Sample records for complete regional waveform

  1. Improvements to a Major Digital Archive of Seismic Waveforms from Nuclear Explosions: The Borovoye Seismogram Archive

    DTIC Science & Technology

    2009-09-30

    excitation of surface waves in the Balapan sub-region of the Soviet Semipalatinsk test site in central Asia were noted for anomalous behavior...complete recording history of Semipalatinsk Test Site (STS) explosions, waveform data from the Borovoye archive offer the opportunity to re-evaluate...Figure 2. Map of the Balapan sub-region of the Semipalatinsk Test Site showing locations of 50 tests currently understudy and the boundaries of NE

  2. Testing the validity of the phenomenological gravitational waveform models for nonspinning binary black hole searches at low masses

    NASA Astrophysics Data System (ADS)

    Cho, Hee-Suk

    2015-11-01

    The phenomenological gravitational waveform models, which we refer to as PhenomA, PhenomB, and PhenomC, generate full inspiral, merger, and ringdown (IMR) waveforms of coalescing binary back holes (BBHs). These models are defined in the Fourier domain, thus can be used for fast matched filtering in the gravitational wave search. PhenomA has been developed for nonspinning BBH waveforms, while PhenomB and PhenomC were designed to model the waveforms of BBH systems with nonprecessing (aligned) spins, but can also be used for nonspinning systems. In this work, we study the validity of the phenomenological models for nonspinning BBH searches at low masses, {m}{1,2}≥slant 4{M}⊙ and {m}1+{m}2\\equiv M≤slant 30{M}⊙ , with Advanced LIGO. As our complete signal waveform model, we adopt EOBNRv2, which is a time-domain IMR waveform model. To investigate the search efficiency of the phenomenological template models, we calculate fitting factors (FFs) by exploring overlap surfaces. We find that only PhenomC is valid to obtain FFs better than 0.97 in the mass range of M\\lt 15{M}⊙ . Above 15{M}⊙ , PhenomA is most efficient in symmetric mass region, PhenomB is most efficient in highly asymmetric mass region, and PhenomC is most efficient in the intermediate region. Specifically, we propose an effective phenomenological template family that can be constructed by employing the phenomenological models in four subregions individually. We find that FFs of the effective templates are better than 0.97 in our entire mass region and mostly greater than 0.99.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    bedle, H; Matzel, E; Flanagan, M

    This report summarizes the data analysis achieved during Heather Bedle's eleven-week Technical Scholar internship at Lawrence Livermore National Labs during the early summer 2006. The work completed during this internship resulted in constraints on the crustal and upper mantle S-velocity structure in Northern Africa, the Mediterranean, the Middle East, and Europe, through the fitting of regional waveform data. This data extends current raypath coverage and will be included in a joint inversion along with data from surface wave group velocity measurements, S and P teleseismic arrival time data, and receiver function data to create an improved velocity model of themore » upper mantle in this region. The tectonic structure of the North African/Mediterranean/Europe/Middle Eastern study region is extremely heterogeneous. This region consists of, among others, stable cratons and platforms such as the West Africa Craton, and Baltica in Northern Europe; oceanic subduction zones throughout the Mediterranean Sea where the African and Eurasian plate collide; regions of continental collision as the Arabian Plate moves northward into the Turkish Plate; and rifting in the Red Sea, separating the Arabian and Nubian shields. With such diverse tectonic structures, many of the waveforms were difficult to fit. This is not unexpected as the waveforms are fit using an averaged structure. In many cases the raypaths encounter several tectonic features, complicating the waveform, and making it hard for the software to converge on a 1D average structure. Overall, the quality of the waveform data was average, with roughly 30% of the waveforms being discarded due to excessive noise that interfered with the frequency ranges of interest. An inversion for the 3D S-velocity structure of this region was also performed following the methodology of Partitioned Waveform Inversion (Nolet, 1990; Van der Lee and Nolet, 1997). The addition of the newly fit waveforms drastically extends the range of the model. The model now extends as far east in Africa to cover Chad and Niger, and reaches south to cover Zambia. The model is also stretched eastward to cover the eastern half of India, and northward to cover the southern portion of Scandinavia.« less

  4. Length requirements for numerical-relativity waveforms

    NASA Astrophysics Data System (ADS)

    Hannam, Mark; Husa, Sascha; Ohme, Frank; Ajith, P.

    2010-12-01

    One way to produce complete inspiral-merger-ringdown gravitational waveforms from black-hole-binary systems is to connect post-Newtonian (PN) and numerical-relativity (NR) results to create “hybrid” waveforms. Hybrid waveforms are central to the construction of some phenomenological models for gravitational-wave (GW) search templates, and for tests of GW search pipelines. The dominant error source in hybrid waveforms arises from the PN contribution, and can be reduced by increasing the number of NR GW cycles that are included in the hybrid. Hybrid waveforms are considered sufficiently accurate for GW detection if their mismatch error is below 3% (i.e., a fitting factor above 0.97). We address the question of the length requirements of NR waveforms such that the final hybrid waveforms meet this requirement, considering nonspinning binaries with q=M2/M1∈[1,4] and equal-mass binaries with χ=Si/Mi2∈[-0.5,0.5]. We conclude that, for the cases we study, simulations must contain between three (in the equal-mass nonspinning case) and ten (the χ=0.5 case) orbits before merger, but there is also evidence that these are the regions of parameter space for which the least number of cycles will be needed.

  5. Detection of the Wenchuan aftershock sequence using waveform correlation with a composite regional network

    DOE PAGES

    Slinkard, Megan; Heck, Stephen; Schaff, David; ...

    2016-06-28

    Using template waveforms from aftershocks of the Wenchuan earthquake (12 May 2008, M s 8.0) listed in a global bulletin and continuous data from eight regional stations, we detected more than 6000 additional events in the mainshock source region from 1 May to 12 August 2008. These new detections obey Omori’s law, extend the magnitude of completeness downward by 1.1 magnitude units, and lead to a more than fivefold increase in number of known aftershocks compared with the global bulletins published by the International Data Centre and the Inter national Seismological Centre. Moreover, we detected more M > 2 eventsmore » than were listed by the Sichuan Seismograph Network. Several clusters of these detections were then relocated using the double-difference method, yielding locations that reduced travel-time residuals by a factor of 32 compared with the initial bulletin locations. Finally, our results suggest that using waveform correlation on a few regional stations can find aftershock events very effectively and locate them with precision.« less

  6. Earthquake focal parameters and lithospheric structure of the anatolian plateau from complete regional waveform modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A

    2000-12-28

    This is an informal report on preliminary efforts to investigate earthquake focal mechanisms and earth structure in the Anatolian (Turkish) Plateau. Seismic velocity structure of the crust and upper mantle and earthquake focal parameters for event in the Anatolian Plateau are estimated from complete regional waveforms. Focal mechanisms, depths and seismic moments of moderately large crustal events are inferred from long-period (40-100 seconds) waveforms and compared with focal parameters derived from global teleseismic data. Using shorter periods (10-100 seconds) we estimate the shear and compressional velocity structure of the crust and uppermost mantle. Results are broadly consistent with previous studiesmore » and imply relatively little crustal thickening beneath the central Anatolian Plateau. Crustal thickness is about 35 km in western Anatolia and greater than 40 km in eastern Anatolia, however the long regional paths require considerable averaging and limit resolution. Crustal velocities are lower than typical continental averages, and even lower than typical active orogens. The mantle P-wave velocity was fixed to 7.9 km/s, in accord with tomographic models. A high sub-Moho Poisson's Ratio of 0.29 was required to fit the Sn-Pn differential times. This is suggestive of high sub-Moho temperatures, high shear wave attenuation and possibly partial melt. The combination of relatively thin crust in a region of high topography and high mantle temperatures suggests that the mantle plays a substantial role in maintaining the elevation.« less

  7. Source Characterization of Underground Explosions from Combined Regional Moment Tensor and First-Motion Analysis

    DOE PAGES

    Chiang, Andrea; Dreger, Douglas S.; Ford, Sean R.; ...

    2014-07-08

    Here in this study, we investigate the 14 September 1988 U.S.–Soviet Joint Verification Experiment nuclear test at the Semipalatinsk test site in eastern Kazakhstan and two nuclear explosions conducted less than 10 years later at the Chinese Lop Nor test site. These events were very sparsely recorded by stations located within 1600 km, and in each case only three or four stations were available in the regional distance range. We have utilized a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long-period waveforms and first-motionmore » observations provides a unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We demonstrate through a series of jackknife tests and sensitivity analyses that the source type of the explosions is well constrained. One event, a 1996 Lop Nor shaft explosion, displays large Love waves and possibly reversed Rayleigh waves at one station, indicative of a large F-factor. We show the combination of long-period waveforms and P-wave first motions are able to discriminate this event as explosion-like and distinct from earthquakes and collapses. We further demonstrate the behavior of network sensitivity solutions for models of tectonic release and spall-based tensile damage over a range of F-factors and K-factors.« less

  8. Source Characterization of Underground Explosions from Combined Regional Moment Tensor and First-Motion Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Andrea; Dreger, Douglas S.; Ford, Sean R.

    Here in this study, we investigate the 14 September 1988 U.S.–Soviet Joint Verification Experiment nuclear test at the Semipalatinsk test site in eastern Kazakhstan and two nuclear explosions conducted less than 10 years later at the Chinese Lop Nor test site. These events were very sparsely recorded by stations located within 1600 km, and in each case only three or four stations were available in the regional distance range. We have utilized a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long-period waveforms and first-motionmore » observations provides a unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We demonstrate through a series of jackknife tests and sensitivity analyses that the source type of the explosions is well constrained. One event, a 1996 Lop Nor shaft explosion, displays large Love waves and possibly reversed Rayleigh waves at one station, indicative of a large F-factor. We show the combination of long-period waveforms and P-wave first motions are able to discriminate this event as explosion-like and distinct from earthquakes and collapses. We further demonstrate the behavior of network sensitivity solutions for models of tectonic release and spall-based tensile damage over a range of F-factors and K-factors.« less

  9. Breast ultrasound computed tomography using waveform inversion with source encoding

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  10. Full Seismic Waveform Tomography of the Japan region using Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Steptoe, Hamish; Fichtner, Andreas; Rickers, Florian; Trampert, Jeannot

    2013-04-01

    We present a full-waveform tomographic model of the Japan region based on spectral-element wave propagation, adjoint techniques and seismic data from dense station networks. This model is intended to further our understanding of both the complex regional tectonics and the finite rupture processes of large earthquakes. The shallow Earth structure of the Japan region has been the subject of considerable tomographic investigation. The islands of Japan exist in an area of significant plate complexity: subduction related to the Pacific and Philippine Sea plates is responsible for the majority of seismicity and volcanism of Japan, whilst smaller micro-plates in the region, including the Okhotsk, and Okinawa and Amur, part of the larger North America and Eurasia plates respectively, contribute significant local intricacy. In response to the need to monitor and understand the motion of these plates and their associated faults, numerous seismograph networks have been established, including the 768 station high-sensitivity Hi-net network, 84 station broadband F-net and the strong-motion seismograph networks K-net and KiK-net in Japan. We also include the 55 station BATS network of Taiwan. We use this exceptional coverage to construct a high-resolution model of the Japan region from the full-waveform inversion of over 15,000 individual component seismograms from 53 events that occurred between 1997 and 2012. We model these data using spectral-element simulations of seismic wave propagation at a regional scale over an area from 120°-150°E and 20°-50°N to a depth of around 500 km. We quantify differences between observed and synthetic waveforms using time-frequency misfits allowing us to separate both phase and amplitude measurements whilst exploiting the complete waveform at periods of 15-60 seconds. Fréchet kernels for these misfits are calculated via the adjoint method and subsequently used in an iterative non-linear conjugate-gradient optimization. Finally, we employ custom smoothing algorithms to remove the singularities of the Fréchet kernels and artifacts introduced by the heterogeneous coverage in oceanic regions of the model.

  11. Simulating Gravitational Wave Emission from Massive Black Hole Binaries

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. In the past few years, this situation has changed dramatically, with a series of amazing breakthroughs. This talk will focus on the recent advances that are revealing these waveforms. highlighting their astrophysical consequences and the dramatic new potential for discovery that arises when merging black holes will be observed using gravitational waves.

  12. Binary Black Holes: Mergers, Dynamics, and Waveforms

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2007-04-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  13. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    Massive black hole (MBH) binaries are found at the centers of most galaxies. MBH mergers trace galaxy mergers and are strong sources of gravitational waves. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities. causing them to crash well before the black hole:, in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This presentation shows how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. Focus is on the recent advances that that reveal these waveforms, and the potential for discoveries that arises when these sources are observed by LIGO and LISA.

  14. Gas stream analysis using voltage-current time differential operation of electrochemical sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay

    A method for analysis of a gas stream. The method includes identifying an affected region of an affected waveform signal corresponding to at least one characteristic of the gas stream. The method also includes calculating a voltage-current time differential between the affected region of the affected waveform signal and a corresponding region of an original waveform signal. The affected region and the corresponding region of the waveform signals have a sensitivity specific to the at least one characteristic of the gas stream. The method also includes generating a value for the at least one characteristic of the gas stream basedmore » on the calculated voltage-current time differential.« less

  15. Investigating source processes of isotropic events

    NASA Astrophysics Data System (ADS)

    Chiang, Andrea

    This dissertation demonstrates the utility of the complete waveform regional moment tensor inversion for nuclear event discrimination. I explore the source processes and associated uncertainties for explosions and earthquakes under the effects of limited station coverage, compound seismic sources, assumptions in velocity models and the corresponding Green's functions, and the effects of shallow source depth and free-surface conditions. The motivation to develop better techniques to obtain reliable source mechanism and assess uncertainties is not limited to nuclear monitoring, but they also provide quantitative information about the characteristics of seismic hazards, local and regional tectonics and in-situ stress fields of the region . This dissertation begins with the analysis of three sparsely recorded events: the 14 September 1988 US-Soviet Joint Verification Experiment (JVE) nuclear test at the Semipalatinsk test site in Eastern Kazakhstan, and two nuclear explosions at the Chinese Lop Nor test site. We utilize a regional distance seismic waveform method fitting long-period, complete, three-component waveforms jointly with first-motion observations from regional stations and teleseismic arrays. The combination of long period waveforms and first motion observations provides unique discrimination of these sparsely recorded events in the context of the Hudson et al. (1989) source-type diagram. We examine the effects of the free surface on the moment tensor via synthetic testing, and apply the moment tensor based discrimination method to well-recorded chemical explosions. These shallow chemical explosions represent rather severe source-station geometry in terms of the vanishing traction issues. We show that the combined waveform and first motion method enables the unique discrimination of these events, even though the data include unmodeled single force components resulting from the collapse and blowout of the quarry face immediately following the initial explosion. In contrast, recovering the announced explosive yield using seismic moment estimates from moment tensor inversion remains challenging but we can begin to put error bounds on our moment estimates using the NSS technique. The estimation of seismic source parameters is dependent upon having a well-calibrated velocity model to compute the Green's functions for the inverse problem. Ideally, seismic velocity models are calibrated through broadband waveform modeling, however in regions of low seismicity velocity models derived from body or surface wave tomography may be employed. Whether a velocity model is 1D or 3D, or based on broadband seismic waveform modeling or the various tomographic techniques, the uncertainty in the velocity model can be the greatest source of error in moment tensor inversion. These errors have not been fully investigated for the nuclear discrimination problem. To study the effects of unmodeled structures on the moment tensor inversion, we set up a synthetic experiment where we produce synthetic seismograms for a 3D model (Moschetti et al., 2010) and invert these data using Green's functions computed with a 1D velocity mode (Song et al., 1996) to evaluate the recoverability of input solutions, paying particular attention to biases in the isotropic component. The synthetic experiment results indicate that the 1D model assumption is valid for moment tensor inversions at periods as short as 10 seconds for the 1D western U.S. model (Song et al., 1996). The correct earthquake mechanisms and source depth are recovered with statistically insignificant isotropic components as determined by the F-test. Shallow explosions are biased by the theoretical ISO-CLVD tradeoff but the tectonic release component remains low, and the tradeoff can be eliminated with constraints from P wave first motion. Path-calibration to the 1D model can reduce non-double-couple components in earthquakes, non-isotropic components in explosions and composite sources and improve the fit to the data. When we apply the 3D model to real data, at long periods (20-50 seconds), we see good agreement in the solutions between the 1D and 3D models and slight improvement in waveform fits when using the 3D velocity model Green's functions. (Abstract shortened by ProQuest.).

  16. Rrsm: The European Rapid Raw Strong-Motion Database

    NASA Astrophysics Data System (ADS)

    Cauzzi, C.; Clinton, J. F.; Sleeman, R.; Domingo Ballesta, J.; Kaestli, P.; Galanis, O.

    2014-12-01

    We introduce the European Rapid Raw Strong-Motion database (RRSM), a Europe-wide system that provides parameterised strong motion information, as well as access to waveform data, within minutes of the occurrence of strong earthquakes. The RRSM significantly differs from traditional earthquake strong motion dissemination in Europe, which has focused on providing reviewed, processed strong motion parameters, typically with significant delays. As the RRSM provides rapid open access to raw waveform data and metadata and does not rely on external manual waveform processing, RRSM information is tailored to seismologists and strong-motion data analysts, earthquake and geotechnical engineers, international earthquake response agencies and the educated general public. Access to the RRSM database is via a portal at http://www.orfeus-eu.org/rrsm/ that allows users to query earthquake information, peak ground motion parameters and amplitudes of spectral response; and to select and download earthquake waveforms. All information is available within minutes of any earthquake with magnitude ≥ 3.5 occurring in the Euro-Mediterranean region. Waveform processing and database population are performed using the waveform processing module scwfparam, which is integrated in SeisComP3 (SC3; http://www.seiscomp3.org/). Earthquake information is provided by the EMSC (http://www.emsc-csem.org/) and all the seismic waveform data is accessed at the European Integrated waveform Data Archive (EIDA) at ORFEUS (http://www.orfeus-eu.org/index.html), where all on-scale data is used in the fully automated processing. As the EIDA community is continually growing, the already significant number of strong motion stations is also increasing and the importance of this product is expected to also increase. Real-time RRSM processing started in June 2014, while past events have been processed in order to provide a complete database back to 2005.

  17. Validating Whole-Airway CFD Predictions of DPI Aerosol Deposition at Multiple Flow Rates.

    PubMed

    Longest, P Worth; Tian, Geng; Khajeh-Hosseini-Dalasm, Navvab; Hindle, Michael

    2016-12-01

    The objective of this study was to compare aerosol deposition predictions of a new whole-airway CFD model with available in vivo data for a dry powder inhaler (DPI) considered across multiple inhalation waveforms, which affect both the particle size distribution (PSD) and particle deposition. The Novolizer DPI with a budesonide formulation was selected based on the availability of 2D gamma scintigraphy data in humans for three different well-defined inhalation waveforms. Initial in vitro cascade impaction experiments were conducted at multiple constant (square-wave) particle sizing flow rates to characterize PSDs. The whole-airway CFD modeling approach implemented the experimentally determined PSDs at the point of aerosol formation in the inhaler. Complete characteristic airway geometries for an adult were evaluated through the lobar bronchi, followed by stochastic individual pathway (SIP) approximations through the tracheobronchial region and new acinar moving wall models of the alveolar region. It was determined that the PSD used for each inhalation waveform should be based on a constant particle sizing flow rate equal to the average of the inhalation waveform's peak inspiratory flow rate (PIFR) and mean flow rate [i.e., AVG(PIFR, Mean)]. Using this technique, agreement with the in vivo data was acceptable with <15% relative differences averaged across the three regions considered for all inhalation waveforms. Defining a peripheral to central deposition ratio (P/C) based on alveolar and tracheobronchial compartments, respectively, large flow-rate-dependent differences were observed, which were not evident in the original 2D in vivo data. The agreement between the CFD predictions and in vivo data was dependent on accurate initial estimates of the PSD, emphasizing the need for a combination in vitro-in silico approach. Furthermore, use of the AVG(PIFR, Mean) value was identified as a potentially useful method for characterizing a DPI aerosol at a constant flow rate.

  18. Validating Whole-Airway CFD Predictions of DPI Aerosol Deposition at Multiple Flow Rates

    PubMed Central

    Tian, Geng; Khajeh-Hosseini-Dalasm, Navvab; Hindle, Michael

    2016-01-01

    Abstract Background: The objective of this study was to compare aerosol deposition predictions of a new whole-airway CFD model with available in vivo data for a dry powder inhaler (DPI) considered across multiple inhalation waveforms, which affect both the particle size distribution (PSD) and particle deposition. Methods: The Novolizer DPI with a budesonide formulation was selected based on the availability of 2D gamma scintigraphy data in humans for three different well-defined inhalation waveforms. Initial in vitro cascade impaction experiments were conducted at multiple constant (square-wave) particle sizing flow rates to characterize PSDs. The whole-airway CFD modeling approach implemented the experimentally determined PSDs at the point of aerosol formation in the inhaler. Complete characteristic airway geometries for an adult were evaluated through the lobar bronchi, followed by stochastic individual pathway (SIP) approximations through the tracheobronchial region and new acinar moving wall models of the alveolar region. Results: It was determined that the PSD used for each inhalation waveform should be based on a constant particle sizing flow rate equal to the average of the inhalation waveform's peak inspiratory flow rate (PIFR) and mean flow rate [i.e., AVG(PIFR, Mean)]. Using this technique, agreement with the in vivo data was acceptable with <15% relative differences averaged across the three regions considered for all inhalation waveforms. Defining a peripheral to central deposition ratio (P/C) based on alveolar and tracheobronchial compartments, respectively, large flow-rate-dependent differences were observed, which were not evident in the original 2D in vivo data. Conclusions: The agreement between the CFD predictions and in vivo data was dependent on accurate initial estimates of the PSD, emphasizing the need for a combination in vitro–in silico approach. Furthermore, use of the AVG(PIFR, Mean) value was identified as a potentially useful method for characterizing a DPI aerosol at a constant flow rate. PMID:27082824

  19. Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; Kennett, Brian L. N.; Igel, Heiner; Bunge, Hans-Peter

    2009-12-01

    We present a full seismic waveform tomography for upper-mantle structure in the Australasian region. Our method is based on spectral-element simulations of seismic wave propagation in 3-D heterogeneous earth models. The accurate solution of the forward problem ensures that waveform misfits are solely due to as yet undiscovered Earth structure and imprecise source descriptions, thus leading to more realistic tomographic images and source parameter estimates. To reduce the computational costs, we implement a long-wavelength equivalent crustal model. We quantify differences between the observed and the synthetic waveforms using time-frequency (TF) misfits. Their principal advantages are the separation of phase and amplitude misfits, the exploitation of complete waveform information and a quasi-linear relation to 3-D Earth structure. Fréchet kernels for the TF misfits are computed via the adjoint method. We propose a simple data compression scheme and an accuracy-adaptive time integration of the wavefields that allows us to reduce the storage requirements of the adjoint method by almost two orders of magnitude. To minimize the waveform phase misfit, we implement a pre-conditioned conjugate gradient algorithm. Amplitude information is incorporated indirectly by a restricted line search. This ensures that the cumulative envelope misfit does not increase during the inversion. An efficient pre-conditioner is found empirically through numerical experiments. It prevents the concentration of structural heterogeneity near the sources and receivers. We apply our waveform tomographic method to ~1000 high-quality vertical-component seismograms, recorded in the Australasian region between 1993 and 2008. The waveforms comprise fundamental- and higher-mode surface and long-period S body waves in the period range from 50 to 200 s. To improve the convergence of the algorithm, we implement a 3-D initial model that contains the long-wavelength features of the Australasian region. Resolution tests indicate that our algorithm converges after around 10 iterations and that both long- and short-wavelength features in the uppermost mantle are well resolved. There is evidence for effects related to the non-linearity in the inversion procedure. After 11 iterations we fit the data waveforms acceptably well; with no significant further improvements to be expected. During the inversion the total fitted seismogram length increases by 46 per cent, providing a clear indication of the efficiency and consistency of the iterative optimization algorithm. The resulting SV-wave velocity model reveals structural features of the Australasian upper mantle with great detail. We confirm the existence of a pronounced low-velocity band along the eastern margin of the continent that can be clearly distinguished against Precambrian Australia and the microcontinental Lord Howe Rise. The transition from Precambrian to Phanerozoic Australia (the Tasman Line) appears to be sharp down to at least 200 km depth. It mostly occurs further east of where it is inferred from gravity and magnetic anomalies. Also clearly visible are the Archean and Proterozoic cratons, the northward continuation of the continent and anomalously low S-wave velocities in the upper mantle in central Australia. This is, to the best of our knowledge, the first application of non-linear full seismic waveform tomography to a continental-scale problem.

  20. ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

    2008-10-17

    This quarter, we have focused on several tasks: (1) Building a high-quality catalog of earthquake source parameters for the Middle East and East Asia. In East Asia, we computed source parameters using the CAP method for a set of events studied by Herrman et al., (MRR, 2006) using a complete waveform technique. Results indicated excellent agreement with the moment magnitudes in the range 3.5 -5.5. Below magnitude 3.5 the scatter increases. For events with more than 2-3 observations at different azimuths, we found good agreement of focal mechanisms. Depths were generally consistent, although differences of up to 10 km weremore » found. These results suggest that CAP modeling provides estimates of source parameters at least as reliable as complete waveform modeling techniques. However, East Asia and the Yellow Sea Korean Paraplatform (YSKP) region studied are relatively laterally homogeneous and may not benefit from the CAP method’s flexibility to shift waveform segments to account for path-dependent model errors. A more challenging region to study is the Middle East where strong variations in sedimentary basin, crustal thickness and crustal and mantle seismic velocities greatly impact regional wave propagation. We applied the CAP method to a set of events in and around Iran and found good agreement between estimated focal mechanisms and those reported by the Global Centroid Moment Tensor (CMT) catalog. We found a possible bias in the moment magnitudes that may be due to the thick low-velocity crust in the Iranian Plateau. (2) Testing Methods on a Lifetime Regional Data Set. In particular, the recent 2/21/08 Nevada Event and Aftershock Sequence occurred in the middle of USArray, producing over a thousand records per event. The tectonic setting is quite similar to Central Iran and thus provides an excellent testbed for CAP+ at ranges out to 10°, including extensive observations of crustal thinning and thickening and various Pnl complexities. Broadband modeling in 1D, 2D, and 3D will be presented. (3) Shallow Crustal Structure and Sparse Network Source Inversions for Southern California. We conducted a detailed test of a recently developed technique, CAPloc, in recovering source parameters including location and depth based on tomographic maps. We tested two-station solutions against 160 well determined events which worked well except for paths crossing deep basins and along mountain ridges.« less

  1. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields. We need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  2. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities. causing them to crash well before the black hole:, in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  3. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2008-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  4. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2009-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  5. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA

  6. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Recently this situation has changed dramatically, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simutation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  7. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2006-01-01

    The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. This situation has changed dramatically in the past year, with a series of amazing breakthroughs. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LISA and LIGO.

  8. Waveform identification and retracking analyses of Jason-2 altimeter satellite data for improving sea surface height estimation in Southern Java Island Waters and Java Sea, Indonesia

    NASA Astrophysics Data System (ADS)

    Nababan, Bisman; Hakim, Muhammad R.; Panjaitan, James P.

    2018-05-01

    Indonesian waters containing many small islands and shallow waters leads to a less accurate of sea surface height (SSH) estimation from satellite altimetry. Little efforts are also given for the validation of SSH estimation from the satellite in Indonesian waters. The purpose of this research was to identify and retrack waveforms of Jason-2 altimeter satellite data in southern Java island waters and Java Sea using several retrackers and performed improvement percentage analyses for new SSH estimation. The study used data of the Sensor Geophysical Data Record type D (SGDR-D) of Jason-2 satellite altimeter of the year 2010 in the southern Java island waters and 2012-2014 in Java Sea. Waveform retracking analyses were conducted using several retrackers (Offset Center of Gravity, Ice, Threshold, and Improved Threshold) and examined using a world reference undulation geoid of EGM08 and Oceanic retracker. Result showed that shape and pattern of waveforms were varied in all passes, seasons, and locations specifically along the coastal regions. In general, non-Brownish and complex waveforms were identified along coastal region specifically within the distance of 0-10 km from the shoreline. In contrary, generally Brownish waveforms were found in offshore. However, Brownish waveform can also be found within coastal region and non-Brownish waveforms within offshore region. The results were also showed that the four retrackers produced a better SSH estimation in coastal region. However, there was no dominant retracker to improve the accuracy of the SSH estimate.

  9. Gravitational Waves from Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  10. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, John

    2007-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GE0600, as well as the space-based interferometer LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, data analysis, and astrophysics.

  11. Multi-Station Broad Regional Event Detection Using Waveform Correlation

    NASA Astrophysics Data System (ADS)

    Slinkard, M.; Stephen, H.; Young, C. J.; Eckert, R.; Schaff, D. P.; Richards, P. G.

    2013-12-01

    Previous waveform correlation studies have established the occurrence of repeating seismic events in various regions, and the utility of waveform-correlation event-detection on broad regional or even global scales to find events currently not included in traditionally-prepared bulletins. The computational burden, however, is high, limiting previous experiments to relatively modest template libraries and/or processing time periods. We have developed a distributed computing waveform correlation event detection utility that allows us to process years of continuous waveform data with template libraries numbering in the thousands. We have used this system to process several years of waveform data from IRIS stations in East Asia, using libraries of template events taken from global and regional bulletins. Detections at a given station are confirmed by 1) comparison with independent bulletins of seismicity, and 2) consistent detections at other stations. We find that many of the detected events are not in traditional catalogs, hence the multi-station comparison is essential. In addition to detecting the similar events, we also estimate magnitudes very precisely based on comparison with the template events (when magnitudes are available). We have investigated magnitude variation within detected families of similar events, false alarm rates, and the temporal and spatial reach of templates.

  12. Crustal velocity structure of central Gansu Province from regional seismic waveform inversion using firework algorithm

    NASA Astrophysics Data System (ADS)

    Chen, Yanyang; Wang, Yanbin; Zhang, Yuansheng

    2017-04-01

    The firework algorithm (FWA) is a novel swarm intelligence-based method recently proposed for the optimization of multi-parameter, nonlinear functions. Numerical waveform inversion experiments using a synthetic model show that the FWA performs well in both solution quality and efficiency. We apply the FWA in this study to crustal velocity structure inversion using regional seismic waveform data of central Gansu on the northeastern margin of the Qinghai-Tibet plateau. Seismograms recorded from the moment magnitude ( M W) 5.4 Minxian earthquake enable obtaining an average crustal velocity model for this region. We initially carried out a series of FWA robustness tests in regional waveform inversion at the same earthquake and station positions across the study region, inverting two velocity structure models, with and without a low-velocity crustal layer; the accuracy of our average inversion results and their standard deviations reveal the advantages of the FWA for the inversion of regional seismic waveforms. We applied the FWA across our study area using three component waveform data recorded by nine broadband permanent seismic stations with epicentral distances ranging between 146 and 437 km. These inversion results show that the average thickness of the crust in this region is 46.75 km, while thicknesses of the sedimentary layer, and the upper, middle, and lower crust are 3.15, 15.69, 13.08, and 14.83 km, respectively. Results also show that the P-wave velocities of these layers and the upper mantle are 4.47, 6.07, 6.12, 6.87, and 8.18 km/s, respectively.

  13. Lithospheric structure of the Arabian Shield and Platform from complete regional waveform modelling and surface wave group velocities

    NASA Astrophysics Data System (ADS)

    Rodgers, Arthur J.; Walter, William R.; Mellors, Robert J.; Al-Amri, Abdullah M. S.; Zhang, Yu-Shen

    1999-09-01

    Regional seismic waveforms reveal significant differences in the structure of the Arabian Shield and the Arabian Platform. We estimate lithospheric velocity structure by modelling regional waveforms recorded by the 1995-1997 Saudi Arabian Temporary Broadband Deployment using a grid search scheme. We employ a new method whereby we narrow the waveform modelling grid search by first fitting the fundamental mode Love and Rayleigh wave group velocities. The group velocities constrain the average crustal thickness and velocities as well as the crustal velocity gradients. Because the group velocity fitting is computationally much faster than the synthetic seismogram calculation this method allows us to determine good average starting models quickly. Waveform fits of the Pn and Sn body wave arrivals constrain the mantle velocities. The resulting lithospheric structures indicate that the Arabian Platform has an average crustal thickness of 40 km, with relatively low crustal velocities (average crustal P- and S-wave velocities of 6.07 and 3.50 km s^-1 , respectively) without a strong velocity gradient. The Moho is shallower (36 km) and crustal velocities are 6 per cent higher (with a velocity increase with depth) for the Arabian Shield. Fast crustal velocities of the Arabian Shield result from a predominantly mafic composition in the lower crust. Lower velocities in the Arabian Platform crust indicate a bulk felsic composition, consistent with orogenesis of this former active margin. P- and S-wave velocities immediately below the Moho are slower in the Arabian Shield than in the Arabian Platform (7.9 and 4.30 km s^-1 , and 8.10 and 4.55 km s^-1 , respectively). This indicates that the Poisson's ratios for the uppermost mantle of the Arabian Shield and Platform are 0.29 and 0.27, respectively. The lower mantle velocities and higher Poisson's ratio beneath the Arabian Shield probably arise from a partially molten mantle associated with Red Sea spreading and continental volcanism, although we cannot constrain the lateral extent of a zone of partially molten mantle.

  14. Toward Near Real-Time Tomography of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Debayle, E.; Dubuffet, F.

    2014-12-01

    We added a layer of automation to the Debayle and Ricard (2012)'s waveform modeling scheme for fundamental and higher mode surface waves in the period range 50-160s. We processed all the Rayleigh waveforms recorded on the LHZ channel by the virtual networks GSN_broadband, FDSN_all, and US_backbone between January 1996 and December 2013. Six millions of waveforms were obtained from IRIS DMC. We check that all the necessary information (instrument response, global CMT determination) is available and that each record includes a velocity window which encompasses the surface wave. Selected data must also have a signal-to-noise ratio greater than 3 in a range covering at least the periods between 50 and 100 s. About 3 millions of waveforms are selected (92% of the rejections are due to the signal to noise ratio criterion) and processed using Debayle and Ricard (2012)'s scheme, which allows the successful modeling of about 1.5 millions of waveforms. We complete this database with 60,000 waveforms recorded between 1976 and 1996 or after 1996 during various temporary experiments and with 161,730 Rayleigh waveforms analyzed at longer period, between 120 and 360 s. The whole data set is inverted using Debayle and Sambridge (2004)'s scheme to produce a 3D shear velocity model. A simple shell command "update_tomo" can then update our seismic model in an entirely automated way. Currently, this command checks from the CMT catalog what are the potential data available at the GSN_broadband, FDSN_all, and US_backbone virtual networks, uses web services to request these data from IRIS DMC and applies the processing chain described above to update our seismic model. We plan to update our seismic model on a regular basis in a near future, and to make it available on the web. Our most recent seismic model includes azimuthal anisotropy, achieves a lateral resolution of few hundred kilometers and a vertical resolution of a few tens of kilometers. The correlation with surface tectonics is very strong in the uppermost 200 km. Regions deeper than 400 km show no velocity contrasts larger than 1%, except for high velocity slabs which produce broad high velocity regions within the transition zone. The use of higher modes and long period surface waves allows us to extract the shear velocity structure down to about 1000 km depth.

  15. Waveform Fingerprinting for Efficient Seismic Signal Detection

    NASA Astrophysics Data System (ADS)

    Yoon, C. E.; OReilly, O. J.; Beroza, G. C.

    2013-12-01

    Cross-correlating an earthquake waveform template with continuous waveform data has proven a powerful approach for detecting events missing from earthquake catalogs. If templates do not exist, it is possible to divide the waveform data into short overlapping time windows, then identify window pairs with similar waveforms. Applying these approaches to earthquake monitoring in seismic networks has tremendous potential to improve the completeness of earthquake catalogs, but because effort scales quadratically with time, it rapidly becomes computationally infeasible. We develop a fingerprinting technique to identify similar waveforms, using only a few compact features of the original data. The concept is similar to human fingerprints, which utilize key diagnostic features to identify people uniquely. Analogous audio-fingerprinting approaches have accurately and efficiently found similar audio clips within large databases; example applications include identifying songs and finding copyrighted content within YouTube videos. In order to fingerprint waveforms, we compute a spectrogram of the time series, and segment it into multiple overlapping windows (spectral images). For each spectral image, we apply a wavelet transform, and retain only the sign of the maximum magnitude wavelet coefficients. This procedure retains just the large-scale structure of the data, providing both robustness to noise and significant dimensionality reduction. Each fingerprint is a high-dimensional, sparse, binary data object that can be stored in a database without significant storage costs. Similar fingerprints within the database are efficiently searched using locality-sensitive hashing. We test this technique on waveform data from the Northern California Seismic Network that contains events not detected in the catalog. We show that this algorithm successfully identifies similar waveforms and detects uncataloged low magnitude events in addition to cataloged events, while running to completion faster than a comparison waveform autocorrelation code.

  16. Results of a Study Demonstrating Automated Techniques for Waveform Correlation Applied to Regional Monitoring of Eastern Asia

    NASA Astrophysics Data System (ADS)

    Sundermier, A.; Slinkard, M.; Perry, J.; Schaff, D. P.; Young, C. J.; Richards, P. G.

    2016-12-01

    Waveform correlation techniques have proven effectiveness detecting repeated events from large aftershock sequences; however, application for monitoring a large region over a long time period has yet to be adequately explored. We applied waveform correlation to six years of continuous waveform data at eleven stations spread through Eastern Asia, using automatically generated templates from historical archives going back to the time of station installation, in some cases as far back as 1986. Our study region includes the countries of China, North Korea, South Korea, Mongolia, Nepal, Bhutan, Bangladesh, and parts of Russia, Kazakhstan, Kyrgyzstan, Tajikistan, Afghanistan, Pakistan, India, Myanmar, Thailand, Laos, and Vietnam. We used nine China Digital Network (CD/IC) and two other available stations which had continuous coverage from 2006-2012; this yielded 11 stations which spanned 40 degrees in latitude and 70 degrees in longitude with an average nearest-neighbor distance between stations of 842 km. To declare a detected event, we require coincident correlations at 2 or more stations, so station spacing has a strong effect on our detection threshold. We compare our detection results to the ISC catalog to analyze the effectiveness and challenges associated with applying waveform correlation on a broad regional and multi-year scale. Our best results were obtained in the vicinity of the 2008 Wenchuan aftershock sequence where each station had two other stations within a 1000 km radius. We include analysis of the impact of network geometry, historical template library span and size, and template phase to provide direction for future regional studies using waveform correlation.

  17. Elastic and anelastic structure of the lowermost mantle beneath the Western Pacific using waveform inversion

    NASA Astrophysics Data System (ADS)

    Konishi, K.; Deschamps, F.; Fuji, N.

    2015-12-01

    We investigate quasi-2D elastic and anelastic structure of the lowermost mantle beneath the Western Pacific by inverting S and ScS waveforms. The transverse component data were obtained from F-net for 32 deep sources beneath Tonga and Fiji, filtered between 12.5 and 200 s. We observe a regional variation of S and ScS arrival times and amplitude ratio, according to which we divide our region of interest into four sub-regions and perform 1D waveform inversion for S-wave velocity and Qμ value simultaneously. We find S-shaped structure of S-wave velocity beneath the whole region with sub-regional variation of S-wave velocity peak depths, which can explain regional difference in travel times. Qμ structure varies with sub-regions as well, but the physical interpretation has not yet done.

  18. Degeneracy of gravitational waveforms in the context of GW150914

    NASA Astrophysics Data System (ADS)

    Creswell, James; Liu, Hao; Jackson, Andrew D.; von Hausegger, Sebastian; Naselsky, Pavel

    2018-03-01

    We study the degeneracy of theoretical gravitational waveforms for binary black hole mergers using an aligned-spin effective-one-body model. After appropriate truncation, bandpassing, and matching, we identify regions in the mass–spin parameter space containing waveforms similar to the template proposed for GW150914, with masses m1 = 36+5‑4 Msolar and m2 = 29+4‑4 Msolar, using the cross-correlation coefficient as a measure of the similarity between waveforms. Remarkably high cross-correlations are found across broad regions of parameter space. The associated uncertanties exceed these from LIGO's Bayesian analysis considerably. We have shown that waveforms with greatly increased masses, such as m1 = 70 Msolar and m2 = 35 Msolar, and strong anti-aligned spins (χ1 = 0.95 and χ2 = ‑0.95) yield almost the same signal-to-noise ratio in the strain data for GW150914.

  19. Seismological investigation of the National Data Centre Preparedness Exercise 2013

    NASA Astrophysics Data System (ADS)

    Gestermann, Nicolai; Hartmann, Gernot; Ross, J. Ole; Ceranna, Lars

    2015-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions conducted on Earth - underground, underwater or in the atmosphere. The verification regime of the CTBT is designed to detect any treaty violation. While the data of the International Monitoring System (IMS) is collected, processed and technically analyzed at the International Data Centre (IDC) of the CTBT-Organization, National Data Centres (NDC) of the member states provide interpretation and advice to their government concerning suspicious detections. The NDC Preparedness Exercises (NPE) are regularly performed dealing with fictitious treaty violations to practice the combined analysis of CTBT verification technologies. These exercises should help to evaluate the effectiveness of analysis procedures applied at NDCs and the quality, completeness and usefulness of IDC products for example. The exercise trigger of NPE2013 is a combination of a tempo-spatial indication pointing to a certain waveform event and simulated radionuclide concentrations generated by forward Atmospheric Transport Modelling based on a fictitious release. For the waveform event the date (4 Sept. 2013) is given and the region is communicated in a map showing the fictitious state of "Frisia" at the Coast of the North Sea in Central Europe. The potential connection between the waveform and radionuclide evidence remains unclear for exercise participants. The verification task was to identify the waveform event and to investigate potential sources of the radionuclide findings. The final question was whether the findings are CTBT relevant and justify a request for On-Site-Inspection in "Frisia". The seismic event was not included in the Reviewed Event Bulletin (REB) of the IDC. The available detections from the closest seismic IMS stations lead to a epicenter accuracy of about 24 km which is not sufficient to specify the 1000 km2 inspection area in case of an OSI. With use of data from local stations and adjusted velocity models the epicenter accuracy could be improved to less than 2 km, which demonstrates the crucial role of national technical means for verification tasks. The seismic NPE2013 event could be identified as induced from natural gas production in the source region. Similar waveforms and comparable spectral characteristic as a set of events in the same region are clear indications. The scenario of a possible treaty violation at the location of the seismic NPE2013 event could be disproved.

  20. [Study of sharing platform of web-based enhanced extracorporeal counterpulsation hemodynamic waveform data].

    PubMed

    Huang, Mingbo; Hu, Ding; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian

    2011-12-01

    Enhanced extracorporeal counterpulsation (EECP) information consists of both text and hemodynamic waveform data. At present EECP text information has been successfully managed through Web browser, while the management and sharing of hemodynamic waveform data through Internet has not been solved yet. In order to manage EECP information completely, based on the in-depth analysis of EECP hemodynamic waveform file of digital imaging and communications in medicine (DICOM) format and its disadvantages in Internet sharing, we proposed the use of the extensible markup language (XML), which is currently the Internet popular data exchange standard, as the storage specification for the sharing of EECP waveform data. Then we designed a web-based sharing system of EECP hemodynamic waveform data via ASP. NET 2.0 platform. Meanwhile, we specifically introduced the four main system function modules and their implement methods, including DICOM to XML conversion module, EECP waveform data management module, retrieval and display of EECP waveform module and the security mechanism of the system.

  1. Effects of Forest Disturbances on Forest Structural Parameters Retrieval from Lidar Waveform Data

    NASA Technical Reports Server (NTRS)

    Ranson, K, Lon; Sun, G.

    2011-01-01

    The effect of forest disturbance on the lidar waveform and the forest biomass estimation was demonstrated by model simulation. The results show that the correlation between stand biomass and the lidar waveform indices changes when the stand spatial structure changes due to disturbances rather than the natural succession. This has to be considered in developing algorithms for regional or global mapping of biomass from lidar waveform data.

  2. An Improved Method for Seismic Event Depth and Moment Tensor Determination: CTBT Related Application

    NASA Astrophysics Data System (ADS)

    Stachnik, J.; Rozhkov, M.; Baker, B.

    2016-12-01

    According to the Protocol to CTBT, International Data Center is required to conduct expert technical analysis and special studies to improve event parameters and assist State Parties in identifying the source of specific event. Determination of seismic event source mechanism and its depth is a part of these tasks. It is typically done through a strategic linearized inversion of the waveforms for a complete or subset of source parameters, or similarly defined grid search through precomputed Greens Functions created for particular source models. We show preliminary results using the latter approach from an improved software design and applied on a moderately powered computer. In this development we tried to be compliant with different modes of CTBT monitoring regime and cover wide range of source-receiver distances (regional to teleseismic), resolve shallow source depths, provide full moment tensor solution based on body and surface waves recordings, be fast to satisfy both on-demand studies and automatic processing and properly incorporate observed waveforms and any uncertainties a priori as well as accurately estimate posteriori uncertainties. Implemented HDF5 based Green's Functions pre-packaging allows much greater flexibility in utilizing different software packages and methods for computation. Further additions will have the rapid use of Instaseis/AXISEM full waveform synthetics added to a pre-computed GF archive. Along with traditional post processing analysis of waveform misfits through several objective functions and variance reduction, we follow a probabilistic approach to assess the robustness of moment tensor solution. In a course of this project full moment tensor and depth estimates are determined for DPRK 2009, 2013 and 2016 events and shallow earthquakes using a new implementation of waveform fitting of teleseismic P waves. A full grid search over the entire moment tensor space is used to appropriately sample all possible solutions. A recent method by Tape & Tape (2012) to discretize the complete moment tensor space from a geometric perspective is used. Moment tensors for DPRK events show isotropic percentages greater than 50%. Depth estimates for the DPRK events range from 1.0-1.4 km. Probabilistic uncertainty estimates on the moment tensor parameters provide robustness to solution.

  3. Dictionary Approaches to Image Compression and Reconstruction

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel A.; Gilmore, Erwin T.; Chouikha, Mohamed F.

    1998-01-01

    This paper proposes using a collection of parameterized waveforms, known as a dictionary, for the purpose of medical image compression. These waveforms, denoted as lambda, are discrete time signals, where y represents the dictionary index. A dictionary with a collection of these waveforms Is typically complete or over complete. Given such a dictionary, the goal is to obtain a representation Image based on the dictionary. We examine the effectiveness of applying Basis Pursuit (BP), Best Orthogonal Basis (BOB), Matching Pursuits (MP), and the Method of Frames (MOF) methods for the compression of digitized radiological images with a wavelet-packet dictionary. The performance of these algorithms is studied for medical images with and without additive noise.

  4. Adjoint tomography of the crust and upper mantle structure beneath the Kanto region using broadband seismograms

    NASA Astrophysics Data System (ADS)

    Miyoshi, Takayuki; Obayashi, Masayuki; Peter, Daniel; Tono, Yoko; Tsuboi, Seiji

    2017-12-01

    A three-dimensional seismic wave speed model in the Kanto region of Japan was developed using adjoint tomography for application in the effective reproduction of observed waveforms. Starting with a model based on previous travel time tomographic results, we inverted the waveforms obtained at seismic broadband stations from 140 local earthquakes in the Kanto region to obtain the P- and S-wave speeds V p and V s . Additionally, all centroid times of the source solutions were determined before the structural inversion. The synthetic displacements were calculated using the spectral-element method (SEM) in which the Kanto region was parameterized using 16 million grid points. The model parameters V p and V s were updated iteratively by Newton's method using the misfit and Hessian kernels until the misfit between the observed and synthetic waveforms was minimized. Computations of the forward and adjoint simulations were conducted on the K computer in Japan. The optimized SEM code required a total of 6720 simulations using approximately 62,000 node hours to obtain the final model after 16 iterations. The proposed model reveals several anomalous areas with extremely low- V s values in comparison with those of the initial model. These anomalies were found to correspond to geological features, earthquake sources, and volcanic regions with good data coverage and resolution. The synthetic waveforms obtained using the newly proposed model for the selected earthquakes showed better fit than the initial model to the observed waveforms in different period ranges within 5-30 s. This result indicates that the model can accurately predict actual waveforms. [Figure not available: see fulltext.

  5. Regional waveform calibration in the Pamir-Hindu Kush region

    NASA Astrophysics Data System (ADS)

    Zhu, Lupei; Helmberger, Donald V.; Saikia, Chandan K.; Woods, Bradley B.

    1997-10-01

    Twelve moderate-magnitude earthquakes (mb 4-5.5) in the Pamir-Hindu Kush region are investigated to determine their focal mechanisms and to relocate them using their regional waveform records at two broadband arrays, the Kyrgyzstan Regional Network (KNET), and the 1992 Pakistan Himalayas seismic experiment array (PAKH) in northern Pakistan. We use the "cut-and-paste" source estimation technique to invert the whole broadband waveforms for mechanisms and depths, assuming a one-dimensional velocity model developed for the adjacent Tibetan plateau. For several large events the source mechanisms obtained agree with those available from the Harvard centroid moment tensor (CMT) solutions. An advantage of using regional broadband waveforms is that focal depths can be better constrained either from amplitude ratios of Pnl to surface waves for crustal events or from time separation between the direct P and the shear-coupled P wave (sPn + sPmP) for mantle events. All the crustal events are relocated at shallower depths compared with their International Seismological Centre bulletin or Harvard CMT depths. After the focal depths are established, the events are then relocated horizontally using their first-arrival times. Only minor offsets in epicentral location are found for all mantle events and the bigger crustal events, while rather large offsets (up to 30 km) occur for the smaller crustal events. We also tested the performance of waveform inversion using only two broadband stations, one from the KNET array in the north of the region and one from the PAKH array in the south. We found that this geometry is adequate for determining focal depths and mechanisms of moderate size earthquakes in the Pamir-Hindu Kush region.

  6. Analytic gravitational waveforms for generic precessing compact binaries

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Klein, Antoine; Cornish, Neil; Yunes, Nicolas

    2017-01-01

    Gravitational waves from compact binaries are subject to amplitude and phase modulations arising from interactions between the angular momenta of the system. Failure to account for such spin-precession effects in gravitational wave data analysis could hinder detection and completely ruin parameter estimation. In this talk I will describe the construction of closed-form, frequency-domain waveforms for fully-precessing, quasi-circular binary inspirals. The resulting waveforms can model spinning binaries of arbitrary spin magnitudes, spin orientations, and masses during the inspiral phase. I will also describe ongoing efforts to extend these inspiral waveforms to the merger and ringdown phases.

  7. Algorithm theoretical basis for GEDI level-4A footprint above ground biomass density.

    NASA Astrophysics Data System (ADS)

    Kellner, J. R.; Armston, J.; Blair, J. B.; Duncanson, L.; Hancock, S.; Hofton, M. A.; Luthcke, S. B.; Marselis, S.; Tang, H.; Dubayah, R.

    2017-12-01

    The Global Ecosystem Dynamics Investigation is a NASA Earth-Venture-2 mission that will place a multi-beam waveform lidar instrument on the International Space Station. GEDI data will provide globally representative measurements of vertical height profiles (waveforms) and estimates of above ground carbon stocks throughout the planet's temperate and tropical regions. Here we describe the current algorithm theoretical basis for the L4A footprint above ground biomass data product. The L4A data product is above ground biomass density (AGBD, Mg · ha-1) at the scale of individual GEDI footprints (25 m diameter). Footprint AGBD is derived from statistical models that relate waveform height metrics to field-estimated above ground biomass. The field estimates are from long-term permanent plot inventories in which all free-standing woody plants greater than a diameter size threshold have been identified and mapped. We simulated GEDI waveforms from discrete-return airborne lidar data using the GEDI waveform simulator. We associated height metrics from simulated waveforms with field-estimated AGBD at 61 sites in temperate and tropical regions of North and South America, Europe, Africa, Asia and Australia. We evaluated the ability of empirical and physically-based regression and machine learning models to predict AGBD at the footprint level. Our analysis benchmarks the performance of these models in terms of site and region-specific accuracy and transferability using a globally comprehensive calibration and validation dataset.

  8. Optimal current waveforms for brushless permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Moehle, Nicholas; Boyd, Stephen

    2015-07-01

    In this paper, we give energy-optimal current waveforms for a permanent magnet synchronous motor that result in a desired average torque. Our formulation generalises previous work by including a general back-electromotive force (EMF) wave shape, voltage and current limits, an arbitrary phase winding connection, a simple eddy current loss model, and a trade-off between power loss and torque ripple. Determining the optimal current waveforms requires solving a small convex optimisation problem. We show how to use the alternating direction method of multipliers to find the optimal current in milliseconds or hundreds of microseconds, depending on the processor used, which allows the possibility of generating optimal waveforms in real time. This allows us to adapt in real time to changes in the operating requirements or in the model, such as a change in resistance with winding temperature, or even gross changes like the failure of one winding. Suboptimal waveforms are available in tens or hundreds of microseconds, allowing for quick response after abrupt changes in the desired torque. We demonstrate our approach on a simple numerical example, in which we give the optimal waveforms for a motor with a sinusoidal back-EMF, and for a motor with a more complicated, nonsinusoidal waveform, in both the constant-torque region and constant-power region.

  9. Modeling the blockage of Lg waves from 3-D variations in crustal structure

    NASA Astrophysics Data System (ADS)

    Sanborn, Christopher J.; Cormier, Vernon F.

    2018-05-01

    Comprised of S waves trapped in Earth's crust, the high frequency (2-10 Hz) Lg wave is important to discriminating earthquakes from explosions by comparing its amplitude and waveform to those of Pg and Pn waves. Lateral variations in crustal structure, including variations in crustal thickness, intrinsic attenuation, and scattering, affect the efficiency of Lg propagation and its consistency as a source discriminant at regional (200-1500 km) distances. To investigate the effects of laterally varying Earth structure on the efficiency of propagation of Lg and Pg, we apply a radiative transport algorithm to model complete, high-frequency (2-4 Hz), regional coda envelopes. The algorithm propagates packets of energy with ray theory through large-scale 3-D structure, and includes stochastic effects of multiple-scattering by small-scale heterogeneities within the large-scale structure. Source-radiation patterns are described by moment tensors. Seismograms of explosion and earthquake sources are synthesized in canonical models to predict effects on waveforms of paths crossing regions of crustal thinning (pull-apart basins and ocean/continent transitions) and thickening (collisional mountain belts), For paths crossing crustal thinning regions, Lg is amplified at receivers within the thinned region but strongly disrupted and attenuated at receivers beyond the thinned region. For paths crossing regions of crustal thickening, Lg amplitude is attenuated at receivers within the thickened region, but experiences little or no reduction in amplitude at receivers beyond the thickened region. The length of the Lg propagation within a thickened region and the complexity of over- and under-thrust crustal layers, can produce localized zones of Lg amplification or attenuation. Regions of intense scattering within laterally homogeneous models of the crust increase Lg attenuation but do not disrupt its coda shape.

  10. A long source area of the 1906 Colombia-Ecuador earthquake estimated from observed tsunami waveforms

    NASA Astrophysics Data System (ADS)

    Yamanaka, Yusuke; Tanioka, Yuichiro; Shiina, Takahiro

    2017-12-01

    The 1906 Colombia-Ecuador earthquake induced both strong seismic motions and a tsunami, the most destructive earthquake in the history of the Colombia-Ecuador subduction zone. The tsunami propagated across the Pacific Ocean, and its waveforms were observed at tide gauge stations in countries including Panama, Japan, and the USA. This study conducted slip inverse analysis for the 1906 earthquake using these waveforms. A digital dataset of observed tsunami waveforms at the Naos Island (Panama) and Honolulu (USA) tide gauge stations, where the tsunami was clearly observed, was first produced by consulting documents. Next, the two waveforms were applied in an inverse analysis as the target waveform. The results of this analysis indicated that the moment magnitude of the 1906 earthquake ranged from 8.3 to 8.6. Moreover, the dominant slip occurred in the northern part of the assumed source region near the coast of Colombia, where little significant seismicity has occurred, rather than in the southern part. The results also indicated that the source area, with significant slip, covered a long distance, including the southern, central, and northern parts of the region.[Figure not available: see fulltext.

  11. Seismic Source Locations and Parameters for Sparce Networks by Matching Observed Seismograms to Semi-Empirical Synthetic Seismograms

    NASA Astrophysics Data System (ADS)

    Marshall, M. E.; Salzberg, D. H.

    2006-05-01

    The purpose of this study is to further demonstrate the accuracy of full-waveform earthquake location method using semi-empirical synthetic waveforms and received data from two or more regional stations. To test the method, well-constrained events from southern and central California are being used as a testbed. A suite of regional California events is being processed. Our focus is on aftershocks of the Parkfield event, the Hector Mine event, and the San Simian event. In all three cases, the aftershock locations are known to within 1 km. For Parkfield, with its extremely dense local network, the events are located to within 300 m or better. We are processing the data using a grid spacing of 0.5 km in three dimensions. Often, the minimum in residual from the semi-empirical waveform matching is within one grid point of the 'ground truth' location, which is as good as can be expected. We will present the results and compare those to the event locations reported in catalogs using the dense local seismic networks that are present in California. The preliminary results indicate that matched-waveform locations are able to resolve the locations with accuracies better than GT5, and possibly approaching GT1. These results only require two stations at regional distances and differing azimuths. One of the disadvantages of the California testbed is that all of the earthquakes in a particular region typically have very similar focal mechanisms. In theory, the semi-empirical approach should allow us to generate the well-matched synthetic waveforms regardless of the varying mechanisms. To verify this aspect, we apply the technique to relocate and simulate the JUNCTION nuclear test (March 26, 1992) using waveforms from the Little Skull Mountain mainshock.

  12. Upper Mantle Velocity Structure beneath the Northeastern Philippine Sea Constrained by Waveform Modeling of P Triplicated Phases

    NASA Astrophysics Data System (ADS)

    Cho, S.; Rhie, J.; Lee, S. H.; Kim, S.; Kang, T. S.

    2017-12-01

    A study on the detailed velocity structures of the stagnant Pacific slab is important to understand the complex processes happening in the upper mantle. Although waveform modeling of P triplicated phases can reveal the detailed velocity structures especially for the discontinuities, the regions where the method can be applied are limited due to uneven distribution of earthquakes and stations. In this study, we used waveforms generated by two deep earthquakes near Izu-Bonin Trench and recorded by stations in South Korea. These event-station pairs are appropriate to study the upper mantle structures beneath the northeastern Philippine Sea, where no previous results by triplicated waveform modeling have been reported. In this region, the subducting Pacific slab seems to hit the 660 km discontinuity and become stagnant. We applied the reflectivity method to calculate waveforms and found the best fitting model by trial-and-error and manual inspection. In general, our best model is similar to M3.11, which is widely accepted 1D model for the regions where the stagnant slab exists and the 660 km discontinuity is depressed by the slab. The most noticeable feature of our model is that P wave velocities of inside and above the slab are considerably higher and lower than ones for M3.11, respectively. This specific velocity model is necessary to explain arrivals of two distinct phases identified in observed waveforms; one refracts inside the slab and the other reflects on the upper boundary of the slab. To understand the cause of the differences between our model and M3.11, further studies including thermal and mechanical modelling of the slab in this region will be recommended.

  13. Resolvability of regional density structure

    NASA Astrophysics Data System (ADS)

    Plonka, A.; Fichtner, A.

    2016-12-01

    Lateral density variations are the source of mass transport in the Earth at all scales, acting as drivers of convectivemotion. However, the density structure of the Earth remains largely unknown since classic seismic observables and gravityprovide only weak constraints with strong trade-offs. Current density models are therefore often based on velocity scaling,making strong assumptions on the origin of structural heterogeneities, which may not necessarily be correct. Our goal is to assessif 3D density structure may be resolvable with emerging full-waveform inversion techniques. We have previously quantified the impact of regional-scale crustal density structure on seismic waveforms with the conclusion that reasonably sized density variations within thecrust can leave a strong imprint on both travel times and amplitudes, and, while this can produce significant biases in velocity and Q estimates, the seismic waveform inversion for density may become feasible. In this study we performprincipal component analyses of sensitivity kernels for P velocity, S velocity, and density. This is intended to establish theextent to which these kernels are linearly independent, i.e. the extent to which the different parameters may be constrainedindependently. Since the density imprint we observe is not exclusively linked to travel times and amplitudes of specific phases,we consider waveform differences between complete seismograms. We test the method using a known smooth model of the crust and seismograms with clear Love and Rayleigh waves, showing that - as expected - the first principal kernel maximizes sensitivity to SH and SV velocity structure, respectively, and that the leakage between S velocity, P velocity and density parameter spaces is minimal in the chosen setup. Next, we apply the method to data from 81 events around the Iberian Penninsula, registered in total by 492 stations. The objective is to find a principal kernel which would maximize the sensitivity to density, potentially allowing for independent density resolution, and, as the final goal, for direct density inversion.

  14. Ultrasound tomography imaging with waveform sound speed: parenchymal changes in women undergoing tamoxifen therapy

    NASA Astrophysics Data System (ADS)

    Sak, Mark; Duric, Neb; Littrup, Peter; Sherman, Mark; Gierach, Gretchen

    2017-03-01

    Ultrasound tomography (UST) is an emerging modality that can offer quantitative measurements of breast density. Recent breakthroughs in UST image reconstruction involve the use of a waveform reconstruction as opposed to a raybased reconstruction. The sound speed (SS) images that are created using the waveform reconstruction have a much higher image quality. These waveform images offer improved resolution and contrasts between regions of dense and fatty tissues. As part of a study that was designed to assess breast density changes using UST sound speed imaging among women undergoing tamoxifen therapy, UST waveform sound speed images were then reconstructed for a subset of participants. These initial results show that changes to the parenchymal tissue can more clearly be visualized when using the waveform sound speed images. Additional quantitative testing of the waveform images was also started to test the hypothesis that waveform sound speed images are a more robust measure of breast density than ray-based reconstructions. Further analysis is still needed to better understand how tamoxifen affects breast tissue.

  15. Stratigraphic correlation of well logs using relational tree

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, J.H.; Tsay, F.; Lai, P.F.

    A heuristic waveform correlation scheme of well logs is based on a relational tree matching. Waveforms (well logs) are represented in a data structure known as a relational tree. A relational tree provides a complete description of the contextural relationships, as defined by peaks and valleys of the waveforms. The correlational scheme consists of a distance-measuring process using all possible peak attributes. First, a distance function is defined for any two nodes in terms of peak attributes. To find the best match for a given node of a given waveform, the authors measure the distance between the given node andmore » each node from a predefined subset of the second waveform. The closest one is considered to be the matched node. The process is repeated for every node in the waveform. This quantitative correlation method has been implemented and tested with well logs from the Black Warrior basin, north Alabama. Results showed that the procedure has the capability of handling the thickening and thinning strata, as well as missing intervals.« less

  16. Advanced Waveform Simulation for Seismic Monitoring

    DTIC Science & Technology

    2008-09-01

    velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radial components), Rayleigh (vertical and...ranges out to 10°, including extensive observations of crustal thinning and thickening and various Pnl complexities. Broadband modeling in 1D, 2D...existing models perform in predicting the various regional phases, Rayleigh waves, Love waves, and Pnl waves. Previous events from this Basin-and-Range

  17. Identifying isotropic events using a regional moment tensor inversion

    DOE PAGES

    Ford, Sean R.; Dreger, Douglas S.; Walter, William R.

    2009-01-17

    We calculate the deviatoric and isotropic source components for 17 explosions at the Nevada Test Site, as well as 12 earthquakes and 3 collapses in the surrounding region of the western United States, using a regional time domain full waveform inversion for the complete moment tensor. The events separate into specific populations according to their deviation from a pure double-couple and ratio of isotropic to deviatoric energy. The separation allows for anomalous event identification and discrimination between explosions, earthquakes, and collapses. Confidence regions of the model parameters are estimated from the data misfit by assuming normally distributed parameter values. Wemore » investigate the sensitivity of the resolved parameters of an explosion to imperfect Earth models, inaccurate event depths, and data with low signal-to-noise ratio (SNR) assuming a reasonable azimuthal distribution of stations. In the band of interest (0.02–0.10 Hz) the source-type calculated from complete moment tensor inversion is insensitive to velocity model perturbations that cause less than a half-cycle shift (<5 s) in arrival time error if shifting of the waveforms is allowed. The explosion source-type is insensitive to an incorrect depth assumption (for a true depth of 1 km), and the goodness of fit of the inversion result cannot be used to resolve the true depth of the explosion. Noise degrades the explosive character of the result, and a good fit and accurate result are obtained when the signal-to-noise ratio is greater than 5. We assess the depth and frequency dependence upon the resolved explosive moment. As the depth decreases from 1 km to 200 m, the isotropic moment is no longer accurately resolved and is in error between 50 and 200%. Furthermore, even at the most shallow depth the resultant moment tensor is dominated by the explosive component when the data have a good SNR.« less

  18. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature

    NASA Astrophysics Data System (ADS)

    Dai, Guohao; Kaazempur-Mofrad, Mohammad R.; Natarajan, Sripriya; Zhang, Yuzhi; Vaughn, Saran; Blackman, Brett R.; Kamm, Roger D.; García-Cardeña, Guillermo; Gimbrone, Michael A., Jr.

    2004-10-01

    Atherosclerotic lesion localization to regions of disturbed flow within certain arterial geometries, in humans and experimental animals, suggests an important role for local hemodynamic forces in atherogenesis. To explore how endothelial cells (EC) acquire functional/dysfunctional phenotypes in response to vascular region-specific flow patterns, we have used an in vitro dynamic flow system to accurately reproduce arterial shear stress waveforms on cultured human EC and have examined the effects on EC gene expression by using a high-throughput transcriptional profiling approach. The flow patterns in the carotid artery bifurcations of several normal human subjects were characterized by using 3D flow analysis based on actual vascular geometries and blood flow profiles. Two prototypic arterial waveforms, "athero-prone" and "athero-protective," were defined as representative of the wall shear stresses in two distinct regions of the carotid artery (carotid sinus and distal internal carotid artery) that are typically "susceptible" or "resistant," respectively, to atherosclerotic lesion development. These two waveforms were applied to cultured EC, and cDNA microarrays were used to analyze the differential patterns of EC gene expression. In addition, the differential effects of athero-prone vs. athero-protective waveforms were further characterized on several parameters of EC structure and function, including actin cytoskeletal organization, expression and localization of junctional proteins, activation of the NF-B transcriptional pathway, and expression of proinflammatory cytokines and adhesion molecules. These global gene expression patterns and functional data reveal a distinct phenotypic modulation in response to the wall shear stresses present in atherosclerosis-susceptible vs. atherosclerosis-resistant human arterial geometries.

  19. A computer system for analysis and transmission of spirometry waveforms using volume sampling.

    PubMed

    Ostler, D V; Gardner, R M; Crapo, R O

    1984-06-01

    A microprocessor-controlled data gathering system for telemetry and analysis of spirometry waveforms was implemented using a completely digital design. Spirometry waveforms were obtained from an optical shaft encoder attached to a rolling seal spirometer. Time intervals between 10-ml volume changes (volume sampling) were stored. The digital design eliminated problems of analog signal sampling. The system measured flows up to 12 liters/sec with 5% accuracy and volumes up to 10 liters with 1% accuracy. Transmission of 10 waveforms took about 3 min. Error detection assured that no data were lost or distorted during transmission. A pulmonary physician at the central hospital reviewed the volume-time and flow-volume waveforms and interpretations generated by the central computer before forwarding the results and consulting with the rural physician. This system is suitable for use in a major hospital, rural hospital, or small clinic because of the system's simplicity and small size.

  20. Construction and development of IGP DMC of China National Seismological Network

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Zheng, J.; Lin, P.; Yao, Z.; Liang, J.

    2011-12-01

    In 2003, CEA (China Earthquake Administration) commenced the construction of China Digital Seismological Observation Network. By the end of 2007, a new-generation digital seismological observation system had been established, which consists of 1 National Seismic Network, 32 regional seismic networks, 2 small-aperture seismic arrays, 6 volcano monitoring networks and 19 mobile seismic networks, as well as CENC (China Earthquake Network Center) DMC (Data Management Centre) and IGP (Institute of Geophysics) DMC. Since then, the seismological observation system of China has completely entered a digital time. For operational, data backup and data security considerations, the DMC at the Institute of Geophysics (IGP), CEA was established at the end of 2007. IGP DMC now receives and archives waveform data from more than 1000 permanent seismic stations around China in real-time. After the great Wenchuan and Yushu earthquakes, the real-time waveform data from 56 and 8 portable seismic stations deployed in the aftershock area are added to IGP DMC. The technical system of IGP DMC is designed to conduct data management, processing and service through the network of CEA. We developed and integrated a hardware system with high-performance servers, large-capacity disc arrays, tape library and other facilities, as well as software packages for real-time waveform data receiving, storage, quality control, processing and service. Considering the demands from researchers for large quantities of seismic event waveform data, IGP DMC adopts an innovative "user order" method to extract event waveform data. Users can specify seismic stations, epicenter distance and record length. In a short period of 3 years, IGP DMC has supplied about 350 Terabytes waveform data to over 200 researches of more than 40 academic institutions. According to incomplete statistics, over 40 papers have been published in professional journals, in which 30 papers were indexed by SCI. Now, IGP DMC has become an important platform of promoting seismological researches in China. In the future, IGP DMC will continue to improve its technical system with powerful ability of waveform data processing, management and service, and to provide better and more data service to the research community. We expect IGP DMC to become an exchange and collaboration platform for geo-scientific researchers around the world.

  1. Large-scale shear velocity structure of the upper mantle beneath Africa and surrounding regions

    NASA Astrophysics Data System (ADS)

    Legendre, Cédric; Meier, Thomas; Lebedev, Sergei; Friederich, Wolfgang; Egelados Working Group

    2010-05-01

    The automated multimode waveform inversion technique developed by Lebedev et al. (2005) was applied to available data of broadband stations in Africa and surrounding regions. It performs a fitting of the complete waveform starting from the S-wave onset to the surface wave. Assuming the location and focal mechanism of a considered earthquake as known, the first basic step is to consider each available seismogram separately and to find the velocity perturbations that can explain the filtered seismogram best. In a second step, each velocity perturbations serves as a linear constraint in an inversion for a 3D S-wave velocity model of the upper mantle. We collected data for the years from 1990 to 2006 from all permanent stations for which data were available via the data centers of ORFEUS, GEOFON and IRIS, and from others that build the Virtual European Seismological Network (VEBSN) as well as all available African stations. Just recently we were also able to add the data recorded by the temporary broadband EGELADOS network in the southern Aegean. This represents a huge dataset with all available stations in Africa and surroundings regions. The resulting models exhibit an overwhelming structural detail in relation to the size of the region considered in the inversion. They are to our knowledge the most detailed models of shear wave velocity currently available for the African upper mantle and surroundings. Most prominent features are an extremely sharp demarcation of the Dead Sea Rift System. Narrow high velocity regions follow the Hellenic arc and the Ionian trench toward the north. Low velocity zones are found at depths around 150 km in the Middle East region. The hotspots in North Africa are also clearly imaged.

  2. Improving waveform inversion using modified interferometric imaging condition

    NASA Astrophysics Data System (ADS)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen

    2017-12-01

    Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.

  3. Improving waveform inversion using modified interferometric imaging condition

    NASA Astrophysics Data System (ADS)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong; Zhang, Zhen

    2018-02-01

    Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.

  4. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  5. Advanced life systems hardware development for future missions

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An examination of the pulse formation in an externalized vessel suggests that the vessel does not behave as a simple visco-elastic tube. Pressure-pulse waveform transducers are sensitive either to the pressure present at the vessel wall or to the volume of blood filling a region of tissue. Results of comparisons between intra-and extra-vascular pressure recordings suggest that changes in vasomotor tone and transducer-vessel pressures may be the greatest contributors to the divergence of extra-vascular waveforms from intra-vascular waveforms.

  6. Onboard Processing on PWE OFA/WFC (Onboard Frequency Analyzer/Waveform Capture) aboard the ERG (ARASE) Satellite

    NASA Astrophysics Data System (ADS)

    Matsuda, S.; Kasahara, Y.; Kojima, H.; Kasaba, Y.; Yagitani, S.; Ozaki, M.; Imachi, T.; Ishisaka, K.; Kurita, S.; Ota, M.; Kumamoto, A.; Tsuchiya, F.; Yoshizumi, M.; Matsuoka, A.; Teramoto, M.; Shinohara, I.

    2017-12-01

    Exploration of energization and Radiation in Geospace (ERG) is a mission for understanding particle acceleration, loss mechanisms, and the dynamic evolution of space storms in the context of cross-energy and cross-regional coupling [Miyoshi et al., 2012]. The ERG (ARASE) satellite was launched on December 20, 2016, and successfully inserted into an orbit. The Plasma Wave Experiment (PWE) is one of the science instruments on board the ERG satellite to measure electric field and magnetic field in the inner magnetosphere. PWE consists of three sub-components, EFD (Electric Field Detector), OFA/WFC (Onboard Frequency Analyzer and Waveform Capture), and HFA (High Frequency Analyzer). Especially, OFA/WFC measures electric and magnetic field spectrum and waveform from a few Hz to 20 kHz. OFA/WFC processes signals detected by a couple of dipole wire-probe antenna (WPT) and tri-axis magnetic search coils (MSC) installed onboard the satellite. The PWE-OFA subsystem calculates and produces three kind of data; OFA-SPEC (power spectrum), OFA-MATRIX (spectrum matrix), and OFA-COMPLEX (complex spectrum). They are continuously processed 24 hours per day and all data are sent to the ground. OFA-MATRIX and OFA-COMPLEX are used for polarization analyses and direction finding of the plasma waves. The PWE-WFC subsystem measures raw (64 kHz sampled) and down-sampled (1 kHz sampled) burst waveform detected by the WPT and the MSC sensors. It activates by a command, automatic triggering, and scheduling. The initial check-out process of the PWE successfully completed, and initial data has been obtained. In this presentation, we introduce onboard processing technique on PWE OFA/WFC and its initial results.

  7. Comparison of the Cut-and-Paste and Full Moment Tensor Methods for Estimating Earthquake Source Parameters

    NASA Astrophysics Data System (ADS)

    Templeton, D.; Rodgers, A.; Helmberger, D.; Dreger, D.

    2008-12-01

    Earthquake source parameters (seismic moment, focal mechanism and depth) are now routinely reported by various institutions and network operators. These parameters are important for seismotectonic and earthquake ground motion studies as well as calibration of moment magnitude scales and model-based earthquake-explosion discrimination. Source parameters are often estimated from long-period three- component waveforms at regional distances using waveform modeling techniques with Green's functions computed for an average plane-layered models. One widely used method is waveform inversion for the full moment tensor (Dreger and Helmberger, 1993). This method (TDMT) solves for the moment tensor elements by performing a linearized inversion in the time-domain that minimizes the difference between the observed and synthetic waveforms. Errors in the seismic velocity structure inevitably arise due to either differences in the true average plane-layered structure or laterally varying structure. The TDMT method can account for errors in the velocity model by applying a single time shift at each station to the observed waveforms to best match the synthetics. Another method for estimating source parameters is the Cut-and-Paste (CAP) method. This method breaks the three-component regional waveforms into five windows: vertical and radial component Pnl; vertical and radial component Rayleigh wave; and transverse component Love waves. The CAP method performs a grid search over double-couple mechanisms and allows the synthetic waveforms for each phase (Pnl, Rayleigh and Love) to shift in time to account for errors in the Green's functions. Different filtering and weighting of the Pnl segment relative to surface wave segments enhances sensitivity to source parameters, however, some bias may be introduced. This study will compare the TDMT and CAP methods in two different regions in order to better understand the advantages and limitations of each method. Firstly, we will consider the northeastern China/Korean Peninsula region where average plane-layered structure is well known and relatively laterally homogenous. Secondly, we will consider the Middle East where crustal and upper mantle structure is laterally heterogeneous due to recent and ongoing tectonism. If time allows we will investigate the efficacy of each method for retrieving source parameters from synthetic data generated using a three-dimensional model of seismic structure of the Middle East, where phase delays are known to arise from path-dependent structure.

  8. Thickness noise of a propeller and its relation to blade sweep

    NASA Astrophysics Data System (ADS)

    Amiet, R. K.

    1988-07-01

    Linear acoustic theory is used to determine the thickness noise produced by a supersonic propeller with sharp leading and trailing edges. The method reveals details of the calculated waveform. Abrupt changes of slope in the pressure-time waveform which are produced by singular points entering or leaving the tip blade are pointed out. It is found that the behavior of the pressure-time waveform is closely related to changes in the retarded rotor shape. The results indicate that logarithmic singularities in the waveform are produced by regions on the blade edges that move towards the observer at sonic speed, with the edge normal to the line joining the source point and the observer.

  9. Modeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest structure

    NASA Astrophysics Data System (ADS)

    Kotchenova, Svetlana Y.; Shabanov, Nikolay V.; Knyazikhin, Yuri; Davis, Anthony B.; Dubayah, Ralph; Myneni, Ranga B.

    2003-08-01

    Large footprint waveform-recording laser altimeters (lidars) have demonstrated a potential for accurate remote sensing of forest biomass and structure, important for regional and global climate studies. Currently, radiative transfer analyses of lidar data are based on the simplifying assumption that only single scattering contributes to the return signal, which may lead to errors in the modeling of the lower portions of recorded waveforms in the near-infrared spectrum. In this study we apply time-dependent stochastic radiative transfer (RT) theory to model the propagation of lidar pulses through forest canopies. A time-dependent stochastic RT equation is formulated and solved numerically. Such an approach describes multiple scattering events, allows for realistic representation of forest structure including foliage clumping and gaps, simulates off-nadir and multiangular observations, and has the potential to provide better approximations of return waveforms. The model was tested with field data from two conifer forest stands (southern old jack pine and southern old black spruce) in central Canada and two closed canopy deciduous forest stands (with overstory dominated by tulip poplar) in eastern Maryland. Model-simulated signals were compared with waveforms recorded by the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) over these regions. Model simulations show good agreement with SLICER signals having a slow decay of the waveform. The analysis of the effects of multiple scattering shows that multiply scattered photons magnify the amplitude of the reflected signal, especially that originating from the lower portions of the canopy.

  10. A fast and robust method for moment tensor and depth determination of shallow seismic events in CTBT related studies.

