the theories of quantum criticality. We investigate the nonzero-temperature quantum critical spin dynamics by employing an effective O (N ) field theory. The on-shell mass and the damping rate of quantum critical spin excitations as functions of temperature are calculated based on the renormalized coupling strength and are in excellent agreement with experiment observations. Their T lnT dependence is predicted to be dominant at very low temperatures, which will be tested in future experiments. Our work provides confidence that quantum criticality as a theoretical framework, which is being considered in so many different contexts of condensed-matter physics and beyond, is indeed grounded in materials and experiments accurately. It is also expected to motivate further experimental investigations on the applicability of the field theory to related quantum critical systems.

  13. Time and the foundations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Pashby, Thomas

    Quantum mechanics has provided philosophers of science with many counterintuitive insights and interpretive puzzles, but little has been written about the role that time plays in the theory. One reason for this is the celebrated argument of Wolfgang Pauli against the inclusion of time as an observable of the theory, which has been seen as a demonstration that time may only enter the theory as a classical parameter. Against this orthodoxy I argue that there are good reasons to expect certain kinds of `time observables' to find a representation within quantum theory, including clock operators (which provide the means to measure the passage of time) and event time operators, which provide predictions for the time at which a particular event occurs, such as the appearance of a dot on a luminescent screen. I contend that these time operators deserve full status as observables of the theory, and on re ection provide a uniquely compelling reason to expand the set of observables allowed by the standard formalism of quantum mechanics. In addition, I provide a novel association of event time operators with conditional probabilities, and propose a temporally extended form of quantum theory to better accommodate the time of an event as an observable quantity. This leads to a proposal to interpret quantum theory within an event ontology, inspired by Bertrand Russell's Analysis of Matter. On this basis I mount a defense of Russell's relational theory of time against a recent attack.

  14. Physics Without Physics. The Power of Information-theoretical Principles

    NASA Astrophysics Data System (ADS)

    D'Ariano, Giacomo Mauro

    2017-01-01

    David Finkelstein was very fond of the new information-theoretic paradigm of physics advocated by John Archibald Wheeler and Richard Feynman. Only recently, however, the paradigm has concretely shown its full power, with the derivation of quantum theory (Chiribella et al., Phys. Rev. A 84:012311, 2011; D'Ariano et al., 2017) and of free quantum field theory (D'Ariano and Perinotti, Phys. Rev. A 90:062106, 2014; Bisio et al., Phys. Rev. A 88:032301, 2013; Bisio et al., Ann. Phys. 354:244, 2015; Bisio et al., Ann. Phys. 368:177, 2016) from informational principles. The paradigm has opened for the first time the possibility of avoiding physical primitives in the axioms of the physical theory, allowing a re-foundation of the whole physics over logically solid grounds. In addition to such methodological value, the new information-theoretic derivation of quantum field theory is particularly interesting for establishing a theoretical framework for quantum gravity, with the idea of obtaining gravity itself as emergent from the quantum information processing, as also suggested by the role played by information in the holographic principle (Susskind, J. Math. Phys. 36:6377, 1995; Bousso, Rev. Mod. Phys. 74:825, 2002). In this paper I review how free quantum field theory is derived without using mechanical primitives, including space-time, special relativity, Hamiltonians, and quantization rules. The theory is simply provided by the simplest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the three following simple principles: homogeneity, locality, and isotropy. The inherent discrete nature of the informational derivation leads to an extension of quantum field theory in terms of a quantum cellular automata and quantum walks. A simple heuristic argument sets the scale to the Planck one, and the currently observed regime where discreteness is not visible is the so-called "relativistic regime" of small wavevectors, which holds for all energies ever tested (and even much larger), where the usual free quantum field theory is perfectly recovered. In the present quantum discrete theory Einstein relativity principle can be restated without using space-time in terms of invariance of the eigenvalue equation of the automaton/walk under change of representations. Distortions of the Poincaré group emerge at the Planck scale, whereas special relativity is perfectly recovered in the relativistic regime. Discreteness, on the other hand, has some plus compared to the continuum theory: 1) it contains it as a special regime; 2) it leads to some additional features with GR flavor: the existence of an upper bound for the particle mass (with physical interpretation as the Planck mass), and a global De Sitter invariance; 3) it provides its own physical standards for space, time, and mass within a purely mathematical adimensional context. The paper ends with the future perspectives of this project, and with an Appendix containing biographic notes about my friendship with David Finkelstein, to whom this paper is dedicated.

  15. General response formula and application to topological insulator in quantum open system.

    PubMed

    Shen, H Z; Qin, M; Shao, X Q; Yi, X X

    2015-11-01

    It is well-known that the quantum linear response theory is based on the first-order perturbation theory for a system in thermal equilibrium. Hence, this theory breaks down when the system is in a steady state far from thermal equilibrium and the response up to higher order in perturbation is not negligible. In this paper, we develop a nonlinear response theory for such quantum open system. We first formulate this theory in terms of general susceptibility, after which we apply it to the derivation of Hall conductance for open system at finite temperature. As an example, the Hall conductance of the two-band model is derived. Then we calculate the Hall conductance for a two-dimensional ferromagnetic electron gas and a two-dimensional lattice model. The calculations show that the transition points of topological phase are robust against the environment. Our results provide a promising platform for the coherent manipulation of the nonlinear response in quantum open system, which has potential applications for quantum information processing and statistical physics.

  16. A quantum theory account of order effects and conjunction fallacies in political judgments.

    PubMed

    Yearsley, James M; Trueblood, Jennifer S

    2017-09-06

    Are our everyday judgments about the world around us normative? Decades of research in the judgment and decision-making literature suggest the answer is no. If people's judgments do not follow normative rules, then what rules if any do they follow? Quantum probability theory is a promising new approach to modeling human behavior that is at odds with normative, classical rules. One key advantage of using quantum theory is that it explains multiple types of judgment errors using the same basic machinery, unifying what have previously been thought of as disparate phenomena. In this article, we test predictions from quantum theory related to the co-occurrence of two classic judgment phenomena, order effects and conjunction fallacies, using judgments about real-world events (related to the U.S. presidential primaries). We also show that our data obeys two a priori and parameter free constraints derived from quantum theory. Further, we examine two factors that moderate the effects, cognitive thinking style (as measured by the Cognitive Reflection Test) and political ideology.

  17. Twenty-Five Centuries of Quantum Physics: From Pythagoras to Us, and from Subjectivism to Realism

    NASA Astrophysics Data System (ADS)

    Bunge, Mario

    Three main theses are proposed. The first is that the idea of a quantum or minimal unit is not peculiar to quantum theory, since it already occurs in the classical theories of elasticity and electrolysis. Second, the peculiarities of the objects described by quantum theory are the following: their basic laws are probabilistic; some of their properties, such as position and energy, are blunt rather than sharp; two particles that were once together continue to be associated even after becoming spatially separated; and the vacuum has physical properties, so that it is a kind of matter. Third, the orthodox or Copenhagen interpretation of the theory is false, and may conveniently be replaced with a realist (though not classicist) interpretation. Heisenberg's inequality, Schrödinger's cat and Zeno's quantum paradox are discussed in the light of the two rival interpretations. It is also shown that the experiments that falsified Bell's inequality do not refute realism but the classicism inherent in hidden variables theories.

  18. Free-time and fixed end-point optimal control theory in dissipative media: application to entanglement generation and maintenance.

    PubMed

    Mishima, K; Yamashita, K

    2009-07-07

    We develop monotonically convergent free-time and fixed end-point optimal control theory (OCT) in the density-matrix representation to deal with quantum systems showing dissipation. Our theory is more general and flexible for tailoring optimal laser pulses in order to control quantum dynamics with dissipation than the conventional fixed-time and fixed end-point OCT in that the optimal temporal duration of laser pulses can also be optimized exactly. To show the usefulness of our theory, it is applied to the generation and maintenance of the vibrational entanglement of carbon monoxide adsorbed on the copper (100) surface, CO/Cu(100). We demonstrate the numerical results and clarify how to combat vibrational decoherence as much as possible by the tailored shapes of the optimal laser pulses. It is expected that our theory will be general enough to be applied to a variety of dissipative quantum dynamics systems because the decoherence is one of the quantum phenomena sensitive to the temporal duration of the quantum dynamics.

  19. Can different quantum state vectors correspond to the same physical state? An experimental test

    NASA Astrophysics Data System (ADS)

    Nigg, Daniel; Monz, Thomas; Schindler, Philipp; Martinez, Esteban A.; Hennrich, Markus; Blatt, Rainer; Pusey, Matthew F.; Rudolph, Terry; Barrett, Jonathan

    2016-01-01

    A century after the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular quantum state vector, does this represent directly a physical property of the system, or is the state vector merely a summary of the physicist’s information about the system? Assume that a state vector corresponds to a probability distribution over possible values of an unknown physical or ‘ontic’ state. Then, a recent no-go theorem shows that distinct state vectors with overlapping distributions lead to predictions different from quantum theory. We report an experimental test of these predictions using trapped ions. Within experimental error, the results confirm quantum theory. We analyse which kinds of models are ruled out.

  20. Probing noncommutative theories with quantum optical experiments

    NASA Astrophysics Data System (ADS)

    Dey, Sanjib; Bhat, Anha; Momeni, Davood; Faizal, Mir; Ali, Ahmed Farag; Dey, Tarun Kumar; Rehman, Atikur

    2017-11-01

    One of the major difficulties of modern science underlies at the unification of general relativity and quantum mechanics. Different approaches towards such theory have been proposed. Noncommutative theories serve as the root of almost all such approaches. However, the identification of the appropriate passage to quantum gravity is suffering from the inadequacy of experimental techniques. It is beyond our ability to test the effects of quantum gravity thorough the available scattering experiments, as it is unattainable to probe such high energy scale at which the effects of quantum gravity appear. Here we propose an elegant alternative scheme to test such theories by detecting the deformations emerging from the noncommutative structures. Our protocol relies on the novelty of an opto-mechanical experimental setup where the information of the noncommutative oscillator is exchanged via the interaction with an optical pulse inside an optical cavity. We also demonstrate that our proposal is within the reach of current technology and, thus, it could uncover a feasible route towards the realization of quantum gravitational phenomena thorough a simple table-top experiment.

