Sample records for complete sequence revealed

  1. Complete Genome Sequence of Porcine Parvovirus 2 Recovered from Swine Sera

    PubMed Central

    Kluge, M.; Franco, A. C.; Giongo, A.; Valdez, F. P.; Saddi, T. M.; Brito, W. M. E. D.; Roehe, P. M.

    2016-01-01

    A complete genomic sequence of porcine parvovirus 2 (PPV-2) was detected by viral metagenome analysis on swine sera. A phylogenetic analysis of this genome reveals that it is highly similar to previously reported North American PPV-2 genomes. The complete PPV-2 sequence is 5,426 nucleotides long. PMID:26823583

  2. Complete Genome Sequence of Porcine Parvovirus 2 Recovered from Swine Sera.

    PubMed

    Campos, F S; Kluge, M; Franco, A C; Giongo, A; Valdez, F P; Saddi, T M; Brito, W M E D; Roehe, P M

    2016-01-28

    A complete genomic sequence of porcine parvovirus 2 (PPV-2) was detected by viral metagenome analysis on swine sera. A phylogenetic analysis of this genome reveals that it is highly similar to previously reported North American PPV-2 genomes. The complete PPV-2 sequence is 5,426 nucleotides long. Copyright © 2016 Campos et al.

  3. Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4.

    PubMed

    Khamrin, Pattara; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2013-07-01

    Epidemiological surveillance of human bocavirus (HBoV) was conducted on fecal specimens collected from hospitalized children with diarrhea in Chiang Mai, Thailand in 2011. By partial sequence analysis of VP1 gene, an unusual strain of HBoV (CMH-S011-11), was initially identified as HBoV4. The complete genome sequence of CMH-S011-11 was performed and analyzed further to clarify whether it was a recombinant strain or a new HBoV variant. Analysis of complete genome sequence revealed that the coding sequence starting from NS1, NP1 to VP1/VP2 was 4795 nucleotides long. Interestingly, the nucleotide sequence of NS1 gene of CMH-S011-11 was most closely related to the HBoV2 reference strains detected in Pakistan, which contradicted to the initial genotyping result of the partial VP1 region in the previous study. In addition, comparison of NP1 nucleotide sequence of CMH-S011-11 with those of other HBoV1-4 reference strains also revealed a high level of sequence identity with HBoV2. On the other hand, nucleotide sequence of VP1/VP2 gene of CMH-S011-11 was most closely related to those of HBoV4 reference strains detected in Nigeria. The overall full-length sequence analysis revealed that this CMH-S011-11 was grouped within HBoV4 species, but located in a separate branch from other HBoV4 prototype strains. Recombination analysis revealed that CMH-S011-11 was the result of recombination between HBoV2 and HBoV4 strains with the break point located near the start codon of VP2. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Complete Genome Sequence of the Electricity-Producing “Thermincola potens” Strain JR▿

    PubMed Central

    Byrne-Bailey, Kathryne G.; Wrighton, Kelly C.; Melnyk, Ryan A.; Agbo, Peter; Hazen, Terry C.; Coates, John D.

    2010-01-01

    “Thermincola potens” strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR. PMID:20525829

  5. Deep Sequencing Reveals the Complete Genome Sequence of Sweet potato virus G from East Timor

    PubMed Central

    Maina, Solomon; Edwards, Owain R.; Barbetti, Martin J.; de Almeida, Luis; Ximenes, Abel

    2016-01-01

    We present the first complete Sweet potato virus G (SPVG) genome from sweet potato in East Timor and compare it with seven complete SPVG genomes from South Korea (three), Taiwan (two), Argentina (one), and the United States (one). It most resembles the genomes from the United States and South Korea. PMID:27609925

  6. Complete Genome Sequence of Bradyrhizobium sp. Strain CCGE-LA001, Isolated from Field Nodules of the Enigmatic Wild Bean Phaseolus microcarpus

    PubMed Central

    Servín-Garcidueñas, Luis E.; Rogel, Marco A.; Ormeño-Orrillo, Ernesto; Zayas-del Moral, Alejandra; Sánchez, Federico

    2016-01-01

    We present the complete genome sequence of Bradyrhizobium sp. strain CCGE-LA001, a nitrogen-fixing bacterium isolated from nodules of Phaseolus microcarpus. Strain CCGE-LA001 represents the first sequenced bradyrhizobial strain obtained from a wild Phaseolus sp. Its genome revealed a large and novel symbiotic island. PMID:26988045

  7. Draft genome sequence of Therminicola potens strain JR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne-Bailey, K.G.; Wrighton, K.C.; Melnyk, R.A.

    'Thermincola potens' strain JR is one of the first Gram-positive dissimilatory metal-reducing bacteria (DMRB) for which there is a complete genome sequence. Consistent with the physiology of this organism, preliminary annotation revealed an abundance of multiheme c-type cytochromes that are putatively associated with the periplasm and cell surface in a Gram-positive bacterium. Here we report the complete genome sequence of strain JR.

  8. Genomic Diversity and Evolution of the Lyssaviruses

    PubMed Central

    Delmas, Olivier; Holmes, Edward C.; Talbi, Chiraz; Larrous, Florence; Dacheux, Laurent; Bouchier, Christiane; Bourhy, Hervé

    2008-01-01

    Lyssaviruses are RNA viruses with single-strand, negative-sense genomes responsible for rabies-like diseases in mammals. To date, genomic and evolutionary studies have most often utilized partial genome sequences, particularly of the nucleoprotein and glycoprotein genes, with little consideration of genome-scale evolution. Herein, we report the first genomic and evolutionary analysis using complete genome sequences of all recognised lyssavirus genotypes, including 14 new complete genomes of field isolates from 6 genotypes and one genotype that is completely sequenced for the first time. In doing so we significantly increase the extent of genome sequence data available for these important viruses. Our analysis of these genome sequence data reveals that all lyssaviruses have the same genomic organization. A phylogenetic analysis reveals strong geographical structuring, with the greatest genetic diversity in Africa, and an independent origin for the two known genotypes that infect European bats. We also suggest that multiple genotypes may exist within the diversity of viruses currently classified as ‘Lagos Bat’. In sum, we show that rigorous phylogenetic techniques based on full length genome sequence provide the best discriminatory power for genotype classification within the lyssaviruses. PMID:18446239

  9. Detection and characterization of hepatitis A virus circulating in Egypt.

    PubMed

    Hamza, Hazem; Abd-Elshafy, Dina Nadeem; Fayed, Sayed A; Bahgat, Mahmoud Mohamed; El-Esnawy, Nagwa Abass; Abdel-Mobdy, Emam

    2017-07-01

    Hepatitis A virus (HAV) still poses a considerable problem worldwide. In the current study, hepatitis A virus was recovered from wastewater samples collected from three wastewater treatment plants over one year. Using RT-PCR, HAV was detected in 43 out of 68 samples (63.2%) representing both inlet and outlet. Eleven positive samples were subjected to sequencing targeting the VP1-2A junction region. Phylogenetic analysis revealed that all samples belonged to subgenotype IB with few substitutions at the amino acid level. The complete sequence of one isolate (HAV/Egy/BI-11/2015) showed that the similarity at the amino acid level was not reflected at the nucleotide level. However, the deduced amino acid sequence derived from the complete nucleotide sequence showed distinct substitutions in the 2B, 2C, and 3A regions. Recombination analysis revealed a recombination event between X75215 (subgenotype IA) and AF268396 (subgenotype IB) involving a portion of the 2B nonstructural protein coding region (nucleotides 3757-3868) assuming the herein characterized sequence an actual recombinant. Despite the role of recombination in picornaviruses evolution, its involvement in HAV evolution has rarely been reported, and this may be due to the limited available complete HAV sequences. To our knowledge, this represents the first characterized complete sequence of an Egyptian isolate and the described recombination event provides an important update on the circulating HAV strains in Egypt.

  10. Complete Genome Sequence of ER2796, a DNA Methyltransferase-Deficient Strain of Escherichia coli K-12.

    PubMed

    Anton, Brian P; Mongodin, Emmanuel F; Agrawal, Sonia; Fomenkov, Alexey; Byrd, Devon R; Roberts, Richard J; Raleigh, Elisabeth A

    2015-01-01

    We report the complete sequence of ER2796, a laboratory strain of Escherichia coli K-12 that is completely defective in DNA methylation. Because of its lack of any native methylation, it is extremely useful as a host into which heterologous DNA methyltransferase genes can be cloned and the recognition sequences of their products deduced by Pacific Biosciences Single-Molecule Real Time (SMRT) sequencing. The genome was itself sequenced from a long-insert library using the SMRT platform, resulting in a single closed contig devoid of methylated bases. Comparison with K-12 MG1655, the first E. coli K-12 strain to be sequenced, shows an essentially co-linear relationship with no major rearrangements despite many generations of laboratory manipulation. The comparison revealed a total of 41 insertions and deletions, and 228 single base pair substitutions. In addition, the long-read approach facilitated the surprising discovery of four gene conversion events, three involving rRNA operons and one between two cryptic prophages. Such events thus contribute both to genomic homogenization and to bacteriophage diversification. As one of relatively few laboratory strains of E. coli to be sequenced, the genome also reveals the sequence changes underlying a number of classical mutant alleles including those affecting the various native DNA methylation systems.

  11. Complete Genome Sequence of ER2796, a DNA Methyltransferase-Deficient Strain of Escherichia coli K-12

    PubMed Central

    Anton, Brian P.; Mongodin, Emmanuel F.; Agrawal, Sonia; Fomenkov, Alexey; Byrd, Devon R.; Roberts, Richard J.; Raleigh, Elisabeth A.

    2015-01-01

    We report the complete sequence of ER2796, a laboratory strain of Escherichia coli K-12 that is completely defective in DNA methylation. Because of its lack of any native methylation, it is extremely useful as a host into which heterologous DNA methyltransferase genes can be cloned and the recognition sequences of their products deduced by Pacific Biosciences Single-Molecule Real Time (SMRT) sequencing. The genome was itself sequenced from a long-insert library using the SMRT platform, resulting in a single closed contig devoid of methylated bases. Comparison with K-12 MG1655, the first E. coli K-12 strain to be sequenced, shows an essentially co-linear relationship with no major rearrangements despite many generations of laboratory manipulation. The comparison revealed a total of 41 insertions and deletions, and 228 single base pair substitutions. In addition, the long-read approach facilitated the surprising discovery of four gene conversion events, three involving rRNA operons and one between two cryptic prophages. Such events thus contribute both to genomic homogenization and to bacteriophage diversification. As one of relatively few laboratory strains of E. coli to be sequenced, the genome also reveals the sequence changes underlying a number of classical mutant alleles including those affecting the various native DNA methylation systems. PMID:26010885

  12. The American cranberry mitochondrial genome reveals the presence of selenocysteine (tRNA-Sec and SECIS) insertion machinery in land plants.

    PubMed

    Fajardo, Diego; Schlautman, Brandon; Steffan, Shawn; Polashock, James; Vorsa, Nicholi; Zalapa, Juan

    2014-02-25

    This is the first de novo assembly and annotation of a complete mitochondrial genome in the Ericales order from the American cranberry (Vaccinium macrocarpon Ait.). Moreover, only four complete Asterid mitochondrial genomes have been made publicly available. The cranberry mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with relatively little repetitive sequences and DNA of plastid origin. The complete mitochondrial genome of cranberry was annotated obtaining a total of 34 genes classified based on their putative function, plus three ribosomal RNAs, and 17 transfer RNAs. Maternal organellar cranberry inheritance was inferred by analyzing gene variation in the cranberry mitochondria and plastid genomes. The annotation of cranberry mitochondrial genome revealed the presence of two copies of tRNA-Sec and a selenocysteine insertion sequence (SECIS) element which were lost in plants during evolution. This is the first report of a land plant possessing selenocysteine insertion machinery at the sequence level. Published by Elsevier B.V.

  13. Complete genome sequence of an isolate of Potato virus X (PVX) infecting Cape gooseberry (Physalis peruviana) in Colombia.

    PubMed

    Gutiérrez, Pablo A; Alzate, Juan F; Montoya, Mauricio Marín

    2015-06-01

    Transcriptome analysis of a Cape gooseberry (Physalis peruviana) plant with leaf symptoms of a mild yellow mosaic typical of a viral disease revealed an infection with Potato virus X (PVX). The genome sequence of the PVX-Physalis isolate comprises 6435 nt and exhibits higher sequence similarity to members of the Eurasian group of PVX (~95 %) than to the American group (~77 %). Genome organization is similar to other PVX isolates with five open reading frames coding for proteins RdRp, TGBp1, TGBp2, TGBp3, and CP. 5' and 3' untranslated regions revealed all regulatory motifs typically found in PVX isolates. The PVX-Physalis genome is the only complete sequence available for a Potexvirus in Colombia and is a new addition to the restricted number of available sequences of PVX isolates infecting plant species different to potato.

  14. Complete genome sequence of Lactobacillus heilongjiangensis DSM 28069(T): Insight into its probiotic potential.

    PubMed

    Zheng, Beiwen; Jiang, Xiawei; Cheng, Hong; Xu, Zemin; Li, Ang; Hu, Xinjun; Xiao, Yonghong

    2015-12-20

    Lactobacillus heilongjiangensis DSM 28069(T) is a potential probiotic isolated from traditional Chinese pickle. Here we report the complete genome sequence of this strain. The complete genome is 2,790,548bp with the GC content of 37.5% and devoid of plasmids. Sets of genes involved in the biosynthesis of riboflavin and folate were identified in the genome, which revealed its potential application in biotechnological industry. The genome sequence of L. heilongjiangensis DSM 28069(T) now provides the fundamental information for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Metagenomic Analysis of Cucumber RNA from East Timor Reveals an Aphid lethal paralysis virus Genome

    PubMed Central

    Maina, Solomon; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel

    2017-01-01

    ABSTRACT We present here the first complete genomic Aphid lethal paralysis virus (ALPV) sequence isolated from cucumber plant RNA from East Timor. We compare it with two complete ALPV genome sequences from China, and one each from Israel, South Africa, and the United States. It most closely resembled the Chinese isolate LGH genome. PMID:28082492

  16. Complete Genome Sequence of the Yogurt Isolate Lactobacillus delbrueckii subsp. bulgaricus ACA-DC 87.

    PubMed

    Alexandraki, Voula; Kazou, Maria; Pot, Bruno; Tsakalidou, Effie; Papadimitriou, Konstantinos

    2017-08-24

    Lactobacillus delbrueckii subsp. bulgaricus is widely used in the production of yogurt and cheese. In this study, we present the complete genome sequence of L. delbrueckii subsp. bulgaricus ACA-DC 87 isolated from traditional Greek yogurt. Whole-genome analysis may reveal desirable technological traits of the strain for dairy fermentations. Copyright © 2017 Alexandraki et al.

  17. Complete Genome Sequence of Leuconostoc citreum KM20▿

    PubMed Central

    Kim, Jihyun F.; Jeong, Haeyoung; Lee, Jung-Sook; Choi, Sang-Haeng; Ha, Misook; Hur, Cheol-Goo; Kim, Ji-Sun; Lee, Soohyun; Park, Hong-Seog; Park, Yong-Ha; Oh, Tae Kwang

    2008-01-01

    Leuconostoc citreum is one of the most prevalent lactic acid bacteria during the manufacturing process of kimchi, the best-known Korean traditional dish. We have determined the complete genome sequence of L. citreum KM20. It consists of a 1.80-Mb chromosome and four circular plasmids and reveals genes likely involved in kimchi fermentation and its probiotic effects. PMID:18281406

  18. Genetic characterization of avian metapneumovirus subtype C isolated from pheasants in a live bird market.

    PubMed

    Lee, Eun ho; Song, Min-Suk; Shin, Jin-Young; Lee, Young-Min; Kim, Chul-Joong; Lee, Young Sik; Kim, Hyunggee; Choi, Young Ki

    2007-09-01

    Complete nucleotide sequences of two avian metapneumoviruses (aMPV), designated PL-1 and PL-2, were isolated from pheasants, revealing novel sequences of the first aMPV to be fully sequenced in Korea. The complete genome of both PL-1 and PL-2 was composed of 13,170 nucleotides. Phylogenetic analysis revealed that PL-1 belonged to aMPV subtype C, sharing higher homology in deduced amino acid sequence identities with hMPV, rather than with aMPV subtypes A and B. Replication of PL-1 in experimentally re-infected pheasants was confirmed by reverse transcription (RT)-polymerase chain reaction (PCR). Chickens and mice were experimentally inoculated with PL-1 to test the replication potential of PL-1 in other species. Although one specimen from the nasal turbinates of an inoculated chicken showed a slight trace of viral replication at 3 days post-infection (dpi), all of the infected mice were negative for aMPV by RT-PCR throughout the experiment, suggesting that PL-1 does not readily infect mammals. This is the first report of the isolation and complete genomic sequence of aMPV subtype C originating from pheasants.

  19. Complete Genome Sequence of the Circulatory Foot-and-Mouth Disease Virus Serotype Asia1 in Bangladesh

    PubMed Central

    Ali, M. Rahmat; Alam, A. S. M. Rubayet Ul; Amin, M. Al; Ullah, Huzzat; Siddique, Mohammad Anwar; Momtaz, Samina; Sultana, Munawar

    2017-01-01

    ABSTRACT The complete genome sequence of foot-and-mouth disease virus (FMDV) serotype Asia1 isolated from Bangladesh is reported here. Genome analysis revealed amino acid substitutions in the VP1 antigenic region and deletions in both the 5′ and 3′ untranslated regions (UTRs) compared to the genome of the existing vaccine strain (GenBank accession no. AY304994). PMID:29074654

  20. Complete Genome Sequences of Salmonella enterica Serovars Anatum and Anatum var. 15+, Isolated from Retail Ground Turkey

    PubMed Central

    Marasini, Daya; Abo-Shama, Usama H.

    2016-01-01

    The complete genome sequences of two isolates of Salmonella enterica serovars Anatum and Anatum var. 15+ revealed the presence of two plasmids of 112 kb and 3 kb in size in each. The chromosome of Salmonella Anatum (4.83 Mb) was slightly smaller than that of Salmonella Anatum var. 15+ (4.88 Mb). PMID:26798111

  1. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    PubMed

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Complete genome sequencing and analysis of Saprospira grandis str. Lewin, a predatory marine bacterium

    PubMed Central

    Saw, Jimmy H. W.; Yuryev, Anton; Kanbe, Masaomi; Hou, Shaobin; Young, Aaron G.; Aizawa, Shin-Ichi

    2012-01-01

    Saprospira grandis is a coastal marine bacterium that can capture and prey upon other marine bacteria using a mechanism known as ‘ixotrophy’. Here, we present the complete genome sequence of Saprospira grandis str. Lewin isolated from La Jolla beach in San Diego, California. The complete genome sequence comprises a chromosome of 4.35 Mbp and a plasmid of 54.9 Kbp. Genome analysis revealed incomplete pathways for the biosynthesis of nine essential amino acids but presence of a large number of peptidases. The genome encodes multiple copies of sensor globin-coupled rsbR genes thought to be essential for stress response and the presence of such sensor globins in Bacteroidetes is unprecedented. A total of 429 spacer sequences within the three CRISPR repeat regions were identified in the genome and this number is the largest among all the Bacteroidetes sequenced to date. PMID:22675601

  3. Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species

    PubMed Central

    Khan, Abdul Latif; Khan, Muhammad Aaqil; Shahzad, Raheem; Lubna; Kang, Sang Mo; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2018-01-01

    Pinaceae, the largest family of conifers, has a diversified organization of chloroplast (cp) genomes with two typical highly reduced inverted repeats (IRs). In the current study, we determined the complete sequence of the cp genome of an economically and ecologically important conifer tree, the loblolly pine (Pinus taeda L.), using Illumina paired-end sequencing and compared the sequence with those of other pine species. The results revealed a genome size of 121,531 base pairs (bp) containing a pair of 830-bp IR regions, distinguished by a small single copy (42,258 bp) and large single copy (77,614 bp) region. The chloroplast genome of P. taeda encodes 120 genes, comprising 81 protein-coding genes, four ribosomal RNA genes, and 35 tRNA genes, with 151 randomly distributed microsatellites. Approximately 6 palindromic, 34 forward, and 22 tandem repeats were found in the P. taeda cp genome. Whole cp genome comparison with those of other Pinus species exhibited an overall high degree of sequence similarity, with some divergence in intergenic spacers. Higher and lower numbers of indels and single-nucleotide polymorphism substitutions were observed relative to P. contorta and P. monophylla, respectively. Phylogenomic analyses based on the complete genome sequence revealed that 60 shared genes generated trees with the same topologies, and P. taeda was closely related to P. contorta in the subgenus Pinus. Thus, the complete P. taeda genome provided valuable resources for population and evolutionary studies of gymnosperms and can be used to identify related species. PMID:29596414

  4. Complete Genome Sequence of the Opitutaceae Bacterium Strain TAV5, a Potential Facultative Methylotroph of the Wood-Feeding Termite Reticulitermes flavipes

    DOE PAGES

    Kotak, Malini; Isanapong, Jantiya; Goodwin, Lynne A.; ...

    2015-03-05

    The Opitutaceae bacterium strain TAV5, a member of the phylum Verrucomicrobia, was isolated from the wood-feeding termite hindgut. Here, we report here its complete genome sequence, which contains a chromosome and a plasmid of 7,317,842 bp and 99,831 bp, respectively. In conclusion, genomic analysis reveals genes for methylotrophy, lignocellulose degradation, and ammonia and sulfate assimilation.

  5. Complete Genome Sequence of Akkermansia glycaniphila Strain PytT, a Mucin-Degrading Specialist of the Reticulated Python Gut

    PubMed Central

    Ouwerkerk, Janneke P.; Schaap, Peter J.; Ritari, Jarmo; Paulin, Lars; Belzer, Clara

    2017-01-01

    ABSTRACT Akkermansia glycaniphila is a novel Akkermansia species that was isolated from the intestine of the reticulated python and shares the capacity to degrade mucin with the human strain Akkermansia muciniphila MucT. Here, we report the complete genome sequence of strain PytT of 3,074,121 bp. The genomic analysis reveals genes for mucin degradation and aerobic respiration. PMID:28057747

  6. Comparative sequence analysis revealed altered chromosomal organization and a novel insertion sequence encoding DNA modification and potentially stress-related functions in an Escherichia coli O157:H7 foodborne isolate

    USDA-ARS?s Scientific Manuscript database

    We recently described the complete genome of enterohemorrhagic Escherichia coli (EHEC) O157:H7 strain NADC 6564, an isolate of strain 86-24 linked to the 1986 disease outbreak. In the current study, we compared the chromosomal sequence of NADC 6564 to the well-characterized chromosomal sequences of ...

  7. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    PubMed Central

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca ovina). Total cellular DNA was extracted from either roots or leaves, was sequenced, and the output was filtered for plastome-related reads. A comparison between sources revealed fewer plastome-related reads from root-derived template but an increase in incidental bacterium-derived sequences. Plastome assembly and annotation indicated high levels of sequence identity and a conserved organization and gene content between species. However, frequent deletions within the F. ovina plastome appeared to contribute to a smaller plastid genome size. Comparative analysis with complete plastome sequences from other members of the Poaceae confirmed conservation of most grass-specific features. Detailed analysis of the rbcL–psaI intergenic region, however, revealed a “hot-spot” of variation characterized by independent deletion events. The evolutionary implications of this observation are discussed. The complete plastome sequences are anticipated to provide the basis for potential organelle-specific genetic modification of pasture grasses. PMID:23550121

  8. Molecular characterization of Taenia multiceps isolates from Gansu Province, China by sequencing of mitochondrial cytochrome C oxidase subunit 1.

    PubMed

    Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu; Fu, Bao Quan

    2013-04-01

    A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.

  9. Molecular Characterization of Taenia multiceps Isolates from Gansu Province, China by Sequencing of Mitochondrial Cytochrome C Oxidase Subunit 1

    PubMed Central

    Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu

    2013-01-01

    A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species. PMID:23710087

  10. Complete sequence analysis reveals two distinct poleroviruses infecting cucurbits in China.

    PubMed

    Xiang, Hai-ying; Shang, Qiao-xia; Han, Cheng-gui; Li, Da-wei; Yu, Jia-lin

    2008-01-01

    The complete RNA genomes of a Chinese isolate of cucurbit aphid-borne yellows virus (CABYV-CHN) and a new polerovirus tentatively referred to as melon aphid-borne yellows virus (MABYV) were determined. The entire genome of CABYV-CHN shared 89.0% nucleotide sequence identity with the French CABYV isolate. In contrast, nucleotide sequence identities between MABYV and CABYV and other poleroviruses were in the range of 50.7-74.2%, with amino acid sequence identities ranging from 24.8 to 82.9% for individual gene products. We propose that CABYV-CHN is a strain of CABYV and that MABYV is a member of a tentative distinct species within the genus Polerovirus.

  11. The complete genomic sequence of a tentative new polerovirus identified in barley in South Korea.

    PubMed

    Zhao, Fumei; Lim, Seungmo; Yoo, Ran Hee; Igori, Davaajargal; Kim, Sang-Min; Kwak, Do Yeon; Kim, Sun Lim; Lee, Bong Choon; Moon, Jae Sun

    2016-07-01

    The complete nucleotide sequence of a new barley polerovirus, tentatively named barley virus G (BVG), which was isolated in Gimje, South Korea, has been determined using an RNA sequencing technique combined with polymerase chain reaction methods. The viral genomic RNA of BVG is 5,620 nucleotides long and contains six typical open reading frames commonly observed in other poleroviruses. Sequence comparisons revealed that BVG is most closely related to maize yellow dwarf virus-RMV, with the highest amino acid identities being less than 90 % for all of the corresponding proteins. These results suggested that BVG is a member of a new species in the genus Polerovirus.

  12. Complete Genome Sequence of Akkermansia glycaniphila Strain PytT, a Mucin-Degrading Specialist of the Reticulated Python Gut.