    NASA Astrophysics Data System (ADS)

    Baker, Ben; Stachnik, Joshua; Rozhkov, Mikhail

    2017-04-01

    International Data Center is required to conduct expert technical analysis and special studies to improve event parameters and assist State Parties in identifying the source of specific event according to the protocol to the Protocol to the Comprehensive Nuclear Test Ban Treaty. Determination of seismic event source mechanism and its depth is closely related to these tasks. It is typically done through a strategic linearized inversion of the waveforms for a complete or subset of source parameters, or similarly defined grid search through precomputed Greens Functions created for particular source models. In this presentation we demonstrate preliminary results obtained with the latter approach from an improved software design. In this development we tried to be compliant with different modes of CTBT monitoring regime and cover wide range of source-receiver distances (regional to teleseismic), resolve shallow source depths, provide full moment tensor solution based on body and surface waves recordings, be fast to satisfy both on-demand studies and automatic processing and properly incorporate observed waveforms and any uncertainties a priori as well as accurately estimate posteriori uncertainties. Posterior distributions of moment tensor parameters show narrow peaks where a significant number of reliable surface wave observations are available. For earthquake examples, fault orientation (strike, dip, and rake) posterior distributions also provide results consistent with published catalogues. Inclusion of observations on horizontal components will provide further constraints. In addition, the calculation of teleseismic P wave Green's Functions are improved through prior analysis to determine an appropriate attenuation parameter for each source-receiver path. Implemented HDF5 based Green's Functions pre-packaging allows much greater flexibility in utilizing different software packages and methods for computation. Further additions will have the rapid use of Instaseis/AXISEM full waveform synthetics added to a pre-computed GF archive. Along with traditional post processing analysis of waveform misfits through several objective functions and variance reduction, we follow a probabilistic approach to assess the robustness of moment tensor solution. In a course of this project full moment tensor and depth estimates are determined for DPRK events and shallow earthquakes using a new implementation of teleseismic P waves waveform fitting. A full grid search over the entire moment tensor space is used to appropriately sample all possible solutions. A recent method by Tape & Tape (2012) to discretize the complete moment tensor space from a geometric perspective is used. Probabilistic uncertainty estimates on the moment tensor parameters provide robustness to solution.

  11. A complete waveform model for compact binaries on eccentric orbits

    NASA Astrophysics Data System (ADS)

    George, Daniel; Huerta, Eliu; Kumar, Prayush; Agarwal, Bhanu; Schive, Hsi-Yu; Pfeiffer, Harald; Chu, Tony; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela

    2017-01-01

    We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are non-spinning, and which evolve on orbits with low to moderate eccentricity. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model for black hole binaries with mass-ratios between 1 to 15 in the zero eccentricity limit over a wide range of the parameter space under consideration. We use this model to show that the gravitational wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational wave frequency of 14 Hz satisfies e0GW 150914 <= 0 . 15 and e0GW 151226 <= 0 . 1 .

  12. A Waveform Detector that Targets Template-Decorrelated Signals and Achieves its Predicted Performance: Demonstration with IMS Data

    NASA Astrophysics Data System (ADS)

    Carmichael, J.

    2016-12-01

    Waveform correlation detectors used in seismic monitoring scan multichannel data to test two competing hypotheses: that data contain (1) a noisy, amplitude-scaled version of a template waveform, or, (2) only noise. In reality, seismic wavefields include signals triggered by non-target sources (background seismicity) and target signals that are only partially correlated with the waveform template. We reform the waveform correlation detector hypothesis test to accommodate deterministic uncertainty in template/target waveform similarity and thereby derive a new detector from convex set projections (the "cone detector") for use in explosion monitoring. Our analyses give probability density functions that quantify the detectors' degraded performance with decreasing waveform similarity. We then apply our results to three announced North Korean nuclear tests and use International Monitoring System (IMS) arrays to determine the probability that low magnitude, off-site explosions can be reliably detected with a given waveform template. We demonstrate that cone detectors provide (1) an improved predictive capability over correlation detectors to identify such spatially separated explosive sources, (2) competitive detection rates, and (3) reduced false alarms on background seismicity. Figure Caption: Observed and predicted receiver operating characteristic curves for correlation statistic r(x) (left) and cone statistic s(x) (right) versus semi-empirical explosion magnitude. a: Shaded region shows range of ROC curves for r(x) that give the predicted detection performance in noise conditions recorded over 24 hrs on 8 October 2006. Superimposed stair plot shows the empirical detection performance (recorded detections/total events) averaged over 24 hr of data. Error bars indicate the demeaned range in observed detection probability over the day; means are removed to avoid risk of misinterpreting range to indicate probabilities can exceed one. b: Shaded region shows range of ROC curves for s(x) that give the predicted detection performance for the cone detector. Superimposed stair plot show observed detection performance averaged over 24 hr of data analogous to that shown in a.

  13. Locating and Modeling Regional Earthquakes with Broadband Waveform Data

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Zhu, L.; Helmberger, D.

    2003-12-01

    Retrieving source parameters of small earthquakes (Mw < 4.5), including mechanism, depth, location and origin time, relies on local and regional seismic data. Although source characterization for such small events achieves a satisfactory stage in some places with a dense seismic network, such as TriNet, Southern California, a worthy revisit to the historical events in these places or an effective, real-time investigation of small events in many other places, where normally only a few local waveforms plus some short-period recordings are available, is still a problem. To address this issue, we introduce a new type of approach that estimates location, depth, origin time and fault parameters based on 3-component waveform matching in terms of separated Pnl, Rayleigh and Love waves. We show that most local waveforms can be well modeled by a regionalized 1-D model plus different timing corrections for Pnl, Rayleigh and Love waves at relatively long periods, i.e., 4-100 sec for Pnl, and 8-100 sec for surface waves, except for few anomalous paths involving greater structural complexity, meanwhile, these timing corrections reveal similar azimuthal patterns for well-located cluster events, despite their different focal mechanisms. Thus, we can calibrate the paths separately for Pnl, Rayleigh and Love waves with the timing corrections from well-determined events widely recorded by a dense modern seismic network or a temporary PASSCAL experiment. In return, we can locate events and extract their fault parameters by waveform matching for available waveform data, which could be as less as from two stations, assuming timing corrections from the calibration. The accuracy of the obtained source parameters is subject to the error carried by the events used for the calibration. The detailed method requires a Green­_s function library constructed from a regionalized 1-D model together with necessary calibration information, and adopts a grid search strategy for both hypercenter and focal mechanism. We show that the whole process can be easily automated and routinely provide reliable source parameter estimates with a couple of broadband stations. Two applications in the Tibet Plateau and Southern California will be presented along with comparisons of results against other methods.

  14. Merging Black Holes

    NASA Technical Reports Server (NTRS)

    Centrella, John

    2009-01-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  15. Merging Black Holes

    NASA Astrophysics Data System (ADS)

    Centrella, Joan

    2009-05-01

    The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  16. Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009

    USGS Publications Warehouse

    Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie

    2011-01-01

    Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill gaps in catalogs from regional broadband networks and teleseismic networks.

  17. Full-Waveform Envelope Templates for Low Magnitude Discrimination and Yield Estimation at Local and Regional Distances with Application to the North Korean Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Yoo, S. H.

    2017-12-01

    Monitoring seismologists have successfully used seismic coda for event discrimination and yield estimation for over a decade. In practice seismologists typically analyze long-duration, S-coda signals with high signal-to-noise ratios (SNR) at regional and teleseismic distances, since the single back-scattering model reasonably predicts decay of the late coda. However, seismic monitoring requirements are shifting towards smaller, locally recorded events that exhibit low SNR and short signal lengths. To be successful at characterizing events recorded at local distances, we must utilize the direct-phase arrivals, as well as the earlier part of the coda, which is dominated by multiple forward scattering. To remedy this problem, we have developed a new hybrid method known as full-waveform envelope template matching to improve predicted envelope fits over the entire waveform and account for direct-wave and early coda complexity. We accomplish this by including a multiple forward-scattering approximation in the envelope modeling of the early coda. The new hybrid envelope templates are designed to fit local and regional full waveforms and produce low-variance amplitude estimates, which will improve yield estimation and discrimination between earthquakes and explosions. To demonstrate the new technique, we applied our full-waveform envelope template-matching method to the six known North Korean (DPRK) underground nuclear tests and four aftershock events following the September 2017 test. We successfully discriminated the event types and estimated the yield for all six nuclear tests. We also applied the same technique to the 2015 Tianjin explosions in China, and another suspected low-yield explosion at the DPRK test site on May 12, 2010. Our results show that the new full-waveform envelope template-matching method significantly improves upon longstanding single-scattering coda prediction techniques. More importantly, the new method allows monitoring seismologists to extend coda-based techniques to lower magnitude thresholds and low-yield local explosions.

  18. An Improved Cryosat-2 Sea Ice Freeboard Retrieval Algorithm Through the Use of Waveform Fitting

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Galin, N.; Studinger, M.

    2014-01-01

    We develop an empirical model capable of simulating the mean echo power cross product of CryoSat-2 SAR and SAR In mode waveforms over sea ice covered regions. The model simulations are used to show the importance of variations in the radar backscatter coefficient with incidence angle and surface roughness for the retrieval of surfaceelevation of both sea ice floes and leads. The numerical model is used to fit CryoSat-2 waveforms to enable retrieval of surface elevation through the use of look-up tables and a bounded trust region Newton least squares fitting approach. The use of a model to fit returns from sea ice regions offers advantages over currently used threshold retrackingmethods which are here shown to be sensitive to the combined effect of bandwidth limited range resolution and surface roughness variations. Laxon et al. (2013) have compared ice thickness results from CryoSat-2 and IceBridge, and found good agreement, however consistent assumptions about the snow depth and density of sea ice werenot used in the comparisons. To address this issue, we directly compare ice freeboard and thickness retrievals from the waveform fitting and threshold tracker methods of CryoSat-2 to Operation IceBridge data using a consistent set of parameterizations. For three IceBridge campaign periods from March 20112013, mean differences (CryoSat-2 IceBridge) of 0.144m and 1.351m are respectively found between the freeboard and thickness retrievals using a 50 sea ice floe threshold retracker, while mean differences of 0.019m and 0.182m are found when using the waveform fitting method. This suggests the waveform fitting technique is capable of better reconciling the seaice thickness data record from laser and radar altimetry data sets through the usage of consistent physical assumptions.

  19. Assessing waveform predictions of recent three-dimensional velocity models of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Shen, Yang

    2016-04-01

    Accurate velocity models are essential for both the determination of earthquake locations and source moments and the interpretation of Earth structures. With the increasing number of three-dimensional velocity models, it has become necessary to assess the models for accuracy in predicting seismic observations. Six models of the crustal and uppermost mantle structures in Tibet and surrounding regions are investigated in this study. Regional Rayleigh and Pn (or Pnl) waveforms from two ground truth events, including one nuclear explosion and one natural earthquake located in the study area, are simulated by using a three-dimensional finite-difference method. Synthetics are compared to observed waveforms in multiple period bands of 20-75 s for Rayleigh waves and 1-20 s for Pn/Pnl waves. The models are evaluated based on the phase delays and cross-correlation coefficients between synthetic and observed waveforms. A model generated from full-wave ambient noise tomography best predicts Rayleigh waves throughout the data set, as well as Pn/Pnl waves traveling from the Tarim Basin to the stations located in central Tibet. In general, the models constructed from P wave tomography are not well suited to predict Rayleigh waves, and vice versa. Possible causes of the differences between observed and synthetic waveforms, and frequency-dependent variations of the "best matching" models with the smallest prediction errors are discussed. This study suggests that simultaneous prediction for body and surface waves requires an integrated velocity model constructed with multiple seismic waveforms and consideration of other important properties, such as anisotropy.

  20. Identifying changes in gait waveforms following a strengthening intervention for women with knee osteoarthritis using principal components analysis.

    PubMed

    Brenneman, Elora C; Maly, Monica R

    2018-01-01

    Lower limb strengthening exercise is pivotal for the management of symptoms related to knee osteoarthritis (OA). Though improvement in clinical symptoms is well documented, concurrent changes in gait biomechanics are ill-defined. This may occur because discrete analyses miss changes following an intervention, analyses limited to the knee undermine potential mechanical trade-offs at other joints, or strengthening interventions not been designed based on biomechanical principles. The purpose of this study was to characterize differences in entire gait waveforms for sagittal plane ankle, knee, and hip angles and external moments; the knee adduction moment; and frontal plane hip angle and moment following 12-weeks of a previously designed novel lower limb strengthening program. Forty women with knee OA completed two laboratory visits: one at baseline and one immediately following intervention (follow-up). Self-report measures, strength, and gait analyses were completed at each visit. Principal components analyses were completed for sagittal angles and external moments at the ankle, knee, and hip joints, as well as frontal plane angle and moment for the hip. Participants improved self-report and strength (p≤0.004). Two significant, yet subtle differences in principal components were identified between baseline and follow-up waveforms (p<0.05) pertaining to the knee and hip sagittal external moments. The subtle changes in concert with the lack of differences in other joints and planes suggest the lower limb strengthening program does not translate to changes in the gait waveform. It is likely this program is improving symptoms without worsening mechanics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan

    2011-01-01

    "We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."

  2. Detecting Micro-seismicity and Long-duration Tremor-like Events from the Oklahoma Wavefield Experiment

    NASA Astrophysics Data System (ADS)

    Li, C.; Li, Z.; Peng, Z.; Zhang, C.; Nakata, N.

    2017-12-01

    Oklahoma has experienced abrupt increase of induced seismicity in the last decade. An important way to fully understand seismic activities in Oklahoma is to obtain more complete earthquake catalogs and detect different types of seismic events. The IRIS Community Wavefield Demonstration Experiment was deployed near Enid, Oklahoma in Summer of 2016. The dataset from this ultra-dense array provides an excellent opportunity for detecting microseismicity in that region with wavefield approaches. Here we examine continuous waveforms recorded by 3 seismic lines using local coherence for ultra-dense arrays (Li et al., 2017), which is a measure of cross-correlation of waveform at each station with its nearby stations. So far we have detected more than 5,000 events from 06/22/2016 to 07/20/2016, and majority of them are not listed on the regional catalog of Oklahoma or global catalogs, indicating that they are local events. We also identify 15-20 long-period long-duration events, some of them lasting for more than 500 s. Such events have been found at major plate-boundary faults (also known as deep tectonic tremor), as well as during hydraulic fracturing, slow-moving landslides and glaciers. Our next step is to locate these possible tremor-like events with their relative arrival times across the array and compare their occurrence times with solid-earth tides and injection histories to better understand their driving mechanisms.

  3. Glenn Goddard TDRSS Waveform 1.1.3 On-Orbit Performance Report

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.

    2014-01-01

    The objective of the Space Communications and Navigation (SCaN) Testbed is to study the development, testing, and operation of software defined radios (SDRs) and their associated appliations in the operational space environment to reduce cost and risk for future space missions. This report covers the results of on-orbit performance testing completed using the Glenn Goddard Tracking and Data Relay Satellite System (TDRSS) waveform version 1.1.3 in the ground and space environments. The Glenn Goddard TDRSS (GGT) waveform, operating on the SCaN Testbed Jet Propulsion Laboratory (JPL) SDR, is capable of a variety of data rates and frequencies, operating using Binary Phase Shift Keying (BPSK).

  4. Dictionary Approaches to Image Compression and Reconstruction

    NASA Technical Reports Server (NTRS)

    Ziyad, Nigel A.; Gilmore, Erwin T.; Chouikha, Mohamed F.

    1998-01-01

    This paper proposes using a collection of parameterized waveforms, known as a dictionary, for the purpose of medical image compression. These waveforms, denoted as phi(sub gamma), are discrete time signals, where gamma represents the dictionary index. A dictionary with a collection of these waveforms is typically complete or overcomplete. Given such a dictionary, the goal is to obtain a representation image based on the dictionary. We examine the effectiveness of applying Basis Pursuit (BP), Best Orthogonal Basis (BOB), Matching Pursuits (MP), and the Method of Frames (MOF) methods for the compression of digitized radiological images with a wavelet-packet dictionary. The performance of these algorithms is studied for medical images with and without additive noise.

  5. Estimation of source processes of the 2016 Kumamoto earthquakes from strong motion waveforms

    NASA Astrophysics Data System (ADS)

    Kubo, H.; Suzuki, W.; Aoi, S.; Sekiguchi, H.

    2016-12-01

    In this study, we estimated the source processes for two large events of the 2016 Kumamoto earthquakes (the M7.3 event at 1:25 JST on April 16, 2016 and the M6.5 event at 21:26 JST on April 14, 2016) from strong motion waveforms using multiple-time-window linear waveform inversion (Hartzell and Heaton 1983; Sekiguchi et al. 2000). Based on the observations of surface ruptures, the spatial distribution of aftershocks, and the geodetic data, a realistic curved fault model was developed for the source-process analysis of the M7.3 event. The source model obtained for the M7.3 event with a seismic moment of 5.5 × 1019 Nm (Mw 7.1) had two significant ruptures. One rupture propagated toward the northeastern shallow region at 4 s after rupture initiation, and continued with large slips to approximately 16 s. This rupture caused a large slip region with a peak slip of 3.8 m that was located 10-30 km northeast of the hypocenter and reached the caldera of Mt. Aso. The contribution of the large slip region to the seismic waveforms was large at many stations. Another rupture propagated toward the surface from the hypocenter at 2-6 s, and then propagated toward the northeast along the near surface at 6-10 s. This rupture largely contributed to the seismic waveforms at the stations south of the fault and close to the hypocenter. A comparison with the results obtained using a single fault plane model demonstrate that the use of the curved fault model led to improved waveform fit at the stations south of the fault. The extent of the large near-surface slips in this source model for the M7.3 event is roughly consistent with the extent of the observed large surface ruptures. The source model obtained for the M6.5 event with a seismic moment of 1.7 × 1018 Nm (Mw 6.1) had large slips in the region around the hypocenter and in the shallow region north-northeast of the hypocenter, both of which had a maximum slip of 0.7 m. The rupture of the M6.5 event propagated from the former region to the latter region at 1-6 s after rupture initiation, which is expected to have caused the strong ground motions due to the forward directivity effect at KMMH16 and surroundings. The occurrence of the near-surface large slips in this source model for the M6.5 event is consistent with the appearance of small surface cracks, which were observed by some residents.

  6. Nonlinear 1D and 2D waveform inversions of SS precursors and their applications in mantle seismic imaging

    NASA Astrophysics Data System (ADS)

    Dokht, R.; Gu, Y. J.; Sacchi, M. D.

    2016-12-01

    Seismic velocities and the topography of mantle discontinuities are crucial for the understanding of mantle structure, dynamics and mineralogy. While these two observables are closely linked, the vast majority of high-resolution seismic images are retrieved under the assumption of horizontally stratified mantle interfaces. This conventional correction-based process could lead to considerable errors due to the inherent trade-off between velocity and discontinuity depth. In this study, we introduce a nonlinear joint waveform inversion method that simultaneously recovers discontinuity depths and seismic velocities using the waveforms of SS precursors. Our target region is the upper mantle and transition zone beneath Northeast Asia. In this region, the inversion outcomes clearly delineate a westward dipping high-velocity structure in association with the subducting Pacific plate. Above the flat part of the slab west of the Japan sea, our results show a shear wave velocity reduction of 1.5% in the upper mantle and 10-15 km depression of the 410 km discontinuity beneath the Changbaishan volcanic field. We also identify the maximum correlation between shear velocity and transition zone thickness at an approximate slab dip of 30 degrees, which is consistent with previously reported values in this region.To validate the results of the 1D waveform inversion of SS precursors, we discretize the mantle beneath the study region and conduct a 2D waveform tomographic survey using the same nonlinear approach. The problem is simplified by adopting the discontinuity depths from the 1D inversion and solving only for perturbations in shear velocities. The resulting models obtained from the 1D and 2D approaches are self-consistent. Low-velocities beneath the Changbai intraplate volcano likely persist to a depth of 500 km. Collectively, our seismic observations suggest that the active volcanoes in eastern China may be fueled by a hot thermal anomaly originating from the mantle transition zone.

  7. Path-Specific Effects on Shear Motion Generation Using LargeN Array Waveform Data at the Source Physics Experiment (SPE) Site

    NASA Astrophysics Data System (ADS)

    Pitarka, A.; Mellors, R. J.; Walter, W. R.

    2016-12-01

    Depending on emplacement conditions and underground structure, and contrary to what is theoretically predicted for isotropic sources, recorded local, regional, and teleseismic waveforms from chemical explosions often contain shear waves with substantial energy. Consequently, the transportability of empirical techniques for yield estimation and source discrimination to regions with complex underground structure becomes problematic. Understanding the mechanisms of generation and conversion of shear waves caused by wave path effects during explosions can help improve techniques used in nuclear explosion monitoring. We used seismic data from LargeN, a dense array of three and one component geophones, to analyze far-field waveforms from the underground chemical explosion recorded during shot 5 of the Source Physics Experiment (SPE-5) at the Nevada National Security Site. Combined 3D elastic wave propagation modeling and frequency-wavenumber beam-forming on small arrays containing selected stations were used to detect and identify several wave phases, including primary and secondary S waves, and Rgwaves, and determine their direction of propagation. We were able to attribute key features of the waveforms, and wave phases to either source processes or propagation path effects, such as focusing and wave conversions. We also found that coda waves were more likely generated by path effects outside the source region, rather than by interaction of source generated waves with the emplacement structure. Waveform correlation and statistical analysis were performed to estimate average correlation length of small-scale heterogeneity in the upper sedimentary layers of the Yucca Flat basin in the area covered by the array. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- 699180

  8. Improvements in mode-based waveform modeling and application to Eurasian velocity structure

    NASA Astrophysics Data System (ADS)

    Panning, M. P.; Marone, F.; Kim, A.; Capdeville, Y.; Cupillard, P.; Gung, Y.; Romanowicz, B.

    2006-12-01

    We introduce several recent improvements to mode-based 3D and asymptotic waveform modeling and examine how to integrate them with numerical approaches for an improved model of upper-mantle structure under eastern Eurasia. The first step in our approach is to create a large-scale starting model including shear anisotropy using Nonlinear Asymptotic Coupling Theory (NACT; Li and Romanowicz, 1995), which models the 2D sensitivity of the waveform to the great-circle path between source and receiver. We have recently improved this approach by implementing new crustal corrections which include a non-linear correction for the difference between the average structure of several large regions from the global model with further linear corrections to account for the local structure along the path between source and receiver (Marone and Romanowicz, 2006; Panning and Romanowicz, 2006). This model is further refined using a 3D implementation of Born scattering (Capdeville, 2005). We have made several recent improvements to this method, in particular introducing the ability to represent perturbations to discontinuities. While the approach treats all sensitivity as linear perturbations to the waveform, we have also experimented with a non-linear modification analogous to that used in the development of NACT. This allows us to treat large accumulated phase delays determined from a path-average approximation non-linearly, while still using the full 3D sensitivity of the Born approximation. Further refinement of shallow regions of the model is obtained using broadband forward finite-difference waveform modeling. We are also integrating a regional Spectral Element Method code into our tomographic modeling, allowing us to move beyond many assumptions inherent in the analytic mode-based approaches, while still taking advantage of their computational efficiency. Illustrations of the effects of these increasingly sophisticated steps will be presented.

  9. Non-contact hemodynamic imaging reveals the jugular venous pulse waveform

    NASA Astrophysics Data System (ADS)

    Amelard, Robert; Hughson, Richard L.; Greaves, Danielle K.; Pfisterer, Kaylen J.; Leung, Jason; Clausi, David A.; Wong, Alexander

    2017-01-01

    Cardiovascular monitoring is important to prevent diseases from progressing. The jugular venous pulse (JVP) waveform offers important clinical information about cardiac health, but is not routinely examined due to its invasive catheterisation procedure. Here, we demonstrate for the first time that the JVP can be consistently observed in a non-contact manner using a photoplethysmographic imaging system. The observed jugular waveform was strongly negatively correlated to the arterial waveform (r = -0.73 ± 0.17), consistent with ultrasound findings. Pulsatile venous flow was observed over a spatially cohesive region of the neck. Critical inflection points (c, x, v, y waves) of the JVP were observed across all participants. The anatomical locations of the strongest pulsatile venous flow were consistent with major venous pathways identified through ultrasound.

  10. Non-contact hemodynamic imaging reveals the jugular venous pulse waveform

    PubMed Central

    Amelard, Robert; Hughson, Richard L.; Greaves, Danielle K.; Pfisterer, Kaylen J.; Leung, Jason; Clausi, David A.; Wong, Alexander

    2017-01-01

    Cardiovascular monitoring is important to prevent diseases from progressing. The jugular venous pulse (JVP) waveform offers important clinical information about cardiac health, but is not routinely examined due to its invasive catheterisation procedure. Here, we demonstrate for the first time that the JVP can be consistently observed in a non-contact manner using a photoplethysmographic imaging system. The observed jugular waveform was strongly negatively correlated to the arterial waveform (r = −0.73 ± 0.17), consistent with ultrasound findings. Pulsatile venous flow was observed over a spatially cohesive region of the neck. Critical inflection points (c, x, v, y waves) of the JVP were observed across all participants. The anatomical locations of the strongest pulsatile venous flow were consistent with major venous pathways identified through ultrasound. PMID:28065933

  11. Using finite-difference waveform modeling to better understand rupture kinematics and path effects in ground motion modeling: an induced seismicity case study at the Groningen Gas field

    NASA Astrophysics Data System (ADS)

    Zurek, B.; Burnett, W. A.; deMartin, B.

    2017-12-01

    Ground motion models (GMMs) have historically been used as input in the development of probabilistic seismic hazard analysis (PSHA) and as an engineering tool to assess risk in building design. Generally these equations are developed from empirical analysis of observations that come from fairly complete catalogs of seismic events. One of the challenges when doing a PSHA analysis in a region where earthquakes are anthropogenically induced is that the catalog of observations is not complete enough to come up with a set of equations to cover all expected outcomes. For example, PSHA analysis at the Groningen gas field, an area of known induced seismicity, requires estimates of ground motions from tremors up to a maximum magnitude of 6.5 ML. Of the roughly 1300 recordable earthquakes the maximum observed magnitude to date has been 3.6ML. This paper is part of a broader study where we use a deterministic finite-difference wave-form modeling tool to compliment the traditional development of GMMs. Of particular interest is the sensitivity of the GMM's to uncertainty in the rupture process and how this scales to larger magnitude events that have not been observed. A kinematic fault rupture model is introduced to our waveform simulations to test the sensitivity of the GMMs to variability in the fault rupture process that is physically consistent with observations. These tests will aid in constraining the degree of variability in modeled ground motions due to a realistic range of fault parameters and properties. From this study it is our conclusion that in order to properly capture the uncertainty of the GMMs with magnitude up-scaling one needs to address the impact of uncertainty in the near field (<10km) imposed by the lack of constraint on the finite rupture model. By quantifying the uncertainty back to physical principles it is our belief that it can be better constrained and thus reduce exposure to risk. Further, by investigating and constraining the range of fault rupture scenarios and earthquake magnitudes on ground motion models, hazard and risk analysis in regions with incomplete earthquake catalogs, such as the Groningen gas field, can be better understood.

  12. Evaluating coastal sea surface heights based on a novel sub-waveform approach using sparse representation and conditional random fields

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Roscher, Ribana; Kusche, Jürgen

    2016-04-01

    Satellite radar altimeters allow global monitoring of mean sea level changes over the last two decades. However, coastal regions are less well observed due to influences on the returned signal energy by land located inside the altimeter footprint. The altimeter emits a radar pulse, which is reflected at the nadir-surface and measures the two-way travel time, as well as the returned energy as a function of time, resulting in a return waveform. Over the open ocean the waveform shape corresponds to a theoretical model which can be used to infer information on range corrections, significant wave height or wind speed. However, in coastal areas the shape of the waveform is significantly influenced by return signals from land, located in the altimeter footprint, leading to peaks which tend to bias the estimated parameters. Recently, several approaches dealing with this problem have been published, including utilizing only parts of the waveform (sub-waveforms), estimating the parameters in two steps or estimating additional peak parameters. We present a new approach in estimating sub-waveforms using conditional random fields (CRF) based on spatio-temporal waveform information. The CRF piece-wise approximates the measured waveforms based on a pre-derived dictionary of theoretical waveforms for various combinations of the geophysical parameters; neighboring range gates are likely to be assigned to the same underlying sub-waveform model. Depending on the choice of hyperparameters in the CRF estimation, the classification into sub-waveforms can either be more fine or coarse resulting in multiple sub-waveform hypotheses. After the sub-waveforms have been detected, existing retracking algorithms can be applied to derive water heights or other desired geophysical parameters from particular sub-waveforms. To identify the optimal heights from the multiple hypotheses, instead of utilizing a known reference height, we apply a Dijkstra-algorithm to find the "shortest path" of all possible heights. We apply our approach to Jason-2 data in different coastal areas, such as the Bangladesh coast or in the North Sea and compare our sea surface heights to various existing retrackers. Using the sub-waveform approach, we are able to derive meaningful water heights up to a few kilometers off the coast, where conventional retrackers, such as the standard ocean retracker, no longer provide useful data.

  13. Land Covers Classification Based on Random Forest Method Using Features from Full-Waveform LIDAR Data

    NASA Astrophysics Data System (ADS)

    Ma, L.; Zhou, M.; Li, C.

    2017-09-01

    In this study, a Random Forest (RF) based land covers classification method is presented to predict the types of land covers in Miyun area. The returned full-waveforms which were acquired by a LiteMapper 5600 airborne LiDAR system were processed, including waveform filtering, waveform decomposition and features extraction. The commonly used features that were distance, intensity, Full Width at Half Maximum (FWHM), skewness and kurtosis were extracted. These waveform features were used as attributes of training data for generating the RF prediction model. The RF prediction model was applied to predict the types of land covers in Miyun area as trees, buildings, farmland and ground. The classification results of these four types of land covers were obtained according to the ground truth information acquired from CCD image data of the same region. The RF classification results were compared with that of SVM method and show better results. The RF classification accuracy reached 89.73% and the classification Kappa was 0.8631.

  14. Seismic waveform inversion best practices: regional, global and exploration test cases

    NASA Astrophysics Data System (ADS)

    Modrak, Ryan; Tromp, Jeroen

    2016-09-01

    Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.

  15. Wenchuan Event Detection And Localization Using Waveform Correlation Coupled With Double Difference

    NASA Astrophysics Data System (ADS)

    Slinkard, M.; Heck, S.; Schaff, D. P.; Young, C. J.; Richards, P. G.

    2014-12-01

    The well-studied Wenchuan aftershock sequence triggered by the May 12, 2008, Ms 8.0, mainshock offers an ideal test case for evaluating the effectiveness of using waveform correlation coupled with double difference relocation to detect and locate events in a large aftershock sequence. We use Sandia's SeisCorr detector to process 3 months of data recorded by permanent IRIS and temporary ASCENT stations using templates from events listed in a global catalog to find similar events in the raw data stream. Then we take the detections and relocate them using the double difference method. We explore both the performance that can be expected with using just a small number of stations, and, the benefits of reprocessing a well-studied sequence such as this one using waveform correlation to find even more events. We benchmark our results against previously published results describing relocations of regional catalog data. Before starting this project, we had examples where with just a few stations at far-regional distances, waveform correlation combined with double difference did and impressive job of detection and location events with precision at the few hundred and even tens of meters level.

  16. Initial rupture of earthquakes in the 1995 Ridgecrest, California sequence

    USGS Publications Warehouse

    Mori, J.; Kanamori, H.

    1996-01-01

    Close examination of the P waves from earthquakes ranging in size across several orders of magnitude shows that the shape of the initiation of the velocity waveforms is independent of the magnitude of the earthquake. A model in which earthquakes of all sizes have similar rupture initiation can explain the data. This suggests that it is difficult to estimate the eventual size of an earthquake from the initial portion of the waveform. Previously reported curvature seen in the beginning of some velocity waveforms can be largely explained as the effect of anelastic attenuation; thus there is little evidence for a departure from models of simple rupture initiation that grow dynamically from a small region. The results of this study indicate that any "precursory" radiation at seismic frequencies must emanate from a source region no larger than the equivalent of a M0.5 event (i.e. a characteristic length of ???10 m). The size of the nucleation region for magnitude 0 to 5 earthquakes thus is not resolvable with the standard seismic instrumentation deployed in California. Copyright 1996 by the American Geophysical Union.

  17. Exploring Large-Scale Cross-Correlation for Teleseismic and Regional Seismic Event Characterization

    NASA Astrophysics Data System (ADS)

    Dodge, Doug; Walter, William; Myers, Steve; Ford, Sean; Harris, Dave; Ruppert, Stan; Buttler, Dave; Hauk, Terri

    2013-04-01

    The decrease in costs of both digital storage space and computation power invites new methods of seismic data processing. At Lawrence Livermore National Laboratory(LLNL) we operate a growing research database of seismic events and waveforms for nuclear explosion monitoring and other applications. Currently the LLNL database contains several million events associated with tens of millions of waveforms at thousands of stations. We are making use of this database to explore the power of seismic waveform correlation to quantify signal similarities, to discover new events not in catalogs, and to more accurately locate events and identify source types. Building on the very efficient correlation methodologies of Harris and Dodge (2011) we computed the waveform correlation for event pairs in the LLNL database in two ways. First we performed entire waveform cross-correlation over seven distinct frequency bands. The correlation coefficient exceeds 0.6 for more than 40 million waveform pairs for several hundred thousand events at more than a thousand stations. These correlations reveal clusters of mining events and aftershock sequences, which can be used to readily identify and locate events. Second we determine relative pick times by correlating signals in time windows for distinct seismic phases. These correlated picks are then used to perform very high accuracy event relocations. We are examining the percentage of events that correlate as a function of magnitude and observing station distance in selected high seismicity regions. Combining these empirical results and those using synthetic data, we are working to quantify relationships between correlation and event pair separation (in epicenter and depth) as well as mechanism differences. Our exploration of these techniques on a large seismic database is in process and we will report on our findings in more detail at the meeting.

  18. Exploring Large-Scale Cross-Correlation for Teleseismic and Regional Seismic Event Characterization

    NASA Astrophysics Data System (ADS)

    Dodge, D.; Walter, W. R.; Myers, S. C.; Ford, S. R.; Harris, D.; Ruppert, S.; Buttler, D.; Hauk, T. F.

    2012-12-01

    The decrease in costs of both digital storage space and computation power invites new methods of seismic data processing. At Lawrence Livermore National Laboratory (LLNL) we operate a growing research database of seismic events and waveforms for nuclear explosion monitoring and other applications. Currently the LLNL database contains several million events associated with tens of millions of waveforms at thousands of stations. We are making use of this database to explore the power of seismic waveform correlation to quantify signal similarities, to discover new events not in catalogs, and to more accurately locate events and identify source types. Building on the very efficient correlation methodologies of Harris and Dodge (2011) we computed the waveform correlation for event pairs in the LLNL database in two ways. First we performed entire waveform cross-correlation over seven distinct frequency bands. The correlation coefficient exceeds 0.6 for more than 40 million waveform pairs for several hundred thousand events at more than a thousand stations. These correlations reveal clusters of mining events and aftershock sequences, which can be used to readily identify and locate events. Second we determine relative pick times by correlating signals in time windows for distinct seismic phases. These correlated picks are then used to perform very high accuracy event relocations. We are examining the percentage of events that correlate as a function of magnitude and observing station distance in selected high seismicity regions. Combining these empirical results and those using synthetic data, we are working to quantify relationships between correlation and event pair separation (in epicenter and depth) as well as mechanism differences. Our exploration of these techniques on a large seismic database is in process and we will report on our findings in more detail at the meeting.

  19. Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer

    NASA Astrophysics Data System (ADS)

    Guevremont, Roger; Purves, Randy W.

    1999-02-01

    The focusing of ions at atmospheric pressure and room temperature in a high-field asymmetric waveform ion mobility spectrometer (FAIMS) has been investigated. FAIMS operates with the application of a high-voltage, high-frequency asymmetric waveform across parallel plates. This establishes conditions wherein an ion migrates towards one of the plates because of a difference in the ion mobility at the low and high electric field conditions during application of the waveform. The migration can be stopped by applying a dc compensation voltage (CV) which serves to create a "balanced" condition wherein the ion experiences no net transverse motion. This method has also been called "transverse field compensation ion mobility spectrometry" and "field ion spectrometry®." If this experiment is conducted using a device with cylindrical geometry, rather than with flat plates, an ion focusing region can exist in the annular space between the two concentric cylinders. Ion trajectory modeling showed that the behavior of the ions in the cylindrical geometry FAIMS analyzer was unlike any previously described atmospheric pressure ion optics system. The ions appeared to be trapped, or focused by being caught between two opposing forces. Requirements for establishing this focus for a given ion were identified: the applied waveform must be asymmetric, the electric field must be sufficiently high that the mobility of the ion deviates from its low-field value during the high-voltage portion of the asymmetric waveform, and finally, the electric field must be nonuniform in space (e.g., cylindrical or spherical geometry). Experimental observations with a prototype FAIMS device, which was designed to measure the radial distribution of ions in the FAIMS analyzer region, have confirmed the results of ion trajectory modeling.

  20. Improved Detection of Local Earthquakes in the Vienna Basin (Austria), using Subspace Detectors

    NASA Astrophysics Data System (ADS)

    Apoloner, Maria-Theresia; Caffagni, Enrico; Bokelmann, Götz

    2016-04-01

    The Vienna Basin in Eastern Austria is densely populated and highly-developed; it is also a region of low to moderate seismicity, yet the seismological network coverage is relatively sparse. This demands improving our capability of earthquake detection by testing new methods, enlarging the existing local earthquake catalogue. This contributes to imaging tectonic fault zones for better understanding seismic hazard, also through improved earthquake statistics (b-value, magnitude of completeness). Detection of low-magnitude earthquakes or events for which the highest amplitudes slightly exceed the signal-to-noise-ratio (SNR), may be possible by using standard methods like the short-term over long-term average (STA/LTA). However, due to sparse network coverage and high background noise, such a technique may not detect all potentially recoverable events. Yet, earthquakes originating from the same source region and relatively close to each other, should be characterized by similarity in seismic waveforms, at a given station. Therefore, waveform similarity can be exploited by using specific techniques such as correlation-template based (also known as matched filtering) or subspace detection methods (based on the subspace theory). Matching techniques basically require a reference or template event, usually characterized by high waveform coherence in the array receivers, and high SNR, which is cross-correlated with the continuous data. Instead, subspace detection methods overcome in principle the necessity of defining template events as single events, but use a subspace extracted from multiple events. This approach theoretically should be more robust in detecting signals that exhibit a strong variability (e.g. because of source or magnitude). In this study we scan the continuous data recorded in the Vienna Basin with a subspace detector to identify additional events. This will allow us to estimate the increase of the seismicity rate in the local earthquake catalogue, therefore providing an evaluation of network performance and efficiency of the method.

  1. Waveform generation in the weakly electric fish Gymnotus coropinae (Hoedeman): the electric organ and the electric organ discharge.

    PubMed

    Castelló, María E; Rodríguez-Cattáneo, Alejo; Aguilera, Pedro A; Iribarne, Leticia; Pereira, Ana Carolina; Caputi, Angel A

    2009-05-01

    This article deals with the electric organ and its discharge in Gymnotus coropinae, a representative species of one of the three main clades of the genus. Three regions with bilateral symmetry are described: (1) subopercular (medial and lateral columns of complex shaped electrocytes); (2) abdominal (medial and lateral columns of cuboidal and fusiform electrocytes); and (3) main [four columns, one dorso-lateral (containing fusiform electrocytes) and three medial (containing cuboidal electrocytes)]. Subopercular electrocytes are all caudally innervated whereas two of the medial subopercular ones are also rostrally innervated. Fusiform electrocytes are medially innervated at the abdominal portion, and at their rostral and caudal poles at the main portion. Cuboidal electrocytes are always caudally innervated. The subopercular portion generates a slow head-negative wave (V(1r)) followed by a head-positive spike (V(3r)). The abdominal and main portions generate a fast tetra-phasic complex (V(2345ct)). Since subopercular components prevail in the near field and the rest in the far field, time coincidence of V(3r) with V(2) leads to different waveforms depending on the position of the receiver. This confirms the splitting hypothesis of communication and exploration channels based on the different timing, frequency band and reach of the regional waveforms. The following hypothesis is compatible with the observed anatomo-functional organization: V(1r) corresponds to the rostral activation of medial subopercular electrocytes and V(3r) to the caudal activation of all subopercular electrocytes; V(2), and part of V(3ct), corresponds to the successive activation of the rostral and caudal poles of dorso-lateral fusiform electrocytes; and V(345ct) is initiated in the caudal face of cuboidal electrocytes by synaptic activation (V(3ct)) and it is completed (V(45ct)) by the successive activation of rostral and caudal faces by the action currents evoked in the opposite face.

  2. Accuracy of Binary Black Hole waveforms for Advanced LIGO searches

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Chu, Tony; Fong, Heather; Brown, Duncan; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    Coalescing binaries of compact objects are flagship sources for the first direct detection of gravitational waves with LIGO-Virgo observatories. Matched-filtering based detection searches aimed at binaries of black holes will use aligned spin waveforms as filters, and their efficiency hinges on the accuracy of the underlying waveform models. A number of gravitational waveform models are available in literature, e.g. the Effective-One-Body, Phenomenological, and traditional post-Newtonian ones. While Numerical Relativity (NR) simulations provide for the most accurate modeling of gravitational radiation from compact binaries, their computational cost limits their application in large scale searches. In this talk we assess the accuracy of waveform models in two regions of parameter space, which have only been explored cursorily in the past: the high mass-ratio regime as well as the comparable mass-ratio + high spin regime.s Using the SpEC code, six q = 7 simulations with aligned-spins and lasting 60 orbits, and tens of q ∈ [1,3] simulations with high black hole spins were performed. We use them to study the accuracy and intrinsic parameter biases of different waveform families, and assess their viability for Advanced LIGO searches.

  3. Apparatus Characterizes Transient Voltages in Real Time

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    The figure shows a prototype of a relatively inexpensive electronic monitoring apparatus that measures and records selected parameters of lightning-induced transient voltages on communication and power cables. The selected parameters, listed below, are those most relevant to the ability of lightning-induced transients to damage electronic equipment. This apparatus bridges a gap between some traditional transient-voltage recorders that record complete waveforms and other traditional transient-voltage recorders that record only peak values: By recording the most relevant parameters and only those parameters this apparatus yields more useful information than does a traditional peak-value (only) recorder while imposing much smaller data-storage and data-transmission burdens than does a traditional complete-waveform recorder. Also, relative to a complete-waveform recorder, this apparatus is more reliable and can be built at lower cost because it contains fewer electronic components. The transients generated by sources other than lightning tend to have frequency components well below 1 MHz. Most commercial transient recorders can detect and record such transients, but cannot respond rapidly enough for recording lightning-induced transient voltage peaks, which can rise from 10 to 90 percent of maximum amplitude in a fraction of a microsecond. Moreover, commercial transient recorders cannot rearm themselves rapidly enough to respond to the multiple transients that occur within milliseconds of each other on some lightning strikes. One transient recorder, designed for Kennedy Space Center earlier [ Fast Transient-Voltage Recorder (KSC- 11991), NASA Tech Briefs, Vol. 23, No. 10, page 6a (October 1999)], is capable of sampling transient voltages at peak values up to 50 V in four channels at a rate of 20 MHz. That recorder contains a trigger circuit that continuously compares the amplitudes of the signals on four channels to a preset triggering threshold. When a trigger signal is received, a volatile memory is filled with data for a total time of 200 ms. After the data are transferred to nonvolatile memory, the recorder rearms itself within 400 ms to enable recording of subsequent transients. Unfortunately, the recorded data must be retrieved through a serial communication link. Depending on the amount of data recorded, the memory can be filled before retrieval is completed. Although large amounts of data are recorded and retrieved, only a small part of the information (the selected parameters) is usually required. The present transient-voltage recorder provides the required information, without incurring the overhead associated with the recording, storage, and retrieval of complete transient-waveform data. In operation, this apparatus processes transient voltage waveforms in real time to extract and record the selected parameters. An analog-to-digital converter that operates at a speed of as much as 100 mega-samples per second is used to sample a transient waveform. A real-time comparator and peak detector are implemented by use of fast field-programmable gate arrays.

  4. Ventilator waveforms on anesthesia machine: a simple tool for intraoperative mapping of phrenic nerve and mid-cervical roots.

    PubMed

    Georgoulis, George; Papagrigoriou, Eirini; Sindou, Marc

    2015-12-01

    A crucial aspect of surgery on the supraclavicular region, lateral neck, and mid-cervical vertebral region is the identification and sparing of the phrenic nerve and cervical (C4) root that are responsible for diaphragmatic innervation. Therefore intraoperative mapping of these nerve structures can be useful for difficult cases. Electrical stimulation with simultaneous observation of the ventilator waveforms of the anesthesia machine provides an effective method for the precise intraoperative mapping of these structures. In the literature, there is only one publication reporting the use of one of the waveforms (capnography) for this purpose. Capnography and pressure-time waveforms, two mandatory curves in anesthesiological monitoring, were studied under electrical stimulation of the phrenic nerve (one patient) and the C4 root (eight patients). The aim was to detect changes that would verify diaphragmatic contraction. No modifications in anesthesia or surgery and no additional maneuvers were required. In all patients, stimulation was followed by identifiable changes in the two waveforms, compatible with diaphragmatic contraction: acute reduction in amplitude on capnography and repetitive saw-like elevations on pressure-time curve. Frequency of patterns on pressure-time curve coincided with the frequency of stimulation; therefore the two recordings were complementary. This simple method proved effective in identifying the neural structures responsible for diaphragmatic function. We therefore suggest that it should be employed in the various types of surgery where these structures are at risk.

  5. Long-period GPS waveforms. What can GPS bring to Earth seismic velocity models?

    NASA Astrophysics Data System (ADS)

    Kelevitz, Krisztina; Houlié, Nicolas; Boschi, Lapo; Nissen-Meyer, Tarje; Giardini, Domenico

    2014-05-01

    It is now commonly admitted that high rate GPS observations can provide reliable surface displacement waveforms (Cervelli, et al., 2001; Langbein, et al., 2006; Houlié, et al., 2006; Houlié et al., 2011). For long-period (T>5s) transients, it was shown that GPS and seismometer (STS-1) displacements are in agreement at least for vertical component (Houlié, et al., Sci. Rep. 2011). We propose here to supplement existing long-period seismic networks with high rate (>= 1Hz) GPS data in order to improve the resolution of global seismic velocity models. GPS measurements are providing a wide range of frequencies, going beyond the range of STS-1 in the low frequency end. Nowadays, almost 10.000 GPS receivers would be able to record data at 1 Hz with 3000+ stations already streaming data in Real-Time (RT). The reasons for this quick expansion are the price of receivers, their low maintenance, and the wide range of activities they can be used for (transport, science, public apps, navigation, etc.). We are presenting work completed on the 1Hz GPS records of the Hokkaido earthquake (25th of September, 2003, Mw=8.3). 3D Waveforms have been computed with an improved, stabilised inversion algorithm in order to constrain the ground motion history. Through the better resolution of inversion of the GPS phase observations, we determine displacement waveforms of frequencies ranging from 0.77 mHz to 330 mHz for a selection of sites. We compare inverted GPS waveforms with STS-1 waveforms and synthetic waveforms computed using 3D global wave propagation with SPECFEM. At co-located sites (STS-1 and GPS located within 10km) the agreement is good for the vertical component between seismic (both real and synthetic) and GPS waveforms.

  6. Velocity Structure Determination Through Seismic Waveform Modeling and Time Deviations

    NASA Astrophysics Data System (ADS)

    Savage, B.; Zhu, L.; Tan, Y.; Helmberger, D. V.

    2001-12-01

    Through the use of seismic waveforms recorded by TriNet, a dataset of earthquake focal mechanisms and deviations (time shifts) relative to a standard model facilitates the investigation of the crust and uppermost mantle of southern California. The CAP method of focal mechanism determination, in use by TriNet on a routine basis, provides time shifts for surface waves and Pnl arrivals independently relative to the reference model. These shifts serve as initial data for calibration of local and regional seismic paths. Time shifts from the CAP method are derived by splitting the Pnl section of the waveform, the first arriving Pn to just before the arrival of the S wave, from the much slower surface waves then cross-correlating the data with synthetic waveforms computed from a standard model. Surface waves interact with the entire crust, but the upper crust causes the greatest effect. Whereas, Pnl arrivals sample the deeper crust, upper mantle, and source region. This natural division separates the upper from lower crust for regional calibration and structural modeling and allows 3-D velocity maps to be created using the resulting time shifts. Further examination of Pnl and other arrivals which interact with the Moho illuminate the complex nature of this boundary. Initial attempts at using the first 10 seconds of the Pnl section to determine upper most mantle structure have proven insightful. Two large earthquakes north of southern California in Nevada and Mammoth Lakes, CA allow the creation of record sections from 200 to 600 km. As the paths swing from east to west across southern California, simple 1-D models turn into complex structure, dramatically changing the waveform character. Using finite difference models to explain the structure, we determine that a low velocity zone is present at the base of the crust and extends to 100 km in depth. Velocity variations of 5 percent of the mantle in combination with steeply sloping edges produces complex waveform variations. Characteristics of this complex propagation appear from the southern Sierra Nevada Mountains, in the west, to Death Valley in the east. The structure does not cross the Garlock fault to the south, but we are unsure of the structures northern extent.

  7. Making and Testing Hybrid Gravitational Waves from Colliding Black Holes and Neutron Stars

    NASA Astrophysics Data System (ADS)

    Garcia, Alyssa; Lovelace, Geoffrey; SXS Collaboration

    2016-03-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) is a detector that is currently working to observe gravitational waves (GW) from astronomical sources, such as colliding black holes and neutron stars, which are among LIGO's most promising sources. Observing as many waves as possible requires accurate predictions of what the waves look like, which are only possible with numerical simulations. In this poster, I will present results from new simulations of colliding black holes made using the Spectral Einstein Code (SpEC). In particular, I will present results for extending new and existing waveforms and using an open-source library. To construct a waveform that spans the frequency range where LIGO is most sensitive, we combine inexpensive, post-Newtonian approximate waveforms (valid far from merger) and numerical relativity waveforms (valid near the time of merger, when all approximations fail), making a hybrid GW. This work is one part of a new prototype framework for Numerical INJection Analysis with Matter (Matter NINJA). The complete Matter NINJA prototype will test GW search pipelines' abilities to find hybrid waveforms, from simulations containing matter (such as black hole-neutron star binaries), hidden in simulated detector noise.

  8. Adjoint tomography and centroid-moment tensor inversion of the Kanto region, Japan

    NASA Astrophysics Data System (ADS)

    Miyoshi, T.

    2017-12-01

    A three-dimensional seismic wave speed model in the Kanto region of Japan was developed using adjoint tomography based on large computing. Starting with a model based on previous travel time tomographic results, we inverted the waveforms obtained at seismic broadband stations from 140 local earthquakes in the Kanto region to obtain the P- and S-wave speeds Vp and Vs. The synthetic displacements were calculated using the spectral element method (SEM; e.g. Komatitsch and Tromp 1999; Peter et al. 2011) in which the Kanto region was parameterized using 16 million grid points. The model parameters Vp and Vs were updated iteratively by Newton's method using the misfit and Hessian kernels until the misfit between the observed and synthetic waveforms was minimized. The proposed model reveals several anomalous areas with extremely low Vs values in comparison with those of the initial model. The synthetic waveforms obtained using the newly proposed model for the selected earthquakes show better fit than the initial model to the observed waveforms in different period ranges within 5-30 s. In the present study, all centroid times of the source solutions were determined using time shifts based on cross correlation to prevent high computing resources before the structural inversion. Additionally, parameters of centroid-moment solutions were fully determined using the SEM assuming the 3D structure (e.g. Liu et al. 2004). As a preliminary result, new solutions were basically same as their initial solutions. This may indicate that the 3D structure is not effective for the source estimation. Acknowledgements: This study was supported by JSPS KAKENHI Grant Number 16K21699.

  9. IMPROVED GROUND TRUTH IN SOUTHERN ASIA USING IN-COUNTRY DATA, ANALYST WAVEFORM REVIEW, AND ADVANCED ALGORITHMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engdahl, Eric, R.; Bergman, Eric, A.; Myers, Stephen, C.

    A new catalog of seismicity at magnitudes above 2.5 for the period 1923-2008 in the Iran region is assembled from arrival times reported by global, regional, and local seismic networks. Using in-country data we have formed new events, mostly at lower magnitudes that were not previously included in standard global earthquake catalogs. The magnitude completeness of the catalog varies strongly through time, complete to about magnitude 4.2 prior to 1998 and reaching a minimum of about 3.6 during the period 1998-2005. Of the 25,722 events in the catalog, most of the larger events have been carefully reviewed for proper phasemore » association, especially for depth phases and to eliminate outlier readings, and relocated. To better understand the quality of the data set of arrival times reported by Iranian networks that are central to this study, many waveforms for events in Iran have been re-picked by an experienced seismic analyst. Waveforms at regional distances in this region are often complex. For many events this makes arrival time picks difficult to make, especially for smaller magnitude events, resulting in reported times that can be substantially improved by an experienced analyst. Even when the signal/noise ratio is large, re-picking can lead to significant differences. Picks made by our analyst are compared with original picks made by the regional networks. In spite of the obvious outliers, the median (-0.06 s) and spread (0.51 s) are small, suggesting that reasonable confidence can be placed in the picks reported by regional networks in Iran. This new catalog has been used to assess focal depth distributions throughout Iran. A principal result of this study is that the geographic pattern of depth distributions revealed by the relatively small number of earthquakes (~167) with depths constrained by waveform modeling (+/- 4 km) are now in agreement with the much larger number of depths (~1229) determined using reanalysis of ISC arrival-times (+/-10 km), within their respective errors. This is a significant advance, as outliers and future events with apparently anomalous depths can be readily identified and, if necessary, further investigated. The patterns of reliable focal depth distributions have been interpreted in the context of Middle Eastern active tectonics. Most earthquakes in the Iranian continental lithosphere occur in the upper crust, less than about 25-30 km in depth, with the crustal shortening produced by continental collision apparently accommodated entirely by thickening and distributed deformation rather than by subduction of crust into the mantle. However, intermediate-depth earthquakes associated with subducted slab do occur across the central Caspian Sea and beneath the Makran coast. A multiple-event relocation technique, specialized to use different kinds of near-source data, is used to calibrate the locations of 24 clusters containing 901 events drawn from the seismicity catalog. The absolute locations of these clusters are fixed either by comparing the pattern of relocated earthquakes with mapped fault geometry, by using one or more cluster events that have been accurately located independently by a local seismic network or aftershock deployment, by using InSAR data to determine the rupture zone of shallow earthquakes, or by some combination of these near-source data. This technique removes most of the systematic bias in single-event locations done with regional and teleseismic data, resulting in 624 calibrated events with location uncertainties of 5 km or better at the 90% confidence level (GT590). For 21 clusters (847 events) that are calibrated in both location and origin time we calculate empirical travel times, relative to a standard 1-D travel time model (ak135), and investigate event to station travel-time anomalies as functions of epicentral distance and azimuth. Substantial travel-time anomalies are seen in the Iran region which make accurate locations impossible unless observing stations are at very short distances (less than about 200 km) or travel-time models are improved to account for lateral heterogeneity in the region. Earthquake locations in the Iran region by international agencies, based on regional and teleseismic arrival time data, are systematically biased to the southwest and have a 90% location accuracy of 18-23 km, with the lower value achievable by applying limits on secondary azimuth gap. The data set of calibrated locations reported here provides an important constraint on travel-time models that would begin to account for the lateral heterogeneity in Earth structure in the Iran region, and permit seismic networks, especially the regional ones, to obtain in future more accurate locations of the earthquakes in the region.« less

  10. Seismic Structure of Mantle Transition Zone beneath Northwest Pacific Subduction Zone and its Dynamic Implication

    NASA Astrophysics Data System (ADS)

    Li, J.; Guo, G.; WANG, X.; Chen, Q.

    2017-12-01

    The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Various and complex geometry of the Pacific subducting slab can be well traced downward from the Kuril, Japan and Izu-Bonin trench using seismicity and tomography images (Fukao and Obayashi, 2013). Due to the sparse distribution of seismic stations in the sea, investigation of the deep mantle structure beneath the broad sea regions is very limited. In this study, we applied the well- developed multiple-ScS reverberations method (Wang et al., 2017) to analyze waveforms recorded by the Chinese Regional Seismic Network, the densely distributed temporary seismic array stations installed in east Asia. A map of the topography of the upper mantle discontinuities beneath the broad oceanic regions in northwest Pacific subduction zone is imaged. We also applied the receiver function analysis to waveforms recorded by stations in northeast China and obtain the detailed topography map beneath east Asia continental regions. We then combine the two kinds of topography of upper mantle discontinuities beneath oceanic and continental regions respectively, which are obtained from totally different methods. A careful image matching and spatial correlation is made in the overlapping study regions to calibrate results with different resolution. This is the first time to show systematically a complete view of the topography of the 410-km and 660-km discontinuities beneath the east Asia "Big mantle wedge" (Zhao and Ohtani, 2009) covering the broad oceanic and continental regions in the Northwestern Pacific Subduction zone. Topography pattern of the 660 and 410 is obtained and discussed. Especially we discovered a broad depression of the 410-km discontinuity covering more than 1000 km in lateral, which seems abnormal in the cold subducting tectonic environment. Based on plate tectonic reconstruction studies and HTHP mineral experiments, we argue that the east-retreat trench motion of the subducting Pacific slab might play an important role in the observed broad depression of the 410-km discontinuity.

  11. Seismic Structure of the Antarctic Upper Mantle and Transition Zone Unearthed by Full Waveform Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.

    2017-12-01

    The upper mantle and transition zone beneath Antarctica and the surrounding ocean are among the poorest seismically imaged regions of the Earth's interior. Over the last 1.5 decades researchers have deployed several large temporary broadband seismic arrays focusing on major tectonic features in the Antarctic. The broader international community has also facilitated further instrumentation of the continent, often operating stations in additional regions. As of 2016, waveforms are available from almost 300 unique station locations. Using these stations along with 26 southern mid-latitude seismic stations we have imaged the seismic structure of the upper mantle and transition zone using full waveform adjoint techniques. The full waveform adjoint inversion assimilates phase observations from 3-component seismograms containing P, S, Rayleigh, and Love waves, including reflections and overtones, from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) that occurred between 2001-2003 and 2007-2016. We present the major results of the full waveform adjoint inversion following 20 iterations, resulting in a continental-scale seismic model (ANT_20) with regional-scale resolution. Within East Antarctica, ANT_20 reveals internal seismic heterogeneity and differences in lithospheric thickness. For example, fast seismic velocities extending to 200-300 km depth are imaged beneath both Wilkes Land and the Gamburtsev Subglacial Mountains, whereas fast velocities only extend to 100-200 km depth beneath the Lambert Graben and Enderby Land. Furthermore, fast velocities are not found beneath portions of Dronning Maud Land, suggesting old cratonic lithosphere may be absent. Beneath West Antarctica slow upper mantle seismic velocities are imaged extending from the Balleny Island southward along the Transantarctic Mountains front, and broaden beneath the southern and northern portion of the mountain range. In addition, slow upper mantle velocities are imaged beneath the West Antarctic coast extending from Marie Byrd Land to the Antarctic Peninsula. This region of slow velocity only extends to 150-200 km depth beneath the Antarctic Peninsula, while elsewhere it extends to deeper upper mantle depths and possibly into the transition zone as well as offshore, suggesting two different geodynamic processes are at play.

  12. The Observation of Fault Finiteness and Rapid Velocity Variation in Pnl Waveforms for the Mw 6.5, San Simeon, California Earthquake

    NASA Astrophysics Data System (ADS)

    Konca, A. O.; Ji, C.; Helmberger, D. V.

    2004-12-01

    We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the timing at most stations. This means that regional waveform data can be used to help locate and establish source complexities for future events.

  13. Waveform anomaly caused by strong attenuation in the crust and upper mantle in the Okinawa Trough region

    NASA Astrophysics Data System (ADS)

    Padhy, S.; Furumura, T.; Maeda, T.

    2017-12-01

    The Okinawa Trough is a young continental back-arc basin located behind the Ryukyu subduction zone in southwestern Japan, where the Philippine Sea Plate dives beneath the trough, resulting in localized mantle upwelling and crustal thinning of the overriding Eurasian Plate. The attenuation structure of the plates and surrounding mantle in this region associated with such complex tectonic environment are poorly documented. Here we present seismological evidence for these features based on the high-resolution waveform analyses and 3D finite difference method (FDM) simulation. We analyzed regional broadband waveforms recorded by F-net (NIED) of in-slab events (M>4, H>100 km). Using band-passed (0.5-8 Hz), mean-squared envelopes, we parameterized coda-decay in terms of rise-time (time from P-arrival to maximum amplitude in P-coda), decay-time (time from maximum amplitude to theoretical S-arrival), and energy-ratio defined as the ratio of energy in P-coda to that in direct P wave. The following key features are observed. First, there is a striking difference in S-excitation along paths traversing and not traversing the trough: events from SW Japan not crossing the trough show clear S waves, while those occurring in the trough show very weak S waves at a station close to the volcanic front. Second, some trough events exhibit spindle-shaped seismograms with strong P-coda excitation, obscuring the development of S waves, at back-arc stations; these waveforms are characterized by high decay-time (>10s) and high energy-ratio (>>1.0), suggesting strong forward scattering along ray paths. Third, some trough events show weak S-excitation characterized by low decay-time (<5s) and low energy-ratio (<1.0) at fore-arc stations, suggesting high intrinsic absorption. To investigate the mechanism of the observed anomalies, we will conduct FDM simulation for a suite of models comprising the key subduction features like localized mantle-upwelling and crustal thinning expected in the region. It is expected that simulation results help to resolve rift-induced crust and upper mantle anomalies in the trough showing maximum waveform distortion as we observed in broadband records, and will enhance understanding of tectonic processes related to back-arc rifting in the region.

  14. Observations of changes in waveform character induced by the 1999 Mw7.6 Chi-Chi earthquake

    USGS Publications Warehouse

    Chen, K.H.; Furumura, T.; Rubinstein, J.; Rau, R.-J.

    2011-01-01

    We observe changes in the waveforms of repeating earthquakes in eastern Taiwan following the 1999 Mw7.6 Chi-Chi earthquake, while their recurrence intervals appear to be unaffected. There is a clear reduction in waveform similarity and velocity changes indicated by delayed phases at the time of the Chi-Chi event. These changes are limited to stations in and paths that cross the 70 × 100 km region surrounding the Chi-Chi source area, the area where seismic intensity and co-seismic surface displacements were largest. This suggests that damage at the near-surface is responsible for the observed waveform changes. Delays are largest in the late S-wave coda, reaching approximately 120 ms. This corresponds to a path averaged Swave velocity reduction of approximately 1%. There is also evidence that damage in the fault-zone caused changes in waveform character at sites in the footwall, where source-receiver paths propagate either along or across the rupture. The reduction in waveform similarity persists through the most recent repeating event in our study (November 15, 2007), indicating that the subsurface damage induced by the Chi-Chi earthquake did not fully heal within the first 8 years following the Chi-Chi earthquake.

  15. Observations of changes in waveform character induced by the 1999 M w7.6 Chi-Chi earthquake

    USGS Publications Warehouse

    Chen, K.H.; Furumura, T.; Rubinstein, J.; Rau, R.-J.

    2011-01-01

    We observe changes in the waveforms of repeating earthquakes in eastern Taiwan following the 1999 Mw7.6 Chi-Chi earthquake, while their recurrence intervals appear to be unaffected. There is a clear reduction in waveform similarity and velocity changes indicated by delayed phases at the time of the Chi-Chi event. These changes are limited to stations in and paths that cross the 70 ?? 100 km region surrounding the Chi-Chi source area, the area where seismic intensity and co-seismic surface displacements were largest. This suggests that damage at the near-surface is responsible for the observed waveform changes. Delays are largest in the late S-wave coda, reaching approximately 120 ms. This corresponds to a path averaged S wave velocity reduction of approximately 1%. There is also evidence that damage in the fault-zone caused changes in waveform character at sites in the footwall, where source-receiver paths propagate either along or across the rupture. The reduction in waveform similarity persists through the most recent repeating event in our study (November 15, 2007), indicating that the subsurface damage induced by the Chi-Chi earthquake did not fully heal within the first 8 years following the Chi-Chi earthquake. ?? 2011 by the American Geophysical Union.

  16. Effects of water drinking test on ocular blood flow waveform parameters: A laser speckle flowgraphy study.

    PubMed

    Bhatti, Mehwish Saba; Tang, Tong Boon; Laude, Augustinus

    2017-01-01

    The water-drinking test (WDT) is a provocative test used in glaucoma research to assess the effects of elevated intraocular pressure (IOP). Defective autoregulation due to changes in perfusion pressure may play a role in the pathophysiology of several ocular diseases. This study aims to examine the effects of WDT on ocular blood flow (in the form of pulse waveform parameters obtained using laser speckle flowgraphy) to gain insight into the physiology of ocular blood flow and its autoregulation in healthy individuals. Changes in pulse waveform parameters of mean blur rate (MBR) in the entire optic nerve head (ONH), the vasculature of the ONH, the tissue area of the ONH, and the avascular tissue area located outside of the ONH were monitored over time. Significant increases in the falling rate of MBR over the entire ONH and its tissue area and decreases in blowout time (BOT) of the tissue area were observed only at 10 minutes after water intake. Significant increases in the skew of the waveform and the falling rate were observed in the vasculature of the ONH at 40 and 50 minutes after water intake, respectively. In the avascular region of the choroid, the average MBR increased significantly up to 30 minutes after water intake. Furthermore, the rising rate in this region increased significantly at 20 and 40 minutes, and the falling rate and acceleration-time index were both significantly increased at 40 minutes after water intake. Our results indicate the presence of effective autoregulation of blood flow at the ONH after WDT. However, in the choroidal region, outside of the ONH, effective autoregulation was not observed until 30 minutes after water intake in healthy study participants. These pulse waveform parameters could potentially be used in the diagnosis and/or monitoring of patients with glaucoma.

  17. High-resolution Imaging of the Philippine Sea Plate subducting beneath Central Japan

    NASA Astrophysics Data System (ADS)

    Padhy, S.; Furumura, T.

    2016-12-01

    Thermal models predict that the oceanic crust of the young (<20 Ma) and warmer Philippine-sea plate (PHP) is more prone to melting. Deriving a high-resolution image of the PHP, including slab melting and other features of the subduction zone, is a key to understand the basics of earthquake occurrence and origin of magma in complex subduction zone like central Japan, where both the PHP and Pacific (PAC) Plates subduct. To this purpose, we analyzed high-resolution waveforms of moderate sized (M 4-6), intermediate-to-deep (>150 km) PAC earthquakes occurring in central Japan and conducted numerical simulation to derive a fine-scale PHP model, which is not constrained in earlier studies. Observations show spindle-shaped seismograms with strong converted phases and extended coda with very slow decay from a group of PAC events occurring in northern part of central Japan and recorded by high-sensitivity seismograph network (Hi-net) stations in the region. We investigate the mechanism of propagation of these anomalous waveforms using the finite difference method (FDM) simulation of wave propagation through the subduction zone. We examine the effects on waveform changes of major subduction zone features, such as the melting of oceanic crust in PHP, serpentinized mantle wedge, hydrated layer on the PAC due to slab dehydration, and anomaly in upper mantle between the PAC and PHP. Simulation results show that the waveform anomaly is primarily explained by strong scattering and absorption of high-frequency energy by the low-velocity anomalous mantle structure, with a strong coda excitation yielding spindle-shaped waveforms. The data are secondarily explained by melting of PHP in the basaltic crust. The location of the mantle anomaly is tightly constrained by the observation and evidence of PAC thinning in the region; these localized low-velocity structures aid in ascending the slab-derived fluids around the slab thinning. We expect that the results of this study will enhance our present understanding on the mechanism of intermediate to deep earthquakes in the region.

  18. Effects of water drinking test on ocular blood flow waveform parameters: A laser speckle flowgraphy study

    PubMed Central

    Bhatti, Mehwish Saba; Laude, Augustinus

    2017-01-01

    The water-drinking test (WDT) is a provocative test used in glaucoma research to assess the effects of elevated intraocular pressure (IOP). Defective autoregulation due to changes in perfusion pressure may play a role in the pathophysiology of several ocular diseases. This study aims to examine the effects of WDT on ocular blood flow (in the form of pulse waveform parameters obtained using laser speckle flowgraphy) to gain insight into the physiology of ocular blood flow and its autoregulation in healthy individuals. Changes in pulse waveform parameters of mean blur rate (MBR) in the entire optic nerve head (ONH), the vasculature of the ONH, the tissue area of the ONH, and the avascular tissue area located outside of the ONH were monitored over time. Significant increases in the falling rate of MBR over the entire ONH and its tissue area and decreases in blowout time (BOT) of the tissue area were observed only at 10 minutes after water intake. Significant increases in the skew of the waveform and the falling rate were observed in the vasculature of the ONH at 40 and 50 minutes after water intake, respectively. In the avascular region of the choroid, the average MBR increased significantly up to 30 minutes after water intake. Furthermore, the rising rate in this region increased significantly at 20 and 40 minutes, and the falling rate and acceleration-time index were both significantly increased at 40 minutes after water intake. Our results indicate the presence of effective autoregulation of blood flow at the ONH after WDT. However, in the choroidal region, outside of the ONH, effective autoregulation was not observed until 30 minutes after water intake in healthy study participants. These pulse waveform parameters could potentially be used in the diagnosis and/or monitoring of patients with glaucoma. PMID:28742142

  19. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy

    NASA Astrophysics Data System (ADS)

    Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia

    2011-01-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  20. Including Short Period Constraints In the Construction of Full Waveform Tomographic Models

    NASA Astrophysics Data System (ADS)

    Roy, C.; Calo, M.; Bodin, T.; Romanowicz, B. A.

    2015-12-01

    Thanks to the introduction of the Spectral Element Method (SEM) in seismology, which allows accurate computation of the seismic wavefield in complex media, the resolution of regional and global tomographic models has improved in recent years. However, due to computational costs, only long period waveforms are considered, and only long wavelength structure can be constrained. Thus, the resulting 3D models are smooth, and only represent a small volumetric perturbation around a smooth reference model that does not include upper-mantle discontinuities (e.g. MLD, LAB). Extending the computations to shorter periods, necessary for the resolution of smaller scale features, is computationally challenging. In order to overcome these limitations and to account for layered structure in the upper mantle in our full waveform tomography, we include information provided by short period seismic observables (receiver functions and surface wave dispersion), sensitive to sharp boundaries and anisotropic structure respectively. In a first step, receiver functions and dispersion curves are used to generate a number of 1D radially anisotropic shear velocity profiles using a trans-dimensional Markov-chain Monte Carlo (MCMC) algorithm. These 1D profiles include both isotropic and anisotropic discontinuities in the upper mantle (above 300 km depth) beneath selected stationsand are then used to build a 3D starting model for the full waveform tomographic inversion. This model is built after 1) interpolation between the available 1D profiles, and 2) homogeneization of the layered 1D models to obtain an equivalent smooth 3D starting model in the period range of interest for waveform inversion. The waveforms used in the inversion are collected for paths contained in the region of study and filtered at periods longer than 40s. We use the spectral element code "RegSEM" (Cupillard et al., 2012) for forward computations and a quasi-Newton inversion approach in which kernels are computed using normal mode perturbation theory. We present here the first reults of such an approach after successive iterations of a full waveform tomography of the North American continent.

  1. Pacific slab beneath northeast China revealed by regional and teleseismic waveform modeling

    NASA Astrophysics Data System (ADS)

    WANG, X.; Chen, Q. F.; Wei, S.

    2015-12-01

    Accurate velocity and geometry of the slab is essential for better understanding of the thermal, chemical structure of the mantle earth, as well as geodynamics. Recent tomography studies show similar morphology of the subducting Pacific slab beneath northeast China, which was stagnant in the mantle transition zone with thickness of more than 200km and an average velocity perturbation of ~1.5% [Fukao and Obayashi, 2013]. Meanwhile, waveform-modeling studies reveal that the Pacific slab beneath Japan and Kuril Island has velocity perturbation up to 5% and thickness up to 90km [Chen et al., 2007; Zhan et al., 2014]. These discrepancies are probably caused by the smoothing and limited data coverage in the tomographic inversions. Here we adopted 1D and 2D waveform modeling methods to study the fine structure of Pacific slab beneath northeast China using dense regional permanent and temporary broadband seismic records. The residual S- and P-wave travel time, difference between data and 1D synthetics, shows significant difference between the eastern and western stations. S-wave travel time residuals indicate 5-10s earlier arrivals for stations whose ray path lies within the slab, compared with those out of the slab. Teleseimic waveforms were used to rule out the major contribution of the possible low velocity structure above 200km. Furthermore, we use 2D finite-difference waveform modeling to confirm the velocity perturbation and geometry of the slab. Our result shows that the velocity perturbation in the slab is significantly higher than those reported in travel-time tomography studies. ReferencesChen, M., J. Tromp, D. Helmberger, and H. Kanamori (2007), Waveform modeling of the slab beneath Japan, J. Geophys. Res.-Solid Earth, 112(B2), 19, doi:10.1029/2006jb004394.Fukao, Y., and M. Obayashi (2013), Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity, J. Geophys. Res.-Solid Earth, 118(11), 5920-5938, doi:10.1002/2013jb010466.Zhan, Z. W., D. V. Helmberger, and D. Z. Li (2014), Imaging subducted slab structure beneath the Sea of Okhotsk with teleseismic waveforms, Phys. Earth Planet. Inter., 232, 30-35, doi:10.1016/j.pepi.2014.03.008.

  2. Magnitude determination using duration of high frequency energy radiation and displacement amplitude: application to waveform data recorded in regional distance range

    NASA Astrophysics Data System (ADS)

    Hara, T.

    2012-12-01

    Hara (2007. EPS, 59, 227 - 231) developed a method to determine earthquake magnitudes using durations of high frequency energy radiation and displacement amplitudes of tele-seismic events, and showed that it was applicable to huge events such as the 2004 Sumatra earthquake (Mw 9.0 after the Global CMT catalog. In the following the moment magnitude are from their estimates). Since Hara (2007) developed this method, we have been applying it to large shallow events, and confirmed its effectiveness. The results for several events are available at the web site of our institute (http://iisee.kenken.go.jp/quakes.htm). Also, Hara (2011. EPS, 63, 525-528) applied this method to the 2011 Off the Pacific Coast of Tohoku Earthquake (Mw 9.1), and showed that it worked well. In these applications, we used only waveform data recorded in the tele-seismic distance range (30 - 85 degrees). In order to have a magnitude estimate faster, it is necessary to analyze regional distance range data. In this study, we applied the method of Hara (2007) to waveform data recorded in the regional distance range (8 - 30 degrees) to investigate its applicability. We slightly modified the method by changing durations of times series used for analysis considering arrivals of high amplitude Rayleigh waves. We selected the six recent huge (their moment magnitude are equal to or greater than 8.5) earthquakes; they are the December 26, 2004 Sumatra (Mw 9.0), the March 28, 2005 Northern Sumatra (Mw 8,6), the September 12, 2007 Southern Sumatra (Mw 8.5), the February 27, 2010 Chile (Mw 8.8), the March 11, 2011 off the Pacific Coast of Tohoku (Mw 9.1), the April 11, 2012 off West Coast of Northern Sumatra (Mw 8.6). We retrieved BHZ channel waveform data from IRIS DMC. For the 2004 Sumatra and 2010 Chile earthquakes, only a few waveform data are available. The estimated magnitudes are 9.16, 8.66, 8.53, 8.83, 9.15, and 8.70, respectively. Also, the estimated high frequency energy radiation durations are consistent with the centroid time shifts of the Global CMT catalog. These preliminary results suggest that the method of Hara (2007) is applicable to waveform data recorded in the regional distance range. We plan to apply this method to smaller events to investigate a possible systematic deviation from analyses of tele-seismic records.

  3. Quantifying Ciliary Dynamics during Assembly Reveals Step-wise Waveform Maturation in Airway Cells.

    PubMed

    Oltean, Alina; Schaffer, Andrew J; Bayly, Philip V; Brody, Steven L

    2018-05-31

    Motile cilia are essential for clearance of particulates and pathogens from airways. For effective transport, ciliary motor proteins and axonemal structures interact to generate the rhythmic, propulsive bending, but the mechanisms that produce a dynamic waveform remain incompletely understood. Biomechanical measures of human cilia motion and their relationships to cilia assembly are needed to illuminate the biophysics of normal cilia function, and to quantify dysfunction in ciliopathies. To these ends, we analyzed cilia motion from high-speed video microscopy of ciliated cells sampled from human lung airways compared to primary-culture cells that undergo ciliogenesis in vitro. Quantitative assessment of waveform parameters showed variations in waveform shape between individual cilia; however, general trends in waveform parameters emerged, associated with progression of cilia length and stage of differentiation. When cilia emerged from cultured cells, beat frequency was initially elevated, then fell and remained stable as cilia lengthened. In contrast, the average bending amplitude and the ability to generate force gradually increased and eventually approached values observed in ex vivo samples. Dynein arm motor proteins DNAH5, DNAH9, DNAH11, and DNAH6 were localized within specific regions of the axoneme in the ex vivo cells; however distinct stages of in vitro waveform development identified by biomechanical features were associated with the progressive movement of dyneins to the appropriate proximal or distal sections of the cilium. These observations suggest that the step-wise variation in waveform development during ciliogenesis is dependent on cilia length and potentially outer dynein arm assembly.

  4. Real-Time seismic waveforms monitoring with BeiDou Navigation Satellite System (BDS) observations for the 2015 Mw 7.8 Nepal earthquake

    NASA Astrophysics Data System (ADS)

    Geng, T.

    2015-12-01

    Nowadays more and more high-rate Global Navigation Satellite Systems (GNSS) data become available in real time, which provide more opportunities to monitor the seismic waveforms. China's GNSS, BeiDou Navigation Satellite System (BDS), has already satisfied the requirement of stand-alone precise positioning in Asia-Pacific region with 14 in-orbit satellites, which promisingly suggests that BDS could be applied to the high-precision earthquake monitoring as GPS. In the present paper, real-time monitoring of seismic waveforms using BDS measurements is assessed. We investigate a so-called "variometric" approach to measure real-time seismic waveforms with high-rate BDS observations. This approach is based on time difference technique and standard broadcast products which are routinely available in real time. The 1HZ BDS data recorded by Beidou Experimental Tracking Stations (BETS) during the 2015 Mw 7.8 Nepal earthquake is analyzed. The results indicate that the accuracies of velocity estimation from BDS are 2-3 mm/s in horizontal components and 8-9 mm/s in vertical component, respectively, which are consistent with GPS. The seismic velocity waveforms during earthquake show good agreement between BDS and GPS. Moreover, the displacement waveforms is reconstructed by an integration of velocity time series with trend removal. The displacement waveforms with the accuracy of 1-2 cm are derived by comparing with post-processing GPS precise point positioning (PPP).

  5. Localized time-lapse elastic waveform inversion using wavefield injection and extrapolation: 2-D parametric studies

    NASA Astrophysics Data System (ADS)

    Yuan, Shihao; Fuji, Nobuaki; Singh, Satish; Borisov, Dmitry

    2017-06-01

    We present a methodology to invert seismic data for a localized area by combining source-side wavefield injection and receiver-side extrapolation method. Despite the high resolving power of seismic full waveform inversion, the computational cost for practical scale elastic or viscoelastic waveform inversion remains a heavy burden. This can be much more severe for time-lapse surveys, which require real-time seismic imaging on a daily or weekly basis. Besides, changes of the structure during time-lapse surveys are likely to occur in a small area rather than the whole region of seismic experiments, such as oil and gas reservoir or CO2 injection wells. We thus propose an approach that allows to image effectively and quantitatively the localized structure changes far deep from both source and receiver arrays. In our method, we perform both forward and back propagation only inside the target region. First, we look for the equivalent source expression enclosing the region of interest by using the wavefield injection method. Second, we extrapolate wavefield from physical receivers located near the Earth's surface or on the ocean bottom to an array of virtual receivers in the subsurface by using correlation-type representation theorem. In this study, we present various 2-D elastic numerical examples of the proposed method and quantitatively evaluate errors in obtained models, in comparison to those of conventional full-model inversions. The results show that the proposed localized waveform inversion is not only efficient and robust but also accurate even under the existence of errors in both initial models and observed data.