  1. Self-consistent projection operator theory in nonlinear quantum optical systems: A case study on degenerate optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Degenfeld-Schonburg, Peter; Navarrete-Benlloch, Carlos; Hartmann, Michael J.

    2015-05-01

    Nonlinear quantum optical systems are of paramount relevance for modern quantum technologies, as well as for the study of dissipative phase transitions. Their nonlinear nature makes their theoretical study very challenging and hence they have always served as great motivation to develop new techniques for the analysis of open quantum systems. We apply the recently developed self-consistent projection operator theory to the degenerate optical parametric oscillator to exemplify its general applicability to quantum optical systems. We show that this theory provides an efficient method to calculate the full quantum state of each mode with a high degree of accuracy, even at the critical point. It is equally successful in describing both the stationary limit and the dynamics, including regions of the parameter space where the numerical integration of the full problem is significantly less efficient. We further develop a Gaussian approach consistent with our theory, which yields sensibly better results than the previous Gaussian methods developed for this system, most notably standard linearization techniques.

  2. Quantum trilogy: discrete Toda, Y-system and chaos

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    2018-02-01

    We discuss a discretization of the quantum Toda field theory associated with a semisimple finite-dimensional Lie algebra or a tamely-laced infinite-dimensional Kac-Moody algebra G, generalizing the previous construction of discrete quantum Liouville theory for the case G  =  A 1. The model is defined on a discrete two-dimensional lattice, whose spatial direction is of length L. In addition we also find a ‘discretized extra dimension’ whose width is given by the rank r of G, which decompactifies in the large r limit. For the case of G  =  A N or AN-1(1) , we find a symmetry exchanging L and N under appropriate spatial boundary conditions. The dynamical time evolution rule of the model is quantizations of the so-called Y-system, and the theory can be well described by the quantum cluster algebra. We discuss possible implications for recent discussions of quantum chaos, and comment on the relation with the quantum higher Teichmüller theory of type A N .

  3. Emergence of a classical Universe from quantum gravity and cosmology.

    PubMed

    Kiefer, Claus

    2012-09-28

    I describe how we can understand the classical appearance of our world from a universal quantum theory. The essential ingredient is the process of decoherence. I start with a general discussion in ordinary quantum theory and then turn to quantum gravity and quantum cosmology. There is a whole hierarchy of classicality from the global gravitational field to the fluctuations in the cosmic microwave background, which serve as the seeds for the structure in the Universe.

  4. Quantum walks with an anisotropic coin II: scattering theory

    NASA Astrophysics Data System (ADS)

    Richard, S.; Suzuki, A.; de Aldecoa, R. Tiedra

    2018-05-01

    We perform the scattering analysis of the evolution operator of quantum walks with an anisotropic coin, and we prove a weak limit theorem for their asymptotic velocity. The quantum walks that we consider include one-defect models, two-phase quantum walks, and topological phase quantum walks as special cases. Our analysis is based on an abstract framework for the scattering theory of unitary operators in a two-Hilbert spaces setting, which is of independent interest.

  5. A quantum extension to inspection game

    NASA Astrophysics Data System (ADS)

    Deng, Xinyang; Deng, Yong; Liu, Qi; Chang, Shuhua; Wang, Zhen

    2016-06-01

    Quantum game theory is a new interdisciplinary field between game theory and system engineering research. In this paper, we extend the classical inspection game into a quantum game version by quantizing the strategy space and importing entanglement between players. Our results show that the quantum inspection game has various Nash equilibria depending on the initial quantum state of the game. It is also shown that quantization can respectively help each player to increase his own payoff, yet fails to bring Pareto improvement for the collective payoff in the quantum inspection game.

  6. Gaussian effective potential: Quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    1984-10-01

    We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.

  7. Two Perspectives of the 2D Unit Area Quantum Sphere and Their Equivalence

    NASA Astrophysics Data System (ADS)

    Aru, Juhan; Huang, Yichao; Sun, Xin

    2017-11-01

    2D Liouville quantum gravity (LQG) is used as a toy model for 4D quantum gravity and is the theory of world-sheet in string theory. Recently there has been growing interest in studying LQG in the realm of probability theory: David et al. (Liouville quantum gravity on the Riemann sphere. Commun Math Phys 342(3):869-907, 2016) and Duplantier et al. (Liouville quantum gravity as a mating of trees. ArXiv e-prints: arXiv:1409.7055, 2014) both provide a probabilistic perspective of the LQG on the 2D sphere. In particular, in each of them one may find a definition of the so-called unit area quantum sphere. We examine these two perspectives and prove their equivalence by showing that the respective unit area quantum spheres are the same. This is done by considering a unified limiting procedure for defining both objects.

  8. Computation in generalised probabilisitic theories

    NASA Astrophysics Data System (ADS)

    Lee, Ciarán M.; Barrett, Jonathan

    2015-08-01

    From the general difficulty of simulating quantum systems using classical systems, and in particular the existence of an efficient quantum algorithm for factoring, it is likely that quantum computation is intrinsically more powerful than classical computation. At present, the best upper bound known for the power of quantum computation is that {{BQP}}\\subseteq {{AWPP}}, where {{AWPP}} is a classical complexity class (known to be included in {{PP}}, hence {{PSPACE}}). This work investigates limits on computational power that are imposed by simple physical, or information theoretic, principles. To this end, we define a circuit-based model of computation in a class of operationally-defined theories more general than quantum theory, and ask: what is the minimal set of physical assumptions under which the above inclusions still hold? We show that given only an assumption of tomographic locality (roughly, that multipartite states and transformations can be characterized by local measurements), efficient computations are contained in {{AWPP}}. This inclusion still holds even without assuming a basic notion of causality (where the notion is, roughly, that probabilities for outcomes cannot depend on future measurement choices). Following Aaronson, we extend the computational model by allowing post-selection on measurement outcomes. Aaronson showed that the corresponding quantum complexity class, {{PostBQP}}, is equal to {{PP}}. Given only the assumption of tomographic locality, the inclusion in {{PP}} still holds for post-selected computation in general theories. Hence in a world with post-selection, quantum theory is optimal for computation in the space of all operational theories. We then consider whether one can obtain relativized complexity results for general theories. It is not obvious how to define a sensible notion of a computational oracle in the general framework that reduces to the standard notion in the quantum case. Nevertheless, it is possible to define computation relative to a ‘classical oracle’. Then, we show there exists a classical oracle relative to which efficient computation in any theory satisfying the causality assumption does not include {{NP}}.

  9. Renormalizable, asymptotically free gravity without ghosts or tachyons

    NASA Astrophysics Data System (ADS)

    Einhorn, Martin B.; Jones, D. R. Timothy

    2017-12-01

    We analyze scale invariant quadratic quantum gravity incorporating nonminimal coupling to a multiplet of scalar fields in a gauge theory, with particular emphasis on the consequences for its interpretation resulting from a transformation from the Jordan frame to the Einstein frame. The result is the natural emergence of a de Sitter space solution which, depending the gauge theory and region of parameter space chosen, can be free of ghosts and tachyons, and completely asymptotically free. In the case of an SO(10) model, we present a detailed account of the spontaneous symmetry breaking, and we calculate the leading (two-loop) contribution to the dilaton mass.

  10. Theory of spin-conserving excitation of the N-V(-) center in diamond.

    PubMed

    Gali, Adam; Janzén, Erik; Deák, Péter; Kresse, Georg; Kaxiras, Efthimios

    2009-10-30

    The negatively charged nitrogen-vacancy defect in diamond is an important atomic-scale structure that can be used as a qubit in quantum computing and as a marker in biomedical applications. Its usefulness relies on the ability to optically excite electrons between well-defined gap states, which requires a clear and detailed understanding of the relevant states and excitation processes. Here we show that by using hybrid density-functional-theory calculations in a large supercell we can reproduce the zero-phonon line and the Stokes and anti-Stokes shifts, yielding a complete picture of the spin-conserving excitation of this defect.

  11. Quantum Drama: Transforming Consciousness through Narrative and Roleplay.

    ERIC Educational Resources Information Center

    Martin-Smith, Alistair

    1995-01-01

    Suggests that, through practical understanding of quantum theory, teachers can develop new role-play and narrative strategies, arguing that describing fictional worlds through narrative and exploring virtual worlds through role play can transform children's consciousness. Applies the quantum theory metaphor to drama, learning, and self-image.…

  12. The Reality of the Quantum World.

    ERIC Educational Resources Information Center

    Shimony, Abner

    1988-01-01

    Describes experiments used during recent history to explain the nature of the quantum world. Explains the essential elements of experiments using polarized light and magnetic flux. Illustrates differences between classical theories in physics and quantum theory. Shows how experiments in the microscopic and macroscopic world appear to support…

  13. Inconclusive quantum measurements and decisions under uncertainty

    NASA Astrophysics Data System (ADS)

    Yukalov, Vyacheslav; Sornette, Didier

    2016-04-01

    We give a mathematical definition for the notion of inconclusive quantum measurements. In physics, such measurements occur at intermediate stages of a complex measurement procedure, with the final measurement result being operationally testable. Since the mathematical structure of Quantum Decision Theory has been developed in analogy with the theory of quantum measurements, the inconclusive quantum measurements correspond, in Quantum Decision Theory, to intermediate stages of decision making in the process of taking decisions under uncertainty. The general form of the quantum probability for a composite event is the sum of a utility factor, describing a rational evaluation of the considered prospect, and of an attraction factor, characterizing irrational, subconscious attitudes of the decision maker. Despite the involved irrationality, the probability of prospects can be evaluated. This is equivalent to the possibility of calculating quantum probabilities without specifying hidden variables. We formulate a general way of evaluation, based on the use of non-informative priors. As an example, we suggest the explanation of the decoy effect. Our quantitative predictions are in very good agreement with experimental data.