    PubMed

    Ouwerkerk, Janneke P; Koehorst, Jasper J; Schaap, Peter J; Ritari, Jarmo; Paulin, Lars; Belzer, Clara; de Vos, Willem M

    2017-01-05

    Akkermansia glycaniphila is a novel Akkermansia species that was isolated from the intestine of the reticulated python and shares the capacity to degrade mucin with the human strain Akkermansia muciniphila Muc T Here, we report the complete genome sequence of strain Pyt T of 3,074,121 bp. The genomic analysis reveals genes for mucin degradation and aerobic respiration. Copyright © 2017 Ouwerkerk et al.

  13. Complete Genome Sequence of Lactobacillus salivarius CECT 5713, a Probiotic Strain Isolated from Human Milk and Infant Feces▿

    PubMed Central

    Jiménez, Esther; Martín, Rocío; Maldonado, Antonio; Martín, Virginia; Gómez de Segura, Aranzazu; Fernández, Leonides; Rodríguez, Juan M.

    2010-01-01

    Lactobacillus salivarius is a homofermentative lactic acid bacterium and is frequently isolated from mucosal surfaces of healthy humans. L. salivarius CECT 5713, a strain isolated simultaneously from breast milk and infant feces of a healthy mother-infant pair, has immunomodulatory, anti-inflammatory, and anti-infectious properties, as revealed by several in vitro and in vivo assays. Here, we report its complete and annotated genome sequence. PMID:20675488

  14. Deep Sequencing Reveals the Complete Genome and Evidence for Transcriptional Activity of the First Virus-Like Sequences Identified in Aristotelia chilensis (Maqui Berry)

    PubMed Central

    Villacreses, Javier; Rojas-Herrera, Marcelo; Sánchez, Carolina; Hewstone, Nicole; Undurraga, Soledad F.; Alzate, Juan F.; Manque, Patricio; Maracaja-Coutinho, Vinicius; Polanco, Victor

    2015-01-01

    Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1). High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs): ORFs 1 and 2 shares 66%–73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV), Petuvirus genus. ORF1 encodes a movement protein (MP); ORF2 a Reverse Transcriptase (RT) and a Ribonuclease H (RNase H) domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs), AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq). Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant. PMID:25855242

  15. Complete sequence and diversity of a maize-associated Polerovirus in East Africa

    USDA-ARS?s Scientific Manuscript database

    Since 2011-2012, Maize lethal necrosis (MLN) has emerged in East Africa, causing massive yield loss and propelling research to identify viruses and virus populations present in maize. As expected, next generation sequencing (NGS) has revealed diverse and abundant viruses from the family Potyviridae,...

  16. The complete genome sequence of a second distinct betabaculovirus from the true armyworm, Mythimna unipuncta

    USDA-ARS?s Scientific Manuscript database

    The betabaculovirus Pseudaletia (Mythimna) sp. granulovirus #8 (MyspGV#8) was examined by electron microscopy, host barcoding PCR, and determination of the nucleotide sequence of its genome. Scanning and transmission electron microscopy revealed that the occlusion bodies of MyspGV#8 possessed the c...

  17. Complete genomic sequence of Powassan virus: evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses.

    PubMed

    Mandl, C W; Holzmann, H; Kunz, C; Heinz, F X

    1993-05-01

    The complete nucleotide sequence of the positive-stranded RNA genome of the tick-borne flavivirus Powassan (10,839 nucleotides) was elucidated and the amino acid sequence of all viral proteins was derived. Based on this sequence as well as serological data, Powassan virus represents the most divergent member of the tick-borne serocomplex within the genus flaviviruses, family Flaviviridae. The primary nucleotide sequence and potential RNA secondary structures of the Powassan virus genome as well as the protein sequences and the reactivities of the virion with a panel of monoclonal antibodies were compared to other tick-borne and mosquito-borne flaviviruses. These analyses corroborated significant differences between tick-borne and mosquito-borne flaviviruses, but also emphasized structural elements that are conserved among both vector groups. The comparisons among tick-borne flaviviruses revealed conserved sequence elements that might represent important determinants of the tick-borne flavivirus phenotype.

  18. A putative carbohydrate-binding domain of the lactose-binding Cytisus sessilifolius anti-H(O) lectin has a similar amino acid sequence to that of the L-fucose-binding Ulex europaeus anti-H(O) lectin.

    PubMed

    Konami, Y; Yamamoto, K; Osawa, T; Irimura, T

    1995-04-01

    The complete amino acid sequence of a lactose-binding Cytisus sessilifolius anti-H(O) lectin II (CSA-II) was determined using a protein sequencer. After digestion of CSA-II with endoproteinase Lys-C or Asp-N, the resulting peptides were purified by reversed-phase high performance liquid chromatography (HPLC) and then subjected to sequence analysis. Comparison of the complete amino acid sequence of CSA-II with the sequences of other leguminous seed lectins revealed regions of extensive homology. The amino acid sequence of a putative carbohydrate-binding domain of CSA-II was found to be similar to those of several anti-H(O) leguminous lectins, especially to that of the L-fucose-binding Ulex europaeus lectin I (UEA-I).

  19. Prevalence and genome characteristics of canine astrovirus in southwest China.

    PubMed

    Li, Mingxiang; Yan, Nan; Ji, Conghui; Wang, Min; Zhang, Bin; Yue, Hua; Tang, Cheng

    2018-05-30

    The aim of this study was to investigate canine astrovirus (CaAstV) infection in southwest China. We collected 107 faecal samples from domestic dogs with obvious diarrhoea. Forty-two diarrhoeic samples (39.3 %) were positive for CaAstV by RT-PCR, and 41/42 samples showed co-infection with canine coronavirus (CCoV), canine parvovirus-2 (CPV-2) and canine distemper virus (CDV). Phylogenetic analysis based on 26 CaAstV partial ORF1a and ORF1b sequences revealed that most CaAstV strains showed unique evolutionary features. Interestingly, putative recombination events were observed among four of the five complete ORF2 sequences cloned in this study, and three of the five complete ORF2 sequences formed a single unique group, suggesting that these strains could be a novel genotype. We successfully sequenced the complete genome of one CaAstV strain (designated 2017/44/CHN), which was 6628 nt in length. The features of this genome include putative recombination events in the ORF1a, ORF1b and ORF2 genes, while the ORF2 gene had a continuous insertion of 7 aa in region II compared with the other complete ORF2 sequences available in GenBank. Phylogenetic analysis showed that 2017/44/CHN formed a single group based on genome sequences, suggesting that this strain might be a novel genotype. The results of this study revealed that CaAstV circulates widely in diarrhoeic dogs in southwest China and exhibits unique evolutionary events. To the best of our knowledge, this is the first report of recombination events in CaAstV, and it contributes to further understanding of the genetic evolution of CaAstV.

  20. Characterization of the Complete Mitochondrial Genome Sequence of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae) from China

    PubMed Central

    Liu, Guo-Hua; Li, Chun; Li, Jia-Yuan; Zhou, Dong-Hui; Xiong, Rong-Chuan; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan

    2012-01-01

    Sparganosis, caused by the plerocercoid larvae of members of the genus Spirometra, can cause significant public health problem and considerable economic losses. In the present study, the complete mitochondrial DNA (mtDNA) sequence of Spirometra erinaceieuropaei from China was determined, characterized and compared with that of S. erinaceieuropaei from Japan. The gene arrangement in the mt genome sequences of S. erinaceieuropaei from China and Japan is identical. The identity of the mt genomes was 99.1% between S. erinaceieuropaei from China and Japan, and the complete mtDNA sequence of S. erinaceieuropaei from China is slightly shorter (2 bp) than that from Japan. Phylogenetic analysis of S. erinaceieuropaei with other representative cestodes using two different computational algorithms [Bayesian inference (BI) and maximum likelihood (ML)] based on concatenated amino acid sequences of 12 protein-coding genes, revealed that S. erinaceieuropaei is closely related to Diphyllobothrium spp., supporting classification based on morphological features. The present study determined the complete mtDNA sequences of S. erinaceieuropaei from China that provides novel genetic markers for studying the population genetics and molecular epidemiology of S. erinaceieuropaei in humans and animals. PMID:22553464

  1. Mitochondrial DNA Evidence Supports the Hypothesis that Triodontophorus Species Belong to Cyathostominae

    PubMed Central

    Gao, Yuan; Zhang, Yan; Yang, Xin; Qiu, Jian-Hua; Duan, Hong; Xu, Wen-Wen; Chang, Qiao-Cheng; Wang, Chun-Ren

    2017-01-01

    Equine strongyles, the significant nematode pathogens of horses, are characterized by high quantities and species abundance, but classification of this group of parasitic nematodes is debated. Mitochondrial (mt) genome DNA data are often used to address classification controversies. Thus, the objectives of this study were to determine the complete mt genomes of three Cyathostominae nematode species (Cyathostomum catinatum, Cylicostephanus minutus, and Poteriostomum imparidentatum) of horses and reconstruct the phylogenetic relationship of Strongylidae with other nematodes in Strongyloidea to test the hypothesis that Triodontophorus spp. belong to Cyathostominae using the mt genomes. The mt genomes of Cy. catinatum, Cs. minutus, and P. imparidentatum were 13,838, 13,826, and 13,817 bp in length, respectively. Complete mt nucleotide sequence comparison of all Strongylidae nematodes revealed that sequence identity ranged from 77.8 to 91.6%. The mt genome sequences of Triodontophorus species had relatively high identity with Cyathostominae nematodes, rather than Strongylus species of the same subfamily (Strongylinae). Comparative analyses of mt genome organization for Strongyloidea nematodes sequenced to date revealed that members of this superfamily possess identical gene arrangements. Phylogenetic analyses using mtDNA data indicated that the Triodontophorus species clustered with Cyathostominae species instead of Strongylus species. The present study first determined the complete mt genome sequences of Cy. catinatum, Cs. minutus, and P. imparidentatum, which will provide novel genetic markers for further studies of Strongylidae taxonomy, population genetics, and systematics. Importantly, sequence comparison and phylogenetic analyses based on mtDNA sequences supported the hypothesis that Triodontophorus belongs to Cyathostominae. PMID:28824575

  2. The genome of the Erwinia amylovora phage PhiEaH1 reveals greater diversity and broadens the applicability of phages for the treatment of fire blight.

    PubMed

    Meczker, Katalin; Dömötör, Dóra; Vass, János; Rákhely, Gábor; Schneider, György; Kovács, Tamás

    2014-01-01

    The enterobacterium Erwinia amylovora is the causal agent of fire blight. This study presents the analysis of the complete genome of phage PhiEaH1, isolated from the soil surrounding an E. amylovora-infected apple tree in Hungary. Its genome is 218 kb in size, containing 244 ORFs. PhiEaH1 is the second E. amylovora infecting phage from the Siphoviridae family whose complete genome sequence was determined. Beside PhiEaH2, PhiEaH1 is the other active component of Erwiphage, the first bacteriophage-based pesticide on the market against E. amylovora. Comparative genome analysis in this study has revealed that PhiEaH1 not only differs from the 10 formerly sequenced E. amylovora bacteriophages belonging to other phage families, but also from PhiEaH2. Sequencing of more Siphoviridae phage genomes might reveal further diversity, providing opportunities for the development of even more effective biological control agents, phage cocktails against Erwinia fire blight disease of commercial fruit crops.

  3. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromericmore » regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops« less

  4. Structural features of the rice chromosome 4 centromere.

    PubMed

    Zhang, Yu; Huang, Yuchen; Zhang, Lei; Li, Ying; Lu, Tingting; Lu, Yiqi; Feng, Qi; Zhao, Qiang; Cheng, Zhukuan; Xue, Yongbiao; Wing, Rod A; Han, Bin

    2004-01-01

    A complete sequence of a chromosome centromere is necessary for fully understanding centromere function. We reported the sequence structures of the first complete rice chromosome centromere through sequencing a large insert bacterial artificial chromosome clone-based contig, which covered the rice chromosome 4 centromere. Complete sequencing of the 124-kb rice chromosome 4 centromere revealed that it consisted of 18 tracts of 379 tandemly arrayed repeats known as CentO and a total of 19 centromeric retroelements (CRs) but no unique sequences were detected. Four tracts, composed of 65 CentO repeats, were located in the opposite orientation, and 18 CentO tracts were flanked by 19 retroelements. The CRs were classified into four types, and the type I retroelements appeared to be more specific to rice centromeres. The preferential insert of the CRs among CentO repeats indicated that the centromere-specific retroelements may contribute to centromere expansion during evolution. The presence of three intact retrotransposons in the centromere suggests that they may be responsible for functional centromere initiation through a transcription-mediated mechanism.

  5. Conservation and variability of West Nile virus proteins.

    PubMed

    Koo, Qi Ying; Khan, Asif M; Jung, Keun-Ok; Ramdas, Shweta; Miotto, Olivo; Tan, Tin Wee; Brusic, Vladimir; Salmon, Jerome; August, J Thomas

    2009-01-01

    West Nile virus (WNV) has emerged globally as an increasingly important pathogen for humans and domestic animals. Studies of the evolutionary diversity of the virus over its known history will help to elucidate conserved sites, and characterize their correspondence to other pathogens and their relevance to the immune system. We describe a large-scale analysis of the entire WNV proteome, aimed at identifying and characterizing evolutionarily conserved amino acid sequences. This study, which used 2,746 WNV protein sequences collected from the NCBI GenPept database, focused on analysis of peptides of length 9 amino acids or more, which are immunologically relevant as potential T-cell epitopes. Entropy-based analysis of the diversity of WNV sequences, revealed the presence of numerous evolutionarily stable nonamer positions across the proteome (entropy value of < or = 1). The representation (frequency) of nonamers variant to the predominant peptide at these stable positions was, generally, low (< or = 10% of the WNV sequences analyzed). Eighty-eight fragments of length 9-29 amino acids, representing approximately 34% of the WNV polyprotein length, were identified to be identical and evolutionarily stable in all analyzed WNV sequences. Of the 88 completely conserved sequences, 67 are also present in other flaviviruses, and several have been associated with the functional and structural properties of viral proteins. Immunoinformatic analysis revealed that the majority (78/88) of conserved sequences are potentially immunogenic, while 44 contained experimentally confirmed human T-cell epitopes. This study identified a comprehensive catalogue of completely conserved WNV sequences, many of which are shared by other flaviviruses, and majority are potential epitopes. The complete conservation of these immunologically relevant sequences through the entire recorded WNV history suggests they will be valuable as components of peptide-specific vaccines or other therapeutic applications, for sequence-specific diagnosis of a wide-range of Flavivirus infections, and for studies of homologous sequences among other flaviviruses.

  6. Molecular epidemiology of Plum pox virus in Japan.

    PubMed

    Maejima, Kensaku; Himeno, Misako; Komatsu, Ken; Takinami, Yusuke; Hashimoto, Masayoshi; Takahashi, Shuichiro; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou

    2011-05-01

    For a molecular epidemiological study based on complete genome sequences, 37 Plum pox virus (PPV) isolates were collected from the Kanto region in Japan. Pair-wise analyses revealed that all 37 Japanese isolates belong to the PPV-D strain, with low genetic diversity (less than 0.8%). In phylogenetic analysis of the PPV-D strain based on complete nucleotide sequences, the relationships of the PPV-D strain were reconstructed with high resolution: at the global level, the American, Canadian, and Japanese isolates formed their own distinct monophyletic clusters, suggesting that the routes of viral entry into these countries were independent; at the local level, the actual transmission histories of PPV were precisely reconstructed with high bootstrap support. This is the first description of the molecular epidemiology of PPV based on complete genome sequences.

  7. Full-Genome Sequence of a Novel Varicella-Zoster Virus Clade Isolated in Mexico

    PubMed Central

    Rodríguez-Castillo, Araceli; Ortiz-Alcántara, Joanna María; Gonzalez-Durán, Elizabeth; Segura-Candelas, José Miguel; Pérez-Agüeros, Sandra Ivette; Escobar-Escamilla, Noé; Méndez-Tenorio, Alfonso; Diaz-Quiñonez, José Alberto

    2015-01-01

    Varicella-zoster virus (VZV) is a member of the Herpesviridae family, which causes varicella (chicken pox) and herpes zoster (shingles) in humans. Here, we report the complete genome sequence of varicella-zoster virus, isolated from a vesicular fluid sample, revealing the circulation of VZV clade VIII in Mexico. PMID:26159533

  8. Complete mitochondrial DNA sequence of a tadpole shrimp (Triops cancriformis) and analysis of museum samples.

    PubMed

    Umetsu, Kazuo; Iwabuchi, Naruki; Yuasa, Isao; Saitou, Naruya; Clark, Paul F; Boxshall, Geoff; Osawa, Motoki; Igarashi, Keiji

    2002-12-01

    The complete mitochondrial DNA (mtNDA) of the tadpole shrimp Triops cancriformis was sequenced. The sequence consisted of 15,101 bp with an A+T content of 69%. Its gene arrangement was identical with those sequences of the water flea (Daphnia pulex) and giant tiger prawn (Penaeus monodon), whereas it differed from that of the brine shrimp (Artemia franciscana) in the arrangement of its genes for tRNAs. Phylogenetic analysis revealed T. cancriformis to be more closely related to the water flea than to the brine shrimp and giant tiger prawn. We also compared the 16S rRNA sequences of five formalin-fixed tadpole shrimps that had been collected in five different locations and stored in a museum. The sequence divergence was in the range of 0-1.51%, suggesting that those samples were closely related to each other.

  9. Complete genome sequences of two highly divergent Japanese isolates of Plantago asiatica mosaic virus.

    PubMed

    Komatsu, Ken; Yamashita, Kazuo; Sugawara, Kota; Verbeek, Martin; Fujita, Naoko; Hanada, Kaoru; Uehara-Ichiki, Tamaki; Fuji, Shin-Ichi

    2017-02-01

    Plantago asiatica mosaic virus (PlAMV) is a member of the genus Potexvirus and has an exceptionally wide host range. It causes severe damage to lilies. Here we report on the complete nucleotide sequences of two new Japanese PlAMV isolates, one from the eudicot weed Viola grypoceras (PlAMV-Vi), and the other from the eudicot shrub Nandina domestica Thunb. (PlAMV-NJ). Their genomes contain five open reading frames (ORFs), which is characteristic of potexviruses. Surprisingly, the isolates showed only 76.0-78.0 % sequence identity with each other and with other PlAMV isolates, including isolates from Japanese lily and American nandina. Amino acid alignments of the replicase coding region encoded by ORF1 showed that the regions between the methyltransferase and helicase domains were less conserved than other regions, with several insertions and/or deletions. Phylogenetic analyses of the full-length nucleotide sequences revealed a moderate correlation between phylogenetic clustering and the original host plants of the PlAMV isolates. This study revealed the presence of two highly divergent PlAMV isolates in Japan.

  10. Informatic and genomic analysis of melanocyte cDNA libraries as a resource for the study of melanocyte development and function.

    PubMed

    Baxter, Laura L; Hsu, Benjamin J; Umayam, Lowell; Wolfsberg, Tyra G; Larson, Denise M; Frith, Martin C; Kawai, Jun; Hayashizaki, Yoshihide; Carninci, Piero; Pavan, William J

    2007-06-01

    As part of the RIKEN mouse encyclopedia project, two cDNA libraries were prepared from melanocyte-derived cell lines, using techniques of full-length clone selection and subtraction/normalization to enrich for rare transcripts. End sequencing showed that these libraries display over 83% complete coding sequence at the 5' end and 96-97% complete coding sequence at the 3' end. Evaluation of the libraries, derived from B16F10Y tumor cells and melan-c cells, revealed that they contain clones for a majority of the genes previously demonstrated to function in melanocyte biology. Analysis of genomic locations for transcripts revealed that the distribution of melanocyte genes is non-random throughout the genome. Three genomic regions identified that showed significant clustering of melanocyte-expressed genes contain one or more genes previously shown to regulate melanocyte development or function. A catalog of genes expressed in these libraries is presented, providing a valuable resource of cDNA clones and sequence information that can be used for identification of new genes important for melanocyte development, function, and disease.

  11. The Complete Sequence of a West Nile Virus Lineage 2 Strain Detected in a Hyalomma marginatum marginatum Tick Collected from a Song Thrush (Turdus philomelos) in Eastern Romania in 2013 Revealed Closest Genetic Relationship to Strain Volgograd 2007

    PubMed Central

    Kolodziejek, Jolanta; Marinov, Mihai; Kiss, Botond J.; Alexe, Vasile; Nowotny, Norbert

    2014-01-01

    In this study the first complete sequence of the West Nile virus (WNV) lineage 2 strain currently circulating in Romania was determined. The virus was detected in a Hyalomma marginatum marginatum tick collected from a juvenile song thrush (Turdus philomelos) in the Romanian Danube Delta close to the city of Tulcea, end of August 2013. Our finding emphasizes the role of ticks in introduction and maintenance of WNV infections. Sequence analyses revealed close genetic relationship of the Romanian WNV strain to strain Reb_Volgograd_07_H, which was isolated from human brain tissue during an outbreak of West Nile neuroinvasive disease (WNND) in Russia in 2007. In 2010 the Eastern European lineage 2 WNV caused an outbreak of human WNND in Romania. Partial sequences from subsequent years demonstrated that this WNV strain became endemic in Eastern Europe and has been causing outbreaks of varying sizes in southern Russia since 2007 and in Romania since 2010. PMID:25279973

  12. Complete genome sequence of mumps viruses isolated from patients with parotitis, pancreatitis and encephalitis in India.

    PubMed

    Vaidya, Sunil R; Chowdhury, Deepika T; Jadhav, Santoshkumar M; Hamde, Venkat S

    2016-04-01

    Limited information is available regarding epidemiology of mumps in India. Mumps vaccine is not included in the Universal Immunization Program of India. The complete genome sequences of Indian mumps virus (MuV) isolates are not available, hence this study was performed. Five isolates from bilateral parotitis and pancreatitis patients from Maharashtra, a MuV isolate from unilateral parotitis patient from Tamil Nadu, and a MuV isolate from encephalitis patient from Uttar Pradesh were genotyped by the standard protocol of the World Health Organization and subsequently complete genomes were sequenced. Indian MuV genomes were compared with published MuV genomes, including reference genotypes and eight vaccine strains for the genetic differences. The SH gene analysis revealed that five MuV isolates belonged to genotype C and two belonged to genotype G strains. The percent nucleotide divergence (PND) was 1.1% amongst five MuV genotype C strains and 2.2% amongst two MuV genotype G strains. A comparison with widely used mumps Jeryl Lynn vaccine strain revealed that Indian mumps isolates had 54, 54, 53, 49, 49, 38, and 49 amino acid substitutions in Chennai-2012, Kushinagar-2013, Pune-2008, Osmanabad-2012a, Osmanabad-2012b, Pune-1986 and Pune-2012, respectively. This study reports the complete genome sequences of Indian MuV strains obtained in years 1986, 2008, 2012 and 2013 that may be useful for further studies in India and globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Implementation of Objective PASC-Derived Taxon Demarcation Criteria for Official Classification of Filoviruses.

    PubMed

    Bào, Yīmíng; Amarasinghe, Gaya K; Basler, Christopher F; Bavari, Sina; Bukreyev, Alexander; Chandran, Kartik; Dolnik, Olga; Dye, John M; Ebihara, Hideki; Formenty, Pierre; Hewson, Roger; Kobinger, Gary P; Leroy, Eric M; Mühlberger, Elke; Netesov, Sergey V; Patterson, Jean L; Paweska, Janusz T; Smither, Sophie J; Takada, Ayato; Towner, Jonathan S; Volchkov, Viktor E; Wahl-Jensen, Victoria; Kuhn, Jens H

    2017-05-11

    The mononegaviral family Filoviridae has eight members assigned to three genera and seven species. Until now, genus and species demarcation were based on arbitrarily chosen filovirus genome sequence divergence values (≈50% for genera, ≈30% for species) and arbitrarily chosen phenotypic virus or virion characteristics. Here we report filovirus genome sequence-based taxon demarcation criteria using the publicly accessible PAirwise Sequencing Comparison (PASC) tool of the US National Center for Biotechnology Information (Bethesda, MD, USA). Comparison of all available filovirus genomes in GenBank using PASC revealed optimal genus demarcation at the 55-58% sequence diversity threshold range for genera and at the 23-36% sequence diversity threshold range for species. Because these thresholds do not change the current official filovirus classification, these values are now implemented as filovirus taxon demarcation criteria that may solely be used for filovirus classification in case additional data are absent. A near-complete, coding-complete, or complete filovirus genome sequence will now be required to allow official classification of any novel "filovirus." Classification of filoviruses into existing taxa or determining the need for novel taxa is now straightforward and could even become automated using a presented algorithm/flowchart rooted in RefSeq (type) sequences.

  14. Genome Sequence of Candidatus Nitrososphaera evergladensis from Group I.1b Enriched from Everglades Soil Reveals Novel Genomic Features of the Ammonia-Oxidizing Archaea

    PubMed Central

    Zhalnina, Kateryna V.; Dias, Raquel; Leonard, Michael T.; Dorr de Quadros, Patricia; Camargo, Flavio A. O.; Drew, Jennifer C.; Farmerie, William G.; Daroub, Samira H.; Triplett, Eric W.

    2014-01-01

    The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group. PMID:24999826

  15. The complete genome sequence of a south Indian isolate of Rice tungro spherical virus reveals evidence of genetic recombination between distinct isolates.

    PubMed

    Sailaja, B; Anjum, Najreen; Patil, Yogesh K; Agarwal, Surekha; Malathi, P; Krishnaveni, D; Balachandran, S M; Viraktamath, B C; Mangrauthia, Satendra K

    2013-12-01

    In this study, complete genome of a south Indian isolate of Rice tungro spherical virus (RTSV) from Andhra Pradesh (AP) was sequenced, and the predicted amino acid sequence was analysed. The RTSV RNA genome consists of 12,171 nt without the poly(A) tail, encoding a putative typical polyprotein of 3,470 amino acids. Furthermore, cleavage sites and sequence motifs of the polyprotein were predicted. Multiple alignment with other RTSV isolates showed a nucleotide sequence identity of 95% to east Indian isolates and 90% to Philippines isolates. A phylogenetic tree based on complete genome sequence showed that Indian isolates clustered together, while Vt6 and PhilA isolates of Philippines formed two separate clusters. Twelve recombination events were detected in RNA genome of RTSV using the Recombination Detection Program version 3. Recombination analysis suggested significant role of 5' end and central region of genome in virus evolution. Further, AP and Odisha isolates appeared as important RTSV isolates involved in diversification of this virus in India through recombination phenomenon. The new addition of complete genome of first south Indian isolate provided an opportunity to establish the molecular evolution of RTSV through recombination analysis and phylogenetic relationship.