  6. Quantification of Uncertainty in Full-Waveform Moment Tensor Inversion for Regional Seismicity

    NASA Astrophysics Data System (ADS)

    Jian, P.; Hung, S.; Tseng, T.

    2013-12-01

    Routinely and instantaneously determined moment tensor solutions deliver basic information for investigating faulting nature of earthquakes and regional tectonic structure. The accuracy of full-waveform moment tensor inversion mostly relies on azimuthal coverage of stations, data quality and previously known earth's structure (i.e., impulse responses or Green's functions). However, intrinsically imperfect station distribution, noise-contaminated waveform records and uncertain earth structure can often result in large deviations of the retrieved source parameters from the true ones, which prohibits the use of routinely reported earthquake catalogs for further structural and tectonic interferences. Duputel et al. (2012) first systematically addressed the significance of statistical uncertainty estimation in earthquake source inversion and exemplified that the data covariance matrix, if prescribed properly to account for data dependence and uncertainty due to incomplete and erroneous data and hypocenter mislocation, cannot only be mapped onto the uncertainty estimate of resulting source parameters, but it also aids obtaining more stable and reliable results. Over the past decade, BATS (Broadband Array in Taiwan for Seismology) has steadily devoted to building up a database of good-quality centroid moment tensor (CMT) solutions for moderate to large magnitude earthquakes that occurred in Taiwan area. Because of the lack of the uncertainty quantification and reliability analysis, it remains controversial to use the reported CMT catalog directly for further investigation of regional tectonics, near-source strong ground motions, and seismic hazard assessment. In this study, we develop a statistical procedure to make quantitative and reliable estimates of uncertainty in regional full-waveform CMT inversion. The linearized inversion scheme adapting efficient estimation of the covariance matrices associated with oversampled noisy waveform data and errors of biased centroid positions is implemented and inspected for improving source parameter determination of regional seismicity in Taiwan. Synthetic inversion tests demonstrate the resolved moment tensors would better match the hypothetical CMT solutions, and tend to suppress unreal non-double-couple components and reduce the trade-off between focal mechanism and centroid depth if individual signal-to-noise ratios and correlation lengths for 3-component seismograms at each station and mislocation uncertainties are properly taken into account. We further testify the capability of our scheme in retrieving the robust CMT information for mid-sized (Mw~3.5) and offshore earthquakes in Taiwan, which offers immediate and broad applications in detailed modelling of regional stress field and deformation pattern and mapping of subsurface velocity structures.

  7. EPG waveform library for Graphocephala atropunctata (Hemiptera: Cicadellidae): Effect of adhesive, input resistor, and voltage levels on waveform appearance and stylet probing behaviors.

    PubMed

    Cervantes, Felix A; Backus, Elaine A

    2018-05-31

    Blue-green sharpshooter, Graphocephala atropunctata, is a native California vector of Xylella fastidiosa (Xf), a foregut-borne bacterium that is the causal agent of Pierce's disease in grapevines. A 3rd-generation, AC-DC electropenetrograph (EPG monitor) was used to record stylet probing and ingestion behaviors of adult G. atropunctata on healthy grapevines. This study presents for the first time a complete, updated waveform library for this species, as well as effects of different electropenetrograph settings and adhesives on waveform appearances. Both AC and DC applied signals were used with input resistor (Ri) levels (amplifier sensitivities) of 10 6 , 10 7 , 10 8 and 10 9  Ohms, as well as two type of adhesives, conducting silver paint and handmade silver glue. Waveform description, characterization of electrical origins (R versus emf components), and proposed biological meanings of waveforms are reported, as well as qualitative differences in waveform appearances observed with different electropenetrograph settings and adhesives. In addition, a quantitative study with AC signal, using two applied voltage levels (50 and 200 mV) and two Ri levels (10 7 and 10 9  Ohms) was performed. Intermediate Ri levels 10 7 and 10 8  Ohms provided EPG waveforms with the greatest amount of information, because both levels captured similar proportions of R and emf components, as supported by appearance, clarity, and definition of waveforms. Similarly, use of a gold wire loop plus handmade silver glue provided more definition of waveforms than a gold wire loop plus commercial conducting silver paint. Qualitative/observational evidence suggested that AC applied signal caused fewer aberrant behaviors/waveforms than DC applied signal. In the quantitative study, behavioral components of the sharpshooter X wave were the most affected by changes in Ri and voltage level. Because the X wave probably represents X. fastidiosa inoculation behavior, future studies of X. fastidiosa inoculation via EPG will require carefully determined instrument settings. An intermediate Ri level such as 10 8  Ohms with low voltage, AC applied signal, and gold wire loop plus silver glue is recommended as the best electropenetrograph methods to conduct future EPG studies of sharpshooter inoculation behaviors on Xf-resistant and -susceptible grapevine. Copyright © 2018. Published by Elsevier Ltd.

  8. Non-Linear Seismic Velocity Estimation from Multiple Waveform Functionals and Formal Assessment of Constraints

    DTIC Science & Technology

    2011-09-01

    tectonically active regions such as the Middle East. For example, we previously applied the code to determine the crust and upper mantle structure...Objective Optimization (MOO) for Multiple Datasets The primary goal of our current project is to develop a tool for estimating crustal structure that...be used to obtain crustal velocity structures by modeling broadband waveform, receiver function, and surface wave dispersion data. The code has been

  9. Platform for Postprocessing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Don

    2008-01-01

    Taking advantage of the similarities that exist among all waveform-based non-destructive evaluation (NDE) methods, a common software platform has been developed containing multiple- signal and image-processing techniques for waveforms and images. The NASA NDE Signal and Image Processing software has been developed using the latest versions of LabVIEW, and its associated Advanced Signal Processing and Vision Toolkits. The software is useable on a PC with Windows XP and Windows Vista. The software has been designed with a commercial grade interface in which two main windows, Waveform Window and Image Window, are displayed if the user chooses a waveform file to display. Within these two main windows, most actions are chosen through logically conceived run-time menus. The Waveform Window has plots for both the raw time-domain waves and their frequency- domain transformations (fast Fourier transform and power spectral density). The Image Window shows the C-scan image formed from information of the time-domain waveform (such as peak amplitude) or its frequency-domain transformation at each scan location. The user also has the ability to open an image, or series of images, or a simple set of X-Y paired data set in text format. Each of the Waveform and Image Windows contains menus from which to perform many user actions. An option exists to use raw waves obtained directly from scan, or waves after deconvolution if system wave response is provided. Two types of deconvolution, time-based subtraction or inverse-filter, can be performed to arrive at a deconvolved wave set. Additionally, the menu on the Waveform Window allows preprocessing of waveforms prior to image formation, scaling and display of waveforms, formation of different types of images (including non-standard types such as velocity), gating of portions of waves prior to image formation, and several other miscellaneous and specialized operations. The menu available on the Image Window allows many further image processing and analysis operations, some of which are found in commercially-available image-processing software programs (such as Adobe Photoshop), and some that are not (removing outliers, Bscan information, region-of-interest analysis, line profiles, and precision feature measurements).

  10. Correlation of Electropenetrography Waveforms From Lygus lineolaris (Hemiptera: Miridae) Feeding on Cotton Squares With Chemical Evidence of Inducible Tannins.

    PubMed

    Cervantes, Felix A; Backus, Elaine A; Godfrey, Larry; Wallis, Christopher; Akbar, Waseem; Clark, Thomas L; Rojas, Maria G

    2017-10-01

    Probing behavior of Lygus lineolaris (Palisot de Beauvois) has previously been characterized with electropenetrography (EPG). Cell rupturing (CR) and ingestion (I) EPG waveforms were identified as the two main stylet-probing behaviors by adult L. lineolaris. However, characterization and identification of EPG waveforms are not complete until specific events of a particular waveform are correlated to insect probing. With the use of EPG, histology, microscopy, and chemical analysis, probing behavior of L. lineolaris on pin-head cotton squares was studied. Occurrences of waveforms CR and I were artificially terminated during the EPG recording. Histological samples of probed cotton squares were prepared and analyzed to correlate specific types and occurrences of feeding damage location and plant responses to insect feeding. Both CR and I occurred in the staminal column of the cotton square. Cell rupturing events elicited the production of dark-red deposits seen in histological staining that were demonstrated via chemical analysis to contain condensed tannins. We hypothesize that wounding and saliva secreted during CR triggered release of tannins, because tannin production was positively correlated with the number of probes with single CR events performed by L. lineolaris. Degraded plant tissue and tannins were removed from the staminal column during occurrence of waveform I. These results conclude the process of defining CR and I as probing waveforms performed by L. lineolaris on pin-head cotton squares. These biological definitions will now allow EPG to be used to quantitatively compare L. lineolaris feeding among different plant treatments, with the goal of improving pest management tactics against this pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors

    NASA Astrophysics Data System (ADS)

    Bohé, Alejandro; Shao, Lijing; Taracchini, Andrea; Buonanno, Alessandra; Babak, Stanislav; Harry, Ian W.; Hinder, Ian; Ossokine, Serguei; Pürrer, Michael; Raymond, Vivien; Chu, Tony; Fong, Heather; Kumar, Prayush; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Scheel, Mark A.; Szilágyi, Béla

    2017-02-01

    We improve the accuracy of the effective-one-body (EOB) waveforms that were employed during the first observing run of Advanced LIGO for binaries of spinning, nonprecessing black holes by calibrating them to a set of 141 numerical-relativity (NR) waveforms. The NR simulations expand the domain of calibration toward larger mass ratios and spins, as compared to the previous EOBNR model. Merger-ringdown waveforms computed in black-hole perturbation theory for Kerr spins close to extremal provide additional inputs to the calibration. For the inspiral-plunge phase, we use a Markov-chain Monte Carlo algorithm to efficiently explore the calibration space. For the merger-ringdown phase, we fit the NR signals with phenomenological formulae. After extrapolation of the calibrated model to arbitrary mass ratios and spins, the (dominant-mode) EOBNR waveforms have faithfulness—at design Advanced-LIGO sensitivity—above 99% against all the NR waveforms, including 16 additional waveforms used for validation, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling for these binary configurations. We find that future NR simulations at mass ratios ≳4 and double spin ≳0.8 will be crucial to resolving discrepancies between different ways of extrapolating waveform models. We also find that some of the NR simulations that already exist in such region of parameter space are too short to constrain the low-frequency portion of the models. Finally, we build a reduced-order version of the EOBNR model to speed up waveform generation by orders of magnitude, thus enabling intensive data-analysis applications during the upcoming observation runs of Advanced LIGO.

  12. Comparing numerical and analytic approximate gravitational waveforms

    NASA Astrophysics Data System (ADS)

    Afshari, Nousha; Lovelace, Geoffrey; SXS Collaboration

    2016-03-01

    A direct observation of gravitational waves will test Einstein's theory of general relativity under the most extreme conditions. The Laser Interferometer Gravitational-Wave Observatory, or LIGO, began searching for gravitational waves in September 2015 with three times the sensitivity of initial LIGO. To help Advanced LIGO detect as many gravitational waves as possible, a major research effort is underway to accurately predict the expected waves. In this poster, I will explore how the gravitational waveform produced by a long binary-black-hole inspiral, merger, and ringdown is affected by how fast the larger black hole spins. In particular, I will present results from simulations of merging black holes, completed using the Spectral Einstein Code (black-holes.org/SpEC.html), including some new, long simulations designed to mimic black hole-neutron star mergers. I will present comparisons of the numerical waveforms with analytic approximations.

  13. Development of a glottal area index that integrates glottal gap size and open quotient

    PubMed Central

    Chen, Gang; Kreiman, Jody; Gerratt, Bruce R.; Neubauer, Juergen; Shue, Yen-Liang; Alwan, Abeer

    2013-01-01

    Because voice signals result from vocal fold vibration, perceptually meaningful vibratory measures should quantify those aspects of vibration that correspond to differences in voice quality. In this study, glottal area waveforms were extracted from high-speed videoendoscopy of the vocal folds. Principal component analysis was applied to these waveforms to investigate the factors that vary with voice quality. Results showed that the first principal component derived from tokens without glottal gaps was significantly (p < 0.01) associated with the open quotient (OQ). The alternating-current (AC) measure had a significant effect (p < 0.01) on the first principal component among tokens exhibiting glottal gaps. A measure AC/OQ, defined as the ratio of AC to OQ, was proposed to combine both amplitude and temporal characteristics of the glottal area waveform for both complete and incomplete glottal closures. Analyses of “glide” phonations in which quality varied continuously from breathy to pressed showed that the AC/OQ measure was able to characterize the corresponding continuum of glottal area waveform variation, regardless of the presence or absence of glottal gaps. PMID:23464035

  14. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these new waveforms requires a waveform build environment for the particular SDR, helps assess the usefulness of the platform provider documentation, and exercises the objectives of STRS Standard and the SCaN Testbed. There is considerable interest in conducting experiments using the SCaN Testbed from NASA, academia, commercial companies, and other space agencies. There are approximately 25 experiments or activities supported by the project underway or in development, with more proposals ready, as time and funding allow, and new experiment solicitations available. NASA continues development of new waveforms and applications in communications, networking, and navigation, the first university experimenters are beginning waveform development, which will support the next generation of communications engineers, and international interest is beginning with space agency partners from European Space Agency (ESA) and the Centre National d'Etudes Spatiales (CNES). This paper will provide an overview of the SCaN Testbed and discuss its recent accomplishments and experiment activities.Its recent successes in Ka-band operations, reception of the newest GPS signals, SDR reconfigurations, and STRS demonstration in space when combined with the future experiment portfolio have positioned the SCaN Testbed to enable future space communications and navigation capabilities for exploration and science.

  15. Joint inversion of regional and teleseismic earthquake waveforms

    NASA Astrophysics Data System (ADS)

    Baker, Mark R.; Doser, Diane I.

    1988-03-01

    A least squares joint inversion technique for regional and teleseismic waveforms is presented. The mean square error between seismograms and synthetics is minimized using true amplitudes. Matching true amplitudes in modeling requires meaningful estimates of modeling uncertainties and of seismogram signal-to-noise ratios. This also permits calculating linearized uncertainties on the solution based on accuracy and resolution. We use a priori estimates of earthquake parameters to stabilize unresolved parameters, and for comparison with a posteriori uncertainties. We verify the technique on synthetic data, and on the 1983 Borah Peak, Idaho (M = 7.3), earthquake. We demonstrate the inversion on the August 1954 Rainbow Mountain, Nevada (M = 6.8), earthquake and find parameters consistent with previous studies.

  16. Characteristics of microearthquakes accompanying hydraulic fracturing as determined from studies of spectra of seismic waveforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehler, M.; Bame, D.

    1985-03-01

    A study of the spectral properties of the waveforms recorded during hydraulic fracturing earthquakes has been carried out to obtain information about the physical dimensions of the earthquakes. We find two types of events. The first type has waveforms with clear P and S arrivals and spectra that are very similar to earthquakes occurring in tectonic regions. These events are interpreted as being due to shear slip along fault planes. The second type of event has waveforms that are similar in many ways to long period earthquakes observed at volcanoes and is called long period. Many waveforms of these eventsmore » are identical, which implies that these events represent repeated activation of a given source. We propose that the source of these long period events is the sudden opening of a channel that connects two cracks filled with fluid at different pressures. The sizes of the two cracks differ, which causes two or more peaks to appear in the spectra, each peak being associated with one physical dimension of the crack. From the frequencies at which spectral peaks occur, we estimate crack dimensions of between 3 and 22m. 13 refs., 8 figs.« less

  17. Seismic Waveform Tomography of the Iranian Region

    NASA Astrophysics Data System (ADS)

    Maggi, A.; Priestley, K.; Jackson, J.

    2001-05-01

    Surprisingly little is known about the detailed velocity structure of Iran, despite the region's importance in the tectonics of the Middle East. Previous studies have concentrated mainly on fundamental mode surface wave dispersion measurements along isolated paths (e.g.~Asudeh, 1982; Cong & Mitchell, 1998; Ritzwoller et.~al, 1998), and the propagation characteristics of crust and upper mantle body waves (e.g. Hearn & Ni 1994; Rodgers et.~al 1997). We use the partitioned waveform inversion method of Nolet (1990) on several hundred regional waveforms crossing the Iranian region to produce a 3-D seismic velocity map for the crust and upper mantle of the area. The method consists of using long period seismograms from earthquakes with well determined focal mechanisms and depths to constrain 1-D path-averaged shear wave models along regional paths. The constraints imposed on the 1-D models by the seismograms are then combined with independent constraints from other methods (e.g.~Moho depths from reciever function analysis etc.), to solve for the 3-D seismic velocity structure of the region. A dense coverage of fundamental mode rayleigh waves at a period of 100~s ensures good resolution of lithospheric scale structure. We also use 20~s period fundamental mode rayleigh waves and some Pnl wavetrains to make estimates of crustal thickness variations and average crustal velocities. A few deeper events give us some coverage of higher mode rayleigh waves and mantle S waves, which sample to the base of the upper mantle. Our crustal thickness estimates range from 45~km in the southern Zagros mountains, to 40~km in central Iran and 35~km towards the north of the region. We also find inconsistencies between the 1-D models required to fit the vertical and the tranverse seismograms, indicating the presence of anisotropy.

  18. Unsteady blade pressures on a propfan at takeoff: Euler analysis and flight data

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.

    1991-01-01

    The unsteady blade pressures due to the operation of the propfan at an angle to the direction of the mean flow are obtained by solving the unsteady three dimensional Euler equations. The configuration considered is the eight bladed SR7L propfan at takeoff conditions and the inflow angles considered are 6.3 deg, 8.3 deg, 11.3 deg. The predicted blade pressure waveforms are compared with inflight measurements. At the inboard radial station (r/R = 0.68) the phase of the predicted waveforms show reasonable agreement with the measurements while the amplitudes are over predicted in the leading edge region of the blade. At the outboard radial station (r/R = 0.95), the predicted amplitudes of the waveforms on the pressure surface are in good agreement with flight data for all inflow angles. The measured (installed propfan) waveforms show a relative phase lag compared to the computed (propfan alone) waveforms. The phase lag depends on the axial location of the transducer and the surface of the blade. On the suction surface, in addition to the relative phase lag, the measurements show distortion (widening and steepening) of the waveforms. The extent of distortion increases with increase in inflow angle. This distortion seems to be due to viscous separation effects which depend on the azimuthal location of the blade and the axial location of the transducer.

  19. Determination of Source Parameters for Earthquakes in the Northeastern United States and Quebec, Canada by Using Regional Broadband Seismograms

    NASA Astrophysics Data System (ADS)

    Du, W.; Kim, W.; Sykes, L. R.

    2001-05-01

    We studied approximately 20 earthquakes which have occurred in the Northeastern United States and Quebec, southern Canada since 1990. These earthquakes have local magnitude (ML) ranging from 3.5 to 5.2 and are well recorded by broadband seismographic stations in the region. Focal depth and moment tensor of these earthquakes are determined by using waveform inversion technique in which the best fit double-couple mechanism is obtained through a grid search over strike, dip and rake angles. Complete synthetics for three-component displacement signals in the period range 1 to 30 seconds are calculated. In most cases, long period Pnl and surface waves are used to constrain the source parameters. Our results indicate that most of the events show the horizontal compression with near horizontal P axis striking NE-SW. However, three events along the lower St. Lawrence River shows the P axes striking ESE-SE (100-130 degrees) with plunge angles of about 20 degrees. Focal depths of these events range from 2 to 28 km. Four events along the Appalachian Mts. have occurred with 2 to 5 km depths -- Jan. 16, 1994 Reading, Pa sequence, Sep. 25, 1998 Pymatuning, Pa event, Jan. 26, 2001 Ashutabula, Oh earthquake and an event in the Charlevoix seismic zone, Canada (Oct. 28, 1997). Two events have occurred at depth greater than 20 km. These are Quebec City earthquake on Nov. 6, 1997 and Christieville, Quebec event on May 4, 1997. We also observed the apparent discrepancy between the moment magnitude (Mw) and local magnitude (ML). Preliminary results show that for the events studied, Mw tends to be about 0.3 magnitude units smaller than the corresponding ML. However, some events show comparable Mw and ML values, for instance, the 1994 Reading, Pa sequence and Oct. 28, 1997 Charlevoix earthquake. These events have occurred at shallow depths and show low stress drops (less than 100 bars). We believe that this magnitude discrepancy reflects the source characteristics of intraplate events in the region. A striking feature of the waveform inversion method in the Northeastern United States is that we can determine fairly reliable focal depth and mechanisms for earthquakes with magnitude down to 3.5 and in some cases, down to 2.5. It is mainly due to availability of high quality three-component, broadband waveform data at short epicentral distances due to increasing coverage of the broadband seismographs of the Lamont-Doherty Cooperative seismographic Network (LCSN), the National Seismographic Network (USNSN) and the Canadian National Seismographic Network (CNSN) in the region. ~

  20. Variable-period surface-wave magnitudes: A rapid and robust estimator of seismic moments

    USGS Publications Warehouse

    Bonner, J.; Herrmann, R.; Benz, H.

    2010-01-01

    We demonstrate that surface-wave magnitudes (Ms), measured at local, regional, and teleseismic distances, can be used as a rapid and robust estimator of seismic moment magnitude (Mw). We used the Russell (2006) variable-period surface-wave magnitude formula, henceforth called Ms(VMAX), to estimate the Ms for 165 North American events with 3.2

  1. A combined surface/volume scattering retracking algorithm for ice sheet satellite altimetry

    NASA Technical Reports Server (NTRS)

    Davis, Curt H.

    1992-01-01

    An algorithm that is based upon a combined surface-volume scattering model is developed. It can be used to retrack individual altimeter waveforms over ice sheets. An iterative least-squares procedure is used to fit the combined model to the return waveforms. The retracking algorithm comprises two distinct sections. The first generates initial model parameter estimates from a filtered altimeter waveform. The second uses the initial estimates, the theoretical model, and the waveform data to generate corrected parameter estimates. This retracking algorithm can be used to assess the accuracy of elevations produced from current retracking algorithms when subsurface volume scattering is present. This is extremely important so that repeated altimeter elevation measurements can be used to accurately detect changes in the mass balance of the ice sheets. By analyzing the distribution of the model parameters over large portions of the ice sheet, regional and seasonal variations in the near-surface properties of the snowpack can be quantified.

  2. Noiseless intensity amplification of repetitive signals by coherent addition using the temporal Talbot effect

    PubMed Central

    Maram, Reza; Van Howe, James; Li, Ming; Azaña, José

    2014-01-01

    Amplification of signal intensity is essential for initiating physical processes, diagnostics, sensing, communications and measurement. During traditional amplification, the signal is amplified by multiplying the signal carriers through an active gain process, requiring the use of an external power source. In addition, the signal is degraded by noise and distortions that typically accompany active gain processes. We show noiseless intensity amplification of repetitive optical pulse waveforms with gain from 2 to ~20 without using active gain. The proposed method uses a dispersion-induced temporal self-imaging (Talbot) effect to redistribute and coherently accumulate energy of the original repetitive waveforms into fewer replica waveforms. In addition, we show how our passive amplifier performs a real-time average of the wave-train to reduce its original noise fluctuation, as well as enhances the extinction ratio of pulses to stand above the noise floor. Our technique is applicable to repetitive waveforms in any spectral region or wave system. PMID:25319207

  3. Observing Mergers of Nonspinning Black Hole Binaries with LISA

    NASA Technical Reports Server (NTRS)

    McWilliams S.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly Bernard J.; Thorpe, J. Ira; vanMeter, James R.

    2008-01-01

    Recent advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black hole coalescence. We present the application of nonspinning numerical relativity waveforms to the search for and precision measurement of black hole binary coalescences using LISA. In particular, we focus on the advances made in moving beyond the equal mass, nonspinning case into other regions of parameter space, focusing on the case of nonspinning holes with ever-increasing mass ratios. We analyze the available unequal mass merger waveforms from numerical relativity, and compare them to two models, both of which use an effective one body treatment of the inspiral, but which use fundamentally different approaches to the treatment of the merger-ringdown. We confirm the expected mass ratio scaling of the merger, and investigate the changes in waveform behavior and their observational impact with changing mass ratio. Finally, we investigate the potential contribution from the merger portion of the waveform to measurement uncertainties of the binary's parameters for the unequal mass case.

  4. Novel scheme for rapid parallel parameter estimation of gravitational waves from compact binary coalescences

    NASA Astrophysics Data System (ADS)

    Pankow, C.; Brady, P.; Ochsner, E.; O'Shaughnessy, R.

    2015-07-01

    We introduce a highly parallelizable architecture for estimating parameters of compact binary coalescence using gravitational-wave data and waveform models. Using a spherical harmonic mode decomposition, the waveform is expressed as a sum over modes that depend on the intrinsic parameters (e.g., masses) with coefficients that depend on the observer dependent extrinsic parameters (e.g., distance, sky position). The data is then prefiltered against those modes, at fixed intrinsic parameters, enabling efficiently evaluation of the likelihood for generic source positions and orientations, independent of waveform length or generation time. We efficiently parallelize our intrinsic space calculation by integrating over all extrinsic parameters using a Monte Carlo integration strategy. Since the waveform generation and prefiltering happens only once, the cost of integration dominates the procedure. Also, we operate hierarchically, using information from existing gravitational-wave searches to identify the regions of parameter space to emphasize in our sampling. As proof of concept and verification of the result, we have implemented this algorithm using standard time-domain waveforms, processing each event in less than one hour on recent computing hardware. For most events we evaluate the marginalized likelihood (evidence) with statistical errors of ≲5 %, and even smaller in many cases. With a bounded runtime independent of the waveform model starting frequency, a nearly unchanged strategy could estimate neutron star (NS)-NS parameters in the 2018 advanced LIGO era. Our algorithm is usable with any noise curve and existing time-domain model at any mass, including some waveforms which are computationally costly to evolve.

  5. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses.

    PubMed

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kitano, Kenta; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2014-01-01

    High harmonic generation (HHG) using waveform-controlled, few-cycle pulses from Ti:sapphire lasers has opened emerging researches in strong-field and attosecond physics. However, the maximum photon energy of attosecond pulses via HHG remains limited to the extreme ultraviolet region. Long-wavelength light sources with carrier-envelope phase stabilization are promising to extend the photon energy of attosecond pulses into the soft X-ray region. Here we demonstrate carrier-envelope phase-dependent HHG in the water window using sub-two-cycle optical pulses at 1,600 nm. Experimental and simulated results indicate the confinement of soft X-ray emission in a single recombination event with a bandwidth of 75 eV around the carbon K edge. Control of high harmonics by the waveform of few-cycle infrared pulses is a key milestone to generate soft X-ray attosecond pulses. We measure a dependence of half-cycle bursts on the gas pressure, which indicates subcycle deformation of the waveform of the infrared drive pulses in the HHG process.

  6. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses

    PubMed Central

    Ishii, Nobuhisa; Kaneshima, Keisuke; Kitano, Kenta; Kanai, Teruto; Watanabe, Shuntaro; Itatani, Jiro

    2014-01-01

    High harmonic generation (HHG) using waveform-controlled, few-cycle pulses from Ti:sapphire lasers has opened emerging researches in strong-field and attosecond physics. However, the maximum photon energy of attosecond pulses via HHG remains limited to the extreme ultraviolet region. Long-wavelength light sources with carrier-envelope phase stabilization are promising to extend the photon energy of attosecond pulses into the soft X-ray region. Here we demonstrate carrier-envelope phase-dependent HHG in the water window using sub-two-cycle optical pulses at 1,600 nm. Experimental and simulated results indicate the confinement of soft X-ray emission in a single recombination event with a bandwidth of 75 eV around the carbon K edge. Control of high harmonics by the waveform of few-cycle infrared pulses is a key milestone to generate soft X-ray attosecond pulses. We measure a dependence of half-cycle bursts on the gas pressure, which indicates subcycle deformation of the waveform of the infrared drive pulses in the HHG process. PMID:24535006

  7. Waveform Tomography of the South Atlantic Region

    NASA Astrophysics Data System (ADS)

    Celli, N. L.; Lebedev, S.; Schaeffer, A. J.; Gaina, C.

    2016-12-01

    The rapid growth in broadband seismic data, along with developments in waveform tomography techniques, allow us to greatly improve the data sampling in the southern hemisphere and resolve the upper-mantle structure beneath the South Atlantic region at a new level of detail. We have gathered a very large waveform dataset, including all publicly available data from permanent and temporary networks. Our S-velocity tomographic model is constrained by vertical-component waveform fits, computed using the Automated Multimode Inversion of surface, S and multiple S waves. Each seismogram fit provides a set of linear equations describing 1D average velocity perturbations within approximate sensitivity volumes, with respect to a 3D reference model. All the equations are then combined into a large linear system and inverted jointly for a model of shear- and compressional-wave speeds and azimuthal anisotropy within the lithosphere and underlying mantle. The isotropic-average shear speeds are proxies for temperature and composition at depth, while azimuthal anisotropy provides evidence on the past and present deformation in the lithosphere and asthenosphere beneath the region. We resolve the complex boundaries of the mantle roots of South America's and Africa's cratons and the deep low-velocity anomalies beneath volcanic areas in South America. Pronounced lithospheric high seismic velocity anomalies beneath the Argentine Basin suggest that its anomalously deep seafloor, previously attributed to dynamic topography, is mainly due to anomalously cold, thick lithosphere. Major hotspots show low-velocity anomalies extending substantially deeper than those beneath the mid-ocean ridge. The Vema Hotspot shows a major, hot asthenospheric anomaly beneath thick, cold oceanic lithosphere. The mantle lithosphere beneath the Walvis Ridge—a hotspot track—shows normal cooling. The volcanic Cameroon Line, in contrast, is characterized by thin lithosphere beneath the locations of recent volcanism.

  8. Studing Regional Wave Source Time Functions Using A Massive Automated EGF Deconvolution Procedure

    NASA Astrophysics Data System (ADS)

    Xie, J. "; Schaff, D. P.

    2010-12-01

    Reliably estimated source time functions (STF) from high-frequency regional waveforms, such as Lg, Pn and Pg, provide important input for seismic source studies, explosion detection, and minimization of parameter trade-off in attenuation studies. The empirical Green’s function (EGF) method can be used for estimating STF, but it requires a strict recording condition. Waveforms from pairs of events that are similar in focal mechanism, but different in magnitude must be on-scale recorded on the same stations for the method to work. Searching for such waveforms can be very time consuming, particularly for regional waves that contain complex path effects and have reduced S/N ratios due to attenuation. We have developed a massive, automated procedure to conduct inter-event waveform deconvolution calculations from many candidate event pairs. The procedure automatically evaluates the “spikiness” of the deconvolutions by calculating their “sdc”, which is defined as the peak divided by the background value. The background value is calculated as the mean absolute value of the deconvolution, excluding 10 s around the source time function. When the sdc values are about 10 or higher, the deconvolutions are found to be sufficiently spiky (pulse-like), indicating similar path Green’s functions and good estimates of the STF. We have applied this automated procedure to Lg waves and full regional wavetrains from 989 M ≥ 5 events in and around China, calculating about a million deconvolutions. Of these we found about 2700 deconvolutions with sdc greater than 9, which, if having a sufficiently broad frequency band, can be used to estimate the STF of the larger events. We are currently refining our procedure, as well as the estimated STFs. We will infer the source scaling using the STFs. We will also explore the possibility that the deconvolution procedure could complement cross-correlation in a real time event-screening process.

  9. Comparison between numerical-relativity and post-Newtonian waveforms from spinning binaries: The orbital hang-up case

    NASA Astrophysics Data System (ADS)

    Hannam, Mark; Husa, Sascha; Brügmann, Bernd; Gopakumar, Achamveedu

    2008-11-01

    We compare results from numerical simulations of spinning binaries in the “orbital hang-up” case, where the binary completes at least nine orbits before merger, with post-Newtonian results using the approximants Taylor T1, T4, and Et. We find that, over the ten cycles before the gravitational-wave frequency reaches Mω=0.1, the accumulated phase disagreement between numerical relativity (NR) and 2.5 post-Newtonian (PN) results is less than three radians, and is less than 2.5 radians when using 3.5PN results. The amplitude disagreement between NR and restricted PN results increases with the black holes’ spin, from about 6% in the equal-mass case to 12% when the black holes’ spins are Si/Mi2=0.85. Finally, our results suggest that the merger waveform will play an important role in estimating the spin from such inspiral waveforms.

  10. Ponderomotive lower hybrid wave growth in electric fields associated with electron beam injection and transverse ion acceleration

    NASA Astrophysics Data System (ADS)

    Bale, S. D.; Kellogg, P. J.; Erickson, K. N.; Monson, S. J.; Arnoldy, R. L.

    During electron beam injection, the Echo 7 rocket experiment observed large bursts of transversely accelerated ions. These ions seem to have been energized in the region of the beam or the payload return current. Electric field waveforms (<= 30 kHz) during gun operation show both low frequency fluctuations and broad band power. An analysis of the waveforms shows nonlinear mode coupling between waves near the ion cyclotron frequency and waves above the lower hybrid frequency.

  11. Mergers of Non-spinning Black-hole Binaries: Gravitational Radiation Characteristics

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.; vanMeter, James R.

    2008-01-01

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of non-spinning black holes, based on numerical simulations of systems varying from equal-mass to a 6:1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wavetrain, from inspiral through ringdown. We emphasize strong relationships among the l = m modes that persist through the full wavetrain. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l = m modes among all mass-ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.

  12. Mergers of nonspinning black-hole binaries: Gravitational radiation characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, John G.; Centrella, Joan; Kelly, Bernard J.

    2008-08-15

    We present a detailed descriptive analysis of the gravitational radiation from black-hole binary mergers of nonspinning black holes, based on numerical simulations of systems varying from equal mass to a 6 ratio 1 mass ratio. Our primary goal is to present relatively complete information about the waveforms, including all the leading multipolar components, to interested researchers. In our analysis, we pursue the simplest physical description of the dominant features in the radiation, providing an interpretation of the waveforms in terms of an implicit rotating source. This interpretation applies uniformly to the full wave train, from inspiral through ringdown. We emphasizemore » strong relationships among the l=m modes that persist through the full wave train. Exploring the structure of the waveforms in more detail, we conduct detailed analytic fitting of the late-time frequency evolution, identifying a key quantitative feature shared by the l=m modes among all mass ratios. We identify relationships, with a simple interpretation in terms of the implicit rotating source, among the evolution of frequency and amplitude, which hold for the late-time radiation. These detailed relationships provide sufficient information about the late-time radiation to yield a predictive model for the late-time waveforms, an alternative to the common practice of modeling by a sum of quasinormal mode overtones. We demonstrate an application of this in a new effective-one-body-based analytic waveform model.« less

  13. Seismological investigation of earthquakes in the New Madrid Seismic Zone. Final report, September 1986--December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, R.B.; Nguyen, B.

    Earthquake activity in the New Madrid Seismic Zone had been monitored by regional seismic networks since 1975. During this time period, over 3,700 earthquakes have been located within the region bounded by latitudes 35{degrees}--39{degrees}N and longitudes 87{degrees}--92{degrees}W. Most of these earthquakes occur within a 1.5{degrees} x 2{degrees} zone centered on the Missouri Bootheel. Source parameters of larger earthquakes in the zone and in eastern North America are determined using surface-wave spectral amplitudes and broadband waveforms for the purpose of determining the focal mechanism, source depth and seismic moment. Waveform modeling of broadband data is shown to be a powerful toolmore » in defining these source parameters when used complementary with regional seismic network data, and in addition, in verifying the correctness of previously published focal mechanism solutions.« less

  14. Digitally programmable signal generator and method

    DOEpatents

    Priatko, G.J.; Kaskey, J.A.

    1989-11-14

    Disclosed is a digitally programmable waveform generator for generating completely arbitrary digital or analog waveforms from very low frequencies to frequencies in the gigasample per second range. A memory array with multiple parallel outputs is addressed; then the parallel output data is latched into buffer storage from which it is serially multiplexed out at a data rate many times faster than the access time of the memory array itself. While data is being multiplexed out serially, the memory array is accessed with the next required address and presents its data to the buffer storage before the serial multiplexing of the last group of data is completed, allowing this new data to then be latched into the buffer storage for smooth continuous serial data output. In a preferred implementation, a plurality of these serial data outputs are paralleled to form the input to a digital to analog converter, providing a programmable analog output. 6 figs.

  15. Digitally programmable signal generator and method

    DOEpatents

    Priatko, Gordon J.; Kaskey, Jeffrey A.

    1989-01-01

    A digitally programmable waveform generator for generating completely arbitrary digital or analog waveforms from very low frequencies to frequencies in the gigasample per second range. A memory array with multiple parallel outputs is addressed; then the parallel output data is latched into buffer storage from which it is serially multiplexed out at a data rate many times faster than the access time of the memory array itself. While data is being multiplexed out serially, the memory array is accessed with the next required address and presents its data to the buffer storage before the serial multiplexing of the last group of data is completed, allowing this new data to then be latched into the buffer storage for smooth continuous serial data output. In a preferred implementation, a plurality of these serial data outputs are paralleled to form the input to a digital to analog converter, providing a programmable analog output.

  16. Source analysis using regional empirical Green's functions: The 2008 Wells, Nevada, earthquake

    USGS Publications Warehouse

    Mendoza, C.; Hartzell, S.

    2009-01-01

    We invert three-component, regional broadband waveforms recorded for the 21 February 2008 Wells, Nevada, earthquake using a finite-fault methodology that prescribes subfault responses using eight MW∼4 aftershocks as empirical Green's functions (EGFs) distributed within a 20-km by 21.6-km fault area. The inversion identifies a seismic moment of 6.2 x 1024 dyne-cm (5.8 MW) with slip concentrated in a compact 6.5-km by 4-km region updip from the hypocenter. The peak slip within this localized area is 88 cm and the stress drop is 72 bars, which is higher than expected for Basin and Range normal faults in the western United States. The EGF approach yields excellent fits to the complex regional waveforms, accounting for strong variations in wave propagation and site effects. This suggests that the procedure is useful for studying moderate-size earthquakes with limited teleseismic or strong-motion data and for examining uncertainties in slip models obtained using theoretical Green's functions.

  17. Physiological interpretation of Doppler shift waveforms: the femorodistal segment in combined disease.

    PubMed

    Campbell, W B; Baird, R N; Cole, S E; Evans, J M; Skidmore, R; Woodcock, J P

    1983-01-01

    A new method is presented for assessing the femorodistal segment in multisegmental arterial disease, using the Laplace transform technique of Doppler waveform analysis. Blood velocity/time waveforms were obtained at femoral and ankle levels in three groups of limbs--50 without arterial disease, 12 with isolated aortoiliac stenoses, and 32 with femoropopliteal occlusions, with and without proximal disease. The waveforms were analysed for Laplace transform and pulsatility index values. The omega 0 coefficients of the Laplace transform analysis at femoral and ankle levels were compared in each subject, as the omega 0 gradient (femoral/ankle omega 0): and pulsatility index damping factor (femoral/ankle P1) was also calculated. The omega 0 gradient was shown to detect femoropopliteal occlusion in the presence of multisegmental arterial disease and to give some indication of its haemodynamic significance. The diagnostic accuracy of the omega 0 gradient was superior to that of pulsatility index damping factor. When combined with its existing ability to detect aortoiliac stenosis, this new application of the Laplace transform method offers the possibility both of a system for complete localisation of significant arterial lesions, and potential for follow-up of vascular surgical procedures in the lower limb, from two simple Doppler recordings.

  18. Effects of waveform model systematics on the interpretation of GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; E Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; E Brau, J.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; E Broida, J.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; E Cowan, E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; E Creighton, J. D.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; E Dwyer, S.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; E Gossan, S.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; E Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; E Holz, D.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; E Lord, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; E McClelland, D.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; E Mikhailov, E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; E Pace, A.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; E Smith, R. J.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; E Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; E Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; E Zucker, M.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Boyle, M.; Chu, T.; Hemberger, D.; Hinder, I.; E Kidder, L.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano Vinuales, A.

    2017-05-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein’s equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than  ˜0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.

  19. Delay Times From Clustered Multi-Channel Cross Correlation and Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Creager, K. C.; Sambridge, M. S.

    2004-12-01

    Several techniques exist to estimate relative delay times of seismic phases based on the assumption that the waveforms observed at several stations can be expressed as a common waveform that has been time shifted and distorted by random uncorrelated noise. We explore the more general problem of estimating the relative delay times for regional or even global distributions of seismometers in cases where waveforms vary systematically across the array. The estimation of relative delay times is formulated as a global optimization of the weighted sum of squares of cross correlations of each seismogram pair evaluated at the corresponding difference in their relative delay times. As there are many local minima in this penalty function, a simulated annealing algorithm is used to obtain a solution. The weights depend strongly on the separation distance among seismogram pairs as well as a measure of the similarity of waveforms. Thus, seismograph pairs that are physically close to each other and have similar waveforms are expected to be well aligned while those with dissimilar waveforms or large separation distances are severely down-weighted and thus need not be well aligned. As a result noisy seismograms, which are not similar to other seismograms, are down-weighted so they do not adversely effect the relative delay times of other seismograms. Finally, natural clusters of seismograms are determined from the weight matrix. Examples of aligning a few hundred P and PKP waveforms from a broadband global array and from a mixed broadband and short-period continental-scale array will be shown. While this method has applications in many situations, it may be especially useful for arrays such as the EarthScope Bigfoot Array.

  20. Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy.

    PubMed

    Liu, Su; Gurses, Candan; Sha, Zhiyi; Quach, Michael M; Sencer, Altay; Bebek, Nerses; Curry, Daniel J; Prabhu, Sujit; Tummala, Sudhakar; Henry, Thomas R; Ince, Nuri F

    2018-01-30

    High-frequency oscillations in local field potentials recorded with intracranial EEG are putative biomarkers of seizure onset zones in epileptic brain. However, localized 80-500 Hz oscillations can also be recorded from normal and non-epileptic cerebral structures. When defined only by rate or frequency, physiological high-frequency oscillations are indistinguishable from pathological ones, which limit their application in epilepsy presurgical planning. We hypothesized that pathological high-frequency oscillations occur in a repetitive fashion with a similar waveform morphology that specifically indicates seizure onset zones. We investigated the waveform patterns of automatically detected high-frequency oscillations in 13 epilepsy patients and five control subjects, with an average of 73 subdural and intracerebral electrodes recorded per patient. The repetitive oscillatory waveforms were identified by using a pipeline of unsupervised machine learning techniques and were then correlated with independently clinician-defined seizure onset zones. Consistently in all patients, the stereotypical high-frequency oscillations with the highest degree of waveform similarity were localized within the seizure onset zones only, whereas the channels generating high-frequency oscillations embedded in random waveforms were found in the functional regions independent from the epileptogenic locations. The repetitive waveform pattern was more evident in fast ripples compared to ripples, suggesting a potential association between waveform repetition and the underlying pathological network. Our findings provided a new tool for the interpretation of pathological high-frequency oscillations that can be efficiently applied to distinguish seizure onset zones from functionally important sites, which is a critical step towards the translation of these signature events into valid clinical biomarkers.awx374media15721572971001. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Probabilistic joint inversion of waveforms and polarity data for double-couple focal mechanisms of local earthquakes

    NASA Astrophysics Data System (ADS)

    Wéber, Zoltán

    2018-06-01

    Estimating the mechanisms of small (M < 4) earthquakes is quite challenging. A common scenario is that neither the available polarity data alone nor the well predictable near-station seismograms alone are sufficient to obtain reliable focal mechanism solutions for weak events. To handle this situation we introduce here a new method that jointly inverts waveforms and polarity data following a probabilistic approach. The procedure called joint waveform and polarity (JOWAPO) inversion maps the posterior probability density of the model parameters and estimates the maximum likelihood double-couple mechanism, the optimal source depth and the scalar seismic moment of the investigated event. The uncertainties of the solution are described by confidence regions. We have validated the method on two earthquakes for which well-determined focal mechanisms are available. The validation tests show that including waveforms in the inversion considerably reduces the uncertainties of the usually poorly constrained polarity solutions. The JOWAPO method performs best when it applies waveforms from at least two seismic stations. If the number of the polarity data is large enough, even single-station JOWAPO inversion can produce usable solutions. When only a few polarities are available, however, single-station inversion may result in biased mechanisms. In this case some caution must be taken when interpreting the results. We have successfully applied the JOWAPO method to an earthquake in North Hungary, whose mechanism could not be estimated by long-period waveform inversion. Using 17 P-wave polarities and waveforms at two nearby stations, the JOWAPO method produced a well-constrained focal mechanism. The solution is very similar to those obtained previously for four other events that occurred in the same earthquake sequence. The analysed event has a strike-slip mechanism with a P axis oriented approximately along an NE-SW direction.

  2. ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

    Earthquake source parameters underpin several aspects of nuclear explosion monitoring. Such aspects are: calibration of moment magnitudes (including coda magnitudes) and magnitude and distance amplitude corrections (MDAC); source depths; discrimination by isotropic moment tensor components; and waveform modeling for structure (including waveform tomography). This project seeks to improve methods for and broaden the applicability of estimating source parameters from broadband waveforms using the Cut-and-Paste (CAP) methodology. The CAP method uses a library of Green’s functions for a one-dimensional (1D, depth-varying) seismic velocity model. The method separates the main arrivals of the regional waveform into 5 windows: Pnl (vertical and radialmore » components), Rayleigh (vertical and radial components) and Love (transverse component). Source parameters are estimated by grid search over strike, dip, rake and depth and seismic moment or equivalently moment magnitude, MW, are adjusted to fit the amplitudes. Key to the CAP method is allowing the synthetic seismograms to shift in time relative to the data in order to account for path-propagation errors (delays) in the 1D seismic velocity model used to compute the Green’s functions. The CAP method has been shown to improve estimates of source parameters, especially when delay and amplitude biases are calibrated using high signal-to-noise data from moderate earthquakes, CAP+.« less

  3. The March 11, 2002 Masafi, United Arab Emirates Earthquake: Insights into the Seismotectonics of the Northern Oman Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A; Fowler, A; Al-Amri, A

    2005-04-26

    A moderate (M{approx}5) earthquake struck the northeastern United Arab Emirates (UAE) and northern Oman on March 11, 2002. The event was felt over a wide area of the northern Emirates and was accompanied by smaller (felt) events before and after the March 11 main shock. The event was large enough to be detected and located by global networks at teleseismic distances. We estimated focal mechanism and depth from broadband complete regional waveform modeling. We report a normal mechanism with a slight right-lateral strike-slip component consistent with the large-scale tectonics. The normal component suggests relaxation of obducted crust of the Semailmore » Ophilite (specifically, the Khor Fakkan Block) while the right-lateral strike-slip component of the mechanism is consistent with shear across the Oman Line. Felt earthquakes are rare in the region, however no regional seismic network exists in the UAE to determine local seismicity. This event offers a unique opportunity to study the active tectonics of the region as well as inform future studies of seismic hazard in the UAE and northern Oman.« less

  4. The Modularized Software Package ASKI - Full Waveform Inversion Based on Waveform Sensitivity Kernels Utilizing External Seismic Wave Propagation Codes

    NASA Astrophysics Data System (ADS)

    Schumacher, F.; Friederich, W.

    2015-12-01

    We present the modularized software package ASKI which is a flexible and extendable toolbox for seismic full waveform inversion (FWI) as well as sensitivity or resolution analysis operating on the sensitivity matrix. It utilizes established wave propagation codes for solving the forward problem and offers an alternative to the monolithic, unflexible and hard-to-modify codes that have typically been written for solving inverse problems. It is available under the GPL at www.rub.de/aski. The Gauss-Newton FWI method for 3D-heterogeneous elastic earth models is based on waveform sensitivity kernels and can be applied to inverse problems at various spatial scales in both Cartesian and spherical geometries. The kernels are derived in the frequency domain from Born scattering theory as the Fréchet derivatives of linearized full waveform data functionals, quantifying the influence of elastic earth model parameters on the particular waveform data values. As an important innovation, we keep two independent spatial descriptions of the earth model - one for solving the forward problem and one representing the inverted model updates. Thereby we account for the independent needs of spatial model resolution of forward and inverse problem, respectively. Due to pre-integration of the kernels over the (in general much coarser) inversion grid, storage requirements for the sensitivity kernels are dramatically reduced.ASKI can be flexibly extended to other forward codes by providing it with specific interface routines that contain knowledge about forward code-specific file formats and auxiliary information provided by the new forward code. In order to sustain flexibility, the ASKI tools must communicate via file output/input, thus large storage capacities need to be accessible in a convenient way. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion.

  5. The NINJA-2 project: detecting and characterizing gravitational waveforms modelled using numerical binary black hole simulations

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th S.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corpuz, A.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Donath, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dossa, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hooper, S.; Hopkins, P.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N.; Kim, N. G.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Luijten, E.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macarthur, J.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyers, P.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Milde, S.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moesta, P.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Qin, J.; Quetschke, V.; Quintero, E.; Quiroga, G.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Rhoades, E.; Ricci, F.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Stebbins, J.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S. S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yang, Z.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; Boyle, M.; Brügmann, B.; Buchman, L. T.; Campanelli, M.; Chu, T.; Etienne, Z. B.; Hannam, M.; Healy, J.; Hinder, I.; Kidder, L. E.; Laguna, P.; Liu, Y. T.; London, L.; Lousto, C. O.; Lovelace, G.; MacDonald, I.; Marronetti, P.; Mösta, P.; Müller, D.; Mundim, B. C.; Nakano, H.; Paschalidis, V.; Pekowsky, L.; Pollney, D.; Pfeiffer, H. P.; Ponce, M.; Pürrer, M.; Reifenberger, G.; Reisswig, C.; Santamaría, L.; Scheel, M. A.; Shapiro, S. L.; Shoemaker, D.; Sopuerta, C. F.; Sperhake, U.; Szilágyi, B.; Taylor, N. W.; Tichy, W.; Tsatsin, P.; Zlochower, Y.

    2014-06-01

    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave (GW) astrophysics communities. The purpose of NINJA is to study the ability to detect GWs emitted from merging binary black holes (BBH) and recover their parameters with next-generation GW observatories. We report here on the results of the second NINJA project, NINJA-2, which employs 60 complete BBH hybrid waveforms consisting of a numerical portion modelling the late inspiral, merger, and ringdown stitched to a post-Newtonian portion modelling the early inspiral. In a ‘blind injection challenge’ similar to that conducted in recent Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo science runs, we added seven hybrid waveforms to two months of data recoloured to predictions of Advanced LIGO (aLIGO) and Advanced Virgo (AdV) sensitivity curves during their first observing runs. The resulting data was analysed by GW detection algorithms and 6 of the waveforms were recovered with false alarm rates smaller than 1 in a thousand years. Parameter-estimation algorithms were run on each of these waveforms to explore the ability to constrain the masses, component angular momenta and sky position of these waveforms. We find that the strong degeneracy between the mass ratio and the BHs’ angular momenta will make it difficult to precisely estimate these parameters with aLIGO and AdV. We also perform a large-scale Monte Carlo study to assess the ability to recover each of the 60 hybrid waveforms with early aLIGO and AdV sensitivity curves. Our results predict that early aLIGO and AdV will have a volume-weighted average sensitive distance of 300 Mpc (1 Gpc) for 10M⊙ + 10M⊙ (50M⊙ + 50M⊙) BBH coalescences. We demonstrate that neglecting the component angular momenta in the waveform models used in matched-filtering will result in a reduction in sensitivity for systems with large component angular momenta. This reduction is estimated to be up to ˜15% for 50M⊙ + 50M⊙ BBH coalescences with almost maximal angular momenta aligned with the orbit when using early aLIGO and AdV sensitivity curves.

  6. Real-time display of flow-pressure-volume loops.

    PubMed

    Morozoff, P E; Evans, R W

    1992-01-01

    Graphic display of respiratory waveforms can be valuable for monitoring the progress of ventilated patients. A system has been developed that can display flow-pressure-volume loops as derived from a patient's respiratory circuit in real time. It can also display, store, print, and retrieve ventilatory waveforms. Five loops can be displayed at once: current, previous, reference, "ideal," and previously saved. Two components, the data-display device (DDD) and the data-collection device (DCD), comprise the system. An IBM 286/386 computer with a graphics card (VGA) and bidirectional parallel port is used for the DDD; an eight-bit microprocessor card and an A/D convertor card make up the DCD. A real-time multitasking operating system was written to control the DDD, while the DCD operates from in-line assembly code. The DCD samples the pressure and flow sensors at 100 Hz and looks for a complete flow waveform pattern based on flow slope. These waveforms are then passed to the DDD via the mutual parallel port. Within the DDD a process integrates the flow to create a volume signal and performs a multilinear regression on the pressure, flow, and volume data to calculate the elastance, resistance, pressure offset, and coefficient of determination. Elastance, resistance, and offset are used to calculate Pr and Pc where: Pr[k] = P[k]-offset-(elastance.V[k]) and Pc[k] = P[k]-offset-(resistance.F[k]). Volume vs. Pc and flow vs. Pr can be displayed in real time. Patient data from previous clinical tests were loaded into the device to verify the software calculations. An analog waveform generator was used to simulate flow and pressure waveforms that validated the system.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. DAC-board based X-band EPR spectrometer with arbitrary waveform control

    NASA Astrophysics Data System (ADS)

    Kaufmann, Thomas; Keller, Timothy J.; Franck, John M.; Barnes, Ryan P.; Glaser, Steffen J.; Martinis, John M.; Han, Songi

    2013-10-01

    We present arbitrary control over a homogenous spin system, demonstrated on a simple, home-built, electron paramagnetic resonance (EPR) spectrometer operating at 8-10 GHz (X-band) and controlled by a 1 GHz arbitrary waveform generator (AWG) with 42 dB (i.e. 14-bit) of dynamic range. Such a spectrometer can be relatively easily built from a single DAC (digital to analog converter) board with a modest number of stock components and offers powerful capabilities for automated digital calibration and correction routines that allow it to generate shaped X-band pulses with precise amplitude and phase control. It can precisely tailor the excitation profiles "seen" by the spins in the microwave resonator, based on feedback calibration with experimental input. We demonstrate the capability to generate a variety of pulse shapes, including rectangular, triangular, Gaussian, sinc, and adiabatic rapid passage waveforms. We then show how one can precisely compensate for the distortion and broadening caused by transmission into the microwave cavity in order to optimize corrected waveforms that are distinctly different from the initial, uncorrected waveforms. Specifically, we exploit a narrow EPR signal whose width is finer than the features of any distortions in order to map out the response to a short pulse, which, in turn, yields the precise transfer function of the spectrometer system. This transfer function is found to be consistent for all pulse shapes in the linear response regime. In addition to allowing precise waveform shaping capabilities, the spectrometer presented here offers complete digital control and calibration of the spectrometer that allows one to phase cycle the pulse phase with 0.007° resolution and to specify the inter-pulse delays and pulse durations to ⩽250 ps resolution. The implications and potential applications of these capabilities will be discussed.

  8. Observing mergers of nonspinning black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWilliams, Sean T.; Baker, John G.; Kelly, Bernard J.

    2010-07-15

    Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied mass-ratio on merger signal-to-noise ratios for several detectors, and compare our results with expectations from the test-mass limit. Wemore » note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our 1:1 (equal-mass) and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass-ratio for mergers of moderate-mass-ratio systems.« less

  9. Observing Mergers of Non-Spinning Black-Hole Binaries

    NASA Technical Reports Server (NTRS)

    McWilliams, Sean T.; Boggs, William D.; Baker, John G.; Kelly, Bernard J.

    2010-01-01

    Advances in the field of numerical relativity now make it possible to calculate the final, most powerful merger phase of binary black-hole coalescence for generic binaries. The state of the art has advanced well beyond the equal-mass case into the unequal-mass and spinning regions of parameter space. We present a study of the nonspinning portion of parameter space, primarily using an analytic waveform model tuned to available numerical data, with an emphasis on observational implications. We investigate the impact of varied m8BS ratio on merger signal-to-noise ratios (SNR) for several detectors, and compare our results with expectations from the test-mass limit. We note a striking similarity of the waveform phasing of the merger waveform across the available mass ratios. Motivated by this, we calculate the match between our equal-mass and 4:1 mass-ratio waveforms during the merger as a function of location on the source sky, using a new formalism for the match that accounts for higher harmonics. This is an indicator of the amount of degeneracy in mass ratio for mergers of moderate mass ratio systems.

  10. Binary Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan

    2007-01-01

    This viewgraph presentation reviews the massive black hole (MBH) binaries that are found at the center of most galaxies, "astronomical messenger", gravitational waves (GW), and the use of numerical relativity understand the features of these phenomena. The final merger of two black holes releases a tremendous amount of energy and is one of the brightest sources in the gravitational wave sky. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. Since these mergers take place in regions of very strong gravitational fields, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute these waveforms using the methods of numerical relativity.. This talk will take you on this quest for the holy grail of numerical relativity, showing how a spacetime is constructed on a computer to build a simulation laboratory for binary black hole mergers. We will focus on the recent advances that are revealing these waveforms, and the dramatic new potential for discoveries that arises when these sources will be observed by LIGO and LISA.

  11. Broadband Studies of Seismic Sources at Regional and Teleseismic Distances Using Advanced Time Series Analysis Methods

    DTIC Science & Technology

    1990-02-01

    transform the waveforms of this event to those of the Titanial must be a band limited representation of the firing sequence. Therefore, we decided to...design a Wiener filter to transform Pn waveforms of Event Titania4 into those of Event Titanial at all sensors of NORESS. Prior to applying this technique...for transforming the Pn phases of event Titania 4 into those of event Titanial . 28 T’tania4 -* Titania3 Titania3 B5 T’tania4 Titania4 - Titania3

  12. High-performance time-resolved fluorescence by direct waveform recording.

    PubMed

    Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D

    2010-10-01

    We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.

  13. Seismic Velocity Assessment In The Kachchh Region, India, From Multiple Waveform Functionals

    NASA Astrophysics Data System (ADS)

    Ghosh, R.; Sen, M. K.; Mandal, P.; Pulliam, J.; Agrawal, M.

    2014-12-01

    The primary goal of this study is to estimate well constrained crust and upper mantle seismic velocity structure in the Kachchh region of Gujarat, India - an area of active interest for earthquake monitoring purposes. Several models based on 'stand-alone' surface wave dispersion and receiver function modeling exist in this area. Here we jointly model the receiver function, surface wave dispersion and, S and shear-coupled PL wavetrains using broadband seismograms of deep (150-700 km), moderate to-large magnitude (5.5-6.8) earthquakes recorded teleseismically at semi-permanent seismograph stations in the Kachchh region, Gujarat, India. While surface wave dispersion and receiver function modeling is computationally fast, full waveform modeling makes use of reflectivity synthetic seismograms. An objective function that measures misfit between all three data is minimized using a very fast simulated annealing (VFSA) approach. Surface wave and receiver function data help reduce the model search space which is explored extensively for detailed waveform fitting. Our estimated crustal and lithospheric thicknesses in this region vary from 32 to 41 km and 70 to 80 km, respectively, while crustal P and S velocities from surface to Moho discontinuity vary from 4.7 to 7.0 km/s and 2.7 to 4.1 km/s, respectively. Our modeling clearly reveals a zone of crustal as well as an asthenospheric upwarping underlying the Kachchh rift zone relative to the surrounding unrifted area. We believe that this feature plays a key role in the seismogenesis of lower crustal earthquakes occurring in the region through the emanation of volatile CO2 into the hypocentral zones liberating from the crystallization of carbonatite melts in the asthenosphere. Such a crust-mantle structure might be related to the plume-lithosphere interaction during the Deccan/Reunion plume episode (~65 Ma).

  14. Surface wave tomography of North America and the Caribbean using global and regional broad-band networks: Phase velocity maps and limitations of ray theory

    USGS Publications Warehouse

    Godey, S.; Snieder, R.; Villasenor, A.; Benz, H.M.

    2003-01-01

    We present phase velocity maps of fundamental mode Rayleigh waves across the North American and Caribbean plates. Our data set consists of 1846 waveforms from 172 events recorded at 91 broad-band stations operating in North America. We compute phase velocity maps in four narrow period bands between 50 and 150 s using a non-linear waveform inversion method that solves for phase velocity perturbations relative to a reference Earth model (PREM). Our results show a strong velocity contrast between high velocities beneath the stable North American craton, and lower velocities in the tectonically active western margin, in agreement with other regional and global surface wave tomography studies. We perform detailed comparisons with global model results, which display good agreement between phase velocity maps in the location and amplitude of the anomalies. However, forward modelling shows that regional maps are more accurate for predicting waveforms. In addition, at long periods, the amplitude of the velocity anomalies imaged in our regional phase velocity maps is three time larger than in global phase velocity models. This amplitude factor is necessary to explain the data accurately, showing that regional models provide a better image of velocity structures. Synthetic tests show that the raypath coverage used in this study enables one to resolve velocity features of the order of 800-1000 km. However, only larger length-scale features are observed in the phase velocity maps. The limitation in resolution of our maps can be attributed to the wave propagation theory used in the inversion. Ray theory does not account for off-great-circle ray propagation effects, such as ray bending or scattering. For wavelengths less than 1000 km, scattering effects are significant and may need to be considered.

  15. The Collaborative Seismic Earth Model: Generation 1

    NASA Astrophysics Data System (ADS)

    Fichtner, Andreas; van Herwaarden, Dirk-Philip; Afanasiev, Michael; SimutÄ--, SaulÄ--; Krischer, Lion; ćubuk-Sabuncu, Yeşim; Taymaz, Tuncay; Colli, Lorenzo; Saygin, Erdinc; Villaseñor, Antonio; Trampert, Jeannot; Cupillard, Paul; Bunge, Hans-Peter; Igel, Heiner

    2018-05-01

    We present a general concept for evolutionary, collaborative, multiscale inversion of geophysical data, specifically applied to the construction of a first-generation Collaborative Seismic Earth Model. This is intended to address the limited resources of individual researchers and the often limited use of previously accumulated knowledge. Model evolution rests on a Bayesian updating scheme, simplified into a deterministic method that honors today's computational restrictions. The scheme is able to harness distributed human and computing power. It furthermore handles conflicting updates, as well as variable parameterizations of different model refinements or different inversion techniques. The first-generation Collaborative Seismic Earth Model comprises 12 refinements from full seismic waveform inversion, ranging from regional crustal- to continental-scale models. A global full-waveform inversion ensures that regional refinements translate into whole-Earth structure.

  16. The development of the miniaturized waveform receiver with the function measuring Antenna Impedance in space plasmas

    NASA Astrophysics Data System (ADS)

    Ishii, H.; Kojima, H.; Fukuhara, H.; Okada, S.; Yamakawa, H.

    2012-04-01

    Plasma wave is one of the most essential physical quantities in the solar terrestrial physics. The role of plasma wave receiver onboard satellites is to detect plasma waves in space with a good signal to noise ratio. There are two types of plasma wave receivers, the sweep frequency analyzer and the waveform capture. While the sweep frequency analyzer provides plasma wave spectra, the waveform capture obtains waveforms with phase information that is significant in studying nonlinear phenomena. Antenna sensors to observe electric fields of the plasma waves show different features in plasmas from in vacuum. The antenna impedances have specific characteristics in the frequency domain because of the dispersion of plasmas. These antenna impedances are expressed with complex number. We need to know not only the antenna impedances but also the transfer functions of plasma wave receiver's circuits in order to calibrate observed waveforms precisely. The impedances of the electric field antennas are affected by a state of surrounding plasmas. Since satellites run through various regions with different plasma parameters, we precisely should measure the antenna impedances onboard spacecraft. On the contrary, we can obtain the plasma density and by measuring the antenna impedances. Several formulas of the antenna impedance measurement system were proposed. A synchronous detection method is used on the BepiColombo Mercury Magnetospheric Orbiter (MMO), which will be launched in 2014. The digital data are stored in the onboard memory. They are read out and converted to the analog waveforms by D/A converter. They are fed into the input of the preamplifiers of antenna sensors through a resistor. We can calculate a transfer function of the circuit by applying the synchronous detection method to the output waveform from waveform receivers and digital data as a signal source. The size of this system is same as an A5 board. In recent years, Application Specific Integrated Circuit (ASIC) is in attention which is a technique to integrate large scale and complicated circuits. Lots of ASICs have been applied to high energy astrophysics. In this paper, we show our attempt to miniaturize the antennas impedances measurement system and Waveform Capture using the analogue ASIC. We design 8bits segment D/A converter that is implemented inside the waveform receiver ASIC chip. We improve input logic of the D/A converter to generate very weak signals accurately. The designed chip realizes the measurement of the antenna impedance as well as the waveform observation in the board size of business cards.

  17. Global and local waveform simulations using the VERCE platform

    NASA Astrophysics Data System (ADS)

    Garth, Thomas; Saleh, Rafiq; Spinuso, Alessandro; Gemund, Andre; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schlichtweg, Horst; Frank, Anton; Michelini, Alberto; Vilotte, Jean-Pierre; Rietbrock, Andreas

    2017-04-01

    In recent years the potential to increase resolution of seismic imaging by full waveform inversion has been demonstrated on a range of scales from basin to continental scales. These techniques rely on harnessing the computational power of large supercomputers, and running large parallel codes to simulate the seismic wave field in a three-dimensional geological setting. The VERCE platform is designed to make these full waveform techniques accessible to a far wider spectrum of the seismological community. The platform supports the two widely used spectral element simulation programs SPECFEM3D Cartesian, and SPECFEM3D globe, allowing users to run a wide range of simulations. In the SPECFEM3D Cartesian implementation the user can run waveform simulations on a range of pre-loaded meshes and velocity models for specific areas, or upload their own velocity model and mesh. In the new SPECFEM3D globe implementation, the user will be able to select from a number of continent scale model regions, or perform waveform simulations for the whole earth. Earthquake focal mechanisms can be downloaded within the platform, for example from the GCMT catalogue, or users can upload their own focal mechanism catalogue through the platform. The simulations can be run on a range of European supercomputers in the PRACE network. Once a job has been submitted and run through the platform, the simulated waveforms can be manipulated or downloaded for further analysis. The misfit between the simulated and recorded waveforms can then be calculated through the platform through three interoperable workflows, for raw-data access (FDSN) and caching, pre-processing and finally misfit. The last workflow makes use of the Pyflex analysis software. In addition, the VERCE platform can be used to produce animations of waveform propagation through the velocity model, and synthetic shakemaps. All these data-products are made discoverable and re-usable thanks to the VERCE data and metadata management layer. We demonstrate the functionality of the VERCE platform with two use cases, one using the pre-loaded velocity model and mesh for the Maule area of Chile using the SPECFEM3D Cartesian workflow, and one showing the output of a global simulation using the SPECFEM3D globe workflow. It is envisioned that this tool will allow a much greater range of seismologists to access these full waveform inversion tools, and aid full waveform tomographic and source inversion, synthetic shakemap production and other full waveform applications, in a wide range of tectonic settings.

  18. Surface-wave amplitude analysis for array data with non-linear waveform fitting: Toward high-resolution attenuation models of the upper mantle

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Yoshizawa, K.

    2013-12-01

    Anelastic attenuation of seismic waves provides us with valuable information on temperature and water content in the Earth's mantle. While seismic velocity models have been investigated by many researchers, anelastic attenuation (or Q) models have yet to be investigated in detail mainly due to the intrinsic difficulties and uncertainties in the amplitude analysis of observed seismic waveforms. To increase the horizontal resolution of surface wave attenuation models on a regional scale, we have developed a new method of fully non-linear waveform fitting to measure inter-station phase velocities and amplitude ratios simultaneously, using the Neighborhood Algorithm (NA) as a global optimizer. Model parameter space (perturbations of phase speed and amplitude ratio) is explored to fit two observed waveforms on a common great-circle path by perturbing both phase and amplitude of the fundamental-mode surface waves. This method has been applied to observed waveform data of the USArray from 2007 to 2008, and a large-number of inter-station amplitude and phase speed data are corrected in a period range from 20 to 200 seconds. We have constructed preliminary phase speed and attenuation models using the observed phase and amplitude data, with careful considerations of the effects of elastic focusing and station correction factors for amplitude data. The phase velocity models indicate good correlation with the conventional tomographic results in North America on a large-scale; e.g., significant slow velocity anomaly in volcanic regions in the western United States. The preliminary results of surface-wave attenuation achieved a better variance reduction when the amplitude data are inverted for attenuation models in conjunction with corrections for receiver factors. We have also taken into account the amplitude correction for elastic focusing based on a geometrical ray theory, but its effects on the final model is somewhat limited and our attenuation model show anti-correlation with the phase velocity models; i.e., lower attenuation is found in slower velocity areas that cannot readily be explained by the temperature effects alone. Some former global scale studies (e.g., Dalton et al., JGR, 2006) indicated that the ray-theoretical focusing corrections on amplitude data tend to eliminate such anti-correlation of phase speed and attenuation, but this seems not to work sufficiently well for our regional scale model, which is affected by stronger velocity gradient relative to global-scale models. Thus, the estimated elastic focusing effects based on ray theory may be underestimated in our regional-scale studies. More rigorous ways to estimate the focusing corrections as well as data selection criteria for amplitude measurements are required to achieve a high-resolution attenuation models on regional scales in the future.

  19. Rigorous Approach in Investigation of Seismic Structure and Source Characteristicsin Northeast Asia: Hierarchical and Trans-dimensional Bayesian Inversion

    NASA Astrophysics Data System (ADS)

    Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.

    2015-12-01

    Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.

  20. Application of Adjoint Method and Spectral-Element Method to Tomographic Inversion of Regional Seismological Structure Beneath Japanese Islands

    NASA Astrophysics Data System (ADS)

    Tsuboi, S.; Miyoshi, T.; Obayashi, M.; Tono, Y.; Ando, K.

    2014-12-01

    Recent progress in large scale computing by using waveform modeling technique and high performance computing facility has demonstrated possibilities to perform full-waveform inversion of three dimensional (3D) seismological structure inside the Earth. We apply the adjoint method (Liu and Tromp, 2006) to obtain 3D structure beneath Japanese Islands. First we implemented Spectral-Element Method to K-computer in Kobe, Japan. We have optimized SPECFEM3D_GLOBE (Komatitsch and Tromp, 2002) by using OpenMP so that the code fits hybrid architecture of K-computer. Now we could use 82,134 nodes of K-computer (657,072 cores) to compute synthetic waveform with about 1 sec accuracy for realistic 3D Earth model and its performance was 1.2 PFLOPS. We use this optimized SPECFEM3D_GLOBE code and take one chunk around Japanese Islands from global mesh and compute synthetic seismograms with accuracy of about 10 second. We use GAP-P2 mantle tomography model (Obayashi et al., 2009) as an initial 3D model and use as many broadband seismic stations available in this region as possible to perform inversion. We then use the time windows for body waves and surface waves to compute adjoint sources and calculate adjoint kernels for seismic structure. We have performed several iteration and obtained improved 3D structure beneath Japanese Islands. The result demonstrates that waveform misfits between observed and theoretical seismograms improves as the iteration proceeds. We now prepare to use much shorter period in our synthetic waveform computation and try to obtain seismic structure for basin scale model, such as Kanto basin, where there are dense seismic network and high seismic activity. Acknowledgements: This research was partly supported by MEXT Strategic Program for Innovative Research. We used F-net seismograms of the National Research Institute for Earth Science and Disaster Prevention.

  1. Imaging hydrothermal roots along the Endeavour segment of the Juan de Fuca ridge using elastic full waveform inversion.

    NASA Astrophysics Data System (ADS)

    Arnulf, A. F.; Harding, A. J.; Kent, G. M.

    2016-12-01

    The Endeavour segment is a 90 km-long, medium-spreading-rate, oceanic spreading center located on the northern Juan de Fuca ridge (JDFR). The central part of this segment forms a 25-km-long volcanic high that hosts five of the most hydrothermally active vent fields on the MOR system, namely (from north to south): Sasquatch, Salty Dawg, High Rise, Main Endeavour and Mothra. Mass, heat and chemical fluxes associated to vigorous hydrothermal venting are large, however the geometry of the fluid circulation system through the oceanic crust remains almost completely undefined. To produce high-resolution velocity/reflectivity structures along the axis of the Endeavour segment, here, we combined a synthetic ocean bottom experiment (SOBE), 2-D traveltime tomography, 2D elastic full waveform and reverse time migration (RTM). We present velocity and reflectivity sections along Endeavour segment at unprecedented spatial resolutions. We clearly image a set of independent, geometrically complex, elongated low-velocity regions linking the top of the magma chamber at depth to the hydrothermal vent fields on the seafloor. We interpret these narrow pipe-like units as focused regions of hydrothermal fluid up-flow, where acidic and corrosive fluids form pipe-like alteration zones as previously observed in Cyprus ophiolites. Furthermore, the amplitude of these low-velocity channels is shown to be highly variable, with the strongest velocity drops observed at Main Endeavour, Mothra and Salty Dawg hydrothermal vent fields, possibly suggesting more mature hydrothermal cells. Interestingly, the near-seafloor structure beneath those three sites is very similar and highlights a sharp lateral transition in velocity (north to south). On the other hand, the High-Rise hydrothermal vent field is characterized by several lower amplitudes up-flow zones and relatively slow near-surface velocities. Last, Sasquatch vent field is located in an area of high near-surface velocities and is not characterized by an obvious low-velocity up-flow region, in good agreement with an extinct vent field.

  2. Characterization of Earthquake-Induced Ground Motion from the L'Aquila Seismic Sequence of 2009, Italy

    NASA Astrophysics Data System (ADS)

    Malagnini, L.; Akinci, A.; Mayeda, K. M.; Munafo', I.; Herrmann, R. B.; Mercuri, A.

    2010-12-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data (Peak Ground Acceleration, PGA, Peak Ground Velocity, PGV, and Spectral Acceleration, SA) gathered during the Mw 6.15 L’Aquila earthquake (April 6, 2009, 01:32 UTC). The L’Aquila main-shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12,777 high-quality, high-gain waveforms with excellent S/N ratios (4,259 vertical, and 8,518 horizontal time histories). Seismograms were selected from the recordings of 170 fore-shocks and after-shocks of the sequence (the complete set of all earthquakes with ML ≥ 3.0, from October 1, 2008, to May 10, 2010). All waveforms were downloaded from the ISIDe web page (http://iside.rm.ingv.it/iside/standard/index.jsp), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L’Aquila sequence (2.8 ≤ Mw ≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-98 recently described by Malagnini et al. (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ~ 80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  3. BICMOS power detector for pulsed Rf power amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridge, Clayton D.

    2016-10-01

    A BiCMOS power detector for pulsed radio-frequency power amplifiers is proposed. Given the pulse waveform and a fraction of the power amplifier's input or output signal, the detector utilizes a low-frequency feedback loop to perform a successive approximation of the amplitude of the input signal. Upon completion of the successive approximation, the detector returns 9-bits representing the amplitude of the RF input signal. Using the pulse waveform from the power amplifier, the detector can dynamically adjust the rate of the binary search operation in order to return the updated amplitude information of the RF input signal at least every 1ms.more » The detector can handle pulse waveform frequencies from 50kHz to 10MHz with duty cycles in the range of 5- 50% and peak power levels of -10 to 10dBm. The signal amplitude measurement can be converted to a peak power measurement accurate to within ±0.6dB of the input RF power.« less

  4. Transmission line design for the lunar environment

    NASA Technical Reports Server (NTRS)

    Gaustad, Krista L.; Gordon, Lloyd B.

    1990-01-01

    How the mass, operating temperature, and efficiency of a transmission line operating on the moon are affected by its operating parameters, the lunar environment, and the choice of materials is examined. The key transmission line parameters which have an effect on mass, operating temperature, and efficiency are voltage, power loss, and waveform. The choice of waveform for transmission will be influenced by the waveform of the source and load, and therefore an analysis of both DC and AC transmission is necessary for a complete understanding of lunar power transmission. The data presented are for the DC case only; however, the discussion of the environmental effects and of material selection is pertinent to both AC and DC transmission. The operating voltage is shown to be a key parameter in transmission line design. The role efficiency plays in transmission line design is also examined. The analyses include above- and below-the-surface operation for both a vacuum-insulated, two-wire, transmission line, and a solid-dielectric-insulated, coaxial, transmission line.

  5. Three-dimensional full waveform inversion of short-period teleseismic wavefields based upon the SEM-DSM hybrid method

    NASA Astrophysics Data System (ADS)

    Monteiller, Vadim; Chevrot, Sébastien; Komatitsch, Dimitri; Wang, Yi

    2015-08-01

    We present a method for high-resolution imaging of lithospheric structures based on full waveform inversion of teleseismic waveforms. We model the propagation of seismic waves using our recently developed direct solution method/spectral-element method hybrid technique, which allows us to simulate the propagation of short-period teleseismic waves through a regional 3-D model. We implement an iterative quasi-Newton method based upon the L-BFGS algorithm, where the gradient of the misfit function is computed using the adjoint-state method. Compared to gradient or conjugate-gradient methods, the L-BFGS algorithm has a much faster convergence rate. We illustrate the potential of this method on a synthetic test case that consists of a crustal model with a crustal discontinuity at 25 km depth and a sharp Moho jump. This model contains short- and long-wavelength heterogeneities along the lateral and vertical directions. The iterative inversion starts from a smooth 1-D model derived from the IASP91 reference Earth model. We invert both radial and vertical component waveforms, starting from long-period signals filtered at 10 s and gradually decreasing the cut-off period down to 1.25 s. This multiscale algorithm quickly converges towards a model that is very close to the true model, in contrast to inversions involving short-period waveforms only, which always get trapped into a local minimum of the cost function.

  6. Rapid and Robust Cross-Correlation-Based Seismic Signal Identification Using an Approximate Nearest Neighbor Method

    DOE PAGES

    Tibi, Rigobert; Young, Christopher; Gonzales, Antonio; ...

    2017-07-04

    The matched filtering technique that uses the cross correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this paper, we introduce an approximate nearest neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation. Our method begins with a projection into a reduced dimensionality space, based on correlation with a randomized subset ofmore » the full template archive. Searching for a specified number of nearest neighbors for a query waveform is accomplished by iteratively comparing it with the neighbors of its immediate neighbors. We used the approach to search for matches to each of ~2300 analyst-reviewed signal detections reported in May 2010 for the International Monitoring System station MKAR. The template library in this case consists of a data set of more than 200,000 analyst-reviewed signal detections for the same station from February 2002 to July 2016 (excluding May 2010). Of these signal detections, 73% are teleseismic first P and 17% regional phases (Pn, Pg, Sn, and Lg). Finally, the analyses performed on a standard desktop computer show that the proposed ANN approach performs a search of the large template libraries about 25 times faster than the standard full linear search and achieves recall rates greater than 80%, with the recall rate increasing for higher correlation thresholds.« less

  7. Rapid and Robust Cross-Correlation-Based Seismic Signal Identification Using an Approximate Nearest Neighbor Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tibi, Rigobert; Young, Christopher; Gonzales, Antonio

    The matched filtering technique that uses the cross correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this paper, we introduce an approximate nearest neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation. Our method begins with a projection into a reduced dimensionality space, based on correlation with a randomized subset ofmore » the full template archive. Searching for a specified number of nearest neighbors for a query waveform is accomplished by iteratively comparing it with the neighbors of its immediate neighbors. We used the approach to search for matches to each of ~2300 analyst-reviewed signal detections reported in May 2010 for the International Monitoring System station MKAR. The template library in this case consists of a data set of more than 200,000 analyst-reviewed signal detections for the same station from February 2002 to July 2016 (excluding May 2010). Of these signal detections, 73% are teleseismic first P and 17% regional phases (Pn, Pg, Sn, and Lg). Finally, the analyses performed on a standard desktop computer show that the proposed ANN approach performs a search of the large template libraries about 25 times faster than the standard full linear search and achieves recall rates greater than 80%, with the recall rate increasing for higher correlation thresholds.« less

  8. Coupling hydrodynamic and wave propagation modeling for waveform modeling of SPE.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Steedman, D. W.; Rougier, E.; Delorey, A.; Bradley, C. R.