  14. Consistent Quantum Theory

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  15. Entanglement from topology in Chern-Simons theory

    NASA Astrophysics Data System (ADS)

    Salton, Grant; Swingle, Brian; Walter, Michael

    2017-05-01

    The way in which geometry encodes entanglement is a topic of much recent interest in quantum many-body physics and the AdS/CFT duality. This relation is particularly pronounced in the case of topological quantum field theories, where topology alone determines the quantum states of the theory. In this work, we study the set of quantum states that can be prepared by the Euclidean path integral in three-dimensional Chern-Simons theory. Specifically, we consider arbitrary three-manifolds with a fixed number of torus boundaries in both Abelian U (1 ) and non-Abelian S O (3 ) Chern-Simons theory. For the Abelian theory, we find that the states that can be prepared coincide precisely with the set of stabilizer states from quantum information theory. This constrains the multipartite entanglement present in this theory, but it also reveals that stabilizer states can be described by topology. In particular, we find an explicit expression for the entanglement entropy of a many-torus subsystem using only a single replica, as well as a concrete formula for the number of GHZ states that can be distilled from a tripartite state prepared through path integration. For the non-Abelian theory, we find a notion of "state universality," namely that any state can be prepared to an arbitrarily good approximation. The manifolds we consider can also be viewed as toy models of multiboundary wormholes in AdS/CFT.

  16. How far do EPR-Bell experiments constrain physical collapse theories?

    NASA Astrophysics Data System (ADS)

    Leggett, A. J.

    2007-03-01

    A class of theories alternative to standard quantum mechanics, including that of Ghirardi et al ('GRWP'), postulates that when a quantum superposition becomes amplified to the point that the superposed states reach some level of 'macroscopic distinctness', then some non-quantum-mechanical principle comes into play and realizes one or other of the two macroscopic outcomes. Without specializing to any particular theory of this class, I ask how far such 'macrorealistic' theories are generically constrained, if one insists that the physical reduction process should respect Einstein locality, by the results of existing EPR-Bell experiments. I conclude that provided one does not demand that the prescription for reduction respects Lorentz invariance, at least some theories of this type, while in principle inevitably making some predictions that conflict with those of standard quantum mechanics, are not refuted by any existing experiment.

  17. Operational formulation of time reversal in quantum theory

    NASA Astrophysics Data System (ADS)

    Oreshkov, Ognyan; Cerf, Nicolas J.

    2015-10-01

    The symmetry of quantum theory under time reversal has long been a subject of controversy because the transition probabilities given by Born’s rule do not apply backward in time. Here, we resolve this problem within a rigorous operational probabilistic framework. We argue that reconciling time reversal with the probabilistic rules of the theory requires a notion of operation that permits realizations through both pre- and post-selection. We develop the generalized formulation of quantum theory that stems from this approach and give a precise definition of time-reversal symmetry, emphasizing a previously overlooked distinction between states and effects. We prove an analogue of Wigner’s theorem, which characterizes all allowed symmetry transformations in this operationally time-symmetric quantum theory. Remarkably, we find larger classes of symmetry transformations than previously assumed, suggesting a possible direction in the search for extensions of known physics.

  18. Coherence and measurement in quantum thermodynamics

    PubMed Central

    Kammerlander, P.; Anders, J.

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  19. Coherence and measurement in quantum thermodynamics.

    PubMed

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  20. Coherence and measurement in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  1. Quantum Matching Theory (with new complexity-theoretic, combinatorial and topical insights on the nature of the quantum entanglement)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurvits, L.

    2002-01-01

    Classical matching theory can be defined in terms of matrices with nonnegative entries. The notion of Positive operator, central in Quantum Theory, is a natural generalization of matrices with non-negative entries. Based on this point of view, we introduce a definition of perfect Quantum (operator) matching. We show that the new notion inherits many 'classical' properties, but not all of them. This new notion goes somewhere beyound matroids. For separable bipartite quantum states this new notion coinsides with the full rank property of the intersection of two corresponding geometric matroids. In the classical situation, permanents are naturally associated with perfectsmore » matchings. We introduce an analog of permanents for positive operators, called Quantum Permanent and show how this generalization of the permanent is related to the Quantum Entanglement. Besides many other things, Quantum Permanents provide new rational inequalities necessary for the separability of bipartite quantum states. Using Quantum Permanents, we give deterministic poly-time algorithm to solve Hidden Matroids Intersection Problem and indicate some 'classical' complexity difficulties associated with the Quantum Entanglement. Finally, we prove that the weak membership problem for the convex set of separable bipartite density matrices is NP-HARD.« less

  2. Quantum Bio-Informatics II From Quantum Information to Bio-Informatics

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori

    2009-02-01

    The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems / H. Kamimura -- Massive collection of full-length complementary DNA clones and microarray analyses: keys to rice transcriptome analysis / S. Kikuchi -- Changes of influenza A(H5) viruses by means of entropic chaos degree / K. Sato and M. Ohya -- Basics of genome sequence analysis in bioinformatics - its fundamental ideas and problems / T. Suzuki and S. Miyazaki -- A basic introduction to gene expression studies using microarray expression data analysis / D. Wanke and J. Kilian -- Integrating biological perspectives: a quantum leap for microarray expression analysis / D. Wanke ... [et al.].

  3. A modified Lax-Phillips scattering theory for quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, Y., E-mail: ystrauss@cs.bgu.ac.il

    The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for themore » quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.« less

  4. Cryptology Management in a Quantum Computing Era

    DTIC Science & Technology

    2012-06-01

    HOW IT WORKS (BLACK BOX) ...........................7 1. Schrodinger’s Cat Theory ......................7 2. Multiverse Theory...the macroscopic scale of an animal through the mechanism of a hammer activated by the decay of the radioactive substance. 2. Multiverse Theory...quantum mechanics is the multiverse theory. This theory states that at every decision, the universe splits into multiple copies; the number of copies is

  5. Noncommutative gauge theory for Poisson manifolds

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter; Wess, Julius

    2000-09-01

    A noncommutative gauge theory is associated to every Abelian gauge theory on a Poisson manifold. The semi-classical and full quantum version of the map from the ordinary gauge theory to the noncommutative gauge theory (Seiberg-Witten map) is given explicitly to all orders for any Poisson manifold in the Abelian case. In the quantum case the construction is based on Kontsevich's formality theorem.

  6. Interpretation of Quantum Nonlocality by Conformal Quantum Geometrodynamics

    NASA Astrophysics Data System (ADS)

    De Martini, Francesco; Santamato, Enrico

    2014-10-01

    The principles and methods of the Conformal Quantum Geometrodynamics (CQG) based on the Weyl's differential geometry are presented. The theory applied to the case of the relativistic single quantum spin leads a novel and unconventional derivation of Dirac's equation. The further extension of the theory to the case of two spins in EPR entangled state and to the related violation of Bell's inequalities leads, by a non relativistic analysis, to an insightful resolution of the enigma implied by quantum nonlocality.

  7. Fundamental Quantum 1/F Noise in Ultrasmall Semiconductor Devices and Their Optimal Design Principles

    DTIC Science & Technology

    1988-05-31

    Hooge parameter. 2. 1 / f Noise of the Recombination Current Generated in the Depletion Region The quantum i/ f ...theory. There are two forms of quantum 11f noise . In the first place C~ and Cn4 p n to quantum 1 / f noise theory. This would yield Hooge parameters S...Fundamental Quantum 1 / f Noise in Ultrasmall S~ iodcrD’vesadOtm.Dsgn P in. 12. PERSONAL AUTHOR(S) Handel, Peter H. (Princioal investiaat r) 13a. TYPE

  8. Non-Abelian Bosonization and Fractional Quantum Hall Transitions

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    A fully satisfying theoretical description for the quantum phase transition between fractional quantum Hall plateaus remains an outstanding problem. Experiments indicate scaling exponents that are not readily obtained in conventional theories. Using insights from duality, we describe a class of quantum critical effective theories that produce qualitatively realistic scaling exponents for the transition. We discuss the implications of our results for the physically-relevant interactions controlling this broad class of quantum critical behavior. Supported by National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650441.

  9. Quantum interference of electrically generated single photons from a quantum dot.

    PubMed

    Patel, Raj B; Bennett, Anthony J; Cooper, Ken; Atkinson, Paola; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J

    2010-07-09

    Quantum interference lies at the foundation of many protocols for scalable quantum computing and communication with linear optics. To observe these effects the light source must emit photons that are indistinguishable. From a technological standpoint, it would be beneficial to have electrical control over the emission. Here we report of an electrically driven single-photon source emitting indistinguishable photons. The device consists of a layer of InAs quantum dots embedded in the intrinsic region of a p-i-n diode. Indistinguishability of consecutive photons is tested in a two-photon interference experiment under two modes of operation, continuous and pulsed current injection. We also present a complete theory based on the interference of photons with a Lorentzian spectrum which we compare to both our continuous wave and pulsed experiments. In the former case, a visibility was measured limited only by the timing resolution of our detection system. In the case of pulsed injection, we employ a two-pulse voltage sequence which suppresses multi-photon emission and allows us to carry out temporal filtering of photons which have undergone dephasing. The characteristic Hong-Ou-Mandel 'dip' is measured, resulting in a visibility of 64 +/- 4%.

  10. Fractional excitations in the square-lattice quantum antiferromagnet

    DOE PAGES

    Dalla Piazza, Bastien; Mourigal, M.; Christensen, N. B.; ...

    2014-12-15

    Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). Here, we use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experimentsmore » reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Lastly, our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.« less

  11. Ab initio relaxation times and time-dependent Hamiltonians within the steepest-entropy-ascent quantum thermodynamic framework

    NASA Astrophysics Data System (ADS)

    Kim, Ilki; von Spakovsky, Michael R.

    2017-08-01

    Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided, leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important element of this framework and one that had as of yet not been uniquely determined as an integral part of the theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as a special case and makes the description provided by the SEAQT framework more robust at the fundamental level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions. The developments presented lead to the conclusion that this framework is not just an alternative approach to thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental but as of yet not completely resolved questions of thermodynamics.

  12. Quantum Electrodynamics: Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    The Standard Model of particle physics is composed of several theories that are added together. The most precise component theory is the theory of quantum electrodynamics or QED. In this video, Fermilab’s Dr. Don Lincoln explains how theoretical QED calculations can be done. This video links to other videos, giving the viewer a deep understanding of the process.

  13. Quantum space foam and string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekrasov, Nikita

    2006-11-03

    String theory is originally defined as a modification of the Feynman rules in perturbation theory. It contains gravity in its perturbative spectrum. We review some recent developments which demonstrate that nonperturbative effects of quantum gravity, such as spacetime foam, arise in string theory as well.Prepared for the proceedings of 'Albert Einstein Century Conference' , Paris July 2005.