  16. Complete genome sequence of Lactobacillus paracasei CAUH35, a new strain isolated from traditional fermented dairy product koumiss in China.

    PubMed

    Wang, Guohong; Xiong, Yao; Xu, Qi; Yin, Jia; Hao, Yanling

    2015-11-20

    Lactobacillus paracasei CAUH35 was isolated from homemade koumiss, a traditional fermented dairy product with beneficial effects on human health. The genome consists of a circular 2,770,411 bp chromosome and four plasmids. Genome analysis revealed the presence of gene clusters involved in the production of exopolysaccharides and bacteriocin. The complete genome sequence of L. paracasei CAUH35 will provide genetic basis for further comparative and functional genomic analyses. Copyright © 2015. Published by Elsevier B.V.

  17. The complete chloroplast genome of Aconitum chiisanense Nakai (Ranunculaceae).

    PubMed

    Lim, Chae Eun; Kim, Goon-Bo; Baek, Seunghoon; Han, Su-Min; Yu, Hee-Ju; Mun, Jeong-Hwan

    2017-01-01

    We determined the complete chloroplast DNA sequence of Aconitum chiisanense Nakai, a rare Aconitum species endemic to Korea. The chloroplast genome is 155 934 bp in length and contains 4 rRNA, 30 tRNA, and 78 protein-coding genes. Phylogenetic analysis revealed that the chloroplast genome of A. chiisanense is closely related to that of A. barbatum var. puberulum. Sequence comparison with other Ranunculaceae chloroplasts identified a unique deletion in the rps16 gene of A. chiisanense chloroplast DNA that can serve as a molecular marker for species identification.

  18. Genetic Diversity of Crimean Congo Hemorrhagic Fever Virus Strains from Iran

    PubMed Central

    Chinikar, Sadegh; Bouzari, Saeid; Shokrgozar, Mohammad Ali; Mostafavi, Ehsan; Jalali, Tahmineh; Khakifirouz, Sahar; Nowotny, Norbert; Fooks, Anthony R.; Shah-Hosseini, Nariman

    2016-01-01

    Background: Crimean Congo hemorrhagic fever virus (CCHFV) is a member of the Bunyaviridae family and Nairovirus genus. It has a negative-sense, single stranded RNA genome approximately 19.2 kb, containing the Small, Medium, and Large segments. CCHFVs are relatively divergent in their genome sequence and grouped in seven distinct clades based on S-segment sequence analysis and six clades based on M-segment sequences. Our aim was to obtain new insights into the molecular epidemiology of CCHFV in Iran. Methods: We analyzed partial and complete nucleotide sequences of the S and M segments derived from 50 Iranian patients. The extracted RNA was amplified using one-step RT-PCR and then sequenced. The sequences were analyzed using Mega5 software. Results: Phylogenetic analysis of partial S segment sequences demonstrated that clade IV-(Asia 1), clade IV-(Asia 2) and clade V-(Europe) accounted for 80 %, 4 % and 14 % of the circulating genomic variants of CCHFV in Iran respectively. However, one of the Iranian strains (Iran-Kerman/22) was associated with none of other sequences and formed a new clade (VII). The phylogenetic analysis of complete S-segment nucleotide sequences from selected Iranian CCHFV strains complemented with representative strains from GenBank revealed similar topology as partial sequences with eight major clusters. A partial M segment phylogeny positioned the Iranian strains in either association with clade III (Asia-Africa) or clade V (Europe). Conclusion: The phylogenetic analysis revealed subtle links between distant geographic locations, which we propose might originate either from international livestock trade or from long-distance carriage of CCHFV by infected ticks via bird migration. PMID:27308271

  19. Comment on "Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry".

    PubMed

    Pevzner, Pavel A; Kim, Sangtae; Ng, Julio

    2008-08-22

    Asara et al. (Reports, 13 April 2007, p. 280) reported sequencing of Tyrannosaurus rex proteins and used them to establish the evolutionary relationships between birds and dinosaurs. We argue that the reported T. rex peptides may represent statistical artifacts and call for complete data release to enable experimental and computational verification of their findings.

  20. Top-Down-Assisted Bottom-Up Method for Homologous Protein Sequencing: Hemoglobin from 33 Bird Species

    NASA Astrophysics Data System (ADS)

    Song, Yang; Laskay, Ünige A.; Vilcins, Inger-Marie E.; Barbour, Alan G.; Wysocki, Vicki H.

    2015-11-01

    Ticks are vectors for disease transmission because they are indiscriminant in their feeding on multiple vertebrate hosts, transmitting pathogens between their hosts. Identifying the hosts on which ticks have fed is important for disease prevention and intervention. We have previously shown that hemoglobin (Hb) remnants from a host on which a tick fed can be used to reveal the host's identity. For the present research, blood was collected from 33 bird species that are common in the U.S. as hosts for ticks but that have unknown Hb sequences. A top-down-assisted bottom-up mass spectrometry approach with a customized searching database, based on variability in known bird hemoglobin sequences, has been devised to facilitate fast and complete sequencing of hemoglobin from birds with unknown sequences. These hemoglobin sequences will be added to a hemoglobin database and used for tick host identification. The general approach has the potential to sequence any set of homologous proteins completely in a rapid manner.

  1. Complete genomic sequence of a Tobacco rattle virus isolate from Michigan-grown potatoes.

    PubMed

    Crosslin, James M; Hamm, Philip B; Kirk, William W; Hammond, Rosemarie W

    2010-04-01

    Tobacco rattle virus (TRV) causes stem mottle on potato leaves and necrotic arcs and rings in potato tubers, known as corky ringspot disease. Recently, TRV was reported in Michigan potato tubers cv. FL1879 exhibiting corky ringspot disease. Sequence analysis of the RNA-1-encoded 16-kDa gene of the Michigan isolate, designated MI-1, revealed homology to TRV isolates from Florida and Washington. Here, we report the complete genomic sequence of RNA-1 (6,791 nt) and RNA-2 (3,685 nt) of TRV MI-1. RNA-1 is predicted to contain four open reading frames, and the genome structure and phylogenetic analyses of the RNA-1 nucleotide sequence revealed significant homologies to the known sequences of other TRV-1 isolates. The relationships based on the full-length nucleotide sequence were different from than those based on the 16-kDa gene encoded on genomic RNA-1 and reflect sequence variation within a 20-25-aa residue region of the 16-kDa protein. MI-1 RNA-2 is predicted to contain three ORFs, encoding the coat protein (CP), a 37.6-kDa protein (ORF 2b), and a 33.6-kDa protein (ORF 2c). In addition, it contains a region of similarity to the 3' terminus of RNA-1, including a truncated portion of the 16-kDa cistron. Phylogenetic analysis of RNA-2, based on a comparison of nucleotide sequences with other members of the genus Tobravirus, indicates that TRV MI-1 and other North American isolates cluster as a distinct group. TRV M1-1 is only the second North American isolate for which there is a complete sequence of the genome, and it is distinct from the North American isolate TRV ORY. The relationship of the TRV MI-1 isolate to other tobravirus isolates is discussed.

  2. The complete genome sequence of freesia mosaic virus and its relationship to other potyviruses.

    PubMed

    Choi, H I; Lim, H R; Song, Y S; Kim, M J; Choi, S H; Song, Y S; Bae, S C; Ryu, K H

    2010-07-01

    We have completed the genomic sequence of a potyvirus, freesia mosaic virus (FreMV), and compared it to those of other known potyviruses. The full-length genome sequence of FreMV consists of 9,489 nucleotides. The large protein contains 3,077 amino acids, with an AUG start codon and UAA stop codon, containing one open reading frame typical of a potyvirus polyprotein. The polyprotein of FreMV-Kr gives rise to eleven proteins (P1, HC-pro, P3, PIPO, 6K1, CI, 6K2, VPg, NIa, NIb and CP), and putative cleavage sites of each protein were identified by sequence comparison to those of other known potyviruses. Phylogenetic analysis of the polyprotein revealed that FreMV-Kr was most closely related to PeMoV and was related to BtMV, BaRMV and PeLMV, which belong to the BCMV subgroup. This is the first information on the complete genome structure of FreMV, and the sequence information clearly supports the status of FreMV as a member of a distinct species in the genus Potyvirus.

  3. Complete mtDNA sequencing reveals mutations m.9185T>C and m.13513G>A in three patients with Leigh syndrome.

    PubMed

    Pelnena, Dita; Burnyte, Birute; Jankevics, Eriks; Lace, Baiba; Dagyte, Evelina; Grigalioniene, Kristina; Utkus, Algirdas; Krumina, Zita; Rozentale, Jolanta; Adomaitiene, Irina; Stavusis, Janis; Pliss, Liana; Inashkina, Inna

    2017-12-12

    The most common mitochondrial disorder in children is Leigh syndrome, which is a progressive and genetically heterogeneous neurodegenerative disorder caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the present study, a novel and robust method of complete mtDNA sequencing, which allows amplification of the whole mitochondrial genome, was tested. Complete mtDNA sequencing was performed in a cohort of patients with suspected mitochondrial mutations. Patients from Latvia and Lithuania (n = 92 and n = 57, respectively) referred by clinical geneticists were included. The de novo point mutations m.9185T>C and m.13513G>A, respectively, were detected in two patients with lactic acidosis and neurodegenerative lesions. In one patient with neurodegenerative lesions, the mutation m.9185T>C was identified. These mutations are associated with Leigh syndrome. The present data suggest that full-length mtDNA sequencing is recommended as a supplement to nuclear gene testing and enzymatic assays to enhance mitochondrial disease diagnostics.

  4. A specific indel marker for the Philippines Schistosoma japonicum revealed by analysis of mitochondrial genome sequences.

    PubMed

    Li, Juan; Chen, Fen; Sugiyama, Hiromu; Blair, David; Lin, Rui-Qing; Zhu, Xing-Quan

    2015-07-01

    In the present study, near-complete mitochondrial (mt) genome sequences for Schistosoma japonicum from different regions in the Philippines and Japan were amplified and sequenced. Comparisons among S. japonicum from the Philippines, Japan, and China revealed a geographically based length difference in mt genomes, but the mt genomic organization and gene arrangement were the same. Sequence differences among samples from the Philippines and all samples from the three endemic areas were 0.57-2.12 and 0.76-3.85 %, respectively. The most variable part of the mt genome was the non-coding region. In the coding portion of the genome, protein-coding genes varied more than rRNA genes and tRNAs. The near-complete mt genome sequences for Philippine specimens were identical in length (14,091 bp) which was 4 bp longer than those of S. japonicum samples from Japan and China. This indel provides a unique genetic marker for S. japonicum samples from the Philippines. Phylogenetic analyses based on the concatenated amino acids of 12 protein-coding genes showed that samples of S. japonicum clustered according to their geographical origins. The identified mitochondrial indel marker will be useful for tracing the source of S. japonicum infection in humans and animals in Southeast Asia.

  5. Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Köberl, Martina; White, Richard A.; Erschen, Sabine

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.

  6. Complete genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium of Calendula officinalis

    DOE PAGES

    Köberl, Martina; White, Richard A.; Erschen, Sabine; ...

    2015-08-13

    The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activity against plant-pathogenic fungi, bacteria, and nematodes, consists of a single 3.9-Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.

  7. Complete genome sequence of Pseudoalteromononas piscicida strain DE2-B, a bacterium with broad inhibitory activity toward human and fish pathogens

    USDA-ARS?s Scientific Manuscript database

    Pseudoalteromonas piscicida strain DE2-B is a halophilic bacterium which has broad inhibitory activity toward vibrios and other human and fish pathogens. We report the first closed genome sequence for this species which consists of two chromosomes (4,128,210 and 1,188,838 bp). Annotation revealed ...

  8. Full-Genome Sequence of a Novel Varicella-Zoster Virus Clade Isolated in Mexico.

    PubMed

    Garcés-Ayala, Fabiola; Rodríguez-Castillo, Araceli; Ortiz-Alcántara, Joanna María; Gonzalez-Durán, Elizabeth; Segura-Candelas, José Miguel; Pérez-Agüeros, Sandra Ivette; Escobar-Escamilla, Noé; Méndez-Tenorio, Alfonso; Diaz-Quiñonez, José Alberto; Ramirez-González, José Ernesto

    2015-07-09

    Varicella-zoster virus (VZV) is a member of the Herpesviridae family, which causes varicella (chicken pox) and herpes zoster (shingles) in humans. Here, we report the complete genome sequence of varicella-zoster virus, isolated from a vesicular fluid sample, revealing the circulation of VZV clade VIII in Mexico. Copyright © 2015 Garcés-Ayala et al.

  9. Novel Virus Discovery and Genome Reconstruction from Field RNA Samples Reveals Highly Divergent Viruses in Dipteran Hosts

    PubMed Central

    Bass, David; Moureau, Gregory; Tang, Shuoya; McAlister, Erica; Culverwell, C. Lorna; Glücksman, Edvard; Wang, Hui; Brown, T. David K.; Gould, Ernest A.; Harbach, Ralph E.; de Lamballerie, Xavier; Firth, Andrew E.

    2013-01-01

    We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected. PMID:24260463

  10. Novel genetic tools for studying food-borne Salmonella.

    PubMed

    Andrews-Polymenis, Helene L; Santiviago, Carlos A; McClelland, Michael

    2009-04-01

    Nontyphoidal Salmonellae are highly prevalent food-borne pathogens. High-throughput sequencing of Salmonella genomes is expanding our knowledge of the evolution of serovars and epidemic isolates. Genome sequences have also allowed the creation of complete microarrays. Microarrays have improved the throughput of in vivo expression technology (IVET) used to uncover promoters active during infection. In another method, signature tagged mutagenesis (STM), pools of mutants are subjected to selection. Changes in the population are monitored on a microarray, revealing genes under selection. Complete genome sequences permit the construction of pools of targeted in-frame deletions that have improved STM by minimizing the number of clones and the polarity of each mutant. Together, genome sequences and the continuing development of new tools for functional genomics will drive a revolution in the understanding of Salmonellae in many different niches that are critical for food safety.

  11. Cloning and sequence analysis of Hemonchus contortus HC58cDNA.

    PubMed

    Muleke, Charles I; Ruofeng, Yan; Lixin, Xu; Xinwen, Bo; Xiangrui, Li

    2007-06-01

    The complete coding sequence of Hemonchus contortus HC58cDNA was generated by rapid amplification of cDNA ends and polymerase chain reaction using primers based on the 5' and 3' ends of the parasite mRNA, accession no. AF305964. The HC58cDNA gene was 851 bp long, with open reading frame of 717 bp, precursors to 239 amino acids coding for approximately 27 kDa protein. Analysis of amino acid sequence revealed conserved residues of cysteine, histidine, asparagine, occluding loop pattern, hemoglobinase motif and glutamine of the oxyanion hole characteristic of cathepsin B like proteases (CBL). Comparison of the predicted amino acid sequences showed the protein shared 33.5-58.7% identity to cathepsin B homologues in the papain clan CA family (family C1). Phylogenetic analysis revealed close evolutionary proximity of the protein sequence to counterpart sequences in the CBL, suggesting that HC58cDNA was a member of the papain family.

  12. Insights into the phylogenetic positions of photosynthetic bacteria obtained from 5S rRNA and 16S rRNA sequence data

    NASA Technical Reports Server (NTRS)

    Fox, G. E.

    1985-01-01

    Comparisons of complete 16S ribosomal ribonucleic acid (rRNA) sequences established that the secondary structure of these molecules is highly conserved. Earlier work with 5S rRNA secondary structure revealed that when structural conservation exists the alignment of sequences is straightforward. The constancy of structure implies minimal functional change. Under these conditions a uniform evolutionary rate can be expected so that conditions are favorable for phylogenetic tree construction.

  13. Coverage Bias and Sensitivity of Variant Calling for Four Whole-genome Sequencing Technologies

    PubMed Central

    Lasitschka, Bärbel; Jones, David; Northcott, Paul; Hutter, Barbara; Jäger, Natalie; Kool, Marcel; Taylor, Michael; Lichter, Peter; Pfister, Stefan; Wolf, Stephan; Brors, Benedikt; Eils, Roland

    2013-01-01

    The emergence of high-throughput, next-generation sequencing technologies has dramatically altered the way we assess genomes in population genetics and in cancer genomics. Currently, there are four commonly used whole-genome sequencing platforms on the market: Illumina’s HiSeq2000, Life Technologies’ SOLiD 4 and its completely redesigned 5500xl SOLiD, and Complete Genomics’ technology. A number of earlier studies have compared a subset of those sequencing platforms or compared those platforms with Sanger sequencing, which is prohibitively expensive for whole genome studies. Here we present a detailed comparison of the performance of all currently available whole genome sequencing platforms, especially regarding their ability to call SNVs and to evenly cover the genome and specific genomic regions. Unlike earlier studies, we base our comparison on four different samples, allowing us to assess the between-sample variation of the platforms. We find a pronounced GC bias in GC-rich regions for Life Technologies’ platforms, with Complete Genomics performing best here, while we see the least bias in GC-poor regions for HiSeq2000 and 5500xl. HiSeq2000 gives the most uniform coverage and displays the least sample-to-sample variation. In contrast, Complete Genomics exhibits by far the smallest fraction of bases not covered, while the SOLiD platforms reveal remarkable shortcomings, especially in covering CpG islands. When comparing the performance of the four platforms for calling SNPs, HiSeq2000 and Complete Genomics achieve the highest sensitivity, while the SOLiD platforms show the lowest false positive rate. Finally, we find that integrating sequencing data from different platforms offers the potential to combine the strengths of different technologies. In summary, our results detail the strengths and weaknesses of all four whole-genome sequencing platforms. It indicates application areas that call for a specific sequencing platform and disallow other platforms. This helps to identify the proper sequencing platform for whole genome studies with different application scopes. PMID:23776689

  14. [Exome sequencing revealed Allan-Herndon-Dudley syndrome underlying multiple disabilities].

    PubMed

    Arvio, Maria; Philips, Anju K; Ahvenainen, Minna; Somer, Mirja; Kalscheuer, Vera; Järvelä, Irma

    2014-01-01

    Normal function of the thyroid gland is the cornerstone of a child's mental development and physical growth. We describe a Finnish family, in which the diagnosis of three brothers became clear after investigations that lasted for more than 30 years. Two of the sons have already died. DNA analysis of the third one, a 16-year-old boy, revealed in exome sequencing of the complete X chromosome a mutation in the SLC16A2 gene, i.e. MCT8, coding for a thyroid hormone transport protein. Allan-Herndon-Dudley syndrome was thus shown to be the cause of multiple disabilities.

  15. Draft Genome Sequences of Five Enterococcus Species Isolated from the Gut of Patients with Suspected Clostridium difficile Infection

    PubMed Central

    Castro-Nallar, Eduardo; Valenzuela, Sandro L.; Baquedano, Sebastián; Sánchez, Carolina; Fernández, Fabiola

    2017-01-01

    ABSTRACT We present draft genome sequences of five Enterococcus species from patients suspected of Clostridium difficile infection. Genome completeness was confirmed by presence of bacterial orthologs (97%). Gene searches using Hidden-Markov models revealed that the isolates harbor between seven and 11 genes involved in antibiotic resistance to tetracyclines, beta-lactams, and vancomycin. PMID:28522725

  16. Draft Genome Sequence of Telmatospirillum siberiense 26-4b1, an Acidotolerant Peatland Alphaproteobacterium Potentially Involved in Sulfur Cycling

    PubMed Central

    Schreck, Katharina; Herbold, Craig W.; Daims, Holger; Wagner, Michael; Loy, Alexander

    2018-01-01

    ABSTRACT The facultative anaerobic chemoorganoheterotrophic alphaproteobacterium Telmatospirillum siberiense 26-4b1 was isolated from a Siberian peatland. We report here a 6.20-Mbp near-complete high-quality draft genome sequence of T. siberiense that reveals expected and novel metabolic potential for the genus Telmatospirillum, including genes for sulfur oxidation. PMID:29371357

  17. Low-coverage MiSeq next generation sequencing reveals the mitochondrial genome of the Eastern Rock Lobster, Sagmariasus verreauxi.

    PubMed

    Doyle, Stephen R; Griffith, Ian S; Murphy, Nick P; Strugnell, Jan M

    2015-01-01

    The complete mitochondrial genome of the Eastern Rock lobster, Sagmariasus verreauxi, is reported for the first time. Using low-coverage, long read MiSeq next generation sequencing, we constructed and determined the mtDNA genome organization of the 15,470 bp sequence from two isolates from Eastern Tasmania, Australia and Northern New Zealand, and identified 46 polymorphic nucleotides between the two sequences. This genome sequence and its genetic polymorphisms will likely be useful in understanding the distribution and population connectivity of the Eastern Rock Lobster, and in the fisheries management of this commercially important species.

  18. Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum.

    PubMed

    Cho, Kwang-Soo; Cheon, Kyeong-Sik; Hong, Su-Young; Cho, Ji-Hong; Im, Ju-Seong; Mekapogu, Manjulatha; Yu, Yei-Soo; Park, Tae-Ho

    2016-10-01

    Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.

  19. Complete Genome Analysis of an Enterovirus EV-B83 Isolated in China.

    PubMed

    Tang, Jingjing; Li, Qiongfen; Tian, Bingjun; Zhang, Jie; Li, Kai; Ding, Zhengrong; Lu, Lin

    2016-07-12

    Enterovirus B83 (EV-B83) is a recently identified member of enterovirus species B. It is a rarely reported serotype and up to date, only the complete genome sequence of the prototype strain from the United States is available. In this study, we describe the complete genomic characterization of an EV-B83 strain 246/YN/CHN/08HC isolated from a healthy child living in border region of Yunnan Province, China in 2008. Compared with the prototype strain, it had 79.6% similarity in the complete genome and 78.9% similarity in the VP1 coding region, reflecting the great genetic divergence among them. VP1-coding region alignment revealed it had 77.2-91.3% with other EV-B83 sequences available in GenBank. Similarity plot analysis revealed it had higher identity with several other EV-B serotypes than the EV-B83 prototype strain in the P2 and P3 coding region, suggesting multiple recombination events might have occurred. The great genetic divergence with previously isolated strains and the extremely rare isolation suggest this serotype has circulated at a low epidemic strength for many years. This is the first report of complete genome of EV-B83 in China.

  20. The complete genome sequence of human adenovirus 84, a highly recombinant new Human mastadenovirus D type with a unique fiber gene.

    PubMed

    Kaján, Győző L; Kajon, Adriana E; Pinto, Alexis Castillo; Bartha, Dániel; Arnberg, Niklas

    2017-10-15

    A novel human adenovirus was isolated from a pediatric case of acute respiratory disease in Panama City, Panama in 2011. The clinical isolate was initially identified as an intertypic recombinant based on hexon and fiber gene sequencing. Based on the analysis of its complete genome sequence, the novel complex recombinant Human mastadenovirus D (HAdV-D) strain was classified into a new HAdV type: HAdV-84, and it was designated Adenovirus D human/PAN/P309886/2011/84[P43H17F84]. HAdV-D types possess usually an ocular or gastrointestinal tropism, and respiratory association is scarcely reported. The virus has a novel fiber type, most closely related to, but still clearly distant from that of HAdV-36. The predicted fiber is hypothesised to bind sialic acid with lower affinity compared to HAdV-37. Bioinformatic analysis of the complete genomic sequence of HAdV-84 revealed multiple homologous recombination events and provided deeper insight into HAdV evolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).

    PubMed

    Choi, Kyoung Su; Park, SeonJoo

    2016-09-01

    The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus.

  2. Genome-Scale Phylogeny of the Alphavirus Genus Suggests a Marine Origin

    PubMed Central

    Palacios, G.; Tesh, R. B.; Savji, N.; Guzman, H.; Sherman, M.; Weaver, S. C.; Lipkin, W. I.

    2012-01-01

    The genus Alphavirus comprises a diverse group of viruses, including some that cause severe disease. Using full-length sequences of all known alphaviruses, we produced a robust and comprehensive phylogeny of the Alphavirus genus, presenting a more complete evolutionary history of these viruses compared to previous studies based on partial sequences. Our phylogeny suggests the origin of the alphaviruses occurred in the southern oceans and spread equally through the Old and New World. Since lice appear to be involved in aquatic alphavirus transmission, it is possible that we are missing a louse-borne branch of the alphaviruses. Complete genome sequencing of all members of the genus also revealed conserved residues forming the structural basis of the E1 and E2 protein dimers. PMID:22190718

  3. Equid herpesvirus 8: Complete genome sequence and association with abortion in mares

    PubMed Central

    Garvey, Marie; Suárez, Nicolás M.; Kerr, Karen; Hector, Ralph; Moloney-Quinn, Laura; Arkins, Sean; Davison, Andrew J.

    2018-01-01

    Equid herpesvirus 8 (EHV-8), formerly known as asinine herpesvirus 3, is an alphaherpesvirus that is closely related to equid herpesviruses 1 and 9 (EHV-1 and EHV-9). The pathogenesis of EHV-8 is relatively little studied and to date has only been associated with respiratory disease in donkeys in Australia and horses in China. A single EHV-8 genome sequence has been generated for strain Wh in China, but is apparently incomplete and contains frameshifts in two genes. In this study, the complete genome sequences of four EHV-8 strains isolated in Ireland between 2003 and 2015 were determined by Illumina sequencing. Two of these strains were isolated from cases of abortion in horses, and were misdiagnosed initially as EHV-1, and two were isolated from donkeys, one with neurological disease. The four genome sequences are very similar to each other, exhibiting greater than 98.4% nucleotide identity, and their phylogenetic clustering together demonstrated that genomic diversity is not dependent on the host. Comparative genomic analysis revealed 24 of the 76 predicted protein sequences are completely conserved among the Irish EHV-8 strains. Evolutionary comparisons indicate that EHV-8 is phylogenetically closer to EHV-9 than it is to EHV-1. In summary, the first complete genome sequences of EHV-8 isolates from two host species over a twelve year period are reported. The current study suggests that EHV-8 can cause abortion in horses. The potential threat of EHV-8 to the horse industry and the possibility that donkeys may act as reservoirs of infection warrant further investigation. PMID:29414990

  4. Draft Genome Sequence of Telmatospirillum siberiense 26-4b1, an Acidotolerant Peatland Alphaproteobacterium Potentially Involved in Sulfur Cycling.