    2015-12-01

    The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. This paper presents effort to improve knowledge of the processes that affect seismic wave propagation from the hydrodynamic/plastic source region to the elastic/anelastic far field thanks to numerical modeling. The challenge is to couple the prompt processes that take place in the near source region to the ones taking place later in time due to wave propagation in complex 3D geologic environments. In this paper, we report on results of first-principles simulations coupling hydrodynamic simulation codes (Abaqus and CASH), with a 3D full waveform propagation code, SPECFEM3D. Abaqus and CASH model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. LANL has been recently employing a Coupled Euler-Lagrange (CEL) modeling capability. This has allowed the testing of a new phenomenological model for modeling stored shear energy in jointed material. This unique modeling capability has enabled highfidelity modeling of the explosive, the weak grout-filled borehole, as well as the surrounding jointed rock. SPECFEM3D is based on the Spectral Element Method, a direct numerical method for full waveform modeling with mathematical accuracy (e.g. Komatitsch, 1998, 2002) thanks to its use of the weak formulation of the wave equation and of high-order polynomial functions. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. Displacement time series at these points are computed from output of CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests and waveforms modeled for several SPE tests conducted so far, with a special focus on effect of the local topography.

  9. A Study of Regional Waveform Calibration in the Eastern Mediterranean Region.

    NASA Astrophysics Data System (ADS)

    di Luccio, F.; Pino, A.; Thio, H.

    2002-12-01

    We modeled Pnl phases from several moderate magnitude events in the eastern Mediterranean to test methods and to develop path calibrations for source determination. The study region spanning from the eastern part of the Hellenic arc to the eastern Anatolian fault is mostly interested by moderate earthquakes, that can produce relevant damages. The selected area consists of several tectonic environment, which produces increased level of difficulty in waveform modeling. The results of this study are useful for the analysis of regional seismicity and for seismic hazard as well, in particular because very few broadband seismic stations are available in the selected area. The obtained velocity model gives a 30 km crustal tickness and low upper mantle velocities. The applied inversion procedure to determine the source mechanism has been successful, also in terms of discrimination of depth, for the entire range of selected paths. We conclude that using the true calibration of the seismic structure and high quality broadband data, it is possible to determine the seismic source in terms of mechanism, even with a single station.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eken Tuna, Kevin Mayeda, Abraham Hofstetter, Rengin Gok, Gonca Orgulu, Niyazi Turkelli

    A recently developed coda magnitude methodology was applied to selected broadband stations in Turkey for the purpose of testing the coda method in a large, laterally complex region. As found in other, albeit smaller regions, coda envelope amplitude measurements are significantly less variable than distance-corrected direct wave measurements (i.e., L{sub g} and surface waves) by roughly a factor 3-to-4. Despite strong lateral crustal heterogeneity in Turkey, they found that the region could be adequately modeled assuming a simple 1-D, radially symmetric path correction. After calibrating the stations ISP, ISKB and MALT for local and regional distances, single-station moment-magnitude estimates (M{submore » W}) derived from the coda spectra were in excellent agreement with those determined from multistation waveform modeling inversions, exhibiting a data standard deviation of 0.17. Though the calibration was validated using large events, the results of the calibration will extend M{sub W} estimates to significantly smaller events which could not otherwise be waveform modeled. The successful application of the method is remarkable considering the significant lateral complexity in Turkey and the simple assumptions used in the coda method.« less

  11. 3-D S-velocity structure in the lowermost mantle beneath the Northern Pacific

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kawai, K.; Geller, R. J.; Borgeaud, A. F. E.; Konishi, K.

    2017-12-01

    We previously (Suzuki et al., EPS, 2016) reported the results of waveform inversion to infer the three-dimensional (3-D) S-velocity structure in the lowermost 400 km of the mantle (the Dʺ region) beneath the Northern Pacific region. Our dataset consists of about 20,000 transverse component broadband body-wave seismograms observed at North American stations (mainly USArray) for 131 intermediate and deep earthquakes which occurred beneath the western Pacific subduction region. Synthetic resolution tests indicate that our methods and dataset can resolve the velocity structure in the target region with a horizontal scale of about 150 km and a vertical scale of about 50 km. The 3-D S-velocity model obtained in that study shows three prominent features: (i) horizontal high-velocity anomalies up to about 3 per cent faster than the Preliminary Reference Earth Model (PREM) with a thickness of a few hundred km and a lower boundary which is at most about 150 km above the core-mantle boundary (CMB), (ii) low-velocity anomalies about 2.5 per cent slower than PREM beneath the high-velocity anomalies at the base of the lower mantle, (iii) a thin (about 150 km) low-velocity structure continuous from the base of the low-velocity zone to at least 400 km above the CMB. We interpret these features respectively as: (i) remnants of slab material where the Mg-perovskite to Mg-post-perovskite phase transition could have occurred within the slab, (ii, iii) large amounts of hot and less dense materials beneath the cold Kula or Pacific slab remnants immediately above the CMB which ascend and form a passive plume upwelling at the edge of the slab remnants. Since our initial work we subsequently conducted waveform inversion using both the transverse- and radial-component horizontal waveform data to infer the isotropic shear velocity structure in the lowermost mantle beneath the Northern Pacific in more detail. We also compute partial derivatives with respect to the 5 independent elastic constants (A, C, F, L, N) of a transversely isotropy (TI) medium, and conduct a synthetic resolution test to examine the ability of our methods and dataset to resolve the anisotropic structure in this region using two-component waveform data.

  12. A Contribution to the Understanding of the Regional Seismic Structure in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Di Luccio, F.; Thio, H.; Pino, N.

    2001-12-01

    Regional earthquakes recorded by two digital broadband stations (BGIO and KEG) located in the Eastern Mediterranean have been analyzed in order to study the seismic structure in this region. The area consists of different tectonic provinces, which complicate the modeling of the seismic wave propagation. We have modeled the Pnl arrivals using the FK-integration technique (Saikia, 1994) along different paths at the two stations, at several distances, ranging from 400 to 1500 km. Comparing the synthetics obtained by using several models compiled by other authors, we have constructed a velocity model, considering the informations deriving from group velocity distribution, in order to determine the finer structure in the analyzed paths. The model has been perturbed by trial and error until a compressional velocity profile has been found producing the shape of the observed waveforms. The crustal thickness, upper mantle P-wave velocity and 410-km discontinuity determine the shape of the observed waveform portions.

  13. Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing.

    PubMed

    McDonald, Carrie R; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M; Trongnetrpunya, Amy; Sherfey, Jason S; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K; Cash, Sydney S; Leonard, Matthew K; Hagler, Donald J; Dale, Anders M; Halgren, Eric

    2010-11-01

    Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, 'N') and words that repeated (old, 'O'). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs. O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs. O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350 to 450 ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing

    PubMed Central

    McDonald, Carrie R.; Thesen, Thomas; Carlson, Chad; Blumberg, Mark; Girard, Holly M.; Trongnetrpunya, Amy; Sherfey, Jason S.; Devinsky, Orrin; Kuzniecky, Rubin; Dolye, Werner K.; Cash, Sydney S.; Leonard, Matt K.; Hagler, Donald J.; Dale, Anders M.; Halgren, Eric

    2010-01-01

    Repetition priming is a core feature of memory processing whose anatomical correlates remain poorly understood. In this study, we use advanced multimodal imaging (functional magnetic resonance imaging (fMRI) and magnetoencephalography; MEG) to investigate the spatiotemporal profile of repetition priming. We use intracranial electroencephalography (iEEG) to validate our fMRI/MEG measurements. Twelve controls completed a semantic judgment task with fMRI and MEG that included words presented once (new, ‘N’) and words that repeated (old, ‘O’). Six patients with epilepsy completed the same task during iEEG recordings. Blood-oxygen level dependent (BOLD) responses for N vs O words were examined across the cortical surface and within regions of interest. MEG waveforms for N vs O words were estimated using a noise-normalized minimum norm solution, and used to interpret the timecourse of fMRI. Spatial concordance was observed between fMRI and MEG repetition effects from 350–450ms within bilateral occipitotemporal and medial temporal, left prefrontal, and left posterior temporal cortex. Additionally, MEG revealed widespread sources within left temporoparietal regions, whereas fMRI revealed bilateral reductions in occipitotemporal and left superior frontal, and increases in inferior parietal, precuneus, and dorsolateral prefrontal activity. BOLD suppression in left posterior temporal, left inferior prefrontal, and right occipitotemporal cortex correlated with MEG repetition-related reductions. IEEG responses from all three regions supported the timecourse of MEG and localization of fMRI. Furthermore, iEEG decreases to repeated words were associated with decreased gamma power in several regions, providing evidence that gamma oscillations are tightly coupled to cognitive phenomena and reflect regional activations seen in the BOLD signal. PMID:20620212

  15. DEVELOPING AND EXPLOITING A UNIQUE DATASET FROM SOUTH AFRICAN GOLD MINES FOR SOURCE CHARACTERIZATION AND WAVE PROPAGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julia, J; Nyblade, A; Gok, R

    2009-07-06

    In this project, we are developing and exploiting a unique seismic dataset to address the characteristics of small seismic events and the associated seismic signals observed at local (< 200 km) and regional (< 2000 km) distances. The dataset is being developed using mining-induced events from three deep gold mines in South Africa recorded on in-mine networks (< 1 km) composed of tens of high-frequency sensors, a network of four broadband stations installed as part of this project at the surface around the mines (1-10 km), and a network of existing broadband seismic stations at local/regional distances (50-1000 km) frommore » the mines. Data acquisition has now been completed and includes: (1) {approx}2 years (2007 and 2008) of continuous recording by the surface broadband array, and (2) tens of thousands of mine tremors in the -3.4 < ML < 4.4 local magnitude range. Events with positive magnitudes are generally well recorded by the surface-mine stations, while magnitudes of 3.0 and larger are seen at regional distances (up to {approx} 600 km) in high-pass filtered recordings. We have now completed the quality control of the in-mine data gathered at the three gold mines included in this project. The quality control consisted of: (1) identification and analysis of outliers among the P- and S-wave travel-time picks reported by the in-mine network operator and (2) verification of sensor orientations. The outliers have been identified through a 'Wadati filter' that searches for the largest subset of P- and S-wave travel-time picks consistent with a medium of uniform wave-speed. They have observed that outliers are generally picked at a few select stations. They have also detected that trigger times were mistakenly reported as origin times by the in-mine network operator, and corrections have been obtained from the intercept times in the Wadati diagrams. Sensor orientations have been verified through rotations into the local ray-coordinate system and, when possible, corrected by correlating waveforms obtained from theoretical and empirical rotation angles. Full moment tensor solutions have been obtained for selected events within the Savuka network volume, with moment magnitudes in the 0.5 < M{sub W} < 2.6 range. The solutions were obtained by inverting P-, SV-, and SH-spectral amplitudes measured on the theoretically rotated waveforms with visually assigned polarities. Most of the solutions have a non-zero implosive contribution (47 out of 76), while a small percentage is purely deviatoric (10 out of 76). The deviatoric moment tensors range from pure double couple to pure non-double couple mechanisms. We have also calibrated the regional stations for seismic coda-derived source spectra and moment magnitude using the envelope methodology of Mayeda et al. (2003). they tie the coda M{sub w} to independent values from waveform modeling. The resulting coda-based source spectra of shallow mining-related events show significant spectral peaking that is not seen in deeper tectonic earthquakes. This coda peaking may be an independent method of identifying shallow events and is similar to coda peaking with previously observed for Nevada explosions, where the frequency of the observed spectral peak correlates with the depth of burial (Murphy et al., 2009).« less

  16. Static Corrections to Improve Seismic Monitoring of the North Korean Nuclear Test Site with Regional Arrays

    NASA Astrophysics Data System (ADS)

    Wilkins, N.; Wookey, J. M.; Selby, N. D.

    2017-12-01

    Seismology is an important part of the International Monitoring System (IMS) installed to detect, identify, and locate nuclear detonations in breach of the Comprehensive nuclear Test Ban Treaty (CTBT) prior to and after its entry into force. Seismic arrays in particular provide not only a means of detecting and locating underground nuclear explosions, but in discriminating them from naturally occurring earthquakes of similar magnitude. One potential discriminant is the amplitude ratio of high frequency (> 2 Hz) P waves to S waves (P/S) measured at regional distances (3 - 17 °). Accurate measurement of such discriminants, and the ability to detect low-magnitude seismicity from a suspicious event relies on high signal-to-noise ratio (SNR) data. A correction to the slowness vector of the incident seismic wavefield, and static corrections applied to the waveforms recorded at each receiver within the array can be shown to improve the SNR. We apply codes we have developed to calculate slowness-azimuth station corrections (SASCs) and static corrections to the arrival time and amplitude of the seismic waveform to seismic arrays regional to the DPRK nuclear test site at Punggye-ri, North Korea. We use the F-statistic to demonstrate the SNR improvement to data from the nuclear tests and other seismic events in the vicinity of the test site. We also make new measurements of P/S with the corrected waveforms and compare these with existing measurements.

  17. Source mechanism of the 2006 M5.1 Wen'an Earthquake determined from a joint inversion of local and teleseismic broadband waveform data

    NASA Astrophysics Data System (ADS)

    Huang, J.; Ni, S.; Niu, F.; Fu, R.

    2007-12-01

    On July 4th, 2006, a magnitude 5.1 earthquake occurred at Wen'an, {~}100 km south of Beijing, which was felt at Beijing metropolitan area. To better understand the regional tectonics, we have inverted local and teleseismic broadband waveform data to determine the focal mechanism of this earthquake. We selected waveform data of 9 stations from the recently installed Beijing metropolitan digital Seismic Network (BSN). These stations are located within 600 km and cover a good azimuthal range to the earthquake. To better fit the lower amplitude P waveform, we employed two different weights for the P wave and surface wave arrivals, respectively. A grid search method was employed to find the strike, dip and slip of the earthquake that best fits the P and surface waveforms recorded at all the three components (the tangential component of the P-wave arrivals was not used). Synthetic waveforms were computed with an F-K method. Two crustal velocity models were used in the synthetic calculation to reflect a rapid east-west transition in crustal structure observed by seismic and geological studies in the study area. The 3D grid search results in reasonable constraints on the fault geometry and the slip vector with a less well determined focal depth. As such we combined teleseismic waveform data from 8 stations of the Global Seismic Network in a joint inversion. Clearly identifiable depth phases (pP, sP) recorded in the teleseismic stations obviously provided a better constraint on the resulting source depth. Results from the joint inversion indicate that the Wen'an earthquake is mainly a right-lateral strike slip event (-150°) which occurred at a near vertical (dip, 80° ) NNE trend (210°º) fault. The estimated focal depth is {~}14- 15km, and the moment magnitude is 5.1. The estimated fault geometry here agrees well with aftershock distribution and is consistent with the major fault systems in the area which were developed under a NNE-SSW oriented compressional stress field. Key word: waveform modeling method, source mechanism, grid search method, cut and paste method, aftershocks distribution

  18. Estimation of Spatial Trends in LAI in Heterogeneous Semi-arid Ecosystems using Full Waveform Lidar

    NASA Astrophysics Data System (ADS)

    Glenn, N. F.; Ilangakoon, N.; Spaete, L.; Dashti, H.

    2017-12-01

    Leaf area index (LAI) is a key structural trait that is defined by the plant functional type (PFT) and controlled by prevailing climate- and human-driven ecosystem stresses. Estimates of LAI using remote sensing techniques are limited by the uncertainties of vegetation inter and intra-gap fraction estimates; this is especially the case in sparse, low stature vegetated ecosystems. Small footprint full waveform lidar digitizes the total amount of return energy with the direction information as a near continuous waveform at a high vertical resolution (1 ns). Thus waveform lidar provides additional data matrices to capture vegetation gaps as well as PFTs that can be used to constrain the uncertainties of LAI estimates. In this study, we calculated a radiometrically calibrated full waveform parameter called backscatter cross section, along with other data matrices from the waveform to estimate vegetation gaps across plots (10 m x 10 m) in a semi-arid ecosystem in the western US. The LAI was then estimated using empirical relationships with directional gap fraction. Full waveform-derived gap fraction based LAI showed a high correlation with field observed shrub LAI (R2 = 0.66, RMSE = 0.24) compared to discrete return lidar based LAI (R2 = 0.01, RMSE = 0.5). The data matrices derived from full waveform lidar classified a number of deciduous and evergreen tree species, shrub species, and bare ground with an overall accuracy of 89% at 10 m. A similar analysis was performed at 1m with overall accuracy of 80%. The next step is to use these relationships to map the PFTs LAI at 10 m spatial scale across the larger study regions. The results show the exciting potential of full waveform lidar to identify plant functional types and LAI in low-stature vegetation dominated semi-arid ecosystems, an ecosystem in which many other remote sensing techniques fail. These results can be used to assess ecosystem state, habitat suitability as well as to constrain model uncertainties in vegetation dynamic models with a combination of other remote sensing techniques. Multi-spatial resolution (1 m and 10 m) studies provide basic information on the applicability and detection thresholds of future global satellite sensors designed at coarser spatial resolutions (e.g. GEDI, ICESat-2) in semi-arid ecosystems.

  19. Full moment tensors with uncertainties for the 2017 North Korea declared nuclear test and for a collocated, subsequent event

    NASA Astrophysics Data System (ADS)

    Alvizuri, C. R.; Tape, C.

    2017-12-01

    A seismic moment tensor is a 3×3 symmetric matrix that characterizes the far-field seismic radiation from a source, whether it be an earthquake, volcanic event, explosion. We estimate full moment tensors and their uncertainties for the North Korea declared nuclear test and for a collocated event that occurred eight minutes later. The nuclear test and the subsequent event occurred on September 3, 2017 at around 03:30 and 03:38 UTC time. We perform a grid search over the six-dimensional space of moment tensors, generating synthetic waveforms at each moment tensor grid point and then evaluating a misfit function between the observed and synthetic waveforms. The synthetic waveforms are computed using a 1-D structure model for the region; this approximation requires careful assessment of time shifts between data and synthetics, as well as careful choice of the bandpass for filtering. For each moment tensor we characterize its uncertainty in terms of waveform misfit, a probability function, and a confidence curve for the probability that the true moment tensor lies within the neighborhood of the optimal moment tensor. For each event we estimate its moment tensor using observed waveforms from all available seismic stations within a 2000-km radius. We use as much of the waveform as possible, including surface waves for all stations, and body waves above 1 Hz for some of the closest stations. Our preliminary magnitude estimates are Mw 5.1-5.3 for the first event and Mw 4.7 for the second event. Our results show a dominantly positive isotropic moment tensor for the first event, and a dominantly negative isotropic moment tensor for the subsequent event. As expected, the details of the probability density, waveform fit, and confidence curves are influenced by the structural model, the choice of filter frequencies, and the selection of stations.

  20. Application of an iterative least-squares waveform inversion of strong-motion and teleseismic records to the 1978 Tabas, Iran, earthquake

    USGS Publications Warehouse

    Hartzell, S.; Mendoza, C.

    1991-01-01

    An iterative least-squares technique is used to simultaneously invert the strong-motion records and teleseismic P waveforms for the 1978 Tabas, Iran, earthquake to deduce the rupture history. The effects of using different data sets and different parametrizations of the problem (linear versus nonlinear) are considered. A consensus of all the inversion runs indicates a complex, multiple source for the Tabas earthquake, with four main source regions over a fault length of 90 km and an average rupture velocity of 2.5 km/sec. -from Authors

  1. Apnea Detection Method for Cheyne-Stokes Respiration Analysis on Newborn

    NASA Astrophysics Data System (ADS)

    Niimi, Taiga; Itoh, Yushi; Natori, Michiya; Aoki, Yoshimitsu

    2013-04-01

    Cheyne-Stokes respiration is especially prevalent in preterm newborns, but its severity may not be recognized. It is characterized by apnea and cyclical weakening and strengthening of the breathing. We developed a method for detecting apnea and this abnormal respiration and for estimating its malignancy. Apnea was detected based on a "difference" feature (calculated from wavelet coefficients) and a modified maximum displacement feature (related to the respiratory waveform shape). The waveform is calculated from vertical motion of the thoracic and abdominal region during respiration using a vision sensor. Our proposed detection method effectively detects apnea (sensitivity 88.4%, specificity 99.7%).

  2. Speech analyzer

    NASA Technical Reports Server (NTRS)

    Lokerson, D. C. (Inventor)

    1977-01-01

    A speech signal is analyzed by applying the signal to formant filters which derive first, second and third signals respectively representing the frequency of the speech waveform in the first, second and third formants. A first pulse train having approximately a pulse rate representing the average frequency of the first formant is derived; second and third pulse trains having pulse rates respectively representing zero crossings of the second and third formants are derived. The first formant pulse train is derived by establishing N signal level bands, where N is an integer at least equal to two. Adjacent ones of the signal bands have common boundaries, each of which is a predetermined percentage of the peak level of a complete cycle of the speech waveform.

  3. Waveform complexity caused by near trench structure and its impact on earthquake source study: application to the 2015 Illapel earthquake sequence

    NASA Astrophysics Data System (ADS)

    Qian, Y.; Wei, S.; Wu, W.; Ni, S.

    2017-12-01

    Among various types of 3D heterogeneity in the Earth, trench might be the most complex systems, which includes rapidly varying bathymetry and usually thick sediment below water layer. These structure complexities can cause substantial waveform complexities on seismograms, but their corresponding impact on the earthquake source studies has not yet been well understood. Here we explore those effects via studies of two moderate aftershocks (one near the coast while the other close to the Peru-Chile trench axis) in the 2015 Illapel earthquake sequence. The horizontal locations and depths of these two events are poorly constrained and the reported results of various agencies display substantial variations. Thus, we first relocated the epicenters using the P-wave first arrivals and determined other parameters by waveform fitting. In a jackknifing way, we found that the trench event has large differences between regional and teleseismic solutions, in particular for depth, while the coastal event shows consistent results. The teleseismic P/Pdiff waves between these two events also display distinctly different features. More specifically, the trench event has more complex P/Pdiff waves and stronger coda waves, in terms of amplitude and duration (longer than 100s). The coda waves are coherent across stations at different distances and azimuths, indicating a more likely origin of scattering waves due to 3D heterogeneity near trench. To quantitatively model those 3D effects, we adopted a hybrid waveform simulation approach that computes the 3D wavefield in the source region by the Spectral Element Method (SEM) and then propagates the wavefield to teleseismic and shadow zone distances through the Direct Solution Method (DSM). We incorporated the GEBCO bathymetry and water layer into the SEM simulations and assumed the IASP91 1D model for DSM computation. Comparing with the poor 1D synthetics fitting to the data, we do obtain dramatic improvement in 3D waveform fittings across a series of frequency bands. With sensitivity tests of 3D waveform modeling, the centroid longitude and depth for the near trench event are refined. Our study suggests that the complex trench structure must be taken into account for a reliable analysis of shallow earthquake near trench, in particular for the shallowest tsunamigenic earthquakes.

  4. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    NASA Astrophysics Data System (ADS)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  5. 3D Acoustic Full Waveform Inversion for Engineering Purpose

    NASA Astrophysics Data System (ADS)

    Lim, Y.; Shin, S.; Kim, D.; Kim, S.; Chung, W.

    2017-12-01

    Seismic waveform inversion is the most researched data processing technique. In recent years, with an increase in marine development projects, seismic surveys are commonly conducted for engineering purposes; however, researches for application of waveform inversion are insufficient. The waveform inversion updates the subsurface physical property by minimizing the difference between modeled and observed data. Furthermore, it can be used to generate an accurate subsurface image; however, this technique consumes substantial computational resources. Its most compute-intensive step is the calculation of the gradient and hessian values. This aspect gains higher significance in 3D as compared to 2D. This paper introduces a new method for calculating gradient and hessian values, in an effort to reduce computational overburden. In the conventional waveform inversion, the calculation area covers all sources and receivers. In seismic surveys for engineering purposes, the number of receivers is limited. Therefore, it is inefficient to construct the hessian and gradient for the entire region (Figure 1). In order to tackle this problem, we calculate the gradient and the hessian for a single shot within the range of the relevant source and receiver. This is followed by summing up of these positions for the entire shot (Figure 2). In this paper, we demonstrate that reducing the area of calculation of the hessian and gradient for one shot reduces the overall amount of computation and therefore, the computation time. Furthermore, it is proved that the waveform inversion can be suitably applied for engineering purposes. In future research, we propose to ascertain an effective calculation range. This research was supported by the Basic Research Project(17-3314) of the Korea Institute of Geoscience and Mineral Resources(KIGAM) funded by the Ministry of Science, ICT and Future Planning of Korea.

  6. Uncertainty quantification of wall shear stress in intracranial aneurysms using a data-driven statistical model of systemic blood flow variability.

    PubMed

    Sarrami-Foroushani, Ali; Lassila, Toni; Gooya, Ali; Geers, Arjan J; Frangi, Alejandro F

    2016-12-08

    Adverse wall shear stress (WSS) patterns are known to play a key role in the localisation, formation, and progression of intracranial aneurysms (IAs). Complex region-specific and time-varying aneurysmal WSS patterns depend both on vascular morphology as well as on variable systemic flow conditions. Computational fluid dynamics (CFD) has been proposed for characterising WSS patterns in IAs; however, CFD simulations often rely on deterministic boundary conditions that are not representative of the actual variations in blood flow. We develop a data-driven statistical model of internal carotid artery (ICA) flow, which is used to generate a virtual population of waveforms used as inlet boundary conditions in CFD simulations. This allows the statistics of the resulting aneurysmal WSS distributions to be computed. It is observed that ICA waveform variations have limited influence on the time-averaged WSS (TAWSS) on the IA surface. In contrast, in regions where the flow is locally highly multidirectional, WSS directionality and harmonic content are strongly affected by the ICA flow waveform. As a consequence, we argue that the effect of blood flow variability should be explicitly considered in CFD-based IA rupture assessment to prevent confounding the conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Southern Mariana OBS Experiment and Preliminary Results of Passive-Source Investigations

    NASA Astrophysics Data System (ADS)

    Le, B. M.; Lin, J.; Yang, T.; Shiyan 3, S. P. O. R.

    2017-12-01

    The Southern Mariana OBS Experiment (SMOE) was one of the first seismic experiments targeting the deepest part of Earth's surface. During the Phase I experiment in December 2016, an array of OBS instruments were deployed across the Challenger Deep that recorded both active-source and passive-source data. During the Phase II experiment in December 2016-June 2017, passive-source data were recorded. We have retrieved earthquake signals and processed the waveforms from the recorded global, regional and local events, respectively, during the Phase I experiment. Most of the waveforms recorded by the OBS array have fairly good quality with discernible main phases. Rayleigh waves from many earthquakes were analyzed using the frequency-time analysis and their group velocities at different periods were obtained. The dispersion curves from different Rayleigh wave propagating paths would be valuable for inverting the structure of the subducting Pacific and overriding Philippine Sea plates. Furthermore, we applied the ambient noise cross-correlation method and retrieved high-quality coherence surface wave waveforms. With its relatively high frequencies, the surface waves can be used to study the crustal structure of the region. Together with the Phase II data, we expect that this seismic experiment will provide unprecedented constraints on the structure and geodynamic processes of the southern Mariana trench.

  8. Elastic and anelastic structure of the lowermost mantle beneath the Western Pacific from waveform inversion

    NASA Astrophysics Data System (ADS)

    Konishi, Kensuke; Fuji, Nobuaki; Deschamps, Frédéric

    2017-03-01

    We investigate the elastic and anelastic structure of the lowermost mantle at the western edge of the Pacific large low shear velocity province (LLSVP) by inverting a collection of S and ScS waveforms. The transverse component data were obtained from F-net for 31 deep earthquakes beneath Tonga and Fiji, filtered between 12.5 and 200 s. We observe a regional variation of S and ScS arrival times and amplitude ratios, according to which we divide our region of interest into three subregions. For each of these subregions, we then perform 1-D (depth-dependent) waveform inversions simultaneously for radial profiles of shear wave velocity (VS) and seismic quality factor (Q). Models for all three subregions show low VS and low Q structures from 2000 km depth down to the core-mantle boundary. We further find that VS and Q in the central subregion, sampling the Caroline plume, are substantially lower than in the surrounding regions, whatever the depth. In the central subregion, VS-anomalies with respect to PREM (dVS) and Q are about -2.5 per cent and 216 at a depth of 2850 km, and -0.6 per cent and 263 at a depth of 2000 km. By contrast, in the two other regions, dVS and Q are -2.2 per cent and 261 at a depth of 2850 km, and -0.3 per cent and 291 at a depth of 2000 km. At depths greater than ∼2500 km, these differences may indicate lateral variations in temperature of ∼100 K within the Pacific LLSVP. At shallower depths, they may be due to the temperature difference between the Caroline plume and its surroundings, and possibly to a small fraction of iron-rich material entrained by the plume.

  9. A statistical study of whistler waves observed by Van Allen Probes (RBSP) and lightning detected by WWLLN

    NASA Astrophysics Data System (ADS)

    Zheng, Hao; Holzworth, Robert H.; Brundell, James B.; Jacobson, Abram R.; Wygant, John R.; Hospodarsky, George B.; Mozer, Forrest S.; Bonnell, John

    2016-03-01

    Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to lightning producing regions. The prediction method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these predicted times for magnetic conjugacy to lightning activity regions, we recorded high time resolution, burst mode waveform data. Here we show that whistlers are observed by the satellites in more than 80% of downloaded waveform data. About 22.9% of the whistlers observed by RBSP are one-to-one coincident with source lightning strokes detected by WWLLN. About 40.1% more of whistlers are found to be one-to-one coincident with lightning if source regions are extended out 2000 km from the satellites footpoints. Lightning strokes with far-field radiated VLF energy larger than about 100 J are able to generate a detectable whistler wave in the inner magnetosphere. One-to-one coincidences between whistlers observed by RBSP and lightning strokes detected by WWLLN are clearly shown in the L shell range of L = 1-3. Nose whistlers observed in July 2014 show that it may be possible to extend this coincidence to the region of L≥4.

  10. The Collaborative Seismic Earth Model Project

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; van Herwaarden, D. P.; Afanasiev, M.

    2017-12-01

    We present the first generation of the Collaborative Seismic Earth Model (CSEM). This effort is intended to address grand challenges in tomography that currently inhibit imaging the Earth's interior across the seismically accessible scales: [1] For decades to come, computational resources will remain insufficient for the exploitation of the full observable seismic bandwidth. [2] With the man power of individual research groups, only small fractions of available waveform data can be incorporated into seismic tomographies. [3] The limited incorporation of prior knowledge on 3D structure leads to slow progress and inefficient use of resources. The CSEM is a multi-scale model of global 3D Earth structure that evolves continuously through successive regional refinements. Taking the current state of the CSEM as initial model, these refinements are contributed by external collaborators, and used to advance the CSEM to the next state. This mode of operation allows the CSEM to [1] harness the distributed man and computing power of the community, [2] to make consistent use of prior knowledge, and [3] to combine different tomographic techniques, needed to cover the seismic data bandwidth. Furthermore, the CSEM has the potential to serve as a unified and accessible representation of tomographic Earth models. Generation 1 comprises around 15 regional tomographic refinements, computed with full-waveform inversion. These include continental-scale mantle models of North America, Australasia, Europe and the South Atlantic, as well as detailed regional models of the crust beneath the Iberian Peninsula and western Turkey. A global-scale full-waveform inversion ensures that regional refinements are consistent with whole-Earth structure. This first generation will serve as the basis for further automation and methodological improvements concerning validation and uncertainty quantification.

  11. Developing Regionalized Models of Lithospheric Thickness and Velocity Structure Across Eurasia and the Middle East from Jointly Inverting P-Wave and S-Wave Receiver Functions with Rayleigh Wave Group and Phase Velocities

    DTIC Science & Technology

    2010-09-01

    lithospheric velocity structure for a wide variety of tectonic regions throughout Eurasia and the Middle East. We expect the regionalized models will improve...constructed by combining the 1D joint inversion models within each tectonic region and validated through regional waveform modeling. The velocity models thus...important differences in lithospheric structure between the cratonic regions of Eastern Europe and the tectonic regions of Western Europe and the

  12. Modularized seismic full waveform inversion based on waveform sensitivity kernels - The software package ASKI

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang; Lamara, Samir; Gutt, Phillip; Paffrath, Marcel

    2015-04-01

    We present a seismic full waveform inversion concept for applications ranging from seismological to enineering contexts, based on sensitivity kernels for full waveforms. The kernels are derived from Born scattering theory as the Fréchet derivatives of linearized frequency-domain full waveform data functionals, quantifying the influence of elastic earth model parameters and density on the data values. For a specific source-receiver combination, the kernel is computed from the displacement and strain field spectrum originating from the source evaluated throughout the inversion domain, as well as the Green function spectrum and its strains originating from the receiver. By storing the wavefield spectra of specific sources/receivers, they can be re-used for kernel computation for different specific source-receiver combinations, optimizing the total number of required forward simulations. In the iterative inversion procedure, the solution of the forward problem, the computation of sensitivity kernels and the derivation of a model update is held completely separate. In particular, the model description for the forward problem and the description of the inverted model update are kept independent. Hence, the resolution of the inverted model as well as the complexity of solving the forward problem can be iteratively increased (with increasing frequency content of the inverted data subset). This may regularize the overall inverse problem and optimizes the computational effort of both, solving the forward problem and computing the model update. The required interconnection of arbitrary unstructured volume and point grids is realized by generalized high-order integration rules and 3D-unstructured interpolation methods. The model update is inferred solving a minimization problem in a least-squares sense, resulting in Gauss-Newton convergence of the overall inversion process. The inversion method was implemented in the modularized software package ASKI (Analysis of Sensitivity and Kernel Inversion), which provides a generalized interface to arbitrary external forward modelling codes. So far, the 3D spectral-element code SPECFEM3D (Tromp, Komatitsch and Liu, 2008) and the 1D semi-analytical code GEMINI (Friederich and Dalkolmo, 1995) in both, Cartesian and spherical framework are supported. The creation of interfaces to further forward codes is planned in the near future. ASKI is freely available under the terms of the GPL at www.rub.de/aski . Since the independent modules of ASKI must communicate via file output/input, large storage capacities need to be accessible conveniently. Storing the complete sensitivity matrix to file, however, permits the scientist full manual control over each step in a customized procedure of sensitivity/resolution analysis and full waveform inversion. In the presentation, we will show some aspects of the theory behind the full waveform inversion method and its practical realization by the software package ASKI, as well as synthetic and real-data applications from different scales and geometries.

  13. Monitoring D-Region Variability from Lightning Measurements

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Berthelier, Jean-Jacques; Pfaff, Robert; Bilitza, Dieter; Klenzing, Jeffery

    2011-01-01

    In situ measurements of ionospheric D-region characteristics are somewhat scarce and rely mostly on sounding rockets. Remote sensing techniques employing Very Low Frequency (VLF) transmitters can provide electron density estimates from subionospheric wave propagation modeling. Here we discuss how lightning waveform measurements, namely sferics and tweeks, can be used for monitoring the D-region variability and day-night transition, and for local electron density estimates. A brief comparison among D-region aeronomy models is also presented.

  14. Workflows for Full Waveform Inversions

    NASA Astrophysics Data System (ADS)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  15. Waveform inversion of volcano-seismic signals for an extended source

    USGS Publications Warehouse

    Nakano, M.; Kumagai, H.; Chouet, B.; Dawson, P.

    2007-01-01

    We propose a method to investigate the dimensions and oscillation characteristics of the source of volcano-seismic signals based on waveform inversion for an extended source. An extended source is realized by a set of point sources distributed on a grid surrounding the centroid of the source in accordance with the source geometry and orientation. The source-time functions for all point sources are estimated simultaneously by waveform inversion carried out in the frequency domain. We apply a smoothing constraint to suppress short-scale noisy fluctuations of source-time functions between adjacent sources. The strength of the smoothing constraint we select is that which minimizes the Akaike Bayesian Information Criterion (ABIC). We perform a series of numerical tests to investigate the capability of our method to recover the dimensions of the source and reconstruct its oscillation characteristics. First, we use synthesized waveforms radiated by a kinematic source model that mimics the radiation from an oscillating crack. Our results demonstrate almost complete recovery of the input source dimensions and source-time function of each point source, but also point to a weaker resolution of the higher modes of crack oscillation. Second, we use synthetic waveforms generated by the acoustic resonance of a fluid-filled crack, and consider two sets of waveforms dominated by the modes with wavelengths 2L/3 and 2W/3, or L and 2L/5, where W and L are the crack width and length, respectively. Results from these tests indicate that the oscillating signature of the 2L/3 and 2W/3 modes are successfully reconstructed. The oscillating signature of the L mode is also well recovered, in contrast to results obtained for a point source for which the moment tensor description is inadequate. However, the oscillating signature of the 2L/5 mode is poorly recovered owing to weaker resolution of short-scale crack wall motions. The triggering excitations of the oscillating cracks are successfully reconstructed. Copyright 2007 by the American Geophysical Union.

  16. Active backstop faults in the Mentawai region of Sumatra, Indonesia, revealed by teleseismic broadband waveform modeling

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Bradley, Kyle Edward; Wei, Shengji; Wu, Wenbo

    2018-02-01

    Two earthquake sequences that affected the Mentawai islands offshore of central Sumatra in 2005 (Mw 6.9) and 2009 (Mw 6.7) have been highlighted as evidence for active backthrusting of the Sumatran accretionary wedge. However, the geometry of the activated fault planes is not well resolved due to large uncertainties in the locations of the mainshocks and aftershocks. We refine the locations and focal mechanisms of medium size events (Mw > 4.5) of these two earthquake sequences through broadband waveform modeling. In addition to modeling the depth-phases for accurate centroid depths, we use teleseismic surface wave cross-correlation to precisely relocate the relative horizontal locations of the earthquakes. The refined catalog shows that the 2005 and 2009 "backthrust" sequences in Mentawai region actually occurred on steeply (∼60 degrees) landward-dipping faults (Masilo Fault Zone) that intersect the Sunda megathrust beneath the deepest part of the forearc basin, contradicting previous studies that inferred slip on a shallowly seaward-dipping backthrust. Static slip inversion on the newly-proposed fault fits the coseismic GPS offsets for the 2009 mainshock equally well as previous studies, but with a slip distribution more consistent with the mainshock centroid depth (∼20 km) constrained from teleseismic waveform inversion. Rupture of such steeply dipping reverse faults within the forearc crust is rare along the Sumatra-Java margin. We interpret these earthquakes as 'unsticking' of the Sumatran accretionary wedge along a backstop fault separating imbricated material from the stronger Sunda lithosphere. Alternatively, the reverse faults may have originated as pre-Miocene normal faults of the extended continental crust of the western Sunda margin. Our waveform modeling approach can be used to further refine global earthquake catalogs in order to clarify the geometries of active faults.

  17. The auditory nerve overlapped waveform (ANOW): A new objective measure of low-frequency hearing

    NASA Astrophysics Data System (ADS)

    Lichtenhan, Jeffery T.; Salt, Alec N.; Guinan, John J.

    2015-12-01

    One of the most pressing problems today in the mechanics of hearing is to understand the mechanical motions in the apical half of the cochlea. Almost all available measurements from the cochlear apex of basilar membrane or other organ-of-Corti transverse motion have been made from ears where the health, or sensitivity, in the apical half of the cochlea was not known. A key step in understanding the mechanics of the cochlear base was to trust mechanical measurements only when objective measures from auditory-nerve compound action potentials (CAPs) showed good preparation sensitivity. However, such traditional objective measures are not adequate monitors of cochlear health in the very low-frequency regions of the apex that are accessible for mechanical measurements. To address this problem, we developed the Auditory Nerve Overlapped Waveform (ANOW) that originates from auditory nerve output in the apex. When responses from the round window to alternating low-frequency tones are averaged, the cochlear microphonic is canceled and phase-locked neural firing interleaves in time (i.e., overlaps). The result is a waveform that oscillates at twice the probe frequency. We have demonstrated that this Auditory Nerve Overlapped Waveform - called ANOW - originates from auditory nerve fibers in the cochlear apex [8], relates well to single-auditory-nerve-fiber thresholds, and can provide an objective estimate of low-frequency sensitivity [7]. Our new experiments demonstrate that ANOW is a highly sensitive indicator of apical cochlear function. During four different manipulations to the scala media along the cochlear spiral, ANOW amplitude changed when either no, or only small, changes occurred in CAP thresholds. Overall, our results demonstrate that ANOW can be used to monitor cochlear sensitivity of low-frequency regions during experiments that make apical basilar membrane motion measurements.

  18. Optimization of multi-color laser waveform for high-order harmonic generation

    NASA Astrophysics Data System (ADS)

    Jin, Cheng; Lin, C. D.

    2016-09-01

    With the development of laser technologies, multi-color light-field synthesis with complete amplitude and phase control would make it possible to generate arbitrary optical waveforms. A practical optimization algorithm is needed to generate such a waveform in order to control strong-field processes. We review some recent theoretical works of the optimization of amplitudes and phases of multi-color lasers to modify the single-atom high-order harmonic generation based on genetic algorithm. By choosing different fitness criteria, we demonstrate that: (i) harmonic yields can be enhanced by 10 to 100 times, (ii) harmonic cutoff energy can be substantially extended, (iii) specific harmonic orders can be selectively enhanced, and (iv) single attosecond pulses can be efficiently generated. The possibility of optimizing macroscopic conditions for the improved phase matching and low divergence of high harmonics is also discussed. The waveform control and optimization are expected to be new drivers for the next wave of breakthrough in the strong-field physics in the coming years. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 30916011207), Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. Department of Energy (Grant No. DE-FG02-86ER13491), and Air Force Office of Scientific Research, USA (Grant No. FA9550-14-1-0255).

  19. "Repeating Events" as Estimator of Location Precision: The China National Seismograph Network

    NASA Astrophysics Data System (ADS)

    Jiang, Changsheng; Wu, Zhongliang; Li, Yutong; Ma, Tengfei

    2014-03-01

    "Repeating earthquakes" identified by waveform cross-correlation, with inter-event separation of no more than 1 km, can be used for assessment of location precision. Assuming that the network-measured apparent inter-epicenter distance X of the "repeating doublets" indicates the location precision, we estimated the regionalized location quality of the China National Seismograph Network by comparing the "repeating events" in and around China by S chaff and R ichards (Science 303: 1176-1178, 2004; J Geophys Res 116: B03309, 2011) and the monthly catalogue of the China Earthquake Networks Center. The comparison shows that the average X value of the China National Seismograph Network is approximately 10 km. The mis-location is larger for the Tibetan Plateau, west and north of Xinjiang, and east of Inner Mongolia, as indicated by larger X values. Mis-location is correlated with the completeness magnitude of the earthquake catalogue. Using the data from the Beijing Capital Circle Region, the dependence of the mis-location on the distribution of seismic stations can be further confirmed.

  20. Optimal waveforms design for ultra-wideband impulse radio sensors.

    PubMed

    Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong

    2010-01-01

    Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations.

  1. Analysis of laser altimeter waveforms for forested ecosystems of Central Florida

    NASA Astrophysics Data System (ADS)

    Weishampel, John F.; Harding, David J.; Boutet, Jeffry C., Jr.; Drake, Jason B.

    1997-07-01

    An experimental profiling airborne laser altimeter system developed at NASA's Goddard Space Flight Center was used to acquire vertical canopy data from several ecosystem types from The Nature Conservancy's Disney Wilderness Preserve, near Kissimmee, Florida. This laser altimeter, besides providing submeter accuracy of tree height, captures a profile of data which relates to the magnitude of reflectivity of the laser pulse as it penetrates different elevations of the forest canopy. This complete time varying amplitude of the return signal of the laser pulse, between the first (i.e., the canopy top) and last (i.e., the ground) returns, yields a waveform which is related to canopy architecture, specifically the nadir-projected vertical distribution of the surface of canopy components (i.e., foliage, twigs, and branches). Selected profile returns from representative covertypes (e.g., pine flatwoods, bayhead, and cypress wetland) were compared with ground truthed forest composition (i.e., species and size class distribution) and structural (i.e., canopy height, canopy closure, crown depth) measures to help understand how these properties contribute to variation in the altimeter waveform.

  2. Optimal Waveforms Design for Ultra-Wideband Impulse Radio Sensors

    PubMed Central

    Li, Bin; Zhou, Zheng; Zou, Weixia; Li, Dejian; Zhao, Chong

    2010-01-01

    Ultra-wideband impulse radio (UWB-IR) sensors should comply entirely with the regulatory spectral limits for elegant coexistence. Under this premise, it is desirable for UWB pulses to improve frequency utilization to guarantee the transmission reliability. Meanwhile, orthogonal waveform division multiple-access (WDMA) is significant to mitigate mutual interferences in UWB sensor networks. Motivated by the considerations, we suggest in this paper a low complexity pulse forming technique, and its efficient implementation on DSP is investigated. The UWB pulse is derived preliminarily with the objective of minimizing the mean square error (MSE) between designed power spectrum density (PSD) and the emission mask. Subsequently, this pulse is iteratively modified until its PSD completely conforms to spectral constraints. The orthogonal restriction is then analyzed and different algorithms have been presented. Simulation demonstrates that our technique can produce UWB waveforms with frequency utilization far surpassing the other existing signals under arbitrary spectral mask conditions. Compared to other orthogonality design schemes, the designed pulses can maintain mutual orthogonality without any penalty on frequency utilization, and hence, are much superior in a WDMA network, especially with synchronization deviations. PMID:22163511

  3. LatMix 2011 and 2012 Dispersion Analysis

    DTIC Science & Technology

    2017-05-15

    was to complete the analysis and write -up of additional manuscripts relating to LatMix, and to further strengthen the results for multiple manuscripts...versus a propagation of energy upwards from small mixing events (e.g., via generation of vo rtices). A key technical goal of our work was to develop...raw waveforms co llected during the LatMix 20 l I airborne lidar surveys, and completion of the analysis and write -up of major results stemming from

  4. Non-linear 3-D Born shear waveform tomography in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Panning, Mark P.; Cao, Aimin; Kim, Ahyi; Romanowicz, Barbara A.

    2012-07-01

    Southeast (SE) Asia is a tectonically complex region surrounded by many active source regions, thus an ideal test bed for developments in seismic tomography. Much recent development in tomography has been based on 3-D sensitivity kernels based on the first-order Born approximation, but there are potential problems with this approach when applied to waveform data. In this study, we develop a radially anisotropic model of SE Asia using long-period multimode waveforms. We use a theoretical 'cascade' approach, starting with a large-scale Eurasian model developed using 2-D Non-linear Asymptotic Coupling Theory (NACT) sensitivity kernels, and then using a modified Born approximation (nBorn), shown to be more accurate at modelling waveforms, to invert a subset of the data for structure in a subregion (longitude 75°-150° and latitude 0°-45°). In this subregion, the model is parametrized at a spherical spline level 6 (˜200 km). The data set is also inverted using NACT and purely linear 3-D Born kernels. All three final models fit the data well, with just under 80 per cent variance reduction as calculated using the corresponding theory, but the nBorn model shows more detailed structure than the NACT model throughout and has much better resolution at depths greater than 250 km. Based on variance analysis, the purely linear Born kernels do not provide as good a fit to the data due to deviations from linearity for the waveform data set used in this modelling. The nBorn isotropic model shows a stronger fast velocity anomaly beneath the Tibetan Plateau in the depth range of 150-250 km, which disappears at greater depth, consistent with other studies. It also indicates moderate thinning of the high-velocity plate in the middle of Tibet, consistent with a model where Tibet is underplated by Indian lithosphere from the south and Eurasian lithosphere from the north, in contrast to a model with continuous underplating by Indian lithosphere across the entire plateau. The nBorn anisotropic model detects negative ξ anomalies suggestive of vertical deformation associated with subducted slabs and convergent zones at the Himalayan front and Tien Shan at depths near 150 km.

  5. A Quantitative Evaluation of SCEC Community Velocity Model Version 3.0

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhao, L.; Jordan, T. H.

    2003-12-01

    We present a systematic methodology for evaluating and improving 3D seismic velocity models using broadband waveform data from regional earthquakes. The operator that maps a synthetic waveform into an observed waveform is expressed in the Rytov form D(ω ) = {exp}[{i} ω δ τ {p}(ω ) - ω δ τ {q}(ω )]. We measure the phase delay time δ τ p(ω ) and the amplitude reduction time δ τ q(ω ) as a function of frequency ω using Gee & Jordan's [1992] isolation-filter technique, and we correct the data for frequency-dependent interference and frequency-independent source statics. We have applied this procedure to a set of small events in Southern California. Synthetic seismograms were computed using three types of velocity models: the 1D Standard Southern California Crustal Model (SoCaL) [Dreger & Helmberger, 1993], the 3D SCEC Community Velocity Model, Version 3.0 (CVM3.0) [Magistrale et al., 2000], and a set of path-averaged 1D models (A1D) extracted from CVM3.0 by horizontally averaging wave slownesses along source-receiver paths. The 3D synthetics were computed using K. Olsen's finite difference code. More than 1000 measurements were made on both P and S waveforms at frequencies ranging from 0.2 to 1 Hz. Overall, the 3D model provided a substantially better fit to the waveform data than either laterally homogeneous or path-dependent 1D models. Relative to SoCaL, CVM3.0 provided a variance reduction of about 64% in δ τ p, and 41% in δ τ q. Relative to A1D, the variance reduction is about 46% and 20%, respectively. The same set of measurements can be employed to invert for both seismic source properties and seismic velocity structures. Fully numerical methods are being developed to compute the Fréchet kernels for these measurements [L. Zhao et. al., this meeting]. This methodology thus provides a unified framework for regional studies of seismic sources and Earth structure in Southern California and elsewhere.

  6. GRAVITATIONAL WAVE EXTRACTION FROM AN INSPIRALING CONFIGURATION OF MERGING BLACK HOLES

    NASA Technical Reports Server (NTRS)

    Baker, John G.; Centrella, Joan; Dae-Il, Choi; Koppitz, Michael; van Meter, James

    2005-01-01

    We present new techniques for evolving binary black hole systems which allow the accurate determination of gravitational waveforms directly from the wave zone region of the numerical simulations. Rather than excising the black hole interiors, our approach follows the "puncture" treatment of black holes, but utilizing a new gauge condition which allows the black holes to move successfully through the computational domain. We apply these techniques to an inspiraling binary, modeling the radiation generated during the final plunge and ringdown. We demonstrate convergence of the waveforms and and good conservation of mass-energy, with just over 3% of the system s mass converted to gravitational radiation.

  7. Mismodeling in gravitational-wave astronomy: The trouble with templates

    NASA Astrophysics Data System (ADS)

    Sampson, Laura; Cornish, Neil; Yunes, Nicolás

    2014-03-01

    Waveform templates are a powerful tool for extracting and characterizing gravitational wave signals, acting as highly restrictive priors on the signal morphologies that allow us to extract weak events buried deep in the instrumental noise. The templates map the waveform shapes to physical parameters, thus allowing us to produce posterior probability distributions for these parameters. However, there are attendant dangers in using highly restrictive signal priors. If strong field gravity is not accurately described by general relativity (GR), then using GR templates may result in fundamental bias in the recovered parameters, or even worse, a complete failure to detect signals. Here we study such dangers, concentrating on three distinct possibilities. First, we show that there exist modified theories compatible with all existing observations that would fail to be detected by the LIGO/Virgo network using searches based on GR templates, but which would be detected using a one parameter post-Einsteinian extension. Second, we study modified theories that produce departures from GR that turn on suddenly at a critical frequency, producing waveforms that do not directly fit into the simplest parametrized post-Einsteinian (ppE) scheme. We show that even the simplest ppE templates are still capable of picking up these strange signals and diagnosing a departure from GR. Third, we study whether using inspiral-only ppE waveforms for signals that include merger and ringdown can lead to problems in misidentifying a GR departure. We present a simple technique that allows us to self-consistently identify the inspiral portion of the signal, and thus remove these potential biases, allowing GR tests to be performed on higher mass signals that merge within the detector band. We close by studying a parametrized waveform model that may allow us to test GR using the full inspiral-merger-ringdown signal.

  8. Laser beam pulse formatting method

    DOEpatents

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  9. Instrumentation for laser physics and spectroscopy using 32-bit microcontrollers with an Android tablet interface

    NASA Astrophysics Data System (ADS)

    Eyler, E. E.

    2013-10-01

    Several high-performance lab instruments suitable for manual assembly have been developed using low-pin-count 32-bit microcontrollers that communicate with an Android tablet via a USB interface. A single Android tablet app accommodates multiple interface needs by uploading parameter lists and graphical data from the microcontrollers, which are themselves programmed with easily modified C code. The hardware design of the instruments emphasizes low chip counts and is highly modular, relying on small "daughter boards" for special functions such as USB power management, waveform generation, and phase-sensitive signal detection. In one example, a daughter board provides a complete waveform generator and direct digital synthesizer that fits on a 1.5 in. × 0.8 in. circuit card.

  10. Low frequency AC waveform generator

    DOEpatents

    Bilharz, Oscar W.

    1986-01-01

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stabilization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform itself. The cosine is synthesized by squaring the triangular waveform, raising the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  11. Developing Regionalized Models of Lithospheric Thickness and Velocity Structure Across Eurasia and the Middle East from Jointly Inverting P-Wave and S-Wave Receiver Functions with Rayleigh Wave Group and Phase Velocities

    DTIC Science & Technology

    2011-09-01

    modeling of regional waveforms at station ANTO , in UNIFIED region #14. The velocity models (left) and the corresponding predictions (middle and right) are...models, Geophy. J. Int. 118: 245–254. Rychert, C. A. and P. M. Shearer (2009). A global view of the lithosphere-asthenosphere boundary, Science 324 : 495

  12. Remote spectral measurements of the blood volume pulse with applications for imaging photoplethysmography

    NASA Astrophysics Data System (ADS)

    Blackford, Ethan B.; Estepp, Justin R.; McDuff, Daniel J.

    2018-02-01

    Imaging photoplethysmography uses camera image sensors to measure variations in light absorption related to the delivery of the blood volume pulse to peripheral tissues. The characteristics of the measured BVP waveform depends on the spectral absorption of various tissue components including melanin, hemoglobin, water, and yellow pigments. Signal quality and artifact rejection can be enhanced by taking into account the spectral properties of the BVP waveform and surrounding tissue. The current literature regarding the spectral relationships of remote PPG is limited. To supplement this fundamental data, we present an analysis of remotely-measured, visible and near-infrared spectroscopy to better understand the spectral signature of remotely measured BVP signals. To do so, spectra were measured from the right cheek of 25, stationary participants whose heads were stabilized by a chinrest. A collimating lens was used to collect reflected light from a region of 3 cm in diameter. The spectrometer provided 3 nm resolution measurements from 500-1000 nm. Measurements were acquired at a rate of 50 complete spectra per second for a period of five minutes. Reference physiology, including electrocardiography was simultaneously and synchronously acquired. The spectral data were analyzed to determine the relationship between light wavelength and the resulting remote-BVP signal-to-noise ratio and to identify those bands best suited for pulse rate measurement. To our knowledge this is the most comprehensive dataset of remotely-measured spectral iPPG data. In due course, we plan to release this dataset for research purposes.

  13. Strong fast long-period waves in the Efpalio 2010 earthquake records: explanation in terms of leaking modes

    NASA Astrophysics Data System (ADS)

    Vackář, Jiří; Zahradník, Jiří; Sokos, Efthimios

    2014-01-01

    The January 18, 2010, shallow earthquake in the Corinth Gulf, Greece ( M w 5.3) generated unusually strong long-period waves (periods 4-8 s) between the P and S wave arrival. These periods, being significantly longer than the source duration, indicated a structural effect. The waves were observed in epicentral distances 40-250 km and were significant on radial and vertical component. None of existing velocity models of the studied region provided explanation of the waves. By inverting complete waveforms, we obtained an 1-D crustal model explaining the observation. The most significant feature of the best-fitting model (as well as the whole suite of models almost equally well fitting the waveforms) is a strong velocity step at depth about 4 km. In the obtained velocity model, the fast long-period wave was modeled by modal summation and identified as a superposition of several leaking modes. In this sense, the wave is qualitatively similar to P long or Pnl waves, which however are usually reported in larger epicentral distances. The main innovation of this paper is emphasis to smaller epicentral distances. We studied properties of the wave using synthetic seismograms. The wave has a normal dispersion. Azimuthal and distance dependence of the wave partially explains its presence at 46 stations of 70 examined. Depth dependence shows that the studied earthquake was very efficient in the excitation of these waves just due to its shallow centroid depth (4.5 km).

  14. Inversion for slip distribution using teleseismic P waveforms: North Palm Springs, Borah Peak, and Michoacan earthquakes

    USGS Publications Warehouse

    Mendoza, C.; Hartzell, S.H.

    1988-01-01

    We have inverted the teleseismic P waveforms recorded by stations of the Global Digital Seismograph Network for the 8 July 1986 North Palm Springs, California, the 28 October 1983 Borah Peak, Idaho, and the 19 September 1985 Michoacan, Mexico, earthquakes to recover the distribution of slip on each of the faults using a point-by-point inversion method with smoothing and positivity constraints. Results of the inversion indicate that the Global digital Seismograph Network data are useful for deriving fault dislocation models for moderate to large events. However, a wide range of frequencies is necessary to infer the distribution of slip on the earthquake fault. Although the long-period waveforms define the size (dimensions and seismic moment) of the earthquake, data at shorter period provide additional constraints on the variation of slip on the fault. Dislocation models obtained for all three earthquakes are consistent with a heterogeneous rupture process where failure is controlled largely by the size and location of high-strength asperity regions. -from Authors

  15. Improved source inversion from joint measurements of translational and rotational ground motions

    NASA Astrophysics Data System (ADS)

    Donner, S.; Bernauer, M.; Reinwald, M.; Hadziioannou, C.; Igel, H.

    2017-12-01

    Waveform inversion for seismic point (moment tensor) and kinematic sources is a standard procedure. However, especially in the local and regional distances a lack of appropriate velocity models, the sparsity of station networks, or a low signal-to-noise ratio combined with more complex waveforms hamper the successful retrieval of reliable source solutions. We assess the potential of rotational ground motion recordings to increase the resolution power and reduce non-uniquenesses for point and kinematic source solutions. Based on synthetic waveform data, we perform a Bayesian (i.e. probabilistic) inversion. Thus, we avoid the subjective selection of the most reliable solution according the lowest misfit or other constructed criterion. In addition, we obtain unbiased measures of resolution and possible trade-offs. Testing different earthquake mechanisms and scenarios, we can show that the resolution of the source solutions can be improved significantly. Especially depth dependent components show significant improvement. Next to synthetic data of station networks, we also tested sparse-network and single station cases.

  16. The 2017 North Korea M6 seismic sequence: moment tensor, source time function, and aftershocks

    NASA Astrophysics Data System (ADS)

    Ni, S.; Zhan, Z.; Chu, R.; He, X.

    2017-12-01

    On September 3rd, 2017, an M6 seismic event occurred in North Korea, with location near previous nuclear test sites. The event features strong P waves and short period Rayleigh waves are observed in contrast to weak S waves, suggesting mostly explosion mechanism. We performed joint inversion for moment tensor and depth with both local and teleseismic waveforms, and find that the event is shallow with mostly isotropic yet substantial non-isotropic components. Deconvolution of seismic waveforms of this event with respect to previous nuclear test events shows clues of complexity in source time function. The event is followed by smaller earthquakes, as early as 8.5 minutes and lasted at least to October. The later events occurred in a compact region, and show clear S waves, suggesting double couple focal mechanism. Via analyzing Rayleigh wave spectrum, these smaller events are found to be shallow. Relative locations, difference in waveforms of the events are used to infer their possible links and generation mechanism.

  17. Detection of hidden mineral deposits by airborne spectral analysis of forest canopies. [Spirit Lake, Washington; Catheart Mountain, Maine; Blacktail Mountain, Montana; and Cotter Basin, Montana

    NASA Technical Reports Server (NTRS)

    Collins, W.; Chang, S. H.; Kuo, J. T.

    1984-01-01

    Data from field surveys and biogeochemical tests conducted in Maine, Montana, and Washington strongly correlate with results obtained using high resolution airborne spectroradiometer which detects an anomalous spectral waveform that appears definitely associated with sulfide mineralization. The spectral region most affected by mineral stress is between 550 nm and 750 nm. Spectral variations observed in the field occur on the wings of the red chlorophyll band centered at about 690 nm. The metal-stress-induced variations on the absorption band wing are most successfully resolved in the high spectral resolution field data using a waveform analysis technique. The development of chlorophyll pigments was retarded in greenhouse plants doped with copper and zinc in the laboratory. The lowered chlorophyll production resulted in changes on the wings of the chlorophyll bands of reflectance spectra of the plants. The airborne spectroradiometer system and waveform analysis remains the most sensitive technique for biogeochemical surveys.

  18. Seismological constraints on the down-dip shape of normal faults

    NASA Astrophysics Data System (ADS)

    Reynolds, Kirsty; Copley, Alex

    2018-04-01

    We present a seismological technique for determining the down-dip shape of seismogenic normal faults. Synthetic models of non-planar source geometries reveal the important signals in teleseismic P and SH waveforms that are diagnostic of down-dip curvature. In particular, along-strike SH waveforms are the most sensitive to variations in source geometry, and have significantly more complex and larger-amplitude waveforms for curved source geometries than planar ones. We present the results of our forward-modelling technique for 13 earthquakes. Most continental normal-faulting earthquakes that rupture through the full seismogenic layer are planar and have dips of 30°-60°. There is evidence for faults with a listric shape from some of the earthquakes occurring in two regions; Tibet and East Africa. These ruptures occurred on antithetic faults, or minor faults within the hanging walls of the rifts affected, which may suggest a reason for the down-dip curvature. For these earthquakes, the change in dip across the seismogenic part of the fault plane is ≤30°.

  19. The Influence of the External Signal Modulation Waveform and Frequency on the Performance of a Photonic Forced Oscillator.

    PubMed

    Sánchez-Castro, Noemi; Palomino-Ovando, Martha Alicia; Estrada-Wiese, Denise; Valladares, Nydia Xcaret; Del Río, Jesus Antonio; de la Mora, Maria Beatriz; Doti, Rafael; Faubert, Jocelyn; Lugo, Jesus Eduardo

    2018-05-21

    Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform.

  20. The Influence of the External Signal Modulation Waveform and Frequency on the Performance of a Photonic Forced Oscillator

    PubMed Central

    Sánchez-Castro, Noemi; Palomino-Ovando, Martha Alicia; Estrada-Wiese, Denise; Valladares, Nydia Xcaret; del Río, Jesus Antonio; Doti, Rafael; Faubert, Jocelyn; Lugo, Jesus Eduardo

    2018-01-01

    Photonic crystals have been an object of interest because of their properties to inhibit certain wavelengths and allow the transmission of others. Using these properties, we designed a photonic structure known as photodyne formed by two porous silicon one-dimensional photonic crystals with an air defect between them. When the photodyne is illuminated with appropriate light, it allows us to generate electromagnetic forces within the structure that can be maximized if the light becomes localized inside the defect region. These electromagnetic forces allow the microcavity to oscillate mechanically. In the experiment, a chopper was driven by a signal generator to modulate the laser light that was used. The driven frequency and the signal modulation waveform (rectangular, sinusoidal or triangular) were changed with the idea to find optimal conditions for the structure to oscillate. The microcavity displacement amplitude, velocity amplitude and Fourier spectrum of the latter and its frequency were measured by means of a vibrometer. The mechanical oscillations are modeled and compared with the experimental results and show good agreement. For external frequency values of 5 Hz and 10 Hz, the best option was a sinusoidal waveform, which gave higher photodyne displacements and velocity amplitudes. Nonetheless, for an external frequency of 15 Hz, the best option was the rectangular waveform. PMID:29883393

  1. Electrical features of eighteen automated external defibrillators: a systematic evaluation.

    PubMed

    Kette, Fulvio; Locatelli, Aldo; Bozzola, Marcella; Zoli, Alberto; Li, Yongqin; Salmoiraghi, Marco; Ristagno, Giuseppe; Andreassi, Aida

    2013-11-01

    Assessment and comparison of the electrical parameters (energy, current, first and second phase waveform duration) among eighteen AEDs. Engineering bench tests for a descriptive systematic evaluation in commercially available AEDs. AEDs were tested through an ECG simulator, an impedance simulator, an oscilloscope and a measuring device detecting energy delivered, peak and average current, and duration of first and second phase of the biphasic waveforms. All tests were performed at the engineering facility of the Lombardia Regional Emergency Service (AREU). Large variations in the energy delivered at the first shock were observed. The trend of current highlighted a progressive decline concurrent with the increases of impedance. First and second phase duration varied substantially among the AEDs using the exponential biphasic waveform, unlike rectilinear waveform AEDs in which phase duration remained relatively constant. There is a large variability in the electrical features of the AEDs tested. Energy is likely not to be the best indicator for strength dose selection. Current and shock duration should be both considered when approaching the technical features of AEDs. These findings may prompt further investigations to define the optimal current and duration of the shock waves to increase the success rate in the clinical setting. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Focal mechanisms and moment magnitudes of micro-earthquakes in central Brazil by waveform inversion with quality assessment and inference of the local stress field

    NASA Astrophysics Data System (ADS)

    Carvalho, Juraci; Barros, Lucas Vieira; Zahradník, Jiří

    2016-11-01

    This paper documents an investigation on the use of full waveform inversion to retrieve focal mechanisms of 11 micro-earthquakes (Mw 0.8 to 1.4). The events represent aftershocks of a 5.0 mb earthquake that occurred on October 8, 2010 close to the city of Mara Rosa in the state of Goiás, Brazil. The main contribution of the work lies in demonstrating the feasibility of waveform inversion of such weak events. The inversion was made possible thanks to recordings available at 8 temporary seismic stations in epicentral distances of less than 8 km, at which waveforms can be successfully modeled at relatively high frequencies (1.5-2.0 Hz). On average, the fault-plane solutions obtained are in agreement with a composite focal mechanism previously calculated from first-motion polarities. They also agree with the fault geometry inferred from precise relocation of the Mara Rosa aftershock sequence. The focal mechanisms provide an estimate of the local stress field. This paper serves as a pilot study for similar investigations in intraplate regions where the stress-field investigations are difficult due to rare earthquake occurrences, and where weak events must be studied with a detailed quality assessment.

  3. Gold - A novel deconvolution algorithm with optimization for waveform LiDAR processing

    NASA Astrophysics Data System (ADS)

    Zhou, Tan; Popescu, Sorin C.; Krause, Keith; Sheridan, Ryan D.; Putman, Eric

    2017-07-01

    Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: (1) direct decomposition, (2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms - the Richardson-Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from the corresponding reference data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference (<1.22 m for DTMs, <0.77 m for CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, <1.93 m for CHMs). More specifically, the Gold algorithm is superior to others with smaller root mean square error (RMSE) (<1.01 m), while the direct decomposition approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in terms of RMSE. Additionally, the high level of uncertainty occurs more on areas with high slope and high vegetation. This study provides an alternative and innovative approach for waveform processing that will benefit high fidelity processing of waveform LiDAR data to characterize vegetation structures.

  4. Effects of shallow-layer reverberation on measurement of teleseismic P-wave travel times for ocean bottom seismograph data

    NASA Astrophysics Data System (ADS)

    Obayashi, Masayuki; Ishihara, Yasushi; Suetsugu, Daisuke

    2017-03-01

    We conducted synthetic experiments to evaluate the effects of shallow-layer reverberation in oceanic regions on P-wave travel times measured by waveform cross-correlation. Time shift due to waveform distortion by the reverberation was estimated as a function of period. Reverberations in the crystalline crust advance the P-waves by a frequency-independent time shift of about 0.3 s in oceans. Sediment does not affect the time shifts in the mid-ocean regions, but effects as large as -0.8 s or more occur where sediment thickness is greater than 600 m for periods longer than 15 s. The water layer causes time delays (+0.3 s) in the relatively shallow (<3500 m) water region for periods longer than 20 s. The time shift may influence mantle images obtained if the reverberation effects are not accounted for in seismic tomography. We propose a simple method to correct relative P-wave travel times at two sites for shallow-layer reverberation by the cross-convolution of the crustal responses at the two sites. [Figure not available: see fulltext. Caption: .

  5. Low frequency ac waveform generator

    DOEpatents

    Bilharz, O.W.

    1983-11-22

    Low frequency sine, cosine, triangle and square waves are synthesized in circuitry which allows variation in the waveform amplitude and frequency while exhibiting good stability and without requiring significant stablization time. A triangle waveform is formed by a ramped integration process controlled by a saturation amplifier circuit which produces the necessary hysteresis for the triangle waveform. The output of the saturation circuit is tapped to produce the square waveform. The sine waveform is synthesized by taking the absolute value of the triangular waveform, raising this absolute value to a predetermined power, multiplying the raised absolute value of the triangle wave with the triangle wave itself and properly scaling the resultant waveform and subtracting it from the triangular waveform to a predetermined power and adding the squared waveform raised to the predetermined power with a DC reference and subtracting the squared waveform therefrom, with all waveforms properly scaled. The resultant waveform is then multiplied with a square wave in order to correct the polarity and produce the resultant cosine waveform.

  6. Action Potential Waveform Variability Limits Multi-Unit Separation in Freely Behaving Rats

    PubMed Central

    Stratton, Peter; Cheung, Allen; Wiles, Janet; Kiyatkin, Eugene; Sah, Pankaj; Windels, François

    2012-01-01

    Extracellular multi-unit recording is a widely used technique to study spontaneous and evoked neuronal activity in awake behaving animals. These recordings are done using either single-wire or mulitwire electrodes such as tetrodes. In this study we have tested the ability of single-wire electrodes to discriminate activity from multiple neurons under conditions of varying noise and neuronal cell density. Using extracellular single-unit recording, coupled with iontophoresis to drive cell activity across a wide dynamic range, we studied spike waveform variability, and explored systematic differences in single-unit spike waveform within and between brain regions as well as the influence of signal-to-noise ratio (SNR) on the similarity of spike waveforms. We also modelled spike misclassification for a range of cell densities based on neuronal recordings obtained at different SNRs. Modelling predictions were confirmed by classifying spike waveforms from multiple cells with various SNRs using a leading commercial spike-sorting system. Our results show that for single-wire recordings, multiple units can only be reliably distinguished under conditions of high recording SNR (≥4) and low neuronal density (≈20,000/ mm3). Physiological and behavioural changes, as well as technical limitations typical of awake animal preparations, reduce the accuracy of single-channel spike classification, resulting in serious classification errors. For SNR <4, the probability of misclassifying spikes approaches 100% in many cases. Our results suggest that in studies where the SNR is low or neuronal density is high, separation of distinct units needs to be evaluated with great caution. PMID:22719894

  7. Virtual Seismic Observation (VSO) with Sparsity-Promotion Inversion

    NASA Astrophysics Data System (ADS)

    Tiezhao, B.; Ning, J.; Jianwei, M.

    2017-12-01

    Large station interval leads to low resolution images, sometimes prevents people from obtaining images in concerned regions. Sparsity-promotion inversion, a useful method to recover missing data in industrial field acquisition, can be lent to interpolate seismic data on none-sampled sites, forming Virtual Seismic Observation (VSO). Traditional sparsity-promotion inversion suffers when coming up with large time difference in adjacent sites, which we concern most and use shift method to improve it. The procedure of the interpolation is that we first employ low-pass filter to get long wavelength waveform data and shift the waveforms of the same wave in different seismograms to nearly same arrival time. Then we use wavelet-transform-based sparsity-promotion inversion to interpolate waveform data on none-sampled sites and filling a phase in each missing trace. Finally, we shift back the waveforms to their original arrival times. We call our method FSIS (Filtering, Shift, Interpolation, Shift) interpolation. By this way, we can insert different virtually observed seismic phases into none-sampled sites and get dense seismic observation data. For testing our method, we randomly hide the real data in a site and use the rest to interpolate the observation on that site, using direct interpolation or FSIS method. Compared with directly interpolated data, interpolated data with FSIS can keep amplitude better. Results also show that the arrival times and waveforms of those VSOs well express the real data, which convince us that our method to form VSOs are applicable. In this way, we can provide needed data for some advanced seismic technique like RTM to illuminate shallow structures.

  8. The impact of forest structure and spatial scale on the relationship between ground plot above ground biomass and GEDI lidar waveforms

    NASA Astrophysics Data System (ADS)

    Armston, J.; Marselis, S.; Hancock, S.; Duncanson, L.; Tang, H.; Kellner, J. R.; Calders, K.; Disney, M.; Dubayah, R.

    2017-12-01

    The NASA Global Ecosystem Dynamics Investigation (GEDI) will place a multi-beam waveform lidar instrument on the International Space Station (ISS) to provide measurements of forest vertical structure globally. These measurements of structure will underpin empirical modelling of above ground biomass density (AGBD) at the scale of individual GEDI lidar footprints (25m diameter). The GEDI pre-launch calibration strategy for footprint level models relies on linking AGBD estimates from ground plots with GEDI lidar waveforms simulated from coincident discrete return airborne laser scanning data. Currently available ground plot data have variable and often large uncertainty at the spatial resolution of GEDI footprints due to poor colocation, allometric model error, sample size and plot edge effects. The relative importance of these sources of uncertainty partly depends on the quality of ground measurements and region. It is usually difficult to know the magnitude of these uncertainties a priori so a common approach to mitigate their influence on model training is to aggregate ground plot and waveform lidar data to a coarser spatial scale (0.25-1ha). Here we examine the impacts of these principal sources of uncertainty using a 3D simulation approach. Sets of realistic tree models generated from terrestrial laser scanning (TLS) data or parametric modelling matched to tree inventory data were assembled from four contrasting forest plots across tropical rainforest, deciduous temperate forest, and sclerophyll eucalypt woodland sites. These tree models were used to simulate geometrically explicit 3D scenes with variable tree density, size class and spatial distribution. GEDI lidar waveforms are simulated over ground plots within these scenes using monte carlo ray tracing, allowing the impact of varying ground plot and waveform colocation error, forest structure and edge effects on the relationship between ground plot AGBD and GEDI lidar waveforms to be directly assessed. We quantify the sensitivity of calibration equations relating GEDI lidar structure measurements and AGBD to these factors at a range of spatial scales (0.0625-1ha) and discuss the implications for the expanding use of existing in situ ground plot data by GEDI.

  9. Integration of ALS and TLS for calibration and validation of LAI profiles from large footprint lidar

    NASA Astrophysics Data System (ADS)

    Armston, J.; Tang, H.; Hancock, S.; Hofton, M. A.; Dubayah, R.; Duncanson, L.; Fatoyinbo, T. E.; Blair, J. B.; Disney, M.

    2016-12-01

    The Global Ecosystem Dynamics Investigation (GEDI) is designed to provide measurements of forest vertical structure and above-ground biomass density (AGBD) over tropical and temperate regions. The GEDI is a multi-beam waveform lidar that will acquire transects of forest canopy vertical profiles in conditions of up to 99% canopy cover. These are used to produce a number of canopy height and profile metrics to model habitat suitability and AGBD. These metrics include vertical leaf area index (LAI) profiles, which require some pre-launch refinement of large-footprint waveform processing methods for separating canopy and ground returns and estimation of their reflectance. Previous research developments in modelling canopy gap probability to derive canopy and ground reflectance from waveforms have primarily used data from small-footprint instruments, however development of a generalized spatial model with uncertainty will be useful for interpreting and modelling waveforms from large-footprint instruments such as the NASA Land Vegetation and Ice Sensor (LVIS) with a view to implementation for GEDI. Here we present an analysis of waveform lidar data from the NASA Land Vegetation and Ice Sensor (LVIS), which were acquired in Gabon in February 2016 to support the NASA/ESA AfriSAR campaign. AfriSAR presents a unique opportunity to test refined methods for retrieval of LAI profiles in high above-ground biomass rainforests (up to 600 Mg/ha) with dense canopies (>90% cover), where the greatest uncertainty exists. Airborne and Terrestrial Laser Scanning data (TLS) were also collected, enabling quantification of algorithm performance in plots of dense canopy cover. Refinement of canopy gap probability and LAI profile modelling from large-footprint lidar was based on solving for canopy and ground reflectance parameters spatially by penalized least-squares. The sensitivities of retrieved cover and LAI profiles to variation in canopy and ground reflectance showed improvement compared to assuming a constant ratio. We evaluated the use of spatially proximate simple waveforms to interpret more complex waveforms with poor separation of canopy and ground returns. This work has direct implications for GEDI algorithm refinement.

  10. Effect of Emplacement Material Properties on Chemical Explosion Spectra - Preliminary Analysis Using Synthetic Waveforms Near Elastic Radii

    NASA Astrophysics Data System (ADS)

    Saikia, C. K.; Ezzedine, S. M.; Vorobiev, O.; Antoun, T.; Woods, M. T.

    2017-12-01

    The focus of this study is to investigate the effect of the non-linear material properties on synthetic waveforms at receivers located within the elastic region near the non-linear zone around energetic chemical explosions. The primary goal is to characterize the effect of porosity and joint properties. The joint sizes are typically small compared with the wavelength represented by the computational grid, so the calculations become time consuming to properly represent the fidelity of the calculations. In this study, we use GEODYN-L Lagrangian code, where the joints are included explicitly. We simulate a suite of synthetics for chemical explosions in granite, and varying the porosity and joint orientation. Using the generated synthetic waveforms in the elastic region, we calculate displacement spectra and compare them with homogenous medium solutions (i.e., free of porosity and joints). We are attempting to develop a set of correction factors necessary to apply in various field (emplacement) conditions so that the spectral characteristics can be compared to those predicted by the Mueller-Murphy (MM, 1971; Saikia, 2017) and other source functions (Denny and Johnson, 1991; Ford and Walter, 2013) near the elastic radii. Future investigations will include similar analysis for the nuclear explosions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Validation of Sea levels from coastal altimetry waveform retracking expert system: a case study around the Prince William Sound in Alaska

    NASA Astrophysics Data System (ADS)

    Idris, N. H.; Deng, X.; Idris, N. H.