  14. Correlation between UV and IR cutoffs in quantum field theory and large extra dimensions

    NASA Astrophysics Data System (ADS)

    Cortés, J. L.

    1999-04-01

    A recently conjectured relationship between UV and IR cutoffs in an effective field theory without quantum gravity is generalized in the presence of large extra dimensions. Estimates for the corrections to the usual calculation of observables within quantum field theory are used to put very stringent limits, in some cases, on the characteristic scale of the additional compactified dimensions. Implications for the cosmological constant problem are also discussed.

  15. Open or closed? Dirac, Heisenberg, and the relation between classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bokulich, Alisa

    2004-09-01

    This paper describes a long-standing, though little known, debate between Dirac and Heisenberg over the nature of scientific methodology, theory change, and intertheoretic relations. Following Heisenberg's terminology, their disagreements can be summarized as a debate over whether the classical and quantum theories are "open" or "closed." A close examination of this debate sheds new light on the philosophical views of two of the great founders of quantum theory.

  16. No-Hypersignaling Principle

    NASA Astrophysics Data System (ADS)

    Dall'Arno, Michele; Brandsen, Sarah; Tosini, Alessandro; Buscemi, Francesco; Vedral, Vlatko

    2017-07-01

    A paramount topic in quantum foundations, rooted in the study of the Einstein-Podolsky-Rosen (EPR) paradox and Bell inequalities, is that of characterizing quantum theory in terms of the spacelike correlations it allows. Here, we show that to focus only on spacelike correlations is not enough: we explicitly construct a toy model theory that, while not contradicting classical and quantum theories at the level of spacelike correlations, still displays an anomalous behavior in its timelike correlations. We call this anomaly, quantified in terms of a specific communication game, the "hypersignaling" phenomena. We hence conclude that the "principle of quantumness," if it exists, cannot be found in spacelike correlations alone: nontrivial constraints need to be imposed also on timelike correlations, in order to exclude hypersignaling theories.

  17. No-Hypersignaling Principle.

    PubMed

    Dall'Arno, Michele; Brandsen, Sarah; Tosini, Alessandro; Buscemi, Francesco; Vedral, Vlatko

    2017-07-14

    A paramount topic in quantum foundations, rooted in the study of the Einstein-Podolsky-Rosen (EPR) paradox and Bell inequalities, is that of characterizing quantum theory in terms of the spacelike correlations it allows. Here, we show that to focus only on spacelike correlations is not enough: we explicitly construct a toy model theory that, while not contradicting classical and quantum theories at the level of spacelike correlations, still displays an anomalous behavior in its timelike correlations. We call this anomaly, quantified in terms of a specific communication game, the "hypersignaling" phenomena. We hence conclude that the "principle of quantumness," if it exists, cannot be found in spacelike correlations alone: nontrivial constraints need to be imposed also on timelike correlations, in order to exclude hypersignaling theories.

  18. A complete characterization of all-versus-nothing arguments for stabilizer states.

    PubMed

    Abramsky, Samson; Barbosa, Rui Soares; Carù, Giovanni; Perdrix, Simon

    2017-11-13

    An important class of contextuality arguments in quantum foundations are the all-versus-nothing (AvN) proofs, generalizing a construction originally due to Mermin. We present a general formulation of AvN arguments and a complete characterization of all such arguments that arise from stabilizer states. We show that every AvN argument for an n -qubit stabilizer state can be reduced to an AvN proof for a three-qubit state that is local Clifford-equivalent to the tripartite Greenberger-Horne-Zeilinger state. This is achieved through a combinatorial characterization of AvN arguments, the AvN triple theorem, whose proof makes use of the theory of graph states. This result enables the development of a computational method to generate all the AvN arguments in [Formula: see text] on n -qubit stabilizer states. We also present new insights into the stabilizer formalism and its connections with logic.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  19. Can we close the Bohr-Einstein quantum debate?

    NASA Astrophysics Data System (ADS)

    Kupczynski, Marian

    2017-10-01

    Recent experiments allow one to conclude that Bell-type inequalities are indeed violated; thus, it is important to understand what this means and how we can explain the existence of strong correlations between outcomes of distant measurements. Do we have to announce that Einstein was wrong, Nature is non-local and non-local correlations are produced due to quantum magic and emerge, somehow, from outside space-time? Fortunately, such conclusions are unfounded because, if supplementary parameters describing measuring instruments are correctly incorporated in a theoretical model, then Bell-type inequalities may not be proved. We construct a simple probabilistic model allowing these correlations to be explained in a locally causal way. In our model, measurement outcomes are neither predetermined nor produced in an irreducibly random way. We explain why, contrary to the general belief, the introduction of setting-dependent parameters does not restrict experimenters' freedom of choice. Since the violation of Bell-type inequalities does not allow the conclusion that Nature is non-local and that quantum theory is complete, the Bohr-Einstein quantum debate may not be closed. The continuation of this debate is important not only for a better understanding of Nature but also for various practical applications of quantum phenomena. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  20. Predictions of the quantum landscape multiverse

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    2017-02-01

    The 2015 Planck data release has placed tight constraints on the class of inflationary models allowed. The current best fit region favors concave downwards inflationary potentials, since they produce a suppressed tensor to scalar index ratio r. Concave downward potentials have a negative curvature {{V}\\prime \\prime} , therefore a tachyonic mass square that drives fluctuations. Furthermore, their use can become problematic if the field rolls in a part of the potential away from the extrema, since the semiclassical approximation of quantum cosmology, used for deriving the most probable wavefunction of the universe from the landscape and for addressing the quantum to classical transition, breaks down away from the steepest descent region. We here propose a way of dealing with such potentials by inverting the metric signature and solving for the wavefunction of the universe in the Euclidean sector. This method allows us to extend our theory of the origin of the universe from a quantum multiverse, to a more general class of concave inflationary potentials where a straightforward application of the semiclassical approximation fails. The work here completes the derivation of modifications to the Newtonian potential and to the inflationary potential, which originate from the quantum entanglement of our universe with all others in the quantum landscape multiverse, leading to predictions of observational signatures for both types of inflationary models, concave and convex potentials.

  1. Can we close the Bohr-Einstein quantum debate?

    PubMed

    Kupczynski, Marian

    2017-11-13

    Recent experiments allow one to conclude that Bell-type inequalities are indeed violated; thus, it is important to understand what this means and how we can explain the existence of strong correlations between outcomes of distant measurements. Do we have to announce that Einstein was wrong, Nature is non-local and non-local correlations are produced due to quantum magic and emerge, somehow, from outside space-time? Fortunately, such conclusions are unfounded because, if supplementary parameters describing measuring instruments are correctly incorporated in a theoretical model, then Bell-type inequalities may not be proved. We construct a simple probabilistic model allowing these correlations to be explained in a locally causal way. In our model, measurement outcomes are neither predetermined nor produced in an irreducibly random way. We explain why, contrary to the general belief, the introduction of setting-dependent parameters does not restrict experimenters' freedom of choice. Since the violation of Bell-type inequalities does not allow the conclusion that Nature is non-local and that quantum theory is complete, the Bohr-Einstein quantum debate may not be closed. The continuation of this debate is important not only for a better understanding of Nature but also for various practical applications of quantum phenomena.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  2. Quantum Finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2007-09-01

    Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.

  3. A quantum Rosetta Stone for the information paradox

    NASA Astrophysics Data System (ADS)

    Pando Zayas, Leopoldo A.

    2014-11-01

    The black hole information loss paradox epitomizes the contradictions between general relativity and quantum field theory. The AdS/conformal field theory (CFT) correspondence provides an implicit answer for the information loss paradox in black hole physics by equating a gravity theory with an explicitly unitary field theory. Gravitational collapse in asymptotically AdS spacetimes is generically turbulent. Given that the mechanism to read out the information about correlations functions in the field theory side is plagued by deterministic classical chaos, we argue that quantum chaos might provide the true Rosetta Stone for answering the information paradox in the context of the AdS/CFT correspondence.

  4. Does an Emphasis on the Concept of Quantum States Enhance Students' Understanding of Quantum Mechanics?

    NASA Astrophysics Data System (ADS)

    Greca, Ileana Maria; Freire, Olival

    Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.

  5. Testing quantum gravity

    NASA Astrophysics Data System (ADS)

    Hansson, Johan; Francois, Stephane

    The search for a theory of quantum gravity is the most fundamental problem in all of theoretical physics, but there are as yet no experimental results at all to guide this endeavor. What seems to be needed is a pragmatic way to test if gravitation really occurs between quantum objects or not. In this paper, we suggest such a potential way out of this deadlock, utilizing macroscopic quantum systems; superfluid helium, gaseous Bose-Einstein condensates and “macroscopic” molecules. It turns out that true quantum gravity effects — here defined as observable gravitational interactions between truly quantum objects — could and should be seen (if they occur in nature) using existing technology. A falsification of the low-energy limit in the accessible weak-field regime would also falsify the full theory of quantum gravity, making it enter the realm of testable, potentially falsifiable theories, i.e. becoming real physics after almost a century of pure theorizing. If weak-field gravity between quantum objects is shown to be absent (in the regime where the approximation should apply), we know that gravity then is a strictly classical phenomenon absent at the quantum level.

  6. Computing quantum discord is NP-complete

    NASA Astrophysics Data System (ADS)

    Huang, Yichen

    2014-03-01

    We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable.

  7. A new way of visualising quantum fields

    NASA Astrophysics Data System (ADS)

    Linde, Helmut

    2018-05-01

    Quantum field theory (QFT) is the basis of some of the most fundamental theories in modern physics, but it is not an easy subject to learn. In the present article we intend to pave the way from quantum mechanics to QFT for students at early graduate or advanced undergraduate level. More specifically, we propose a new way of visualising the wave function Ψ of a linear chain of interacting quantum harmonic oscillators, which can be seen as a model for a simple one-dimensional bosonic quantum field. The main idea is to draw randomly chosen classical states of the chain superimposed upon each other and use a grey scale to represent the value of Ψ at the corresponding coordinates of the quantised system. Our goal is to establish a better intuitive understanding of the mathematical objects underlying quantum field theories and solid state physics.