    PubMed

    Hausmann, Bela; Pjevac, Petra; Schreck, Katharina; Herbold, Craig W; Daims, Holger; Wagner, Michael; Loy, Alexander

    2018-01-25

    The facultative anaerobic chemoorganoheterotrophic alphaproteobacterium Telmatospirillum siberiense 26-4b1 was isolated from a Siberian peatland. We report here a 6.20-Mbp near-complete high-quality draft genome sequence of T. siberiense that reveals expected and novel metabolic potential for the genus Telmatospirillum , including genes for sulfur oxidation. Copyright © 2018 Hausmann et al.

  5. Construction of random sheared fosmid library from Chinese cabbage and its use for Brassica rapa genome sequencing project.

    PubMed

    Park, Tae-Ho; Park, Beom-Seok; Kim, Jin-A; Hong, Joon Ki; Jin, Mina; Seol, Young-Joo; Mun, Jeong-Hwan

    2011-01-01

    As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa. Copyright © 2011. Published by Elsevier Ltd.

  6. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing.

    PubMed

    Jo, Yeong Deuk; Choi, Yoomi; Kim, Dong-Hwan; Kim, Byung-Dong; Kang, Byoung-Cheorl

    2014-07-04

    Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Although large portion of sequence context was shared by mitochondrial genomes of CMS and male-fertile pepper lines, extensive genome rearrangements were detected. CMS candidate genes located on the edges of highly-rearranged CMS-specific DNA regions and near to repeat sequences. These characteristics were detected among CMS-associated genes in other species, implying a common mechanism might be involved in the evolution of CMS-associated genes.

  7. WebLogo: A Sequence Logo Generator

    PubMed Central

    Crooks, Gavin E.; Hon, Gary; Chandonia, John-Marc; Brenner, Steven E.

    2004-01-01

    WebLogo generates sequence logos, graphical representations of the patterns within a multiple sequence alignment. Sequence logos provide a richer and more precise description of sequence similarity than consensus sequences and can rapidly reveal significant features of the alignment otherwise difficult to perceive. Each logo consists of stacks of letters, one stack for each position in the sequence. The overall height of each stack indicates the sequence conservation at that position (measured in bits), whereas the height of symbols within the stack reflects the relative frequency of the corresponding amino or nucleic acid at that position. WebLogo has been enhanced recently with additional features and options, to provide a convenient and highly configurable sequence logo generator. A command line interface and the complete, open WebLogo source code are available for local installation and customization. PMID:15173120

  8. The complete mitochondrial genome of domestic sheep, Ovis aries.

    PubMed

    Hu, Xiao-di; Gao, Li-zhi

    2016-01-01

    In this study, we report a complete mitochondrial (mt) genome sequence of the Texel ewe, Ovis aries. The total genome is 16,615 bp in length and its overall base composition was estimated to be 33.68% for A, 27.36% for T, 25.86% for C, and 13.10% for G indicating an AT-rich (61.04%) feature in the O. aries mtgenome. It contains a total of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and a control region (D-loop region). Comparisons with other publicly available sheep mitogenomes revealed a bunch of nucleotide diversity. This complete mitgenome sequence would enlarge useful genomic information for further studies on sheep evolution and domestication that will enhance germplasm conservation and breeding programs of O. aries.

  9. Genome Sequence of Enterococcus faecium Strain ICIS 96 Demonstrating Intermicrobial Antagonism Associated with Bacteriocin Production.

    PubMed

    Pashkova, Tatiana M; Vasilchenko, Alexey S; Khlopko, Yuriy A; Kochkina, Elena E; Kartashova, Olga L; Sycheva, Maria V

    2018-03-08

    We report here the complete genome sequence of Enterococcus faecium strain ICIS 96, which was isolated from the feces of a horse. Bacteriological characterization of strain ICIS 96 revealed the absence of pathogenicity factors, while its spectrum of antagonistic activity was found to be broad, having activities associated with both Gram-positive and Gram-negative bacteria. Analysis of the E. faecium ICIS 96 genome revealed five genes associated with antimicrobial activity (enterocin [ent] A, ent B, lactobin A/cerein 7b, and ent L50 A/B). No genes that correlate with human pathogenicity were identified. Copyright © 2018 Pashkova et al.

  10. Genome Sequence of Enterococcus faecium Strain ICIS 96 Demonstrating Intermicrobial Antagonism Associated with Bacteriocin Production

    PubMed Central

    Pashkova, Tatiana M.; Vasilchenko, Alexey S.; Khlopko, Yuriy A.; Kochkina, Elena E.; Kartashova, Olga L.

    2018-01-01

    ABSTRACT We report here the complete genome sequence of Enterococcus faecium strain ICIS 96, which was isolated from the feces of a horse. Bacteriological characterization of strain ICIS 96 revealed the absence of pathogenicity factors, while its spectrum of antagonistic activity was found to be broad, having activities associated with both Gram-positive and Gram-negative bacteria. Analysis of the E. faecium ICIS 96 genome revealed five genes associated with antimicrobial activity (enterocin [ent] A, ent B, lactobin A/cerein 7b, and ent L50 A/B). No genes that correlate with human pathogenicity were identified. PMID:29519833

  11. Molecular Characterization of a Novel Bovine Viral Diarrhea Virus Isolate SD-15

    PubMed Central

    Zhu, Lisai; Lu, Haibing; Cao, Yufeng; Gai, Xiaochun; Guo, Changming; Liu, Yajing; Liu, Jiaxu; Wang, Xinping

    2016-01-01

    As one of the major pathogens, bovine viral diarrhea virus caused a significant economic loss to the livestock industry worldwide. Although BVDV infections have increasingly been reported in China in recent years, the molecular aspects of those BVDV strains were barely characterized. In this study, we reported the identification and characterization of a novel BVDV isolate designated as SD-15 from cattle, which is associated with an outbreak characterized by severe hemorrhagic and mucous diarrhea with high morbidity and mortality in Shandong, China. SD-15 was revealed to be a noncytopathic BVDV, and has a complete genomic sequence of 12,285 nucleotides that contains a large open reading frame encoding 3900 amino acids. Alignment analysis showed that SD-15 has 93.8% nucleotide sequence identity with BVDV ZM-95 isolate, a previous BVDV strain isolated from pigs manifesting clinical signs and lesions resembling to classical swine fever. Phylogenetic analysis clustered SD-15 to a BVDV-1m subgenotype. Analysis of the deduced amino acid sequence of glycoproteins revealed that E2 has several highly conserved and variable regions within BVDV-1 genotypes. An additional N-glycosylation site (240NTT) was revealed exclusively in SD-15-encoded E2 in addition to four potential glycosylation sites (Asn-X-Ser/Thr) shared by all BVDV-1 genotypes. Furthermore, unique amino acid and linear epitope mutations were revealed in SD-15-encoded Erns glycoprotein compared with known BVDV-1 genotype. In conclusion, we have isolated a noncytopathic BVDV-1m strain that is associated with a disease characterized by high morbidity and mortality, revealed the complete genome sequence of the first BVDV-1m virus originated from cattle, and found a unique glycosylation site in E2 and a linear epitope mutation in Erns encoded by SD-15 strain. Those results will broaden the current understanding of BVDV infection and lay a basis for future investigation on SD-15-related pathogenesis. PMID:27764206

  12. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks*

    PubMed Central

    Krumholz, Elias W.; Libourel, Igor G. L.

    2015-01-01

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773

  13. Combined pituitary hormone deficiency (CPHD) due to a complete PROP1 deletion.

    PubMed

    Abrão, M G; Leite, M V; Carvalho, L R; Billerbeck, A E C; Nishi, M Y; Barbosa, A S; Martin, R M; Arnhold, I J P; Mendonca, B B

    2006-09-01

    PROP1 mutations are the most common cause of genetic combined pituitary hormone deficiency (CPHD). The aim of this study was to investigate the PROP1 gene in two siblings with CPHD. Pituitary function and imaging assessment and molecular analysis of PROP1. Two siblings, born to consanguineous parents, presented with GH deficiency associated with other pituitary hormone deficiencies (TSH, PRL and gonadotrophins). The male sibling also had an evolving cortisol deficiency. Pituitary size was evaluated by magnetic resonance imaging (MRI). PROP1 gene analysis was performed by polymerase chain reaction (PCR), automatic sequencing and Southern blotting. Amplification of sequence tag sites (STS) and the Q8N6H0 gene flanking PROP1 were performed to define the extension of PROP1 deletion. MRI revealed a hypoplastic anterior pituitary in the girl at 14 years and pituitary enlargement in the boy at 18 years. The PROP1 gene failed to amplify in both siblings, whereas other genes were amplified. Southern blotting analysis revealed the PROP1 band in the controls and confirmed complete PROP1 deletion in both siblings. The extension of the deletion was 18.4 kb. The region flanking PROP1 contains several Alu core sequences that might have facilitated stem-loop-mediated excision of PROP1. We report here a complete deletion of PROP1 in two siblings with CPHD phenotype.

  14. Complete Genome Sequence of an Avian Paramyxovirus Type 4 from North America Reveals a Shorter Genome and New Genotype

    PubMed Central

    Parthiban, Manoharan; Kaliyaperumal, Manimaran; Xiao, Sa; Nayak, Baibaswata; Paldurai, Anandan; Kim, Shin-Hee; Ladman, Brian S.; Preskenis, Lauren A.; Gelb, Jack; Collins, Peter L.

    2013-01-01

    An avian paramyxovirus type 4 (APMV-4) was isolated from a duck in Delaware in 2010. Its genome is 15,048 nucleotides (nt) long, which is shorter by 6 nt than those for all previously reported strains. Phylogenetic analysis revealed that this strain formed a separate cluster within APMV-4 strains. PMID:23405329

  15. Sequence diversity of wheat mosaic virus isolates.

    PubMed

    Stewart, Lucy R

    2016-02-02

    Wheat mosaic virus (WMoV), transmitted by eriophyid wheat curl mites (Aceria tosichella) is the causal agent of High Plains disease in wheat and maize. WMoV and other members of the genus Emaravirus evaded thorough molecular characterization for many years due to the experimental challenges of mite transmission and manipulating multisegmented negative sense RNA genomes. Recently, the complete genome sequence of a Nebraska isolate of WMoV revealed eight segments, plus a variant sequence of the nucleocapsid protein-encoding segment. Here, near-complete and partial consensus sequences of five more WMoV isolates are reported and compared to the Nebraska isolate: an Ohio maize isolate (GG1), a Kansas barley isolate (KS7), and three Ohio wheat isolates (H1, K1, W1). Results show two distinct groups of WMoV isolates: Ohio wheat isolate RNA segments had 84% or lower nucleotide sequence identity to the NE isolate, whereas GG1 and KS7 had 98% or higher nucleotide sequence identity to the NE isolate. Knowledge of the sequence variability of WMoV isolates is a step toward understanding virus biology, and potentially explaining observed biological variation. Published by Elsevier B.V.

  16. In Silico Characterization and Analysis of RTBP1 and NgTRF1 Protein Through MD Simulation and Molecular Docking: A Comparative Study.

    PubMed

    Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran

    2015-09-01

    Gaining access to sequence and structure information of telomere-binding proteins helps in understanding the essential biological processes involve in conserved sequence-specific interaction between DNA and the proteins. Rice telomere-binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix-turn-helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain, but till now there is very less communication on the in silico studies of these complete proteins. Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK Web server. By digging up all the facts about the proteins, it was revealed that around 120 amino acids in the tail part were showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicate the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA-binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.

  17. Complete genome sequence of Streptomyces venezuelae ATCC 15439, a promising cell factory for production of secondary metabolites.

    PubMed

    Song, Ju Yeon; Yoo, Young Ji; Lim, Si-Kyu; Cha, Sun Ho; Kim, Ji-Eun; Roe, Jung-Hye; Kim, Jihyun F; Yoon, Yeo Joon

    2016-02-10

    Streptomyces venezuelae ATCC 15439, which produces 12- and 14-membered ring macrolide antibiotics, is a platform strain for heterologous expression of secondary metabolites. Its 9.05-Mb genome sequence revealed an abundance of genes involved in the biosynthesis of secondary metabolites and their precursors, which should be useful for the production of bioactive compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Xylella genomics and bacterial pathogenicity to plants.

    PubMed

    Dow, J M; Daniels, M J

    2000-12-01

    Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics. Copyright 2000 John Wiley & Sons, Ltd.

  19. Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the 5' and 3'-UTRs.

    PubMed

    Gritsun, T S; Venugopal, K; Zanotto, P M; Mikhailov, M V; Sall, A A; Holmes, E C; Polkinghorne, I; Frolova, T V; Pogodina, V V; Lashkevich, V A; Gould, E A

    1997-05-01

    The complete nucleotide sequence of two tick-transmitted flaviviruses, Vasilchenko (Vs) from Siberia and louping ill (LI) from the UK, have been determined. The genomes were respectively, 10928 and 10871 nucleotides (nt) in length. The coding strategy and functional protein sequence motifs of tick-borne flaviviruses are presented in both Vs and LI viruses. The phylogenies based on maximum likelihood, maximum parsimony and distance analysis of the polyproteins, identified Vs virus as a member of the tick-borne encephalitis virus subgroup within the tick-borne serocomplex, genus Flavivirus, family Flaviviridae. Comparative alignment of the 3'-untranslated regions revealed deletions of different lengths essentially at the same position downstream of the stop codon for all tick-borne viruses. Two direct 27 nucleotide repeats at the 3'-end were found only for Vs and LI virus. Immediately following the deletions a region of 332-334 nt with relatively conserved primary structure (67-94% identity) was observed at the 3'-non-coding end of the virus genome. Pairwise comparisons of the nucleotide sequence data revealed similar levels of variation between the coding region, and the 5' and 3'-termini of the genome, implying an equivalent strong selective control for translated and untranslated regions. Indeed the predicted folding of the 5' and 3'-untranslated regions revealed patterns of stem and loop structures conserved for all tick-borne flaviviruses suggesting a purifying selection for preservation of essential RNA secondary structures which could be involved in translational control and replication. The possible implications of these findings are discussed.

  20. The complete mitochondrial genome of the medicinal fungus Ganoderma applanatum (Polyporales, Basidiomycota).

    PubMed

    Wang, Xin-Cun; Shao, Junjie; Liu, Chang

    2016-07-01

    We have determined the complete nucleotide sequence of the mitochondrial genome of the medicinal fungus Ganoderma applanatum (Pers.) Pat. using the next-generation sequencing technology. The circular molecule is 119,803 bp long with a GC content of 26.66%. Gene prediction revealed genes encoding 15 conserved proteins, 25 tRNAs, the large and small ribosomal RNAs, all genes are located on the same strand except trnW-CCA. Compared with previously sequenced genomes of G. lucidum, G. meredithiae and G. sinense, the order of the protein and rRNA genes is highly conserved; however, the types of tRNA genes are slightly different. The mitochondrial genome of G. applanatum will contribute to the understanding of the phylogeny and evolution of Ganoderma and Ganodermataceae, the group containing many species with high medicinal values.

  1. Comparative analysis of the complete sequence of the plastid genome of Parthenium argentatum and identification of DNA barcodes to differentiate Parthenium species and lines

    PubMed Central

    2009-01-01

    Background Parthenium argentatum (guayule) is an industrial crop that produces latex, which was recently commercialized as a source of latex rubber safe for people with Type I latex allergy. The complete plastid genome of P. argentatum was sequenced. The sequence provides important information useful for genetic engineering strategies. Comparison to the sequences of plastid genomes from three other members of the Asteraceae, Lactuca sativa, Guitozia abyssinica and Helianthus annuus revealed details of the evolution of the four genomes. Chloroplast-specific DNA barcodes were developed for identification of Parthenium species and lines. Results The complete plastid genome of P. argentatum is 152,803 bp. Based on the overall comparison of individual protein coding genes with those in L. sativa, G. abyssinica and H. annuus, we demonstrate that the P. argentatum chloroplast genome sequence is most closely related to that of H. annuus. Similar to chloroplast genomes in G. abyssinica, L. sativa and H. annuus, the plastid genome of P. argentatum has a large 23 kb inversion with a smaller 3.4 kb inversion, within the large inversion. Using the matK and psbA-trnH spacer chloroplast DNA barcodes, three of the four Parthenium species tested, P. tomentosum, P. hysterophorus and P. schottii, can be differentiated from P. argentatum. In addition, we identified lines within P. argentatum. Conclusion The genome sequence of the P. argentatum chloroplast will enrich the sequence resources of plastid genomes in commercial crops. The availability of the complete plastid genome sequence may facilitate transformation efficiency by using the precise sequence of endogenous flanking sequences and regulatory elements in chloroplast transformation vectors. The DNA barcoding study forms the foundation for genetic identification of commercially significant lines of P. argentatum that are important for producing latex. PMID:19917140

  2. Comparative Analysis of the Peanut Witches'-Broom Phytoplasma Genome Reveals Horizontal Transfer of Potential Mobile Units and Effectors

    PubMed Central

    Lo, Wen-Sui; Lin, Chan-Pin; Kuo, Chih-Horng

    2013-01-01

    Phytoplasmas are a group of bacteria that are associated with hundreds of plant diseases. Due to their economical importance and the difficulties involved in the experimental study of these obligate pathogens, genome sequencing and comparative analysis have been utilized as powerful tools to understand phytoplasma biology. To date four complete phytoplasma genome sequences have been published. However, these four strains represent limited phylogenetic diversity. In this study, we report the shotgun sequencing and evolutionary analysis of a peanut witches'-broom (PnWB) phytoplasma genome. The availability of this genome provides the first representative of the 16SrII group and substantially improves the taxon sampling to investigate genome evolution. The draft genome assembly contains 13 chromosomal contigs with a total size of 562,473 bp, covering ∼90% of the chromosome. Additionally, a complete plasmid sequence is included. Comparisons among the five available phytoplasma genomes reveal the differentiations in gene content and metabolic capacity. Notably, phylogenetic inferences of the potential mobile units (PMUs) in these genomes indicate that horizontal transfer may have occurred between divergent phytoplasma lineages. Because many effectors are associated with PMUs, the horizontal transfer of these transposon-like elements can contribute to the adaptation and diversification of these pathogens. In summary, the findings from this study highlight the importance of improving taxon sampling when investigating genome evolution. Moreover, the currently available sequences are inadequate to fully characterize the pan-genome of phytoplasmas. Future genome sequencing efforts to expand phylogenetic diversity are essential in improving our understanding of phytoplasma evolution. PMID:23626855

  3. Complete nucleotide sequences and genome characterization of a novel double-stranded RNA virus infecting Rosa multiflora.

    PubMed

    Salem, Nidá M; Golino, Deborah A; Falk, Bryce W; Rowhani, Adib

    2008-01-01

    The three double-stranded (ds) RNAs were detected in Rosa multiflora plants showing rose spring dwarf (RSD) symptoms. Northern blot analysis revealed three dsRNAs in preparations of both dsRNA and total RNA from R. multiflora plants. The complete sequences of the dsRNAs (referred to as dsRNA 1, dsRNA 2 and dsRNA 3) were determined based on a combination of shotgun cloning of dsRNA cDNAs and reverse transcription-polymerase chain reaction (RT-PCR). The largest dsRNA (dsRNA 1) was 1,762 bp long with a single open reading frame (ORF) that encoded a putative polypeptide containing 479 amino acid residues with a molecular mass of 55.9 kDa. This polypeptide contains amino acid sequence motifs conserved in the RNA-dependent RNA polymerases (RdRp) of members of the family Partitiviridae. Both dsRNA 2 (1,475 bp) and dsRNA 3 (1,384 bp) contained single ORFs, encoding putative proteins of unknown function. The 5' untranslated regions (UTR) of all three segments shared regions of high sequence homology. Phylogenetic analysis using the RdRp sequences of the various partitiviruses revealed that the new sequences would constitute the genome of a virus in family Partitiviridae. This virus would cluster with Fragaria chiloensis cryptic virus and Raphanus sativus cryptic virus 2. We suggest that the three dsRNA segments constitute the genome of a novel cryptic virus infecting roses; we propose the name Rosa multiflora cryptic virus (RMCV). Detection primers were developed and used for RT-PCR detection of RMCV in rose plants.

  4. Metagenomic analysis of Sichuan takin fecal sample viromes reveals novel enterovirus and astrovirus.

    PubMed

    Guan, Tian-Pei; Teng, Jade L L; Yeong, Kai-Yan; You, Zhang-Qiang; Liu, Hao; Wong, Samson S Y; Lau, Susanna K P; Woo, Patrick C Y

    2018-06-07

    The Sichuan takin inhabits the bamboo forests in the Eastern Himalayas and is considered as a national treasure of China with the highest legal protection and conservation status considered as vulnerable according to The IUCN Red List of Threatened Species. In this study, fecal samples of 71 Sichuan takins were pooled and deep sequenced. Among the 103,553 viral sequences, 21,961 were assigned to mammalian viruses. De novo assembly revealed genomes of an enterovirus and an astrovirus and contigs of circoviruses and genogroup I picobirnaviruses. Complete genome sequencing and phylogenetic analysis showed that Sichuan takin enterovirus is a novel serotype/genotype of the species Enterovirus G, with evidence of recombination. Sichuan takin astrovirus is a new subtype of bovine astrovirus, probably belonging to a new genogroup in the genus Mamastrovirus. Further studies will reveal whether these viruses can also be found in Mishmi takin and Shaanxi takin and their pathogenic potentials. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Whole-Genome-Sequencing characterization of bloodstream infection-causing hypervirulent Klebsiella pneumoniae of capsular serotype K2 and ST374.

    PubMed

    Wang, Xiaoli; Xie, Yingzhou; Li, Gang; Liu, Jialin; Li, Xiaobin; Tian, Lijun; Sun, Jingyong; Ou, Hong-Yu; Qu, Hongping

    2018-01-01

    Hypervirulent K. pneumoniae variants (hvKP) have been increasingly reported worldwide, causing metastasis of severe infections such as liver abscesses and bacteremia. The capsular serotype K2 hvKP strains show diverse multi-locus sequence types (MLSTs), but with limited genetics and virulence information. In this study, we report a hypermucoviscous K. pneumoniae strain, RJF293, isolated from a human bloodstream sample in a Chinese hospital. It caused a metastatic infection and fatal septic shock in a critical patient. The microbiological features and genetic background were investigated with multiple approaches. The Strain RJF293 was determined to be multilocis sequence type (ST) 374 and serotype K2, displayed a median lethal dose (LD50) of 1.5 × 10 2 CFU in BALB/c mice and was as virulent as the ST23 K1 serotype hvKP strain NTUH-K2044 in a mouse lethality assay. Whole genome sequencing revealed that the RJF293 genome codes for 32 putative virulence factors and exhibits a unique presence/absence pattern in comparison to the other 105 completely sequenced K. pneumoniae genomes. Whole genome SNP-based phylogenetic analysis revealed that strain RJF293 formed a single clade, distant from those containing either ST66 or ST86 hvKP. Compared to the other sequenced hvKP chromosomes, RJF293 contains several strain-variable regions, including one prophage, one ICEKp1 family integrative and conjugative element and six large genomic islands. The sequencing of the first complete genome of an ST374 K2 hvKP clinical strain should reinforce our understanding of the epidemiology and virulence mechanisms of this bloodstream infection-causing hvKP with clinical significance.

  6. Whole-Genome-Sequencing characterization of bloodstream infection-causing hypervirulent Klebsiella pneumoniae of capsular serotype K2 and ST374

    PubMed Central

    Wang, Xiaoli; Xie, Yingzhou; Li, Gang; Liu, Jialin; Li, Xiaobin; Tian, Lijun; Sun, Jingyong; Qu, Hongping

    2018-01-01

    ABSTRACT Hypervirulent K. pneumoniae variants (hvKP) have been increasingly reported worldwide, causing metastasis of severe infections such as liver abscesses and bacteremia. The capsular serotype K2 hvKP strains show diverse multi-locus sequence types (MLSTs), but with limited genetics and virulence information. In this study, we report a hypermucoviscous K. pneumoniae strain, RJF293, isolated from a human bloodstream sample in a Chinese hospital. It caused a metastatic infection and fatal septic shock in a critical patient. The microbiological features and genetic background were investigated with multiple approaches. The Strain RJF293 was determined to be multilocis sequence type (ST) 374 and serotype K2, displayed a median lethal dose (LD50) of 1.5 × 102 CFU in BALB/c mice and was as virulent as the ST23 K1 serotype hvKP strain NTUH-K2044 in a mouse lethality assay. Whole genome sequencing revealed that the RJF293 genome codes for 32 putative virulence factors and exhibits a unique presence/absence pattern in comparison to the other 105 completely sequenced K. pneumoniae genomes. Whole genome SNP-based phylogenetic analysis revealed that strain RJF293 formed a single clade, distant from those containing either ST66 or ST86 hvKP. Compared to the other sequenced hvKP chromosomes, RJF293 contains several strain-variable regions, including one prophage, one ICEKp1 family integrative and conjugative element and six large genomic islands. The sequencing of the first complete genome of an ST374 K2 hvKP clinical strain should reinforce our understanding of the epidemiology and virulence mechanisms of this bloodstream infection-causing hvKP with clinical significance. PMID:29338592

  7. Complementary DNA cloning and molecular evolution of opine dehydrogenases in some marine invertebrates.

    PubMed

    Kimura, Tomohiro; Nakano, Toshiki; Yamaguchi, Toshiyasu; Sato, Minoru; Ogawa, Tomohisa; Muramoto, Koji; Yokoyama, Takehiko; Kan-No, Nobuhiro; Nagahisa, Eizou; Janssen, Frank; Grieshaber, Manfred K

    2004-01-01

    The complete complementary DNA sequences of genes presumably coding for opine dehydrogenases from Arabella iricolor (sandworm), Haliotis discus hannai (abalone), and Patinopecten yessoensis (scallop) were determined, and partial cDNA sequences were derived for Meretrix lusoria (Japanese hard clam) and Spisula sachalinensis (Sakhalin surf clam). The primers ODH-9F and ODH-11R proved useful for amplifying the sequences for opine dehydrogenases from the 4 mollusk species investigated in this study. The sequence of the sandworm was obtained using primers constructed from the amino acid sequence of tauropine dehydrogenase, the main opine dehydrogenase in A. iricolor. The complete cDNA sequence of A. iricolor, H. discus hannai, and P. yessoensis encode 397, 400, and 405 amino acids, respectively. All sequences were aligned and compared with published databank sequences of Loligo opalescens, Loligo vulgaris (squid), Sepia officinalis (cuttlefish), and Pecten maximus (scallop). As expected, a high level of homology was observed for the cDNA from closely related species, such as for cephalopods or scallops, whereas cDNA from the other species showed lower-level homologies. A similar trend was observed when the deduced amino acid sequences were compared. Furthermore, alignment of these sequences revealed some structural motifs that are possibly related to the binding sites of the substrates. The phylogenetic trees derived from the nucleotide and amino acid sequences were consistent with the classification of species resulting from classical taxonomic analyses.