    2017-05-01

    This paper presents the validation of Coastal Altimetry Waveform Retracking Expert System (CAWRES), a novel method to optimize the Jason satellite altimetric sea levels from multiple retracking solutions. The validation is conducted over the region of Prince William Sound in Alaska, USA, where altimetric waveforms are perturbed by emerged land and sea states. Validation is performed in twofold. First, comparison with existing retrackers (i.e. MLE4 and Ice) from the Sensor Geophysical Data Records (SGDR), and second, comparison with in-situ tide gauge data. From the first validation assessment, in general, CAWRES outperforms the MLE4 and Ice retrackers. In 4 out of 6 cases, the value of improvement percentage (standard deviation of difference) is higher (lower) than those of the SGDR retrackers. CAWRES also presents the best performance in producing valid observations, and has the lowest noise when compared to the SGDR retrackers. From the second assessment with tide gauge, CAWRES retracked sea level anomalies (SLAs) are consistent with those of the tide gauge. The accuracy of CAWRES retracked SLAs is slightly better than those of the MLE4. However, the performance of Ice retracker is better than those of CAWRES and MLE4, suggesting the empirical-based retracker is more effective. The results demonstrate that the CAWRES would have potential to be applied to coastal regions elsewhere.

  12. Analytic family of post-merger template waveforms

    NASA Astrophysics Data System (ADS)

    Del Pozzo, Walter; Nagar, Alessandro

    2017-06-01

    Building on the analytical description of the post-merger (ringdown) waveform of coalescing, nonprecessing, spinning binary black holes introduced by Damour and Nagar [Phys. Rev. D 90, 024054 (2014), 10.1103/PhysRevD.90.024054], we propose an analytic, closed form, time-domain, representation of the ℓ=m =2 gravitational radiation mode emitted after merger. This expression is given as a function of the component masses and dimensionless spins (m1 ,2,χ1 ,2) of the two inspiraling objects, as well as of the mass MBH and (complex) frequency σ1 of the fundamental quasinormal mode of the remnant black hole. Our proposed template is obtained by fitting the post-merger waveform part of several publicly available numerical relativity simulations from the Simulating eXtreme Spacetimes (SXS) catalog and then suitably interpolating over (symmetric) mass ratio and spins. We show that this analytic expression accurately reproduces (˜0.01 rad ) the phasing of the post-merger data of other data sets not used in its construction. This is notably the case of the spin-aligned run SXS:BBH:0305, whose intrinsic parameters are consistent with the 90% credible intervals reported in the parameter-estimation followup of GW150914 by B.P. Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016), 10.1103/PhysRevLett.116.241102]. Using SXS waveforms as "experimental" data, we further show that our template could be used on the actual GW150914 data to perform a new measure of the complex frequency of the fundamental quasinormal mode so as to exploit the complete (high signal-to-noise-ratio) post-merger waveform. We assess the usefulness of our proposed template by analyzing, in a realistic setting, SXS full inspiral-merger-ringdown waveforms and constructing posterior probability distribution functions for the central frequency damping time of the first overtone of the fundamental quasinormal mode as well as for the physical parameters of the systems. We also briefly explore the possibility opened by our waveform model to test the second law of black hole dynamics. Our model will help improve current tests of general relativity, in particular the general-relativistic no-hair theorem, and allow for novel tests, such as that of the area theorem.

  13. Long-period Ground Motion Characteristics Inside and Outside of the Osaka Basin during the 2011 Great Tohoku Earthquake and Its Largest Aftershock

    NASA Astrophysics Data System (ADS)

    Sato, K.; Iwata, T.; Asano, K.; Kubo, H.; Aoi, S.

    2013-12-01

    The 2011 great Tohoku earthquake (Mw 9.0) occurred on March 11, 2011, and the largest aftershock (Mw 7.7) at the region adjacent to south boundary of the mainshock's source region. Long-period ground motions (1-10s) of large amplitude were observed in the Osaka sedimentary basin about 550-800km away from the source regions during both events. We studied propagation and site characteristics of these ground motions, and found some common features between these two events in the Osaka basin. (1) The amplitude of horizontal components of the ground motion at the site-specific period is amplified at each sedimentary station. The predominant period is around 7s in the bayside area where the largest pSv were observed. (2) The velocity Fourier spectra have their peak values around 7s at the bedrock sites surrounding the Osaka basin. (3) Two remarkable wave packets separated by 30s propagating from stations around the Nobi plain to the bedrock sites near the Osaka basin were seen in the pasted-up velocity waveforms from the source regions to the Osaka basin for both events (Sato et al., 2012). Therefore, large long-period ground motions in the Osaka basin are generated by the combination of propagation-path and basin effects. Firstly, we simulate ground motions due to the largest aftershock using three-dimensional FDM (GMS; Aoi and Fujiwara, 1999). The reason we focus on the largest aftershock is that this event has a relatively small rupture area and simple rupture process compared to the mainshock. The source model is based on the model estimated by Kubo et al. (2013). The velocity structure model is a three-dimensional velocity structure based on the Japan Integrated Velocity Structure Model (Koketsu et al., 2012) and the layer of Vs 350m/s in this model is replaced with one of Vs 500m/s. The minimum effective period in this computation is 3s. Then, we compare synthetic waveforms with observed ones. At CHBH14, the nearest station to the source and 60km away from the epicenter, the synthetic waveforms of the period-band 5-50s, where Kubo et al. (2013) studied, fit well to the observed ones. However, in our target period-band 5-8s, the earlier portion of the synthetic waveform of the main packet has smaller amplitude than the observation. At the bedrock sites near the Osaka basin, two wave packets which are appeared in the observation are qualitatively reproduced in the synthetics. However, the amplitudes are not well reproduced. Moreover, the amplitude ratio of horizontal components of synthetics between the rock and the bayside stations is underestimated compared to the observed one. Improvements of the source and velocity structure models for propagation-path and basin are needed. For that sake, we will analyze the characteristics of the synthetic waveforms, study how those wave packets are generated, and discuss the discrepancy between the synthetic and observed waveforms. We will also simulate the ground motion for the mainshock to study propagation characteristics of the mainshock. ACKNOWLEDGEMENTS We used strong motion data recorded by K-NET, KiK-net and F-net of NIED, CEORKA, BRI, JMA, and Osaka prefecture. GMS provided by NIED is used for the computation.

  14. MINEMOTION3D: A new set of Programs for Predicting Ground Motion From Explosions in Complex 3D Media

    NASA Astrophysics Data System (ADS)

    Tibuleac, I. M.; Bonner, J. L.; Orrey, J. L.; Yang, X.

    2004-12-01

    Predicting ground motion from complicated mining explosions is important for mines developing new blasting programs in regions where vibrations must be kept below certain levels. Additionally, predicting ground motion from mining explosions in complex 3D media is important for moment estimation for nuclear test treaty monitoring. Both problems have been addressed under the development of a new series of numerical prediction programs called MINEMOTION3D including 1) Generalized Fourier Methods to generate Green's functions in 3D media for a moment tensor source implementation and 2) MineSeis3D, a program that simulates seismograms for delay-fired mining explosions with a linear relationship between signals from small size individual shots. To test the programs, local recordings (5 - 23 km) of three production shots at a mine in northern Minnesota were compared to synthetic waveforms in 3D media. A non-zero value of the moment tensor component M12 was considered, to introduce a horizontal spall component into the waveform synthesis when the Green's functions were generated for each model. Methods using seismic noise crosscorrelation for improved inter-element subsurface structure estimation were also evaluated. Comparison of the observed and synthetic waveforms shows promising results. The shape and arrival times of the normalized synthetic and observed waveforms are similar for most of the stations. The synthetic and observed waveform amplitude fit is best for the vertical components in the mean 3D model and worst for the transversal components. The observed effect of spall on the waveform spectra was weak in the case of fragmentation delay fired commercial explosions. Commercial applications of the code could provide data needed for designing explosions which do not exceed ground vibration requirements posed by the U.S. Department of the Interior, Office of Surface Mining.

  15. Remote detection of weak aftershocks of the DPRK underground explosions using waveform cross correlation

    NASA Astrophysics Data System (ADS)

    Le Bras, R.; Rozhkov, M.; Bobrov, D.; Kitov, I. O.; Sanina, I.

    2017-12-01

    Association of weak seismic signals generated by low-magnitude aftershocks of the DPRK underground tests into event hypotheses represent a challenge for routine automatic and interactive processing at the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization, due to the relatively low station density of the International Monitoring System (IMS) seismic network. Since 2011, as an alternative, the IDC has been testing various prototype techniques of signal detection and event creation based on waveform cross correlation. Using signals measured by seismic stations of the IMS from DPRK explosions as waveform templates, the IDC detected several small (estimated mb between 2.2 and 3.6) seismic events after two DPRK tests conducted on September 9, 2016 and September 3, 2017. The obtained detections were associated with reliable event hypothesis and then used to locate these events relative to the epicenters of the DPRK explosions. We observe high similarity of the detected signals with the corresponding waveform templates. The newly found signals also correlate well between themselves. In addition, the values of the signal-to-noise ratios (SNR) estimated using the traces of cross correlation coefficients, increase with template length (from 5 s to 150 s), providing strong evidence in favour of their spatial closeness, which allows interpreting them as explosion aftershocks. We estimated the relative magnitudes of all aftershocks using the ratio of RMS amplitudes of the master and slave signal in the cross correlation windows characterized by the highest SNR. Additional waveform data from regional non-IMS stations MDJ and SEHB provide independent validation of these aftershock hypotheses. Since waveform templates from any single master event may be sub-efficient at some stations, we have also developed a method of joint usage of the DPRK and the biggest aftershocks templates to build more robust event hypotheses.

  16. Detecting Earthquakes over a Seismic Network using Single-Station Similarity Measures

    NASA Astrophysics Data System (ADS)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-03-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected move-out. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to two weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalog (including 95% of the catalog events), and less than 1% of these candidate events are false detections.

  17. Using waveform information in nonlinear data assimilation

    NASA Astrophysics Data System (ADS)

    Rey, Daniel; Eldridge, Michael; Morone, Uriel; Abarbanel, Henry D. I.; Parlitz, Ulrich; Schumann-Bischoff, Jan

    2014-12-01

    Information in measurements of a nonlinear dynamical system can be transferred to a quantitative model of the observed system to establish its fixed parameters and unobserved state variables. After this learning period is complete, one may predict the model response to new forces and, when successful, these predictions will match additional observations. This adjustment process encounters problems when the model is nonlinear and chaotic because dynamical instability impedes the transfer of information from the data to the model when the number of measurements at each observation time is insufficient. We discuss the use of information in the waveform of the data, realized through a time delayed collection of measurements, to provide additional stability and accuracy to this search procedure. Several examples are explored, including a few familiar nonlinear dynamical systems and small networks of Colpitts oscillators.

  18. Methods, systems and apparatus for adjusting duty cycle of pulse width modulated (PWM) waveforms

    DOEpatents

    Gallegos-Lopez, Gabriel; Kinoshita, Michael H; Ransom, Ray M; Perisic, Milun

    2013-05-21

    Embodiments of the present invention relate to methods, systems and apparatus for controlling operation of a multi-phase machine in a vector controlled motor drive system when the multi-phase machine operates in an overmodulation region. The disclosed embodiments provide a mechanism for adjusting a duty cycle of PWM waveforms so that the correct phase voltage command signals are applied at the angle transitions. This can reduce variations/errors in the phase voltage command signals applied to the multi-phase machine so that phase current may be properly regulated thus reducing current/torque oscillation, which can in turn improve machine efficiency and performance, as well as utilization of the DC voltage source.

  19. Source-Type Identification Analysis Using Regional Seismic Moment Tensors

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.

    2012-12-01

    Waveform inversion to determine the seismic moment tensor is a standard approach in determining the source mechanism of natural and manmade seismicity, and may be used to identify, or discriminate different types of seismic sources. The successful applications of the regional moment tensor method at the Nevada Test Site (NTS) and the 2006 and 2009 North Korean nuclear tests (Ford et al., 2009a, 2009b, 2010) show that the method is robust and capable for source-type discrimination at regional distances. The well-separated populations of explosions, earthquakes and collapses on a Hudson et al., (1989) source-type diagram enables source-type discrimination; however the question remains whether or not the separation of events is universal in other regions, where we have limited station coverage and knowledge of Earth structure. Ford et al., (2012) have shown that combining regional waveform data and P-wave first motions removes the CLVD-isotropic tradeoff and uniquely discriminating the 2009 North Korean test as an explosion. Therefore, including additional constraints from regional and teleseismic P-wave first motions enables source-type discrimination at regions with limited station coverage. We present moment tensor analysis of earthquakes and explosions (M6) from Lop Nor and Semipalatinsk test sites for station paths crossing Kazakhstan and Western China. We also present analyses of smaller events from industrial sites. In these sparse coverage situations we combine regional long-period waveforms, and high-frequency P-wave polarity from the same stations, as well as from teleseismic arrays to constrain the source type. Discrimination capability with respect to velocity model and station coverage is examined, and additionally we investigate the velocity model dependence of vanishing free-surface traction effects on seismic moment tensor inversion of shallow sources and recovery of explosive scalar moment. Our synthetic data tests indicate that biases in scalar seismic moment and discrimination for shallow sources are small and can be understood in a systematic manner. We are presently investigating the frequency dependence of vanishing traction of a very shallow (10m depth) M2+ chemical explosion recorded at several kilometer distances, and preliminary results indicate at the typical frequency passband we employ the bias does not affect our ability to retrieve the correct source mechanism but may affect the retrieval of the correct scalar seismic moment. Finally, we assess discrimination capability in a composite P-value statistical framework.

  20. A High-Resolution View of Global Seismicity

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2014-12-01

    We present high-precision earthquake relocation results from our global-scale re-analysis of the combined seismic archives of parametric data for the years 1964 to present from the International Seismological Centre (ISC), the USGS's Earthquake Data Report (EDR), and selected waveform data from IRIS. We employed iterative, multistep relocation procedures that initially correct for large location errors present in standard global earthquake catalogs, followed by a simultaneous inversion of delay times formed from regional and teleseismic arrival times of first and later arriving phases. An efficient multi-scale double-difference (DD) algorithm is used to solve for relative event locations to the precision of a few km or less, while incorporating information on absolute hypocenter locations from catalogs such as EHB and GEM. We run the computations on both a 40-core cluster geared towards HTC problems (data processing) and a 500-core HPC cluster for data inversion. Currently, we are incorporating waveform correlation delay time measurements available for events in selected regions, but are continuously building up a comprehensive, global correlation database for densely distributed events recorded at stations with a long history of high-quality waveforms. The current global DD catalog includes nearly one million earthquakes, equivalent to approximately 70% of the number of events in the ISC/EDR catalogs initially selected for relocation. The relocations sharpen the view of seismicity in most active regions around the world, in particular along subduction zones where event density is high, but also along mid-ocean ridges where existing hypocenters are especially poorly located. The new data offers the opportunity to investigate earthquake processes and fault structures along entire plate boundaries at the ~km scale, and provides a common framework that facilitates analysis and comparisons of findings across different plate boundary systems.

  1. Rapid and Robust Cross-Correlation-Based Seismic Phase Identification Using an Approximate Nearest Neighbor Method

    NASA Astrophysics Data System (ADS)

    Tibi, R.; Young, C. J.; Gonzales, A.; Ballard, S.; Encarnacao, A. V.

    2016-12-01

    The matched filtering technique involving the cross-correlation of a waveform of interest with archived signals from a template library has proven to be a powerful tool for detecting events in regions with repeating seismicity. However, waveform correlation is computationally expensive, and therefore impractical for large template sets unless dedicated distributed computing hardware and software are used. In this study, we introduce an Approximate Nearest Neighbor (ANN) approach that enables the use of very large template libraries for waveform correlation without requiring a complex distributed computing system. Our method begins with a projection into a reduced dimensionality space based on correlation with a randomized subset of the full template archive. Searching for a specified number of nearest neighbors is accomplished by using randomized K-dimensional trees. We used the approach to search for matches to each of 2700 analyst-reviewed signal detections reported for May 2010 for the IMS station MKAR. The template library in this case consists of a dataset of more than 200,000 analyst-reviewed signal detections for the same station from 2002-2014 (excluding May 2010). Of these signal detections, 60% are teleseismic first P, and 15% regional phases (Pn, Pg, Sn, and Lg). The analyses performed on a standard desktop computer shows that the proposed approach performs the search of the large template libraries about 20 times faster than the standard full linear search, while achieving recall rates greater than 80%, with the recall rate increasing for higher correlation values. To decide whether to confirm a match, we use a hybrid method involving a cluster approach for queries with two or more matches, and correlation score for single matches. Of the signal detections that passed our confirmation process, 52% were teleseismic first P, and 30% were regional phases.

  2. Infrasound wave propagation over near-regional and tele-infrasonic distances

    NASA Astrophysics Data System (ADS)

    McKenna, Sara Mihan House

    2005-11-01

    Infrasound research is experiencing a renaissance due to advances in acoustic propagation calculations and a deeper understanding of the atmosphere. Uniquely combining observed data and propagation modeling, the three papers presented here quantify the effects of the atmosphere on propagation from a variety of sources at distances from less than 100 km (near-regional distances) to nearly 600 km (tele-infrasonic distances) for sources on the surface and at altitude (63 km). Paper one analyzes infrasound signals recorded at the CHNAR seismo-acoustic array. These sources are predominantly on the surface, result from human activity and occur closer than 250 km away. Propagation for these near-regional distances depends on tropospheric weather patterns and temporally varying, low-altitude ducts. To predict the observed arrivals local meteorological data is necessary; MSIS/HWM (Mass Spectrometer Incoherent Scatter/Horizontal Wind Model) and NRL-G2S (Naval Research Laboratory Ground To Space) did not predict the observed arrivals. Paper two is the first time a waveform from an explosion at height has ever been reproduced; the recorded waveform was from the break-up of the space shuttle Columbia. For the tele-infrasonic normal mode modeling, MSIS/HWM and NRL-G2S yielded identical waveform results. Paper three looks at the tele-infrasonic path between an iron mine in Minnesota and an infrasound array in Manitoba, Canada. Over a four month period, the IS-10 infrasound array provided infrasound data to compare to archived blast statistics. NRL-G2S better reproduced the observed arrival travel times than MSIS/HWM; whether or not arrivals were observed depended on the noise field at the infrasound array. For any distance range or source height, accurate atmospheric parameters from the corresponding propagation paths are necessary to predict observed infrasound.

  3. Improved phase arrival estimate and location for local earthquakes in South Korea

    NASA Astrophysics Data System (ADS)

    Morton, E. A.; Rowe, C. A.; Begnaud, M. L.

    2012-12-01

    The Korean Institute of Geoscience and Mineral Resources (KIGAM) and the Korean Meteorological Agency (KMA) regularly report local (distance < ~1200 km) seismicity recorded with their networks; we obtain preliminary event location estimates as well as waveform data, but no phase arrivals are reported, so the data are not immediately useful for earthquake location. Our goal is to identify seismic events that are sufficiently well-located to provide accurate seismic travel-time information for events within the KIGAM and KMA networks, and also recorded by some regional stations. Toward that end, we are using a combination of manual phase identification and arrival-time picking, with waveform cross-correlation, to cluster events that have occurred in close proximity to one another, which allows for improved phase identification by comparing the highly correlating waveforms. We cross-correlate the known events with one another on 5 seismic stations and cluster events that correlate above a correlation coefficient threshold of 0.7, which reveals few clusters containing few events each. The small number of repeating events suggests that the online catalogs have had mining and quarry blasts removed before publication, as these can contribute significantly to repeating seismic sources in relatively aseismic regions such as South Korea. The dispersed source locations in our catalog, however, are ideal for seismic velocity modeling by providing superior sampling through the dense seismic station arrangement, which produces favorable event-to-station ray path coverage. Following careful manual phase picking on 104 events chosen to provide adequate ray coverage, we re-locate the events to obtain improved source coordinates. The re-located events are used with Thurber's Simul2000 pseudo-bending local tomography code to estimate the crustal structure on the Korean Peninsula, which is an important contribution to ongoing calibration for events of interest in the region.

  4. Terahertz wavefront assessment based on 2D electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel

    2015-03-01

    Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront distortion.

  5. Alaska Volcano Observatory Seismic Network Data Availability

    NASA Astrophysics Data System (ADS)

    Dixon, J. P.; Haney, M. M.; McNutt, S. R.; Power, J. A.; Prejean, S. G.; Searcy, C. K.; Stihler, S. D.; West, M. E.

    2009-12-01

    The Alaska Volcano Observatory (AVO) established in 1988 as a cooperative program of the U.S. Geological Survey, the Geophysical Institute at the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys, monitors active volcanoes in Alaska. Thirty-three volcanoes are currently monitored by a seismograph network consisting of 193 stations, of which 40 are three-component stations. The current state of AVO’s seismic network, and data processing and availability are summarized in the annual AVO seismological bulletin, Catalog of Earthquake Hypocenters at Alaska Volcanoes, published as a USGS Data Series (most recent at http://pubs.usgs.gov/ds/467). Despite a rich seismic data set for 12 VEI 2 or greater eruptions, and over 80,000 located earthquakes in the last 21 years, the volcanic seismicity in the Aleutian Arc remains understudied. Initially, AVO seismic data were only provided via a data supplement as part of the annual bulletin, or upon request. Over the last few years, AVO has made seismic data more available with the objective of increasing volcano seismic research on the Aleutian Arc. The complete AVO earthquake catalog data are now available through the annual AVO bulletin and have been submitted monthly to the on-line Advanced National Seismic System (ANSS) composite catalog since 2008. Segmented waveform data for all catalog earthquakes are available upon request and efforts are underway to make this archive web accessible as well. Continuous data were first archived using a tape backup, but the availability of low cost digital storage media made a waveform backup of continuous data a reality. Currently the continuous AVO waveform data can be found in several forms. Since late 2002, AVO has burned all continuous waveform data to DVDs, as well as storing these data in Antelope databases at the Geophysical Institute. Beginning in 2005, data have been available through a Winston Wave Server housed at the USGS in Anchorage. AVO waveform data were added to the Incorporated Research Institutions for Seismology Data Management Center (IRIS-DMC) beginning in 2008 and now includes continuous waveform data from all available AVO seismograph stations in real time. Data coverage is available through the DMC’s Metadata Aggregator.

  6. Monitoring performance for hydraulic fracturing using synthetic microseismic catalogue at the Wysin site (Poland)

    NASA Astrophysics Data System (ADS)

    Ángel López Comino, José; Cesca, Simone; Kriegerowski, Marius; Heimann, Sebastian; Dahm, Torsten; Mirek, Janusz; Lasocky, Stanislaw

    2017-04-01

    Previous analysis to assess the monitoring performance of a dedicated seismic network are always useful to determine its capability of detecting, locating and characterizing target seismicity. This work focuses on a hydrofracking experiment in Poland, which is monitored in the framework of the SHEER (SHale gas Exploration and Exploitation induced Risks) EU project. The seismic installation is located near Wysin (Poland), in the central-western part of the Peribaltic synclise at Pomerania. The network setup includes a distributed network of six broadband stations, three shallow borehole stations and three small-scale arrays. We assess the monitoring performance prior operations, using synthetic seismograms. Realistic full waveform are generated and combined with real noise before fracking operations, to produce either event based or continuous synthetic waveforms. Background seismicity is modelled by double couple (DC) focal mechanisms. Non-DC sources resemble induced tensile fractures opening in the direction of the minimal compressive stress and closing in the same direction after the injection. Microseismic sources are combined with a realistic crustal model, distribution of hypocenters, magnitudes and source durations. The network detection performance is then assessed in terms of Magnitude of Completeness (Mc) through two different techniques: i) using an amplitude threshold approach, taking into account a station dependent noise level and different values of signal-to-noise ratio (SNR) and ii) through the application of an automatic detection algorithm to the continuous synthetic dataset. In the first case, we compare the maximal amplitude of noise free synthetic waveforms with the different noise levels. Imposing the simultaneous detection at e.g. 4 stations for a robust detection, the Mc is assessed and can be adjusted by empirical relationships for different SNR values. We find that different source mechanisms have different detection threshold. The background seismicity (DC sources) is better detectable than induced earthquakes (tensile cracks mechanisms). Assuming a SNR of 2, we estimate a Mc 0.55 around the fracking wells, with an increase of 0.05 during day hours. The value of Mc can be decreased to 0.45 around the fracking region, taking advantage by the array installations. The second approach applies a full waveform detection and location algorithm based on the stacking of smooth characteristic function and the identification of high coherence in the signals recorded at different stations. In this case the detection can be increased at the cost of increasing also false detections, with an acceptable compromise found for Mc 0.1.

  7. Is volcanic phenomena of fractal nature?

    NASA Astrophysics Data System (ADS)

    Quevedo, R.; Lopez, D. A. L.; Alparone, S.; Hernandez Perez, P. A.; Sagiya, T.; Barrancos, J.; Rodriguez-Santana, A. A.; Ramos, A.; Calvari, S.; Perez, N. M.

    2016-12-01

    A particular resonance waveform pattern has been detected beneath different physical volcano manifestations from recent 2011-2012 period of volcanic unrest at El Hierro Island, Canary Islands, and also from other worldwide volcanoes with different volcanic typology. This mentioned pattern appears to be a fractal time dependent waveform repeated in different time scales (periods of time). This time dependent feature suggests this resonance as a new approach to volcano phenomena for predicting such interesting matters as earthquakes, gas emission, deformation etc. as this fractal signal has been discovered hidden in a wide typical volcanic parameters measurements. It is known that the resonance phenomenon occurring in nature usually denote a structure, symmetry or a subjacent law (Fermi et al., 1952; and later -about enhanced cross-sections symmetry in protons collisions), which, in this particular case, may be indicative of some physical interactions showing a sequence not completely chaotic but cyclic provided with symmetries. The resonance and fractal model mentioned allowed the authors to make predictions in cycles from a few weeks to months. In this work an equation for this waveform has been described and also correlations with volcanic parameters and fractal behavior demonstration have been performed, including also some suggestive possible explanations of this signal origin.

  8. Photonic microwave waveforms generation based on pulse carving and superposition in time-domain

    NASA Astrophysics Data System (ADS)

    Xia, Yi; Jiang, Yang; Zi, Yuejiao; He, Yutong; Tian, Jing; Zhang, Xiaoyu; Luo, Hao; Dong, Ruyang

    2018-05-01

    A novel photonic approach for various microwave waveforms generation based on time-domain synthesis is theoretically analyzed and experimentally investigated. In this scheme, two single-drive Mach-Zehnder modulators are used for pulses shaping. After shifting the phase and implementing envelopes superposition of the pulses, desired waveforms can be achieved in time-domain. The theoretic analysis and simulations are presented. In the experimental demonstrations, a triangular waveform, square waveform, and half duty cycle sawtooth (or reversed-sawtooth) waveform are generated successfully. By utilizing time multiplexing technique, a frequency-doubled sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can be obtained. In addition, a fundamental frequency sawtooth (or reversed-sawtooth) waveform with 100% duty cycle can also be achieved by the superposition of square waveform and frequency-doubled sawtooth waveform.

  9. Analysis of stress drops and rupture lengths along the northern segment of the New Madrid seismic zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickus, K.L.

    1993-03-01

    The New Madrid seismic zone is the most seismically active region in the central US. The seismic zone consists of three linear trends bounded by latitudes 35.5[degree] to 37[degree] N and longitudes 89[degree] to 90.5[degree] W. This study is concerned with the most northern segment that trends northeast from New Madrid, Missouri to Charleston, Missouri. The purpose of this study is to determine stress drops and rupture lengths of small earthquakes (M less than 3.5). To determine the stress drops and rupture lengths, the author used waveforms collected by the St. Louis University seismic network. He used small events (Mmore » between 1.0 and 2.0) as empirical Green's functions to deconvolve out site, path and instrument effects on the P-waveforms on larger events (M between 2.0 and 3.6). Examining the seismic records from 1980 to the present, he found five larger events that had colocated (within 1 km) smaller events. To insure that the larger and smaller were colocated the events were relocated using a three-dimensional velocity model. After insuring the events were relocated, the deconvolved waveforms were used to determine the seismic moment and hence the stress drops and rupture lengths by estimating the area of the deconvolved waveforms and the rise time of each pulse.« less

  10. Perspectives of Cross-Correlation in Seismic Monitoring at the International Data Centre

    NASA Astrophysics Data System (ADS)

    Bobrov, Dmitry; Kitov, Ivan; Zerbo, Lassina

    2014-03-01

    We demonstrate that several techniques based on waveform cross-correlation are able to significantly reduce the detection threshold of seismic sources worldwide and to improve the reliability of arrivals by a more accurate estimation of their defining parameters. A master event and the events it can find using waveform cross-correlation at array stations of the International Monitoring System (IMS) have to be close. For the purposes of the International Data Centre (IDC), one can use the spatial closeness of the master and slave events in order to construct a new automatic processing pipeline: all qualified arrivals detected using cross-correlation are associated with events matching the current IDC event definition criteria (EDC) in a local association procedure. Considering the repeating character of global seismicity, more than 90 % of events in the reviewed event bulletin (REB) can be built in this automatic processing. Due to the reduced detection threshold, waveform cross-correlation may increase the number of valid REB events by a factor of 1.5-2.0. Therefore, the new pipeline may produce a more comprehensive bulletin than the current pipeline—the goal of seismic monitoring. The analysts' experience with the cross correlation event list (XSEL) shows that the workload of interactive processing might be reduced by a factor of two or even more. Since cross-correlation produces a comprehensive list of detections for a given master event, no additional arrivals from primary stations are expected to be associated with the XSEL events. The number of false alarms, relative to the number of events rejected from the standard event list 3 (SEL3) in the current interactive processing—can also be reduced by the use of several powerful filters. The principal filter is the difference between the arrival times of the master and newly built events at three or more primary stations, which should lie in a narrow range of a few seconds. In this study, one event at a distance of about 2,000 km from the main shock was formed by three stations, with the stations and both events on the same great circle. Such spurious events are rejected by checking consistency between detections at stations at different back azimuths from the source region. Two additional effective pre-filters are f-k analysis and F prob based on correlation traces instead of original waveforms. Overall, waveform cross-correlation is able to improve the REB completeness, to reduce the workload related to IDC interactive analysis, and to provide a precise tool for quality check for both arrivals and events. Some major improvements in automatic and interactive processing achieved by cross-correlation are illustrated using an aftershock sequence from a large continental earthquake. Exploring this sequence, we describe schematically the next steps for the development of a processing pipeline parallel to the existing IDC one in order to improve the quality of the REB together with the reduction of the magnitude threshold.

  11. Very low frequency earthquakes along the Ryukyu subduction zone

    NASA Astrophysics Data System (ADS)

    Ando, Masataka; Tu, Yoko; Kumagai, Hiroyuki; Yamanaka, Yoshiko; Lin, Cheng-Horng

    2012-02-01

    A total of 1314 very low frequency earthquakes (VLFEs) were identified along the Ryukyu trench from seismograms recorded at broadband networks in Japan (F-net) and Taiwan (BATS) in 2007. The spectra of typical VLFEs have peak frequencies between 0.02 to 0.1 Hz. Among those, waveforms from 120 VLFEs were inverted to obtain their centoroid moment tensor (CMT) solutions and locations using an examination grid to minimize a residual between the observed and synthetic waveforms within an area of 11° × 14° in latitude and longitude and at depths of 0 to 60 km. Most of the VLFEs occur on shallow thrust faults that are distributed along the Ryukyu trench, which are similar to those earthquakes found in Honshu and Hokkaido, Japan. The locations and mechanisms of VLFEs may be indicative of coupled regions within the accretionary prism or at the plate interface; this study highlights the need for further investigation of the Ryukyu trench to identify coupled regions within it.

  12. Numerical simulations of merging black holes for gravitational-wave astronomy

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey

    2014-03-01

    Gravitational waves from merging binary black holes (BBHs) are among the most promising sources for current and future gravitational-wave detectors. Accurate models of these waves are necessary to maximize the number of detections and our knowledge of the waves' sources; near the time of merger, the waves can only be computed using numerical-relativity simulations. For optimal application to gravitational-wave astronomy, BBH simulations must achieve sufficient accuracy and length, and all relevant regions of the BBH parameter space must be covered. While great progress toward these goals has been made in the almost nine years since BBH simulations became possible, considerable challenges remain. In this talk, I will discuss current efforts to meet these challenges, and I will present recent BBH simulations produced using the Spectral Einstein Code, including a catalog of publicly available gravitational waveforms [black-holes.org/waveforms]. I will also discuss simulations of merging black holes with high mass ratios and with spins nearly as fast as possible, the most challenging regions of the BBH parameter space.

  13. Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms

    NASA Astrophysics Data System (ADS)

    Rodgers, Arthur J.; Schwartz, Susan Y.

    We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.

  14. Broadband Evaluation of DPRK Explosions, Collapse Event, and Induced Aftershocks

    NASA Astrophysics Data System (ADS)

    Mayeda, K.; Roman-Nieves, J. I.; Wagner, G.; Jeon, Y. S.

    2017-12-01

    We report on the past 6 declared DPRK nuclear explosions, a collapse event, and recent associated induced shear dislocation sources using long-period waveform modeling, direct regional phases, and stable P-coda and S-coda spectral ratios. We find that the recent September 3rd, 2017 explosion is well modeled with an MM71 explosion source model at normal scale depth, but the previous 5 smaller yield explosions exhibit much larger relative high frequency radiation, strongly suggesting they are all over buried by varying amounts. The collapse event that occurred 8 minutes following the September 3rd DPRK explosion shares significant similarities with a number of NTS collapse events for explosions of comparable yield, both in absolute amplitude and spectral fall-off. A large number of smaller sources have been observed, which from stable coda spectral analysis and waveform modeling, are consistent with shallow shear dislocations likely caused by stress redistribution following the past nuclear explosions. We conclude with testing of a new discriminant that is specific to this region.

  15. Retrieving rupture history using waveform inversions in time sequence

    NASA Astrophysics Data System (ADS)

    Yi, L.; Xu, C.; Zhang, X.

    2017-12-01

    The rupture history of large earthquakes is generally regenerated using the waveform inversion through utilizing seismological waveform records. In the waveform inversion, based on the superposition principle, the rupture process is linearly parameterized. After discretizing the fault plane into sub-faults, the local source time function of each sub-fault is usually parameterized using the multi-time window method, e.g., mutual overlapped triangular functions. Then the forward waveform of each sub-fault is synthesized through convoluting the source time function with its Green function. According to the superposition principle, these forward waveforms generated from the fault plane are summarized in the recorded waveforms after aligning the arrival times. Then the slip history is retrieved using the waveform inversion method after the superposing of all forward waveforms for each correspond seismological waveform records. Apart from the isolation of these forward waveforms generated from each sub-fault, we also realize that these waveforms are gradually and sequentially superimposed in the recorded waveforms. Thus we proposed a idea that the rupture model is possibly detachable in sequent rupture times. According to the constrained waveform length method emphasized in our previous work, the length of inverted waveforms used in the waveform inversion is objectively constrained by the rupture velocity and rise time. And one essential prior condition is the predetermined fault plane that limits the duration of rupture time, which means the waveform inversion is restricted in a pre-set rupture duration time. Therefore, we proposed a strategy to inverse the rupture process sequentially using the progressively shift rupture times as the rupture front expanding in the fault plane. And we have designed a simulation inversion to test the feasibility of the method. Our test result shows the prospect of this idea that requiring furthermore investigation.

  16. Fault Slip Distribution of the 2016 Fukushima Earthquake Estimated from Tsunami Waveforms

    NASA Astrophysics Data System (ADS)

    Gusman, Aditya Riadi; Satake, Kenji; Shinohara, Masanao; Sakai, Shin'ichi; Tanioka, Yuichiro

    2017-08-01

    The 2016 Fukushima normal-faulting earthquake (Mjma 7.4) occurred 40 km off the coast of Fukushima within the upper crust. The earthquake generated a moderate tsunami which was recorded by coastal tide gauges and offshore pressure gauges. First, the sensitivity of tsunami waveforms to fault dimensions and depths was examined and the best size and depth were determined. Tsunami waveforms computed based on four available focal mechanisms showed that a simple fault striking northeast-southwest and dipping southeast (strike = 45°, dip = 41°, rake = -95°) yielded the best fit to the observed waveforms. This fault geometry was then used in a tsunami waveform inversion to estimate the fault slip distribution. A large slip of 3.5 m was located near the surface and the major slip region covered an area of 20 km × 20 km. The seismic moment, calculated assuming a rigidity of 2.7 × 1010 N/m2 was 3.70 × 1019 Nm, equivalent to Mw = 7.0. This is slightly larger than the moments from the moment tensor solutions (Mw 6.9). Large secondary tsunami peaks arrived approximately an hour after clear initial peaks were recorded by the offshore pressure gauges and the Sendai and Ofunato tide gauges. Our tsunami propagation model suggests that the large secondary tsunami signals were from tsunami waves reflected off the Fukushima coast. A rather large tsunami amplitude of 75 cm at Kuji, about 300 km north of the source, was comparable to those recorded at stations located much closer to the epicenter, such as Soma and Onahama. Tsunami simulations and ray tracing for both real and artificial bathymetry indicate that a significant portion of the tsunami wave was refracted to the coast located around Kuji and Miyako due to bathymetry effects.

  17. Temporal changes of the inner core from waveform doublets

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Song, X.

    2017-12-01

    Temporal changes of the Earth's inner core have been detected from earthquake waveform doublets (repeating sources with similar waveforms at the same station). Using doublets from events up to the present in the South Sandwich Island (SSI) region recorded by the station COLA (Alaska), we confirmed systematic temporal variations in the travel time of the inner-core-refracted phase (PKIKP, the DF branch). The DF phase arrives increasingly earlier than outer core phases (BC and AB) by rate of approximately 0.07 s per decade since 1970s. If we assume that the temporal change is caused by a shift of the lateral gradient from the inner core rotation as in previous studies, we estimate the rotation rate of 0.2-0.4 degree per year. We also analyzed the topography of the inner core boundary (ICB) using SSI waveform doublets recorded by seismic stations in Eurasia and North America with reflected phase (PKiKP) and refracted phases. There are clear temporal changes in the waveforms of doublets for PKiKP under Africa and Central America. In addition, for doublets recorded by three nearby stations (AAK, AML, and UCH), we observed systematic change in the relative travel time of PKiKP and PKIKP. The temporal change of the (PKiKP - PKIKP) differential time is always negative for the event pairs if both events are before 2007, while it fluctuates to positive if the later event occurs after 2007. The rapid temporal changes in space and time may indicate localized processes (e.g., freezing and melting) of the ICB in the recent decades under Africa. We are exploring 4D models consistent with the temporal changes.

  18. Imaging Crustal Structure with Waveform and HV Ratio of Body-wave Receiver Function

    NASA Astrophysics Data System (ADS)

    Chong, J.; Chu, R.; Ni, S.; Meng, Q.; Guo, A.

    2017-12-01

    It is known that receiver function has less constraint on the absolute velocity, and joint inversion of receiver function and surface wave dispersion has been widely applied to reduce the non-uniqueness of velocity and interface depth. However, some studies indicate that the receiver function itself is capable for determining the absolute shear wave velocity. In this study, we propose to measure the receiver function HV ratio which takes advantage of the amplitude information of the radial and vertical receiver functions to constrain the shear-wave velocity. Numerical analysis indicates that the receiver function HV ratio is sensitive to the average shear wave velocity in the depth range it samples, and can help to reduce the non-uniqueness of receiver function waveform inversion. A joint inversion scheme has been developed, and both synthetic tests and real data application proved the feasibility of the joint inversion. The method has been applied to the dense seismic array of ChinArray program in SE Tibet during the time period from August 2011 to August 2012 in SE Tibet (ChinArray-Himalaya, 2011). The measurements of receiver function HV ratio reveals the lateral variation of the tectonics in of the study region. And main features of the velocity structure imagined by the new joint inversion method are consistent with previous studies. KEYWORDS: receiver function HV ratio, receiver function waveform inversion, crustal structure ReferenceChinArray-Himalaya. 2011. China Seismic Array waveform data of Himalaya Project. Institute of Geophysics, China Earthquake Administration. doi:10.12001/ChinArray.Data. Himalaya. Jiajun Chong, Risheng Chu*, Sidao Ni, Qingjun Meng, Aizhi Guo, 2017. Receiver Function HV Ratio, a New Measurement for Reducing Non-uniqueness of Receiver Function Waveform Inversion. (under revision)

  19. Probing Behavior of Dichelops furcatus (F.) (Heteroptera: Pentatomidae) on Wheat Plants Characterized by Electropenetrography (EPG) and Histological Studies

    PubMed Central

    Lucini, Tiago

    2017-01-01

    The stink bug Dichelops furcatus (F.) (Heteroptera: Pentatomidae) has increased in abundance in recent years on the wheat, Triticum aestivum L., crop cultivated in the southern region of Brazil. To investigate the probing (stylet penetration) behaviors and nonprobing behaviors of D. furcatus on wheat plants, the electrical penetration graph or electropenetrography (EPG) technique was applied. Nine EPG waveforms (types/subtypes) were identified and described on stem and on ear head of wheat plants, as follows: Z, Np, Df1a, Df1b, Df2, Df3a, Df3b, Df4a, and Df4b. For the waveforms Df1, Df2, Df3, and Df4, stylets were severed to determine, via histological studies, the location of the stylet tip and/or salivary sheath tip in plant tissue. Waveform Z was visually correlated with the bug standing still on the plant surface, whereas during Np the bug was walking. Df1a and Df1b represent initial stylet insertion, deep penetration of the stylets into the plant tissue, and secretion of salivary sheath. Df2 represents xylem sap ingestion on stem and on ear head. Waveforms Df3a and Df4a were related to the cell rupturing feeding strategy (laceration and maceration tactics) on stem and on ear head (seed endosperm), respectively. Waveforms Df3b and Df4b represent ingestion of cellular contents derived from cell rupturing activities on stem and on ear head (seed endosperm), respectively. With this fundamental knowledge in hand, future studies can use EPG to develop novel pest management solutions. PMID:28931161

  20. Resolving the detailed spatiotemporal slip evolution of deep tremor in western Japan

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Ide, S.

    2017-12-01

    A quantitative evaluation of the slip evolution of tremor is essential to understand the generation mechanism of slow earthquakes. The recent studies have revealed the most part of tremor signals can be expressed as the superposition of low frequency earthquakes (LFE). However, it is still challenging to explain the entire waveforms of tremor, because a conventional slip inversion analysis is not available for tremor due to insufficient knowledge of source locations and Green's functions. Here we investigate the detailed spatiotemporal behavior of deep tremor in western Japan through the development and application of a new slip inversion method. We introduce synthetic template waveforms, which are typical tremor waveforms obtained by stacking LFE seismograms at arranged points along the plate interface. Using these synthetic template waveforms as substitutes for Green's functions, we invert the continuous tremor waveforms using an iterative deconvolution approach with Bayesian constraints. We apply this method to two tremor burst episodes in western and central Shikoku, Japan. The estimated slip distribution from a 12-day tremor burst episode in western Shikoku is heterogeneous, with several patchy areas of slip along the plate interface where rapid moment releases with durations of <100 s regularly occur. We attribute these heterogeneous spatiotemporal slip patterns to heterogeneous material properties along the plate interface. For central Shikoku, where we focus on a tremor burst episode that occurred coincidentally with a very low frequency earthquake (VLF), we observe that the source size of the VLF is much larger than that estimated from tremor activity in western Shikoku. These differences in the size of the slip region may dictate the visibility of VLF signals in observed seismograms, which has implications for the mechanics of slow earthquakes and subduction zone processes.

  1. Moment Inversion of the DPRK Nuclear Tests Using Finite-Difference Three-dimensional Strain Green's Tensors

    NASA Astrophysics Data System (ADS)

    Bao, X.; Shen, Y.; Wang, N.

    2017-12-01

    Accurate estimation of the source moment is important for discriminating underground explosions from earthquakes and other seismic sources. In this study, we invert for the full moment tensors of the recent seismic events (since 2016) at the Democratic People's Republic of Korea (PRRK) Punggye-ri test site. We use waveform data from broadband seismic stations located in China, Korea, and Japan in the inversion. Using a non-staggered-grid, finite-difference algorithm, we calculate the strain Green's tensors (SGT) based on one-dimensional (1D) and three-dimensional (3D) Earth models. Taking advantage of the source-receiver reciprocity, a SGT database pre-calculated and stored for the Punggye-ri test site is used in inversion for the source mechanism of each event. With the source locations estimated from cross-correlation using regional Pn and Pn-coda waveforms, we obtain the optimal source mechanism that best fits synthetics to the observed waveforms of both body and surface waves. The moment solutions of the first three events (2016-01-06, 2016-09-09, and 2017-09-03) show dominant isotropic components, as expected from explosions, though there are also notable non-isotropic components. The last event ( 8 minutes after the mb6.3 explosion in 2017) contained mainly implosive component, suggesting a collapse following the explosion. The solutions from the 3D model can better fit observed waveforms than the corresponding solutions from the 1D model. The uncertainty in the resulting moment solution is influenced by heterogeneities not resolved by the Earth model according to the waveform misfit. Using the moment solutions, we predict the peak ground acceleration at the Punggye-ri test site and compare the prediction with corresponding InSAR and other satellite images.

  2. Perception of stochastically undersampled sound waveforms: a model of auditory deafferentation

    PubMed Central

    Lopez-Poveda, Enrique A.; Barrios, Pablo

    2013-01-01

    Auditory deafferentation, or permanent loss of auditory nerve afferent terminals, occurs after noise overexposure and aging and may accompany many forms of hearing loss. It could cause significant auditory impairment but is undetected by regular clinical tests and so its effects on perception are poorly understood. Here, we hypothesize and test a neural mechanism by which deafferentation could deteriorate perception. The basic idea is that the spike train produced by each auditory afferent resembles a stochastically digitized version of the sound waveform and that the quality of the waveform representation in the whole nerve depends on the number of aggregated spike trains or auditory afferents. We reason that because spikes occur stochastically in time with a higher probability for high- than for low-intensity sounds, more afferents would be required for the nerve to faithfully encode high-frequency or low-intensity waveform features than low-frequency or high-intensity features. Deafferentation would thus degrade the encoding of these features. We further reason that due to the stochastic nature of nerve firing, the degradation would be greater in noise than in quiet. This hypothesis is tested using a vocoder. Sounds were filtered through ten adjacent frequency bands. For the signal in each band, multiple stochastically subsampled copies were obtained to roughly mimic different stochastic representations of that signal conveyed by different auditory afferents innervating a given cochlear region. These copies were then aggregated to obtain an acoustic stimulus. Tone detection and speech identification tests were performed by young, normal-hearing listeners using different numbers of stochastic samplers per frequency band in the vocoder. Results support the hypothesis that stochastic undersampling of the sound waveform, inspired by deafferentation, impairs speech perception in noise more than in quiet, consistent with auditory aging effects. PMID:23882176

  3. ASDF - A Modern Data Format for Seismology

    NASA Astrophysics Data System (ADS)

    Krischer, Lion; Smith, James; Lei, Wenjie; Lefebvre, Matthieu; Ruan, Youyi; Sales de Andrade, Elliot; Podhorszki, Norbert; Bozdag, Ebru; Tromp, Jeroen

    2017-04-01

    Seismology as a science is driven by observing and understanding data and it is thus vital to make this as easy and accessible as possible. The growing volume of freely available data coupled with ever expanding computational power enables scientists to take on new and bigger problems. This evolution is to some part hindered as existing data formats have not been designed with it in mind. We present ASDF (http://seismic-data.org), the Adaptable Seismic Data Format, a novel, modern, and especially practical data format for all branches of seismology with particular focus on how it is incorporated into seismic full waveform inversion workflows. The format aims to solve five key issues: Efficiency: Fast I/O operations especially in high performance computing environments, especially limiting the total number of files. Data organization: Different types of data are needed for a variety of tasks. This results in ad hoc data organization and formats that are hard to maintain, integrate, reproduce, and exchange. Data exchange: We want to exchange complex and complete data sets. Reproducibility: Oftentimes just not existing but crucial to advance our science. Mining, visualization, and understanding of data: As data volumes grow, more complex, new techniques to query and visualize large datasets are needed. ASDF tackles these by defining a structure on top of HDF5 reusing as many existing standards (QuakeML, StationXML, PROV) as possible. An essential trait of ASDF is that it empowers the construction of completely self-describing data sets including waveform, station, and event data together with non-waveform data and a provenance description of everything. This for example for the first time enables the proper archival and exchange of processed or synthetic waveforms. To aid community adoption we developed mature tools in Python as well as in C and Fortran. Additionally we provide a formal definition of the format, a validation tool, and integration into widely used tools like ObsPy (http://obspy.org), SPECFEM GLOBE (https://geodynamics.org/cig/software/specfem3d_globe/), and Salvus (http://salvus.io).

  4. Laboratory imaging of hydraulic fractures using microseismicity

    NASA Astrophysics Data System (ADS)

    Zeng, Zhengwen

    2002-09-01

    This dissertation starts with an investigation of the industry's needs for future research and development of hydraulic fracturing (HF) technology. Based on the investigation results of a questionnaire answered by some industrial experts, it was found that reliable hydraulic fracturing diagnostic techniques are in need. Further critical review showed that the microseismic method was one of the most promising techniques that needed further development. Developing robust algorithms and software for locating the coordinates of hydraulic fracturing-induced microseismic events, and for simulating the first motion of the induced waveforms were central tasks for this research. In addition, initiation and propagation characteristics of asymmetrical hydraulic fractures were investigated; a recent discovered tight gas sandstone was systematically characterized; a method for measuring Mode-I fracture toughness was upgraded; and the packer influence on the initiation of asymmetrical fractures was numerically simulated. By completing this research, the following contributions have been made: (1) Development of a simplex-based microseismic LOCATION program. This program overcame the shortcoming of ill-conditioning-prone conditions encountered in conventional location programs. (2) Development of a variance-based computer program, ArrTime, to automatically search the first arrival times from the full waveform data points. (3) Development of the first motion simulator of the induced microseismic waveforms. Using this program, the first motion waveform amplitude in any direction at any location induced from seismic sources at an arbitrary location in a known fracturing mode can be calculated. (4) Complete characterization of a newly discovered tight gas formation, the Jackfork sandstone. (5) Upgrade of a core sample-based method for the measurement of fracture toughness. Mode-I fracture toughness of common core samples in any direction can be measured using this method. (6) Discern of the packer influence on HF initiation. It is numerically shown that a properly functioning packer would transfer tensile stress concentrations from the sealed ends to the borehole wall in the maximum principal stress direction. In contrast, a malfunctioning packer would induce tensile stress concentrations at the sealed ends that, in turn, induces transverse fractures. (7) Image of dynamics of the asymmetrical hydraulic fracture initiation and propagation.

  5. Near-Melting Condition of the Inner Core Boundary Revealed from Antipodal Seismic Waves

    NASA Astrophysics Data System (ADS)

    Cormier, V. F.; Attanayake, J.; de Silva, S. M. S.; Miller, M. S.; Thomas, C.

    2014-12-01

    First-principles calculations1 have suggested that the inner core's low shear velocity (3.5 km/sec) is a consequence of its temperature being very close to its melting temperature throughout its volume. Near the inner core's freezing or melting boundary, the shear modulus could possibly approach zero. A test of this is made from observations of the amplitude of PKIIKP waves at antipodal (>175o) ranges. These underside reflections are very sensitive to the S velocity beneath the inner core boundary due to energy subtracted from PKIIKP by converted S energy. This sensitivity is exploited by modeling PKIIKP waveforms observed by a transportable array in Morocco, which recorded many high-quality antipodal waveforms from Tonga. Differences in the in the sampling of the upper inner core between PKIIKP arriving from the short (<180o) and long (>180o) distances make it feasible to investigate lateral differences in the elastic and anelastic states of uppermost inner core from the amplitude and frequency content of the waveforms. In computational experiments, we show that a zero or small shear modulus in the uppermost inner core is the most effective way of matching large amplitude PKIIKP's observed from antipodal paths from Tonga to Morocco. The correlation of this bright spot in the PKIIKP reflection with a thin zone of low P velocity identified from multi-pathed PKIKP waves sampling a portion of the equatorial eastern hemisphere2suggests that at least this region of the inner core is near its melting temperature. Waveform modeling of PKIKP and PKIIKP from the combined effects of viscoelasticity and forward scattering is performed to determine whether this region of low shear modulus is consistent with freezing or melting. 1Martorell, B., L. Vocadlo, J.P. Brodholt, and I.G.Wood, (2013) Science, 342 (6157), doi: 10.1126/science.1243651. 2Stroujkova, A., and V.F. Cormier (2004), J. Geophys. Res., 109(B10), doi:10.1029/2004JB002976.

  6. Shear velocity and intrinsic Q structure of the shallow crust in southeastern New England from Rg wave dispersion

    NASA Astrophysics Data System (ADS)

    Saikia, Chandan K.; Kafka, Alan L.; Gnewuch, Scott C.; McTigue, John W.

    1990-06-01

    In this study, we analyzed 0.5-2.0 s period Rayleigh waves (Rg) generated by quarry and construction blasting in southern New England (CNE). We investigated group velocity dispersion and attenuation of the observed Rg waves. The paths crossing the Hartford Rift basin (HRB) show an obvious correlation between geology and Rg dispersion. The entire region in the southeastern New England comprising a wide range of geological structures and rock types from the Bronson Hill Anticlinorium to the Avalonian Terrane can be represented as one dispersion region. Therefore the relationship between lateral changes in geologic structures mapped on the surface and Rg dispersion is not as straightforward as might be expected for a best fitting flat-layered model of the shallow crust. The shear wave velocities appear to vary between 2.55 and 3.63 km/s within the upper 2.5 km except for the central HRB where the variation is between 2.12 and 2.7 km/s. Intrinsic Q structure is considered to be the primary means for the loss of energy in the shallow crust and was analyzed by modelling the waveforms of several of the observed seismograms. For this aspect of our study, we used a modal summation of Rayleigh waves assuming a far-field radiation approximation. The observed seismograms were dominated primarily by contributions from the fundamental mode, but higher modes were also included in the synthesis of the waveform. We were unable to model the absolute amplitudes of the waveforms because of the problems with the instrument calibration. It is clear, however, that to predict correct waveforms, the shear wave Q values in the upper few tenths of a kilometer of the crust must be about an order of magnitude smaller than Q values at the depth of 1-3 km which is of order of 100-250.

  7. Depths of Intraplate Indian Ocean Earthquakes from Waveform Modeling

    NASA Astrophysics Data System (ADS)

    Baca, A. J.; Polet, J.

    2014-12-01

    The Indian Ocean is a region of complex tectonics and anomalous seismicity. The ocean floor in this region exhibits many bathymetric features, most notably the multiple inactive fracture zones within the Wharton Basin and the Ninetyeast Ridge. The 11 April 2012 MW 8.7 and 8.2 strike-slip events that took place in this area are unique because their rupture appears to have extended to a depth where brittle failure, and thus seismic activity, was considered to be impossible. We analyze multiple intraplate earthquakes that have occurred throughout the Indian Ocean to better constrain their focal depths in order to enhance our understanding of how deep intraplate events are occurring and more importantly determine if the ruptures are originating within a ductile regime. Selected events are located within the Indian Ocean away from major plate boundaries. A majority are within the deforming Indo-Australian tectonic plate. Events primarily display thrust mechanisms with some strike-slip or a combination of the two. All events are between MW5.5-6.5. Event selections were handled this way in order to facilitate the analysis of teleseismic waveforms using a point source approximation. From these criteria we gathered a suite of 15 intraplate events. Synthetic seismograms of direct P-waves and depth phases are computed using a 1-D propagator matrix approach and compared with global teleseismic waveform data to determine a best depth for each event. To generate our synthetic seismograms we utilized the CRUST1.0 software, a global crustal model that generates velocity values at the hypocenter of our events. Our waveform analysis results reveal that our depths diverge from the Global Centroid Moment Tensor (GCMT) depths, which underestimate our deep lithosphere events and overestimate our shallow depths by as much as 17 km. We determined a depth of 45km for our deepest event. We will show a comparison of our final earthquake depths with the lithospheric thickness based on halfspace cooling models and the local plate age.

  8. Inner core boundary topography explored with reflected and diffracted P waves

    NASA Astrophysics Data System (ADS)

    deSilva, Susini; Cormier, Vernon F.; Zheng, Yingcai

    2018-03-01

    The existence of topography of the inner core boundary (ICB) can affect the amplitude, phase, and coda of body waves incident on the inner core. By applying pseudospectral and boundary element methods to synthesize compressional waves interacting with the ICB, these effects are predicted and compared with waveform observations in pre-critical, critical, post-critical, and diffraction ranges of the PKiKP wave reflected from the ICB. These data sample overlapping regions of the inner core beneath the circum-Pacific belt and the Eurasian, North American, and Australian continents, but exclude large areas beneath the Pacific and Indian Oceans and the poles. In the pre-critical range, PKiKP waveforms require an upper bound of 2 km at 1-20 km wavelength for any ICB topography. Higher topography sharply reduces PKiKP amplitude and produces time-extended coda not observed in PKiKP waveforms. The existence of topography of this scale smooths over minima and zeros in the pre-critical ICB reflection coefficient predicted from standard earth models. In the range surrounding critical incidence (108-130 °), this upper bound of topography does not strongly affect the amplitude and waveform behavior of PKIKP + PKiKP at 1.5 Hz, which is relatively insensitive to 10-20 km wavelength topography height approaching 5 km. These data, however, have a strong overlap in the regions of the ICB sampled by pre-critical PKiKP that require a 2 km upper bound to topography height. In the diffracted range (>152°), topography as high as 5 km attenuates the peak amplitudes of PKIKP and PKPCdiff by similar amounts, leaving the PKPCdiff/PKIKP amplitude ratio unchanged from that predicted by a smooth ICB. The observed decay of PKPCdiff into the inner core shadow and the PKIKP-PKPCdiff differential travel time are consistent with a flattening of the outer core P velocity gradient near the ICB and iron enrichment at the bottom of the outer core.

  9. Full-waveform seismic tomography of the Vrancea, Romania, subduction region

    NASA Astrophysics Data System (ADS)

    Baron, Julie; Morelli, Andrea

    2017-12-01

    The Vrancea region is one of the few locations of deep seismicity in Europe. Seismic tomography has been able to map lithospheric downwelling, but has not been able yet to clearly discriminate between competing geodynamic interpretations of the geological and geophysical evidence available. We study the seismic structure of the Vrancea subduction zone, using adjoint-based, full-waveform tomography to map the 3D vP and vS structure in detail. We use the database that was built during the CALIXTO (Carpathian Arc Lithosphere X-Tomography) temporary experiment, restricted to the broadband sensors and local intermediate-depth events. We fit waveforms with a cross-correlation misfit criterion in separate time windows around the expected P and S arrivals, and perform 17 iterations of vP and vS model updates (altogether, requiring about 16 million CPU hours) before reaching stable convergence. Among other features, our resulting model shows a nearly vertical, high-velocity body, that overlaps with the distribution of seismicity in its northeastern part. In its southwestern part, a slab appears to dip less steeply to the NW, and is suggestive of ongoing - or recently concluded - subduction geodynamic processes. Joint inversion for vP and vS allow us to address the vP/vS ratio distribution, that marks high vP/vS in the crust beneath the Focsani sedimentary basin - possibly due to high fluid pressure - and a low vP/vS edge along the lower plane of the subducting lithosphere, that in other similar environment has been attributed to dehydration of serpentine in the slab. In spite of the restricted amount of data available, and limitations on the usable frequency pass-band, full-waveform inversion reveals its potential to improve the general quality of imaging with respect to other tomographic techniques - although at a sensible cost in terms of computing resources. Our study also shows that re-analysis of legacy data sets with up-to-date techniques may bring new, useful, information.

  10. Radiation from a current filament driven by a traveling wave

    NASA Technical Reports Server (NTRS)

    Levine, D. M.; Meneghini, R.

    1976-01-01

    Solutions are presented for the electromagnetic fields radiated by an arbitrarily oriented current filament located above a perfectly conducting ground plane and excited by a traveling current wave. Both an approximate solution, valid in the fraunhofer region of the filament and predicting the radiation terms in the fields, and an exact solution, which predicts both near and far field components of the electromagnetic fields, are presented. Both solutions apply to current waveforms which propagate along the channel but are valid regardless of the actual waveshape. The exact solution is valid only for waves which propagate at the speed of light, and the approximate solution is formulated for arbitrary velocity of propagation. The spectrum-magnitude of the fourier transform-of the radiated fields is computed by assuming a compound exponential model for the current waveform. The effects of channel orientation and length, as well as velocity of propagation of the current waveform and location of the observer, are discussed. It is shown that both velocity of propagation and an effective channel length are important in determining the shape of the spectrum.

  11. Modeling Nonlinear Acoustic Standing Waves in Resonators: Theory and Experiments

    NASA Technical Reports Server (NTRS)

    Raman, Ganesh; Li, Xiaofan; Finkbeiner, Joshua

    2004-01-01

    The overall goal of the cooperative research with NASA Glenn is to fundamentally understand, computationally model, and experimentally validate non-linear acoustic waves in enclosures with the ultimate goal of developing a non-contact acoustic seal. The longer term goal is to transition the Glenn acoustic seal innovation to a prototype sealing device. Lucas and coworkers are credited with pioneering work in Resonant Macrosonic Synthesis (RMS). Several Patents and publications have successfully illustrated the concept of Resonant Macrosonic Synthesis. To utilize this concept in practical application one needs to have an understanding of the details of the phenomenon and a predictive tool that can examine the waveforms produced within resonators of complex shapes. With appropriately shaped resonators one can produce un-shocked waveforms of high amplitude that would result in very high pressures in certain regions. Our goal is to control the waveforms and exploit the high pressures to produce an acoustic seal. Note that shock formation critically limits peak-to-peak pressure amplitudes and also causes excessive energy dissipation. Proper shaping of the resonator is thus critical to the use of this innovation.

  12. Topographic effects on infrasound propagation.

    PubMed

    McKenna, Mihan H; Gibson, Robert G; Walker, Bob E; McKenna, Jason; Winslow, Nathan W; Kofford, Aaron S

    2012-01-01

    Infrasound data were collected using portable arrays in a region of variable terrain elevation to quantify the effects of topography on observed signal amplitude and waveform features at distances less than 25 km from partially contained explosive sources during the Frozen Rock Experiment (FRE) in 2006. Observed infrasound signals varied in amplitude and waveform complexity, indicating propagation effects that are due in part to repeated local maxima and minima in the topography on the scale of the dominant wavelengths of the observed data. Numerical simulations using an empirically derived pressure source function combining published FRE accelerometer data and historical data from Project ESSEX, a time-domain parabolic equation model that accounted for local terrain elevation through terrain-masking, and local meteorological atmospheric profiles were able to explain some but not all of the observed signal features. Specifically, the simulations matched the timing of the observed infrasound signals but underestimated the waveform amplitude observed behind terrain features, suggesting complex scattering and absorption of energy associated with variable topography influences infrasonic energy more than previously observed. © 2012 Acoustical Society of America.

  13. PLATELET ADHESION TO POLYURETHANE UREA UNDER PULSATILE FLOW CONDITIONS

    PubMed Central

    Navitsky, Michael A.; Taylor, Joshua O.; Smith, Alexander B.; Slattery, Margaret J.; Deutsch, Steven; Siedlecki, Christopher A.; Manning, Keefe B.

    2014-01-01

    Platelet adhesion to a polyurethane urea surface is a precursor to thrombus formation within blood-contacting cardiovascular devices, and platelets have been found to adhere strongly to polyurethane surfaces below a shear rate of approximately 500 s−1. The aim of the current work is to determine platelet adhesion properties to the polyurethane urea surface as a function of time varying shear exposure. A rotating disk system is used to study the influence of steady and pulsatile flow conditions (e.g. cardiac inflow and sawtooth waveforms) for platelet adhesion to the biomaterial surface. All experiments retain the same root mean square angular rotation velocity (29.63 rad/s) and waveform period. The disk is rotated in platelet rich bovine plasma for two hours with adhesion quantified by confocal microscopy measurements of immunofluorescently labeled bovine platelets. Platelet adhesion under pulsating flow is found to exponentially decay with increasing shear rate. Adhesion levels are found to depend upon peak platelet flux and shear rate regardless of rotational waveform. In combination with flow measurements, these results may be useful for predicting regions susceptible to thrombus formation within ventricular assist devices. PMID:24721222

  14. Harmonic arbitrary waveform generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Brock Franklin

    2017-11-28

    High frequency arbitrary waveforms have applications in radar, communications, medical imaging, therapy, electronic warfare, and charged particle acceleration and control. State of the art arbitrary waveform generators are limited in the frequency they can operate by the speed of the Digital to Analog converters that directly create their arbitrary waveforms. The architecture of the Harmonic Arbitrary Waveform Generator allows the phase and amplitude of the high frequency content of waveforms to be controlled without taxing the Digital to Analog converters that control them. The Harmonic Arbitrary Waveform Generator converts a high frequency input, into a precision, adjustable, high frequency arbitrarymore » waveform.« less

  15. Frequency-domain gravitational waveform models for inspiraling binary neutron stars

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kyohei; Kiuchi, Kenta; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Shibata, Masaru; Taniguchi, Keisuke

    2018-02-01

    We develop a model for frequency-domain gravitational waveforms from inspiraling binary neutron stars. Our waveform model is calibrated by comparison with hybrid waveforms constructed from our latest high-precision numerical-relativity waveforms and the SEOBNRv2T waveforms in the frequency range of 10-1000 Hz. We show that the phase difference between our waveform model and the hybrid waveforms is always smaller than 0.1 rad for the binary tidal deformability Λ ˜ in the range 300 ≲Λ ˜ ≲1900 and for a mass ratio between 0.73 and 1. We show that, for 10-1000 Hz, the distinguishability for the signal-to-noise ratio ≲50 and the mismatch between our waveform model and the hybrid waveforms are always smaller than 0.25 and 1.1 ×10-5 , respectively. The systematic error of our waveform model in the measurement of Λ ˜ is always smaller than 20 with respect to the hybrid waveforms for 300 ≲Λ ˜≲1900 . The statistical error in the measurement of binary parameters is computed employing our waveform model, and we obtain results consistent with the previous studies. We show that the systematic error of our waveform model is always smaller than 20% (typically smaller than 10%) of the statistical error for events with a signal-to-noise ratio of 50.

  16. Electrochemical sensing using comparison of voltage-current time differential values during waveform generation and detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay

    2018-01-02

    A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms.more » The processor also outputs the determined value.« less

  17. Seismic Structure of India from Regional Waveform Matching

    NASA Astrophysics Data System (ADS)

    Gaur, V.; Maggi, A.; Priestley, K.; Rai, S.

    2003-12-01

    We use a neighborhood adaptive grid search procedure and reflectivity synthetics to model regional distance range (500-2000~km) seismograms recorded in India and to determine the variation in the crust and uppermost mantle structure across the subcontinent. The portions of the regional waveform which are most influenced by the crust and uppermost mantle structure are the 10-100~s period Pnl and fundamental mode surface waves. We use the adaptive grid search algorithm to match both portions of the seismogram simultaneously. This procedure results in a family of 1-D path average crust and upper mantle velocity and attenuation models whose propagation characteristics closely match those of the real Earth. Our data set currently consist of ˜20 seismograms whose propagation paths are primarily confined to the Ganges Basin in north India and the East Dharwar Craton of south India. The East Dharwar Craton has a simple and uniform structure consisting of a 36+/-2 km thick two layer crust, and an uppermost mantle with a sub-Moho velocity of 4.5~km/s. The structure of northern India is more complicated, with pronounced low velocities in the upper crustal layer due to the large sediment thicknesses in the Ganges basin.

  18. Anisotropic Rayleigh-wave Phase-velocity Maps in Northern Vietnam

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Legendre, C. P.; Huang, W.; Huang, B.

    2013-12-01

    Northern Vietnam is the location of both the Song Ma Complex, the suture between the Indochina and South China Blocks, and the southern end of the giant Red River Shear Zone. Lithospheric structure provides important clues to the evolutions of the tectonic boundary zone and the interaction between the Indochina and South China Blocks. During 2006-2008, an array of 24 broadband stations were deployed in northern Vietnam in a collaborative project between the Institute of Geophysics of the Vietnam Academy of Science and Technology and the Institute of Earth Sciences of Academic Sinica in Taiwan. In this study, we use Rayleigh waveforms recorded at those stations from globally distributed earthquakes to construct the regional isotropic and azimuthally anisotropic phase velocity maps. Rayleigh-wave dispersion curves in the period range of 10-200 sec are obtained manually by the two-station method using vertical-component broadband waveforms. The dispersion curves along the densely distributed crossing paths are inverted via the LSQR algorithm for the isotropic and azimuthally anisotropic phase-velocity maps at a number of periods. Results will be compared with previous studies in this region based on body-wave traveltimes, SKS splitting observations and receiver functions, and with the tectonic features observed in the region.

  19. Phased Array Approach To Retrieve Gases, Liquids, Or Solids From Subsurface And Subaqueous Geologic Or Man-Made Formations

    DOEpatents

    Rynne, Timothy M.; Spadaro, John F.; Iovenitti, Joe L.; Dering, John P.; Hill, Donald G.

    1998-10-27

    A method of enhancing the remediation of contaminated soils and ground water, production of oil and gas, and production of any solid, gas, and/or liquid from subsurface geologic and man-made formations including the steps of estimating the geometric boundaries of the region containing the material to be recovered, drilling a recovery well(s) into subsurface in a strategic location to recover the material of interest, establishing multiple sources of acoustical power in an array about and spaced-apart from the surface or at various depths below the surface in a borehole(s) and/or well(s), directing a volume of acoustical excitation from the sources into the region containing the material to be recovered, the excitation in the form of either controllable sinusoidal, square, pulsed, or various combinations of these three waveforms, and controlling the phasing, frequency, power, duration, and direction of these waveforms from the sources to increase and control the intensity of acoustical excitation in the region of the material to be recovered to enhance. the recovery of said material from the recovery well(s). The invention will augment any technology affecting the removal of materials from the subsurface.

  20. Decomposition Techniques for Icesat/glas Full-Waveform Data

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Gao, X.; Li, G.; Chen, J.

    2018-04-01

    The geoscience laser altimeter system (GLAS) on the board Ice, Cloud, and land Elevation Satellite (ICESat), is the first long-duration space borne full-waveform LiDAR for measuring the topography of the ice shelf and temporal variation, cloud and atmospheric characteristics. In order to extract the characteristic parameters of the waveform, the key step is to process the full waveform data. In this paper, the modified waveform decomposition method is proposed to extract the echo components from full-waveform. First, the initial parameter estimation is implemented through data preprocessing and waveform detection. Next, the waveform fitting is demonstrated using the Levenberg-Marquard (LM) optimization method. The results show that the modified waveform decomposition method can effectively extract the overlapped echo components and missing echo components compared with the results from GLA14 product. The echo components can also be extracted from the complex waveforms.

  1. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2017-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  2. System and Method for Generating a Frequency Modulated Linear Laser Waveform

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F. (Inventor); Petway, Larry B. (Inventor); Amzajerdian, Farzin (Inventor); Barnes, Bruce W. (Inventor); Lockard, George E. (Inventor); Hines, Glenn D. (Inventor)

    2014-01-01

    A system for generating a frequency modulated linear laser waveform includes a single frequency laser generator to produce a laser output signal. An electro-optical modulator modulates the frequency of the laser output signal to define a linear triangular waveform. An optical circulator passes the linear triangular waveform to a band-pass optical filter to filter out harmonic frequencies created in the waveform during modulation of the laser output signal, to define a pure filtered modulated waveform having a very narrow bandwidth. The optical circulator receives the pure filtered modulated laser waveform and transmits the modulated laser waveform to a target.

  3. Accuracy and precision of gravitational-wave models of inspiraling neutron star-black hole binaries with spin: Comparison with matter-free numerical relativity in the low-frequency regime

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Brown, Duncan A.; Lovelace, Geoffrey; Scheel, Mark A.; Szilágyi, Béla

    2015-11-01

    Coalescing binaries of neutron stars and black holes are one of the most important sources of gravitational waves for the upcoming network of ground-based detectors. Detection and extraction of astrophysical information from gravitational-wave signals requires accurate waveform models. The effective-one-body and other phenomenological models interpolate between analytic results and numerical relativity simulations, that typically span O (10 ) orbits before coalescence. In this paper we study the faithfulness of these models for neutron star-black hole binaries. We investigate their accuracy using new numerical relativity (NR) simulations that span 36-88 orbits, with mass ratios q and black hole spins χBH of (q ,χBH)=(7 ,±0.4 ),(7 ,±0.6 ) , and (5 ,-0.9 ). These simulations were performed treating the neutron star as a low-mass black hole, ignoring its matter effects. We find that (i) the recently published SEOBNRv1 and SEOBNRv2 models of the effective-one-body family disagree with each other (mismatches of a few percent) for black hole spins χBH≥0.5 or χBH≤-0.3 , with waveform mismatch accumulating during early inspiral; (ii) comparison with numerical waveforms indicates that this disagreement is due to phasing errors of SEOBNRv1, with SEOBNRv2 in good agreement with all of our simulations; (iii) phenomenological waveforms agree with SEOBNRv2 only for comparable-mass low-spin binaries, with overlaps below 0.7 elsewhere in the neutron star-black hole binary parameter space; (iv) comparison with numerical waveforms shows that most of this model's dephasing accumulates near the frequency interval where it switches to a phenomenological phasing prescription; and finally (v) both SEOBNR and post-Newtonian models are effectual for neutron star-black hole systems, but post-Newtonian waveforms will give a significant bias in parameter recovery. Our results suggest that future gravitational-wave detection searches and parameter estimation efforts would benefit from using SEOBNRv2 waveform templates when focused on neutron star-black hole systems with q ≲7 and χBH≈[-0.9 ,+0.6 ] . For larger black hole spins and/or binary mass ratios, we recommend the models be further investigated as NR simulations in that region of the parameter space become available.

  4. Towards seismic waveform inversion of long-offset Ocean-Bottom Seismic data for deep crustal imaging offshore Western Australia

    NASA Astrophysics Data System (ADS)

    Monnier, S.; Lumley, D. E.; Kamei, R.; Goncharov, A.; Shragge, J. C.

    2016-12-01

    Ocean Bottom Seismic datasets have become increasingly used in recent years to develop high-resolution, wavelength-scale P-wave velocity models of the lithosphere from waveform inversion, due to their recording of long-offset transmitted phases. New OBS surveys evolve towards novel acquisition geometries involving longer offsets (several hundreds of km), broader frequency content (1-100 Hz), while receiver sampling often remains sparse (several km). Therefore, it is critical to assess the effects of such geometries on the eventual success and resolution of waveform inversion velocity models. In this study, we investigate the feasibility of waveform inversion on the Bart 2D OBS profile acquired offshore Western Australia, to investigate regional crustal and Moho structures. The dataset features 14 broadband seismometers (0.01-100 Hz) from AuScope's national OBS fleet, offsets in excess of 280 km, and a sparse receiver sampling (18 km). We perform our analysis in four stages: (1) field data analysis, (2) 2D P-wave velocity model building, synthetic data (3) modelling, and (4) waveform inversion. Data exploration shows high-quality active-source signal down to 2Hz, and usable first arrivals to offsets greater than 100 km. The background velocity model is constructed by combining crustal and Moho information in continental reference models (e.g., AuSREM, AusMoho). These low-resolution studies suggest a crustal thickness of 20-25 km along our seismic line and constitute a starting point for synthetic modelling and inversion. We perform synthetic 2D time-domain modelling to: (1) evaluate the misfit between synthetic and field data within the usable frequency band (2-10 Hz); (2) validate our velocity model; and (3) observe the effects of sparse OBS interval on data quality. Finally, we apply 2D acoustic frequency-domain waveform inversion to the synthetic data to generate velocity model updates. The inverted model is compared to the reference model to investigate the improved crustal resolution and Moho boundary delineation that could be realized using waveform inversion, and to evaluate the effects of the acquisition parameters. The inversion strategies developed through the synthetic tests will help the subsequent inversion of sparse, long-offset OBS field data.

  5. Comparison of Discrete-return ranging and Full-waveform digitization for Bathymetric Lidar Mapping of a Shallow Water Bay

    NASA Astrophysics Data System (ADS)

    Starek, M. J.; Fernandez-diaz, J.; Pan, Z.; Glennie, C. L.; Shrestha, R. L.; Gibeaut, J. C.; Singhania, A.

    2013-12-01

    Researchers with the National Center for Airborne Laser Mapping (NCALM) at the University of Houston (UH) and the Coastal and Marine Geospatial Sciences Lab (CMGL) of the Harte Research Institute at Texas A&M University-Corpus Christi conducted a coordinated airborne and field-based survey of the Redfish Bay State Scientific Area to investigate the capabilities of shallow water bathymetric lidar for benthic mapping. Redfish Bay, located along the middle Texas coast of the Gulf of Mexico, is a state scientific area designated for the purposes of protecting and studying the native seagrasses. The mapped region is very shallow (< 1 m in most locations) and consists of a variety of benthic cover including sandy bottom, oyster reef, subaqueous vegetation, and submerged structures. For this survey, UH acquired high resolution (2.5 shots per square meter) bathymetry data using their new Optech Aquarius 532 nm green lidar. The field survey conducted by CMGL used an airboat to collect in-situ radiometer measurements, GPS position, depth, and ground-truth data of benthic type at over 80 locations within the bay. The return signal of an Aquarius lidar pulse is analyzed in real time by a hardware-based constant fraction discriminator (CFD) to detect returns from the surface and determine ranges (x,y,z points). This approach is commonly called discrete-return ranging, and Aquarius can record up to 4 returns per an emitted laser pulse. In contrast, full-waveform digitization records the incoming energy of an emitted pulse by sampling it at very high-frequency. Post-processing algorithms can then be applied to detect returns (ranges) from the digitized waveform. For this survey, a waveform digitizer was simultaneously operated to record the return waveforms at a rate of 1GHz with 12 bit dynamic range. High-resolution digital elevation models (DEMs) of the topo-bathymetry were derived from the discrete-return and full-waveform data to evaluate the relative and absolute accuracy using the collected ground-truth data. Results of this evaluation will be presented including an overview of the method used to extract peaks from the waveform data. Potential advantages and disadvantages of the different ranging modes in terms of observed accuracy, increased processing load, and information gain will also be discussed.

  6. Determination of Dimensionless Attenuation Coefficient in Shaped Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2003-01-01

    The value of dimensionless attenuation coefficient is an important factor when numerically predicting high-amplitude acoustic waves in shaped resonators. Both the magnitude of the pressure waveform and the quality factor rely heavily on this dimensionless parameter. Previous authors have stated the values used, but have not completely explained their methods. This work fully describes the methodology used to determine this important parameter. Over a range of frequencies encompassing the fundamental resonance, the pressure waves were experimentally measured at each end of the shaped resonators. At the corresponding dimensionless acceleration, the numerical code modeled the acoustic waveforms generated in the resonator using various dimensionless attenuation coefficients. The dimensionless attenuation coefficient that most closely matched the pressure amplitudes and quality factors of the experimental and numerical results was determined to be the value to be used in subsequent studies.

  7. Laser beam pulse formatting method

    DOEpatents

    Daly, Thomas P.; Moses, Edward I.; Patterson, Ralph W.; Sawicki, Richard H.