  8. Bases for qudits from a nonstandard approach to SU(2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kibler, M. R., E-mail: kibler@ipnl.in2p3.fr

    2011-06-15

    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1 + p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1 + p mutually unbiased bases in C{sup p}. Repeated application of the formula can be used for generating mutually unbiased bases in C{sup d} with d = p{sup e} (e {>=} 2) a power of a prime integer. A connection between mutually unbiasedmore » bases and the unitary group SU(d) is briefly discussed in the case d = p{sup e}.« less

  9. Gaussian geometric discord in terms of Hellinger distance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suciu, Serban, E-mail: serban.suciu@theory.nipne.ro; Isar, Aurelian

    2015-12-07

    In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we address the quantification of general non-classical correlations in Gaussian states of continuous variable systems from a geometric perspective. We give a description of the Gaussian geometric discord by using the Hellinger distance as a measure for quantum correlations between two non-interacting non-resonant bosonic modes embedded in a thermal environment. We evaluate the Gaussian geometric discord by taking two-mode squeezed thermal states as initial states of the system and show that it has finite values between 0 and 1 and that it decays asymptoticallymore » to zero in time under the effect of the thermal bath.« less

  10. Quantum theory of laser-stimulated desorption

    NASA Technical Reports Server (NTRS)

    Slutsky, M. S.; George, T. F.

    1978-01-01

    A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.

  11. TOPICAL REVIEW: Knot theory and a physical state of quantum gravity

    NASA Astrophysics Data System (ADS)

    Liko, Tomás; Kauffman, Louis H.

    2006-02-01

    We discuss the theory of knots, and describe how knot invariants arise naturally in gravitational physics. The focus of this review is to delineate the relationship between knot theory and the loop representation of non-perturbative canonical quantum general relativity (loop quantum gravity). This leads naturally to a discussion of the Kodama wavefunction, a state which is conjectured to be the ground state of the gravitational field with positive cosmological constant. This review can serve as a self-contained introduction to loop quantum gravity and related areas. Our intent is to make the paper accessible to a wider audience that may include topologists, knot theorists, and other persons innocent of the physical background to this approach to quantum gravity.

  12. Quantum gambling using mesoscopic ring qubits

    NASA Astrophysics Data System (ADS)

    Pakuła, Ireneusz

    2007-07-01

    Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg {\\it et al} is one of the simplest yet still hard to implement applications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game.

  13. Classical, Quantum and Superquantum Correlations

    NASA Astrophysics Data System (ADS)

    Ghirardi, Giancarlo; Romano, Raffaele

    2012-04-01

    A deeper understanding of the origin of quantum correlations is expected to allow a better comprehension of the physical principles underlying quantum mechanics. In this work, we reconsider the possibility of devising "crypto-nonlocal theories", using a terminology firstly introduced by Leggett. We generalize and simplify the investigations on this subject which can be found in the literature. At their deeper level, such theories allow nonlocal correlations which can overcome the quantum limit.

  14. Classical, Quantum and Superquantum Correlations

    NASA Astrophysics Data System (ADS)

    Ghirardi, Giancarlo; Romano, Raffaele

    2013-01-01

    A deeper understanding of the origin of quantum correlations is expected to allow a better comprehension of the physical principles underlying quantum mechanics. In this work, we reconsider the possibility of devising "crypto-nonlocal theories", using a terminology firstly introduced by Leggett. We generalize and simplify the investigations on this subject which can be found in the literature. At their deeper level, such theories allow nonlocal correlations which can overcome the quantum limit.

  15. Hilbert space structure in quantum gravity: an algebraic perspective

    DOE PAGES

    Giddings, Steven B.

    2015-12-16

    If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less

  16. How is quantum information localized in gravity?

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Giddings, Steven B.

    2017-10-01

    A notion of localization of information within quantum subsystems plays a key role in describing the physics of quantum systems, and in particular is a prerequisite for discussing important concepts such as entanglement and information transfer. While subsystems can be readily defined for finite quantum systems and in local quantum field theory, a corresponding definition for gravitational systems is significantly complicated by the apparent nonlocality arising due to gauge invariance, enforced by the constraints. A related question is whether "soft hair" encodes otherwise localized information, and the question of such localization also remains an important puzzle for proposals that gravity emerges from another structure such as a boundary field theory as in AdS/CFT. This paper describes different approaches to defining local subsystem structure, and shows that at least classically, perturbative gravity has localized subsystems based on a split structure, generalizing the split property of quantum field theory. This, and related arguments for QED, give simple explanations that in these theories there is localized information that is independent of fields outside a region, in particular so that there is no role for "soft hair" in encoding such information. Additional subtleties appear in quantum gravity. We argue that localized information exists in perturbative quantum gravity in the presence of global symmetries, but that nonperturbative dynamics is likely tied to a modification of such structure.

  17. Hilbert space structure in quantum gravity: an algebraic perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giddings, Steven B.

    If quantum gravity respects the principles of quantum mechanics, suitably generalized, it may be that a more viable approach to the theory is through identifying the relevant quantum structures rather than by quantizing classical spacetime. Here, this viewpoint is supported by difficulties of such quantization, and by the apparent lack of a fundamental role for locality. In finite or discrete quantum systems, important structure is provided by tensor factorizations of the Hilbert space. However, even in local quantum field theory properties of the generic type III von Neumann algebras and of long range gauge fields indicate that factorization of themore » Hilbert space is problematic. Instead it is better to focus on the structure of the algebra of observables, and in particular on its subalgebras corresponding to regions. This paper suggests that study of analogous algebraic structure in gravity gives an important perspective on the nature of the quantum theory. Significant departures from the subalgebra structure of local quantum field theory are found, working in the correspondence limit of long-distances/low-energies. Particularly, there are obstacles to identifying commuting algebras of localized operators. In addition to suggesting important properties of the algebraic structure, this and related observations pose challenges to proposals of a fundamental role for entanglement.« less

  18. Tales from the prehistory of Quantum Gravity. Léon Rosenfeld's earliest contributions

    NASA Astrophysics Data System (ADS)

    Peruzzi, Giulio; Rocci, Alessio

    2018-05-01

    The main purpose of this paper is to analyse the earliest work of Léon Rosenfeld, one of the pioneers in the search of Quantum Gravity, the supposed theory unifying quantum theory and general relativity. We describe how and why Rosenfeld tried to face this problem in 1927, analysing the role of his mentors: Oskar Klein, Louis de Broglie and Théophile De Donder. Rosenfeld asked himself how quantum mechanics should concretely modify general relativity. In the context of a five-dimensional theory, Rosenfeld tried to construct a unifying framework for the gravitational and electromagnetic interaction and wave mechanics. Using a sort of "general relativistic quantum mechanics" Rosenfeld introduced a wave equation on a curved background. He investigated the metric created by what he called `quantum phenomena', represented by wave functions. Rosenfeld integrated Einstein equations in the weak field limit, with wave functions as source of the gravitational field. The author performed a sort of semi-classical approximation obtaining at the first order the Reissner-Nordström metric. We analyse how Rosenfeld's work is part of the history of Quantum Mechanics, because in his investigation Rosenfeld was guided by Bohr's correspondence principle. Finally we briefly discuss how his contribution is connected with the task of finding out which metric can be generated by a quantum field, a problem that quantum field theory on curved backgrounds will start to address 35 years later.

  19. Tales from the prehistory of Quantum Gravity - Léon Rosenfeld's earliest contributions

    NASA Astrophysics Data System (ADS)

    Peruzzi, Giulio; Rocci, Alessio

    2018-04-01

    The main purpose of this paper is to analyse the earliest work of Léon Rosenfeld, one of the pioneers in the search of Quantum Gravity, the supposed theory unifying quantum theory and general relativity. We describe how and why Rosenfeld tried to face this problem in 1927, analysing the role of his mentors: Oskar Klein, Louis de Broglie and Théophile De Donder. Rosenfeld asked himself how quantum mechanics should concretely modify general relativity. In the context of a five-dimensional theory, Rosenfeld tried to construct a unifying framework for the gravitational and electromagnetic interaction and wave mechanics. Using a sort of "general relativistic quantum mechanics" Rosenfeld introduced a wave equation on a curved background. He investigated the metric created by what he called `quantum phenomena', represented by wave functions. Rosenfeld integrated Einstein equations in the weak field limit, with wave functions as source of the gravitational field. The author performed a sort of semi-classical approximation obtaining at the first order the Reissner-Nordström metric. We analyse how Rosenfeld's work is part of the history of Quantum Mechanics, because in his investigation Rosenfeld was guided by Bohr's correspondence principle. Finally we briefly discuss how his contribution is connected with the task of finding out which metric can be generated by a quantum field, a problem that quantum field theory on curved backgrounds will start to address 35 years later.

  20. Viable inflationary evolution from Einstein frame loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Odintsov, S. D.; Oikonomou, V. K.

    2018-04-01

    In this work we construct a bottom-up reconstruction technique for loop quantum cosmology scalar-tensor theories, from the observational indices. Particularly, the reconstruction technique is based on fixing the functional form of the scalar-to-tensor ratio as a function of the e -foldings number. The aim of the technique is to realize viable inflationary scenarios, and the only assumption that must hold true in order for the reconstruction technique to work is that the dynamical evolution of the scalar field obeys the slow-roll conditions. We use two functional forms for the scalar-to-tensor ratio, one of which corresponds to a popular inflationary class of models, the α attractors. For the latter, we calculate the leading order behavior of the spectral index and we demonstrate that the resulting inflationary theory is viable and compatible with the latest Planck and BICEP2/Keck-Array data. In addition, we find the classical limit of the theory, and as we demonstrate, the loop quantum cosmology corrected theory and the classical theory are identical at leading order in the perturbative expansion quantified by the parameter ρc, which is the critical density of the quantum theory. Finally, by using the formalism of slow-roll scalar-tensor loop quantum cosmology, we investigate how several inflationary potentials can be realized by the quantum theory, and we calculate directly the slow-roll indices and the corresponding observational indices. In addition, the f (R ) gravity frame picture is presented.