  8. Complete genome sequence of Pseudomonas stutzeri strain RCH2 isolated from a Hexavalent Chromium [Cr(VI)] contaminated site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Romy; Woo, Hannah; Dehal, Paramvir

    Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water in several DOE sites, including Hanford 100 H area. In order to stimulate microbially mediated reduction of Cr(VI) at this site, a poly-lactate hydrogen release compound was injected into the chromium contaminated aquifer. The targeted enrichment of dominant nitrate-reducing bacteria post injection resulted in the isolation of Pseudomonas stutzeri strain RCH2. P. stutzeri strain RCH2 was isolated using acetate as the electron donor and is a complete denitrifier. Experiments with anaerobic washed cell suspension of strain RCH2 revealed it could reduce Cr(VI) and Fe(III). We sequencedmore » the genome of strain RCH2 using a combination of Illumina and 454 sequencing technologies and contained a circular chromosome of 4.6 Mb and three plasmids. Furthermore, global genome comparisons of strain RCH2 with six other fully sequenced P. stutzeri strains revealed most genomic regions are conserved, however strain RCH2 has an additional 244 genes, some of which are involved in chemotaxis, Flp pilus biogenesis and pyruvate/2-oxogluturate complex formation.« less

  9. Complete genome sequence of Pseudomonas stutzeri strain RCH2 isolated from a Hexavalent Chromium [Cr(VI)] contaminated site

    DOE PAGES

    Chakraborty, Romy; Woo, Hannah; Dehal, Paramvir; ...

    2017-02-08

    Hexavalent Chromium [Cr(VI)] is a widespread contaminant found in soil, sediment, and ground water in several DOE sites, including Hanford 100 H area. In order to stimulate microbially mediated reduction of Cr(VI) at this site, a poly-lactate hydrogen release compound was injected into the chromium contaminated aquifer. The targeted enrichment of dominant nitrate-reducing bacteria post injection resulted in the isolation of Pseudomonas stutzeri strain RCH2. P. stutzeri strain RCH2 was isolated using acetate as the electron donor and is a complete denitrifier. Experiments with anaerobic washed cell suspension of strain RCH2 revealed it could reduce Cr(VI) and Fe(III). We sequencedmore » the genome of strain RCH2 using a combination of Illumina and 454 sequencing technologies and contained a circular chromosome of 4.6 Mb and three plasmids. Furthermore, global genome comparisons of strain RCH2 with six other fully sequenced P. stutzeri strains revealed most genomic regions are conserved, however strain RCH2 has an additional 244 genes, some of which are involved in chemotaxis, Flp pilus biogenesis and pyruvate/2-oxogluturate complex formation.« less

  10. Comparative proteomic analysis of lung tissue from guinea pigs with Leptospiral Pulmonary Haemorrhage Syndrome (LPHS) reveals a decrease in abundance of host proteins involved in cytoskeletal and cellular organization

    USDA-ARS?s Scientific Manuscript database

    The recent completion of the complete genome sequence of the guinea pig (Cavia porcellus) provides innovative opportunities to apply proteomic technologies to an important animal model of disease. In this study, a 2-D guinea pig proteome lung map was used to investigate the pathogenic mechanisms of ...

  11. Complete nucleotide sequences of a new bipartite begomovirus from Malvastrum sp. plants with bright yellow mosaic symptoms in South Texas.

    PubMed

    Alabi, Olufemi J; Villegas, Cecilia; Gregg, Lori; Murray, K Daniel

    2016-06-01

    Two isolates of a novel bipartite begomovirus, tentatively named malvastrum bright yellow mosaic virus (MaBYMV), were molecularly characterized from naturally infected plants of the genus Malvastrum showing bright yellow mosaic disease symptoms in South Texas. Six complete DNA-A and five DNA-B genome sequences of MaBYMV obtained from the isolates ranged in length from 2,608 to 2,609 nucleotides (nt) and 2,578 to 2,605 nt, respectively. Both genome segments shared a 178- to 180-nt common region. In pairwise comparisons, the complete DNA-A and DNA-B sequences of MaBYMV were most similar (87-88 % and 79-81 % identity, respectively) and phylogenetically related to the corresponding sequences of sida mosaic Sinaloa virus-[MX-Gua-06]. Further analysis revealed that MaBYMV is a putative recombinant virus, thus supporting the notion that malvaceous hosts may be influencing the evolution of several begomoviruses. The design of new diagnostic primers enabled the detection of MaBYMV in cohorts of Bemisia tabaci collected from symptomatic Malvastrum sp. plants, thus implicating whiteflies as potential vectors of the virus.

  12. Normalization of Complete Genome Characteristics: Application to Evolution from Primitive Organisms to Homo sapiens.

    PubMed

    Sorimachi, Kenji; Okayasu, Teiji; Ohhira, Shuji

    2015-04-01

    Normalized nucleotide and amino acid contents of complete genome sequences can be visualized as radar charts. The shapes of these charts depict the characteristics of an organism's genome. The normalized values calculated from the genome sequence theoretically exclude experimental errors. Further, because normalization is independent of both target size and kind, this procedure is applicable not only to single genes but also to whole genomes, which consist of a huge number of different genes. In this review, we discuss the applications of the normalization of the nucleotide and predicted amino acid contents of complete genomes to the investigation of genome structure and to evolutionary research from primitive organisms to Homo sapiens. Some of the results could never have been obtained from the analysis of individual nucleotide or amino acid sequences but were revealed only after the normalization of nucleotide and amino acid contents was applied to genome research. The discovery that genome structure was homogeneous was obtained only after normalization methods were applied to the nucleotide or predicted amino acid contents of genome sequences. Normalization procedures are also applicable to evolutionary research. Thus, normalization of the contents of whole genomes is a useful procedure that can help to characterize organisms.

  13. Complete Genome Sequence of Pseudomonas chlororaphis subsp. aurantiaca Reveals a Triplicate Quorum-Sensing Mechanism for Regulation of Phenazine Production

    PubMed Central

    Morohoshi, Tomohiro; Yamaguchi, Takahito; Xie, Xiaonan; Wang, Wen-zhao; Takeuchi, Kasumi; Someya, Nobutaka

    2017-01-01

    Pseudomonas chlororaphis subsp. aurantiaca StFRB508 regulates phenazine production through N-acyl-l-homoserine lactone (AHL)-mediated quorum sensing. Two sets of AHL-synthase and AHL-receptor genes, phzI/phzR and aurI/aurR, have been identified from the incomplete draft genome of StFRB508. In the present study, the complete genome of StFRB508, comprising a single chromosome of 6,997,933 bp, was sequenced. The complete genome sequence revealed the presence of a third quorum-sensing gene set, designated as csaI/csaR. An LC-MS/MS analysis revealed that StFRB508 produced six types of AHLs, with the most important AHL being N-(3-hydroxyhexanoyl)-l-homoserine lactone (3-OH-C6-HSL). PhzI mainly catalyzed the biosynthesis of 3-OH-C6-HSL, while AurI and CsaI catalyzed that of N-hexanoyl-l-homoserine lactone and N-(3-oxohexanoyl)-l-homoserine lactone, respectively. A mutation in phzI decreased phenazine production, whereas that in aurI or csaI did not. A phzI aurI csaI triple mutant (508ΔPACI) did not produce phenazine. Phenazine production by 508ΔPACI was stimulated by exogenous AHLs and 3-OH-C6-HSL exerted the strongest effects on phenazine production at the lowest concentration tested (0.1 μM). The plant protection efficacy of 508ΔPACI against an oomycete pathogen was lower than that of wild-type StFRB508. These results demonstrate that the triplicate quorum-sensing system plays an important role in phenazine production by and the biocontrol activity of StFRB508. PMID:28239068

  14. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms.

    PubMed

    Ma, Ji; Yang, Bingxian; Zhu, Wei; Sun, Lianli; Tian, Jingkui; Wang, Xumin

    2013-10-10

    Mahonia bealei (Berberidaceae) is a frequently-used traditional Chinese medicinal plant with efficient anti-inflammatory ability. This plant is one of the sources of berberine, a new cholesterol-lowering drug with anti-diabetic activity. We have sequenced the complete nucleotide sequence of the chloroplast (cp) genome of M. bealei. The complete cp genome of M. bealei is 164,792 bp in length, and has a typical structure with large (LSC 73,052 bp) and small (SSC 18,591 bp) single-copy regions separated by a pair of inverted repeats (IRs 36,501 bp) of large size. The Mahonia cp genome contains 111 unique genes and 39 genes are duplicated in the IR regions. The gene order and content of M. bealei are almost unarranged which is consistent with the hypothesis that large IRs stabilize cp genome and reduce gene loss-and-gain probabilities during evolutionary process. A large IR expansion of over 12 kb has occurred in M. bealei, 15 genes (rps19, rpl22, rps3, rpl16, rpl14, rps8, infA, rpl36, rps11, petD, petB, psbH, psbN, psbT and psbB) have expanded to have an additional copy in the IRs. The IR expansion rearrangement occurred via a double-strand DNA break and subsequence repair, which is different from the ordinary gene conversion mechanism. Repeat analysis identified 39 direct/inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Analysis also revealed 75 simple sequence repeat (SSR) loci and almost all are composed of A or T, contributing to a distinct bias in base composition. Comparison of protein-coding sequences with ESTs reveals 9 putative RNA edits and 5 of them resulted in non-synonymous modifications in rpoC1, rps2, rps19 and ycf1. Phylogenetic analysis using maximum parsimony (MP) and maximum likelihood (ML) was performed on a dataset composed of 65 protein-coding genes from 25 taxa, which yields an identical tree topology as previous plastid-based trees, and provides strong support for the sister relationship between Ranunculaceae and Berberidaceae. Molecular dating analyses suggest that Ranunculaceae and Berberidaceae diverged between 90 and 84 mya, which is congruent with the fossil records and with recent estimates of the divergence time of these two taxa. © 2013.

  15. Complete genome sequence of a novel avian paramyxovirus isolated from wild birds in South Korea.

    PubMed

    Jeong, Jipseol; Kim, Youngsik; An, Injung; Wang, Seung-Jun; Kim, Yongkwan; Lee, Hyun-Jeong; Choi, Kang-Seuk; Im, Se-Pyeong; Min, Wongi; Oem, Jae-Ku; Jheong, Weonhwa

    2018-01-01

    A novel avian paramyxovirus (APMV), Cheonsu1510, was isolated from wild bird feces in South Korea and serologically and genetically characterized. In hemagglutination inhibition tests, antiserum against Cheonsu1510 showed low reactivity with other APMVs and vice versa. The complete genome of Cheonsu1510 comprised 15,408 nucleotides, contained six open reading frames (3'-N-P-M-F-HN-L-5'), and showed low sequence identity to other APMVs (< 63%) and a unique genomic composition. Phylogenetic analysis revealed that Cheonsu1510 was related to but distinct from APMV-1, -9, and -15. These results suggest that Cheonsu1510 represents a new APMV serotype, APMV-17.

  16. GAWK, a novel human pituitary polypeptide: isolation, immunocytochemical localization and complete amino acid sequence.

    PubMed

    Benjannet, S; Leduc, R; Lazure, C; Seidah, N G; Marcinkiewicz, M; Chrétien, M

    1985-01-16

    During the course of reverse-phase high pressure liquid chromatography (RP-HPLC) purification of a postulated big ACTH (1) from human pituitary gland extracts, a highly purified peptide bearing no resemblance to any known polypeptide was isolated. The complete sequence of this 74 amino acid polypeptide, called GAWK, has been determined. Search on a computer data bank on the possible homology to any known protein or fragment, using a mutation data matrix, failed to reveal any homology greater than 30%. An antibody produced against a synthetic fragment allowed us to detect several immunoreactive forms. The antisera also enabled us to localize the polypeptide, by immunocytochemistry, in the anterior lobe of the pituitary gland.

  17. The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses.

    PubMed

    Saina, Josphat K; Gichira, Andrew W; Li, Zhi-Zhong; Hu, Guang-Wan; Wang, Qing-Feng; Liao, Kuo

    2018-02-01

    The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.

  18. Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production.

    PubMed

    Khanna, Namita; Ghosh, Ananta Kumar; Huntemann, Marcel; Deshpande, Shweta; Han, James; Chen, Amy; Kyrpides, Nikos; Mavrommatis, Kostas; Szeto, Ernest; Markowitz, Victor; Ivanova, Natalia; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Nolan, Matt; Woyke, Tanja; Teshima, Hazuki; Chertkov, Olga; Daligault, Hajnalka; Davenport, Karen; Gu, Wei; Munk, Christine; Zhang, Xiaojing; Bruce, David; Detter, Chris; Xu, Yan; Quintana, Beverly; Reitenga, Krista; Kunde, Yulia; Green, Lance; Erkkila, Tracy; Han, Cliff; Brambilla, Evelyne-Marie; Lang, Elke; Klenk, Hans-Peter; Goodwin, Lynne; Chain, Patrick; Das, Debabrata

    2013-12-20

    Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production was suggested based on the presence of formate hydrogen lyase complex and other related genes identified in the genome. Thus, in the present study we describe the specific properties of the organism and the generation, annotation and analysis of its genome sequence as well as discuss the putative pathway of hydrogen production by this organism.

  19. Swine and Poultry Pathogens: the Complete Genome Sequences of Two Strains of Mycoplasma hyopneumoniae and a Strain of Mycoplasma synoviae†

    PubMed Central

    Vasconcelos, Ana Tereza R.; Ferreira, Henrique B.; Bizarro, Cristiano V.; Bonatto, Sandro L.; Carvalho, Marcos O.; Pinto, Paulo M.; Almeida, Darcy F.; Almeida, Luiz G. P.; Almeida, Rosana; Alves-Filho, Leonardo; Assunção, Enedina N.; Azevedo, Vasco A. C.; Bogo, Maurício R.; Brigido, Marcelo M.; Brocchi, Marcelo; Burity, Helio A.; Camargo, Anamaria A.; Camargo, Sandro S.; Carepo, Marta S.; Carraro, Dirce M.; de Mattos Cascardo, Júlio C.; Castro, Luiza A.; Cavalcanti, Gisele; Chemale, Gustavo; Collevatti, Rosane G.; Cunha, Cristina W.; Dallagiovanna, Bruno; Dambrós, Bibiana P.; Dellagostin, Odir A.; Falcão, Clarissa; Fantinatti-Garboggini, Fabiana; Felipe, Maria S. S.; Fiorentin, Laurimar; Franco, Gloria R.; Freitas, Nara S. A.; Frías, Diego; Grangeiro, Thalles B.; Grisard, Edmundo C.; Guimarães, Claudia T.; Hungria, Mariangela; Jardim, Sílvia N.; Krieger, Marco A.; Laurino, Jomar P.; Lima, Lucymara F. A.; Lopes, Maryellen I.; Loreto, Élgion L. S.; Madeira, Humberto M. F.; Manfio, Gilson P.; Maranhão, Andrea Q.; Martinkovics, Christyanne T.; Medeiros, Sílvia R. B.; Moreira, Miguel A. M.; Neiva, Márcia; Ramalho-Neto, Cicero E.; Nicolás, Marisa F.; Oliveira, Sergio C.; Paixão, Roger F. C.; Pedrosa, Fábio O.; Pena, Sérgio D. J.; Pereira, Maristela; Pereira-Ferrari, Lilian; Piffer, Itamar; Pinto, Luciano S.; Potrich, Deise P.; Salim, Anna C. M.; Santos, Fabrício R.; Schmitt, Renata; Schneider, Maria P. C.; Schrank, Augusto; Schrank, Irene S.; Schuck, Adriana F.; Seuanez, Hector N.; Silva, Denise W.; Silva, Rosane; Silva, Sérgio C.; Soares, Célia M. A.; Souza, Kelly R. L.; Souza, Rangel C.; Staats, Charley C.; Steffens, Maria B. R.; Teixeira, Santuza M. R.; Urmenyi, Turan P.; Vainstein, Marilene H.; Zuccherato, Luciana W.; Simpson, Andrew J. G.; Zaha, Arnaldo

    2005-01-01

    This work reports the results of analyses of three complete mycoplasma genomes, a pathogenic (7448) and a nonpathogenic (J) strain of the swine pathogen Mycoplasma hyopneumoniae and a strain of the avian pathogen Mycoplasma synoviae; the genome sizes of the three strains were 920,079 bp, 897,405 bp, and 799,476 bp, respectively. These genomes were compared with other sequenced mycoplasma genomes reported in the literature to examine several aspects of mycoplasma evolution. Strain-specific regions, including integrative and conjugal elements, and genome rearrangements and alterations in adhesin sequences were observed in the M. hyopneumoniae strains, and all of these were potentially related to pathogenicity. Genomic comparisons revealed that reduction in genome size implied loss of redundant metabolic pathways, with maintenance of alternative routes in different species. Horizontal gene transfer was consistently observed between M. synoviae and Mycoplasma gallisepticum. Our analyses indicated a likely transfer event of hemagglutinin-coding DNA sequences from M. gallisepticum to M. synoviae. PMID:16077101

  20. De novo assembly of mitochondrial genomes provides insights into genetic diversity and molecular evolution in wild boars and domestic pigs.

    PubMed

    Ni, Pan; Bhuiyan, Ali Akbar; Chen, Jian-Hai; Li, Jingjin; Zhang, Cheng; Zhao, Shuhong; Du, Xiaoyong; Li, Hua; Yu, Hui; Liu, Xiangdong; Li, Kui

    2018-06-01

    Up to date, the scarcity of publicly available complete mitochondrial sequences for European wild pigs hampers deeper understanding about the genetic changes following domestication. Here, we have assembled 26 de novo mtDNA sequences of European wild boars from next generation sequencing (NGS) data and downloaded 174 complete mtDNA sequences to assess the genetic relationship, nucleotide diversity, and selection. The Bayesian consensus tree reveals the clear divergence between the European and Asian clade and a very small portion (10 out of 200 samples) of maternal introgression. The overall nucleotides diversities of the mtDNA sequences have been reduced following domestication. Interestingly, the selection efficiencies in both European and Asian domestic pigs are reduced, probably caused by changes in both selection constraints and maternal population size following domestication. This study suggests that de novo assembled mitogenomes can be a great boon to uncover the genetic turnover following domestication. Further investigation is warranted to include more samples from the ever-increasing amounts of NGS data to help us to better understand the process of domestication.

  1. Molecular Characterization of Geographically Different Banana bunchy top virus Isolates in India.

    PubMed

    Selvarajan, R; Mary Sheeba, M; Balasubramanian, V; Rajmohan, R; Dhevi, N Lakshmi; Sasireka, T

    2010-10-01

    Banana bunchy top disease (BBTD) caused by Banana bunchy top virus (BBTV) is one of the most devastating diseases of banana and poses a serious threat for cultivars like Hill Banana (Syn: Virupakshi) and Grand Naine in India. In this study, we have cloned and sequenced the complete genome comprised of six DNA components of BBTV infecting Hill Banana grown in lower Pulney hills, Tamil Nadu State, India. The complete genome sequence of this hill banana isolate showed high degree of similarity with the corresponding sequences of BBTV isolates originating from Lucknow, Uttar Pradesh State, India, and from Fiji, Egypt, Pakistan, and Australia. In addition, sixteen coat protein (CP) and thirteen replicase genes (Rep) sequences of BBTV isolates collected from different banana growing states of India were cloned and sequenced. The replicase sequences of 13 isolates showed high degree of similarity with that of South Pacific group of BBTV isolates. However, the CP gene of BBTV isolates from Shervroy and Kodaikanal hills of Tamil Nadu showed higher amino acid sequence variability compared to other isolates. Another hill banana isolate from Meghalaya state had 23 nucleotide substitutions in the CP gene but the amino acid sequence was conserved. This is the first report of the characterization of a complete genome of BBTV occurring in the high altitudes of India. Our study revealed that the Indian BBTV isolates with distinct geographical origins belongs to the South Pacific group, except Shervroy and Kodaikanal hill isolates which neither belong to the South Pacific nor the Asian group.

  2. The complete nucleotide sequence of the genome of Barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses

    PubMed Central

    Krueger, Elizabeth N.; Beckett, Randy J.; Gray, Stewart M.; Miller, W. Allen

    2013-01-01

    The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All of these viruses are obligately aphid transmitted and phloem-limited. The first described YDVs (initially all called BYDV) were classified by their most efficient vector. One of these viruses, BYDV-RMV, is transmitted most efficiently by the corn leaf aphid, Rhopalosiphum maidis. Here we report the complete 5612 nucleotide sequence of the genomic RNA of a Montana isolate of BYDV-RMV (isolate RMV MTFE87, Genbank accession no. KC921392). The sequence revealed that BYDV-RMV is a polerovirus, but it is quite distantly related to the CYDVs or WYDV, which are very closely related to each other. Nor is BYDV-RMV closely related to any other particular polerovirus. Depending on the gene that is compared, different poleroviruses (none of them a YDV) share the most sequence similarity to BYDV-RMV. Because of its distant relationship to other YDVs, and because it commonly infects maize via its vector, R. maidis, we propose that BYDV-RMV be renamed Maize yellow dwarf virus-RMV (MYDV-RMV). PMID:23888156

  3. The complete nucleotide sequence of the genome of Barley yellow dwarf virus-RMV reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses.

    PubMed

    Krueger, Elizabeth N; Beckett, Randy J; Gray, Stewart M; Miller, W Allen

    2013-01-01

    The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All of these viruses are obligately aphid transmitted and phloem-limited. The first described YDVs (initially all called BYDV) were classified by their most efficient vector. One of these viruses, BYDV-RMV, is transmitted most efficiently by the corn leaf aphid, Rhopalosiphum maidis. Here we report the complete 5612 nucleotide sequence of the genomic RNA of a Montana isolate of BYDV-RMV (isolate RMV MTFE87, Genbank accession no. KC921392). The sequence revealed that BYDV-RMV is a polerovirus, but it is quite distantly related to the CYDVs or WYDV, which are very closely related to each other. Nor is BYDV-RMV closely related to any other particular polerovirus. Depending on the gene that is compared, different poleroviruses (none of them a YDV) share the most sequence similarity to BYDV-RMV. Because of its distant relationship to other YDVs, and because it commonly infects maize via its vector, R. maidis, we propose that BYDV-RMV be renamed Maize yellow dwarf virus-RMV (MYDV-RMV).

  4. NMR binding and crystal structure reveal that intrinsically-unstructured regulatory domain auto-inhibits PAK4 by a mechanism different from that of PAK1.

    PubMed

    Wang, Wei; Lim, Liangzhong; Baskaran, Yohendran; Manser, Ed; Song, Jianxing

    2013-08-16

    Six human PAK members are classified into groups I (PAKs 1-3) and II (PAK4-6). Previously, only group I PAKs were thought to be auto-inhibited but very recently PAK4, the prototype of group II PAKs, has also been shown to be auto-inhibited by its N-terminal regulatory domain. However, the complete auto-inhibitory domain (AID) sequence remains undefined and the mechanism underlying its auto-inhibition is largely elusive. Here, the N-terminal regulatory domain of PAK4 sufficient for auto-inhibiting and binding Cdc42/Rac was characterized to be intrinsically unstructured, but nevertheless we identified the entire AID sequence by NMR. Strikingly, an AID peptide was derived by deleting the binding-unnecessary residues, which has a Kd of 320 nM to the PAK4 catalytic domain. Consequently, the PAK4 crystal structure complexed with the entire AID has been determined, which reveals that the complete kinase cleft is occupied by 20 AID residuescomposed of an N-terminal α-helix and a previously-identified pseudosubstrate motif, thus achieving auto-inhibition. Our study reveals that PAK4 is auto-inhibited by a novel mechanism which is completely different from that for PAK1, thus bearing critical implications for design of inhibitors specific for group II PAKs. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.

    PubMed

    Hayashi, Tetsutaro; Ozaki, Haruka; Sasagawa, Yohei; Umeda, Mana; Danno, Hiroki; Nikaido, Itoshi

    2018-02-12

    Total RNA sequencing has been used to reveal poly(A) and non-poly(A) RNA expression, RNA processing and enhancer activity. To date, no method for full-length total RNA sequencing of single cells has been developed despite the potential of this technology for single-cell biology. Here we describe random displacement amplification sequencing (RamDA-seq), the first full-length total RNA-sequencing method for single cells. Compared with other methods, RamDA-seq shows high sensitivity to non-poly(A) RNA and near-complete full-length transcript coverage. Using RamDA-seq with differentiation time course samples of mouse embryonic stem cells, we reveal hundreds of dynamically regulated non-poly(A) transcripts, including histone transcripts and long noncoding RNA Neat1. Moreover, RamDA-seq profiles recursive splicing in >300-kb introns. RamDA-seq also detects enhancer RNAs and their cell type-specific activity in single cells. Taken together, we demonstrate that RamDA-seq could help investigate the dynamics of gene expression, RNA-processing events and transcriptional regulation in single cells.

  6. Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms.