    1994-01-01

    A method for formatting a laser beam pulse (20) using one or more delay loops (10). The delay loops (10) have a partially reflective beam splitter (12) and a plurality of highly reflective mirrors (14) arranged such that the laser beam pulse (20) enters into the delay loop (10) through the beam splitter (12) and circulates therein along a delay loop length (24) defined by the mirrors (14). As the laser beam pulse (20) circulates within the delay loop (10) a portion thereof is emitted upon each completed circuit when the laser beam pulse (20) strikes the beam splitter (12). The laser beam pulse (20) is thereby formatted into a plurality of sub-pulses (50, 52, 54 and 56). The delay loops (10) are used in combination to produce complex waveforms by combining the sub-pulses (50, 52, 54 and 56) using additive waveform synthesis.

  8. JTRS/SCA and Custom/SDR Waveform Comparison

    NASA Technical Reports Server (NTRS)

    Oldham, Daniel R.; Scardelletti, Maximilian C.

    2007-01-01

    This paper compares two waveform implementations generating the same RF signal using the same SDR development system. Both waveforms implement a satellite modem using QPSK modulation at 1M BPS data rates with one half rate convolutional encoding. Both waveforms are partitioned the same across the general purpose processor (GPP) and the field programmable gate array (FPGA). Both waveforms implement the same equivalent set of radio functions on the GPP and FPGA. The GPP implements the majority of the radio functions and the FPGA implements the final digital RF modulator stage. One waveform is implemented directly on the SDR development system and the second waveform is implemented using the JTRS/SCA model. This paper contrasts the amount of resources to implement both waveforms and demonstrates the importance of waveform partitioning across the SDR development system.

  9. Seismic source models for very-long period seismic signals on White Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Jiwani-Brown, Elliot; Neuberg, Jurgen; Jolly, Art

    2015-04-01

    Very-long-period seismic signals (VLP) from White Island have a duration of only a few tens of seconds and a waveform that indicates an elastic (or viscoelastic) interaction of a source region with the surrounding medium; unlike VLP signals on some other volcanoes that indicate a step function recorded in the near field of the seismic source, White Island VLPs exhibit a Ricker waveform. We explore a set of isotropic, seismic source models based on the interaction between magma and water/brine in direct contact. Seismic amplitude measurements are taken into account to estimate the volume changes at depth that can produce the observed displacement at the surface. Furthermore, the influence of different fluid types are explored.

  10. The effect of gauge conditions on waveforms from binary black hole coalescence

    NASA Astrophysics Data System (ADS)

    Bentivegna, Eloisa; Laguna, Pablo; Shoemaker, Deirdre

    2006-11-01

    Over the past year and a half, a number of groups have produced stable runs of a binary black hole system evolving through merger and ringdown. In [2][3], in particular, the tremendous speedup to the field was driven by special sets of gauge evolution equations, capable of handling several issues that have traditionally plagued black hole simulations: avoiding the singularity, guaranteeing a constraint satisfying solution at least in the exterior region, and advecting the holes through the numerical grid. Since several successful recipes have already been proposed, the goal of this study is to review them and analyze the consistency of the published results. A preliminary comparison of the waveform outcome of each different gauge prescription is presented.

  11. Nonexistence of exact solutions agreeing with the Gaussian beam on the beam axis or in the focal plane

    NASA Astrophysics Data System (ADS)

    Lekner, John; Andrejic, Petar

    2018-01-01

    Solutions of the Helmholtz equation which describe electromagnetic beams (and also acoustic or particle beams) are discussed. We show that an exact solution which reproduces the Gaussian beam waveform on the beam axis does not exist. This is surprising, since the Gaussian beam is a solution of the paraxial equation, and thus supposedly accurate on and near the beam axis. Likewise, a solution of the Helmholtz equation which exactly reproduces the Gaussian beam in the focal plane does not exist. We show that the last statement also holds for Bessel-Gauss beams. However, solutions of the Helmholtz equation (one of which is discussed in detail) can approximate the Gaussian waveform within the central focal region.

  12. Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river

    USGS Publications Warehouse

    Kinzel, P.J.; Wright, C.W.; Nelson, J.M.; Burman, A.R.

    2007-01-01

    Reaches of a shallow (<1.0m), braided, sand-bedded river were surveyed in 2002 and 2005 with the National Aeronautics and Space Administration's Experimental Advanced Airborne Research LiDAR (EAARL) and concurrently with conventional survey-grade, real-time kinematic, global positioning system technology. The laser pulses transmitted by the EAARL instrument and the return backscatter waveforms from exposed sand and submerged sand targets in the river were completely digitized and stored for postflight processing. The vertical mapping accuracy of the EAARL was evaluated by comparing the ellipsoidal heights computed from ranging measurements made using an EAARL terrestrial algorithm to nearby (<0.5m apart) ground-truth ellipsoidal heights. After correcting for apparent systematic bias in the surveys, the root mean square error of these heights with the terrestrial algorithm in the 2002 survey was 0.11m for the 26 measurements taken on exposed sand and 0.18m for the 59 measurements taken on submerged sand. In the 2005 survey, the root mean square error was 0.18m for 92 measurements taken on exposed sand and 0.24m for 434 measurements on submerged sand. In submerged areas the waveforms were complicated by reflections from the surface, water column entrained turbidity, and potentially the riverbed. When applied to these waveforms, especially in depths greater than 0.4m, the terrestrial algorithm calculated the range above the riverbed. A bathymetric algorithm has been developed to approximate the position of the riverbed in these convolved waveforms and preliminary results are encouraging. ?? 2007 ASCE.

  13. Detecting earthquakes over a seismic network using single-station similarity measures

    NASA Astrophysics Data System (ADS)

    Bergen, Karianne J.; Beroza, Gregory C.

    2018-06-01

    New blind waveform-similarity-based detection methods, such as Fingerprint and Similarity Thresholding (FAST), have shown promise for detecting weak signals in long-duration, continuous waveform data. While blind detectors are capable of identifying similar or repeating waveforms without templates, they can also be susceptible to false detections due to local correlated noise. In this work, we present a set of three new methods that allow us to extend single-station similarity-based detection over a seismic network; event-pair extraction, pairwise pseudo-association, and event resolution complete a post-processing pipeline that combines single-station similarity measures (e.g. FAST sparse similarity matrix) from each station in a network into a list of candidate events. The core technique, pairwise pseudo-association, leverages the pairwise structure of event detections in its network detection model, which allows it to identify events observed at multiple stations in the network without modeling the expected moveout. Though our approach is general, we apply it to extend FAST over a sparse seismic network. We demonstrate that our network-based extension of FAST is both sensitive and maintains a low false detection rate. As a test case, we apply our approach to 2 weeks of continuous waveform data from five stations during the foreshock sequence prior to the 2014 Mw 8.2 Iquique earthquake. Our method identifies nearly five times as many events as the local seismicity catalogue (including 95 per cent of the catalogue events), and less than 1 per cent of these candidate events are false detections.

  14. Duration of Tsunami Generation Longer than Duration of Seismic Wave Generation in the 2011 Mw 9.0 Tohoku-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Fujihara, S.; Korenaga, M.; Kawaji, K.; Akiyama, S.

    2013-12-01

    We try to compare and evaluate the nature of tsunami generation and seismic wave generation in occurrence of the 2011 Tohoku-Oki earthquake (hereafter, called as TOH11), in terms of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms. Since 1970's, the nature of "tsunami earthquakes" has been discussed in many researches (e.g. Kanamori, 1972; Kanamori and Kikuchi, 1993; Kikuchi and Kanamori, 1995; Ide et al., 1993; Satake, 1994) mostly based on analysis of seismic waveform data , in terms of the "slow" nature of tsunami earthquakes (e.g., the 1992 Nicaragura earthquake). Although TOH11 is not necessarily understood as a tsunami earthquake, TOH11 is one of historical earthquakes that simultaneously generated large seismic waves and tsunami. Also, TOH11 is one of earthquakes which was observed both by seismic observation network and tsunami observation network around the Japanese islands. Therefore, for the purpose of analyzing the nature of tsunami generation, we try to utilize tsunami waveform data as much as possible. In our previous studies of TOH11 (Fujihara et al., 2012a; Fujihara et al., 2012b), we inverted tsunami waveforms at GPS wave gauges of NOWPHAS to image the spatio-temporal slip distribution. The "temporal" nature of our tsunami source model is generally consistent with the other tsunami source models (e.g., Satake et al, 2013). For seismic waveform inversion based on 1-D structure, here we inverted broadband seismograms at GSN stations based on the teleseismic body-wave inversion scheme (Kikuchi and Kanamori, 2003). Also, for seismic waveform inversion considering the inhomogeneous internal structure, we inverted strong motion seismograms at K-NET and KiK-net stations, based on 3-D Green's functions (Fujihara et al., 2013a; Fujihara et al., 2013b). The gross "temporal" nature of our seismic source models are generally consistent with the other seismic source models (e.g., Yoshida et al., 2011; Ide at al., 2011; Yagi and Fukahata, 2011; Suzuki et al., 2011). The comparison of two type of moment rate functions, inferred from finite source imaging of tsunami waveforms and seismic waveforms, suggested that there was the time period common to both seismic wave generation and tsunami generation followed by the time period unique to tsunami generation. At this point, we think that comparison of the absolute values of moment rates is not so meaningful between tsunami waveform inversion and seismic waveform inversion, because of general ambiguity of rigidity values of each subfault in the fault region (assuming the rigidity value of 30 GPa of Yoshida et al (2011)). Considering this, the normalized value of moment rate function was also evaluated and it does not change the general feature of two moment rate functions in terms of duration property. Furthermore, the results suggested that tsunami generation process apparently took more time than seismic wave generation process did. Tsunami can be generated even by "extra" motions resulting from many suggested abnormal mechanisms. These extra motions may be attribute to the relatively larger-scale tsunami generation than expected from the magnitude level from seismic ground motion, and attribute to the longer duration of tsunami generation process.

  15. Components Qualification for a Possible use in the Mu2e Calorimeter Waveform Digitizer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Falco, S.; Donati, S.; Morescalchi, L.

    2017-03-30

    The Mu2e experiment at Fermilab searches for the charged flavor violating conversion of a muon into an electron in the Coulomb field of a nucleus. The detector consists of a straw tube tracker and a CSI crystal electromagnetic calorimeter, both housed in a superconducting solenoid. Both the front-end and the digital electronics, located inside the cryostat, will be operated in vacuum under a 1 T magnetic field, having to sustain the high flux of neutrons and ionizing particles coming from the muons stopping target. These harsh experimental conditions make the design of the calorimeter waveform digitizer quite challenging. All themore » selected commercial devices must be tested individually and qualified for radiation hardness and operation in high magnetic field. At the moment the expected particles flux and spectra at the digitizers location are not completely simulated and we are using initial rough estimates to select the components for the first prototype. We are gaining experience in the qualification procedures using the selected components but the choice will be frozen only when dose and neutron flux simulations will be completed. The experimental results of the first qualification campaign are presented.« less

  16. Ascending-ramp biphasic waveform has a lower defibrillation threshold and releases less troponin I than a truncated exponential biphasic waveform.

    PubMed

    Huang, Jian; Walcott, Gregory P; Ruse, Richard B; Bohanan, Scott J; Killingsworth, Cheryl R; Ideker, Raymond E

    2012-09-11

    We tested the hypothesis that the shape of the shock waveform affects not only the defibrillation threshold but also the amount of cardiac damage. Defibrillation thresholds were determined for 11 waveforms-3 ascending-ramp waveforms, 3 descending-ramp waveforms, 3 rectilinear first-phase biphasic waveforms, a Gurvich waveform, and a truncated exponential biphasic waveform-in 6 pigs with electrodes in the right ventricular apex and superior vena cava. The ascending, descending, and rectilinear waveforms had 4-, 8-, and 16-millisecond first phases and a 3.5-millisecond rectilinear second phase that was half the voltage of the first phase. The exponential biphasic waveform had a 60% first-phase and a 50% second-phase tilt. In a second study, we attempted to defibrillate after 10 seconds of ventricular fibrillation with a single ≈30-J shock (6 pigs successfully defibrillated with 8-millisecond ascending, 8-millisecond rectilinear, and truncated exponential biphasic waveforms). Troponin I blood levels were determined before and 2 to 10 hours after the shock. The lowest-energy defibrillation threshold was for the 8-milliseconds ascending ramp (14.6±7.3 J [mean±SD]), which was significantly less than for the truncated exponential (19.6±6.3 J). Six hours after shock, troponin I was significantly less for the ascending-ramp waveform (0.80±0.54 ng/mL) than for the truncated exponential (1.92±0.47 ng/mL) or the rectilinear waveform (1.17±0.45 ng/mL). The ascending ramp has a significantly lower defibrillation threshold and at ≈30 J causes 58% less troponin I release than the truncated exponential biphasic shock. Therefore, the shock waveform affects both the defibrillation threshold and the amount of cardiac damage.

  17. Modeling Regional Seismic Waves

    DTIC Science & Technology

    1992-06-29

    the computation of the Green’s functions is rather time comsuming . they arc Computed for each of the fundamental faults, at I1(H) km intervals from 21...this record was very, small. Station GEO displays similar behavior in that the overall features of the waveform are matched, but fit in detail is not

  18. Electrochemical sensing using voltage-current time differential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Leta Yar-Li; Glass, Robert Scott; Fitzpatrick, Joseph Jay

    2017-02-28

    A device for signal processing. The device includes a signal generator, a signal detector, and a processor. The signal generator generates an original waveform. The signal detector detects an affected waveform. The processor is coupled to the signal detector. The processor receives the affected waveform from the signal detector. The processor also compares at least one portion of the affected waveform with the original waveform. The processor also determines a difference between the affected waveform and the original waveform. The processor also determines a value corresponding to a unique portion of the determined difference between the original and affected waveforms.more » The processor also outputs the determined value.« less

  19. Adaptive waveform optimization design for target detection in cognitive radar

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowen; Wang, Kaizhi; Liu, Xingzhao

    2017-01-01

    The problem of adaptive waveform design for target detection in cognitive radar (CR) is investigated. This problem is analyzed in signal-dependent interference, as well as additive channel noise for extended target with unknown target impulse response (TIR). In order to estimate the TIR accurately, the Kalman filter is used in target tracking. In each Kalman filtering iteration, a flexible online waveform spectrum optimization design taking both detection and range resolution into account is modeled in Fourier domain. Unlike existing CR waveform, the proposed waveform can be simultaneously updated according to the environment information fed back by receiver and radar performance demands. Moreover, the influence of waveform spectral phase to radar performance is analyzed. Simulation results demonstrate that CR with the proposed waveform performs better than a traditional radar system with a fixed waveform and offers more flexibility and suitability. In addition, waveform spectral phase will not influence tracking, detection, and range resolution performance but will greatly influence waveform forming speed and peak-to-average power ratio.

  20. Explosion yield estimation from pressure wave template matching

    PubMed Central

    Arrowsmith, Stephen; Bowman, Daniel

    2017-01-01

    A method for estimating the yield of explosions from shock-wave and acoustic-wave measurements is presented. The method exploits full waveforms by comparing pressure measurements against an empirical stack of prior observations using scaling laws. The approach can be applied to measurements across a wide-range of source-to-receiver distances. The method is applied to data from two explosion experiments in different regions, leading to mean relative errors in yield estimates of 0.13 using prior data from the same region, and 0.2 when applied to a new region. PMID:28618805

  1. Waveform LiDAR processing: comparison of classic approaches and optimized Gold deconvolution to characterize vegetation structure and terrain elevation

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.

    2016-12-01

    Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: 1) direct decomposition, 2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms - the Richardson Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from discrete LiDAR data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference (<1.22 m for DTMs, < 0.77 m for CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, < 1.93 m for CHMs). More specifically, the Gold algorithm is superior to others with smaller root mean square error (RMSE) (< 1.01m), while the direct decomposition approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense vegetation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in terms of RMSE.

  2. Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernuzzi, Sebastiano; Nagar, Alessandro; Zenginoglu, Anil

    2011-10-15

    We compute and analyze the gravitational waveform emitted to future null infinity by a system of two black holes in the large-mass-ratio limit. We consider the transition from the quasiadiabatic inspiral to plunge, merger, and ringdown. The relative dynamics is driven by a leading order in the mass ratio, 5PN-resummed, effective-one-body (EOB), analytic-radiation reaction. To compute the waveforms, we solve the Regge-Wheeler-Zerilli equations in the time-domain on a spacelike foliation, which coincides with the standard Schwarzschild foliation in the region including the motion of the small black hole, and is globally hyperboloidal, allowing us to include future null infinity inmore » the computational domain by compactification. This method is called the hyperboloidal layer method, and is discussed here for the first time in a study of the gravitational radiation emitted by black hole binaries. We consider binaries characterized by five mass ratios, {nu}=10{sup -2,-3,-4,-5,-6}, that are primary targets of space-based or third-generation gravitational wave detectors. We show significative phase differences between finite-radius and null-infinity waveforms. We test, in our context, the reliability of the extrapolation procedure routinely applied to numerical relativity waveforms. We present an updated calculation of the final and maximum gravitational recoil imparted to the merger remnant by the gravitational wave emission, v{sub kick}{sup end}/(c{nu}{sup 2})=0.04474{+-}0.00007 and v{sub kick}{sup max}/(c{nu}{sup 2})=0.05248{+-}0.00008. As a self-consistency test of the method, we show an excellent fractional agreement (even during the plunge) between the 5PN EOB-resummed mechanical angular momentum loss and the gravitational wave angular momentum flux computed at null infinity. New results concerning the radiation emitted from unstable circular orbits are also presented. The high accuracy waveforms computed here could be considered for the construction of template banks or for calibrating analytic models such as the effective-one-body model.« less

  3. Rapid updating of optical arbitrary waveforms via time-domain multiplexing.

    PubMed

    Scott, R P; Fontaine, N K; Yang, C; Geisler, D J; Okamoto, K; Heritage, J P; Yoo, S J B

    2008-05-15

    We demonstrate high-fidelity optical arbitrary waveform generation with 5 GHz waveform switching via time-domain multiplexing. Compact, integrated waveform shapers based on silica arrayed-waveguide grating pairs with 10 GHz channel spacing are used to shape (line-by-line) two different waveforms from the output of a 10-mode x 10 GHz optical frequency comb generator. Characterization of the time multiplexer's complex transfer function (amplitude and phase) by frequency-resolved optical gating permits compensation of its impact on the switched waveforms and matching of the measured and target waveforms to better than G'=5%.

  4. Time-dependent phase error correction using digital waveform synthesis

    DOEpatents

    Doerry, Armin W.; Buskirk, Stephen

    2017-10-10

    The various technologies presented herein relate to correcting a time-dependent phase error generated as part of the formation of a radar waveform. A waveform can be pre-distorted to facilitate correction of an error induced into the waveform by a downstream operation/component in a radar system. For example, amplifier power droop effect can engender a time-dependent phase error in a waveform as part of a radar signal generating operation. The error can be quantified and an according complimentary distortion can be applied to the waveform to facilitate negation of the error during the subsequent processing of the waveform. A time domain correction can be applied by a phase error correction look up table incorporated into a waveform phase generator.

  5. Radar altimeter waveform modeled parameter recovery. [SEASAT-1 data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Satellite-borne radar altimeters include waveform sampling gates providing point samples of the transmitted radar pulse after its scattering from the ocean's surface. Averages of the waveform sampler data can be fitted by varying parameters in a model mean return waveform. The theoretical waveform model used is described as well as a general iterative nonlinear least squares procedures used to obtain estimates of parameters characterizing the modeled waveform for SEASAT-1 data. The six waveform parameters recovered by the fitting procedure are: (1) amplitude; (2) time origin, or track point; (3) ocean surface rms roughness; (4) noise baseline; (5) ocean surface skewness; and (6) altitude or off-nadir angle. Additional practical processing considerations are addressed and FORTRAN source listing for subroutines used in the waveform fitting are included. While the description is for the Seasat-1 altimeter waveform data analysis, the work can easily be generalized and extended to other radar altimeter systems.

  6. Blind source deconvolution for deep Earth seismology

    NASA Astrophysics Data System (ADS)

    Stefan, W.; Renaut, R.; Garnero, E. J.; Lay, T.

    2007-12-01

    We present an approach to automatically estimate an empirical source characterization of deep earthquakes recorded teleseismically and subsequently remove the source from the recordings by applying regularized deconvolution. A principle goal in this work is to effectively deblur the seismograms, resulting in more impulsive and narrower pulses, permitting better constraints in high resolution waveform analyses. Our method consists of two stages: (1) we first estimate the empirical source by automatically registering traces to their 1st principal component with a weighting scheme based on their deviation from this shape, we then use this shape as an estimation of the earthquake source. (2) We compare different deconvolution techniques to remove the source characteristic from the trace. In particular Total Variation (TV) regularized deconvolution is used which utilizes the fact that most natural signals have an underlying spareness in an appropriate basis, in this case, impulsive onsets of seismic arrivals. We show several examples of deep focus Fiji-Tonga region earthquakes for the phases S and ScS, comparing source responses for the separate phases. TV deconvolution is compared to the water level deconvolution, Tikenov deconvolution, and L1 norm deconvolution, for both data and synthetics. This approach significantly improves our ability to study subtle waveform features that are commonly masked by either noise or the earthquake source. Eliminating source complexities improves our ability to resolve deep mantle triplications, waveform complexities associated with possible double crossings of the post-perovskite phase transition, as well as increasing stability in waveform analyses used for deep mantle anisotropy measurements.

  7. Resolving the Detailed Spatiotemporal Slip Evolution of Deep Tremor in Western Japan

    NASA Astrophysics Data System (ADS)

    Ohta, Kazuaki; Ide, Satoshi

    2017-12-01

    We study the detailed spatiotemporal behavior of deep tremor in western Japan through the development and application of a new slip inversion method. Although many studies now recognize tremor as shear slip along the plate interface manifested in low-frequency earthquake (LFE) swarms, a conventional slip inversion analysis is not available for tremor due to insufficient knowledge of source locations and Green's functions. Here we introduce synthetic template waveforms, which are typical tremor waveforms obtained by stacking LFE seismograms at arranged points along the plate interface. Using these synthetic template waveforms as substitutes for Green's functions, we invert the continuous tremor waveforms using an iterative deconvolution approach with Bayesian constraints. We apply this method to two tremor burst episodes in western and central Shikoku, Japan. The estimated slip distribution from a 12 day tremor burst episode in western Shikoku is heterogeneous, with several patchy areas of slip along the plate interface where rapid moment releases with durations of <100 s regularly occur. We attribute these heterogeneous spatiotemporal slip patterns to heterogeneous material properties along the plate interface. For central Shikoku, where we focus on a tremor burst episode that occurred coincidentally with a very low frequency earthquake (VLF), we observe that the source size of the VLF is much larger than that estimated from tremor activity in western Shikoku. These differences in the size of the slip region may dictate the visibility of VLF signals in observed seismograms, which has implications for the mechanics of slow earthquakes and subduction zone processes.

  8. Binary Black Hole Mergers, Gravitational Waves, and LISA

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Boggs, W.; Kelly, B.; McWilliams, S.; vanMeter, J.

    2008-01-01

    The final merger of comparable mass binary black holes is expected to be the strongest source of gravitational waves for LISA. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer in order to calculate these waveforms. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. We will present the results of new simulations of black hole mergers with unequal masses and spins, focusing on the gravitational waves emitted and the accompanying astrophysical "kicks." The magnitude of these kicks has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters.

  9. Prediction of wound healing after minor amputations of the diabetic foot.

    PubMed

    Caruana, Luana; Formosa, Cynthia; Cassar, Kevin

    2015-08-01

    To identify any significant differences in physiological test results between healing and non healing amputation sites. A single center prospective non-experimental study design was conducted on fifty subjects living with type 2 diabetes and requiring a forefoot or toe amputation. Subjects underwent non-invasive physiological testing preoperatively. These included assessment of pedal pulses, preoperative arterial spectral waveforms at the ankle, absolute toe pressures, toe-brachial pressure index and ankle-brachial pressure index. After 6 weeks, patients were examined to assess whether the amputation site was completely healed, was healing, had developed complications, or did not heal. There was no significant difference in ABPI between the healed/healing and the non-healing groups. Mean TBI (p=0.031) and toe pressure readings (p=0.014) were significantly higher in the healed/healing group compared to the non healing group. A significant difference was also found in ankle spectral waveforms between the two groups (p=0.028). TBIs, toe pressures and spectral waveforms at the ankle are better predictors of likelihood of healing and non-healing after minor amputation than ABPIs. ABPI alone is a poor indicator of the likelihood of healing of minor amputations and should not be relied on to determine need for revascularization procedures before minor amputation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Control of power, torque, and instability drive using in-shot variable neutral beam energy in tokamaks

    DOE PAGES

    Pace, D. C.; Collins, C. S.; Crowley, B.; ...

    2016-09-28

    A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak. Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significantmore » changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. As a result, developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.« less

  11. Control of power, torque, and instability drive using in-shot variable neutral beam energy in tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, D. C.; Collins, C. S.; Crowley, B.

    A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak. Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significantmore » changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. As a result, developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.« less

  12. Control of power, torque, and instability drive using in-shot variable neutral beam energy in tokamaks

    NASA Astrophysics Data System (ADS)

    Pace, D. C.; Collins, C. S.; Crowley, B.; Grierson, B. A.; Heidbrink, W. W.; Pawley, C.; Rauch, J.; Scoville, J. T.; Van Zeeland, M. A.; Zhu, Y. B.; The DIII-D Team

    2017-01-01

    A first-ever demonstration of controlling power and torque injection through time evolution of neutral beam energy has been achieved in recent experiments at the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Pre-programmed waveforms for the neutral beam energy produce power and torque inputs that can be separately and continuously controlled. Previously, these inputs were tailored using on/off modulation of neutral beams resulting in large perturbations (e.g. power swings of over 1 MW). The new method includes, importantly for experiments, the ability to maintain a fixed injected power while varying the torque. In another case, different beam energy waveforms (in the same plasma conditions) produce significant changes in the observed spectrum of beam ion-driven instabilities. Measurements of beam ion loss show that one energy waveform results in the complete avoidance of coherent losses due to Alfvénic instabilities. This new method of neutral beam operation is intended for further application in a variety of DIII-D experiments including those concerned with high-performance steady state scenarios, fast particle effects, and transport in the low torque regime. Developing this capability would provide similar benefits and improved plasma control for other magnetic confinement fusion facilities.

  13. Regional Seismic Amplitude Modeling and Tomography for Earthquake-Explosion Discrimination

    NASA Astrophysics Data System (ADS)

    Walter, W. R.; Pasyanos, M. E.; Matzel, E.; Gok, R.; Sweeney, J.; Ford, S. R.; Rodgers, A. J.

    2008-12-01

    Empirically explosions have been discriminated from natural earthquakes using regional amplitude ratio techniques such as P/S in a variety of frequency bands. We demonstrate that such ratios discriminate nuclear tests from earthquakes using closely located pairs of earthquakes and explosions recorded on common, publicly available stations at test sites around the world (e.g. Nevada, Novaya Zemlya, Semipalatinsk, Lop Nor, India, Pakistan, and North Korea). We are examining if there is any relationship between the observed P/S and the point source variability revealed by longer period full waveform modeling. For example, regional waveform modeling shows strong tectonic release from the May 1998 India test, in contrast with very little tectonic release in the October 2006 North Korea test, but the P/S discrimination behavior appears similar in both events using the limited regional data available. While regional amplitude ratios such as P/S can separate events in close proximity, it is also empirically well known that path effects can greatly distort observed amplitudes and make earthquakes appear very explosion-like. Previously we have shown that the MDAC (Magnitude Distance Amplitude Correction, Walter and Taylor, 2001) technique can account for simple 1-D attenuation and geometrical spreading corrections, as well as magnitude and site effects. However in some regions 1-D path corrections are a poor approximation and we need to develop 2-D path corrections. Here we demonstrate a new 2-D attenuation tomography technique using the MDAC earthquake source model applied to a set of events and stations in both the Middle East and the Yellow Sea Korean Peninsula regions. We believe this new 2-D MDAC tomography has the potential to greatly improve earthquake-explosion discrimination, particularly in tectonically complex regions such as the Middle East.

  14. Upper Mantle Shear Wave Structure Beneath North America From Multi-mode Surface Wave Tomography

    NASA Astrophysics Data System (ADS)

    Yoshizawa, K.; Ekström, G.

    2008-12-01

    The upper mantle structure beneath the North American continent has been investigated from measurements of multi-mode phase speeds of Love and Rayleigh waves. To estimate fundamental-mode and higher-mode phase speeds of surface waves from a single seismogram at regional distances, we have employed a method of nonlinear waveform fitting based on a direct model-parameter search using the neighbourhood algorithm (Yoshizawa & Kennett, 2002). The method of the waveform analysis has been fully automated by employing empirical quantitative measures for evaluating the accuracy/reliability of estimated multi-mode phase dispersion curves, and thus it is helpful in processing the dramatically increasing numbers of seismic data from the latest regional networks such as USArray. As a first step toward modeling the regional anisotropic shear-wave velocity structure of the North American upper mantle with extended vertical resolution, we have applied the method to long-period three-component records of seismic stations in North America, which mostly comprise the GSN and US regional networks as well as the permanent and transportable USArray stations distributed by the IRIS DMC. Preliminary multi-mode phase-speed models show large-scale patterns of isotropic heterogeneity, such as a strong velocity contrast between the western and central/eastern United States, which are consistent with the recent global and regional models (e.g., Marone, et al. 2007; Nettles & Dziewonski, 2008). We will also discuss radial anisotropy of shear wave speed beneath North America from multi-mode dispersion measurements of Love and Rayleigh waves.

  15. Discriminating Mining Induced Seismicity from Natural Tectonic Earthquakes in the Wasatch Plateau Region of Central Utah

    NASA Astrophysics Data System (ADS)

    Stein, J. R.; Pankow, K. L.; Koper, K. D.; McCarter, M. K.

    2014-12-01

    On average, several hundred earthquakes are located each year within the Wasatch Plateau region of central Utah. This region includes the boundary between the relatively stable Colorado Plateau and the actively extending Basin and Range physiographic provinces. Earthquakes in this region tend to fall in the intermountain seismic belt (ISB), a continuous band of seismicity that extends from Montana to Arizona. While most of the earthquakes in the ISB are of tectonic origin, events in the Wasatch Plateau also include mining induced seismicity (MIS) from local underground coal mining operations. Using a catalog of 16,182 seismic events (-0.25 < M < 4.5) recorded from 1981 to 2011, we use double difference relocation and waveform cross correlation techniques to help discriminate between these two populations of events. Double difference relocation greatly improves the relative locations between the many events that occur in this area. From the relative relocations, spatial differences between event types are used to differentiate between shallow MIS and considerably deeper events associated with tectonic seismicity. Additionally, waveform cross-correlation is used to cluster events with similar waveforms—meaning that events in each cluster should have a similar source location and mechanism—in order to more finely group seismic events occurring in the Wasatch Plateau. The results of this study provide both an increased understanding of the influence mining induced seismicity has on the number of earthquakes detected within this region, as well as better constraints on the deeper tectonic structure.

  16. Automated Analysis, Classification, and Display of Waveforms

    NASA Technical Reports Server (NTRS)

    Kwan, Chiman; Xu, Roger; Mayhew, David; Zhang, Frank; Zide, Alan; Bonggren, Jeff

    2004-01-01

    A computer program partly automates the analysis, classification, and display of waveforms represented by digital samples. In the original application for which the program was developed, the raw waveform data to be analyzed by the program are acquired from space-shuttle auxiliary power units (APUs) at a sampling rate of 100 Hz. The program could also be modified for application to other waveforms -- for example, electrocardiograms. The program begins by performing principal-component analysis (PCA) of 50 normal-mode APU waveforms. Each waveform is segmented. A covariance matrix is formed by use of the segmented waveforms. Three eigenvectors corresponding to three principal components are calculated. To generate features, each waveform is then projected onto the eigenvectors. These features are displayed on a three-dimensional diagram, facilitating the visualization of the trend of APU operations.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eken, T; Mayeda, K; Hofstetter, A

    A recently developed coda magnitude methodology was applied to selected broadband stations in Turkey for the purpose of testing the coda method in a large, laterally complex region. As found in other, albeit smaller regions, coda envelope amplitude measurements are significantly less variable than distance-corrected direct wave measurements (i.e., L{sub g} and surface waves) by roughly a factor 3-to-4. Despite strong lateral crustal heterogeneity in Turkey, we found that the region could be adequately modeled assuming a simple 1-D, radially symmetric path correction for 10 narrow frequency bands ranging between 0.02 to 2.0 Hz. For higher frequencies however, 2-D pathmore » corrections will be necessary and will be the subject of a future study. After calibrating the stations ISP, ISKB, and MALT for local and regional distances, single-station moment-magnitude estimates (M{sub w}) derived from the coda spectra were in excellent agreement with those determined from multi-station waveform modeling inversions of long-period data, exhibiting a data standard deviation of 0.17. Though the calibration was validated using large events, the results of the calibration will extend M{sub w} estimates to significantly smaller events which could not otherwise be waveform modeled due to poor signal-to-noise ratio at long periods and sparse station coverage. The successful application of the method is remarkable considering the significant lateral complexity in Turkey and the simple assumptions used in the coda method.« less

  18. Restoration of clipped seismic waveforms using projection onto convex sets method

    PubMed Central

    Zhang, Jinhai; Hao, Jinlai; Zhao, Xu; Wang, Shuqin; Zhao, Lianfeng; Wang, Weimin; Yao, Zhenxing

    2016-01-01

    The seismic waveforms would be clipped when the amplitude exceeds the upper-limit dynamic range of seismometer. Clipped waveforms are typically assumed not useful and seldom used in waveform-based research. Here, we assume the clipped components of the waveform share the same frequency content with the un-clipped components. We leverage this similarity to convert clipped waveforms to true waveforms by iteratively reconstructing the frequency spectrum using the projection onto convex sets method. Using artificially clipped data we find that statistically the restoration error is ~1% and ~5% when clipped at 70% and 40% peak amplitude, respectively. We verify our method using real data recorded at co-located seismometers that have different gain controls, one set to record large amplitudes on scale and the other set to record low amplitudes on scale. Using our restoration method we recover 87 out of 93 clipped broadband records from the 2013 Mw6.6 Lushan earthquake. Estimating that we recover 20 clipped waveforms for each M5.0+ earthquake, so for the ~1,500 M5.0+ events that occur each year we could restore ~30,000 clipped waveforms each year, which would greatly enhance useable waveform data archives. These restored waveform data would also improve the azimuthal station coverage and spatial footprint. PMID:27966618

  19. Numerical method for computing Maass cusp forms on triply punctured two-sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, K. T.; Kamari, H. M.; Zainuddin, H.

    2014-03-05

    A quantum mechanical system on a punctured surface modeled on hyperbolic space has always been an important subject of research in mathematics and physics. This corresponding quantum system is governed by the Schrödinger equation whose solutions are the Maass waveforms. Spectral studies on these Maass waveforms are known to contain both continuous and discrete eigenvalues. The discrete eigenfunctions are usually called the Maass Cusp Forms (MCF) where their discrete eigenvalues are not known analytically. We introduce a numerical method based on Hejhal and Then algorithm using GridMathematica for computing MCF on a punctured surface with three cusps namely the triplymore » punctured two-sphere. We also report on a pullback algorithm for the punctured surface and a point locater algorithm to facilitate the complete pullback which are essential parts of the main algorithm.« less

  20. Is the Gravitational-Wave Ringdown a Probe of the Event Horizon?

    PubMed

    Cardoso, Vitor; Franzin, Edgardo; Pani, Paolo

    2016-04-29

    It is commonly believed that the ringdown signal from a binary coalescence provides a conclusive proof for the formation of an event horizon after the merger. This expectation is based on the assumption that the ringdown waveform at intermediate times is dominated by the quasinormal modes of the final object. We point out that this assumption should be taken with great care, and that very compact objects with a light ring will display a similar ringdown stage, even when their quasinormal-mode spectrum is completely different from that of a black hole. In other words, universal ringdown waveforms indicate the presence of light rings, rather than of horizons. Only precision observations of the late-time ringdown signal, where the differences in the quasinormal-mode spectrum eventually show up, can be used to rule out exotic alternatives to black holes and to test quantum effects at the horizon scale.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmichael, Joshua Daniel; Carr, Christina; Pettit, Erin C.

    We apply a fully autonomous icequake detection methodology to a single day of high-sample rate (200 Hz) seismic network data recorded from the terminus of Taylor Glacier, ANT that temporally coincided with a brine release episode near Blood Falls (May 13, 2014). We demonstrate a statistically validated procedure to assemble waveforms triggered by icequakes into populations of clusters linked by intra-event waveform similarity. Our processing methodology implements a noise-adaptive power detector coupled with a complete-linkage clustering algorithm and noise-adaptive correlation detector. This detector-chain reveals a population of 20 multiplet sequences that includes ~150 icequakes and produces zero false alarms onmore » the concurrent, diurnally variable noise. Our results are very promising for identifying changes in background seismicity associated with the presence or absence of brine release episodes. We thereby suggest that our methodology could be applied to longer time periods to establish a brine-release monitoring program for Blood Falls that is based on icequake detections.« less

  2. Long Term Performance Metrics of the GD SDR on the SCaN Testbed: The First Year on the ISS

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer; Wilson, Molly C.

    2014-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCaN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SCaN Testbed was installed on the ISS in August of 2012. After installation, the initial checkout and commissioning phases were completed and experimental operations commenced. One goal of the SCaN Testbed is to collect long term performance metrics for SDRs operating in space in order to demonstrate long term reliability. These metrics include the time the SDR powered on, the time the power amplifier (PA) is powered on, temperature trends, error detection and correction (EDAC) behavior, and waveform operational usage time. This paper describes the performance of the GD SDR over the first year of operations on the ISS.

  3. SiC MOSFET Switching Power Amplifier Project Summary

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Slobodov, Ilia; Henson, Alex

    2017-10-01

    Eagle Harbor Technologies has completed a Phase I/II program to develop SiC MOSFET based Switching Power Amplifiers (SPA) for precision magnet control in fusion science applications. During this program, EHT developed several units have been delivered to the Helicity Injected Torus (HIT) experiment at the University of Washington to drive both the voltage and flux circuits of the helicity injectors. These units are capable of switching 700 V at 100 kHz with an adjustable duty cycle from 10 - 90% and a combined total output current of 96 kA for 4 ms (at max current). The SPAs switching is controlled by the microcontroller at HIT, which adjusts the duty cycle to maintain a specific waveform in the injector. The SPAs include overcurrent and shoot-through protection circuity. EHT will present an overview of the program including final results for the SPA waveforms. With support of DOE SBIR.

  4. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    NASA Astrophysics Data System (ADS)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  5. Seismic Evidence for Fluid/Gas Beneath the Mentawai Fore-Arc Basin, Central Sumatra

    NASA Astrophysics Data System (ADS)

    Huot, Gabriel; Singh, Satish C.

    2018-02-01

    Since 2004, there have been three great interplate earthquakes (Mw > 8.0) offshore Sumatra. In addition to rupturing the megathrust, these earthquakes might also have ruptured the backthrusts that bound the Andaman Islands to the Mentawai Islands toward the forearc basins. Here we apply a combination of traveltime tomography and seismic full waveform inversion to an ultralong offset seismic reflection profile from the Mentawai forearc basin, in the region of the 2007 Mw 8.4 Bengkulu earthquake. We perform a waveform inversion of far-offset data followed by a waveform inversion of near-offset data using the starting model derived from the traveltime tomography. Our results show the presence of a large, low-velocity anomaly above the backthrust. The seismic reflection image indicates that this low-velocity anomaly lies either within highly compacted sediments from the accretionary wedge or within highly deformed sediments from the forearc basin. The porosity estimation, using the effective medium theory, suggests that a small amount of gas (from 2 to 13%) or a significant amount of fluid (from 17 to 40%) could generate this low-velocity zone. The presence of fluids and the observation of bottom simulating reflector below a push-up ridge might be associated with mud diapirism. The fluids could originate locally from the dewatering of the sediments from the accretionary wedge or forearc basin. The high reflectivity of the backthrust in this region might also indicate deeper fluid origin, either from underplated sediments on the subduction interface or from the serpentinized mantle wedge.

  6. Preliminary Results of the Full-waveform Tomography of South America and Surrounding Oceans using Spectral Elements and Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Ciardelli, C.; Assumpcao, M.

    2017-12-01

    In the last years, the ray coverage in the South American continent has greatly improved thanks to the increasing number of seismographic stations. A major contribution came from the recently installed Brazilian Seismographic Network.On the other hand, more advanced tomographic methods like full-waveform tomography have been developed and are gradually becoming more extensively used due to the exponential growth in computers processing power, allowing for more and more information to be extracted from the seismograms. In this work, we are using all the available seismographic data acquired in the period of 2011 to 2016 for the South American and surrounding oceans region, including the new data provided by the recently deployed stations to perform a full-waveform tomography in the area. Our goal is that this new velocity model will provide a more accurate and detailed picture of the mantle structures beneath the region, better constraining our geodynamical interpretations. A total of 161 earthquakes with magnitudes in the range of 6.0-7.0 Mw were found in the Centroid Moment Tensor solutions from the global catalog (Dziewonski, Chou and Woodhouse, 1981; Ekström, Nettles and Dziewonski, 2012). The CMTs were used to model the earthquakes propagation using SPECFEM3D Global software (Komatitsch and Tromp, 2000) with S362wmani, a global S wave velocity model developed by Kustowski et al. (2006) as starting model and 96 events were chosen to be used in the tomography, based on their better initial misfits and ray coverage. Results of the first iterations will be presented.

  7. Digital Oblique Remote Ionospheric Sensing (DORIS) Program Development

    DTIC Science & Technology

    1992-04-01

    waveforms. A new with the ARTIST software (Reinisch and Iluang. autoscaling technique for oblique ionograms 1983, Gamache et al., 1985) which is...development and performance of a complete oblique ionogram autoscaling and inversion algorithm is presented. The inver.i-,n algorithm uses a three...OTIH radar. 14. SUBJECT TERMS 15. NUMBER OF PAGES Oblique Propagation; Oblique lonogram Autoscaling ; i Electron Density Profile Inversion; Simulated 16

  8. Frequency Diverse Array Receiver Architectures

    DTIC Science & Technology

    2015-06-29

    completely associated with FDA, the Hybrid MIMO phased array (HMPAR) concept presented in [18] developed the basic beam patern synthesis theory for an...20], that analyzed beam paterns of chirp waveforms with slightly 6 different starting frequencies. In [21] and [11] they investigated using FDA for...forward-looking radar GMTI benefits. This research showed the ability of the range-dependent energy distribution characteristics of the FDA beam patern

  9. Analysis of Waveform Retracking Methods in Antarctic Ice Sheet Based on CRYOSAT-2 Data

    NASA Astrophysics Data System (ADS)

    Xiao, F.; Li, F.; Zhang, S.; Hao, W.; Yuan, L.; Zhu, T.; Zhang, Y.; Zhu, C.

    2017-09-01

    Satellite altimetry plays an important role in many geoscientific and environmental studies of Antarctic ice sheet. The ranging accuracy is degenerated near coasts or over nonocean surfaces, due to waveform contamination. A postprocess technique, known as waveform retracking, can be used to retrack the corrupt waveform and in turn improve the ranging accuracy. In 2010, the CryoSat-2 satellite was launched with the Synthetic aperture Interferometric Radar ALtimeter (SIRAL) onboard. Satellite altimetry waveform retracking methods are discussed in the paper. Six retracking methods including the OCOG method, the threshold method with 10 %, 25 % and 50 % threshold level, the linear and exponential 5-β parametric methods are used to retrack CryoSat-2 waveform over the transect from Zhongshan Station to Dome A. The results show that the threshold retracker performs best with the consideration of waveform retracking success rate and RMS of retracking distance corrections. The linear 5-β parametric retracker gives best waveform retracking precision, but cannot make full use of the waveform data.

  10. Influence of global heterogeneities on regional imaging based upon full waveform inversion of teleseismic wavefield

    NASA Astrophysics Data System (ADS)

    Monteiller, Vadim; Beller, Stephen; Operto, Stephane; Virieux, Jean

    2015-04-01

    The current development of dense seismic arrays and high performance computing make feasible today application of full-waveform inversion (FWI) on teleseismic data for high-resolution lithospheric imaging. In teleseismic configuration, the source is often considered to first order as a planar wave that impinges the base of the lithospheric target located below the receiver array. Recently, injection methods coupling global propagation in 1D or axisymmetric earth model with regional 3D methods (Discontinuous Galerkin finite element methods, Spectral elements methods or finite differences) allow us to consider more realistic teleseismic phases. Those teleseismic phases can be propagated inside 3D regional model in order to exploit not only the forward-scattered waves propagating up to the receiver but also second-order arrivals that are back-scattered from the free-surface and the reflectors before their recordings on the surface. However, those computation are performed assuming simple global model. In this presentation, we review some key specifications that might be considered for mitigating the effect on FWI of heterogeneities situated outside the regional domain. We consider synthetic models and data computed using our recently developed hybrid method AxiSEM/SEM. The global simulation is done by AxiSEM code which allows us to consider axisymmetric anomalies. The 3D regional computation is performed by Spectral Element Method. We investigate the effect of external anomalies on the regional model obtained by FWI when one neglects them by considering only 1D global propagation. We also investigate the effect of the source time function and the focal mechanism on results of the FWI approach.

  11. Hemodynamic simulations in coronary aneurysms of children with Kawasaki disease

    NASA Astrophysics Data System (ADS)

    Sengupta, Dibyendu; Burns, Jane; Marsden, Alison

    2009-11-01

    Kawasaki disease (KD) is a serious pediatric illness affecting the cardiovascular system. One of the most serious complications of KD, occurring in about 25% of untreated cases, is the formation of large aneurysms in the coronary arteries, which put patients at risk for myocardial infarction. In this project we performed patient specific computational simulations of blood flow in aneurysmal left and right coronary arteries of a KD patient to gain an understanding about their hemodynamics. Models were constructed from CT data using custom software. Typical pulsatile flow waveforms were applied at the model inlets, while resistance and RCR lumped models were applied and compared at the outlets. Simulated pressure waveforms compared well with typical physiologic data. High wall shear stress values are found in the narrow region at the base of the aneurysm and low shear values occur in regions of recirculation. A Lagrangian approach has been adopted to perform particle tracking and compute particle residence time in the recirculation. Our long-term goal will be to develop links between hemodynamics and the risk for thrombus formation in order to assist in clinical decision-making.

  12. Finite-fault slip model of the 2011 Mw 5.6 Prague, Oklahoma earthquake from regional waveforms

    USGS Publications Warehouse

    Sun, Xiaodan; Hartzell, Stephen

    2014-01-01

    The slip model for the 2011 Mw 5.6 Prague, Oklahoma, earthquake is inferred using a linear least squares methodology. Waveforms of six aftershocks recorded at 21 regional stations are used as empirical Green's functions (EGFs). The solution indicates two large slip patches: one located around the hypocenter with a depth range of 3–5.5 km; the other located to the southwest of the epicenter with a depth range from 7.5 to 9.5 km. The total moment of the solution is estimated at 3.37 × 1024 dyne cm (Mw 5.65). The peak slip and average stress drop for the source at the hypocenter are 70 cm and 90 bars, respectively, approximately one half the values for the Mw 5.8 2011 Mineral, Virginia, earthquake. The stress drop averaged over all areas of slip is 16 bars. The relatively low peak slip and stress drop may indicate an induced component in the origin of the Prague earthquake from deep fluid injection.

  13. A simple accurate chest-compression depth gauge using magnetic coils during cardiopulmonary resuscitation

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Sano, Yuko; Zhang, Yuhua; Tsuji, Toshio

    2015-12-01

    This paper describes a new method for calculating chest compression depth and a simple chest-compression gauge for validating the accuracy of the method. The chest-compression gauge has two plates incorporating two magnetic coils, a spring, and an accelerometer. The coils are located at both ends of the spring, and the accelerometer is set on the bottom plate. Waveforms obtained using the magnetic coils (hereafter, "magnetic waveforms"), which are proportional to compression-force waveforms and the acceleration waveforms were measured at the same time. The weight factor expressing the relationship between the second derivatives of the magnetic waveforms and the measured acceleration waveforms was calculated. An estimated-compression-displacement (depth) waveform was obtained by multiplying the weight factor and the magnetic waveforms. Displacements of two large springs (with similar spring constants) within a thorax and displacements of a cardiopulmonary resuscitation training manikin were measured using the gauge to validate the accuracy of the calculated waveform. A laser-displacement detection system was used to compare the real displacement waveform and the estimated waveform. Intraclass correlation coefficients (ICCs) between the real displacement using the laser system and the estimated displacement waveforms were calculated. The estimated displacement error of the compression depth was within 2 mm (<1 standard deviation). All ICCs (two springs and a manikin) were above 0.85 (0.99 in the case of one of the springs). The developed simple chest-compression gauge, based on a new calculation method, provides an accurate compression depth (estimation error < 2 mm).

  14. Fusion of waveform events and radionuclide detections with the help of atmospheric transport modelling

    NASA Astrophysics Data System (ADS)

    Krysta, Monika; Kushida, Noriyuki; Kotselko, Yuriy; Carter, Jerry

    2016-04-01

    Possibilities of associating information from four pillars constituting CTBT monitoring and verification regime, namely seismic, infrasound, hydracoustic and radionuclide networks, have been explored by the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) for a long time. Based on a concept of overlying waveform events with the geographical regions constituting possible sources of the detected radionuclides, interactive and non-interactive tools were built in the past. Based on the same concept, a design of a prototype of a Fused Event Bulletin was proposed recently. One of the key design elements of the proposed approach is the ability to access fusion results from either the radionuclide or from the waveform technologies products, which are available on different time scales and through various different automatic and interactive products. To accommodate various time scales a dynamic product evolving while the results of the different technologies are being processed and compiled is envisioned. The product would be available through the Secure Web Portal (SWP). In this presentation we describe implementation of the data fusion functionality in the test framework of the SWP. In addition, we address possible refinements to the already implemented concepts.

  15. Waveform Modeling Reveals Important Features of the Subduction Zone Seismic Structure Beneath the Tyrrhenian Sea, Italy

    NASA Astrophysics Data System (ADS)

    Di Luccio, F.; Persaud, P.; Pino, N. A.; Clayton, R. W.; Helmberger, D. V.; Li, D.

    2016-12-01

    Seismic images of the slab in southern Italy indicate a complex geodynamic system, although these images are strongly affected by limitations due to instrumental coverage, in terms of depth resolution and lateral extent. To help improve our knowledge of the structure of the Calabrian subduction zone, we analyze waveforms of regional events that occurred between 2001 and 2015 beneath the Tyrrhenian sea in the western Mediterranean. The selected events are deeper than 200 km and they were recorded at the Italian seismic network managed by Istituto Nazionale di Geofisica e Vulcanologia in Italy. We have also included recordings at ocean bottom seismometers and hydrophones, which were installed for a few months in 2000-2001, 2004-2005 and 2007-2008. Accurate selection of the source-to receiver raypaths can reveal significant differences at receivers, which are perpendicular to the trench with respect to other stations. P-wave complexity, converted phases and frequency content are some of the features we have observed for selected events. To investigate the slab structure, we model the waveforms using the 2D staggered grid Finite Difference method on graphics processing units developed by Li et al. (Geophys. J. Int., 2014).

  16. Sonic spectrometer and treatment system

    DOEpatents

    Slomka, B.J.

    1997-06-03

    A novel system and method is developed for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object. 1 fig.

  17. Sonic spectrometer and treatment system

    DOEpatents

    Slomka, Bogdan J.

    1997-06-03

    A novel system and method for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object.

  18. Waveform Generator Signal Processing Software

    DOT National Transportation Integrated Search

    1988-09-01

    This report describes the software that was developed to process test waveforms that were recorded by crash test data acquisition systems. The test waveforms are generated by an electronic waveform generator developed by MGA Research Corporation unde...

  19. Determine Earthquake Rupture Directivity Using Taiwan TSMIP Strong Motion Waveforms

    NASA Astrophysics Data System (ADS)

    Chang, Kaiwen; Chi, Wu-Cheng; Lai, Ying-Ju; Gung, YuanCheng

    2013-04-01

    Inverting seismic waveforms for the finite fault source parameters is important for studying the physics of earthquake rupture processes. It is also significant to image seismogenic structures in urban areas. Here we analyze the finite-source process and test for the causative fault plane using the accelerograms recorded by the Taiwan Strong-Motion Instrumentation Program (TSMIP) stations. The point source parameters for the mainshock and aftershocks were first obtained by complete waveform moment tensor inversions. We then use the seismograms generated by the aftershocks as empirical Green's functions (EGFs) to retrieve the apparent source time functions (ASTFs) of near-field stations using projected Landweber deconvolution approach. The method for identifying the fault plane relies on the spatial patterns of the apparent source time function durations which depend on the angle between rupture direction and the take-off angle and azimuth of the ray. These derived duration patterns then are compared with the theoretical patterns, which are functions of the following parameters, including focal depth, epicentral distance, average crustal 1D velocity, fault plane attitude, and rupture direction on the fault plane. As a result, the ASTFs derived from EGFs can be used to infer the ruptured fault plane and the rupture direction. Finally we used part of the catalogs to study important seismogenic structures in the area near Chiayi, Taiwan, where a damaging earthquake has occurred about a century ago. The preliminary results show a strike-slip earthquake on 22 October 1999 (Mw 5.6) has ruptured unilaterally toward SSW on a sub-vertical fault. The procedure developed from this study can be applied to other strong motion waveforms recorded from other earthquakes to better understand their kinematic source parameters.

  20. Utility of Brainstem Trigeminal Evoked Potentials in Patients With Primary Trigeminal Neuralgia Treated by Microvascular Decompression.

    PubMed

    Zhu, Jin; Zhang, Xin; Zhao, Hua; Tang, Yin-Da; Ying, Ting-Ting; Li, Shi-Ting

    2017-09-01

    To investigate the characteristics of brainstem trigeminal evoked potentials (BTEP) waveform in patients with and without trigeminal neuralgia (TN), and to discuss the utility of BTEP in patients with primary TN treated by microvascular decompression (MVD). A retrospective review of 43 patients who underwent BTEP between January 2016 and June 2016, including 33 patients with TN who underwent MVD and 10 patients without TN. Brainstem trigeminal evoked potentials characteristics of TN and non-TN were summarized, in particular to compare the BTEP changes between pre- and post-MVD, and to discover the relationship between BTEP changes and surgical outcome. Brainstem trigeminal evoked potentials can be recorded in patients without trigeminal neuralgia. Abnormal BTEP could be recorded when different branches were stimulated. After decompression, the original W2, W3 disappeared and then replaced by a large wave in most patients, or original wave poorly differentiated improved in some patients, showed as shorter latency and (or) amplitude increased. Brainstem trigeminal evoked potentials waveform of healthy side in patients with trigeminal neuralgia was similar to the waveform of patients without TN. In 3 patients, after decompression the W2, W3 peaks increased, and the latency, duration, IPLD did not change significantly. Until discharge, 87.9% (29/33) of the patients presented complete absence of pain without medication (BNI I) and 93.9% (31/33) had good pain control without medication (BNI I-II). Brainstem trigeminal evoked potentials can reflect the conduction function of the trigeminal nerve to evaluate the functional level of the trigeminal nerve conduction pathway. The improvement and restoration of BTEP waveforms are closely related to the postoperative curative effect.

  1. SGRAPH (SeismoGRAPHer): Seismic waveform analysis and integrated tools in seismology

    NASA Astrophysics Data System (ADS)

    Abdelwahed, Mohamed F.

    2012-03-01

    Although numerous seismological programs are currently available, most of them suffer from the inability to manipulate different data formats and the lack of embedded seismological tools. SeismoGRAPHer, or simply SGRAPH, is a new system for maintaining and analyzing seismic waveform data in a stand-alone, Windows-based application that manipulates a wide range of data formats. SGRAPH was intended to be a tool sufficient for performing basic waveform analysis and solving advanced seismological problems. The graphical user interface (GUI) utilities and the Windows functionalities, such as dialog boxes, menus, and toolbars, simplify the user interaction with the data. SGRAPH supports common data formats, such as SAC, SEED, GSE, ASCII, and Nanometrics Y-format, and provides the ability to solve many seismological problems with built-in inversion tools. Loaded traces are maintained, processed, plotted, and saved as SAC, ASCII, or PS (post script) file formats. SGRAPH includes Generalized Ray Theory (GRT), genetic algorithm (GA), least-square fitting, auto-picking, fast Fourier transforms (FFT), and many additional tools. This program provides rapid estimation of earthquake source parameters, location, attenuation, and focal mechanisms. Advanced waveform modeling techniques are provided for crustal structure and focal mechanism estimation. SGRAPH has been employed in the Egyptian National Seismic Network (ENSN) as a tool assisting with routine work and data analysis. More than 30 users have been using previous versions of SGRAPH in their research for more than 3 years. The main features of this application are ease of use, speed, small disk space requirements, and the absence of third-party developed components. Because of its architectural structure, SGRAPH can be interfaced with newly developed methods or applications in seismology. A complete setup file, including the SGRAPH package with the online user guide, is available.

  2. Seismicity rate increases associated with slow slip episodes prior to the 2012 Mw 7.4 Ometepec earthquake

    NASA Astrophysics Data System (ADS)

    Colella, Harmony V.; Sit, Stefany M.; Brudzinski, Michael R.; Graham, Shannon E.; DeMets, Charles; Holtkamp, Stephen G.; Skoumal, Robert J.; Ghouse, Noorulann; Cabral-Cano, Enrique; Kostoglodov, Vladimir; Arciniega-Ceballos, Alejandra

    2017-04-01

    The March 20, 2012 Mw 7.4 Ometepec earthquake in the Oaxaca region of Southern Mexico provides a unique opportunity to examine whether subtle changes in seismicity, tectonic tremor, or slow slip can be observed prior to a large earthquake that may illuminate changes in stress or background slip rate. Continuous Global Positioning System (cGPS) data reveal a 5-month-long slow slip event (SSE) between ∼20 and 35 km depth that migrated toward and reached the vicinity of the mainshock a few weeks prior to the earthquake. Seismicity in Oaxaca is examined using single station tectonic tremor detection and multi-station waveform template matching of earthquake families. An increase in seismic activity, detected with template matching using aftershock waveforms, is only observed in the weeks prior to the mainshock in the region between the SSE and mainshock. In contrast, a SSE ∼15 months earlier occurred at ∼25-40 km depth and was primarily associated with an increase in tectonic tremor. Together, these observations indicate that in the Oaxaca region of Mexico shallower slow slip promotes elevated seismicity rates, and deeper slow slip promotes tectonic tremor. Results from this study add to a growing number of published accounts that indicate slow slip may be a common pre-earthquake signature.

  3. Focal Mechanisms and Stress Environment of the 12 May 2008 Wenchuan, China, Earthquake Sequence

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Luo, Y.; Ni, S.

    2012-12-01

    The 12 May 2008 Wenchuan earthquake (Mw=7.9) was the largest earthquake in China ever recorded by modern seismic instruments. It generated numerous moderate sized aftershocks that were well recorded by both permanent stations as well as portable instruments deployed after the mainshock. These waveform records yield high-quality data for the determination of focal mechanisms of aftershocks, which in turn provide important information for the investigation of regional stress field and the seismogenic environment in the Wenchuan earthquake source region. In this study, we determine the focal mechanisms, depths and moment magnitudes of moderate-sized (Mw ≥ 4.0) Wenchuan aftershocks using broadband waveform records. The focal mechanism results are then used to obtain the orientation and ratio of the principle stresses by the damped linear stress inversion method of Hardebeck & Michael (2006). Our results show that the majority of the moderate aftershocks occur at a depth range of 10-20 km and outside of the major rupture zones of the mainshock. The Wenchuan source region remains under a nearly horizontal compression with mostly thrust and occasional strike-slip faulting, especially towards the two ends of the rupture of the main shock. There is also clearly local variations in the orientation of the principle stresses.

  4. The Waveform Suite: A robust platform for accessing and manipulating seismic waveforms in MATLAB

    NASA Astrophysics Data System (ADS)

    Reyes, C. G.; West, M. E.; McNutt, S. R.

    2009-12-01

    The Waveform Suite, developed at the University of Alaska Geophysical Institute, is an open-source collection of MATLAB classes that provide a means to import, manipulate, display, and share waveform data while ensuring integrity of the data and stability for programs that incorporate them. Data may be imported from a variety of sources, such as Antelope, Winston databases, SAC files, SEISAN, .mat files, or other user-defined file formats. The waveforms being manipulated in MATLAB are isolated from their stored representations, relieving the overlying programs from the responsibility of understanding the specific format in which data is stored or retrieved. The waveform class provides an object oriented framework that simplifies manipulations to waveform data. Playing with data becomes easier because the tedious aspects of data manipulation have been automated. The user is able to change multiple waveforms simultaneously using standard mathematical operators and other syntactically familiar functions. Unlike MATLAB structs or workspace variables, the data stored within waveform class objects are protected from modification, and instead are accessed through standardized functions, such as get and set; these are already familiar to users of MATLAB’s graphical features. This prevents accidental or nonsensical modifications to the data, which in turn simplifies troubleshooting of complex programs. Upgrades to the internal structure of the waveform class are invisible to applications which use it, making maintenance easier. We demonstrate the Waveform Suite’s capabilities on seismic data from Okmok and Redoubt volcanoes. Years of data from Okmok were retrieved from Antelope and Winston databases. Using the Waveform Suite, we built a tremor-location program. Because the program was built on the Waveform Suite, modifying it to operate on real-time data from Redoubt involved only minimal code changes. The utility of the Waveform Suite as a foundation for large developments is demonstrated with the Correlation Toolbox for MATLAB. This mature package contains 50+ codes for carrying out various type of waveform correlation analyses (multiplet analysis, clustering, interferometry, …) This package is greatly strengthened by delegating numerous book-keeping and signal processing tasks to the underlying Waveform Suite. The Waveform Suite’s built-in tools for searching arbitrary directory/file structures is demonstrated with matched video and audio from the recent eruption of Redoubt Volcano. These tools were used to find subsets of photo images corresponding to specific seismic traces. Using Waveform’s audio file routines, matched video and audio were assembled to produce outreach-quality eruption products. The Waveform Suite is not designed as a ready-to-go replacement for more comprehensive packages such as SAC or AH. Rather, it is a suite of classes which provide core time series functionality in a MATLAB environment. It is designed to be a more robust alternative to the numerous ad hoc MATLAB formats that exist. Complex programs may be created upon the Waveform Suite’s framework, while existing programs may be modified to take advantage of the Waveform Suites capabilities.

  5. Statistics of the tripolar electrostatic solitary waves within magnetic reconnection diffusion region in the near-Earth magnetotail

    NASA Astrophysics Data System (ADS)

    Li, S. Y.; Zhang, S. F.; Cai, H.; Chen, X. Q.; Deng, X. H.

    2013-06-01

    In this paper, we report the observations and statistical characteristics of tripolar electrostatic solitary waves (ESWs) along the plasma sheet boundary layer near the magnetic reconnection X line in the near-Earth magnetotail. Within reconnection diffusion region, the tripolar ESWs are ample and are continuously observed during one burst interval (8.75 s) of the Geotail/WaveForm Capture in the neutral plasma sheet where β > 1 on 10:20 UT, 2 February 1996. The tripolar ESW is suggested to be one kind of steady-going solitary structure. More than 200 waveforms with clear tripolar characteristics are differentiated for statistical analysis, and result shows that (1) their amplitude is within 100->500 μV/m, with an average amplitude of about 254 μV/m; (2) the pulse width of the tripolar ESWs is 0.5-1.0 ms, with an average value of about 0.75 ms; (3) it is asymmetrical in both the amplitude and pulse width of the tripolar ESWs: most part of the tripolar ESWs (about 76.5%) are asymmetrical in the amplitude of one hump and the other one, and more than 75% (about 177 amount the 236 waveforms) of the tripolar ESWs are asymmetrical in the time duration of the two humps in the waveform; (4) most of the tripolar ESWs are with the potential humps of 10-60 mV, small ratio of them with potential humps larger than 100 mV. The tripolar ESWs with net potential drop of about 10-50 mV can be interpreted as "weak" double layers. The possible generation mechanism of tripolar ESWs and their role in reconnection are discussed by studying the particle distribution during which the tripolar ESWs are continuously observed. The observation of tripolar ESWs presents evidence of complex structure of electron holes within the reconnection diffusion region and is helpful to the understanding of the energy release process of reconnection.

  6. Hyperspectral remote sensing of paddy crop using insitu measurement and clustering technique

    NASA Astrophysics Data System (ADS)

    Moharana, S.; Dutta, S.

    2014-11-01

    Rice Agriculture, mainly cultivated in South Asia regions, is being monitored for extracting crop parameter, crop area, crop growth profile, crop yield using both optical and microwave remote sensing. Hyperspectral data provide more detailed information of rice agriculture. The present study was carried out at the experimental station of the Regional Rainfed Low land Rice Research Station, Assam, India (26.1400° N, 91.7700° E) and the overall climate of the study area comes under Lower Brahmaputra Valley (LBV) Agro Climatic Zones. The hyperspectral measurements were made in the year 2009 from 72 plots that include eight rice varieties along with three different level of nitrogen treatments (50, 100, 150 kg/ha) covering rice transplanting to the crop harvesting period. With an emphasis to varieties, hyperspectral measurements were taken in the year 2014 from 24 plots having 24 rice genotypes with different crop developmental ages. All the measurements were performed using a spectroradiometer with a spectral range of 350-1050 nm under direct sunlight of a cloud free sky and stable condition of the atmosphere covering more than 95 % canopy. In this study, reflectance collected from canopy of rice were expressed in terms of waveforms. Furthermore, generated waveforms were analysed for all combinations of nitrogen applications and varieties. A hierarchical clustering technique was employed to classify these waveforms into different groups. By help of agglomerative clustering algorithm a few number of clusters were finalized for different rice varieties along with nitrogen treatments. By this clustering approach, observational error in spectroradiometer reflectance was also nullified. From this hierarchical clustering, appropriate spectral signature for rice canopy were identified and will help to create rice crop classification accurately and therefore have a prospect to make improved information on rice agriculture at both local and regional scales. From this hierarchical clustering, spectral signature library for rice canopy were identified which will help to create rice crop classification maps and critical wave bands like green (519,559 nm), red (649 nm), red edge (729 nm) and NIR region (779,819 nm) were marked sensitive to nitrogen which will further help in nitrogen mapping of paddy agriculture over therefore have the prospect to make improved informed decisions.

  7. Microseismic Events Detection on Xishancun Landslide, Sichuan Province, China

    NASA Astrophysics Data System (ADS)

    Sheng, M.; Chu, R.; Wei, Z.

    2016-12-01

    On landslide, the slope movement and the fracturing of the rock mass often lead to microearthquakes, which are recorded as weak signals on seismographs. The distribution characteristics of temporal and spatial regional unstability as well as the impact of external factors on the unstable regions can be understand and analyzed by monitoring those microseismic events. Microseismic method can provide some information inside the landslide, which can be used as supplementary of geodetic methods for monitoring the movement of landslide surface. Compared to drilling on landslide, microseismic method is more economical and safe. Xishancun Landslide is located about 60km northwest of Wenchuan earthquake centroid, it keep deforming after the earthquake, which greatly increases the probability of disasters. In the autumn of 2015, 30 seismometers were deployed on the landslide for 3 months with intervals of 200 500 meters. First, we used regional earthquakes for time correction of seismometers to eliminate the influence of inaccuracy GPS clocks and the subsurface structure of stations. Due to low velocity of the loose medium, the travel time difference of microseismic events on the landslide up to 5s. According to travel time and waveform characteristics, we found many microseismic events and converted them into envelopes as templates, then we used a sliding-window cross-correlation technique based on waveform envelope to detect the other microseismic events. Consequently, 100 microseismic events were detected with the waveforms recorded on all seismometers. Based on the location, we found most of them located on the front of the landslide while the others located on the back end. The bottom and top of the landslide accumulated considerable energy and deformed largely, radiated waves could be recorded by all stations. What's more, the bottom with more events seemed very active. In addition, there were many smaller events happened in middle part of the landslide where released less energy, generated signals could be recorded only by a few stations. Based on the distribution of those microseismic events, we found four unstable regions which agreed well with deformed areas monitored by Geodesy methods. The distribution of those microseismic events, should be related to internal structure and movement of the landslide.

  8. New insights on active fault geometries in the Mentawai region of Sumatra, Indonesia, from broadband waveform modeling of earthquake source parameters

    NASA Astrophysics Data System (ADS)

    WANG, X.; Wei, S.; Bradley, K. E.

    2017-12-01

    Global earthquake catalogs provide important first-order constraints on the geometries of active faults. However, the accuracies of both locations and focal mechanisms in these catalogs are typically insufficient to resolve detailed fault geometries. This issue is particularly critical in subduction zones, where most great earthquakes occur. The Slab 1.0 model (Hayes et al. 2012), which was derived from global earthquake catalogs, has smooth fault geometries, and cannot adequately address local structural complexities that are critical for understanding earthquake rupture patterns, coseismic slip distributions, and geodetically monitored interseismic coupling. In this study, we conduct careful relocation and waveform modeling of earthquake source parameters to reveal fault geometries in greater detail. We take advantage of global data and conduct broadband waveform modeling for medium size earthquakes (M>4.5) to refine their source parameters, which include locations and fault plane solutions. The refined source parameters can greatly improve the imaging of fault geometry (e.g., Wang et al., 2017). We apply these approaches to earthquakes recorded since 1990 in the Mentawai region offshore of central Sumatra. Our results indicate that the uncertainty of the horizontal location, depth and dip angle estimation are as small as 5 km, 2 km and 5 degrees, respectively. The refined catalog shows that the 2005 and 2009 "back-thrust" sequences in Mentawai region actually occurred on a steeply landward-dipping fault, contradicting previous studies that inferred a seaward-dipping backthrust. We interpret these earthquakes as `unsticking' of the Sumatran accretionary wedge along a backstop fault that separates accreted material of the wedge from the strong Sunda lithosphere, or reactivation of an old normal fault buried beneath the forearc basin. We also find that the seismicity on the Sunda megathrust deviates in location from Slab 1.0 by up to 7 km, with along strike variation. The refined megathrust geometry will improve our understanding of the tectonic setting in this region, and place further constraints on rupture processes of the hazardous megathrust.

  9. The 2005 Tarapaca, Chile, Intermediate-depth Earthquake: Evidence of Heterogeneous Fluid Distribution Across the Plate?

    NASA Astrophysics Data System (ADS)

    Kuge, K.; Kase, Y.; Urata, Y.; Campos, J.; Perez, A.

    2008-12-01

    The physical mechanism of intermediate-depth earthquakes remains unsolved, and dehydration embrittlement in subducting plates is a candidate. An earthquake of Mw7.8 occurred at a depth of 115 km beneath Tarapaca, Chile. In this study, we suggest that the earthquake rupture can be attributed to heterogeneous fluid distribution across the subducting plate. The distribution of aftershocks suggests that the earthquake occurred on the subhorizontal fault plane. By modeling regional waveforms, we determined the spatiotemporal distribution of moment release on the fault plane, testing a different suite of velocity models and hypocenters. Two patches of high slip were robustly obtained, although their geometry tends to vary. We tested the results separately by computing the synthetic teleseismic P and pP waveforms. Observed P waveforms are generally modeled, whereas two pulses of observed pP require that the two patches are in the WNW-ESE direction. From the selected moment-release evolution, the dynamic rupture model was constructed by means of Mikumo et al. (1998). The model shows two patches of high dynamic stress drop. Notable is a region of negative stress drop between the two patches. This was required so that the region could lack wave radiation but propagate rupture from the first to the second patches. We found from teleseismic P that the radiation efficiency of the earthquake is relatively small, which can support the existence of negative stress drop during the rupture. The heterogeneous distribution of stress drop that we found can be caused by fluid. The T-P condition of dehydration explains the locations of double seismic zones (e.g. Hacker et al., 2003). The distance between the two patches of high stress drop agrees with the distance between the upper and lower layers of the double seismic zone observed in the south (Rietbrock and Waldhauser, 2004). The two patches can be parts of the double seismic zone, indicating the existence of fluid from dehydration, whereas the region of negative stress drop is in the absence of fluid. In the background environment of negative stress drop, fluid can change the negative stress drop to positive, due to pore pressure variation (e.g. thermal pressurization).

  10. Waveform fitting and geometry analysis for full-waveform lidar feature extraction

    NASA Astrophysics Data System (ADS)

    Tsai, Fuan; Lai, Jhe-Syuan; Cheng, Yi-Hsiu

    2016-10-01

    This paper presents a systematic approach that integrates spline curve fitting and geometry analysis to extract full-waveform LiDAR features for land-cover classification. The cubic smoothing spline algorithm is used to fit the waveform curve of the received LiDAR signals. After that, the local peak locations of the waveform curve are detected using a second derivative method. According to the detected local peak locations, commonly used full-waveform features such as full width at half maximum (FWHM) and amplitude can then be obtained. In addition, the number of peaks, time difference between the first and last peaks, and the average amplitude are also considered as features of LiDAR waveforms with multiple returns. Based on the waveform geometry, dynamic time-warping (DTW) is applied to measure the waveform similarity. The sum of the absolute amplitude differences that remain after time-warping can be used as a similarity feature in a classification procedure. An airborne full-waveform LiDAR data set was used to test the performance of the developed feature extraction method for land-cover classification. Experimental results indicate that the developed spline curve- fitting algorithm and geometry analysis can extract helpful full-waveform LiDAR features to produce better land-cover classification than conventional LiDAR data and feature extraction methods. In particular, the multiple-return features and the dynamic time-warping index can improve the classification results significantly.

  11. Interstation phase speed and amplitude measurements of surface waves with nonlinear waveform fitting: application to USArray

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Yoshizawa, K.

    2015-09-01

    A new method of fully nonlinear waveform fitting to measure interstation phase speeds and amplitude ratios is developed and applied to USArray. The Neighbourhood Algorithm is used as a global optimizer, which efficiently searches for model parameters that fit two observed waveforms on a common great-circle path by modulating the phase and amplitude terms of the fundamental-mode surface waves. We introduce the reliability parameter that represents how well the waveforms at two stations can be fitted in a time-frequency domain, which is used as a data selection criterion. The method is applied to observed waveforms of USArray for seismic events in the period from 2007 to 2010 with moment magnitude greater than 6.0. We collect a large number of phase speed data (about 75 000 for Rayleigh and 20 000 for Love) and amplitude ratio data (about 15 000 for Rayleigh waves) in a period range from 30 to 130 s. The majority of the interstation distances of measured dispersion data is less than 1000 km, which is much shorter than the typical average path-length of the conventional single-station measurements for source-receiver pairs. The phase speed models for Rayleigh and Love waves show good correlations on large scales with the recent tomographic maps derived from different approaches for phase speed mapping; for example, significant slow anomalies in volcanic regions in the western Unites States and fast anomalies in the cratonic region. Local-scale phase speed anomalies corresponding to the major tectonic features in the western United States, such as Snake River Plains, Basin and Range, Colorado Plateau and Rio Grande Rift have also been identified clearly in the phase speed models. The short-path information derived from our interstation measurements helps to increase the achievable horizontal resolution. We have also performed joint inversions for phase speed maps using the measured phase and amplitude ratio data of vertical component Rayleigh waves. These maps exhibit better recovery of phase speed perturbations, particularly where the strong lateral velocity gradient exists in which the effects of elastic focussing can be significant; that is, the Yellowstone hotspot, Snake River Plains, and Rio Grande Rift. The enhanced resolution of the phase speed models derived from the interstation phase and amplitude measurements will be of use for the better seismological constraint on the lithospheric structure, in combination with dense broad-band seismic arrays.

  12. Accurate calibration of waveform data measured by the Plasma Wave Experiment on board the ARASE satellite

    NASA Astrophysics Data System (ADS)

    Kitahara, M.; Katoh, Y.; Hikishima, M.; Kasahara, Y.; Matsuda, S.; Kojima, H.; Ozaki, M.; Yagitani, S.

    2017-12-01

    The Plasma Wave Experiment (PWE) is installed on board the ARASE satellite to measure the electric field in the frequency range from DC to 10 MHz, and the magnetic field in the frequency range from a few Hz to 100 kHz using two dipole wire-probe antennas (WPT) and three magnetic search coils (MSC), respectively. In particular, the Waveform Capture (WFC), one of the receivers of the PWE, can detect electromagnetic field waveform in the frequency range from a few Hz to 20 kHz. The Software-type Wave Particle Interaction Analyzer (S-WPIA) is installed on the ARASE satellite to measure the energy exchange between plasma waves and particles. Since S-WPIA uses the waveform data measured by WFC to calculate the relative phase angle between the wave magnetic field and velocity of energetic electrons, the high-accuracy is required to calibration of both amplitude and phase of the waveform data. Generally, the calibration procedure of the signal passed through a receiver consists of three steps; the transformation into spectra, the calibration by the transfer function of a receiver, and the inverse transformation of the calibrated spectra into the time domain. Practically, in order to reduce the side robe effect, a raw data is filtered by a window function in the time domain before applying Fourier transform. However, for the case that a first order differential coefficient of the phase transfer function of the system is not negligible, the phase of the window function convoluted into the calibrated spectra is shifted differently at each frequency, resulting in a discontinuity in the time domain of the calibrated waveform data. To eliminate the effect of the phase shift of a window function, we suggest several methods to calibrate a waveform data accurately and carry out simulations assuming simple sinusoidal waves as an input signal and using transfer functions of WPT, MSC, and WFC obtained in pre-flight tests. In consequence, we conclude that the following two methods can reduce an error contaminated through the calibration to less than 0.1 % of amplitude of input waves; (1) a Turkey-type window function with a flat top region of one-third of the window length and (2) modification of the window function for each frequency by referring the estimation of the phase shift due to the first order differential coefficient from the transfer functions.

  13. Properties of induced seismicity at the geothermal reservoir Insheim, Germany

    NASA Astrophysics Data System (ADS)

    Olbert, Kai; Küperkoch, Ludger; Thomas, Meier

    2017-04-01

    Within the framework of the German MAGS2 Project the processing of induced events at the geothermal power plant Insheim, Germany, has been reassessed and evaluated. The power plant is located close to the western rim of the Upper Rhine Graben in a region with a strongly heterogeneous subsurface. Therefore, the location of seismic events particularly the depth estimation is challenging. The seismic network consisting of up to 50 stations has an aperture of approximately 15 km around the power plant. Consequently, the manual processing is time consuming. Using a waveform similarity detection algorithm, the existing dataset from 2012 to 2016 has been reprocessed to complete the catalog of induced seismic events. Based on the waveform similarity clusters of similar events have been detected. Automated P- and S-arrival time determination using an improved multi-component autoregressive prediction algorithm yields approximately 14.000 P- and S-arrivals for 758 events. Applying a dataset of manual picks as reference the automated picking algorithm has been optimized resulting in a standard deviation of the residuals between automated and manual picks of about 0.02s. The automated locations show uncertainties comparable to locations of the manual reference dataset. 90 % of the automated relocations fall within the error ellipsoid of the manual locations. The remaining locations are either badly resolved due to low numbers of picks or so well resolved that the automatic location is outside the error ellipsoid although located close to the manual location. The developed automated processing scheme proved to be a useful tool to supplement real-time monitoring. The event clusters are located at small patches of faults known from reflection seismic studies. The clusters are observed close to both the injection as well as the production wells.