  1. Invariant Connections in Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Hanusch, Maximilian

    2016-04-01

    Given a group {G}, and an abelian {C^*}-algebra {A}, the antihomomorphisms {Θ\\colon G→ {Aut}(A)} are in one-to-one with those left actions {Φ\\colon G× {Spec}(A)→ {Spec}(A)} whose translation maps {Φ_g} are continuous; whereby continuities of {Θ} and {Φ} turn out to be equivalent if {A} is unital. In particular, a left action {φ\\colon G × X→ X} can be uniquely extended to the spectrum of a {C^*}-subalgebra {A} of the bounded functions on {X} if {φ_g^*(A)subseteq A} holds for each {gin G}. In the present paper, we apply this to the framework of loop quantum gravity. We show that, on the level of the configuration spaces, quantization and reduction in general do not commute, i.e., that the symmetry-reduced quantum configuration space is (strictly) larger than the quantized configuration space of the reduced classical theory. Here, the quantum-reduced space has the advantage to be completely characterized by a simple algebraic relation, whereby the quantized reduced classical space is usually hard to compute.

  2. Linear maps preserving maximal deviation and the Jordan structure of quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamhalter, Jan

    2012-12-15

    In the algebraic approach to quantum theory, a quantum observable is given by an element of a Jordan algebra and a state of the system is modelled by a normalized positive functional on the underlying algebra. Maximal deviation of a quantum observable is the largest statistical deviation one can obtain in a particular state of the system. The main result of the paper shows that each linear bijective transformation between JBW algebras preserving maximal deviations is formed by a Jordan isomorphism or a minus Jordan isomorphism perturbed by a linear functional multiple of an identity. It shows that only onemore » numerical statistical characteristic has the power to determine the Jordan algebraic structure completely. As a consequence, we obtain that only very special maps can preserve the diameter of the spectra of elements. Nonlinear maps preserving the pseudometric given by maximal deviation are also described. The results generalize hitherto known theorems on preservers of maximal deviation in the case of self-adjoint parts of von Neumann algebras proved by Molnar.« less

  3. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench.

    PubMed

    Banerjee, D; Dalmonte, M; Müller, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P

    2012-10-26

    Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.

  4. Quantum frames

    NASA Astrophysics Data System (ADS)

    Brown, Matthew J.

    2014-02-01

    The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.

  5. Nuclear Quantum Effects in Water and Aqueous Systems: Experiment, Theory, and Current Challenges

    DOE PAGES

    Ceriotti, Michele; Fang, Wei; Kusalik, Peter G.; ...

    2016-04-06

    Nuclear quantum effects influence the structure and dynamics of hydrogen bonded systems, such as water, which impacts their observed properties with widely varying magnitudes. This review highlights the recent significant developments in the experiment, theory and simulation of nuclear quantum effects in water. Novel experimental techniques, such as deep inelastic neutron scattering, now provide a detailed view of the role of nuclear quantum effects in water’s properties. These have been combined with theoretical developments such as the introduction of the competing quantum effects principle that allows the subtle interplay of water’s quantum effects and their manifestation in experimental observables tomore » be explained. We discuss how this principle has recently been used to explain the apparent dichotomy in water’s isotope effects, which can range from very large to almost nonexistent depending on the property and conditions. We then review the latest major developments in simulation algorithms and theory that have enabled the efficient inclusion of nuclear quantum effects in molecular simulations, permitting their combination with on-the-fly evaluation of the potential energy surface using electronic structure theory. Finally, we identify current challenges and future opportunities in the area.« less

  6. Mixed Quantum/Classical Theory for Molecule-Molecule Inelastic Scattering: Derivations of Equations and Application to N2 + H2 System.

    PubMed

    Semenov, Alexander; Babikov, Dmitri

    2015-12-17

    The mixed quantum classical theory, MQCT, for inelastic scattering of two molecules is developed, in which the internal (rotational, vibrational) motion of both collision partners is treated with quantum mechanics, and the molecule-molecule scattering (translational motion) is described by classical trajectories. The resultant MQCT formalism includes a system of coupled differential equations for quantum probability amplitudes, and the classical equations of motion in the mean-field potential. Numerical tests of this theory are carried out for several most important rotational state-to-state transitions in the N2 + H2 system, in a broad range of collision energies. Besides scattering resonances (at low collision energies) excellent agreement with full-quantum results is obtained, including the excitation thresholds, the maxima of cross sections, and even some smaller features, such as slight oscillations of energy dependencies. Most importantly, at higher energies the results of MQCT are nearly identical to the full quantum results, which makes this approach a good alternative to the full-quantum calculations that become computationally expensive at higher collision energies and for heavier collision partners. Extensions of this theory to include vibrational transitions or general asymmetric-top rotor (polyatomic) molecules are relatively straightforward.

  7. The Butterfly and the Photon:. New Perspectives on Unpredictability, and the Notion of Casual Reality, in Quantum Physics

    NASA Astrophysics Data System (ADS)

    Palmer, T. N.

    2012-12-01

    This essay discusses a proposal that draws together the three great revolutionary theories of 20th Century physics: quantum theory, relativity theory and chaos theory. Motivated by the Bohmian notion of implicate order, and what in chaos theory would be described as a strange attractor, the proposal attributes special ontological significance to certain non-computable, dynamically invariant state-space geometries for the universe as a whole. Studying the phenomenon of quantum interference, it is proposed to understand quantum wave-particle duality, and indeed classical electromagnetism, in terms of particles in space time and waves on this state space geometry. Studying the EPR experiment, the acausal constraints that this invariant geometry provides on spatially distant degrees of freedom, provides a way for the underlying dynamics to be consistent with the Bell theorem, yet be relativistically covariant ("nonlocality without nonlocality"). It is suggested that the physical basis for such non-computable geometries lies in properties of gravity with the information irreversibility implied by black hole no-hair theorems being crucial. In conclusion it is proposed that quantum theory may be emergent from an extended theory of gravity which is geometric not only in space time, but also in state space. Such a notion would undermine most current attempts to "quantise gravity".

  8. Fundamental Structure of Loop Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Han, Muxin; Ma, Yongge; Huang, Weiming

    In the recent twenty years, loop quantum gravity, a background independent approach to unify general relativity and quantum mechanics, has been widely investigated. The aim of loop quantum gravity is to construct a mathematically rigorous, background independent, non-perturbative quantum theory for a Lorentzian gravitational field on a four-dimensional manifold. In the approach, the principles of quantum mechanics are combined with those of general relativity naturally. Such a combination provides us a picture of, so-called, quantum Riemannian geometry, which is discrete on the fundamental scale. Imposing the quantum constraints in analogy from the classical ones, the quantum dynamics of gravity is being studied as one of the most important issues in loop quantum gravity. On the other hand, the semi-classical analysis is being carried out to test the classical limit of the quantum theory. In this review, the fundamental structure of loop quantum gravity is presented pedagogically. Our main aim is to help non-experts to understand the motivations, basic structures, as well as general results. It may also be beneficial to practitioners to gain insights from different perspectives on the theory. We will focus on the theoretical framework itself, rather than its applications, and do our best to write it in modern and precise langauge while keeping the presentation accessible for beginners. After reviewing the classical connection dynamical formalism of general relativity, as a foundation, the construction of the kinematical Ashtekar-Isham-Lewandowski representation is introduced in the content of quantum kinematics. The algebraic structure of quantum kinematics is also discussed. In the content of quantum dynamics, we mainly introduce the construction of a Hamiltonian constraint operator and the master constraint project. At last, some applications and recent advances are outlined. It should be noted that this strategy of quantizing gravity can also be extended to obtain other background-independent quantum gauge theories. There is no divergence within this background-independent and diffeomorphism-invariant quantization program of matter coupled to gravity.

  9. Quantum Physics, Fields and Closed Timelike Curves: The D-CTC Condition in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Tolksdorf, Jürgen; Verch, Rainer

    2018-01-01

    The D-CTC condition has originally been proposed by David Deutsch as a condition on states of a quantum communication network that contains "backward time-steps" in some of its branches. It has been argued that this is an analogue for quantum processes in the presence of closed timelike curves (CTCs). The unusual properties of states of quantum communication networks that fulfill the D-CTC condition have been discussed extensively in recent literature. In this work, the D-CTC condition is investigated in the framework of quantum field theory in the local, operator-algebraic approach due to Haag and Kastler. It is shown that the D-CTC condition cannot be fulfilled in states that are analytic in the energy, or satisfy the Reeh-Schlieder property, for a certain class of processes and initial conditions. On the other hand, if a quantum field theory admits sufficiently many uncorrelated states across acausally related spacetime regions (as implied by the split property), then the D-CTC condition can always be fulfilled approximately to arbitrary precision. As this result pertains to quantum field theory on globally hyperbolic spacetimes where CTCs are absent, one may conclude that interpreting the D-CTC condition as characteristic for quantum processes in the presence of CTCs could be misleading, and should be regarded with caution. Furthermore, a construction of the quantized massless Klein-Gordon field on the Politzer spacetime, often viewed as spacetime analogue for quantum communication networks with backward time-steps, is proposed in this work.

  10. On Replacing "Quantum Thinking" with Counterfactual Reasoning

    NASA Astrophysics Data System (ADS)

    Narens, Louis

    The probability theory used in quantum mechanics is currently being employed by psychologists to model the impact of context on decision. Its event space consists of closed subspaces of a Hilbert space, and its probability function sometimes violate the law of the finite additivity of probabilities. Results from the quantum mechanics literature indicate that such a "Hilbert space probability theory" cannot be extended in a useful way to standard, finitely additive, probability theory by the addition of new events with specific probabilities. This chapter presents a new kind of probability theory that shares many fundamental algebraic characteristics with Hilbert space probability theory but does extend to standard probability theory by adjoining new events with specific probabilities. The new probability theory arises from considerations about how psychological experiments are related through counterfactual reasoning.

  11. Efficient quantum walk on a quantum processor

    PubMed Central

    Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.

    2016-01-01

    The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471

  12. Six-dimensional formulation of the quantum theory of superluminal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patty, C.E. Jr.

    By operating in a six dimensional spacetime, transformations which relate superluminal to subluminal observers and do not introduce imaginary numbers are developed. These transformations preserve the Lorentz invariance of physical quantities. A six dimensional quantum theory is built upon this spacetime. All formal properties and the operators of the four dimensional Dirac quantum theory are duplicated. In addition, the extended quantum theory predicts the known behavior of subliminal matter and permits the calculation of the behavior of superluminal matter. The most distinctive characteristics of superluminal matter are found to be a spatial polarization during interactions with subluminal matter and anmore » intrensic multi-temporal nature. The theory is applied to the Rutherford scattering problem for an incident beam of electrons. The results of the calculation indicate that the behavior of superluminal matter differs in an unambigious way from that of subluminal matter. The superluminal state is detectable.« less

  13. Propensity, Probability, and Quantum Theory

    NASA Astrophysics Data System (ADS)

    Ballentine, Leslie E.