    PubMed

    Zapata, Luis; Ding, Jia; Willing, Eva-Maria; Hartwig, Benjamin; Bezdan, Daniela; Jiao, Wen-Biao; Patel, Vipul; Velikkakam James, Geo; Koornneef, Maarten; Ossowski, Stephan; Schneeberger, Korbinian

    2016-07-12

    Resequencing or reference-based assemblies reveal large parts of the small-scale sequence variation. However, they typically fail to separate such local variation into colinear and rearranged variation, because they usually do not recover the complement of large-scale rearrangements, including transpositions and inversions. Besides the availability of hundreds of genomes of diverse Arabidopsis thaliana accessions, there is so far only one full-length assembled genome: the reference sequence. We have assembled 117 Mb of the A. thaliana Landsberg erecta (Ler) genome into five chromosome-equivalent sequences using a combination of short Illumina reads, long PacBio reads, and linkage information. Whole-genome comparison against the reference sequence revealed 564 transpositions and 47 inversions comprising ∼3.6 Mb, in addition to 4.1 Mb of nonreference sequence, mostly originating from duplications. Although rearranged regions are not different in local divergence from colinear regions, they are drastically depleted for meiotic recombination in heterozygotes. Using a 1.2-Mb inversion as an example, we show that such rearrangement-mediated reduction of meiotic recombination can lead to genetically isolated haplotypes in the worldwide population of A. thaliana Moreover, we found 105 single-copy genes, which were only present in the reference sequence or the Ler assembly, and 334 single-copy orthologs, which showed an additional copy in only one of the genomes. To our knowledge, this work gives first insights into the degree and type of variation, which will be revealed once complete assemblies will replace resequencing or other reference-dependent methods.

  7. Recombination events and variability among full-length genomes of co-circulating molluscum contagiosum virus subtypes 1 and 2.

    PubMed

    López-Bueno, Alberto; Parras-Moltó, Marcos; López-Barrantes, Olivia; Belda, Sylvia; Alejo, Alí

    2017-05-01

    Molluscum contagiosum virus (MCV) is the sole member of the Molluscipoxvirus genus and causes a highly prevalent human disease of the skin characterized by the formation of a variable number of lesions that can persist for prolonged periods of time. Two major genotypes, subtype 1 and subtype 2, are recognized, although currently only a single complete genomic sequence corresponding to MCV subtype 1 is available. Using next-generation sequencing techniques, we report the complete genomic sequence of four new MCV isolates, including the first one derived from a subtype 2. Comparisons suggest a relatively distant evolutionary split between both MCV subtypes. Further, our data illustrate concurrent circulation of distinct viruses within a population and reveal the existence of recombination events among them. These results help identify a set of MCV genes with potentially relevant roles in molluscum contagiosum epidemiology and pathogenesis.

  8. Complete sequence of RNA3 of Cucumber mosaic virus isolates infecting Gerbera jamesonii suggests its grouping under IB subgroup.

    PubMed

    Gautum, K K; Raj, R; Kumar, S; Raj, S K; Roy, R K; Katiyar, R

    2014-01-01

    The complete RNA3 genome of Cucumber mosaic virus (CMV) was amplified by RT-PCR from three infected gerbera (Gerbera jamesonii) leaf samples exhibiting severe chlorotic mosaic and flower deformation symptoms. The amplicons obtained were cloned sequenced and deposited in GenBank under the accessions JN692495, JX913531 (from cv. Zingaro) and JX888093 (from cv. Silvester). These sequences shared 98-99 % identities to each other and with a strain of CMV-Banana reported from India, and 90-95 % identities with various strains of CMV reported worldwide. Phylogenetic analysis revealed their closest affinity with CMV-Banana strain, and close relationships with several other strains of CMV of subgroup IB. This study provides evidence of subgroup IB CMV causing severe chlorosis and flower deformation in two cultivars (Zingaro and Silvester) of G. jamesonii in India.

  9. Genetic analysis of Fasciola isolates from cattle in Korea based on second internal transcribed spacer (ITS-2) sequence of nuclear ribosomal DNA.

    PubMed

    Choe, Se-Eun; Nguyen, Thuy Thi-Dieu; Kang, Tae-Gyu; Kweon, Chang-Hee; Kang, Seung-Won

    2011-09-01

    Nuclear ribosomal DNA sequence of the second internal transcribed spacer (ITS-2) has been used efficiently to identify the liver fluke species collected from different hosts and various geographic regions. ITS-2 sequences of 19 Fasciola samples collected from Korean native cattle were determined and compared. Sequence comparison including ITS-2 sequences of isolates from this study and reference sequences from Fasciola hepatica and Fasciola gigantica and intermediate Fasciola in Genbank revealed seven identical variable sites of investigated isolates. Among 19 samples, 12 individuals had ITS-2 sequences completely identical to that of pure F. hepatica, five possessed the sequences identical to F. gigantica type, whereas two shared the sequence of both F. hepatica and F. gigantica. No variations in length and nucleotide composition of ITS-2 sequence were observed within isolates that belonged to F. hepatica or F. gigantica. At the position of 218, five Fasciola containing a single-base substitution (C>T) formed a distinct branch inside the F. gigantica-type group which was similar to those of Asian-origin isolates. The phylogenetic tree of the Fasciola spp. based on complete ITS-2 sequences from this study and other representative isolates in different locations clearly showed that pure F. hepatica, F. gigantica type and intermediate Fasciola were observed. The result also provided additional genetic evidence for the existence of three forms of Fasciola isolated from native cattle in Korea by genetic approach using ITS-2 sequence.

  10. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.

    PubMed

    Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin

    2013-01-01

    Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.

  11. Allopolyploid Origin of Chenopodium album s. str. (Chenopodiaceae): A Molecular and Cytogenetic Insight

    PubMed Central

    Krak, Karol; Vít, Petr; Belyayev, Alexander; Douda, Jan; Hreusová, Lucia; Mandák, Bohumil

    2016-01-01

    Reticulate evolution is characterized by occasional hybridization between two species, creating a network of closely related taxa below and at the species level. In the present research, we aimed to verify the hypothesis of the allopolyploid origin of hexaploid C. album s. str., identify its putative parents and estimate the frequency of allopolyploidization events. We sampled 122 individuals of the C. album aggregate, covering most of its distribution range in Eurasia. Our samples included putative progenitors of C. album s. str. of both ploidy levels, i.e. diploids (C. ficifolium, C. suecicum) and tetraploids (C. striatiforme, C. strictum). To fulfil these objectives, we analysed sequence variation in the nrDNA ITS region and the rpl32-trnL intergenic spacer of cpDNA and performed genomic in-situ hybridization (GISH). Our study confirms the allohexaploid origin of C. album s. str. Analysis of cpDNA revealed tetraploids as the maternal species. In most accessions of hexaploid C. album s. str., ITS sequences were completely or nearly completely homogenized towards the tetraploid maternal ribotype; a tetraploid species therefore served as one genome donor. GISH revealed a strong hybridization signal on the same eighteen chromosomes of C. album s. str. with both diploid species C. ficifolium and C. suecicum. The second genome donor was therefore a diploid species. Moreover, some individuals with completely unhomogenized ITS sequences were found. Thus, hexaploid individuals of C. album s. str. with ITS sequences homogenized to different degrees may represent hybrids of different ages. This proves the existence of at least two different allopolyploid lineages, indicating a polyphyletic origin of C. album s. str. PMID:27513342

  12. New Investigations of the Gow Lake Impact Structure, Saskatchewan, Canada: Impact Melt Rocks, Astronaut Training, and More

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Singleton, A. C.; Ozaruk, A.; Hansen, J. R.

    2012-03-01

    New investigations of the Gow Lake impact structure has revealed an almost complete sequence of impactites from the crater floor upward through a series of melt-free and melt-bearing rocks. This research involved an astronaut training component.

  13. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2015-07-31

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Complete genome sequence of Rhizobium leguminosarum bv. trifolii strain WSM1325, an effective microsymbiont of annual Mediterranean clovers.

    PubMed Central

    Reeve, Wayne; O’Hara, Graham; Chain, Patrick; Ardley, Julie; Bräu, Lambert; Nandesena, Kemanthi; Tiwari, Ravi; Copeland, Alex; Nolan, Matt; Han, Cliff; Brettin, Thomas; Land, Miriam; Ovchinikova, Galina; Ivanova, Natalia; Mavromatis, Konstantinos; Markowitz, Victor; Kyrpides, Nikos; Melino, Vanessa; Denton, Matthew; Yates, Ron; Howieson, John

    2010-01-01

    Rhizobium leguminosarum bv trifolii is a soil-inhabiting bacterium that has the capacity to be an effective nitrogen fixing microsymbiont of a diverse range of annual Trifolium (clover) species. Strain WSM1325 is an aerobic, motile, non-spore forming, Gram-negative rod isolated from root nodules collected in 1993 from the Greek Island of Serifos. WSM1325 is produced commercially in Australia as an inoculant for a broad range of annual clovers of Mediterranean origin due to its superior attributes of saprophytic competence, nitrogen fixation and acid-tolerance. Here we describe the basic features of this organism, together with the complete genome sequence, and annotation. This is the first completed genome sequence for a microsymbiont of annual clovers. We reveal that its genome size is 7,418,122 bp encoding 7,232 protein-coding genes and 61 RNA-only encoding genes. This multipartite genome contains 6 distinct replicons; a chromosome of size 4,767,043 bp and 5 plasmids of size 828,924 bp, 660,973 bp, 516,088 bp, 350,312 bp and 294,782 bp. PMID:21304718

  15. Isolation, sequence identification and tissue expression profiles of 3 novel porcine genes: ASPA, NAGA, and HEXA.

    PubMed

    Shu, Xianghua; Liu, Yonggang; Yang, Liangyu; Song, Chunlian; Hou, Jiafa

    2008-01-01

    The complete coding sequences of 3 porcine genes - ASPA, NAGA, and HEXA - were amplified by the reverse transcriptase polymerase chain reaction (RT-PCR) based on the conserved sequence information of the mouse or other mammals and referenced pig ESTs. These 3 novel porcine genes were then deposited in the NCBI database and assigned GeneIDs: 100142661, 100142664 and 100142667. The phylogenetic tree analysis revealed that the porcine ASPA, NAGA, and HEXA all have closer genetic relationships with the ASPA, NAGA, and HEXA of cattle. Tissue expression profile analysis was also carried out and results revealed that swine ASPA, NAGA, and HEXA genes were differentially expressed in various organs, including skeletal muscle, the heart, liver, fat, kidney, lung, and small and large intestines. Our experiment is the first one to establish the foundation for further research on these 3 swine genes.

  16. Whole-Genome Sequencing of Measles Virus Genotypes H1 and D8 During Outbreaks of Infection Following the 2010 Olympic Winter Games Reveals Viral Transmission Routes.

    PubMed

    Gardy, Jennifer L; Naus, Monika; Amlani, Ashraf; Chung, Walter; Kim, Hochan; Tan, Malcolm; Severini, Alberto; Krajden, Mel; Puddicombe, David; Sahni, Vanita; Hayden, Althea S; Gustafson, Reka; Henry, Bonnie; Tang, Patrick

    2015-11-15

    We used whole-genome sequencing to investigate a dual-genotype outbreak of measles occurring after the XXI Olympic Winter Games in Vancouver, Canada. By sequencing 27 complete genomes from H1 and D8 genotype measles viruses isolated from outbreak cases, we estimated the virus mutation rate, determined that person-to-person transmission is typically associated with 0 mutations between isolates, and established that a single introduction of H1 virus led to the expansion of the outbreak beyond Vancouver. This is the largest measles genomics project to date, revealing novel aspects of measles virus genetics and providing new insights into transmission of this reemerging viral pathogen. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. A Splice Defect in the EDA Gene in Dogs with an X-Linked Hypohidrotic Ectodermal Dysplasia (XLHED) Phenotype.

    PubMed

    Waluk, Dominik P; Zur, Gila; Kaufmann, Ronnie; Welle, Monika M; Jagannathan, Vidhya; Drögemüller, Cord; Müller, Eliane J; Leeb, Tosso; Galichet, Arnaud

    2016-09-08

    X-linked hypohidrotic ectodermal dysplasia (XLHED) caused by variants in the EDA gene represents the most common ectodermal dysplasia in humans. We investigated three male mixed-breed dogs with an ectodermal dysplasia phenotype characterized by marked hypotrichosis and multifocal complete alopecia, almost complete absence of sweat and sebaceous glands, and altered dentition with missing and abnormally shaped teeth. Analysis of SNP chip genotypes and whole genome sequence data from the three affected dogs revealed that the affected dogs shared the same haplotype on a large segment of the X-chromosome, including the EDA gene. Unexpectedly, the whole genome sequence data did not reveal any nonsynonymous EDA variant in the affected dogs. We therefore performed an RNA-seq experiment on skin biopsies to search for changes in the transcriptome. This analysis revealed that the EDA transcript in the affected dogs lacked 103 nucleotides encoded by exon 2. We speculate that this exon skipping is caused by a genetic variant located in one of the large introns flanking this exon, which was missed by whole genome sequencing with the illumina short read technology. The altered EDA transcript splicing most likely causes the observed ectodermal dysplasia in the affected dogs. These dogs thus offer an excellent opportunity to gain insights into the complex splicing processes required for expression of the EDA gene, and other genes with large introns. Copyright © 2016 Waluk et al.

  18. A new haemocyanin in cuttlefish (Sepia officinalis) eggs: sequence analysis and relevance during ontogeny

    PubMed Central

    2014-01-01

    Background Haemocyanin is the respiratory protein of most of the Mollusca. In cephalopods and gastropods at least two distinct isoforms are differentially expressed. However, their physiological purpose is unknown. For the common cuttlefish Sepia officinalis, three isoforms are known so far, whereas for only two of them the complete mRNA sequences are available. In this study, we sequenced the complete mRNA of the third haemocyanin isoform and measured the relative expression of all three isoforms during embryogenesis to reveal a potential ontogenetic relevance. Results The cDNA of isoform 3 clearly correlates to the known Sepia officinalis haemocyanin subunits consisting of eight functional units and an internal duplicated functional unit d. Our molecular phylogenetic analyses reveal the third isoform representing a potentially ancestral haemocyanin isoform, and the analyses of the expression of haemocyanin type 3 reveal that haemocyanin type 3 only can be observed within eggs and during early development. Isoforms 1 and 2 are absent at these stages. After hatching, isoform 3 is downregulated, and isoform 1 and 2 are upregulated. Conclusions Our study clearly shows an embryonic relevance of the third isoform, which will be further discussed in the light of the changes in the physiological function of haemocyanin during ontogeny. Taken together with the fact that it could also be the isoform closest related to the common ancestor of cuttlefish haemocyanin, the phylogeny of cuttlefish haemocyanin may be recapitulated during its ontogeny. PMID:24499521

  19. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale – A wild ancestor of cultivated buckwheat

    PubMed Central

    Logacheva, Maria D; Samigullin, Tahir H; Dhingra, Amit; Penin, Aleksey A

    2008-01-01

    Background Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. Results We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae) to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. Conclusion Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic analysis of the dataset, including this new sequence from non-core Caryophyllales supports the sister relationship between Caryophyllales and asterids. PMID:18492277

  20. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    PubMed Central

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  1. The complete chloroplast genome of Cinnamomum camphora and its comparison with related Lauraceae species.

    PubMed

    Chen, Caihui; Zheng, Yongjie; Liu, Sian; Zhong, Yongda; Wu, Yanfang; Li, Jiang; Xu, Li-An; Xu, Meng

    2017-01-01

    Cinnamomum camphora , a member of the Lauraceae family, is a valuable aromatic and timber tree that is indigenous to the south of China and Japan. All parts of Cinnamomum camphora have secretory cells containing different volatile chemical compounds that are utilized as herbal medicines and essential oils. Here, we reported the complete sequencing of the chloroplast genome of Cinnamomum camphora using illumina technology. The chloroplast genome of Cinnamomum camphora is 152,570 bp in length and characterized by a relatively conserved quadripartite structure containing a large single copy region of 93,705 bp, a small single copy region of 19,093 bp and two inverted repeat (IR) regions of 19,886 bp. Overall, the genome contained 123 coding regions, of which 15 were repeated in the IR regions. An analysis of chloroplast sequence divergence revealed that the small single copy region was highly variable among the different genera in the Lauraceae family. A total of 40 repeat structures and 83 simple sequence repeats were detected in both the coding and non-coding regions. A phylogenetic analysis indicated that Calycanthus is most closely related to Lauraceae , both being members of Laurales , which forms a sister group to Magnoliids . The complete sequence of the chloroplast of Cinnamomum camphora will aid in in-depth taxonomical studies of the Lauraceae family in the future. The genetic sequence information will also have valuable applications for chloroplast genetic engineering.

  2. Vibrio cholerae typing phage N4: genome sequence and its relatedness to T7 viral supergroup.

    PubMed

    Das, Mayukh; Nandy, R K; Bhowmick, Tushar Suvra; Yamasaki, S; Ghosh, A; Nair, G B; Sarkar, B L

    2012-01-01

    In countries where cholera is endemic, Vibrio cholerae O1 bacteriophages have been detected in sewage water. These have been used to serve not only as strain markers, but also for the typing of V. cholerae strains. Vibriophage N4 (ATCC 51352-B1) occupies a unique position in the new phage-typing scheme and can infect a larger number of V. cholerae O1 biotype El Tor strains. Here we characterized the complete genome sequence of this typing vibriophage. The complete DNA sequence of the N4 genome was determined by using a shotgun sequencing approach. Complete genome sequence explored that phage N4 is comprised of one circular, double-stranded chromosome of 38,497 bp with an overall GC content of 42.8%. A total of 47 open reading frames were identified and functions could be assigned to 30 of them. Further, a close relationship with another vibriophage, VP4, and the enterobacteriophage T7 could be established. DNA-DNA hybridization among V. cholerae O1 and O139 phages revealed homology among O1 vibriophages at their genomic level. This study indicates two evolutionary distinctive branches of the possible phylogenetic origin of O1 and O139 vibriophages and provides an unveiled collection of information on viral gene products of typing vibriophages. Copyright © 2011 S. Karger AG, Basel.

  3. Complete sequence determination of a novel reptile iridovirus isolated from soft-shelled turtle and evolutionary analysis of Iridoviridae

    PubMed Central

    Huang, Youhua; Huang, Xiaohong; Liu, Hong; Gong, Jie; Ouyang, Zhengliang; Cui, Huachun; Cao, Jianhao; Zhao, Yingtao; Wang, Xiujie; Jiang, Yulin; Qin, Qiwei

    2009-01-01

    Background Soft-shelled turtle iridovirus (STIV) is the causative agent of severe systemic diseases in cultured soft-shelled turtles (Trionyx sinensis). To our knowledge, the only molecular information available on STIV mainly concerns the highly conserved STIV major capsid protein. The complete sequence of the STIV genome is not yet available. Therefore, determining the genome sequence of STIV and providing a detailed bioinformatic analysis of its genome content and evolution status will facilitate further understanding of the taxonomic elements of STIV and the molecular mechanisms of reptile iridovirus pathogenesis. Results We determined the complete nucleotide sequence of the STIV genome using 454 Life Science sequencing technology. The STIV genome is 105 890 bp in length with a base composition of 55.1% G+C. Computer assisted analysis revealed that the STIV genome contains 105 potential open reading frames (ORFs), which encode polypeptides ranging from 40 to 1,294 amino acids and 20 microRNA candidates. Among the putative proteins, 20 share homology with the ancestral proteins of the nuclear and cytoplasmic large DNA viruses (NCLDVs). Comparative genomic analysis showed that STIV has the highest degree of sequence conservation and a colinear arrangement of genes with frog virus 3 (FV3), followed by Tiger frog virus (TFV), Ambystoma tigrinum virus (ATV), Singapore grouper iridovirus (SGIV), Grouper iridovirus (GIV) and other iridovirus isolates. Phylogenetic analysis based on conserved core genes and complete genome sequence of STIV with other virus genomes was performed. Moreover, analysis of the gene gain-and-loss events in the family Iridoviridae suggested that the genes encoded by iridoviruses have evolved for favoring adaptation to different natural host species. Conclusion This study has provided the complete genome sequence of STIV. Phylogenetic analysis suggested that STIV and FV3 are strains of the same viral species belonging to the Ranavirus genus in the Iridoviridae family. Given virus-host co-evolution and the phylogenetic relationship among vertebrates from fish to reptiles, we propose that iridovirus might transmit between reptiles and amphibians and that STIV and FV3 are strains of the same viral species in the Ranavirus genus. PMID:19439104

  4. Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms.

    PubMed

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-08-31

    Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats > or = 30 bp with a sequence identity > or = 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements.

  5. High Diversity of Myocyanophage in Various Aquatic Environments Revealed by High-Throughput Sequencing of Major Capsid Protein Gene With a New Set of Primers.

    PubMed

    Hou, Weiguo; Wang, Shang; Briggs, Brandon R; Li, Gaoyuan; Xie, Wei; Dong, Hailiang

    2018-01-01

    Myocyanophages, a group of viruses infecting cyanobacteria, are abundant and play important roles in elemental cycling. Here we investigated the particle-associated viral communities retained on 0.2 μm filters and in sediment samples (representing ancient cyanophage communities) from four ocean and three lake locations, using high-throughput sequencing and a newly designed primer pair targeting a gene fragment (∼145-bp in length) encoding the cyanophage gp23 major capsid protein (MCP). Diverse viral communities were detected in all samples. The fragments of 142-, 145-, and 148-bp in length were most abundant in the amplicons, and most sequences (>92%) belonged to cyanophages. Additionally, different sequencing depths resulted in different diversity estimates of the viral community. Operational taxonomic units obtained from deep sequencing of the MCP gene covered the majority of those obtained from shallow sequencing, suggesting that deep sequencing exhibited a more complete picture of cyanophage community than shallow sequencing. Our results also revealed a wide geographic distribution of marine myocyanophages, i.e., higher dissimilarities of the myocyanophage communities corresponded with the larger distances between the sampling sites. Collectively, this study suggests that the newly designed primer pair can be effectively used to study the community and diversity of myocyanophage from different environments, and the high-throughput sequencing represents a good method to understand viral diversity.

  6. High Diversity of Myocyanophage in Various Aquatic Environments Revealed by High-Throughput Sequencing of Major Capsid Protein Gene With a New Set of Primers

    PubMed Central

    Hou, Weiguo; Wang, Shang; Briggs, Brandon R.; Li, Gaoyuan; Xie, Wei; Dong, Hailiang

    2018-01-01

    Myocyanophages, a group of viruses infecting cyanobacteria, are abundant and play important roles in elemental cycling. Here we investigated the particle-associated viral communities retained on 0.2 μm filters and in sediment samples (representing ancient cyanophage communities) from four ocean and three lake locations, using high-throughput sequencing and a newly designed primer pair targeting a gene fragment (∼145-bp in length) encoding the cyanophage gp23 major capsid protein (MCP). Diverse viral communities were detected in all samples. The fragments of 142-, 145-, and 148-bp in length were most abundant in the amplicons, and most sequences (>92%) belonged to cyanophages. Additionally, different sequencing depths resulted in different diversity estimates of the viral community. Operational taxonomic units obtained from deep sequencing of the MCP gene covered the majority of those obtained from shallow sequencing, suggesting that deep sequencing exhibited a more complete picture of cyanophage community than shallow sequencing. Our results also revealed a wide geographic distribution of marine myocyanophages, i.e., higher dissimilarities of the myocyanophage communities corresponded with the larger distances between the sampling sites. Collectively, this study suggests that the newly designed primer pair can be effectively used to study the community and diversity of myocyanophage from different environments, and the high-throughput sequencing represents a good method to understand viral diversity.

  7. The complete chloroplast genome of a medicinal plant Epimedium koreanum Nakai (Berberidaceae).

    PubMed

    Lee, Jung-Hoon; Kim, Kyunghee; Kim, Na-Rae; Lee, Sang-Choon; Yang, Tae-Jin; Kim, Young-Dong

    2016-11-01

    Epimedium koreanum is a perennial medicinal plant distributed in Eastern Asia. The complete chloroplast genome sequences of E. koreanum was obtained by de novo assembly using whole genome next-generation sequences. The chloroplast genome of E. koreanum was 157 218 bp in length and separated into four distinct regions such as large single copy region (89 600 bp), small single copy region (17 222 bp) and a pair of inverted repeat regions (25 198 bp). The genome contained a total of 112 genes including 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that E. koreanum is most closely related to Berberis bealei, a traditional medicinal plant in the Berberidaceae family.

  8. Structural impact of complete CpG methylation within target DNA on specific complex formation of the inducible transcription factor Egr-1.

    PubMed

    Zandarashvili, Levani; White, Mark A; Esadze, Alexandre; Iwahara, Junji

    2015-07-08

    The inducible transcription factor Egr-1 binds specifically to 9-bp target sequences containing two CpG sites that can potentially be methylated at four cytosine bases. Although it appears that complete CpG methylation would make an unfavorable steric clash in the previous crystal structures of the complexes with unmethylated or partially methylated DNA, our affinity data suggest that DNA recognition by Egr-1 is insensitive to CpG methylation. We have determined, at a 1.4-Å resolution, the crystal structure of the Egr-1 zinc-finger complex with completely methylated target DNA. Structural comparison of the three different methylation states reveals why Egr-1 can recognize the target sequences regardless of CpG methylation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. A novel tandem repeat sequence located on human chromosome 4p: isolation and characterization.

    PubMed

    Kogi, M; Fukushige, S; Lefevre, C; Hadano, S; Ikeda, J E

    1997-06-01

    In an effort to analyze the genomic region of the distal half of human chromosome 4p, to where Huntington disease and other diseases have been mapped, we have isolated the cosmid clone (CRS447) that was likely to contain a region with specific repeat sequences. Clone CRS447 was subjected to detailed analysis, including chromosome mapping, restriction mapping, and DNA sequencing. Chromosome mapping by both a human-CHO hybrid cell panel and FISH revealed that CRS447 was predominantly located in the 4p15.1-15.3 region. CRS447 was shown to consist of tandem repeats of 4.7-kb units present on chromosome 4p. A single EcoRI unit was subcloned (pRS447), and the complete sequence was determined as 4752 nucleotides. When pRS447 was used as a probe, the number of copies of this repeat per haploid genome was estimated to be 50-70. Sequence analysis revealed that it contained two internal CA repeats and one putative ORF. Database search established that this sequence was unreported. However, two homologous STS markers were found in the database. We concluded that CRS447/pRS447 is a novel tandem repeat sequence that is mainly specific to human chromosome 4p.