  14. Data-Intensive Discovery Methods for Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Richards, P. G.; Schaff, D. P.; Young, C. J.; Slinkard, M.; Heck, S.; Ammon, C. J.; Cleveland, M.

    2011-12-01

    For most regions of our planet, earthquakes and explosions are still located one-at-a-time using seismic phase picks-a procedure that has not fundamentally changed for more than a century. But methods that recognize and use seismogram archives as a major resource, enabling comparisons of waveforms recorded from neighboring events and relocating numerous events relative to each other, have been successfully demonstrated, especially for California, where they have enabled new insights into earthquake physics and Earth structure, and have raised seismic monitoring to new levels. We are beginning a series of projects to evaluate such data-intensive methods on ever-larger scales, using cross correlation (CC) to analyze seismicity in three different ways: (1) to find repeating earthquakes (whose waveforms are very similar, so the CC value measured over long windows must be high); (2) to measure time differences and amplitude differences to enable precise relocations and relative amplitude studies, of seismic events with respect to their neighboring events (then CC can be much lower, yet still give a better estimate of arrival time differences and relative amplitudes, compared to differencing phase picks and magnitudes); and, perhaps most importantly, (3) as a detector, to find new events in current data streams that are similar to events already in the archive, or to add to the number of detections of an already known event. Experience documented by Schaff and Waldhauser (2005) for California and Schaff (2009) for China indicates that the great majority of events in seismically active regions generate waveforms that are sufficiently similar to the waveforms of neighboring events to allow CC methods to be used to obtain relative locations. Schaff (2008, 2010) has demonstrated the capability of CC methods to achieve detections, with minimal false alarms, down to more than a magnitude unit below conventional STA/LTA detectors though CC methods are far more computationally-intensive. Elsewhere at this meeting Cleveland, Ammon, and Van DeMark report in more detail on greatly-improved event locations along oceanic fracture zones using CC methods applied to 40-80s Rayleigh waves; and Slinkard, Carr, Heck and Young at Sandia have reported greatly-improved computational approaches that reduce CPU demands from hours using a fast workstation to minutes using a GPU, when a continuous data stream lasting several days is searched (using CC methods) for seismic signals similar to those of hundreds of previously documented events. From diverse results such as these, it seems appropriate to consider the future possibility of radical improvement in monitoring virtually all seismically active areas, using archives of prior events as the major resource-though we recognize that such an approach does not directly help to characterize seismic events in inactive regions, or events in active regions which are dissimilar to previously recorded events.

  15. Southern Africa seismic structure and source studies

    NASA Astrophysics Data System (ADS)

    Zhao, Ming

    1998-09-01

    The upper mantle seismic velocity structure beneath southern Africa is investigated using travel time and waveform data. Waveform and travel time data used in this study come mainly from a large mine tremor in South Africa (msb{b} 5.6) recorded on stations of the southern Africa and the Tanzania Broadband Seismic Experiment. Auxiliary data along similar profiles are obtained from other moderate events within eastern and southern Africa. The waveform data from the large tremor show upper mantle triplications for both the 400 and 670-km discontinuities between 18sp° and 27sp° distance. The most notable feature of the data is a large, late P phase that propagates to at least 27sp°. This phase is striking because of its late arrival time (as much as 15 seconds after direct P at 27sp°) and high amplitude relative to the first arrival. Travel times from all available stations are used to invert for the P wave velocity structure down to 800 km depth and S wave velocity structure down to 200 km using the Wiechert-Herglotz (W-H) inversion technique. The P wave velocities from the uppermost mantle down to 300 km are as much as 3% higher than the global average and are slightly slower than the global average between 300 and 400 km depths. The velocity gradient between 300 and 400 km is 0.0015 1/s. The S wave travel time data yield fast velocities above 200-km depth. The S wave velocity structure appears inconsistent with the P wave structure model indicating varying Poisson's ratio in the upper mantle. Little evidence is found for a pronounced upper mantle low velocity zone. Both sharp and gradual-change 400-km discontinuities are favored by the waveform data. The 670-km discontinuity appears as a gradual-change zone. The source mechanism of the mb 5.6 mining tremor itself is important for seismic discrimination and insight into mining tremor sources. Source parameters for this event as well as some other large mining tremors from the South African gold mines are studied using detailed waveform modeling. All these events (mb > 4.8) indicate normal-faulting slip with P wave nodal planes striking approximately NS. Tectonic stress is essential to control the mining seismicity of large magnitude. Mining geometry also plays an important role in influencing the seismicity. The crustal velocity structure at the study area is investigated in detail using teleseismic receiver function and regional surface wave dispersion data. The results indicate some lateral variation in the shallow crust. The thickness of the crust beneath the GSN station BOSA is 33-36 km. Gradually increasing velocities with depth in the crust are preferred. A thin layer with rather low velocity at the top of the crust beneath BOSA is important for generating the regional waveforms. The crust beneath LBTB is a few kilometers thicker than at BOSA and the Moho there is likely to be dipping. (Abstract shortened by UMI.)

  16. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.

    PubMed

    Xiang, J; Siddiqui, A H; Meng, H

    2014-12-18

    Due to the lack of patient-specific inlet flow waveform measurements, most computational fluid dynamics (CFD) simulations of intracranial aneurysms usually employ waveforms that are not patient-specific as inlet boundary conditions for the computational model. The current study examined how this assumption affects the predicted hemodynamics in patient-specific aneurysm geometries. We examined wall shear stress (WSS) and oscillatory shear index (OSI), the two most widely studied hemodynamic quantities that have been shown to predict aneurysm rupture, as well as maximal WSS (MWSS), energy loss (EL) and pressure loss coefficient (PLc). Sixteen pulsatile CFD simulations were carried out on four typical saccular aneurysms using 4 different waveforms and an identical inflow rate as inlet boundary conditions. Our results demonstrated that under the same mean inflow rate, different waveforms produced almost identical WSS distributions and WSS magnitudes, similar OSI distributions but drastically different OSI magnitudes. The OSI magnitude is correlated with the pulsatility index of the waveform. Furthermore, there is a linear relationship between aneurysm-averaged OSI values calculated from one waveform and those calculated from another waveform. In addition, different waveforms produced similar MWSS, EL and PLc in each aneurysm. In conclusion, inlet waveform has minimal effects on WSS, OSI distribution, MWSS, EL and PLc and a strong effect on OSI magnitude, but aneurysm-averaged OSI from different waveforms has a strong linear correlation with each other across different aneurysms, indicating that for the same aneurysm cohort, different waveforms can consistently stratify (rank) OSI of aneurysms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. MO-DE-207A-12: Toward Patient-Specific 4DCT Reconstruction Using Adaptive Velocity Binning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, E.D.; Glide-Hurst, C.; Wayne State University, Detroit, MI

    2016-06-15

    Purpose: While 4DCT provides organ/tumor motion information, it often samples data over 10–20 breathing cycles. For patients presenting with compromised pulmonary function, breathing patterns can change over the acquisition time, potentially leading to tumor delineation discrepancies. This work introduces a novel adaptive velocity-modulated binning (AVB) 4DCT algorithm that modulates the reconstruction based on the respiratory waveform, yielding a patient-specific 4DCT solution. Methods: AVB was implemented in a research reconstruction configuration. After filtering the respiratory waveform, the algorithm examines neighboring data to a phase reconstruction point and the temporal gate is widened until the difference between the reconstruction point and waveformmore » exceeds a threshold value—defined as percent difference between maximum/minimum waveform amplitude. The algorithm only impacts reconstruction if the gate width exceeds a set minimum temporal width required for accurate reconstruction. A sensitivity experiment of threshold values (0.5, 1, 5, 10, and 12%) was conducted to examine the interplay between threshold, signal to noise ratio (SNR), and image sharpness for phantom and several patient 4DCT cases using ten-phase reconstructions. Individual phase reconstructions were examined. Subtraction images and regions of interest were compared to quantify changes in SNR. Results: AVB increased signal in reconstructed 4DCT slices for respiratory waveforms that met the prescribed criteria. For the end-exhale phases, where the respiratory velocity is low, patient data revealed a threshold of 0.5% demonstrated increased SNR in the AVB reconstructions. For intermediate breathing phases, threshold values were required to be >10% to notice appreciable changes in CT intensity with AVB. AVB reconstructions exhibited appreciably higher SNR and reduced noise in regions of interest that were photon deprived such as the liver. Conclusion: We demonstrated that patient-specific velocity-based 4DCT reconstruction is feasible. Image noise was reduced with AVB, suggesting potential applications for low-dose acquisitions and to improve 4DCT reconstruction for irregular breathing patients. The submitting institution holds research agreements with Philips Healthcare.« less

  18. Seismotectonics of the Eastern Himalayan System and Indo-Burman Convergence Zone Using Seismic Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Mitra, S.; Suresh, G.

    2014-12-01

    The Eastern Himalayan System (east of 88°E) is distinct from the rest of the India-Eurasia continental collision, due to a wider zone of distributed deformation, oblique convergence across two orthogonal plate boundaries and near absence of foreland basin sedimentary strata. To understand the seismotectonics of this region we study the spatial distribution and source mechanism of earthquakes originating within Eastern Himalaya, northeast India and Indo-Burman Convergence Zone (IBCZ). We compute focal mechanism of 32 moderate-to-large earthquakes (mb >=5.4) by modeling teleseismic P- and SH-waveforms, from GDSN stations, using least-squares inversion algorithm; and 7 small-to-moderate earthquakes (3.5<= mb <5.4) by modeling local P- and S-waveforms, from the NorthEast India Telemetered Network, using non-linear grid search algorithm. We also include source mechanisms from previous studies, either computed by waveform inversion or by first motion polarity from analog data. Depth distribution of modeled earthquakes reveal that the seismogenic layer beneath northeast India is ~45km thick. From source mechanisms we observe that moderate earthquakes in northeast India are spatially clustered in five zones with distinct mechanisms: (a) thrust earthquakes within the Eastern Himalayan wedge, on north dipping low angle faults; (b) thrust earthquakes along the northern edge of Shillong Plateau, on high angle south dipping fault; (c) dextral strike-slip earthquakes along Kopili fault zone, between Shillong Plateau and Mikir Hills, extending southeast beneath Naga Fold belts; (d) dextral strike-slip earthquakes within Bengal Basin, immediately south of Shillong Plateau; and (e) deep focus (>50 km) thrust earthquakes within IBCZ. Combining with GPS geodetic observations, it is evident that the N20E convergence between India and Tibet is accommodated as elastic strain both within eastern Himalaya and regions surrounding the Shillong Plateau. We hypothesize that the strike-slip earthquakes south of the Plateau occur on re-activated continental rifts paralleling the Eocene hinge zone. Distribution of earthquake hypocenters across the IBCZ reveal active subduction of the Indian plate beneath Burma micro-plate.

  19. STRS Compliant FPGA Waveform Development

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer; Downey, Joseph; Mortensen, Dale

    2008-01-01

    The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. The extension of STRS to the SSP hardware will promote easier waveform reconfiguration and reuse. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. A FPGA-based transmit waveform implementation of the proposed standard interfaces on a laboratory breadboard SDR will be discussed.

  20. Use of the Kalman Filter for Aortic Pressure Waveform Noise Reduction

    PubMed Central

    Lu, Hsiang-Wei; Wu, Chung-Che; Aliyazicioglu, Zekeriya; Kang, James S.

    2017-01-01

    Clinical applications that require extraction and interpretation of physiological signals or waveforms are susceptible to corruption by noise or artifacts. Real-time hemodynamic monitoring systems are important for clinicians to assess the hemodynamic stability of surgical or intensive care patients by interpreting hemodynamic parameters generated by an analysis of aortic blood pressure (ABP) waveform measurements. Since hemodynamic parameter estimation algorithms often detect events and features from measured ABP waveforms to generate hemodynamic parameters, noise and artifacts integrated into ABP waveforms can severely distort the interpretation of hemodynamic parameters by hemodynamic algorithms. In this article, we propose the use of the Kalman filter and the 4-element Windkessel model with static parameters, arterial compliance C, peripheral resistance R, aortic impedance r, and the inertia of blood L, to represent aortic circulation for generating accurate estimations of ABP waveforms through noise and artifact reduction. Results show the Kalman filter could very effectively eliminate noise and generate a good estimation from the noisy ABP waveform based on the past state history. The power spectrum of the measured ABP waveform and the synthesized ABP waveform shows two similar harmonic frequencies. PMID:28611850

  1. Joint Inversion of Earthquake Source Parameters with local and teleseismic body waves

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ni, S.; Wang, Z.

    2011-12-01

    In the classical source parameter inversion algorithm of CAP (Cut and Paste method, by Zhao and Helmberger), waveform data at near distances (typically less than 500km) are partitioned into Pnl and surface waves to account for uncertainties in the crustal models and different amplitude weight of body and surface waves. The classical CAP algorithms have proven effective for resolving source parameters (focal mechanisms, depth and moment) for earthquakes well recorded on relatively dense seismic network. However for regions covered with sparse stations, it is challenging to achieve precise source parameters . In this case, a moderate earthquake of ~M6 is usually recorded on only one or two local stations with epicentral distances less than 500 km. Fortunately, an earthquake of ~M6 can be well recorded on global seismic networks. Since the ray paths for teleseismic and local body waves sample different portions of the focal sphere, combination of teleseismic and local body wave data helps constrain source parameters better. Here we present a new CAP mothod (CAPjoint), which emploits both teleseismic body waveforms (P and SH waves) and local waveforms (Pnl, Rayleigh and Love waves) to determine source parameters. For an earthquake in Nevada that is well recorded with dense local network (USArray stations), we compare the results from CAPjoint with those from the traditional CAP method involving only of local waveforms , and explore the efficiency with bootstraping statistics to prove the results derived by CAPjoint are stable and reliable. Even with one local station included in joint inversion, accuracy of source parameters such as moment and strike can be much better improved.

  2. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion

    USGS Publications Warehouse

    Pecher, I.A.; Minshull, T.A.; Singh, S.C.; von Huene, Roland E.

    1996-01-01

    Much of our knowledge of the worldwide distribution of submarine gas hydrates comes from seismic observations of Bottom Simulating Reflectors (BSRs). Full waveform inversion has proven to be a reliable technique for studying the fine structure of BSRs using the compressional wave velocity. We applied a non-linear full waveform inversion technique to a BSR at a location offshore Peru. We first determined the large-scale features of seismic velocity variations using a statistical inversion technique to maximise coherent energy along travel-time curves. These velocities were used for a starting velocity model for the full waveform inversion, which yielded a detailed velocity/depth model in the vicinity of the BSR. We found that the data are best fit by a model in which the BSR consists of a thin, low-velocity layer. The compressional wave velocity drops from 2.15 km/s down to an average of 1.70 km/s in an 18m thick interval, with a minimum velocity of 1.62 km/s in a 6 m interval. The resulting compressional wave velocity was used to estimate gas content in the sediments. Our results suggest that the low velocity layer is a 6-18 m thick zone containing a few percent of free gas in the pore space. The presence of the BSR coincides with a region of vertical uplift. Therefore, we suggest that gas at this BSR is formed by a dissociation of hydrates at the base of the hydrate stability zone due to uplift and subsequently a decrease in pressure.

  3. Intercorrelation of P and Pn Recordings for the North Korean Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Lay, T.; Voytan, D.; Ohman, J.

    2017-12-01

    The relative waveform analysis procedure called Intercorrelation is applied to Pn and P waveforms at regional and teleseismic distances, respectively, for the 5 underground nuclear tests at the North Korean nuclear test site. Intercorrelation is a waveform equalization procedure that parameterizes the effective source function for a given explosion, including the reduced velocity potential convolved with a simplified Green's function that accounts for the free surface reflections (pPn and pP), and possibly additional arrivals such as spall. The source function for one event is convolved with the signal at a given station for a second event, and the recording at the same station for the first event is convolved with the source function for the second event. This procedure eliminates the need to predict the complex receiver function effects at the station, which are typically not well-known for short-period response. The parameters of the source function representation are yield and burial depth, and an explosion source model is required. Here we use the Mueller-Murphy representation of the explosion reduced velocity potential, which explicitly depends on yield and burial depth. We then search over yield and burial depth ranges for both events, constrained by a priori information about reasonable ranges of parameters, to optimize the simultaneous match of multiple station signals for the two events. This procedure, applied to the apparently overburied North Korean nuclear tests (no indications of spall complexity), assuming simple free surface interactions (elastic reflection from a flat surface), provides excellent waveform equalization for all combinations of 5 nuclear tests.

  4. New Frontiers in Characterization of Sub-Catalog Microseismicity: Utilizing Inter-Event Waveform Cross Correlation for Estimating Precise Locations, Magnitudes, and Focal Mechanisms of Tiny Earthquakes

    NASA Astrophysics Data System (ADS)

    Ellsworth, W. L.; Shelly, D. R.; Hardebeck, J.; Hill, D. P.

    2017-12-01

    Microseismicity often conveys the most direct information about active processes in the earth's subsurface. However, routine network processing typically leaves most earthquakes uncharacterized. These "sub-catalog" events can provide critical clues to ongoing processes in the source region. To address this issue, we have developed waveform-based processing that leverages the existing routine catalog of earthquakes to detect and characterize "sub-catalog" events (those absent in routine catalogs). By correlating waveforms of cataloged events with the continuous data stream, we 1) identify events with similar waveform signatures in the continuous data across multiple stations, 2) precisely measure relative time lags across these stations for both P- and S-wave time windows, and 3) estimate the relative polarity between events by the sign of the peak absolute value correlations and its height above the secondary peak. When combined, these inter-event comparisons yield robust measurements, which enable sensitive event detection, relative relocation, and relative magnitude estimation. The most recent addition, focal mechanisms derived from correlation-based relative polarities, addresses a significant shortcoming in microseismicity analyses (see Shelly et al., JGR, 2016). Depending on the application, we can characterize 2-10 times as many events as included in the initial catalog. This technique is particularly well suited for compact zones of active seismicity such as seismic swarms. Application to a 2014 swarm in Long Valley Caldera, California, illuminates complex patterns of faulting that would have otherwise remained obscured. The prevalence of such features in other environments remains an important, as yet unresolved, question.

  5. Full-waveform inversion for the Iranian plateau

    NASA Astrophysics Data System (ADS)

    Masouminia, N.; Fichtner, A.; Rahimi, H.

    2017-12-01

    We aim to obtain a detailed tomographic model for the Iranian plateau facilitated by full-waveform inversion. By using this method, we intend to better constrain the 3-D structure of the crust and the upper mantle in the region. The Iranian plateau is a complex tectonic area resulting from the collision of the Arabian and Eurasian tectonic plates. This region is subject to complex tectonic processes such as Makran subduction zone, which runs along the southeastern coast of Iran, and the convergence of the Arabian and- Eurasian plates, which itself led to another subduction under Central Iran. This continent-continent collision has also caused shortening and crustal thickening, which can be seen today as Zagros mountain range in the south and Kopeh Dagh mountain range in the northeast. As a result of such a tectonic activity, the crust and the mantle beneath the region are expected to be highly heterogeneous. To further our understanding of the region and its tectonic history, a detailed 3-D velocity model is required.To construct a 3-D model, we propose to use full-waveform inversion, which allows us to incorporate all types of waves recorded in the seismogram, including body waves as well as fundamental- and higher-mode surface waves. Exploiting more information from the observed data using this approach is likely to constrain features which have not been found by classical tomography studies so far. We address the forward problem using Salvus - a numerical wave propagation solver, based on spectral-element method and run on high-performance computers. The solver allows us to simulate wave field propagating in highly heterogeneous, attenuating and anisotropic media, respecting the surface topography. To improve the model, we solve the optimization problem. Solution of this optimization problem is based on an iterative approach which employs adjoint methods to calculate the gradient and uses steepest descent and conjugate-gradient methods to minimize the objective function. Each iteration of such an approach is expected to bring the model closer to the true model.Our model domain extends between 25°N and 40°N in latitude and 42°E and 63°E in longitude. To constrain the 3-D structure of the area we use 83 broadband seismic stations and 146 earthquakes with magnitude Mw>4.5 -that occurred in the region between 2012 and 2017.

  6. General Mode Scanning Probe Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somnath, Suhas; Jesse, Stephen

    A critical part of SPM measurements is the information transfer from the probe-sample junction to the measurement system. Current information transfer methods heavily compress the information-rich data stream by averaging the data over a time interval, or via heterodyne detection approaches such as lock-in amplifiers and phase-locked loops. As a consequence, highly valuable information at the sub-microsecond time scales or information from frequencies outside the measurement band is lost. We have developed a fundamentally new approach called General Mode (G-mode), where we can capture the complete information stream from the detectors in the microscope. The availability of the complete informationmore » allows the microscope operator to analyze the data via information-theory analysis or comprehensive physical models. Furthermore, the complete data stream enables advanced data-driven filtering algorithms, multi-resolution imaging, ultrafast spectroscropic imaging, spatial mapping of multidimensional variability in material properties, etc. Though we applied this approach to scanning probe microscopy, the general philosophy of G-mode can be applied to many other modes of microscopy. G-mode data is captured by completely custom software written in LabVIEW and Matlab. The software generates the waveforms to electrically, thermally, or mechanically excite the SPM probe. It handles real-time communications with the microscope software for operations such as moving the SPM probe position and also controls other instrumentation hardware. The software also controls multiple variants of high-speed data acquisition cards to excite the SPM probe with the excitation waveform and simultaneously measure multiple channels of information from the microscope detectors at sampling rates of 1-100 MHz. The software also saves the raw data to the computer and allows the microscope operator to visualize processed or filtered data during the experiment. The software performs all these features while offering a user-friendly interface.« less

  7. Complete waveform model for compact binaries on eccentric orbits

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; Kumar, Prayush; Agarwal, Bhanu; George, Daniel; Schive, Hsi-Yu; Pfeiffer, Harald P.; Haas, Roland; Ren, Wei; Chu, Tony; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Scheel, Mark A.; Szilagyi, Bela

    2017-01-01

    We present a time domain waveform model that describes the inspiral, merger and ringdown of compact binary systems whose components are nonspinning, and which evolve on orbits with low to moderate eccentricity. The inspiral evolution is described using third-order post-Newtonian equations both for the equations of motion of the binary, and its far-zone radiation field. This latter component also includes instantaneous, tails and tails-of-tails contributions, and a contribution due to nonlinear memory. This framework reduces to the post-Newtonian approximant TaylorT4 at third post-Newtonian order in the zero-eccentricity limit. To improve phase accuracy, we also incorporate higher-order post-Newtonian corrections for the energy flux of quasicircular binaries and gravitational self-force corrections to the binding energy of compact binaries. This enhanced prescription for the inspiral evolution is combined with a fully analytical prescription for the merger-ringdown evolution constructed using a catalog of numerical relativity simulations. We show that this inspiral-merger-ringdown waveform model reproduces the effective-one-body model of Ref. [Y. Pan et al., Phys. Rev. D 89, 061501 (2014)., 10.1103/PhysRevD.89.061501] for quasicircular black hole binaries with mass ratios between 1 to 15 in the zero-eccentricity limit over a wide range of the parameter space under consideration. Using a set of eccentric numerical relativity simulations, not used during calibration, we show that our new eccentric model reproduces the true features of eccentric compact binary coalescence throughout merger. We use this model to show that the gravitational-wave transients GW150914 and GW151226 can be effectively recovered with template banks of quasicircular, spin-aligned waveforms if the eccentricity e0 of these systems when they enter the aLIGO band at a gravitational-wave frequency of 14 Hz satisfies e0GW 150914≤0.15 and e0GW 151226≤0.1 . We also find that varying the spin combinations of the quasicircular, spin-aligned template waveforms does not improve the recovery of nonspinning, eccentric signals when e0≥0.1 . This suggests that these two signal manifolds are predominantly orthogonal.

  8. Combined KHFAC+DC nerve block without onset or reduced nerve conductivity after block

    PubMed Central

    Franke, Manfred; Vrabec, Tina; Wainright, Jesse; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2017-01-01

    Background Kilohertz Frequency Alternating Current waveforms (KHFAC) have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response. The objective of this study is to evaluate the feasibility of using charge balanced direct current (CBDC) waveforms to temporarily block motor nerve conductivity distally to the KHFAC electrodes to mitigate the block onset-response. Methods A total of eight animals were used in this study. A set of four animals were used to assess feasibility and reproducibility of a combined KHFAC+CBDC block. A following randomized study, conducted on a second set of four animals, compared the onset response resulting from KHFAC alone and combined KHFAC+CBDC waveforms. To quantify the onset, peak forces and the force-time integral were measured during KHFAC block initiation. Nerve conductivity was monitored throughout the study by comparing muscle twitch forces evoked by supra-maximal stimulation proximal and distal to the block electrodes. Each animal of the randomized study received at least 300 seconds (range: 318 to 1563s) of cumulative DC to investigate the impact of combined KHFAC+CBDC on nerve viability. Results The peak onset force was reduced significantly from 20.73 N (range: 18.6–26.5 N) with KHFAC alone to 0.45 N (range: 0.2–0.7 N) with the combined CBDC and KHFAC block waveform (p<0.001). The area under the force curve was reduced from 6.8 Ns (range: 3.5–21.9 Ns) to 0.54 Ns (range: 0.18–0.86Ns) (p<0.01). No change in nerve conductivity was observed after application of the combined KHFAC+CBDC block relative to KHFAC waveforms. Conclusion The distal application of CBDC can significantly reduce or even completely prevent the KHFAC onset response without a change in nerve conductivity. PMID:25115572

  9. Combined KHFAC + DC nerve block without onset or reduced nerve conductivity after block

    NASA Astrophysics Data System (ADS)

    Franke, Manfred; Vrabec, Tina; Wainright, Jesse; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-10-01

    Objective. Kilohertz frequency alternating current (KHFAC) waveforms have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response. The objective of this study is to evaluate the feasibility of using charge balanced direct current (CBDC) waveforms to temporarily block motor nerve conductivity distally to the KHFAC electrodes to mitigate the block onset-response. Approach. A total of eight animals were used in this study. A set of four animals were used to assess feasibility and reproducibility of a combined KHFAC + CBDC block. A following randomized study, conducted on a second set of four animals, compared the onset response resulting from KHFAC alone and combined KHFAC + CBDC waveforms. To quantify the onset, peak forces and the force-time integral were measured during KHFAC block initiation. Nerve conductivity was monitored throughout the study by comparing muscle twitch forces evoked by supra-maximal stimulation proximal and distal to the block electrodes. Each animal of the randomized study received at least 300 s (range: 318-1563 s) of cumulative dc to investigate the impact of combined KHFAC + CBDC on nerve viability. Main results. The peak onset force was reduced significantly from 20.73 N (range: 18.6-26.5 N) with KHFAC alone to 0.45 N (range: 0.2-0.7 N) with the combined CBDC and KHFAC block waveform (p < 0.001). The area under the force curve was reduced from 6.8 Ns (range: 3.5-21.9 Ns) to 0.54 Ns (range: 0.18-0.86 Ns) (p < 0.01). No change in nerve conductivity was observed after application of the combined KHFAC + CBDC block relative to KHFAC waveforms. Significance. The distal application of CBDC can significantly reduce or even completely prevent the KHFAC onset response without a change in nerve conductivity.

  10. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms

    PubMed Central

    Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D.

    2017-01-01

    Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices. PMID:28848417

  11. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms.

    PubMed

    Daneshzand, Mohammad; Faezipour, Miad; Barkana, Buket D

    2017-01-01

    Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices.

  12. Gravitational Waveforms in the Early Inspiral of Binary Black Hole Systems

    NASA Astrophysics Data System (ADS)

    Barkett, Kevin; Kumar, Prayush; Bhagwat, Swetha; Brown, Duncan; Scheel, Mark; Szilagyi, Bela; Simulating eXtreme Spacetimes Collaboration

    2015-04-01

    The inspiral, merger and ringdown of compact object binaries are important targets for gravitational wave detection by aLIGO. Detection and parameter estimation will require long, accurate waveforms for comparison. There are a number of analytical models for generating gravitational waveforms for these systems, but the only way to ensure their consistency and correctness is by comparing with numerical relativity simulations that cover many inspiral orbits. We've simulated a number of binary black hole systems with mass ratio 7 and a moderate, aligned spin on the larger black hole. We have attached these numerical waveforms to analytical waveform models to generate long hybrid gravitational waveforms that span the entire aLIGO frequency band. We analyze the robustness of these hybrid waveforms and measure the faithfulness of different hybrids with each other to obtain an estimate on how long future numerical simulations need to be in order to ensure that waveforms are accurate enough for use by aLIGO.

  13. Rapidly reconfigurable high-fidelity optical arbitrary waveform generation in heterogeneous photonic integrated circuits.

    PubMed

    Feng, Shaoqi; Qin, Chuan; Shang, Kuanping; Pathak, Shibnath; Lai, Weicheng; Guan, Binbin; Clements, Matthew; Su, Tiehui; Liu, Guangyao; Lu, Hongbo; Scott, Ryan P; Ben Yoo, S J

    2017-04-17

    This paper demonstrates rapidly reconfigurable, high-fidelity optical arbitrary waveform generation (OAWG) in a heterogeneous photonic integrated circuit (PIC). The heterogeneous PIC combines advantages of high-speed indium phosphide (InP) modulators and low-loss, high-contrast silicon nitride (Si3N4) arrayed waveguide gratings (AWGs) so that high-fidelity optical waveform syntheses with rapid waveform updates are possible. The generated optical waveforms spanned a 160 GHz spectral bandwidth starting from an optical frequency comb consisting of eight comb lines separated by 20 GHz channel spacing. The Error Vector Magnitude (EVM) values of the generated waveforms were approximately 16.4%. The OAWG module can rapidly and arbitrarily reconfigure waveforms upon every pulse arriving at 2 ns repetition time. The result of this work indicates the feasibility of truly dynamic optical arbitrary waveform generation where the reconfiguration rate or the modulator bandwidth must exceed the channel spacing of the AWG and the optical frequency comb.

  14. Waveforms for optimal sub-keV high-order harmonics with synthesized two- or three-colour laser fields.

    PubMed

    Jin, Cheng; Wang, Guoli; Wei, Hui; Le, Anh-Thu; Lin, C D

    2014-05-30

    High-order harmonics extending to the X-ray region generated in a gas medium by intense lasers offer the potential for providing tabletop broadband light sources but so far are limited by their low conversion efficiency. Here we show that harmonics can be enhanced by one to two orders of magnitude without an increase in the total laser power if the laser's waveform is optimized by synthesizing two- or three-colour fields. The harmonics thus generated are also favourably phase-matched so that radiation is efficiently built up in the gas medium. Our results, combined with the emerging intense high-repetition MHz lasers, promise to increase harmonic yields by several orders to make harmonics feasible in the near future as general bright tabletop light sources, including intense attosecond pulses.

  15. Applying Numerical Relativity to Gravitational Wave Astronomy using LISA

    NASA Astrophysics Data System (ADS)

    McWilliams, Sean T.

    2007-12-01

    We present recently calculated waveforms from numerical relativity and their application to the search for and precision measurement of black hole binary coalescences using LISA. In particular, we focus on the advances made in moving beyond the equal mass, nonspinning case into other regions of parameter space, particularly the case of nonspinning holes with ever-increasing mass ratios as the state of the art has progressed. Also, we investigate the potential contribution from the merger portion of the waveform to measurement uncertainties of the binary's parameters. Until now, only the inspiral has been investigated due to the lack of availability of mergers and the increased complexity required in moving beyond the low frequency approximation of the interferometer, which is necessary when mergers are included. We discuss the subtleties of the problem, and present preliminary results.

  16. Waveform inversion for D″ structure beneath northern Asia using Hi-net tiltmeter data

    NASA Astrophysics Data System (ADS)

    Kawai, Kenji; Sekine, Shutaro; Fuji, Nobuaki; Geller, Robert J.

    2009-10-01

    We invert shear-wave waveform data for the radial variation of (isotropic) shear-velocity in D″ beneath Northern Asia. We reduce source and receiver effects by using data for intermediate and deep events beneath Italy and Japan recorded respectively at stations in East Asia and Europe. Relative to PREM, we find a significantly higher S-wave velocity in the depth range from 150 to 300 km above the core-mantle boundary (CMB) and a slightly lower S-wave velocity in the depth range 0-150 km above the CMB. As our previous studies of D″ structure beneath Central America and the Arctic obtained similar S-wave velocity models, we suggest that this pattern of vertical dependence of shear wave velocity in D″ may be a general phenomenon, at least in relatively cold regions.

  17. The puzzle of the 1996 Bárdarbunga, Iceland, earthquake: no volumetric component in the source mechanism

    USGS Publications Warehouse

    Tkalcic, Hrvoje; Dreger, Douglas S.; Foulger, Gillian R.; Julian, Bruce R.

    2009-01-01

    A volcanic earthquake with Mw 5.6 occurred beneath the Bárdarbunga caldera in Iceland on 29 September 1996. This earthquake is one of a decade-long sequence of  events at Bárdarbunga with non-double-couple mechanisms in the Global Centroid Moment Tensor catalog. Fortunately, it was recorded well by the regional-scale Iceland Hotspot Project seismic experiment. We investigated the event with a complete moment tensor inversion method using regional long-period seismic waveforms and a composite structural model. The moment tensor inversion using data from stations of the Iceland Hotspot Project yields a non-double-couple solution with a 67% vertically oriented compensated linear vector dipole component, a 32% double-couple component, and a statistically insignificant (2%) volumetric (isotropic) contraction. This indicates the absence of a net volumetric component, which is puzzling in the case of a large volcanic earthquake that apparently is not explained by shear slip on a planar fault. A possible volcanic mechanism that can produce an earthquake without a volumetric component involves two offset sources with similar but opposite volume changes. We show that although such a model cannot be ruled out, the circumstances under which it could happen are rare.

  18. Assessment of shear stress related parameters in the carotid bifurcation using mouse-specific FSI simulations.

    PubMed

    De Wilde, David; Trachet, Bram; Debusschere, Nic; Iannaccone, Francesco; Swillens, Abigail; Degroote, Joris; Vierendeels, Jan; De Meyer, Guido R Y; Segers, Patrick

    2016-07-26

    The ApoE(-)(/)(-) mouse is a common small animal model to study atherosclerosis, an inflammatory disease of the large and medium sized arteries such as the carotid artery. It is generally accepted that the wall shear stress, induced by the blood flow, plays a key role in the onset of this disease. Wall shear stress, however, is difficult to derive from direct in vivo measurements, particularly in mice. In this study, we integrated in vivo imaging (micro-Computed Tomography-µCT and ultrasound) and fluid-structure interaction (FSI) modeling for the mouse-specific assessment of carotid hemodynamics and wall shear stress. Results were provided for 8 carotid bifurcations of 4 ApoE(-)(/)(-) mice. We demonstrated that accounting for the carotid elasticity leads to more realistic flow waveforms over the complete domain of the model due to volume buffering capacity in systole. The 8 simulated cases showed fairly consistent spatial distribution maps of time-averaged wall shear stress (TAWSS) and relative residence time (RRT). Zones with reduced TAWSS and elevated RRT, potential indicators of atherosclerosis-prone regions, were located mainly at the outer sinus of the external carotid artery. In contrast to human carotid hemodynamics, no flow recirculation could be observed in the carotid bifurcation region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Signal Waveform Detection with Statistical Automaton for Internet and Web Service Streaming

    PubMed Central

    Liu, Yiming; Huang, Nai-Lun; Zeng, Fufu; Lin, Fang-Ying

    2014-01-01

    In recent years, many approaches have been suggested for Internet and web streaming detection. In this paper, we propose an approach to signal waveform detection for Internet and web streaming, with novel statistical automatons. The system records network connections over a period of time to form a signal waveform and compute suspicious characteristics of the waveform. Network streaming according to these selected waveform features by our newly designed Aho-Corasick (AC) automatons can be classified. We developed two versions, that is, basic AC and advanced AC-histogram waveform automata, and conducted comprehensive experimentation. The results confirm that our approach is feasible and suitable for deployment. PMID:25032231

  20. Motor control for a brushless DC motor

    NASA Technical Reports Server (NTRS)

    Peterson, William J. (Inventor); Faulkner, Dennis T. (Inventor)

    1985-01-01

    This invention relates to a motor control system for a brushless DC motor having an inverter responsively coupled to the motor control system and in power transmitting relationship to the motor. The motor control system includes a motor rotor speed detecting unit that provides a pulsed waveform signal proportional to rotor speed. This pulsed waveform signal is delivered to the inverter to thereby cause an inverter fundamental current waveform output to the motor to be switched at a rate proportional to said rotor speed. In addition, the fundamental current waveform is also pulse width modulated at a rate proportional to the rotor speed. A fundamental current waveform phase advance circuit is controllingly coupled to the inverter. The phase advance circuit is coupled to receive the pulsed waveform signal from the motor rotor speed detecting unit and phase advance the pulsed waveform signal as a predetermined function of motor speed to thereby cause the fundamental current waveform to be advanced and thereby compensate for fundamental current waveform lag due to motor winding reactance which allows the motor to operate at higher speeds than the motor is rated while providing optimal torque and therefore increased efficiency.

  1. Insights into Fourier Synthesis and Analysis: Part 2--A Simplified Mathematics.

    ERIC Educational Resources Information Center

    Moore, Guy S. M.

    1988-01-01

    Introduced is an analysis of a waveform into its Fourier components. Topics included are simplified analysis of a square waveform, a triangular waveform, half-wave rectified alternating current (AC), and impulses. Provides the mathematical expression and simplified analysis diagram of each waveform. (YP)

  2. Investigation of Doppler Effects on the Detection of Polyphase Coded Radar Waveforms

    DTIC Science & Technology

    2003-02-01

    wave2 = amp * sin(2*pi*two+(2*pi/7)); %the second modulated waveform %wave = [wavec wave1 wave2 wavec]; %the wave form put togther wave = amp...waveform wave1 = sin(2*pi*two+(pi/2)); %the first modulated waveform wave2 = sin(2*pi*two+(2*pi/7)); %the second modulated waveform...wave = [wavec wave1 wave2 wavec]; %the wave form put togther normval = max(abs(xcorr(wave,wave))); N=length

  3. Super-resolution processing for multi-functional LPI waveforms

    NASA Astrophysics Data System (ADS)

    Li, Zhengzheng; Zhang, Yan; Wang, Shang; Cai, Jingxiao

    2014-05-01

    Super-resolution (SR) is a radar processing technique closely related to the pulse compression (or correlation receiver). There are many super-resolution algorithms developed for the improved range resolution and reduced sidelobe contaminations. Traditionally, the waveforms used for the SR have been either phase-coding (such as LKP3 code, Barker code) or the frequency modulation (chirp, or nonlinear frequency modulation). There are, however, an important class of waveforms which are either random in nature (such as random noise waveform), or randomly modulated for multiple function operations (such as the ADS-B radar signals in [1]). These waveforms have the advantages of low-probability-of-intercept (LPI). If the existing SR techniques can be applied to these waveforms, there will be much more flexibility for using these waveforms in actual sensing missions. Also, SR usually has great advantage that the final output (as estimation of ground truth) is largely independent of the waveform. Such benefits are attractive to many important primary radar applications. In this paper the general introduction of the SR algorithms are provided first, and some implementation considerations are discussed. The selected algorithms are applied to the typical LPI waveforms, and the results are discussed. It is observed that SR algorithms can be reliably used for LPI waveforms, on the other hand, practical considerations should be kept in mind in order to obtain the optimal estimation results.

  4. Joint Inversion of Source Location and Source Mechanism of Induced Microseismics

    NASA Astrophysics Data System (ADS)

    Liang, C.

    2014-12-01

    Seismic source mechanism is a useful property to indicate the source physics and stress and strain distribution in regional, local and micro scales. In this study we jointly invert source mechanisms and locations for microseismics induced in fluid fracturing treatment in the oil and gas industry. For the events that are big enough to see waveforms, there are quite a few techniques can be applied to invert the source mechanism including waveform inversion, first polarity inversion and many other methods and variants based on these methods. However, for events that are too small to identify in seismic traces such as the microseismics induced by the fluid fracturing in the Oil and Gas industry, a source scanning algorithms (SSA for short) with waveform stacking are usually applied. At the same time, a joint inversion of location and source mechanism are possible but at a cost of high computation budget. The algorithm is thereby called Source Location and Mechanism Scanning Algorithm, SLMSA for short. In this case, for given velocity structure, all possible combinations of source locations (X,Y and Z) and source mechanism (Strike, Dip and Rake) are used to compute travel-times and polarities of waveforms. Correcting Normal moveout times and polarities, and stacking all waveforms, the (X, Y, Z , strike, dip, rake) combination that gives the strongest stacking waveform is identified as the solution. To solve the problem of high computation problem, CPU-GPU programing is applied. Numerical datasets are used to test the algorithm. The SLMSA has also been applied to a fluid fracturing datasets and reveal several advantages against the location only method: (1) for shear sources, the source only program can hardly locate them because of the canceling out of positive and negative polarized traces, but the SLMSA method can successfully pick up those events; (2) microseismic locations alone may not be enough to indicate the directionality of micro-fractures. The statistics of source mechanisms can certainly provide more knowledges on the orientation of fractures; (3) in our practice, the joint inversion method almost always yield more events than the source only method and for those events that are also picked by the SSA method, the stacking power of SLMSA are always higher than the ones obtained in SSA.

  5. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Qiujie; Jenkins, Michael V.; Bernadas, Salvador R.

    1997-01-01

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal.

  6. Resolvability of regional density structure and the road to direct density inversion - a principal-component approach to resolution analysis

    NASA Astrophysics Data System (ADS)

    Płonka, Agnieszka; Fichtner, Andreas

    2017-04-01

    Lateral density variations are the source of mass transport in the Earth at all scales, acting as drivers of convective motion. However, the density structure of the Earth remains largely unknown since classic seismic observables and gravity provide only weak constraints with strong trade-offs. Current density models are therefore often based on velocity scaling, making strong assumptions on the origin of structural heterogeneities, which may not necessarily be correct. Our goal is to assess if 3D density structure may be resolvable with emerging full-waveform inversion techniques. We have previously quantified the impact of regional-scale crustal density structure on seismic waveforms with the conclusion that reasonably sized density variations within the crust can leave a strong imprint on both travel times and amplitudes, and, while this can produce significant biases in velocity and Q estimates, the seismic waveform inversion for density may become feasible. In this study we perform principal component analyses of sensitivity kernels for P velocity, S velocity, and density. This is intended to establish the extent to which these kernels are linearly independent, i.e. the extent to which the different parameters may be constrained independently. We apply the method to data from 81 events around the Iberian Penninsula, registered in total by 492 stations. The objective is to find a principal kernel which would maximize the sensitivity to density, potentially allowing for as independent as possible density resolution. We find that surface (mosty Rayleigh) waves have significant sensitivity to density, and that the trade-off with velocity is negligible. We also show the preliminary results of the inversion.

  7. An ionization region model of the reactive Ar/O2 high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Lundin, D.; Brenning, N.; Raadu, M. A.; Huo, Chunqing; Minea, T. M.

    2016-12-01

    A new reactive ionization region model (R-IRM) is developed to describe the reactive Ar/O2 high power impulse magnetron sputtering (HiPIMS) discharge with a titanium target. It is then applied to study the temporal behavior of the discharge plasma parameters such as electron density, the neutral and ion composition, the ionization fraction of the sputtered vapor, the oxygen dissociation fraction, and the composition of the discharge current. We study and compare the discharge properties when the discharge is operated in the two well established operating modes, the metal mode and the poisoned mode. Experimentally, it is found that in the metal mode the discharge current waveform displays a typical non-reactive evolution, while in the poisoned mode the discharge current waveform becomes distinctly triangular and the current increases significantly. Using the R-IRM we explore the current increase and find that when the discharge is operated in the metal mode Ar+ and Ti+ -ions contribute most significantly (roughly equal amounts) to the discharge current while in the poisoned mode the Ar+ -ions contribute most significantly to the discharge current and the contribution of O+ -ions, Ti+ -ions, and secondary electron emission is much smaller. Furthermore, we find that recycling of atoms coming from the target, that are subsequently ionized, is required for the current generation in both modes of operation. From the R-IRM results it is found that in the metal mode self-sputter recycling dominates and in the poisoned mode working gas recycling dominates. We also show that working gas recycling can lead to very high discharge currents but never to a runaway. It is concluded that the dominating type of recycling determines the discharge current waveform.

  8. Lightning-channel morphology by return-stroke radiation field waveforms

    NASA Technical Reports Server (NTRS)

    Willett, J. C.; Le Vine, D. M.; Idone, V. P.

    1995-01-01

    Simultaneous video and wideband electric field recordings of 32 cloud-to-ground lightning flashes in Florida were analyzed to show the formation of new channels to ground can be detected by examination of the return-stroke radiation fields alone. The return-stroke E and dE/dt waveforms were subjectively classified according to their fine structure. Then the video images were examined field by field to identify each waveform with a visible channel to ground. Fifty-five correlated waveforms and channel images were obtained. Of these, all 34 first-stroke waveforms (multiple jagged E peaks, noisy dE/dt), 8 of which were not radiated by the chronologically first stroke in the flash, came from new channels to ground (not previously seen on video). All 18 subsequent-stroke waveforms (smoothly rounded E and quiet dE/dt after initial peak) were radiated by old channels (illuminated by a previous stroke). Two double-ground waveforms (two distinct first-return-stroke pulses separated by tens of microseconds or less) coincided with video fields showing two new channels. One `anomalous-stroke' waveform (beginning like a first stroke and ending like a subsequent) was produced by a new channel segment to ground branching off an old channel. This waveform classification depends on the presence or absence of high-frequency fine structure. Fourier analysis shows that first-stroke waveforms contain about 18 dB more spectral power in the frequency interval from 500 kHz to at least 7 MHz than subsequent-stroke waveforms for at least 13 microseconds after the main peak.

  9. Earthquake Fingerprints: Representing Earthquake Waveforms for Similarity-Based Detection

    NASA Astrophysics Data System (ADS)

    Bergen, K.; Beroza, G. C.

    2016-12-01

    New earthquake detection methods, such as Fingerprint and Similarity Thresholding (FAST), use fast approximate similarity search to identify similar waveforms in long-duration data without templates (Yoon et al. 2015). These methods have two key components: fingerprint extraction and an efficient search algorithm. Fingerprint extraction converts waveforms into fingerprints, compact signatures that represent short-duration waveforms for identification and search. Earthquakes are detected using an efficient indexing and search scheme, such as locality-sensitive hashing, that identifies similar waveforms in a fingerprint database. The quality of the search results, and thus the earthquake detection results, is strongly dependent on the fingerprinting scheme. Fingerprint extraction should map similar earthquake waveforms to similar waveform fingerprints to ensure a high detection rate, even under additive noise and small distortions. Additionally, fingerprints corresponding to noise intervals should have mutually dissimilar fingerprints to minimize false detections. In this work, we compare the performance of multiple fingerprint extraction approaches for the earthquake waveform similarity search problem. We apply existing audio fingerprinting (used in content-based audio identification systems) and time series indexing techniques and present modified versions that are specifically adapted for seismic data. We also explore data-driven fingerprinting approaches that can take advantage of labeled or unlabeled waveform data. For each fingerprinting approach we measure its ability to identify similar waveforms in a low signal-to-noise setting, and quantify the trade-off between true and false detection rates in the presence of persistent noise sources. We compare the performance using known event waveforms from eight independent stations in the Northern California Seismic Network.

  10. Finite-frequency structural sensitivities of short-period compressional body waves

    NASA Astrophysics Data System (ADS)

    Fuji, Nobuaki; Chevrot, Sébastien; Zhao, Li; Geller, Robert J.; Kawai, Kenji

    2012-07-01

    We present an extension of the method recently introduced by Zhao & Chevrot for calculating Fréchet kernels from a precomputed database of strain Green's tensors by normal mode summation. The extension involves two aspects: (1) we compute the strain Green's tensors using the Direct Solution Method, which allows us to go up to frequencies as high as 1 Hz; and (2) we develop a spatial interpolation scheme so that the Green's tensors can be computed with a relatively coarse grid, thus improving the efficiency in the computation of the sensitivity kernels. The only requirement is that the Green's tensors be computed with a fine enough spatial sampling rate to avoid spatial aliasing. The Green's tensors can then be interpolated to any location inside the Earth, avoiding the need to store and retrieve strain Green's tensors for a fine sampling grid. The interpolation scheme not only significantly reduces the CPU time required to calculate the Green's tensor database and the disk space to store it, but also enhances the efficiency in computing the kernels by reducing the number of I/O operations needed to retrieve the Green's tensors. Our new implementation allows us to calculate sensitivity kernels for high-frequency teleseismic body waves with very modest computational resources such as a laptop. We illustrate the potential of our approach for seismic tomography by computing traveltime and amplitude sensitivity kernels for high frequency P, PKP and Pdiff phases. A comparison of our PKP kernels with those computed by asymptotic ray theory clearly shows the limits of the latter. With ray theory, it is not possible to model waves diffracted by internal discontinuities such as the core-mantle boundary, and it is also difficult to compute amplitudes for paths close to the B-caustic of the PKP phase. We also compute waveform partial derivatives for different parts of the seismic wavefield, a key ingredient for high resolution imaging by waveform inversion. Our computations of partial derivatives in the time window where PcP precursors are commonly observed show that the distribution of sensitivity is complex and counter-intuitive, with a large contribution from the mid-mantle region. This clearly emphasizes the need to use accurate and complete partial derivatives in waveform inversion.

  11. Prolific Sources of Icequakes: The Mulock and Skelton Glaciers, Antarctica

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D.; Lough, A. C.; Anandakrishnan, S.; Nyblade, A.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.

    2015-12-01

    The Mulock and Skelton Glaciers are large outlet glaciers that flow through the Transantarctic Mountains and into the Ross Ice Shelf. A regional seismic deployment in the central Transantarctic Mountains (TAM) in 1999-2000 led to the identification of 63 events in the vicinity of Mulock and Skelton Glaciers [Bannister and Kennett, 2002]. A more recent study utilizing seismic data collected as part of the POLENET/A-NET and AGAP projects during 2009 again identified significant seismicity associated with these glaciers and suggested that many of these events were icequakes based on their shallow depths [Lough, 2014]. These two glaciers represent the most seismically active regions in the TAM aside from the well-studied David Glacier region [Danesi et al, 2007; Zoet et al., 2012]. In addition, many of the icequakes from this region have magnitude ML > 2.5, in contrast to most glacial events that are generally of smaller magnitude. Using the waveforms of previously identified icequakes as templates, nearby POLENET/A-NET, AGAP, and GSN seismic stations were scanned using a cross-correlation method to find similar waveforms. We then used a relative location algorithm to determine high-precision locations and depths. The use of regional velocity models derived from recent seismic studies facilitates accurate absolute locations that we interpret in the context of the local geological and glacial features. The icequakes are concentrated in heavily crevassed regions associated with steep bedrock topography, likely icefalls. Future work will focus on determining whether these events are associated with stick-slip events at the bed of the glacier and/or crevasse formation near the surface. In addition the temporal pattern of seismicity will also be examined to search for repeating icequakes, which have been identified at the base of several other glaciers.

  12. Numerical relativity waveform surrogate model for generically precessing binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Blackman, Jonathan; Field, Scott E.; Scheel, Mark A.; Galley, Chad R.; Ott, Christian D.; Boyle, Michael; Kidder, Lawrence E.; Pfeiffer, Harald P.; Szilágyi, Béla

    2017-07-01

    A generic, noneccentric binary black hole (BBH) system emits gravitational waves (GWs) that are completely described by seven intrinsic parameters: the black hole spin vectors and the ratio of their masses. Simulating a BBH coalescence by solving Einstein's equations numerically is computationally expensive, requiring days to months of computing resources for a single set of parameter values. Since theoretical predictions of the GWs are often needed for many different source parameters, a fast and accurate model is essential. We present the first surrogate model for GWs from the coalescence of BBHs including all seven dimensions of the intrinsic noneccentric parameter space. The surrogate model, which we call NRSur7dq2, is built from the results of 744 numerical relativity simulations. NRSur7dq2 covers spin magnitudes up to 0.8 and mass ratios up to 2, includes all ℓ≤4 modes, begins about 20 orbits before merger, and can be evaluated in ˜50 ms . We find the largest NRSur7dq2 errors to be comparable to the largest errors in the numerical relativity simulations, and more than an order of magnitude smaller than the errors of other waveform models. Our model, and more broadly the methods developed here, will enable studies that were not previously possible when using highly accurate waveforms, such as parameter inference and tests of general relativity with GW observations.

  13. Developing a Near Real-time System for Earthquake Slip Distribution Inversion

    NASA Astrophysics Data System (ADS)

    Zhao, Li; Hsieh, Ming-Che; Luo, Yan; Ji, Chen

    2016-04-01

    Advances in observational and computational seismology in the past two decades have enabled completely automatic and real-time determinations of the focal mechanisms of earthquake point sources. However, seismic radiations from moderate and large earthquakes often exhibit strong finite-source directivity effect, which is critically important for accurate ground motion estimations and earthquake damage assessments. Therefore, an effective procedure to determine earthquake rupture processes in near real-time is in high demand for hazard mitigation and risk assessment purposes. In this study, we develop an efficient waveform inversion approach for the purpose of solving for finite-fault models in 3D structure. Full slip distribution inversions are carried out based on the identified fault planes in the point-source solutions. To ensure efficiency in calculating 3D synthetics during slip distribution inversions, a database of strain Green tensors (SGT) is established for 3D structural model with realistic surface topography. The SGT database enables rapid calculations of accurate synthetic seismograms for waveform inversion on a regular desktop or even a laptop PC. We demonstrate our source inversion approach using two moderate earthquakes (Mw~6.0) in Taiwan and in mainland China. Our results show that 3D velocity model provides better waveform fitting with more spatially concentrated slip distributions. Our source inversion technique based on the SGT database is effective for semi-automatic, near real-time determinations of finite-source solutions for seismic hazard mitigation purposes.

  14. SAMPLING OSCILLOSCOPE

    DOEpatents

    Sugarman, R.M.

    1960-08-30

    An oscilloscope is designed for displaying transient signal waveforms having random time and amplitude distributions. The oscilloscopc is a sampling device that selects for display a portion of only those waveforms having a particular range of amplitudes. For this purpose a pulse-height analyzer is provided to screen the pulses. A variable voltage-level shifter and a time-scale rampvoltage generator take the pulse height relative to the start of the waveform. The variable voltage shifter produces a voltage level raised one step for each sequential signal waveform to be sampled and this results in an unsmeared record of input signal waveforms. Appropriate delay devices permit each sample waveform to pass its peak amplitude before the circuit selects it for display.

  15. Design of pulse waveform for waveform division multiple access UWB wireless communication system.

    PubMed

    Yin, Zhendong; Wang, Zhirui; Liu, Xiaohui; Wu, Zhilu

    2014-01-01

    A new multiple access scheme, Waveform Division Multiple Access (WDMA) based on the orthogonal wavelet function, is presented. After studying the correlation properties of different categories of single wavelet functions, the one with the best correlation property will be chosen as the foundation for combined waveform. In the communication system, each user is assigned to different combined orthogonal waveform. Demonstrated by simulation, combined waveform is more suitable than single wavelet function to be a communication medium in WDMA system. Due to the excellent orthogonality, the bit error rate (BER) of multiuser with combined waveforms is so close to that of single user in a synchronous system. That is to say, the multiple access interference (MAI) is almost eliminated. Furthermore, even in an asynchronous system without multiuser detection after matched filters, the result is still pretty ideal and satisfactory by using the third combination mode that will be mentioned in the study.

  16. Tone signal generator for producing multioperator tone signals using an operator circuit including a waveform generator, a selector and an enveloper

    DOEpatents

    Dong, Q.; Jenkins, M.V.; Bernadas, S.R.

    1997-09-09

    A frequency modulation (FM) tone signal generator for generating a FM tone signal is disclosed. The tone signal generator includes a waveform generator having a plurality of wave tables, a selector and an enveloper. The waveform generator furnishes a waveform signal in response to a phase angle address signal. Each wave table stores a different waveform. The selector selects one of the wave tables in response to a plurality of selection signals such that the selected wave table largely provides the waveform signal upon being addressed largely by the phase angle address signal. Selection of the selected wave table varies with each selection signal. The enveloper impresses an envelope signal on the waveform signal. The envelope signal is used as a carrier or modulator for generating the FM tone signal. 17 figs.

  17. Motion Tolerant Unfocused Imaging of Physiological Waveforms for Blood Pressure Waveform Estimation Using Ultrasound.

    PubMed

    Seo, Joohyun; Pietrangelo, Sabino J; Sodini, Charles G; Lee, Hae-Seung

    2018-05-01

    This paper details unfocused imaging using single-element ultrasound transducers for motion tolerant arterial blood pressure (ABP) waveform estimation. The ABP waveform is estimated based on pulse wave velocity and arterial pulsation through Doppler and M-mode ultrasound. This paper discusses approaches to mitigate the effect of increased clutter due to unfocused imaging on blood flow and diameter waveform estimation. An intensity reduction model (IRM) estimator is described to track the change of diameter, which outperforms a complex cross-correlation model (C3M) estimator in low contrast environments. An adaptive clutter filtering approach is also presented, which reduces the increased Doppler angle estimation error due to unfocused imaging. Experimental results in a flow phantom demonstrate that flow velocity and diameter waveforms can be reliably measured with wide lateral offsets of the transducer position. The distension waveform estimated from human carotid M-mode imaging using the IRM estimator shows physiological baseline fluctuations and 0.6-mm pulsatile diameter change on average, which is within the expected physiological range. These results show the feasibility of this low cost and portable ABP waveform estimation device.

  18. Using discrete wavelet transform features to discriminate between noise and phases in seismic waveforms

    NASA Astrophysics Data System (ADS)

    Forrest, R.; Ray, J.; Hansen, C. W.

    2017-12-01

    Currently, simple polarization metrics such as the horizontal-to-vertical ratio are used to discriminate between noise and various phases in three-component seismic waveform data collected at regional distances. Accurately establishing the identity and arrival of these waves in adverse signal-to-noise environments is helpful in detecting and locating the seismic events. In this work, we explore the use of multiresolution decompositions to discriminate between noise and event arrivals. A segment of the waveform lying inside a time-window that spans the coda of an arrival is subjected to a discrete wavelet decomposition. Multi-resolution classification features as well as statistical tests are derived from these wavelet decomposition quantities to quantify their discriminating power. Furthermore, we move to streaming data and address the problem of false positives by introducing ensembles of classifiers. We describe in detail results of these methods tuned from data obtained from Coronel Fontana, Argentina (CFAA), as well as Stephens Creek, Australia (STKA). Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  19. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    PubMed Central

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar–similar (e.g., “apple is to orange as dog is to cat”) versus different–different (e.g., “he is to his brother as chalk is to cheese”) derived relational responding, in both speed-contingent and speed-noncontingent conditions. Experiment 2 examined the event-related potentials (ERPs) associated with these two response patterns. Both experiments showed similar–similar responding to be significantly faster than different–different responding. Experiment 2 revealed significant differences between the waveforms of the two response patterns in the left-hemispheric prefrontal regions; different–different waveforms were significantly more negative than similar–similar waveforms. The behavioral and neurophysiological data support the RFT prediction that, all things being equal, similar–similar responding is relationally “simpler” than, and functionally distinct from, different–different analogical responding. The ERP data were fully consistent with findings in the neurocognitive literature on analogy. These findings strengthen the validity of the RFT model of analogical reasoning and supplement the behavior-analytic approach to analogy based on the relating of derived relations. PMID:16596974

  20. Detecting and Locating Seismic Events Without Phase Picks or Velocity Models

    NASA Astrophysics Data System (ADS)

    Arrowsmith, S.; Young, C. J.; Ballard, S.; Slinkard, M.

    2015-12-01

    The standard paradigm for seismic event monitoring is to scan waveforms from a network of stations and identify the arrival time of various seismic phases. A signal association algorithm then groups the picks to form events, which are subsequently located by minimizing residuals between measured travel times and travel times predicted by an Earth model. Many of these steps are prone to significant errors which can lead to erroneous arrival associations and event locations. Here, we revisit a concept for event detection that does not require phase picks or travel time curves and fuses detection, association and location into a single algorithm. Our pickless event detector exploits existing catalog and waveform data to build an empirical stack of the full regional seismic wavefield, which is subsequently used to detect and locate events at a network level using correlation techniques. Because the technique uses more of the information content of the original waveforms, the concept is particularly powerful for detecting weak events that would be missed by conventional methods. We apply our detector to seismic data from the University of Utah Seismograph Stations network and compare our results with the earthquake catalog published by the University of Utah. We demonstrate that the pickless detector can detect and locate significant numbers of events previously missed by standard data processing techniques.

  1. Asymmetric Waveforms Decrease Lethal Thresholds in High Frequency Irreversible Electroporation Therapies

    PubMed Central

    Sano, Michael B.; Fan, Richard E.; Xing, Lei

    2017-01-01

    Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50–100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25–5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8–6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted. PMID:28106146

  2. Asymmetric Waveforms Decrease Lethal Thresholds in High Frequency Irreversible Electroporation Therapies

    NASA Astrophysics Data System (ADS)

    Sano, Michael B.; Fan, Richard E.; Xing, Lei

    2017-01-01

    Irreversible electroporation (IRE) is a promising non-thermal treatment for inoperable tumors which uses short (50-100 μs) high voltage monopolar pulses to disrupt the membranes of cells within a well-defined volume. Challenges with IRE include complex treatment planning and the induction of intense muscle contractions. High frequency IRE (H-FIRE) uses bursts of ultrashort (0.25-5 μs) alternating polarity pulses to produce more predictable ablations and alleviate muscle contractions associated with IRE. However, H-FIRE generally ablates smaller volumes of tissue than IRE. This study shows that asymmetric H-FIRE waveforms can be used to create ablation volumes equivalent to standard IRE treatments. Lethal thresholds (LT) of 505 V/cm and 1316 V/cm were found for brain cancer cells when 100 μs IRE and 2 μs symmetric H-FIRE waveforms were used. In contrast, LT as low as 536 V/cm were found for 2 μs asymmetric H-FIRE waveforms. Reversible electroporation thresholds were 54% lower than LTs for symmetric waveforms and 33% lower for asymmetric waveforms indicating that waveform symmetry can be used to tune the relative sizes of reversible and irreversible ablation zones. Numerical simulations predicted that asymmetric H-FIRE waveforms are capable of producing ablation volumes which were 5.8-6.3x larger than symmetric H-FIRE waveforms indicating that in vivo investigation of asymmetric waveforms is warranted.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smallwood, D.O.

    It is recognized that some dynamic and noise environments are characterized by time histories which are not Gaussian. An example is high intensity acoustic noise. Another example is some transportation vibration. A better simulation of these environments can be generated if a zero mean non-Gaussian time history can be reproduced with a specified auto (or power) spectral density (ASD or PSD) and a specified probability density function (pdf). After the required time history is synthesized, the waveform can be used for simulation purposes. For example, modem waveform reproduction techniques can be used to reproduce the waveform on electrodynamic or electrohydraulicmore » shakers. Or the waveforms can be used in digital simulations. A method is presented for the generation of realizations of zero mean non-Gaussian random time histories with a specified ASD, and pdf. First a Gaussian time history with the specified auto (or power) spectral density (ASD) is generated. A monotonic nonlinear function relating the Gaussian waveform to the desired realization is then established based on the Cumulative Distribution Function (CDF) of the desired waveform and the known CDF of a Gaussian waveform. The established function is used to transform the Gaussian waveform to a realization of the desired waveform. Since the transformation preserves the zero-crossings and peaks of the original Gaussian waveform, and does not introduce any substantial discontinuities, the ASD is not substantially changed. Several methods are available to generate a realization of a Gaussian distributed waveform with a known ASD. The method of Smallwood and Paez (1993) is an example. However, the generation of random noise with a specified ASD but with a non-Gaussian distribution is less well known.« less

  4. Coastal retracking using along-track echograms and its dependency on coastal topography

    NASA Astrophysics Data System (ADS)

    Ichikawa, K.; Wang, X.

    2017-12-01

    Although the Brown mathematical model is the standard model for waveform retracking over open oceans, coastal waveforms usually deviate from open ocean waveform shapes due to inhomogeneous surface reflections within altimeter footprints, and thus cannot be directly interpreted by the Brown model. Generally, the two primary sources of heterogeneous surface reflections are land surfaces and bright targets such as calm surface water. The former reduces echo power, while the latter often produces particularly strong echoes. In previous studies, sub-waveform retrackers, which use waveform samples collected from around leading edges in order to avoid trailing edge noise, have been recommended for coastal waveform retracking. In the present study, the peaky-type noise caused by fixed-point bright targets is explicitly detected and masked using the parabolic signature in the sequential along-track waveforms (or, azimuth-range echograms). Moreover, the power deficit of waveform trailing edges caused by weak land reflections is compensated for by estimating the ratio of sea surface area within each annular footprint in order to produce pseudo-homogeneous reflected waveforms suitable for the Brown model. Using this method, Jason-2 altimeter waveforms are retracked in several coastal areas. Our results show that both the correlation coefficient and root mean square difference between the derived sea surface height anomalies and tide gauge records retain similar values at the open ocean (0.9 and 20 cm) level, even in areas approaching 3 km from coastlines, which is considerably improved from the 10 km correlation coefficient limit of the conventional MLE4 retracker and the 7 km sub-waveform ALES retracker limit. These values, however, depend on the coastal topography of the study areas because the approach distance limit increases (decreases) in areas with complicated (straight) coastlines

  5. Improvement of tsunami detection in timeseries data of GPS buoys with the Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Chida, Y.; Takagawa, T.

    2017-12-01

    The observation data of GPS buoys which are installed in the offshore of Japan are used for monitoring not only waves but also tsunamis in Japan. The real-time data was successfully used to upgrade the tsunami warnings just after the 2011 Tohoku earthquake. Huge tsunamis can be easily detected because the signal-noise ratio is high enough, but moderate tsunami is not. GPS data sometimes include the error waveforms like tsunamis because of changing accuracy by the number and the position of GPS satellites. To distinguish the true tsunami waveforms from pseudo-tsunami ones is important for tsunami detection. In this research, a method to reduce misdetections of tsunami in the observation data of GPS buoys and to increase the efficiency of tsunami detection was developed.Firstly, the error waveforms were extracted by using the indexes of position dilution of precision, reliability of GPS satellite positioning and satellite number for calculation. Then, the output from this procedure was used for the Continuous Wavelet Transform (CWT) to analyze the time-frequency characteristics of error waveforms and real tsunami waveforms.We found that the error waveforms tended to appear when the accuracy of GPS buoys positioning was low. By extracting these waveforms, it was possible to decrease about 43% error waveforms without the reduction of the tsunami detection rate. Moreover, we found that the amplitudes of power spectra obtained from the error waveforms and real tsunamis were similar in the component of long period (4-65 minutes), on the other hand, the amplitude in the component of short period (< 1 minute) obtained from the error waveforms was significantly larger than that of the real tsunami waveforms. By thresholding of the short-period component, further extraction of error waveforms became possible without a significant reduction of tsunami detection rate.

  6. Fast Prediction and Evaluation of Gravitational Waveforms Using Surrogate Models

    NASA Astrophysics Data System (ADS)

    Field, Scott E.; Galley, Chad R.; Hesthaven, Jan S.; Kaye, Jason; Tiglio, Manuel

    2014-07-01

    We propose a solution to the problem of quickly and accurately predicting gravitational waveforms within any given physical model. The method is relevant for both real-time applications and more traditional scenarios where the generation of waveforms using standard methods can be prohibitively expensive. Our approach is based on three offline steps resulting in an accurate reduced order model in both parameter and physical dimensions that can be used as a surrogate for the true or fiducial waveform family. First, a set of m parameter values is determined using a greedy algorithm from which a reduced basis representation is constructed. Second, these m parameters induce the selection of m time values for interpolating a waveform time series using an empirical interpolant that is built for the fiducial waveform family. Third, a fit in the parameter dimension is performed for the waveform's value at each of these m times. The cost of predicting L waveform time samples for a generic parameter choice is of order O(mL+mcfit) online operations, where cfit denotes the fitting function operation count and, typically, m ≪L. The result is a compact, computationally efficient, and accurate surrogate model that retains the original physics of the fiducial waveform family while also being fast to evaluate. We generate accurate surrogate models for effective-one-body waveforms of nonspinning binary black hole coalescences with durations as long as 105M, mass ratios from 1 to 10, and for multiple spherical harmonic modes. We find that these surrogates are more than 3 orders of magnitude faster to evaluate as compared to the cost of generating effective-one-body waveforms in standard ways. Surrogate model building for other waveform families and models follows the same steps and has the same low computational online scaling cost. For expensive numerical simulations of binary black hole coalescences, we thus anticipate extremely large speedups in generating new waveforms with a surrogate. As waveform generation is one of the dominant costs in parameter estimation algorithms and parameter space exploration, surrogate models offer a new and practical way to dramatically accelerate such studies without impacting accuracy. Surrogates built in this paper, as well as others, are available from GWSurrogate, a publicly available python package.

  7. The influence of shear-velocity heterogeneity on ScS2/ScS amplitude ratios and estimates of Q in the mantle

    NASA Astrophysics Data System (ADS)

    Ritsema, J.; Chaves, C. A. M.

    2016-12-01

    Regional waveforms of deep-focus Tonga-Fiji earthquakes indicate anomalous traveltime differences (ScS2-ScS) and amplitude ratios (ScS2/ScS) of the phases ScS and ScS2. The correlation between the ScS2-ScS delay time and the ScS2/ScS amplitude ratio suggests that shear-wave apparent Q in the mantle below the Tonga-Fiji region is highest when shear-wave velocities are lowest. This observation is unexpected if temperature variations were responsible for the seismic anomalies. Using spectral-element-method waveform simulations for four tomographic models we demonstrate that focusing and scattering of shear waves by long-wavelength 3D heterogeneity in the mantle may overwhelm the signal from intrinsic attenuation in long-period ScS2/ScS amplitude ratios. The tomographic models reproduce the variability in recorded ScS2-ScS difference times and ScS2/ScS amplitude ratios. Variations in shear-wave attenuation (i.e., the quality factor Q) are not necessary to explain the data. An explanation for slow shear wave propagation without intrinsic attenuation does not require a creative solution from mineral physics.

  8. The influence of shear-velocity heterogeneity on ScS2/ScS amplitude ratios and estimates of Q in the mantle

    NASA Astrophysics Data System (ADS)

    Chaves, Carlos A. M.; Ritsema, Jeroen

    2016-08-01

    Regional waveforms of deep-focus Tonga-Fiji earthquakes indicate anomalous traveltime differences (ScS2-ScS) and amplitude ratios (ScS2/ScS) of the phases ScS and ScS2. The correlation between the ScS2-ScS delay time and the ScS2/ScS amplitude ratio suggests that shear wave apparent Q in the mantle below the Tonga-Fiji region is highest when shear wave velocities are lowest. This observation is unexpected if temperature variations were responsible for the seismic anomalies. Using spectral element method waveform simulations for four tomographic models, we demonstrate that focusing and scattering of shear waves by long-wavelength 3-D heterogeneity in the mantle may overwhelm the signal from intrinsic attenuation in long-period ScS2/ScS amplitude ratios. The tomographic models reproduce the trends in recorded ScS2-ScS difference times and ScS2/ScS amplitude ratios. Although they cannot be ruled out, variations in shear wave attenuation (i.e., the quality factor Q) are not necessary to explain the data.

  9. Effects of the intensity of masking noise on ear canal recorded low-frequency cochlear microphonic waveforms in normal hearing subjects.

    PubMed

    Zhang, Ming

    2014-07-01

    Compared to auditory brainstem responses (ABRs), cochlear microphonics (CMs) may be more appropriate to serve as a supplement to the test of otoacoustic emissions (OAEs). Researchers have shown that low-frequency CMs from the apical cochlea are measurable at the tympanic membrane using high-pass masking noise. Our objective is to study the effect of such noise at different intensities on low-frequency CMs recorded at the ear canal, which is not completely known. Six components were involved in this CM measurement including an ear canal electrode (1), a relatively long and low-frequency toneburst (2), and high-pass masking noise at different intensities (3). The rest components include statistical analysis based on multiple human subjects (4), curve modeling based on amplitudes of CM waveforms (CMWs) and noise intensity (5), and a technique based on electrocochleography (ECochG or ECoG) (6). Results show that low-frequency CMWs appeared clearly. The CMW amplitude decreased with an increase in noise level. It decreased first slowly, then faster, and finally slowly again. In conclusion, when masked with high-pass noise, the low-frequency CMs are measurable at the human ear canal. Such noise reduces the low-frequency CM amplitude. The reduction is noise-intensity dependent but not completely linear. The reduction may be caused by the excited basal cochlea which the low-frequency has to travel and pass through. Although not completely clear, six mechanisms related to such reduction are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Scintillations associated with bottomside sinusoidal irregularities in the equatorial F region

    NASA Technical Reports Server (NTRS)

    Basu, S.; Basu, S.; Valladares, C. E.; Dasgupta, A.; Whitney, H. E.

    1986-01-01

    Multisatellite scintillation observations and spaced receiver drift measurements are presented for a category of equatorial F region plasma irregularities characterized by nearly sinusoidal waveforms in the ion number density. The observations were made at Huancayo, Peru, and the measurements at Ancon, Peru, associated with irregularities observed by the Atmospheric-Explorer-E satellite on a few nights in December 1979. Utilizing ray paths to various geostationary satellites, it was found that the irregularities grow and decay almost simultaneously in long-lived patches extending at least 1000 km in the east-west direction.

  11. Hydraulic Fracturing Induced Seismicity at Preese Hall, UK: Moment Tensors, Uncertainties and Implications for Microseismic Monitoring Strategies

    NASA Astrophysics Data System (ADS)

    O'toole, T. B.; Woodhouse, J. H.; Verdon, J.; Kendall, J.

    2012-12-01

    Hydraulic fracturing operations carried out in April and May 2011 by Cuadrilla Resources Ltd. during the exploration of a shale gas reservoir at Preese Hall, near Blackpool, UK, induced a series of microseismic events. The largest of these, with magnitude ML = 2.3, was felt at the surface and recorded by the British Geological Survey regional seismic network. Subsequently, two local seismic stations were installed, which continued to detect seismicity with ML ≤ 1.5 until the hydraulic fracture treatment was suspended due to the anomalously large magnitudes of the induced earthquakes. Here, we present the results of moment tensor inversions of seismic waveforms recorded by these two near-field stations. We determine the best point source description of an event by minimising the least-squares difference between observed and synthetic waveforms. In contrast to source mechanisms obtained from body wave polarity and amplitude picks, which require a good sampling of the focal sphere and typically assume a pure double-couple mechanism, using the whole waveform allows us to place good constraints on the moment tensor even when only a few seismograms are available, and also enables the investigation of possible non-double-couple components and volume changes associated with a source. We discuss our results in the context of the studies commissioned by Cuadrilla after the suspension of hydraulic fracturing operations at Preese Hall. Using synthetic waveform data, we investigate how different monitoring geometries can be used to reduce uncertainties in source parameters of induced microseisms. While our focus is on the monitoring of hydraulic fracturing operations, the methods developed here are general and could equally be applied to determine moment tensors from surface and borehole observations of seismicity induced by other activities.

  12. Return of spontaneous circulation and long-term survival according to feedback provided by automated external defibrillators.

    PubMed

    Agerskov, M; Hansen, M B; Nielsen, A M; Møller, T P; Wissenberg, M; Rasmussen, L S

    2017-11-01

    We aimed to investigate the effect of automated external defibrillator (AED) feedback mechanisms on survival in out-of-hospital cardiac arrest (OHCA) victims. In addition, we investigated converting rates in patients with shockable rhythms according to AED shock waveforms and energy levels. We collected data on OHCA occurring between 2011 and 2014 in the Capital Region of Denmark where an AED was applied prior to ambulance arrival. Patient data were obtained from the Danish Cardiac Arrest Registry and medical records. AED data were retrieved from the Emergency Medical Dispatch Centre (EMDC) and information on feedback mechanisms, energy waveform and energy level was downloaded from the applied AEDs. A total of 196 OHCAs had an AED applied prior to ambulance arrival; 62 of these (32%) provided audio visual (AV) feedback while no feedback was provided in 134 (68%). We found no difference in return of spontaneous circulation (ROSC) at hospital arrival according to AV-feedback; 34 (55%, 95% confidence interval (CI) [13-67]) vs. 72 (54%, 95% CI [45-62]), P = 1 (odds ratio (OR) 1.1, 95% CI [0.6-1.9]) or 30-day survival; 24 (39%, 95% CI [28-51]) vs. 53 (40%, 95% CI [32-49]), P = 0.88 (OR 1.1 (95% CI [0.6-2.0])). Moreover, we found no difference in converting rates among patients with initial shockable rhythm receiving one or more shocks according to AED energy waveform and energy level. No difference in survival after OHCA according to AED feedback mechanisms, nor any difference in converting rates according to AED waveform or energy levels was detected. © 2017 The Authors. Acta Anaesthesiologica Scandinavica published by John Wiley & Sons Ltd on behalf of Acta Anaesthesiologica Scandinavica Foundation.

  13. Ice-type classifications from airborne pulse-limited radar altimeter return waveform characteristics

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Hayne, G. S.; Walsh, E. J.

    1989-01-01

    During mid-March 1978, the NASA C-130 aircraft was deployed to Eielson Air Force Base in Fairbanks, Alaska, to make a series of flights over ice in the Beaufort Sea. The radar altimeter data analyzed were obtained northeast of Mackenzie Bay on March 14th in the vicinity of 69.9 deg N, 134.2 deg W. The data were obtained with a 13.9 GHz radar altimeter developed under the NASA Advanced Applications Flight Experiments (AAFE) Program. This airborne radar was built as a forerunner of the Seasat radar altimeter, and utilized the same pulse compression technique. Pulse-limited radar data taken with the altimeter from 1500-m altitude over sea ice are registered to high-quality photography. The backscattered power is statistically related the surface conductivity and to the number of facets whose surface normal is directed towards the radar. The variations of the radar return waveform shape and signal level are correlated with the variation of the ice type determined from photography. The AAFE altimeter has demonstrated that the return waveform shape and signal level of an airborne pulse-limited altimeter at 13.9 GHz respond to sea ice type. The signal level responded dramatically to even a very small fracture in the ice, as long as it occurred directly at the altimeter nadir point. Shear zones and regions of significant compression ridging consistently produced low signal levels. The return waveforms frequently evidenced the characteristics of both specular and diffuse scattering, and there was an indication that the power backscattered at 3 deg off-nadir in a shear zone was actually somewhat higher than that from nadir.

  14. Seismic anisotropy and its relation with crust structure and stress field in the Reggio Emilia Region (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Margheriti, L.; Ferulano, M. F.; Di Bona, M.