    2016-08-01

    Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.

  14. Quantum Electrodynamics: Theory

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Standard Model of particle physics is composed of several theories that are added together. The most precise component theory is the theory of quantum electrodynamics or QED. In this video, Fermilab’s Dr. Don Lincoln explains how theoretical QED calculations can be done. This video links to other videos, giving the viewer a deep understanding of the process.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, H.

    There are deep similarities between Whitehead's idea of the process by which nature unfolds and the ideas of quantum theory. Whitehead says that the world is made of ''actual occasions'', each of which arises from potentialities created by prior actual occasions. These actual occasions are happenings modeled on experiential events, each of which comes into being and then perishes, only to be replaced by a successor. It is these experience-like happenings that are the basic realities of nature, according to Whitehead, not the persisting physical particles that Newtonian physics took be the basic entities. Similarly, Heisenberg says that what ismore » really happening in a quantum process is the emergence of an actual from potentialities created by prior actualities. In the orthodox Copenhagen interpretation of quantum theory the actual things to which the theory refer are increments in ''our knowledge''. These increments are experiential events. The particles of classical physics lose their fundamental status: they dissolve into diffuse clouds of possibilities. At each stage of the unfolding of nature the complete cloud of possibilities acts like the potentiality for the occurrence of a next increment in knowledge, whose occurrence can radically change the cloud of possibilities/potentialities for the still-later increments in knowledge. The fundamental difference between these ideas about nature and the classical ideas that reigned from the time of Newton until this century concerns the status of the experiential aspects of nature. These are things such as thoughts, ideas, feelings, and sensations. They are distinguished from the physical aspects of nature, which are described in terms of quantities explicitly located in tiny regions of space and time. According to the ideas of classical physics the physical world is made up exclusively of things of this latter type, and the unfolding of the physical world is determined by causal connections involving only these things. Thus experiential-type things could be considered to influence the flow of physical events only insofar as they themselves were completely determined by physical things. In other words, experiential-type qualities. insofar as they could affect the flow of physical events, could--within the framework of classical physics--not be free: they must be completely determined by the physical aspects of nature that are, by themselves,sufficient to determine the flow of physical events.« less

  16. Statistical quasi-particle theory for open quantum systems

    NASA Astrophysics Data System (ADS)

    Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2018-04-01

    This paper presents a comprehensive account on the recently developed dissipaton-equation-of-motion (DEOM) theory. This is a statistical quasi-particle theory for quantum dissipative dynamics. It accurately describes the influence of bulk environments, with a few number of quasi-particles, the dissipatons. The novel dissipaton algebra is then followed, which readily bridges the Schrödinger equation to the DEOM theory. As a fundamental theory of quantum mechanics in open systems, DEOM characterizes both the stationary and dynamic properties of system-and-bath interferences. It treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that could be experimentally measurable. Examples are the linear or nonlinear Fano interferences and the Herzberg-Teller vibronic couplings in optical spectroscopies. This review covers the DEOM construction, the underlying dissipaton algebra and theorems, the physical meanings of dynamical variables, the possible identifications of dissipatons, and some recent advancements in efficient DEOM evaluations on various problems. The relations of the present theory to other nonperturbative methods are also critically presented.

  17. Any Ontological Model of the Single Qubit Stabilizer Formalism must be Contextual

    NASA Astrophysics Data System (ADS)

    Lillystone, Piers; Wallman, Joel J.

    Quantum computers allow us to easily solve some problems classical computers find hard. Non-classical improvements in computational power should be due to some non-classical property of quantum theory. Contextuality, a more general notion of non-locality, is a necessary, but not sufficient, resource for quantum speed-up. Proofs of contextuality can be constructed for the classically simulable stabilizer formalism. Previous proofs of stabilizer contextuality are known for 2 or more qubits, for example the Mermin-Peres magic square. In the work presented we extend these results and prove that any ontological model of the single qubit stabilizer theory must be contextual, as defined by R. Spekkens, and give a relation between our result and the Mermin-Peres square. By demonstrating that contextuality is present in the qubit stabilizer formalism we provide further insight into the contextuality present in quantum theory. Understanding the contextuality of classical sub-theories will allow us to better identify the physical properties of quantum theory required for computational speed up. This research was supported by CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.

  18. Combinatorial quantization of the Hamiltonian Chern-Simons theory II

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton Yu.; Grosse, Harald; Schomerus, Volker

    1996-01-01

    This paper further develops the combinatorial approach to quantization of the Hamiltonian Chern Simons theory advertised in [1]. Using the theory of quantum Wilson lines, we show how the Verlinde algebra appears within the context of quantum group gauge theory. This allows to discuss flatness of quantum connections so that we can give a mathematically rigorous definition of the algebra of observables A CS of the Chern Simons model. It is a *-algebra of “functions on the quantum moduli space of flat connections” and comes equipped with a positive functional ω (“integration”). We prove that this data does not depend on the particular choices which have been made in the construction. Following ideas of Fock and Rosly [2], the algebra A CS provides a deformation quantization of the algebra of functions on the moduli space along the natural Poisson bracket induced by the Chern Simons action. We evaluate a volume of the quantized moduli space and prove that it coincides with the Verlinde number. This answer is also interpreted as a partition partition function of the lattice Yang-Mills theory corresponding to a quantum gauge group.

  19. Quantum Interactive Dualism: The Libet and Einstein-Podolsky-RosenCausal Anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, Henry P.

    2006-02-20

    The "free will" data of Benjamin Libet and the predictionsof quantum theory considered by Einstein, Podolsky,and Rosen, both posepuzzles within aconceptual framework that, simultaneously, is compatiblewith the theory of relativity and allows human subjects to freely choosehow they will act. The quantum theoretic resolutions of these puzzles aredescribed.

  20. Testing the Quantum-Classical Boundary and Dimensionality of Quantum Systems

    NASA Astrophysics Data System (ADS)

    Shun, Poh Hou

    Quantum theory introduces a cut between the observer and the observed system [1], but does not provide a definition of what is an observer [2]. Based on an informational def- inition of the observer, Grinbaum has recently [3] predicted an upper bound on bipartite correlations in the Clauser-Horne-Shimony-Holt (CHSH) Bell scenario equal to 2.82537, which is slightly smaller than the Tsirelson bound [4] of standard quantum theory, but is consistent with all the available experimental results [5--17]. Not being able to exceed Grin- baum's limit would support that quantum theory is only an effective description of a more fundamental theory and would have a deep impact in physics and quantum information processing. In this thesis, we present a test of the CHSH inequality on photon pairs in maximally entangled states of polarization in which a value 2.8276 +/- 0.00082 is observed, violating Grinbaum's bound by 2.72 standard deviations and providing the smallest distance with respect to Tsirelson's bound ever reported, namely, 0.0008 +/- 0.00082. (Abstract shortened by UMI.).

  1. Quantum equivalence of f (R) gravity and scalar-tensor theories in the Jordan and Einstein frames

    NASA Astrophysics Data System (ADS)

    Ohta, Nobuyoshi

    2018-03-01

    The f(R) gravity and scalar-tensor theory are known to be equivalent at the classical level. We study if this equivalence is valid at the quantum level. There are two descriptions of the scalar-tensor theory in the Jordan and Einstein frames. It is shown that these three formulations of the theories give the same determinant or effective action on shell, and thus they are equivalent at the quantum one-loop level on shell in arbitrary dimensions. We also compute the one-loop divergence in f(R) gravity on an Einstein space.

  2. Vector-mean-field theory of the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Rejaei, B.; Beenakker, C. W. J.

    1992-12-01

    A mean-field theory of the fractional quantum Hall effect is formulated based on the adiabatic principle of Greiter and Wilczek. The theory is tested on known bulk properties (excitation gap, fractional charge, and statistics), and then applied to a confined region in a two-dimensional electron gas (quantum dot). For a small number N of electrons in the dot, the exact ground-state energy has cusps at the same angular momentum values as the mean-field theory. For large N, Wen's algebraic decay of the probability for resonant tunneling through the dot is reproduced, albeit with a different exponent.

  3. What is Quantum Information?

    NASA Astrophysics Data System (ADS)

    Lombardi, Olimpia; Fortin, Sebastian; Holik, Federico; López, Cristian

    2017-04-01

    Preface; Introduction; Part I. About the Concept of Information: 1. About the concept of information Sebastian Fortin and Olimpia Lombardi; 2. Representation, information, and theories of information Armond Duwell; 3. Information, communication, and manipulability Olimpia Lombardi and Cristian López; Part II. Information and quantum mechanics: 4. Quantum versus classical information Jeffrey Bub; 5. Quantum information and locality Dennis Dieks; 6. Pragmatic information in quantum mechanics Juan Roederer; 7. Interpretations of quantum theory: a map of madness Adán Cabello; Part III. Probability, Correlations, and Information: 8. On the tension between ontology and epistemology in quantum probabilities Amit Hagar; 9. Inferential versus dynamical conceptions of physics David Wallace; 10. Classical models for quantum information Federico Holik and Gustavo Martin Bosyk; 11. On the relative character of quantum correlations Guido Bellomo and Ángel Ricardo Plastino; Index.

  4. Complex systems and health behavior change: insights from cognitive science.

    PubMed

    Orr, Mark G; Plaut, David C

    2014-05-01

    To provide proof-of-concept that quantum health behavior can be instantiated as a computational model that is informed by cognitive science, the Theory of Reasoned Action, and quantum health behavior theory. We conducted a synthetic review of the intersection of quantum health behavior change and cognitive science. We conducted simulations, using a computational model of quantum health behavior (a constraint satisfaction artificial neural network) and tested whether the model exhibited quantum-like behavior. The model exhibited clear signs of quantum-like behavior. Quantum health behavior can be conceptualized as constraint satisfaction: a mitigation between current behavioral state and the social contexts in which it operates. We outlined implications for moving forward with computational models of both quantum health behavior and health behavior in general.