  10. Complete genome analysis of porcine kobuviruses from the feces of pigs in Japan.

    PubMed

    Akagami, Masataka; Ito, Mika; Niira, Kazutaka; Kuroda, Moegi; Masuda, Tsuneyuki; Haga, Kei; Tsuchiaka, Shinobu; Naoi, Yuki; Kishimoto, Mai; Sano, Kaori; Omatsu, Tsutomu; Aoki, Hiroshi; Katayama, Yukie; Oba, Mami; Oka, Tomoichiro; Ichimaru, Toru; Yamasato, Hiroshi; Ouchi, Yoshinao; Shirai, Junsuke; Katayama, Kazuhiko; Mizutani, Tetsuya; Nagai, Makoto

    2017-08-01

    Porcine kobuviruses (PoKoVs) are ubiquitously distributed in pig populations worldwide and are thought to be enteric viruses in swine. Although PoKoVs have been detected in pigs in Japan, no complete genome data for Japanese PoKoVs are available. In the present study, 24 nearly complete or complete sequences of the PoKoV genome obtained from 10 diarrheic feces and 14 non-diarrheic feces of Japanese pigs were analyzed using a metagenomics approach. Japanese PoKoVs shared 85.2-100% identity with the complete coding nucleotide (nt) sequences and the closest relationship of 85.1-98.3% with PoKoVs from other countries. Twenty of 24 Japanese PoKoVs carried a deletion of 90 nt in the 2B coding region. Phylogenetic tree analyses revealed that PoKoVs were not grouped according to their geographical region of origin and the phylogenetic trees of the L, P1, P2, and P3 genetic regions showed topologies different from each other. Similarity plot analysis using strains from a single farm revealed partially different similarity patterns among strains from identical farm origins, suggesting that recombination events had occurred. These results indicate that various PoKoV strains are prevalent and not restricted geographically on pig farms worldwide and the coexistence of multiple strains leads to recombination events of PoKoVs and contributes to the genetic diversity and evolution of PoKoVs.

  11. Communicating the Benefits of a Full Sequence of High School Science Courses

    NASA Astrophysics Data System (ADS)

    Nicholas, Catherine Marie

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.

  12. Complete Genome Sequence of Sporisorium scitamineum and Biotrophic Interaction Transcriptome with Sugarcane

    PubMed Central

    Benevenuto, Juliana; Peters, Leila P.; Carvalho, Giselle; Palhares, Alessandra; Quecine, Maria C.; Nunes, Filipe R. S.; Kmit, Maria C. P.; Wai, Alvan; Hausner, Georg; Aitken, Karen S.; Berkman, Paul J.; Fraser, James A.; Moolhuijzen, Paula M.; Coutinho, Luiz L.; Creste, Silvana; Vieira, Maria L. C.; Kitajima, João P.; Monteiro-Vitorello, Claudia B.

    2015-01-01

    Sporisorium scitamineum is a biotrophic fungus responsible for the sugarcane smut, a worldwide spread disease. This study provides the complete sequence of individual chromosomes of S. scitamineum from telomere to telomere achieved by a combination of PacBio long reads and Illumina short reads sequence data, as well as a draft sequence of a second fungal strain. Comparative analysis to previous available sequences of another strain detected few polymorphisms among the three genomes. The novel complete sequence described herein allowed us to identify and annotate extended subtelomeric regions, repetitive elements and the mitochondrial DNA sequence. The genome comprises 19,979,571 bases, 6,677 genes encoding proteins, 111 tRNAs and 3 assembled copies of rDNA, out of our estimated number of copies as 130. Chromosomal reorganizations were detected when comparing to sequences of S. reilianum, the closest smut relative, potentially influenced by repeats of transposable elements. Repetitive elements may have also directed the linkage of the two mating-type loci. The fungal transcriptome profiling from in vitro and from interaction with sugarcane at two time points (early infection and whip emergence) revealed that 13.5% of the genes were differentially expressed in planta and particular to each developmental stage. Among them are plant cell wall degrading enzymes, proteases, lipases, chitin modification and lignin degradation enzymes, sugar transporters and transcriptional factors. The fungus also modulates transcription of genes related to surviving against reactive oxygen species and other toxic metabolites produced by the plant. Previously described effectors in smut/plant interactions were detected but some new candidates are proposed. Ten genomic islands harboring some of the candidate genes unique to S. scitamineum were expressed only in planta. RNAseq data was also used to reassure gene predictions. PMID:26065709

  13. Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes.

    PubMed

    Fredlake, Christopher P; Hert, Daniel G; Kan, Cheuk-Wai; Chiesl, Thomas N; Root, Brian E; Forster, Ryan E; Barron, Annelise E

    2008-01-15

    To realize the immense potential of large-scale genomic sequencing after the completion of the second human genome (Venter's), the costs for the complete sequencing of additional genomes must be dramatically reduced. Among the technologies being developed to reduce sequencing costs, microchip electrophoresis is the only new technology ready to produce the long reads most suitable for the de novo sequencing and assembly of large and complex genomes. Compared with the current paradigm of capillary electrophoresis, microchip systems promise to reduce sequencing costs dramatically by increasing throughput, reducing reagent consumption, and integrating the many steps of the sequencing pipeline onto a single platform. Although capillary-based systems require approximately 70 min to deliver approximately 650 bases of contiguous sequence, we report sequencing up to 600 bases in just 6.5 min by microchip electrophoresis with a unique polymer matrix/adsorbed polymer wall coating combination. This represents a two-thirds reduction in sequencing time over any previously published chip sequencing result, with comparable read length and sequence quality. We hypothesize that these ultrafast long reads on chips can be achieved because the combined polymer system engenders a recently discovered "hybrid" mechanism of DNA electromigration, in which DNA molecules alternate rapidly between repeating through the intact polymer network and disrupting network entanglements to drag polymers through the solution, similar to dsDNA dynamics we observe in single-molecule DNA imaging studies. Most importantly, these results reveal the surprisingly powerful ability of microchip electrophoresis to provide ultrafast Sanger sequencing, which will translate to increased system throughput and reduced costs.

  14. Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes

    PubMed Central

    Fredlake, Christopher P.; Hert, Daniel G.; Kan, Cheuk-Wai; Chiesl, Thomas N.; Root, Brian E.; Forster, Ryan E.; Barron, Annelise E.

    2008-01-01

    To realize the immense potential of large-scale genomic sequencing after the completion of the second human genome (Venter's), the costs for the complete sequencing of additional genomes must be dramatically reduced. Among the technologies being developed to reduce sequencing costs, microchip electrophoresis is the only new technology ready to produce the long reads most suitable for the de novo sequencing and assembly of large and complex genomes. Compared with the current paradigm of capillary electrophoresis, microchip systems promise to reduce sequencing costs dramatically by increasing throughput, reducing reagent consumption, and integrating the many steps of the sequencing pipeline onto a single platform. Although capillary-based systems require ≈70 min to deliver ≈650 bases of contiguous sequence, we report sequencing up to 600 bases in just 6.5 min by microchip electrophoresis with a unique polymer matrix/adsorbed polymer wall coating combination. This represents a two-thirds reduction in sequencing time over any previously published chip sequencing result, with comparable read length and sequence quality. We hypothesize that these ultrafast long reads on chips can be achieved because the combined polymer system engenders a recently discovered “hybrid” mechanism of DNA electromigration, in which DNA molecules alternate rapidly between reptating through the intact polymer network and disrupting network entanglements to drag polymers through the solution, similar to dsDNA dynamics we observe in single-molecule DNA imaging studies. Most importantly, these results reveal the surprisingly powerful ability of microchip electrophoresis to provide ultrafast Sanger sequencing, which will translate to increased system throughput and reduced costs. PMID:18184818

  15. Mitochondrial genomes reveal recombination in the presumed asexual Fusarium oxysporum species complex.

    PubMed

    Brankovics, Balázs; van Dam, Peter; Rep, Martijn; de Hoog, G Sybren; J van der Lee, Theo A; Waalwijk, Cees; van Diepeningen, Anne D

    2017-09-18

    The Fusarium oxysporum species complex (FOSC) contains several phylogenetic lineages. Phylogenetic studies identified two to three major clades within the FOSC. The mitochondrial sequences are highly informative phylogenetic markers, but have been mostly neglected due to technical difficulties. A total of 61 complete mitogenomes of FOSC strains were de novo assembled and annotated. Length variations and intron patterns support the separation of three phylogenetic species. The variable region of the mitogenome that is typical for the genus Fusarium shows two new variants in the FOSC. The variant typical for Fusarium is found in members of all three clades, while variant 2 is found in clades 2 and 3 and variant 3 only in clade 2. The extended set of loci analyzed using a new implementation of the genealogical concordance species recognition method support the identification of three phylogenetic species within the FOSC. Comparative analysis of the mitogenomes in the FOSC revealed ongoing mitochondrial recombination within, but not between phylogenetic species. The recombination indicates the presence of a parasexual cycle in F. oxysporum. The obstacles hindering the usage of the mitogenomes are resolved by using next generation sequencing and selective genome assemblers, such as GRAbB. Complete mitogenome sequences offer a stable basis and reference point for phylogenetic and population genetic studies.

  16. Mutation in a primate-conserved retrotransposon reveals a noncoding RNA as a mediator of infantile encephalopathy

    PubMed Central

    Cartault, François; Munier, Patrick; Benko, Edgar; Desguerre, Isabelle; Hanein, Sylvain; Boddaert, Nathalie; Bandiera, Simonetta; Vellayoudom, Jeanine; Krejbich-Trotot, Pascale; Bintner, Marc; Hoarau, Jean-Jacques; Girard, Muriel; Génin, Emmanuelle; de Lonlay, Pascale; Fourmaintraux, Alain; Naville, Magali; Rodriguez, Diana; Feingold, Josué; Renouil, Michel; Munnich, Arnold; Westhof, Eric; Fähling, Michael; Lyonnet, Stanislas; Henrion-Caude, Alexandra

    2012-01-01

    The human genome is densely populated with transposons and transposon-like repetitive elements. Although the impact of these transposons and elements on human genome evolution is recognized, the significance of subtle variations in their sequence remains mostly unexplored. Here we report homozygosity mapping of an infantile neurodegenerative disease locus in a genetic isolate. Complete DNA sequencing of the 400-kb linkage locus revealed a point mutation in a primate-specific retrotransposon that was transcribed as part of a unique noncoding RNA, which was expressed in the brain. In vitro knockdown of this RNA increased neuronal apoptosis, consistent with the inappropriate dosage of this RNA in vivo and with the phenotype. Moreover, structural analysis of the sequence revealed a small RNA-like hairpin that was consistent with the putative gain of a functional site when mutated. We show here that a mutation in a unique transposable element-containing RNA is associated with lethal encephalopathy, and we suggest that RNAs that harbor evolutionarily recent repetitive elements may play important roles in human brain development. PMID:22411793

  17. Comparative Genomics of the Balsaminaceae Sister Genera Hydrocera triflora and Impatiens pinfanensis

    PubMed Central

    Li, Zhi-Zhong; Saina, Josphat K.; Gichira, Andrew W.; Kyalo, Cornelius M.; Wang, Qing-Feng

    2018-01-01

    The family Balsaminaceae, which consists of the economically important genus Impatiens and the monotypic genus Hydrocera, lacks a reported or published complete chloroplast genome sequence. Therefore, chloroplast genome sequences of the two sister genera are significant to give insight into the phylogenetic position and understanding the evolution of the Balsaminaceae family among the Ericales. In this study, complete chloroplast (cp) genomes of Impatiens pinfanensis and Hydrocera triflora were characterized and assembled using a high-throughput sequencing method. The complete cp genomes were found to possess the typical quadripartite structure of land plants chloroplast genomes with double-stranded molecules of 154,189 bp (Impatiens pinfanensis) and 152,238 bp (Hydrocera triflora) in length. A total of 115 unique genes were identified in both genomes, of which 80 are protein-coding genes, 31 are distinct transfer RNA (tRNA) and four distinct ribosomal RNA (rRNA). Thirty codons, of which 29 had A/T ending codons, revealed relative synonymous codon usage values of >1, whereas those with G/C ending codons displayed values of <1. The simple sequence repeats comprise mostly the mononucleotide repeats A/T in all examined cp genomes. Phylogenetic analysis based on 51 common protein-coding genes indicated that the Balsaminaceae family formed a lineage with Ebenaceae together with all the other Ericales. PMID:29360746

  18. Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle

    PubMed Central

    Arrebola, Eva; Carrión, Víctor J.; Gutiérrez-Barranquero, José Antonio; Pérez-García, Alejandro; Ramos, Cayo; Cazorla, Francisco M.; de Vicente, Antonio

    2015-01-01

    The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In this study we report the complete sequence and annotation of P. syringae pv. syringae UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158 chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes. Bioinformatics analysis revealed the presence of genes potentially implicated in the virulence and epiphytic fitness of this strain. We identified several genetic features, which are absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango trees: the mangotoxin biosynthetic operon mbo, a gene cluster for cellulose production, two different type III and two type VI secretion systems, and a particular T3SS effector repertoire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences compared to wild-type during its interaction with host and non-host plants and worms. Here we report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to a woody plant host. Our data also shed light on the genetic factors that possibly determine the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further analysis on specific mechanisms that enable this strain to infect woody plants and for the functional analysis of host specificity in the P. syringae complex. PMID:26313942

  19. Biochemical and Genetic Characterization of Coagulin, a New Antilisterial Bacteriocin in the Pediocin Family of Bacteriocins, Produced by Bacillus coagulans I4

    PubMed Central

    Le Marrec, Claire; Hyronimus, Bertrand; Bressollier, Philippe; Verneuil, Bernard; Urdaci, Maria C.

    2000-01-01

    A plasmid-linked antimicrobial peptide, named coagulin, produced by Bacillus coagulans I4 has recently been reported (B. Hyronimus, C. Le Marrec and M. C. Urdaci, J. Appl. Microbiol. 85:42–50, 1998). In the present study, the complete, unambiguous primary amino acid sequence of the peptide was obtained by a combination of both N-terminal sequencing of purified peptide and the complete sequence deduced from the structural gene harbored by plasmid I4. Data revealed that this peptide of 44 residues has an amino acid sequence similar to that described for pediocins AcH and PA-1, produced by different Pediococcus acidilactici strains and 100% identical. Coagulin and pediocin differed only by a single amino acid at their C terminus. Analysis of the genetic determinants revealed the presence, on the pI4 DNA, of the entire 3.5-kb operon of four genes described for pediocin AcH and PA-1 production. No extended homology was observed between pSMB74 from P. acidilactici and pI4 when analyzing the regions upstream and downstream of the operon. An oppositely oriented gene immediately dowstream of the bacteriocin operon specifies a 474-amino-acid protein which shows homology to Mob-Pre (plasmid recombination enzyme) proteins encoded by several small plasmids extracted from gram-positive bacteria. This is the first report of a pediocin-like peptide appearing naturally in a non-lactic acid bacterium genus. PMID:11097892

  20. The complete chloroplast genome sequences of Lychnis wilfordii and Silene capitata and comparative analyses with other Caryophyllaceae genomes.

    PubMed

    Kang, Jong-Soo; Lee, Byoung Yoon; Kwak, Myounghai

    2017-01-01

    The complete chloroplast genomes of Lychnis wilfordii and Silene capitata were determined and compared with ten previously reported Caryophyllaceae chloroplast genomes. The chloroplast genome sequences of L. wilfordii and S. capitata contain 152,320 bp and 150,224 bp, respectively. The gene contents and orders among 12 Caryophyllaceae species are consistent, but several microstructural changes have occurred. Expansion of the inverted repeat (IR) regions at the large single copy (LSC)/IRb and small single copy (SSC)/IR boundaries led to partial or entire gene duplications. Additionally, rearrangements of the LSC region were caused by gene inversions and/or transpositions. The 18 kb inversions, which occurred three times in different lineages of tribe Sileneae, were thought to be facilitated by the intermolecular duplicated sequences. Sequence analyses of the L. wilfordii and S. capitata genomes revealed 39 and 43 repeats, respectively, including forward, palindromic, and reverse repeats. In addition, a total of 67 and 56 simple sequence repeats were discovered in the L. wilfordii and S. capitata chloroplast genomes, respectively. Finally, we constructed phylogenetic trees of the 12 Caryophyllaceae species and two Amaranthaceae species based on 73 protein-coding genes using both maximum parsimony and likelihood methods.

  1. Genomic variation in macrophage-cultured European porcine reproductive and respiratory syndrome virus Olot/91 revealed using ultra-deep next generation sequencing.

    PubMed

    Lu, Zen H; Brown, Alexander; Wilson, Alison D; Calvert, Jay G; Balasch, Monica; Fuentes-Utrilla, Pablo; Loecherbach, Julia; Turner, Frances; Talbot, Richard; Archibald, Alan L; Ait-Ali, Tahar

    2014-03-04

    Porcine Reproductive and Respiratory Syndrome (PRRS) is a disease of major economic impact worldwide. The etiologic agent of this disease is the PRRS virus (PRRSV). Increasing evidence suggest that microevolution within a coexisting quasispecies population can give rise to high sequence heterogeneity in PRRSV. We developed a pipeline based on the ultra-deep next generation sequencing approach to first construct the complete genome of a European PRRSV, strain Olot/9, cultured on macrophages and then capture the rare variants representative of the mixed quasispecies population. Olot/91 differs from the reference Lelystad strain by about 5% and a total of 88 variants, with frequencies as low as 1%, were detected in the mixed population. These variants included 16 non-synonymous variants concentrated in the genes encoding structural and nonstructural proteins; including Glycoprotein 2a and 5. Using an ultra-deep sequencing methodology, the complete genome of Olot/91 was constructed without any prior knowledge of the sequence. Rare variants that constitute minor fractions of the heterogeneous PRRSV population could successfully be detected to allow further exploration of microevolutionary events.

  2. Complete genome sequences of two novel European clade bovine foamy viruses from Germany and Poland.

    PubMed

    Hechler, Torsten; Materniak, Magdalena; Kehl, Timo; Kuzmak, Jacek; Löchelt, Martin

    2012-10-01

    Bovine foamy virus (BFV), or bovine spumaretrovirus, is an infectious agent of cattle with no obvious disease association but high prevalence in its host. Here, we report two complete BFV sequences, BFV-Riems, isolated in 1978 in East Germany, and BFV100, isolated in 2005 in Poland. Both new BFV isolates share the overall genetic makeup of other foamy viruses (FV). Although isolated almost 25 years apart and propagated in either bovine (BFV-Riems) or nonbovine (BFV100) cells, both viruses are highly related, forming the European BFV clade. Despite clear differences, BFV-Riems and BFV100 are still very similar to BFV isolates from China and the United States, comprising the non-European BFV clade. The genomic sequences presented here confirm the concept of high sequence conservation across most of the FV genome. Analyses of cell culture-derived genomes reveal that proviral DNA may specifically lack introns in the env-bel coding region. The spacing of the splice sites in this region suggests that BFV has developed a novel mode to express a secretory but nonfunctional Env protein.

  3. Complete Genome Sequences of Two Novel European Clade Bovine Foamy Viruses from Germany and Poland

    PubMed Central

    Hechler, Torsten; Materniak, Magdalena; Kehl, Timo; Kuzmak, Jacek

    2012-01-01

    Bovine foamy virus (BFV), or bovine spumaretrovirus, is an infectious agent of cattle with no obvious disease association but high prevalence in its host. Here, we report two complete BFV sequences, BFV-Riems, isolated in 1978 in East Germany, and BFV100, isolated in 2005 in Poland. Both new BFV isolates share the overall genetic makeup of other foamy viruses (FV). Although isolated almost 25 years apart and propagated in either bovine (BFV-Riems) or nonbovine (BFV100) cells, both viruses are highly related, forming the European BFV clade. Despite clear differences, BFV-Riems and BFV100 are still very similar to BFV isolates from China and the United States, comprising the non-European BFV clade. The genomic sequences presented here confirm the concept of high sequence conservation across most of the FV genome. Analyses of cell culture-derived genomes reveal that proviral DNA may specifically lack introns in the env-bel coding region. The spacing of the splice sites in this region suggests that BFV has developed a novel mode to express a secretory but nonfunctional Env protein. PMID:22966195

  4. Molecular analysis of Toxoplasma gondii Surface Antigen 1 (SAG1) gene cloned from Toxoplasma gondii DNA isolated from Javanese acute toxoplasmosis

    NASA Astrophysics Data System (ADS)

    Haryati, Sri; Agung Prasetyo, Afiono; Sari, Yulia; Dharmawan, Ruben

    2018-05-01

    Toxoplasma gondii Surface Antigen 1 (SAG1) is often used as a diagnostic tool due to its immunodominant-specific as antigen. However, data of the Toxoplasma gondii SAG1 protein from Indonesian isolate is limited. To study the protein, genomic DNA was isolated from a Javanese acute toxoplasmosis blood samples patient. A complete coding sequence of Toxoplasma gondii SAG1 was cloned and inserted into an Escherichia coli expression plasmid and sequenced. The sequencing results were subjected to bioinformatics analysis. The Toxoplasma gondii SAG1 complete coding sequences were successfully cloned. Physicochemical analysis revealed the 336 aa of SAG1 had 34.7 kDa of weight. The isoelectric point and aliphatic index were 8.4 and 78.4, respectively. The N-terminal methionine half-life in Escherichia coli was more than 10 hours. The antigenicity, secondary structure, and identification of the HLA binding motifs also had been discussed. The results of this study would contribute information about Toxoplasma gondii SAG1 and benefits for further works willing to develop diagnostic and therapeutic strategies against the parasite.

  5. Comprehensive phylogenetic analysis of bacterial reverse transcriptases.

    PubMed

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.

  6. Comprehensive Phylogenetic Analysis of Bacterial Reverse Transcriptases

    PubMed Central

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology. PMID:25423096

  7. Complete genome sequence of lymphocystis disease virus isolated from China.

    PubMed

    Zhang, Qi-Ya; Xiao, Feng; Xie, Jian; Li, Zheng-Qiu; Gui, Jian-Fang

    2004-07-01

    Lymphocystis diseases in fish throughout the world have been extensively described. Here we report the complete genome sequence of lymphocystis disease virus isolated in China (LCDV-C), an LCDV isolated from cultured flounder (Paralichthys olivaceus) with lymphocystis disease in China. The LCDV-C genome is 186,250 bp, with a base composition of 27.25% G+C. Computer-assisted analysis revealed 240 potential open reading frames (ORFs) and 176 nonoverlapping putative viral genes, which encode polypeptides ranging from 40 to 1,193 amino acids. The percent coding density is 67%, and the average length of each ORF is 702 bp. A search of the GenBank database using the 176 individual putative genes revealed 103 homologues to the corresponding ORFs of LCDV-1 and 73 potential genes that were not found in LCDV-1 and other iridoviruses. Among the 73 genes, there are 8 genes that contain conserved domains of cellular genes and 65 novel genes that do not show any significant homology with the sequences in public databases. Although a certain extent of similarity between putative gene products of LCDV-C and corresponding proteins of LCDV-1 was revealed, no colinearity was detected when their ORF arrangements and coding strategies were compared to each other, suggesting that a high degree of genetic rearrangements between them has occurred. And a large number of tandem and overlapping repeated sequences were observed in the LCDV-C genome. The deduced amino acid sequence of the major capsid protein (MCP) presents the highest identity to those of LCDV-1 and other iridoviruses among the LCDV-C gene products. Furthermore, a phylogenetic tree was constructed based on the multiple alignments of nine MCP amino acid sequences. Interestingly, LCDV-C and LCDV-1 were clustered together, but their amino acid identity is much less than that in other clusters. The unexpected levels of divergence between their genomes in size, gene organization, and gene product identity suggest that LCDV-C and LCDV-1 shouldn't belong to a same species and that LCDV-C should be considered a species different from LCDV-1.

  8. Complete Genome Sequence of Lymphocystis Disease Virus Isolated from China

    PubMed Central

    Zhang, Qi-Ya; Xiao, Feng; Xie, Jian; Li, Zheng-Qiu; Gui, Jian-Fang

    2004-01-01

    Lymphocystis diseases in fish throughout the world have been extensively described. Here we report the complete genome sequence of lymphocystis disease virus isolated in China (LCDV-C), an LCDV isolated from cultured flounder (Paralichthys olivaceus) with lymphocystis disease in China. The LCDV-C genome is 186,250 bp, with a base composition of 27.25% G+C. Computer-assisted analysis revealed 240 potential open reading frames (ORFs) and 176 nonoverlapping putative viral genes, which encode polypeptides ranging from 40 to 1,193 amino acids. The percent coding density is 67%, and the average length of each ORF is 702 bp. A search of the GenBank database using the 176 individual putative genes revealed 103 homologues to the corresponding ORFs of LCDV-1 and 73 potential genes that were not found in LCDV-1 and other iridoviruses. Among the 73 genes, there are 8 genes that contain conserved domains of cellular genes and 65 novel genes that do not show any significant homology with the sequences in public databases. Although a certain extent of similarity between putative gene products of LCDV-C and corresponding proteins of LCDV-1 was revealed, no colinearity was detected when their ORF arrangements and coding strategies were compared to each other, suggesting that a high degree of genetic rearrangements between them has occurred. And a large number of tandem and overlapping repeated sequences were observed in the LCDV-C genome. The deduced amino acid sequence of the major capsid protein (MCP) presents the highest identity to those of LCDV-1 and other iridoviruses among the LCDV-C gene products. Furthermore, a phylogenetic tree was constructed based on the multiple alignments of nine MCP amino acid sequences. Interestingly, LCDV-C and LCDV-1 were clustered together, but their amino acid identity is much less than that in other clusters. The unexpected levels of divergence between their genomes in size, gene organization, and gene product identity suggest that LCDV-C and LCDV-1 shouldn't belong to a same species and that LCDV-C should be considered a species different from LCDV-1. PMID:15194775

  9. Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome.

    PubMed

    Saha, Surya; Hunter, Wayne B; Reese, Justin; Morgan, J Kent; Marutani-Hert, Mizuri; Huang, Hong; Lindeberg, Magdalen

    2012-01-01

    Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China.