    2006-11-01

    Shear wave splitting is measured at 14 seismic stations in the Reggio Emilia region above local background seismicity and two sequences of seismic events. The good quality of the waveforms together with the favourable distribution of earthquake foci allows us to place strong constraints on the geometry and the depth of the anisotropic volume. It is about 60 km2 wide and located between 6 and 11 km depth, inside Mesozoic age carbonate rocks. The splitting results suggest also the presence of a shallower anisotropic layer about 1 km thick and few km wide in the Pliocene-Quaternary alluvium above the Mesozoic layer. The fast polarization directions (N30°E) are approximately parallel to the maximum horizontal stress (σ1 is SSW-NNE) in the region and also parallel to the strike of the main structural features in the Reggio Emilia area. The size of the delay times suggests about 4.5 per cent shear wave velocity anisotropy. These parameters agree with an interpretation of seismic anisotropy in terms of the extensive-dilatancy anisotropy model which considers the rock volume to be pervaded by fluid-saturated microcracks aligned by the active stress field. We cannot completely rule out the contribution of aligned macroscopic fractures as the cause of the shear wave anisotropy even if the parallel shear wave polarizations we found are diagnostic of transverse isotropy with a horizontal axis of symmetry. This symmetry is commonly explained by parallel stress-aligned microcracks.

  15. Agile waveforms for joint SAR-GMTI processing

    NASA Astrophysics Data System (ADS)

    Jaroszewski, Steven; Corbeil, Allan; McMurray, Stephen; Majumder, Uttam; Bell, Mark R.; Corbeil, Jeffrey; Minardi, Michael

    2016-05-01

    Wideband radar waveforms that employ spread-spectrum techniques were investigated and experimentally tested. The waveforms combine bi-phase coding with a traditional LFM chirp and are applicable to joint SAR-GMTI processing. After de-spreading, the received signals can be processed to support simultaneous GMTI and high resolution SAR imaging missions by airborne radars. The spread spectrum coding techniques can provide nearly orthogonal waveforms and offer enhanced operations in some environments by distributing the transmitted energy over a large instantaneous bandwidth. The LFM component offers the desired Doppler tolerance. In this paper, the waveforms are formulated and a shift-register approach for de-spreading the received signals is described. Hardware loop-back testing has shown the feasibility of using these waveforms in experimental radar test bed.

  16. Anomalous waveforms observed in laboratory-formed gas hydrate-bearing and ice-bearing sediments

    PubMed Central

    Lee, Myung W.; Waite, William F.

    2011-01-01

    Acoustic transmission measurements of compressional, P, and shear, S, wave velocities rely on correctly identifying the P- and S-body wave arrivals in the measured waveform. In cylindrical samples for which the sample is much longer than the acoustic wavelength, these body waves can be obscured by high-amplitude waveform features arriving just after the relatively small-amplitude P-body wave. In this study, a normal mode approach is used to analyze this type of waveform, observed in sediment containing gas hydrate or ice. This analysis extends an existing normal-mode waveform propagation theory by including the effects of the confining medium surrounding the sample, and provides guidelines for estimating S-wave velocities from waveforms containing multiple large-amplitude arrivals. PMID:21476628

  17. Flexible approach to vibrational sum-frequency generation using shaped near-infrared light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Azhad U.; Liu, Fangjie; Watson, Brianna R.

    We describe a new approach that expands the utility of vibrational sum-frequency generation (vSFG) spectroscopy using shaped near-infrared (NIR) laser pulses. Here, we demonstrate that arbitrary pulse shapes can be specified to match experimental requirements without the need for changes to the optical alignment. In this way, narrowband NIR pulses as long as 5.75 ps are readily generated, with a spectral resolution of about 2.5 cm -1, an improvement of approximately a factor of 3 compared to a typical vSFG system. Moreover, the utility of having complete control over the NIR pulse characteristics is demonstrated through nonresonant background suppression frommore » a metallic substrate by generating an etalon waveform in the pulse shaper. The flexibility afforded by switching between arbitrary NIR waveforms at the sample position with the same instrument geometry expands the type of samples that can be studied without extensive modifications to existing apparatuses or large investments in specialty optics.« less

  18. Helicity-Selective Enhancement and Polarization Control of Attosecond High Harmonic Waveforms Driven by Bichromatic Circularly Polarized Laser Fields.

    PubMed

    Dorney, Kevin M; Ellis, Jennifer L; Hernández-García, Carlos; Hickstein, Daniel D; Mancuso, Christopher A; Brooks, Nathan; Fan, Tingting; Fan, Guangyu; Zusin, Dmitriy; Gentry, Christian; Grychtol, Patrik; Kapteyn, Henry C; Murnane, Margaret M

    2017-08-11

    High harmonics driven by two-color counterrotating circularly polarized laser fields are a unique source of bright, circularly polarized, extreme ultraviolet, and soft x-ray beams, where the individual harmonics themselves are completely circularly polarized. Here, we demonstrate the ability to preferentially select either the right or left circularly polarized harmonics simply by adjusting the relative intensity ratio of the bichromatic circularly polarized driving laser field. In the frequency domain, this significantly enhances the harmonic orders that rotate in the same direction as the higher-intensity driving laser. In the time domain, this helicity-dependent enhancement corresponds to control over the polarization of the resulting attosecond waveforms. This helicity control enables the generation of circularly polarized high harmonics with a user-defined polarization of the underlying attosecond bursts. In the future, this technique should allow for the production of bright highly elliptical harmonic supercontinua as well as the generation of isolated elliptically polarized attosecond pulses.

  19. A mobile phone-based ECG monitoring system.

    PubMed

    Iwamoto, Junichi; Yonezawa, Yoshiharu; Maki, Hiromichi; Ogawa, Hidekuni; Ninomiya, Ishio; Sada, Kouji; Hamada, Shingo; Hahn, Allen W; Caldwell, W Morton

    2006-01-01

    We have developed a telemedicine system for monitoring a patient's electrocardiogram during daily activities. The recording system consists of three ECG chest electrodes, a variable gain instrumentation amplifier, a low power 8-bit single-chip microcomputer, a 256 KB EEPROM and a 2.4 GHz low transmitting power mobile phone (PHS). The complete system is mounted on a single, lightweight, chest electrode array. When a heart discomfort is felt, the patient pushes the data transmission switch on the recording system. The system sends the recorded ECG waveforms of the two prior minutes and ECG waveforms of the two minutes after the switch is pressed, directly in the hospital server computer via the PHS. The server computer sends the data to the physician on call. The data is displayed on the doctor's Java mobile phone LCD (Liquid Crystal Display), so he or she can monitor the ECG regardless of their location. The developed ECG monitoring system is not only applicable to at-home patients, but should also be useful for monitoring hospital patients.

  20. Wind Speed Measurement from Bistatically Scattered GPS Signals

    NASA Technical Reports Server (NTRS)

    Garrison, James L.; Komjathy, Attila; Zavorotny, Valery U.; Katzberg, Stephen J.

    1999-01-01

    Instrumentation and retrieval algorithms are described which use the forward, or bistatically scattered range-coded signals from the Global Positioning System (GPS) radio navigation system for the measurement of sea surface roughness. This roughness is known to be related directly to the surface wind speed. Experiments were conducted from aircraft along the TOPEX ground track, and over experimental surface truth buoys. These flights used a receiver capable of recording the cross correlation power in the reflected signal. The shape of this power distribution was then compared against analytical models derived from geometric optics. Two techniques for matching these functions were studied. The first recognized the most significant information content in the reflected signal is contained in the trailing edge slope of the waveform. The second attempted to match the complete shape of the waveform by approximating it as a series expansion and obtaining the nonlinear least squares estimate. Discussion is also presented on anomalies in the receiver operation and their identification and correction.

  1. Flexible approach to vibrational sum-frequency generation using shaped near-infrared light

    DOE PAGES

    Chowdhury, Azhad U.; Liu, Fangjie; Watson, Brianna R.; ...

    2018-04-23

    We describe a new approach that expands the utility of vibrational sum-frequency generation (vSFG) spectroscopy using shaped near-infrared (NIR) laser pulses. Here, we demonstrate that arbitrary pulse shapes can be specified to match experimental requirements without the need for changes to the optical alignment. In this way, narrowband NIR pulses as long as 5.75 ps are readily generated, with a spectral resolution of about 2.5 cm -1, an improvement of approximately a factor of 3 compared to a typical vSFG system. Moreover, the utility of having complete control over the NIR pulse characteristics is demonstrated through nonresonant background suppression frommore » a metallic substrate by generating an etalon waveform in the pulse shaper. The flexibility afforded by switching between arbitrary NIR waveforms at the sample position with the same instrument geometry expands the type of samples that can be studied without extensive modifications to existing apparatuses or large investments in specialty optics.« less

  2. Source Parameters for Moderate Earthquakes in the Zagros Mountains with Implications for the Depth Extent of Seismicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, A; Brazier, R; Nyblade, A

    2009-02-23

    Six earthquakes within the Zagros Mountains with magnitudes between 4.9 and 5.7 have been studied to determine their source parameters. These events were selected for study because they were reported in open catalogs to have lower crustal or upper mantle source depths and because they occurred within an area of the Zagros Mountains where crustal velocity structure has been constrained by previous studies. Moment tensor inversion of regional broadband waveforms have been combined with forward modeling of depth phases on short period teleseismic waveforms to constrain source depths and moment tensors. Our results show that all six events nucleated withinmore » the upper crust (<11 km depth) and have thrust mechanisms. This finding supports other studies that call into question the existence of lower crustal or mantle events beneath the Zagros Mountains.« less

  3. Neural Processing of Facial Identity and Emotion in Infants at High-Risk for Autism Spectrum Disorders

    PubMed Central

    Fox, Sharon E.; Wagner, Jennifer B.; Shrock, Christine L.; Tager-Flusberg, Helen; Nelson, Charles A.

    2013-01-01

    Deficits in face processing and social impairment are core characteristics of autism spectrum disorder. The present work examined 7-month-old infants at high-risk for developing autism and typically developing controls at low-risk, using a face perception task designed to differentiate between the effects of face identity and facial emotions on neural response using functional Near-Infrared Spectroscopy. In addition, we employed independent component analysis, as well as a novel method of condition-related component selection and classification to identify group differences in hemodynamic waveforms and response distributions associated with face and emotion processing. The results indicate similarities of waveforms, but differences in the magnitude, spatial distribution, and timing of responses between groups. These early differences in local cortical regions and the hemodynamic response may, in turn, contribute to differences in patterns of functional connectivity. PMID:23576966

  4. Medium change based image estimation from application of inverse algorithms to coda wave measurements

    NASA Astrophysics Data System (ADS)

    Zhan, Hanyu; Jiang, Hanwan; Jiang, Ruinian

    2018-03-01

    Perturbations worked as extra scatters will cause coda waveform distortions; thus, coda wave with long propagation time and traveling path are sensitive to micro-defects in strongly heterogeneous media such as concretes. In this paper, we conduct varied external loads on a life-size concrete slab which contains multiple existing micro-cracks, and a couple of sources and receivers are installed to collect coda wave signals. The waveform decorrelation coefficients (DC) at different loads are calculated for all available source-receiver pair measurements. Then inversions of the DC results are applied to estimate the associated distribution density values in three-dimensional regions through kernel sensitivity model and least-square algorithms, which leads to the images indicating the micro-cracks positions. This work provides an efficiently non-destructive approach to detect internal defects and damages of large-size concrete structures.

  5. Teleseismic tomography for imaging Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Aktas, Kadircan

    Teleseismic tomography is an important imaging tool in earthquake seismology, used to characterize lithospheric structure beneath a region of interest. In this study I investigate three different tomographic techniques applied to real and synthetic teleseismic data, with the aim of imaging the velocity structure of the upper mantle. First, by applying well established traveltime tomographic techniques to teleseismic data from southern Ontario, I obtained high-resolution images of the upper mantle beneath the lower Great Lakes. Two salient features of the 3D models are: (1) a patchy, NNW-trending low-velocity region, and (2) a linear, NE-striking high-velocity anomaly. I interpret the high-velocity anomaly as a possible relict slab associated with ca. 1.25 Ga subduction, whereas the low-velocity anomaly is interpreted as a zone of alteration and metasomatism associated with the ascent of magmas that produced the Late Cretaceous Monteregian plutons. The next part of the thesis is concerned with adaptation of existing full-waveform tomographic techniques for application to teleseismic body-wave observations. The method used here is intended to be complementary to traveltime tomography, and to take advantage of efficient frequency-domain methodologies that have been developed for inverting large controlled-source datasets. Existing full-waveform acoustic modelling and inversion codes have been modified to handle plane waves impinging from the base of the lithospheric model at a known incidence angle. A processing protocol has been developed to prepare teleseismic observations for the inversion algorithm. To assess the validity of the acoustic approximation, the processing procedure and modelling-inversion algorithm were tested using synthetic seismograms computed using an elastic Kirchhoff integral method. These tests were performed to evaluate the ability of the frequency-domain full-waveform inversion algorithm to recover topographic variations of the Moho under a variety of realistic scenarios. Results show that frequency-domain full-waveform tomography is generally successful in recovering both sharp and discontinuous features. Thirdly, I developed a new method for creating an initial background velocity model for the inversion algorithm, which is sufficiently close to the true model so that convergence is likely to be achieved. I adapted a method named Deformable Layer Tomography (DLT), which adjusts interfaces between layers rather than velocities within cells. I applied this method to a simple model comprising a single uniform crustal layer and a constant-velocity mantle, separated by an irregular Moho interface. A series of tests was performed to evaluate the sensitivity of the DLT algorithm; the results show that my algorithm produces useful results within a realistic range of incident-wave obliquity, incidence angle and signal-to-noise level. Keywords. Teleseismic tomography, full waveform tomography, deformable layer tomography, lower Great Lakes, crust and upper mantle.

  6. Doppler waveform study as indicator of change of portal pressure after administration of octreotide

    PubMed Central

    Haider, Shahbaz; Hussain, Qurban; Tabassum, Sumera; Hussain, Bilal; Durrani, Muhammad Rasheed; Ahmed, Fayyaz

    2016-01-01

    Objective: To estimate the effect of portal pressure lowering drug ‘octreotide’, by observing the Doppler waveform before and after the administration of intravenous bolus of octreotide and thus to assess indirectly its efficacy to lower the portal pressure. Methods: This quassi experimental study was carried out in Medical Department in collaboration with Radiology Department of Jinnah Postgraduate Medical Center Karachi Pakistan from September 10, 2015 to February 5, 2016. Cases were selected from patients admitted in Medical Wards and those attending Medical OPD. Diagnosis of cirrhosis was confirmed by Clinical Examination and Lab & Imaging investigation in Medical Department. Doppler waveform study was done by experienced radiologist in Radiology Department before and after administration of octreotide. Doppler signals were obtained from the right hepatic vein. Waveform tracings were recorded for five seconds and categorized as ‘monophasic’, ‘biphasic’ and ‘triphasic’. Waveform changes from one waveform to other were noted and analyzed. Results: Significant change i.e. from ‘monophasic’ to ‘biphasic’ or ‘biphasic’ to ‘triphasic’ was seen in 56% cases while ‘monophasic’ to ‘triphasic’ was seen in 20% cases. No change was seen in 24% cases. Improvement in waveform reflects lowering of portal vein pressure. Conclusion: Non invasive Hepatic vein Doppler waveform study showed improvement in Doppler waveform after administration of octreotide in 76% cases. Doppler waveform study has the potential of becoming non invasive ‘follow up tool’ of choice for assessing portal pressure in patients having variceal bleed due to portal hypertension. PMID:27648043

  7. The great 1933 Sanriku-oki earthquake: reappraisal of the main shock and its aftershocks and implications for its tsunami using regional tsunami and seismic data

    NASA Astrophysics Data System (ADS)

    Uchida, Naoki; Kirby, Stephen H.; Umino, Norihito; Hino, Ryota; Kazakami, Tomoe

    2016-09-01

    The aftershock distribution of the 1933 Sanriku-oki outer trench earthquake is estimated by using modern relocation methods and a newly developed velocity structure to examine the spatial extent of the source-fault and the possibility of a triggered interplate seismicity. In this study, we first examined the regional data quality of the 1933 earthquake based on smoked-paper records and then relocated the earthquakes by using the 3-D velocity structure and double-difference method. The improvements of hypocentre locations using these methods were confirmed by the examination of recent earthquakes that are accurately located based on ocean bottom seismometer data. The results show that the 1933 aftershocks occurred under both the outer- and inner-trench-slope regions. In the outer-trench-slope region, aftershocks are distributed in a ˜280-km-long area and their depths are shallower than 50 km. Although we could not constrain the fault geometry from the hypocentre distribution, the depth distribution suggests the whole lithosphere is probably not under deviatoric tension at the time of the 1933 earthquake. The occurrence of aftershocks under the inner trench slope was also confirmed by an investigation of waveform frequency difference between outer and inner trench earthquakes as recorded at Mizusawa. The earthquakes under the inner trench slope were shallow (depth ≦30 km) and the waveforms show a low-frequency character similar to the waveforms of recent, precisely located earthquakes in the same area. They are also located where recent activity of interplate thrust earthquakes is high. These suggest that the 1933 outer-trench-slope main shock triggered interplate earthquakes, which is an unusual case in the order of occurrence in contrast with the more common pairing of a large initial interplate shock with subsequent outer-slope earthquakes. The off-trench earthquakes are distributed about 80 km width in the trench perpendicular direction. This wide width cannot be explained from a single high-angle fault confined at a shallow depth (depth ≦50 km). The upward motion of the 1933 tsunami waveform records observed at Sanriku coast also cannot be explained from a single high-angle west-dipping normal fault. If we consider additional fault, involvement of high-angle, east-dipping normal faults can better explain the tsunami first motion and triggering of the aftershock in a wide area under the outer trench slope. Therefore multiple off-trench normal faults may have activated during the 1933 earthquake. We also relocated recent (2001-2012) seismicity by the same method. The results show that the present seismicity in the outer-trench-slope region can be divided into several groups along the trench. Comparison of the 1933 rupture dimensions based on our aftershock relocations with the morphologies of fault scarps in the outer trench slope suggest that the rupture was limited to the region where fault scarps are largely trench parallel and cross cut the seafloor spreading fabric. These findings imply that bending geometry and structural segmentation of the incoming plate largely controls the spatial extent of the 1933 seismogenic faulting. In this shallow rupture model for this largest outer trench earthquake, triggered seismicity in the forearc and structural control of faulting represent an important deformation styles for off-trench and shallow megathrust zones.

  8. Cross-Sectional Elasticity Imaging of Arterial Wall by Comparing Measured Change in Thickness with Model Waveform

    NASA Astrophysics Data System (ADS)

    Tang, Jiang; Hasegawa, Hideyuki; Kanai, Hiroshi

    2005-06-01

    For the assessment of the elasticity of the arterial wall, we have developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness due to heartbeats and the elasticity of the arterial wall with transcutaneous ultrasound. For various reasons, for example, an extremely small deformation of the wall, the minute change in wall thickness during one heartbeat is largely influenced by noise in these cases and the reliability of the elasticity distribution obtained from the maximum change in thickness deteriorates because the maximum value estimation is largely influenced by noise. To obtain a more reliable cross-sectional image of the elasticity of the arterial wall, in this paper, a matching method is proposed to evaluate the waveform of the measured change in wall thickness by comparing the measured waveform with a template waveform. The maximum deformation, which is used in the calculation of elasticity, was determined from the amplitude of the matched model waveform to reduce the influence of noise. The matched model waveform was obtained by minimizing the difference between the measured and template waveforms. Furthermore, a random error, which was obtained from the reproducibility among the heartbeats of the measured waveform, was considered useful for the evaluation of the reliability of the measured waveform.

  9. NEW APPLICATIONS IN THE INVERSION OF ACOUSTIC FULL WAVEFORM LOGS - RELATING MODE EXCITATION TO LITHOLOGY.

    USGS Publications Warehouse

    Paillet, Frederick L.; Cheng, C.H.; Meredith, J.A.

    1987-01-01

    Existing techniques for the quantitative interpretation of waveform data have been based on one of two fundamental approaches: (1) simultaneous identification of compressional and shear velocities; and (2) least-squares minimization of the difference between experimental waveforms and synthetic seismograms. Techniques based on the first approach do not always work, and those based on the second seem too numerically cumbersome for routine application during data processing. An alternative approach is tested here, in which synthetic waveforms are used to predict relative mode excitation in the composite waveform. Synthetic waveforms are generated for a series of lithologies ranging from hard, crystalline rocks (Vp equals 6. 0 km/sec. and Poisson's ratio equals 0. 20) to soft, argillaceous sediments (Vp equals 1. 8 km/sec. and Poisson's ratio equals 0. 40). The series of waveforms illustrates a continuous change within this range of rock properties. Mode energy within characteristic velocity windows is computed for each of the modes in the set of synthetic waveforms. The results indicate that there is a consistent variation in mode excitation in lithology space that can be used to construct a unique relationship between relative mode excitation and lithology.

  10. Surface Fitting Filtering of LIDAR Point Cloud with Waveform Information

    NASA Astrophysics Data System (ADS)

    Xing, S.; Li, P.; Xu, Q.; Wang, D.; Li, P.

    2017-09-01

    Full-waveform LiDAR is an active technology of photogrammetry and remote sensing. It provides more detailed information about objects along the path of a laser pulse than discrete-return topographic LiDAR. The point cloud and waveform information with high quality can be obtained by waveform decomposition, which could make contributions to accurate filtering. The surface fitting filtering method with waveform information is proposed to present such advantage. Firstly, discrete point cloud and waveform parameters are resolved by global convergent Levenberg Marquardt decomposition. Secondly, the ground seed points are selected, of which the abnormal ones are detected by waveform parameters and robust estimation. Thirdly, the terrain surface is fitted and the height difference threshold is determined in consideration of window size and mean square error. Finally, the points are classified gradually with the rising of window size. The filtering process is finished until window size is larger than threshold. The waveform data in urban, farmland and mountain areas from "WATER (Watershed Allied Telemetry Experimental Research)" are selected for experiments. Results prove that compared with traditional method, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.

  11. Bandwidth scalable, coherent transmitter based on the parallel synthesis of multiple spectral slices using optical arbitrary waveform generation.

    PubMed

    Geisler, David J; Fontaine, Nicolas K; Scott, Ryan P; He, Tingting; Paraschis, Loukas; Gerstel, Ori; Heritage, Jonathan P; Yoo, S J B

    2011-04-25

    We demonstrate an optical transmitter based on dynamic optical arbitrary waveform generation (OAWG) which is capable of creating high-bandwidth (THz) data waveforms in any modulation format using the parallel synthesis of multiple coherent spectral slices. As an initial demonstration, the transmitter uses only 5.5 GHz of electrical bandwidth and two 10-GHz-wide spectral slices to create 100-ns duration, 20-GHz optical waveforms in various modulation formats including differential phase-shift keying (DPSK), quaternary phase-shift keying (QPSK), and eight phase-shift keying (8PSK) with only changes in software. The experimentally generated waveforms showed clear eye openings and separated constellation points when measured using a real-time digital coherent receiver. Bit-error-rate (BER) performance analysis resulted in a BER < 9.8 × 10(-6) for DPSK and QPSK waveforms. Additionally, we experimentally demonstrate three-slice, 4-ns long waveforms that highlight the bandwidth scalable nature of the optical transmitter. The various generated waveforms show that the key transmitter properties (i.e., packet length, modulation format, data rate, and modulation filter shape) are software definable, and that the optical transmitter is capable of acting as a flexible bandwidth transmitter.

  12. Isolated cases of remote dynamic triggering in Canada detected using cataloged earthquakes combined with a matched-filter approach

    USGS Publications Warehouse

    Bei, Wang; Harrington, Rebecca M.; Liu, Yajing; Yu, Hongyu; Carey, Alex; van der Elst, Nicholas

    2015-01-01

    Here we search for dynamically triggered earthquakes in Canada following global main shocks between 2004 and 2014 with MS > 6, depth < 100 km, and estimated peak ground velocity > 0.2 cm/s. We use the Natural Resources Canada (NRCan) earthquake catalog to calculate β statistical values in 1° × 1° bins in 10 day windows before and after the main shocks. The statistical analysis suggests that triggering may occur near Vancouver Island, along the border of the Yukon and Northwest Territories, in western Alberta, western Ontario, and the Charlevoix seismic zone. We also search for triggering in Alberta where denser seismic station coverage renders regional earthquake catalogs with lower completeness thresholds. We find remote triggering in Alberta associated with three main shocks using a matched-filter approach on continuous waveform data. The increased number of local earthquakes following the passage of main shock surface waves suggests local faults may be in a critically stressed state.

  13. Merging Black Holes, Gravitational Waves, and Numerical Relativity

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2009-01-01

    The final merger of two black holes will emit more energy than all the stars in the observable universe combined. This energy will come in the form of gravitational waves, which are a key prediction of Einstein's general relativity and a new tool for exploring the universe. Observing these mergers with gravitational wave detectors, such as the ground-based LIGO and the space-based LISA, requires knowledge of the radiation waveforms. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes were long plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and w aefo rms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.

  14. STRS Compliant FPGA Waveform Development

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer; Downey, Joseph

    2008-01-01

    The Space Telecommunications Radio System (STRS) Architecture Standard describes a standard for NASA space software defined radios (SDRs). It provides a common framework that can be used to develop and operate a space SDR in a reconfigurable and reprogrammable manner. One goal of the STRS Architecture is to promote waveform reuse among multiple software defined radios. Many space domain waveforms are designed to run in the special signal processing (SSP) hardware. However, the STRS Architecture is currently incomplete in defining a standard for designing waveforms in the SSP hardware. Therefore, the STRS Architecture needs to be extended to encompass waveform development in the SSP hardware. A transmit waveform for space applications was developed to determine ways to extend the STRS Architecture to a field programmable gate array (FPGA). These extensions include a standard hardware abstraction layer for FPGAs and a standard interface between waveform functions running inside a FPGA. Current standards were researched and new standard interfaces were proposed. The implementation of the proposed standard interfaces on a laboratory breadboard SDR will be presented.

  15. Modeling measured glottal volume velocity waveforms.

    PubMed

    Verneuil, Andrew; Berry, David A; Kreiman, Jody; Gerratt, Bruce R; Ye, Ming; Berke, Gerald S

    2003-02-01

    The source-filter theory of speech production describes a glottal energy source (volume velocity waveform) that is filtered by the vocal tract and radiates from the mouth as phonation. The characteristics of the volume velocity waveform, the source that drives phonation, have been estimated, but never directly measured at the glottis. To accomplish this measurement, constant temperature anemometer probes were used in an in vivo canine constant pressure model of phonation. A 3-probe array was positioned supraglottically, and an endoscopic camera was positioned subglottically. Simultaneous recordings of airflow velocity (using anemometry) and glottal area (using stroboscopy) were made in 3 animals. Glottal airflow velocities and areas were combined to produce direct measurements of glottal volume velocity waveforms. The anterior and middle parts of the glottis contributed significantly to the volume velocity waveform, with less contribution from the posterior part of the glottis. The measured volume velocity waveforms were successfully fitted to a well-known laryngeal airflow model. A noninvasive measured volume velocity waveform holds promise for future clinical use.

  16. An improved driving waveform reference grayscale of electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yi, Zichuan; Peng, Bao; Zhou, Guofu

    2015-10-01

    Driving waveform is an important component for gray scale display on the electrophoretic display (EPD). In the traditional driving waveform, a white reference gray scale is formed before writing a new image. However, the reflectance value can not reach agreement in each gray scale transformation. In this paper, a new driving waveform, which has a short waiting time after the formation of reference gray scale, is proposed to improve the consistency of reference gray scale. Firstly, the property of the particles in the microcapsule is analyzed and the change of the EPD reflectance after the white reference gray scale formation is studied. Secondly, the reflectance change curve is fitted by using polynomial and the duration of the waiting time is determined. Thirdly, a set of the new driving waveform is designed by using the rule of DC balance and some real E-ink commercial EPDs are used to test the performance. Experimental results show that the effect of the new driving waveform has a better performance than traditional waveforms.

  17. Adaptive phase k-means algorithm for waveform classification

    NASA Astrophysics Data System (ADS)

    Song, Chengyun; Liu, Zhining; Wang, Yaojun; Xu, Feng; Li, Xingming; Hu, Guangmin

    2018-01-01

    Waveform classification is a powerful technique for seismic facies analysis that describes the heterogeneity and compartments within a reservoir. Horizon interpretation is a critical step in waveform classification. However, the horizon often produces inconsistent waveform phase, and thus results in an unsatisfied classification. To alleviate this problem, an adaptive phase waveform classification method called the adaptive phase k-means is introduced in this paper. Our method improves the traditional k-means algorithm using an adaptive phase distance for waveform similarity measure. The proposed distance is a measure with variable phases as it moves from sample to sample along the traces. Model traces are also updated with the best phase interference in the iterative process. Therefore, our method is robust to phase variations caused by the interpretation horizon. We tested the effectiveness of our algorithm by applying it to synthetic and real data. The satisfactory results reveal that the proposed method tolerates certain waveform phase variation and is a good tool for seismic facies analysis.

  18. Seismic waveform classification using deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Q.; Allen, R. M.

    2017-12-01

    MyShake is a global smartphone seismic network that harnesses the power of crowdsourcing. It has an Artificial Neural Network (ANN) algorithm running on the phone to distinguish earthquake motion from human activities recorded by the accelerometer on board. Once the ANN detects earthquake-like motion, it sends a 5-min chunk of acceleration data back to the server for further analysis. The time-series data collected contains both earthquake data and human activity data that the ANN confused. In this presentation, we will show the Convolutional Neural Network (CNN) we built under the umbrella of supervised learning to find out the earthquake waveform. The waveforms of the recorded motion could treat easily as images, and by taking the advantage of the power of CNN processing the images, we achieved very high successful rate to select the earthquake waveforms out. Since there are many non-earthquake waveforms than the earthquake waveforms, we also built an anomaly detection algorithm using the CNN. Both these two methods can be easily extended to other waveform classification problems.

  19. Accurate inspiral-merger-ringdown gravitational waveforms for nonspinning black-hole binaries including the effect of subdominant modes

    NASA Astrophysics Data System (ADS)

    Mehta, Ajit Kumar; Mishra, Chandra Kant; Varma, Vijay; Ajith, Parameswaran

    2017-12-01

    We present an analytical waveform family describing gravitational waves (GWs) from the inspiral, merger, and ringdown of nonspinning black-hole binaries including the effect of several nonquadrupole modes [(ℓ=2 ,m =±1 ),(ℓ=3 ,m =±3 ),(ℓ=4 ,m =±4 ) apart from (ℓ=2 ,m =±2 )]. We first construct spin-weighted spherical harmonics modes of hybrid waveforms by matching numerical-relativity simulations (with mass ratio 1-10) describing the late inspiral, merger, and ringdown of the binary with post-Newtonian/effective-one-body waveforms describing the early inspiral. An analytical waveform family is constructed in frequency domain by modeling the Fourier transform of the hybrid waveforms making use of analytical functions inspired by perturbative calculations. The resulting highly accurate, ready-to-use waveforms are highly faithful (unfaithfulness ≃10-4- 10-2 ) for observation of GWs from nonspinning black-hole binaries and are extremely inexpensive to generate.

  20. Energy-optimal electrical excitation of nerve fibers.

    PubMed

    Jezernik, Saso; Morari, Manfred

    2005-04-01

    We derive, based on an analytical nerve membrane model and optimal control theory of dynamical systems, an energy-optimal stimulation current waveform for electrical excitation of nerve fibers. Optimal stimulation waveforms for nonleaky and leaky membranes are calculated. The case with a leaky membrane is a realistic case. Finally, we compare the waveforms and energies necessary for excitation of a leaky membrane in the case where the stimulation waveform is a square-wave current pulse, and in the case of energy-optimal stimulation. The optimal stimulation waveform is an exponentially rising waveform and necessitates considerably less energy to excite the nerve than a square-wave pulse (especially true for larger pulse durations). The described theoretical results can lead to drastically increased battery lifetime and/or decreased energy transmission requirements for implanted biomedical systems.

  1. Anomalous waveforms observed in laboratory-formed gas hydrate-bearing and ice-bearing sediments

    USGS Publications Warehouse

    Lee, M.W.; Waite, W.F.

    2011-01-01

    Acoustic transmission measurements of compressional, P, and shear, S, wave velocities rely on correctly identifying the P- and S-body wave arrivals in the measured waveform. In cylindrical samples for which the sample is much longer than the acoustic wavelength, these body waves can be obscured by high-amplitude waveform features arriving just after the relatively small-amplitude P-body wave. In this study, a normal mode approach is used to analyze this type of waveform, observed in sediment containing gas hydrate or ice. This analysis extends an existing normal-mode waveform propagation theory by including the effects of the confining medium surrounding the sample, and provides guidelines for estimating S-wave velocities from waveforms containing multiple large-amplitude arrivals. ?? 2011 Acoustical Society of America.

  2. Normal Fault Type Earthquakes Off Fukushima Region - Comparison of the 1938 Events and Recent Earthquakes -

    NASA Astrophysics Data System (ADS)

    Murotani, S.; Satake, K.

    2017-12-01

    Off Fukushima region, Mjma 7.4 (event A) and 6.9 (event B) events occurred on November 6, 1938, following the thrust fault type earthquakes of Mjma 7.5 and 7.3 on the previous day. These earthquakes were estimated as normal fault earthquakes by Abe (1977, Tectonophysics). An Mjma 7.0 earthquake occurred on July 12, 2014 near event B and an Mjma 7.4 earthquake occurred on November 22, 2016 near event A. These recent events are the only M 7 class earthquakes occurred off Fukushima since 1938. Except for the two 1938 events, normal fault earthquakes have not occurred until many aftershocks of the 2011 Tohoku earthquake. We compared the observed tsunami and seismic waveforms of the 1938, 2014, and 2016 earthquakes to examine the normal fault earthquakes occurred off Fukushima region. It is difficult to compare the tsunami waveforms of the 1938, 2014 and 2016 events because there were only a few observations at the same station. The teleseismic body wave inversion of the 2016 earthquake yielded with the focal mechanism of strike 42°, dip 35°, and rake -94°. Other source parameters were as follows: source area 70 km x 40 km, average slip 0.2 m, maximum slip 1.2 m, seismic moment 2.2 x 1019 Nm, and Mw 6.8. A large slip area is located near the hypocenter, and it is compatible with the tsunami source area estimated from tsunami travel times. The 2016 tsunami source area is smaller than that of the 1938 event, consistent with the difference in Mw: 7.7 for event A estimated by Abe (1977) and 6.8 for the 2016 event. Although the 2014 epicenter is very close to that of event B, the teleseismic waveforms of the 2014 event are similar to those of event A and the 2016 event. While Abe (1977) assumed that the mechanism of event B was the same as event A, the initial motions at some stations are opposite, indicating that the focal mechanisms of events A and B are different and more detailed examination is needed. The normal fault type earthquake seems to occur following the occurrence of M7 9 class thrust type earthquake at the plate boundary off Fukushima region.

  3. Performance Analysis of the Link-16/JTIDS Waveform with Concatenated Coding, Soft Decision Reed-Solomon Decoding, and Noise-Normalization

    DTIC Science & Technology

    2010-09-01

    the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the...Col Terry Smith for his time spent serving as the second reader of this thesis. xxii THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION...However, this is the first time that concatenated coding in combination with noise- normalization has been considered. 2 B. THESIS OUTLINE The thesis

  4. Probabilistic terrain models from waveform airborne LiDAR: AutoProbaDTM project results

    NASA Astrophysics Data System (ADS)

    Jalobeanu, A.; Goncalves, G. R.

    2012-12-01

    The main objective of the AutoProbaDTM project was to develop new methods for automated probabilistic topographic map production using the latest LiDAR scanners. It included algorithmic development, implementation and validation over a 200 km2 test area in continental Portugal, representing roughly 100 GB of raw data and half a billion waveforms. We aimed to generate digital terrain models automatically, including ground topography as well as uncertainty maps, using Bayesian inference for model estimation and error propagation, and approaches based on image processing. Here we are presenting the results of the completed project (methodological developments and processing results from the test dataset). In June 2011, the test data were acquired in central Portugal, over an area of geomorphological and ecological interest, using a Riegl LMS-Q680i sensor. We managed to survey 70% of the test area at a satisfactory sampling rate, the angular spacing matching the laser beam divergence and the ground spacing nearly equal to the footprint (almost 4 pts/m2 for a 50cm footprint at 1500 m AGL). This is crucial for a correct processing as aliasing artifacts are significantly reduced. A reverse engineering had to be done as the data were delivered in a proprietary binary format, so we were able to read the waveforms and the essential parameters. A robust waveform processing method has been implemented and tested, georeferencing and geometric computations have been coded. Fast gridding and interpolation techniques have been developed. Validation is nearly completed, as well as geometric calibration, IMU error correction, full error propagation and large-scale DEM reconstruction. A probabilistic processing software package has been implemented and code optimization is in progress. This package includes new boresight calibration procedures, robust peak extraction modules, DEM gridding and interpolation methods, and means to visualize the produced uncertain surfaces (topography and accuracy map). Vegetation filtering for bare ground extraction has been left aside, and we wish to explore this research area in the future. A thorough validation of the new techniques and computed models has been conducted, using large numbers of ground control points (GCP) acquired with GPS, evenly distributed and classified according to ground cover and terrain characteristics. More than 16,000 GCP have been acquired during field work. The results are now freely accessible online through a web map service (GeoServer) thus allowing users to visualize data interactively without having to download the full processed dataset.

  5. ECCM Waveform Investigation

    DTIC Science & Technology

    1977-08-01

    period, duration/ peak power, and side lobe levels. A recommended waveform library is presented. One of the program results is that an optimum waveform...Areas a. Coding b. Pulse Repetition Period c. Peak Power/Pulse Duration d. Sidelobes 3. Performance Dependence Upon Bandwidth/Bandspan a... peak power and pulse duration, and range and Doppler sldelobe levels. The constraints upon waveforms due to the In- ability of the radar components

  6. Predicting Electrocardiogram and Arterial Blood Pressure Waveforms with Different Echo State Network Architectures

    DTIC Science & Technology

    2014-11-01

    networks were trained to predict an individual’s electrocardiogram (ECG) and arterial blood pressure ( ABP ) waveform data, which can potentially help...various ESN architectures for prediction tasks, and establishes the benefits of using ESN architecture designs for predicting ECG and ABP waveforms...arterial blood pressure ( ABP ) waveforms immediately prior to the machine generated alarms. When tested, the algorithm suppressed approximately 59.7

  7. Multi-Phenomenological Analysis of the 12 August 2015 Tianjin, China Chemical Explosion

    NASA Astrophysics Data System (ADS)

    Pasyanos, M.; Kim, K.; Park, J.; Stump, B. W.; Hayward, C.; Che, I. Y.; Zhao, L.; Myers, S. C.

    2016-12-01

    We perform a multi-phenomenological analysis of the massive near-surface chemical explosions that occurred in Tianjin, China on 12 August 2015. A recent assessment of these events was performed by Zhao et al. (2016) using local (< 100 km) seismic data. This study considers a regional assessment of the same sequence in the absence of having any local data. We provide additional insight by combining regional seismic analysis with the use of infrasound signals and an assessment of the event crater. Event locations using infrasound signals recorded at Korean and IMS arrays are estimated based on the Bayesian Infrasonic Source Location (BISL) method (Modrak et al., 2010), and improved with azimuthal corrections using a raytracing (Blom and Waxler, 2012) and the Ground-to-Space (G2S) atmospheric models (Drob et al., 2003). The location information provided from the infrasound signals is then merged with the regional seismic arrivals to produce a joint event location. The yields of the events are estimated from seismic and infrasonic observations. Seismic waveform envelope method (Pasyanos et al., 2012) including the free surface effect (Pasyanos and Ford, 2015) is applied to regional seismic signals. Waveform inversion method (Kim and Rodgers, 2016) is used for infrasound signals. A combination of the seismic and acoustic signals can provide insights on the energy partitioning and break the tradeoffs between the yield and the depth/height of explosions, resulting in a more robust estimation of event yield. The yield information from the different phenomenologies are combined through the use of likelihood functions.

  8. Waveform tomography of crustal structure in the south San Francisco Bay region

    USGS Publications Warehouse

    Pollitz, F.F.; Fletcher, J.P.

    2005-01-01

    We utilize a scattering-based seismic tomography technique to constrain crustal tructure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional-scale studies. Using fully three-dimensional kernels, this technique is here applied to observed P, S, and surface waves of intermediate period (3-4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short-period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth-dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km. Copyright 2005 by the American Geophysical Union.

  9. Full-waveform detection of non-impulsive seismic events based on time-reversal methods

    NASA Astrophysics Data System (ADS)

    Solano, Ericka Alinne; Hjörleifsdóttir, Vala; Liu, Qinya

    2017-12-01

    We present a full-waveform detection method for non-impulsive seismic events, based on time-reversal principles. We use the strain Green's tensor as a matched filter, correlating it with continuous observed seismograms, to detect non-impulsive seismic events. We show that this is mathematically equivalent to an adjoint method for detecting earthquakes. We define the detection function, a scalar valued function, which depends on the stacked correlations for a group of stations. Event detections are given by the times at which the amplitude of the detection function exceeds a given value relative to the noise level. The method can make use of the whole seismic waveform or any combination of time-windows with different filters. It is expected to have an advantage compared to traditional detection methods for events that do not produce energetic and impulsive P waves, for example glacial events, landslides, volcanic events and transform-fault earthquakes for events which velocity structure along the path is relatively well known. Furthermore, the method has advantages over empirical Greens functions template matching methods, as it does not depend on records from previously detected events, and therefore is not limited to events occurring in similar regions and with similar focal mechanisms as these events. The method is not specific to any particular way of calculating the synthetic seismograms, and therefore complicated structural models can be used. This is particularly beneficial for intermediate size events that are registered on regional networks, for which the effect of lateral structure on the waveforms can be significant. To demonstrate the feasibility of the method, we apply it to two different areas located along the mid-oceanic ridge system west of Mexico where non-impulsive events have been reported. The first study area is between Clipperton and Siqueiros transform faults (9°N), during the time of two earthquake swarms, occurring in March 2012 and May 2016. The second area of interest is the Gulf of California where two swarms took place during July and September of 2015. We show that we are able to detect previously non-reported, non-impulsive events and recommend that this method be used together with more traditional template matching methods to maximize the number of detected events.

  10. Focal Depth of the WenChuan Earthquake Aftershocks from modeling of Seismic Depth Phases

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zeng, X.; Chong, J.; Ni, S.; Chen, Y.

    2008-12-01

    After the 05/12/2008 great WenChuan earthquake in Sichuan Province of China, tens of thousands earthquakes occurred with hundreds of them stronger than M4. Those aftershocks provide valuable information about seismotectonics and rupture processes for the mainshock, particularly accurate spatial distribution of aftershocks is very informational for determining rupture fault planes. However focal depth can not be well resolved just with first arrivals recorded by relatively sparse network in Sichuan Province, therefore 3D seismicity distribution is difficult to obtain though horizontal location can be located with accuracy of 5km. Instead local/regional depth phases such as sPmP, sPn, sPL and teleseismic pP,sP are very sensitive to depth, and be readily modeled to determine depth with accuracy of 2km. With reference 1D velocity structure resolved from receiver functions and seismic refraction studies, local/regional depth phases such as sPmP, sPn and sPL are identified by comparing observed waveform with synthetic seismograms by generalized ray theory and reflectivity methods. For teleseismic depth phases well observed for M5.5 and stronger events, we developed an algorithm in inverting both depth and focal mechanism from P and SH waveforms. Also we employed the Cut and Paste (CAP) method developed by Zhao and Helmberger in modeling mechanism and depth with local waveforms, which constrains depth by fitting Pnl waveforms and the relative weight between surface wave and Pnl. After modeling all the depth phases for hundreds of events , we find that most of the M4 earthquakes occur between 2-18km depth, with aftershocks depth ranging 4-12km in the southern half of Longmenshan fault while aftershocks in the northern half featuring large depth range up to 18km. Therefore seismogenic zone in the northern segment is deeper as compared to the southern segment. All the aftershocks occur in upper crust, given that the Moho is deeper than 40km, or even 60km west of the Longmenshan fault. Absence of mid-lower crustal shocks supports the model of lower crustal flow beneath eastern Tibetan plateau, which is probably responsible for Longmenshan uplifting and hence the Wenchuan earthquake.

  11. Range Estimation Algorithm Comparison in 3-D Flash LADAR Data

    DTIC Science & Technology

    2009-03-01

    formed from LADAR intensity data viewed at sample 10. Target is about 70 meters from receiver and normal to line of sight. White square indicates region...that when averaged form a pulse that is slightly wider than the individual returns. . . . . . . . 35 4.1 Examples of simulated LADAR waveforms of...varying widths used for PWE tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Simulated noiseless data buffered through LADAR sytem

  12. A probabilistic framework for single-station location of seismicity on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Böse, M.; Clinton, J. F.; Ceylan, S.; Euchner, F.; van Driel, M.; Khan, A.; Giardini, D.; Lognonné, P.; Banerdt, W. B.

    2017-01-01

    Locating the source of seismic energy from a single three-component seismic station is associated with large uncertainties, originating from challenges in identifying seismic phases, as well as inevitable pick and model uncertainties. The challenge is even higher for planets such as Mars, where interior structure is a priori largely unknown. In this study, we address the single-station location problem by developing a probabilistic framework that combines location estimates from multiple algorithms to estimate the probability density function (PDF) for epicentral distance, back azimuth, and origin time. Each algorithm uses independent and complementary information in the seismic signals. Together, the algorithms allow locating seismicity ranging from local to teleseismic quakes. Distances and origin times of large regional and teleseismic events (M > 5.5) are estimated from observed and theoretical body- and multi-orbit surface-wave travel times. The latter are picked from the maxima in the waveform envelopes in various frequency bands. For smaller events at local and regional distances, only first arrival picks of body waves are used, possibly in combination with fundamental Rayleigh R1 waveform maxima where detectable; depth phases, such as pP or PmP, help constrain source depth and improve distance estimates. Back azimuth is determined from the polarization of the Rayleigh- and/or P-wave phases. When seismic signals are good enough for multiple approaches to be used, estimates from the various methods are combined through the product of their PDFs, resulting in an improved event location and reduced uncertainty range estimate compared to the results obtained from each algorithm independently. To verify our approach, we use both earthquake recordings from existing Earth stations and synthetic Martian seismograms. The Mars synthetics are generated with a full-waveform scheme (AxiSEM) using spherically-symmetric seismic velocity, density and attenuation models of Mars that incorporate existing knowledge of Mars internal structure, and include expected ambient and instrumental noise. While our probabilistic framework is developed mainly for application to Mars in the context of the upcoming InSight mission, it is also relevant for locating seismic events on Earth in regions with sparse instrumentation.

  13. Computational Approach for Improving Three-Dimensional Sub-Surface Earth Structure for Regional Earthquake Hazard Simulations in the San Francisco Bay Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A. J.

    In our Exascale Computing Project (ECP) we seek to simulate earthquake ground motions at much higher frequency than is currently possible. Previous simulations in the SFBA were limited to 0.5-1 Hz or lower (Aagaard et al. 2008, 2010), while we have recently simulated the response to 5 Hz. In order to improve confidence in simulated ground motions, we must accurately represent the three-dimensional (3D) sub-surface material properties that govern seismic wave propagation over a broad region. We are currently focusing on the San Francisco Bay Area (SFBA) with a Cartesian domain of size 120 x 80 x 35 km, butmore » this area will be expanded to cover a larger domain. Currently, the United States Geologic Survey (USGS) has a 3D model of the SFBA for seismic simulations. However, this model suffers from two serious shortcomings relative to our application: 1) it does not fit most of the available low frequency (< 1 Hz) seismic waveforms from moderate (magnitude M 3.5-5.0) earthquakes; and 2) it is represented with much lower resolution than necessary for the high frequency simulations (> 5 Hz) we seek to perform. The current model will serve as a starting model for full waveform tomography based on 3D sensitivity kernels. This report serves as the deliverable for our ECP FY2017 Quarter 4 milestone to FY 2018 “Computational approach to developing model updates”. We summarize the current state of 3D seismic simulations in the SFBA and demonstrate the performance of the USGS 3D model for a few selected paths. We show the available open-source waveform data sets for model updates, based on moderate earthquakes recorded in the region. We present a plan for improving the 3D model utilizing the available data and further development of our SW4 application. We project how the model could be improved and present options for further improvements focused on the shallow geotechnical layers using dense passive recordings of ambient and human-induced noise.« less

  14. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T.; Sigloch, K.

    2012-04-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and architectural structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to combine non-destructive testing with a theoretical data analysis and hence to contribute to conservation strategies of archaeological and architectural structures. We analyze ultrasonic waveforms measured at the surface of a variety of samples, and define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  15. A Monte Carlo approach applied to ultrasonic non-destructive testing

    NASA Astrophysics Data System (ADS)

    Mosca, I.; Bilgili, F.; Meier, T. M.; Sigloch, K.

    2011-12-01

    Non-destructive testing based on ultrasound allows us to detect, characterize and size discrete flaws in geotechnical and engineering structures and materials. This information is needed to determine whether such flaws can be tolerated in future service. In typical ultrasonic experiments, only the first-arriving P-wave is interpreted, and the remainder of the recorded waveform is neglected. Our work aims at understanding surface waves, which are strong signals in the later wave train, with the ultimate goal of full waveform tomography. At present, even the structural estimation of layered media is still challenging because material properties of the samples can vary widely, and good initial models for inversion do not often exist. The aim of the present study is to analyze ultrasonic waveforms measured at the surface of Plexiglas and rock samples, and to define the behaviour of surface waves in structures of increasing complexity. The tremendous potential of ultrasonic surface waves becomes an advantage only if numerical forward modelling tools are available to describe the waveforms accurately. We compute synthetic full seismograms as well as group and phase velocities for the data. We invert them for the elastic properties of the sample via a global search of the parameter space, using the Neighbourhood Algorithm. Such a Monte Carlo approach allows us to perform a complete uncertainty and resolution analysis, but the computational cost is high and increases quickly with the number of model parameters. Therefore it is practical only for defining the seismic properties of media with a limited number of degrees of freedom, such as layered structures. We have applied this approach to both synthetic layered structures and real samples. The former contributed to benchmark the propagation of ultrasonic surface waves in typical materials tested with a non-destructive technique (e.g., marble, unweathered and weathered concrete and natural stone).

  16. Current progress on GSN data quality evaluation

    NASA Astrophysics Data System (ADS)

    Davis, J. P.; Gee, L. S.; Anderson, K. R.; Ahern, T. K.

    2012-12-01

    We discuss ongoing work to assess and improve the quality of data collected from instruments deployed at the 150+ stations of the Global Seismographic Network (GSN). The USGS and the IRIS Consortium are coordinating efforts to emphasize data quality following completion of the major installation phase of the GSN and recapitalization of the network's data acquisition systems, ancillary equipment and many of the secondary seismic sensors. We highlight here procedures adopted by the network's operators, the USGS' Albuquerque Seismological Laboratory (ASL) and UCSD's Project IDA, to ensure that the quality of the waveforms collected is maximized, that published metadata accurately reflect the instrument response of the data acquisitions systems, and that the data users are informed of the status of the GSN data quality. Additional details can be found at the GSN Quality webpage (www.iris.edu/hq/programs/gsn/quality). The GSN network operation teams meet frequently to share information and techniques. While custom software developed by each network operator to identify and track known problems remains important, recent efforts are providing new resources and tools to evaluate waveform quality, including analysis provided by the Lamont Waveform Quality Center (www.ldeo.columbia.edu/~ekstrom/Projects/WQC.html) and synthetic seismograms made available through Princeton University's Near Real Time Global Seismicity Portal ( http://global.shakemovie.princeton.edu/home.jsp ) and developments such as the IRIS DMS's MUSTANG and the ASL's Data Quality Analyzer. We conclude with the concept of station certification, a comprehensive overview of a station's performance that we have developed to communicate to data users the state of data- and metadata quality. As progress is made to verify the response and performance of existing systems as well as analysis of past calibration signals and waveform data, we will update information on the GSN web portals to apprise users of the condition of each GSN station's data.

  17. Average current is better than peak current as therapeutic dosage for biphasic waveforms in a ventricular fibrillation pig model of cardiac arrest.

    PubMed

    Chen, Bihua; Yu, Tao; Ristagno, Giuseppe; Quan, Weilun; Li, Yongqin

    2014-10-01

    Defibrillation current has been shown to be a clinically more relevant dosing unit than energy. However, the effects of average and peak current in determining shock outcome are still undetermined. The aim of this study was to investigate the relationship between average current, peak current and defibrillation success when different biphasic waveforms were employed. Ventricular fibrillation (VF) was electrically induced in 22 domestic male pigs. Animals were then randomized to receive defibrillation using one of two different biphasic waveforms. A grouped up-and-down defibrillation threshold-testing protocol was used to maintain the average success rate of 50% in the neighborhood. In 14 animals (Study A), defibrillations were accomplished with either biphasic truncated exponential (BTE) or rectilinear biphasic waveforms. In eight animals (Study B), shocks were delivered using two BTE waveforms that had identical peak current but different waveform durations. Both average and peak currents were associated with defibrillation success when BTE and rectilinear waveforms were investigated. However, when pathway impedance was less than 90Ω for the BTE waveform, bivariate correlation coefficient was 0.36 (p=0.001) for the average current, but only 0.21 (p=0.06) for the peak current in Study A. In Study B, a high defibrillation success (67.9% vs. 38.8%, p<0.001) was observed when the waveform delivered more average current (14.9±2.1A vs. 13.5±1.7A, p<0.001) while keeping the peak current unchanged. In this porcine model of VF, average current was better than peak current to be an adequate parameter to describe the therapeutic dosage when biphasic defibrillation waveforms were used. The institutional protocol number: P0805. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. A Waveform Archiving System for the GE Solar 8000i Bedside Monitor.

    PubMed

    Fanelli, Andrea; Jaishankar, Rohan; Filippidis, Aristotelis; Holsapple, James; Heldt, Thomas

    2018-01-01

    Our objective was to develop, deploy, and test a data-acquisition system for the reliable and robust archiving of high-resolution physiological waveform data from a variety of bedside monitoring devices, including the GE Solar 8000i patient monitor, and for the logging of ancillary clinical and demographic information. The data-acquisition system consists of a computer-based archiving unit and a GE Tram Rac 4A that connects to the GE Solar 8000i monitor. Standard physiological front-end sensors connect directly to the Tram Rac, which serves as a port replicator for the GE monitor and provides access to these waveform signals through an analog data interface. Together with the GE monitoring data streams, we simultaneously collect the cerebral blood flow velocity envelope from a transcranial Doppler ultrasound system and a non-invasive arterial blood pressure waveform along a common time axis. All waveform signals are digitized and archived through a LabView-controlled interface that also allows for the logging of relevant meta-data such as clinical and patient demographic information. The acquisition system was certified for hospital use by the clinical engineering team at Boston Medical Center, Boston, MA, USA. Over a 12-month period, we collected 57 datasets from 11 neuro-ICU patients. The system provided reliable and failure-free waveform archiving. We measured an average temporal drift between waveforms from different monitoring devices of 1 ms every 66 min of recorded data. The waveform acquisition system allows for robust real-time data acquisition, processing, and archiving of waveforms. The temporal drift between waveforms archived from different devices is entirely negligible, even for long-term recording.

  19. Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    NASA Astrophysics Data System (ADS)

    Hinder, Ian; Buonanno, Alessandra; Boyle, Michael; Etienne, Zachariah B.; Healy, James; Johnson-McDaniel, Nathan K.; Nagar, Alessandro; Nakano, Hiroyuki; Pan, Yi; Pfeiffer, Harald P.; Pürrer, Michael; Reisswig, Christian; Scheel, Mark A.; Schnetter, Erik; Sperhake, Ulrich; Szilágyi, Bela; Tichy, Wolfgang; Wardell, Barry; Zenginoğlu, Anıl; Alic, Daniela; Bernuzzi, Sebastiano; Bode, Tanja; Brügmann, Bernd; Buchman, Luisa T.; Campanelli, Manuela; Chu, Tony; Damour, Thibault; Grigsby, Jason D.; Hannam, Mark; Haas, Roland; Hemberger, Daniel A.; Husa, Sascha; Kidder, Lawrence E.; Laguna, Pablo; London, Lionel; Lovelace, Geoffrey; Lousto, Carlos O.; Marronetti, Pedro; Matzner, Richard A.; Mösta, Philipp; Mroué, Abdul; Müller, Doreen; Mundim, Bruno C.; Nerozzi, Andrea; Paschalidis, Vasileios; Pollney, Denis; Reifenberger, George; Rezzolla, Luciano; Shapiro, Stuart L.; Shoemaker, Deirdre; Taracchini, Andrea; Taylor, Nicholas W.; Teukolsky, Saul A.; Thierfelder, Marcus; Witek, Helvi; Zlochower, Yosef

    2013-01-01

    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ˜100-200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ⩽4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.

  20. Comparison of pulmonary artery and central venous pressure waveform measurements via digital and graphic measurement methods.

    PubMed

    Ahrens, T S; Schallom, L

    2001-01-01

    Techniques to measure pulmonary artery (PA) pressure waveforms include digital measurement, graphic measurement, and freeze-cursor measurement. Previous studies reported the inaccuracy of digital and freeze-cursor measurements. However, many of the previous studies were small and did not thoroughly examine the circumstances of when digital measurements might be inaccurate. To compare digital measurements and graphic measurements of PA and central venous pressure (CVP) waveforms in patients with a variety of respiratory patterns, and to compare digital measurements and graphic measurements of CVPs in patients with abnormal or right ventricular waveforms. A total of 928 patients were enrolled in this study. Waveforms from the PA and CVP were collected from each patient. The monitor pressure value (digital measurement) printed on the recorded waveform was compared with the pressure value obtained by a graphic strip recording and measured by one of the primary investigators (graphic measurement). Digital measurements were found to be inaccurate in measuring waveforms in all respiratory categories and in measuring right ventricular waveforms. PA diastolic values and CVP values were the most inaccurately measured waveforms. Digital errors of more than 4 mm Hg were common. There were instances in which the monitor's digital measurement was substantially different from the graphically measured value. This difference has the potential to mislead interpretation of clinical situations. The monitor's ability to occasionally give digital measurement values similar to the graphic measurements may lead to a false sense of security in clinicians. Because the accuracy of the monitor is inconsistent, the bedside clinician should interpret waveforms through use of a graphic recording rather than rely on the digital measurement on the monitor.

  1. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2006-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital one's or zero's. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental physical laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  2. Carrier Modulation Via Waveform Probability Density Function

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L.

    2004-01-01

    Beyond the classic modes of carrier modulation by varying amplitude (AM), phase (PM), or frequency (FM), we extend the modulation domain of an analog carrier signal to include a class of general modulations which are distinguished by their probability density function histogram. Separate waveform states are easily created by varying the pdf of the transmitted waveform. Individual waveform states are assignable as proxies for digital ONEs or ZEROs. At the receiver, these states are easily detected by accumulating sampled waveform statistics and performing periodic pattern matching, correlation, or statistical filtering. No fundamental natural laws are broken in the detection process. We show how a typical modulation scheme would work in the digital domain and suggest how to build an analog version. We propose that clever variations of the modulating waveform (and thus the histogram) can provide simple steganographic encoding.

  3. Design of a 9-loop quasi-exponential waveform generator

    NASA Astrophysics Data System (ADS)

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  4. Design of a 9-loop quasi-exponential waveform generator.

    PubMed

    Banerjee, Partha; Shukla, Rohit; Shyam, Anurag

    2015-12-01

    We know in an under-damped L-C-R series circuit, current follows a damped sinusoidal waveform. But if a number of sinusoidal waveforms of decreasing time period, generated in an L-C-R circuit, be combined in first quarter cycle of time period, then a quasi-exponential nature of output current waveform can be achieved. In an L-C-R series circuit, quasi-exponential current waveform shows a rising current derivative and thereby finds many applications in pulsed power. Here, we have described design and experiment details of a 9-loop quasi-exponential waveform generator. In that, design details of magnetic switches have also been described. In the experiment, output current of 26 kA has been achieved. It has been shown that how well the experimentally obtained output current profile matches with the numerically computed output.

  5. Pulsatile pipe flow transition: Flow waveform effects

    NASA Astrophysics Data System (ADS)

    Brindise, Melissa C.; Vlachos, Pavlos P.

    2018-01-01

    Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.

  6. ASKI: A modular toolbox for scattering-integral-based seismic full waveform inversion and sensitivity analysis utilizing external forward codes

    NASA Astrophysics Data System (ADS)

    Schumacher, Florian; Friederich, Wolfgang

    Due to increasing computational resources, the development of new numerically demanding methods and software for imaging Earth's interior remains of high interest in Earth sciences. Here, we give a description from a user's and programmer's perspective of the highly modular, flexible and extendable software package ASKI-Analysis of Sensitivity and Kernel Inversion-recently developed for iterative scattering-integral-based seismic full waveform inversion. In ASKI, the three fundamental steps of solving the seismic forward problem, computing waveform sensitivity kernels and deriving a model update are solved by independent software programs that interact via file output/input only. Furthermore, the spatial discretizations of the model space used for solving the seismic forward problem and for deriving model updates, respectively, are kept completely independent. For this reason, ASKI does not contain a specific forward solver but instead provides a general interface to established community wave propagation codes. Moreover, the third fundamental step of deriving a model update can be repeated at relatively low costs applying different kinds of model regularization or re-selecting/weighting the inverted dataset without need to re-solve the forward problem or re-compute the kernels. Additionally, ASKI offers the user sensitivity and resolution analysis tools based on the full sensitivity matrix and allows to compose customized workflows in a consistent computational environment. ASKI is written in modern Fortran and Python, it is well documented and freely available under terms of the GNU General Public License (http://www.rub.de/aski).

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodenbeck, Christopher T.; Young, Derek; Chou, Tina

    A combined radar and telemetry system is described. The combined radar and telemetry system includes a processing unit that executes instructions, where the instructions define a radar waveform and a telemetry waveform. The processor outputs a digital baseband signal based upon the instructions, where the digital baseband signal is based upon the radar waveform and the telemetry waveform. A radar and telemetry circuit transmits, simultaneously, a radar signal and telemetry signal based upon the digital baseband signal.

  8. A waveform detector that targets template–decorrelated signals and achieves its predicted performance, Part I: Demonstration with IMS data

    DOE PAGES

    Carmichael, Joshua Daniel

    2016-01-01

    Here, waveform correlation detectors used in seismic monitoring scan multichannel data to test two competing hypotheses: that data contain (1) a noisy, amplitude-scaled version of a template waveform, or, (2) only noise. In reality, seismic wavefields include signals triggered by non-target sources (background seismicity) and targets signals that are only partially correlated with the waveform template.

  9. Multifunction waveform generator for EM receiver testing

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Jin, Sheng; Deng, Ming

    2018-01-01

    In many electromagnetic (EM) methods - such as magnetotelluric, spectral-induced polarization (SIP), time-domain-induced polarization (TDIP), and controlled-source audio magnetotelluric (CSAMT) methods - it is important to evaluate and test the EM receivers during their development stage. To assess the performance of the developed EM receivers, controlled synthetic data that simulate the observed signals in different modes are required. In CSAMT and SIP mode testing, the waveform generator should use the GPS time as the reference for repeating schedule. Based on our testing, the frequency range, frequency precision, and time synchronization of the currently available function waveform generators on the market are deficient. This paper presents a multifunction waveform generator with three waveforms: (1) a wideband, low-noise electromagnetic field signal to be used for magnetotelluric, audio-magnetotelluric, and long-period magnetotelluric studies; (2) a repeating frequency sweep square waveform for CSAMT and SIP studies; and (3) a positive-zero-negative-zero signal that contains primary and secondary fields for TDIP studies. In this paper, we provide the principles of the above three waveforms along with a hardware design for the generator. Furthermore, testing of the EM receiver was conducted with the waveform generator, and the results of the experiment were compared with those calculated from the simulation and theory in the frequency band of interest.

  10. Waveform LiDAR across forest biomass gradients

    NASA Astrophysics Data System (ADS)

    Montesano, P. M.; Nelson, R. F.; Dubayah, R.; Sun, G.; Ranson, J.

    2011-12-01

    Detailed information on the quantity and distribution of aboveground biomass (AGB) is needed to understand how it varies across space and changes over time. Waveform LiDAR data is routinely used to derive the heights of scattering elements in each illuminated footprint, and the vertical structure of vegetation is related to AGB. Changes in LiDAR waveforms across vegetation structure gradients can demonstrate instrument sensitivity to land cover transitions. A close examination of LiDAR waveforms in footprints across a forest gradient can provide new insight into the relationship of vegetation structure and forest AGB. In this study we use field measurements of individual trees within Laser Vegetation Imaging Sensor (LVIS) footprints along transects crossing forest to non-forest gradients to examine changes in LVIS waveform characteristics at sites with low (< 50Mg/ha) AGB. We relate field AGB measurements to original and adjusted LVIS waveforms to detect the forest AGB interval along a forest - non-forest transition in which the LVIS waveform lose the ability to discern differences in AGB. Our results help identify the lower end the forest biomass range that a ~20m footprint waveform LiDAR can detect, which can help infer accumulation of biomass after disturbances and during forest expansion, and which can guide the use of LiDAR within a multi-sensor fusion biomass mapping approach.

  11. Using waveform cross correlation for automatic recovery of aftershock sequences

    NASA Astrophysics Data System (ADS)

    Bobrov, Dmitry; Kitov, Ivan; Rozhkov, Mikhail

    2017-04-01

    Aftershock sequences of the largest earthquakes are difficult to recover. There can be several hundred mid-sized aftershocks per hour within a few hundred km from each other recorded by the same stations. Moreover, these events generate thousands of reflected/refracted phases having azimuth and slowness close to those from the P-waves. Therefore, aftershock sequences with thousands of events represent a major challenge for automatic and interactive processing at the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Organization (CTBTO). Standard methods of detection and phase association do not use all information contained in signals. As a result, wrong association of the first and later phases, both regular and site specific, produces enormous number of wrong event hypotheses and destroys valid event hypotheses in automatic IDC processing. In turn, the IDC analysts have to reject false and recreate valid hypotheses wasting precious human resources. At the current level of the IDC catalogue completeness, the method of waveform cross correlation (WCC) can resolve most of detection and association problems fully utilizing the similarity of waveforms generated by aftershocks. Array seismic stations of the International monitoring system (IMS) can enhance the performance of the WCC method: reduce station-specific detection thresholds, allow accurate estimate of signal attributes, including relative magnitude, and effectively suppress irrelevant arrivals. We have developed and tested a prototype of an aftershock tool matching all IDC processing requirements and merged it with the current IDC pipeline. This tool includes creation of master events consisting of real or synthetic waveform templates at ten and more IMS stations; cross correlation (CC) of real-time waveforms with these templates, association of arrivals detected at CC-traces in event hypotheses; building events matching the IDC quality criteria; and resolution of conflicts between events hypotheses created by neighboring master-events. The final cross correlation standard event lists (XSEL) is a start point for interactive analysis with standard tools. We present select results for the biggest earthquakes, like Sumatra 2004 and Tohoku 2011, as well as for several smaller events with hundreds of aftershocks. The sensitivity and resolution of the aftershock tool is demonstrated on the example of mb=2.2 aftershock found after the September 9, 2016 DPRK test.

  12. Probabilistic Tsunami Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes thousands of earthquake scenarios. We have carried out preliminary tsunami hazard calculations for different return periods for western North America and Hawaii based on thousands of earthquake scenarios around the Pacific rim and along the coast of North America. We will present tsunami hazard maps for several return periods and also discuss how to use these results for probabilistic inundation and runup mapping. Our knowledge of certain types of tsunami sources is very limited (e.g. submarine landslides), but a probabilistic framework for tsunami hazard evaluation can include even such sources and their uncertainties and present the overall hazard in a meaningful and consistent way.

  13. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.

    PubMed

    Grasso, R; Zago, M; Lacquaniti, F

    2000-01-01

    Human erect locomotion is unique among living primates. Evolution selected specific biomechanical features that make human locomotion mechanically efficient. These features are matched by the motor patterns generated in the CNS. What happens when humans walk with bent postures? Are normal motor patterns of erect locomotion maintained or completely reorganized? Five healthy volunteers walked straight and forward at different speeds in three different postures (regular, knee-flexed, and knee- and trunk-flexed) while their motion, ground reaction forces, and electromyographic (EMG) activity were recorded. The three postures imply large differences in the position of the center of body mass relative to the body segments. The elevation angles of the trunk, pelvis, and lower limb segments relative to the vertical in the sagittal plane, the ground reaction forces and the rectified EMGs were analyzed over the gait cycle. The waveforms of the elevation angles along the gait cycle remained essentially unchanged irrespective of the adopted postures. The first two harmonics of these kinematic waveforms explain >95% of their variance. The phase shift but not the amplitude ratio between the first harmonic of the elevation angle waveforms of adjacent pairs was affected systematically by changes in posture. Thigh, shank, and foot angles covaried close to a plane in all conditions, but the plane orientation was systematically different in bent versus erect locomotion. This was explained by the changes in the temporal coupling among the three segments. For walking speeds >1 m s(-1), the plane orientation of bent locomotion indicates a much lower mechanical efficiency relative to erect locomotion. Ground reaction forces differed prominently in bent versus erect posture displaying characteristics intermediate between those typical of walking and those of running. Mean EMG activity was greater in bent postures for all recorded muscles independent of the functional role. The waveforms of the muscle activities and muscle synergies also were affected by the adopted posture. We conclude that maintaining bent postures does not interfere either with the generation of segmental kinematic waveforms or with the planar constraint of intersegmental covariation. These characteristics are maintained at the expense of adjustments in kinetic parameters, muscle synergies and the temporal coupling among the oscillating body segments. We argue that an integrated control of gait and posture is made possible because these two motor functions share some common principles of spatial organization.

  14. Effects of Isotropic and Anisotropic Structure in the Lowermost Mantle on High-Frequency Body Waveforms

    NASA Astrophysics Data System (ADS)

    Parisi, L.; Ferreira, A. M. G.; Ritsema, J.

    2015-12-01

    It has been observed that vertically (SV) and horizontally (SH) polarised S waves crossing the lowermost mantle sometimes are split by a few seconds The splitting of such waves is often interpreted in terms of seismic anisotropy in the D" region. Here we investigate systematically the effects of elastic, anelastic, isotropic and anisotropic structure on shear-wave splitting, including 3-D variations in some of these physical properties. Taking advantage of accurate waveform modeling techniques such as Gemini and the Spectral Element Method we generate three-component theoretical waveforms in a wide set of 1-D and 3-D, isotropic and radially anisotropic earth models, accurate down to a wave period of T~5.6s. Our numerical simulations in isotropic earth models show that the contamination of S waves by other phases can generate an apparent splitting between SH and SV waves. In particular, in the case of very shallow sources, the sS phase can interfere with the direct S phase, resulting in split SH and SV pulses when the SH and SV (or sSH and sSV) waves have different polarity or a substantial amplitude difference. In the case of deep earthquake sources, a positive shear velocity jump at the top of the D" can cause the triplication of S waves and the ScSH and ScSV phases can have different polarity. Thus, when the triplicated S wave is combined with the ScS phase, the resulting SH-ScSH and SV-ScSV phases may seem split. On the other hand, in the absence of a sharp vertical variation in the shear wave velocity, the difference in polarity between ScSH and ScSV can make the SH pulse larger than SV and thus also lead to apparent splitting between these phases. This effect depends on the thickness of the D" and the Vs gradient within it. S waveforms simulated in radially anisotropic models reveal that a radial anisotropy of ξ=1.07 in the D" seems to be necessary to explain the 2-3s of splitting observed in waveforms recorded in Tanzania from an event in the Banda Sea. However, our analysis also shows that other factors such as sharp vertical variations at the top of D" and gradients of Vs and η within the D'' may also affect the observed waveforms. This study suggests that caution should be taken when interpreting SH-SV splitting of deep mantle body waves exclusively in terms of anisotropy in the lowermost mantle.

  15. Scenario design and basic analysis of the National Data Centre Preparedness Exercise 2013

    NASA Astrophysics Data System (ADS)

    Ross, Ole; Ceranna, Lars; Hartmann, Gernot; Gestermann, Nicolai; Bönneman, Christian

    2014-05-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. For the detection of treaty violations the International Monitoring System (IMS) operates stations observing seismic, hydroacoustic, and infrasound signals as well as radioisotopes in the atmosphere. While the IMS data is collected, processed and technically analyzed in the International Data Center (IDC) of the CTBT-Organization, National Data Centers (NDC) provide interpretation and advice to their government concerning suspicious detections occurring in IMS data. NDC Preparedness Exercises (NPE) are regularly performed dealing with fictitious treaty violations to practice the combined analysis of CTBT verification technologies and for the mutual exchange of information between NDC and also with the IDC. The NPE2010 and NPE2012 trigger scenarios were based on selected seismic events from the Reviewed Event Bulletin (REB) serving as starting point for fictitious Radionuclide dispersion. The main task was the identification of the original REB event and the discrimination between earthquakes and explosions as source. The scenario design of NPE2013 differs from those of previous NPEs. The waveform event selection is not constrained to events in the REB. The exercise trigger is a combination of a tempo-spatial indication pointing to a certain waveform event and simulated radionuclide concentrations generated by forward Atmospheric Transport Modelling based on a fictitious release. For the waveform event the date (4 Sept. 2013) is given and the region is communicated in a map showing the fictitious state of "Frisia" at the Coast of the North Sea in Central Europe. The synthetic radionuclide detections start in Vienna (8 Sept, I-131) and Schauinsland (11 Sept, Xe-133) with rather low activity concentrations and are most prominent in Stockholm and Spitsbergen mid of September 2013. Smaller concentrations in Asia follow later on. The potential connection between the waveform and radionuclide evidence remains unclear. The verification task is to identify the waveform event and to investigate potential sources of the radionuclide findings. Finally the potential conjunction between the sources and the CTBT-relevance of the whole picture has to be evaluated. The overall question is whether requesting an On-Site-Inspection in "Frisia" would be justified. The poster presents the NPE2013 scenario and gives a basic analysis of the initial situation concerning both waveform detections and atmospheric dispersion conditions in Central Europe in early September 2013. The full NPE2013 scenario will be presented at the NDC Workshop mid of May 2014.

  16. Design and Testing of Space Telemetry SCA Waveform

    NASA Technical Reports Server (NTRS)

    Mortensen, Dale J.; Handler, Louis M.; Quinn, Todd M.

    2006-01-01

    A Software Communications Architecture (SCA) Waveform for space telemetry is being developed at the NASA Glenn Research Center (GRC). The space telemetry waveform is implemented in a laboratory testbed consisting of general purpose processors, field programmable gate arrays (FPGAs), analog-to-digital converters (ADCs), and digital-to-analog converters (DACs). The radio hardware is integrated with an SCA Core Framework and other software development tools. The waveform design is described from both the bottom-up signal processing and top-down software component perspectives. Simulations and model-based design techniques used for signal processing subsystems are presented. Testing with legacy hardware-based modems verifies proper design implementation and dynamic waveform operations. The waveform development is part of an effort by NASA to define an open architecture for space based reconfigurable transceivers. Use of the SCA as a reference has increased understanding of software defined radio architectures. However, since space requirements put a premium on size, mass, and power, the SCA may be impractical for today s space ready technology. Specific requirements for an SCA waveform and other lessons learned from this development are discussed.

  17. Georgia tech catalog of gravitational waveforms

    NASA Astrophysics Data System (ADS)

    Jani, Karan; Healy, James; Clark, James A.; London, Lionel; Laguna, Pablo; Shoemaker, Deirdre

    2016-10-01

    This paper introduces a catalog of gravitational waveforms from the bank of simulations by the numerical relativity effort at Georgia Tech. Currently, the catalog consists of 452 distinct waveforms from more than 600 binary black hole simulations: 128 of the waveforms are from binaries with black hole spins aligned with the orbital angular momentum, and 324 are from precessing binary black hole systems. The waveforms from binaries with non-spinning black holes have mass-ratios q = m 1/m 2 ≤ 15, and those with precessing, spinning black holes have q ≤ 8. The waveforms expand a moderate number of orbits in the late inspiral, the burst during coalescence, and the ring-down of the final black hole. Examples of waveforms in the catalog matched against the widely used approximate models are presented. In addition, predictions of the mass and spin of the final black hole by phenomenological fits are tested against the results from the simulation bank. The role of the catalog in interpreting the GW150914 event and future massive binary black-hole search in LIGO is discussed. The Georgia Tech catalog is publicly available at einstein.gatech.edu/catalog.

  18. Hollow Cathode and Keeper-region Plasma Measurements Using Ultra-fast Miniature Scanning Probes

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Jameson, Kristina K.; Watkins, Ron M.; Katz, Ira

    2004-01-01

    In order to support the development of comprehensive performance and life models for future deep space missions that will utilize ion thrusters, we have undertaken a study of the plasma structure in hollow cathodes using an new pneumatic scanning probe diagnostic. This device is designed to insert a miniature probe directly into the hollow cathode orifice from either the upstream insert region in the interior of the hollow cathode, or from the downstream keeper-plasma region at the exit of the hollow cathode, to provide complete axial profiles of the discharge plasma parameters. Previous attempts to diagnose this region with probes was Limited by the melting of small probes in the intense discharge near the orifice, or caused significant perturbation of the plasma by probes large enough to survive. Our new probe is extremely compact, and when configured as a single Langmuir probe, the ceramic tube insulator is only 0.5mm in diameter and the current collecting conductor has a total area of 0.002 cm2. A series of current-voltage characteristics are obtained by applying a rapid sawtooth voltage waveform to the probe as it is scanned by the pneumatic actuator into and out of the plasma region, The bellow-sealed pneumatic drive scans the probe 4 cm in the cathode insert region and 10 cm in the anode/keeper plasmas region at average speeds of about 1 mm/msec, and the residence time at the end of the insertion stroke in the densest part of the plasma near the orifice is measured to be only 10 msec. Since the voltage sweep time is fast compared to the motion of the probe, axial profiles of the plasma density, temperature and potential with reasonable spatial resolution are obtained. Measurements of the internal cathode pressures and the axial plasma-parameter profiles for a hollow cathode operating at discharge currents of up to 35 A in xenon will be presented.

  19. Time-Reversal Based Range Extension Technique for Ultra-wideband (UWB) Sensors and Applications in Tactical Communications and Networking

    DTIC Science & Technology

    2009-04-16

    the transmitted waveform, then spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response represented...400 Frequence (MHz) Figure 5.4: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response...600 Frequence (MHz) Figure 5.7: Spectral mask, notch line of Arbitrary Notch Filter , the designed waveforms and multipath impulse response

  20. Angular velocity of gravitational radiation from precessing binaries and the corotating frame

    NASA Astrophysics Data System (ADS)

    Boyle, Michael

    2013-05-01

    This paper defines an angular velocity for time-dependent functions on the sphere and applies it to gravitational waveforms from compact binaries. Because it is geometrically meaningful and has a clear physical motivation, the angular velocity is uniquely useful in helping to solve an important—and largely ignored—problem in models of compact binaries: the inverse problem of deducing the physical parameters of a system from the gravitational waves alone. It is also used to define the corotating frame of the waveform. When decomposed in this frame, the waveform has no rotational dynamics and is therefore as slowly evolving as possible. The resulting simplifications lead to straightforward methods for accurately comparing waveforms and constructing hybrids. As formulated in this paper, the methods can be applied robustly to both precessing and nonprecessing waveforms, providing a clear, comprehensive, and consistent framework for waveform analysis. Explicit implementations of all these methods are provided in accompanying computer code.

Top