  5. The metric on field space, functional renormalization, and metric–torsion quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reuter, Martin, E-mail: reuter@thep.physik.uni-mainz.de; Schollmeyer, Gregor M., E-mail: schollmeyer@thep.physik.uni-mainz.de

    Searching for new non-perturbatively renormalizable quantum gravity theories, functional renormalization group (RG) flows are studied on a theory space of action functionals depending on the metric and the torsion tensor, the latter parameterized by three irreducible component fields. A detailed comparison with Quantum Einstein–Cartan Gravity (QECG), Quantum Einstein Gravity (QEG), and “tetrad-only” gravity, all based on different theory spaces, is performed. It is demonstrated that, over a generic theory space, the construction of a functional RG equation (FRGE) for the effective average action requires the specification of a metric on the infinite-dimensional field manifold as an additional input. A modifiedmore » FRGE is obtained if this metric is scale-dependent, as it happens in the metric–torsion system considered.« less

  6. Entanglement and the three-dimensionality of the Bloch ball

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masanes, Ll., E-mail: ll.masanes@gmail.com; Müller, M. P.; Pérez-García, D.

    2014-12-15

    We consider a very natural generalization of quantum theory by letting the dimension of the Bloch ball be not necessarily three. We analyze bipartite state spaces where each of the components has a d-dimensional Euclidean ball as state space. In addition to this, we impose two very natural assumptions: the continuity and reversibility of dynamics and the possibility of characterizing bipartite states by local measurements. We classify all these bipartite state spaces and prove that, except for the quantum two-qubit state space, none of them contains entangled states. Equivalently, in any of these non-quantum theories, interacting dynamics is impossible. Thismore » result reveals that “existence of entanglement” is the requirement with minimal logical content which singles out quantum theory from our family of theories.« less

  7. A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2011-08-01

    In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.

  8. Designing, programming, and optimizing a (small) quantum computer

    NASA Astrophysics Data System (ADS)

    Svore, Krysta

    In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.

  9. Uncertainty in quantum mechanics: faith or fantasy?

    PubMed

    Penrose, Roger

    2011-12-13

    The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications.

  10. Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottmeister, Alexander, E-mail: alexander.stottmeister@gravity.fau.de; Thiemann, Thomas, E-mail: thomas.thiemann@gravity.fau.de

    2016-06-15

    This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems,more » which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).« less

  11. Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bley, Gonzalo A.; Thomas, Lawrence E.

    2017-01-01

    We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.

  12. Quantum Information Theory - an Invitation

    NASA Astrophysics Data System (ADS)

    Werner, Reinhard F.

    Quantum information and quantum computers have received a lot of public attention recently. Quantum computers have been advertised as a kind of warp drive for computing, and indeed the promise of the algorithms of Shor and Grover is to perform computations which are extremely hard or even provably impossible on any merely ``classical'' computer.In this article I shall give an account of the basic concepts of quantum information theory is given, staying as much as possible in the area of general agreement.The article is divided into two parts. The first (up to the end of Sect. 2.5) is mostly in plain English, centered around the exploration of what can or cannot be done with quantum systems as information carriers. The second part, Sect. 2.6, then gives a description of the mathematical structures and of some of the tools needed to develop the theory.

  13. Entropy generation in Gaussian quantum transformations: applying the replica method to continuous-variable quantum information theory

    NASA Astrophysics Data System (ADS)

    Gagatsos, Christos N.; Karanikas, Alexandros I.; Kordas, Georgios; Cerf, Nicolas J.

    2016-02-01

    In spite of their simple description in terms of rotations or symplectic transformations in phase space, quadratic Hamiltonians such as those modelling the most common Gaussian operations on bosonic modes remain poorly understood in terms of entropy production. For instance, determining the quantum entropy generated by a Bogoliubov transformation is notably a hard problem, with generally no known analytical solution, while it is vital to the characterisation of quantum communication via bosonic channels. Here we overcome this difficulty by adapting the replica method, a tool borrowed from statistical physics and quantum field theory. We exhibit a first application of this method to continuous-variable quantum information theory, where it enables accessing entropies in an optical parametric amplifier. As an illustration, we determine the entropy generated by amplifying a binary superposition of the vacuum and a Fock state, which yields a surprisingly simple, yet unknown analytical expression.

  14. Formal and physical equivalence in two cases in contemporary quantum physics

    NASA Astrophysics Data System (ADS)

    Fraser, Doreen

    2017-08-01

    The application of analytic continuation in quantum field theory (QFT) is juxtaposed to T-duality and mirror symmetry in string theory. Analytic continuation-a mathematical transformation that takes the time variable t to negative imaginary time-it-was initially used as a mathematical technique for solving perturbative Feynman diagrams, and was subsequently the basis for the Euclidean approaches within mainstream QFT (e.g., Wilsonian renormalization group methods, lattice gauge theories) and the Euclidean field theory program for rigorously constructing non-perturbative models of interacting QFTs. A crucial difference between theories related by duality transformations and those related by analytic continuation is that the former are judged to be physically equivalent while the latter are regarded as physically inequivalent. There are other similarities between the two cases that make comparing and contrasting them a useful exercise for clarifying the type of argument that is needed to support the conclusion that dual theories are physically equivalent. In particular, T-duality and analytic continuation in QFT share the criterion for predictive equivalence that two theories agree on the complete set of expectation values and the mass spectra and the criterion for formal equivalence that there is a "translation manual" between the physically significant algebras of observables and sets of states in the two theories. The analytic continuation case study illustrates how predictive and formal equivalence are compatible with physical inequivalence, but not in the manner of standard underdetermination cases. Arguments for the physical equivalence of dual theories must cite considerations beyond predictive and formal equivalence. The analytic continuation case study is an instance of the strategy of developing a physical theory by extending the formal or mathematical equivalence with another physical theory as far as possible. That this strategy has resulted in developments in pure mathematics as well as theoretical physics is another feature that this case study has in common with dualities in string theory.

  15. Contextual Advantage for State Discrimination

    NASA Astrophysics Data System (ADS)

    Schmid, David; Spekkens, Robert W.

    2018-02-01

    Finding quantitative aspects of quantum phenomena which cannot be explained by any classical model has foundational importance for understanding the boundary between classical and quantum theory. It also has practical significance for identifying information processing tasks for which those phenomena provide a quantum advantage. Using the framework of generalized noncontextuality as our notion of classicality, we find one such nonclassical feature within the phenomenology of quantum minimum-error state discrimination. Namely, we identify quantitative limits on the success probability for minimum-error state discrimination in any experiment described by a noncontextual ontological model. These constraints constitute noncontextuality inequalities that are violated by quantum theory, and this violation implies a quantum advantage for state discrimination relative to noncontextual models. Furthermore, our noncontextuality inequalities are robust to noise and are operationally formulated, so that any experimental violation of the inequalities is a witness of contextuality, independently of the validity of quantum theory. Along the way, we introduce new methods for analyzing noncontextuality scenarios and demonstrate a tight connection between our minimum-error state discrimination scenario and a Bell scenario.

  16. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.

    PubMed

    Banik, Suman Kumar; Bag, Bidhan Chandra; Ray, Deb Shankar

    2002-05-01

    Traditionally, quantum Brownian motion is described by Fokker-Planck or diffusion equations in terms of quasiprobability distribution functions, e.g., Wigner functions. These often become singular or negative in the full quantum regime. In this paper a simple approach to non-Markovian theory of quantum Brownian motion using true probability distribution functions is presented. Based on an initial coherent state representation of the bath oscillators and an equilibrium canonical distribution of the quantum mechanical mean values of their coordinates and momenta, we derive a generalized quantum Langevin equation in c numbers and show that the latter is amenable to a theoretical analysis in terms of the classical theory of non-Markovian dynamics. The corresponding Fokker-Planck, diffusion, and Smoluchowski equations are the exact quantum analogs of their classical counterparts. The present work is independent of path integral techniques. The theory as developed here is a natural extension of its classical version and is valid for arbitrary temperature and friction (the Smoluchowski equation being considered in the overdamped limit).

  17. Controlling charge quantization with quantum fluctuations.

    PubMed

    Jezouin, S; Iftikhar, Z; Anthore, A; Parmentier, F D; Gennser, U; Cavanna, A; Ouerghi, A; Levkivskyi, I P; Idrisov, E; Sukhorukov, E V; Glazman, L I; Pierre, F

    2016-08-04

    In 1909, Millikan showed that the charge of electrically isolated systems is quantized in units of the elementary electron charge e. Today, the persistence of charge quantization in small, weakly connected conductors allows for circuits in which single electrons are manipulated, with applications in, for example, metrology, detectors and thermometry. However, as the connection strength is increased, the discreteness of charge is progressively reduced by quantum fluctuations. Here we report the full quantum control and characterization of charge quantization. By using semiconductor-based tunable elemental conduction channels to connect a micrometre-scale metallic island to a circuit, we explore the complete evolution of charge quantization while scanning the entire range of connection strengths, from a very weak (tunnel) to a perfect (ballistic) contact. We observe, when approaching the ballistic limit, that charge quantization is destroyed by quantum fluctuations, and scales as the square root of the residual probability for an electron to be reflected across the quantum channel; this scaling also applies beyond the different regimes of connection strength currently accessible to theory. At increased temperatures, the thermal fluctuations result in an exponential suppression of charge quantization and in a universal square-root scaling, valid for all connection strengths, in agreement with expectations. Besides being pertinent for the improvement of single-electron circuits and their applications, and for the metal-semiconductor hybrids relevant to topological quantum computing, knowledge of the quantum laws of electricity will be essential for the quantum engineering of future nanoelectronic devices.

  18. Quantum Locality?

    NASA Astrophysics Data System (ADS)

    Stapp, Henry P.

    2012-05-01

    Robert Griffiths has recently addressed, within the framework of a `consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths' rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his `consistent quantum theory' shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths' reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent `consistent framework' ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows, in response to Griffiths' challenge, why a putative proof of locality that he has described is flawed.

  19. Quantum approach of mesoscopic magnet dynamics with spin transfer torque

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Sham, L. J.

    2013-05-01

    We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.

  20. Quantum spectral curve of the N=6 supersymmetric Chern-Simons theory.

    PubMed

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-11

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N=6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.

Top