  10. Survey of Endosymbionts in the Diaphorina citri Metagenome and Assembly of a Wolbachia wDi Draft Genome

    PubMed Central

    Saha, Surya; Hunter, Wayne B.; Reese, Justin; Morgan, J. Kent; Marutani-Hert, Mizuri; Huang, Hong; Lindeberg, Magdalen

    2012-01-01

    Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China. PMID:23166822

  11. Draft sequencing and comparative genomics of Xylella fastidiosa strains reveal novel biological insights.

    PubMed

    Bhattacharyya, Anamitra; Stilwagen, Stephanie; Reznik, Gary; Feil, Helene; Feil, William S; Anderson, Iain; Bernal, Axel; D'Souza, Mark; Ivanova, Natalia; Kapatral, Vinayak; Larsen, Niels; Los, Tamara; Lykidis, Athanasios; Selkov, Eugene; Walunas, Theresa L; Purcell, Alexander; Edwards, Rob A; Hawkins, Trevor; Haselkorn, Robert; Overbeek, Ross; Kyrpides, Nikos C; Predki, Paul F

    2002-10-01

    Draft sequencing is a rapid and efficient method for determining the near-complete sequence of microbial genomes. Here we report a comparative analysis of one complete and two draft genome sequences of the phytopathogenic bacterium, Xylella fastidiosa, which causes serious disease in plants, including citrus, almond, and oleander. We present highlights of an in silico analysis based on a comparison of reconstructions of core biological subsystems. Cellular pathway reconstructions have been used to identify a small number of genes, which are likely to reside within the draft genomes but are not captured in the draft assembly. These represented only a small fraction of all genes and were predominantly large and small ribosomal subunit protein components. By using this approach, some of the inherent limitations of draft sequence can be significantly reduced. Despite the incomplete nature of the draft genomes, it is possible to identify several phage-related genes, which appear to be absent from the draft genomes and not the result of insufficient sequence sampling. This region may therefore identify potential host-specific functions. Based on this first functional reconstruction of a phytopathogenic microbe, we spotlight an unusual respiration machinery as a potential target for biological control. We also predicted and developed a new defined growth medium for Xylella.

  12. Complete genome sequence of a Chinese isolate of pepper vein yellows virus and evolutionary analysis based on the CP, MP and RdRp coding regions.

    PubMed

    Liu, Maoyan; Liu, Xiangning; Li, Xun; Zhang, Deyong; Dai, Liangyin; Tang, Qianjun

    2016-03-01

    The genome sequence of pepper vein yellows virus (PeVYV) (PeVYV-HN, accession number KP326573), isolated from pepper plants (Capsicum annuum L.) grown at the Hunan Vegetables Institute (Changsha, Hunan, China), was determined by deep sequencing of small RNAs. The PeVYV-HN genome consists of 6244 nucleotides, contains six open reading frames (ORFs), and is similar to that of an isolate (AB594828) from Japan. Its genomic organization is similar to that of members of the genus Polerovirus. Sequence analysis revealed that PeVYV-HN shared 92% sequence identity with the Japanese PeVYV genome at both the nucleotide and amino acid levels. Evolutionary analysis based on the coat protein (CP), movement protein (MP), and RNA-dependent RNA polymerase (RdRP) showed that PeVYV could be divided into two major lineages corresponding to their geographical origins. The Asian isolates have a higher population expansion frequency than the African isolates. Negative selection and genetic drift (founder effect) were found to be the potential drivers of the molecular evolution of PeVYV. Moreover, recombination was not the distinct cause of PeVYV evolution. This is the first report of a complete genomic sequence of PeVYV in China.

  13. Mitochondrial genome sequences and comparative genomics ofPhytophthora ramorum and P. sojae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Frank N.; Douda, Bensasson; Tyler, Brett M.

    The complete sequences of the mitochondrial genomes of theoomycetes of Phytophthora ramorum and P. sojae were determined during thecourse of their complete nuclear genome sequencing (Tyler, et al. 2006).Both are circular, with sizes of 39,314 bp for P. ramorum and 42,975 bpfor P. sojae. Each contains a total of 37 identifiable protein-encodinggenes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively)specifying19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12for P. sojae) which are potentially additional functional genes.Non-coding regions comprise approximately 11.5 percent and 18.4 percentof the genomes of P. ramorum and P. sojae,more » respectively. Relative to P.sojae, there is an inverted repeat of 1,150 bp in P. ramorum thatincludes an unassigned unique ORF, a tRNA gene, and adjacent non-codingsequences, but otherwise the gene order in both species is identical.Comparisons of these genomes with published sequences of the P. infestansmitochondrial genome reveals a number of similarities, but the gene orderin P. infestans differs in two adjacent locations due to inversions.Sequence alignments of the three genomes indicated sequence conservationranging from 75 to 85 percent and that specific regions were morevariable than others.« less

  14. Complete mitochondrial DNA sequence of oyster Crassostrea hongkongensis-a case of "Tandem duplication-random loss" for genome rearrangement in Crassostrea?

    PubMed Central

    Yu, Ziniu; Wei, Zhengpeng; Kong, Xiaoyu; Shi, Wei

    2008-01-01

    Background Mitochondrial DNA sequences are extensively used as genetic markers not only for studies of population or ecological genetics, but also for phylogenetic and evolutionary analyses. Complete mt-sequences can reveal information about gene order and its variation, as well as gene and genome evolution when sequences from multiple phyla are compared. Mitochondrial gene order is highly variable among mollusks, with bivalves exhibiting the most variability. Of the 41 complete mt genomes sequenced so far, 12 are from bivalves. We determined, in the current study, the complete mitochondrial DNA sequence of Crassostrea hongkongensis. We present here an analysis of features of its gene content and genome organization in comparison with two other Crassostrea species to assess the variation within bivalves and among main groups of mollusks. Results The complete mitochondrial genome of C. hongkongensis was determined using long PCR and a primer walking sequencing strategy with genus-specific primers. The genome is 16,475 bp in length and contains 12 protein-coding genes (the atp8 gene is missing, as in most bivalves), 22 transfer tRNA genes (including a suppressor tRNA gene), and 2 ribosomal RNA genes, all of which appear to be transcribed from the same strand. A striking finding of this study is that a DNA segment containing four tRNA genes (trnk1, trnC, trnQ1 and trnN) and two duplicated or split rRNA gene (rrnL5' and rrnS) are absent from the genome, when compared with that of two other extant Crassostrea species, which is very likely a consequence of loss of a single genomic region present in ancestor of C. hongkongensis. It indicates this region seem to be a "hot spot" of genomic rearrangements over the Crassostrea mt-genomes. The arrangement of protein-coding genes in C. hongkongensis is identical to that of Crassostrea gigas and Crassostrea virginica, but higher amino acid sequence identities are shared between C. hongkongensis and C. gigas than between other pairs. There exists significant codon bias, favoring codons ending in A or T and against those ending with C. Pair analysis of genome rearrangements showed that the rearrangement distance is great between C. gigas-C. hongkongensis and C. virginica, indicating a high degree of rearrangements within Crassostrea. The determination of complete mt-genome of C. hongkongensis has yielded useful insight into features of gene order, variation, and evolution of Crassostrea and bivalve mt-genomes. Conclusion The mt-genome of C. hongkongensis shares some similarity with, and interesting differences to, other Crassostrea species and bivalves. The absence of trnC and trnN genes and duplicated or split rRNA genes from the C. hongkongensis genome is a completely novel feature not previously reported in Crassostrea species. The phenomenon is likely due to the loss of a segment that is present in other Crassostrea species and was present in ancestor of C. hongkongensis, thus a case of "tandem duplication-random loss (TDRL)". The mt-genome and new feature presented here reveal and underline the high level variation of gene order and gene content in Crassostrea and bivalves, inspiring more research to gain understanding to mechanisms underlying gene and genome evolution in bivalves and mollusks. PMID:18847502

  15. Plastome Sequences of Lygodium japonicum and Marsilea crenata Reveal the Genome Organization Transformation from Basal Ferns to Core Leptosporangiates

    PubMed Central

    Gao, Lei; Wang, Bo; Wang, Zhi-Wei; Zhou, Yuan; Su, Ying-Juan; Wang, Ting

    2013-01-01

    Previous studies have shown that core leptosporangiates, the most species-rich group of extant ferns (monilophytes), have a distinct plastid genome (plastome) organization pattern from basal fern lineages. However, the details of genome structure transformation from ancestral ferns to core leptosporangiates remain unclear because of limited plastome data available. Here, we have determined the complete chloroplast genome sequences of Lygodium japonicum (Lygodiaceae), a member of schizaeoid ferns (Schizaeales), and Marsilea crenata (Marsileaceae), a representative of heterosporous ferns (Salviniales). The two species represent the sister and the basal lineages of core leptosporangiates, respectively, for which the plastome sequences are currently unavailable. Comparative genomic analysis of all sequenced fern plastomes reveals that the gene order of L. japonicum plastome occupies an intermediate position between that of basal ferns and core leptosporangiates. The two exons of the fern ndhB gene have a unique pattern of intragenic copy number variances. Specifically, the substitution rate heterogeneity between the two exons is congruent with their copy number changes, confirming the constraint role that inverted repeats may play on the substitution rate of chloroplast gene sequences. PMID:23821521

  16. Targeted sequencing for high-resolution evolutionary analyses following genome duplication in salmonid fish: Proof of concept for key components of the insulin-like growth factor axis.

    PubMed

    Lappin, Fiona M; Shaw, Rebecca L; Macqueen, Daniel J

    2016-12-01

    High-throughput sequencing has revolutionised comparative and evolutionary genome biology. It has now become relatively commonplace to generate multiple genomes and/or transcriptomes to characterize the evolution of large taxonomic groups of interest. Nevertheless, such efforts may be unsuited to some research questions or remain beyond the scope of some research groups. Here we show that targeted high-throughput sequencing offers a viable alternative to study genome evolution across a vertebrate family of great scientific interest. Specifically, we exploited sequence capture and Illumina sequencing to characterize the evolution of key components from the insulin-like growth (IGF) signalling axis of salmonid fish at unprecedented phylogenetic resolution. The IGF axis represents a central governor of vertebrate growth and its core components were expanded by whole genome duplication in the salmonid ancestor ~95Ma. Using RNA baits synthesised to genes encoding the complete family of IGF binding proteins (IGFBP) and an IGF hormone (IGF2), we captured, sequenced and assembled orthologous and paralogous exons from species representing all ten salmonid genera. This approach generated 299 novel sequences, most as complete or near-complete protein-coding sequences. Phylogenetic analyses confirmed congruent evolutionary histories for all nineteen recognized salmonid IGFBP family members and identified novel salmonid-specific IGF2 paralogues. Moreover, we reconstructed the evolution of duplicated IGF axis paralogues across a replete salmonid phylogeny, revealing complex historic selection regimes - both ancestral to salmonids and lineage-restricted - that frequently involved asymmetric paralogue divergence under positive and/or relaxed purifying selection. Our findings add to an emerging literature highlighting diverse applications for targeted sequencing in comparative-evolutionary genomics. We also set out a viable approach to obtain large sets of nuclear genes for any member of the salmonid family, which should enable insights into the evolutionary role of whole genome duplication before additional nuclear genome sequences become available. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Molecular approach to annelid regeneration: cDNA subtraction cloning reveals various novel genes that are upregulated during the large-scale regeneration of the oligochaete, Enchytraeus japonensis.

    PubMed

    Myohara, Maroko; Niva, Cintia Carla; Lee, Jae Min

    2006-08-01

    To identify genes specifically activated during annelid regeneration, suppression subtractive hybridization was performed with cDNAs from regenerating and intact Enchytraeus japonensis, a terrestrial oligochaete that can regenerate a complete organism from small body fragments within 4-5 days. Filter array screening subsequently revealed that about 38% of the forward-subtracted cDNA clones contained genes that were upregulated during regeneration. Two hundred seventy-nine of these clones were sequenced and found to contain 165 different sequences (79 known and 86 unknown). Nine clones were fully sequenced and four of these sequences were matched to known genes for glutamine synthetase, glucosidase 1, retinal protein 4, and phosphoribosylaminoimidazole carboxylase, respectively. The remaining five clones encoded an unknown open-reading frame. The expression levels of these genes were highest during blastema formation. Our present results, therefore, demonstrate the great potential of annelids as a new experimental subject for the exploration of unknown genes that play critical roles in animal regeneration.

  18. Genotypes and subgenotypes of hepatitis B virus circulating in an endemic area in Peru.

    PubMed

    Ramírez-Soto, Max Carlos; Bracho, Maria Alma; González-Candelas, Fernando; Huichi-Atamari, Milagros

    2018-01-01

    Although hepatitis B virus (HBV) infection is still endemic in Abancay, Peru, two decades after vaccination against hepatitis B started in the area, little is known about the diversity and circulation of genotypes and subgenotypes of the virus. To identify the genotypes and subtypes of HBV circulating in Abancay, complete genome sequences of 11 treatment-naive HBV-infected patients were obtained, and phylogenetic analysis was conducted with these and additional sequences from GenBank. Genotyping revealed the presence of genotype F in all the samples from Abancay. Subgenotype F1b was dominant and only one isolate belonged to subgenotype F4, which represents the first description of this subgenotype in Peru. Phylogenetic analysis revealed that most subgenotype F1b isolates from Peru clustered in a subgroup along with two sequences from Argentina, whereas two clusters with two HBV/F1b sequences each were indicative of recent epidemiological linkage, but only one could be verified by independent data. These results suggest that the HBV subgenotype F1b seems to be the predominant subgenotype in Abancay, Peru.

  19. Complete Genome Sequence of Biofilm-Forming Strain Staphylococcus haemolyticus S167.

    PubMed

    Hong, Jisoo; Kim, Jonguk; Kim, Byung-Yong; Park, Jin-Woo; Ryu, Jae-Gee; Roh, Eunjung

    2016-06-16

    Staphylococcus haemolyticus S167 has the ability to produce biofilms in large quantities. Genomic analyses revealed information on the biofilm-related genes of S. haemolyticus S167. Detailed studies of biofilm formation at the molecular level could provide a foundation for biofilm control research. Copyright © 2016 Hong et al.

  20. New Hepatitis E Virus Genotype in Camels, the Middle East

    PubMed Central

    Lau, Susanna K.P.; Teng, Jade L.L.; Tsang, Alan K. L.; Joseph, Marina; Wong, Emily Y.M.; Tang, Ying; Sivakumar, Saritha; Xie, Jun; Bai, Ru; Wernery, Renate; Wernery, Ulrich; Yuen, Kwok-Yung

    2014-01-01

    In a molecular epidemiology study of hepatitis E virus (HEV) in dromedaries in Dubai, United Arab Emirates, HEV was detected in fecal samples from 3 camels. Complete genome sequencing of 2 strains showed >20% overall nucleotide difference to known HEVs. Comparative genomic and phylogenetic analyses revealed a previously unrecognized HEV genotype. PMID:24856611

  1. What can availability of the Phytophthora ramorum genome do for us?

    Treesearch

    Niklaus J. Grünwald

    2008-01-01

    The complete genomes of Phytophthora ramorum and P. sojae have recently been sequenced. Of the 19,027 predicted genes in P. sojae and 15,743 gene models in P. ramorum, 9,768 are predicted to have the same function. These two genomes both revealed a rapid expansion and diversification of many...

  2. Evolution and homoplasy at the Bem6 microsatellite locus in three sweetpotato whitefly (Bemisia tabaci) cryptic species

    USDA-ARS?s Scientific Manuscript database

    The evolution of individual microsatellite loci is often complex and homoplasy is common but often goes undetected. Sequencing alleles at a microsatellite locus can provide a more complete picture of the common evolutionary mechanisms occurring at that locus and can reveal cases of homoplasy. Within...

  3. Evolution and homoplasy at the bem6 microsatellite locus in three Bemisia tabaci cryptic species

    USDA-ARS?s Scientific Manuscript database

    The evolution of individual microsatellite loci is often complex and homoplasy is common but often goes undetected. Sequencing alleles at a microsatellite locus can provide a more complete picture of the common evolutionary mechanisms occurring at that locus and can reveal cases of homoplasy. Within...

  4. Amino acid sequences of ribosomal proteins S11 from Bacillus stearothermophilus and S19 from Halobacterium marismortui. Comparison of the ribosomal protein S11 family.

    PubMed

    Kimura, M; Kimura, J; Hatakeyama, T

    1988-11-21

    The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45-49%) than to the eubacterial counterparts (35%).

  5. Linear and Nonlinear Statistical Characterization of DNA

    NASA Astrophysics Data System (ADS)

    Norio Oiwa, Nestor; Goldman, Carla; Glazier, James

    2002-03-01

    We find spatial order in the distribution of protein-coding (including RNAs) and control segments of GenBank genomic sequences, irrespective of ATCG content. This is achieved by correlations, histograms, fractal dimensions and singularity spectra. Estimates of these quantities in complete nuclear genome indicate that coding sequences are long-range correlated and their disposition are self-similar (multifractal) for eukaryotes. These characteristics are absent in prokaryotes, where there are few noncoding sequences, suggesting the `junk' DNA play a relevant role to the genome structure and function. Concerning the genetic message of ATCG sequences, we build a random walk (Levy flight), using DNA symmetry arguments, where we associate A, T, C and G as left, right, down and up steps, respectively. Nonlinear analysis of mitochondrial DNA walks reveal multifractal pattern based on palindromic sequences, which fold in hairpins and loops.

  6. Complete genome sequencing and evolutionary phylogeography analysis of Indian isolates of Dengue virus type 1.

    PubMed

    Dash, Paban Kumar; Sharma, Shashi; Soni, Manisha; Agarwal, Ankita; Sahni, Ajay Kumar; Parida, Manmohan

    2015-01-02

    Dengue is now hyper-endemic in most parts of south and southeast Asia including India. The northern India particularly national capital New Delhi witnessed major Dengue outbreaks with Dengue virus type 1 (DENV-1) as the dominant serotype since last five years. This study was initiated to decipher the complete genome information of recently circulating DENV-1 (2009-2011) along with the prototype Indian DENV-1, isolated in 1956. Further extensive ML phylogenetic and Bayesian phylogeography analysis was carried out to investigate the evolution of this virus and understand its spatiotemporal diffusion across the globe. The complete genome analysis revealed deletion of a unique 21-nucleotide stretch in the 3' un-translated region of recent Indian DENV-1. The north Indian DENV-1 revealed up to 5.2% nucleotide sequence difference compared to recent isolates from southern India. Selection pressure analysis revealed positive selection in few amino acid sites of both structural and non-structural proteins. The molecular phylogeny classified the Indian DENV-1 into genotype III, which is also known as cosmopolitan genotype. The northern and southern Indian DENV-1 were grouped into distinct clades. The molecular clock analysis estimated a mean evolutionary rate of 7.08×10(-4) substitutions/site/year for cosmopolitan genotype. The phylogeography analysis revealed that the cosmopolitan genotype DENV-1 originated ∼1938 in India and subsequently spread globally. The diffusion of virus from India to Caribbean and South America was confirmed through SPREAD analysis. This study also confirmed the temporal displacement of different clades of DENV-1 in India over last five decades. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Complete mitochondrial genomes of eleven extinct or possibly extinct bird species.

    PubMed

    Anmarkrud, Jarl A; Lifjeld, Jan T

    2017-03-01

    Natural history museum collections represent a vast source of ancient and historical DNA samples from extinct taxa that can be utilized by high-throughput sequencing tools to reveal novel genetic and phylogenetic information about them. Here, we report on the successful sequencing of complete mitochondrial genome sequences (mitogenomes) from eleven extinct bird species, using de novo assembly of short sequences derived from toepad samples of degraded DNA from museum specimens. For two species (the Passenger Pigeon Ectopistes migratorius and the South Island Piopio Turnagra capensis), whole mitogenomes were already available from recent studies, whereas for five others (the Great Auk Pinguinis impennis, the Imperial Woodpecker Campehilus imperialis, the Huia Heteralocha acutirostris, the Kauai Oo Moho braccathus and the South Island Kokako Callaeas cinereus), there were partial mitochondrial sequences available for comparison. For all seven species, we found sequence similarities of >98%. For the remaining four species (the Kamao Myadestes myadestinus, the Paradise Parrot Psephotellus pulcherrimus, the Ou Psittirostra psittacea and the Lesser Akialoa Akialoa obscura), there was no sequence information available for comparison, so we conducted blast searches and phylogenetic analyses to determine their phylogenetic positions and identify their closest extant relatives. These mitogenomes will be valuable for future analyses of avian phylogenetics and illustrate the importance of museum collections as repositories for genomics resources. © 2016 John Wiley & Sons Ltd.

  8. Complete Chloroplast Genome Sequences of Important Oilseed Crop Sesamum indicum L

    PubMed Central

    Yi, Dong-Keun; Kim, Ki-Joong

    2012-01-01

    Sesamum indicum is an important crop plant species for yielding oil. The complete chloroplast (cp) genome of S. indicum (GenBank acc no. JN637766) is 153,324 bp in length, and has a pair of inverted repeat (IR) regions consisting of 25,141 bp each. The lengths of the large single copy (LSC) and the small single copy (SSC) regions are 85,170 bp and 17,872 bp, respectively. Comparative cp DNA sequence analyses of S. indicum with other cp genomes reveal that the genome structure, gene order, gene and intron contents, AT contents, codon usage, and transcription units are similar to the typical angiosperm cp genomes. Nucleotide diversity of the IR region between Sesamum and three other cp genomes is much lower than that of the LSC and SSC regions in both the coding region and noncoding region. As a summary, the regional constraints strongly affect the sequence evolution of the cp genomes, while the functional constraints weakly affect the sequence evolution of cp genomes. Five short inversions associated with short palindromic sequences that form step-loop structures were observed in the chloroplast genome of S. indicum. Twenty-eight different simple sequence repeat loci have been detected in the chloroplast genome of S. indicum. Almost all of the SSR loci were composed of A or T, so this may also contribute to the A-T richness of the cp genome of S. indicum. Seven large repeated loci in the chloroplast genome of S. indicum were also identified and these loci are useful to developing S. indicum-specific cp genome vectors. The complete cp DNA sequences of S. indicum reported in this paper are prerequisite to modifying this important oilseed crop by cp genetic engineering techniques. PMID:22606240

  9. Complete genome sequence of a novel H9N2 subtype influenza virus FJG9 strain in China reveals a natural reassortant event.

    PubMed

    Xie, Qingmei; Yan, Zhuanqiang; Ji, Jun; Zhang, Huanmin; Liu, Jun; Sun, Yue; Li, Guangwei; Chen, Feng; Xue, Chunyi; Ma, Jingyun; Bee, Yingzuo

    2012-09-01

    A/chicken/FJ/G9/09 (FJ/G9) is an H9N2 subtype avian influenza virus (H9N2 AIV) strain causing high morbidity that was isolated from broilers in Fujian Province of China in 2009. FJ/G9 has been used as the vaccine strain against H9N2 AIV infection in Fujian Province of China. Here, we report the complete genome sequence of FJ/G9 with natural six-way reassortment, which is the most complex genotype strain in China and even in the world so far. The present findings will aid in understanding the complexity and diversity of H9N2 subtype avian influenza virus.

  10. The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion.

    PubMed

    Ni, Lianghong; Zhao, Zhili; Xu, Hongxi; Chen, Shilin; Dorje, Gaawe

    2016-02-15

    Endemic to the Sino-Himalayan subregion, the medicinal alpine plant Gentiana straminea is a threatened species. The genetic and molecular data about it is deficient. Here we report the complete chloroplast (cp) genome sequence of G. straminea, as the first sequenced member of the family Gentianaceae. The cp genome is 148,991bp in length, including a large single copy (LSC) region of 81,240bp, a small single copy (SSC) region of 17,085bp and a pair of inverted repeats (IRs) of 25,333bp. It contains 112 unique genes, including 78 protein-coding genes, 30 tRNAs and 4 rRNAs. The rps16 gene lacks exon2 between trnK-UUU and trnQ-UUG, which is the first rps16 pseudogene found in the nonparasitic plants of Asterids clade. Sequence analysis revealed the presence of 13 forward repeats, 13 palindrome repeats and 39 simple sequence repeats (SSRs). An entire cp genome comparison study of G. straminea and four other species in Gentianales was carried out. Phylogenetic analyses using maximum likelihood (ML) and maximum parsimony (MP) were performed based on 69 protein-coding genes from 36 species of Asterids. The results strongly supported the position of Gentianaceae as one member of the order Gentianales. The complete chloroplast genome sequence will provide intragenic information for its conservation and contribute to research on the genetic and phylogenetic analyses of Gentianales and Asterids. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Diversity in VP3, NSP3, and NSP4 of rotavirus B detected from Japanese cattle.

    PubMed

    Hayashi-Miyamoto, Michiko; Murakami, Toshiaki; Minami-Fukuda, Fujiko; Tsuchiaka, Shinobu; Kishimoto, Mai; Sano, Kaori; Naoi, Yuki; Asano, Keigo; Ichimaru, Toru; Haga, Kei; Omatsu, Tsutomu; Katayama, Yukie; Oba, Mami; Aoki, Hiroshi; Shirai, Junsuke; Ishida, Motohiko; Katayama, Kazuhiko; Mizutani, Tetsuya; Nagai, Makoto

    2017-04-01

    Bovine rotavirus B (RVB) is an etiological agent of diarrhea mostly in adult cattle. Currently, a few sequences of viral protein (VP)1, 2, 4, 6, and 7 and nonstructural protein (NSP)1, 2, and 5 of bovine RVB are available in the DDBJ/EMBL/GenBank databases, and none have been reported for VP3, NSP3, and NSP4. In order to fill this gap in the genetic characterization of bovine RVB strains, we used a metagenomics approach and sequenced and analyzed the complete coding sequences (CDS) of VP3, NSP3, and NSP4 genes, as well as the partial or complete CDS of other genes of RVBs detected from Japanese cattle. VP3, NSP3, and NSP4 of bovine RVBs shared low nucleotide sequence identities (63.3-64.9% for VP3, 65.9-68.2% for NSP3, and 52.6-56.2% for NSP4) with those of murine, human, and porcine RVBs, suggesting that bovine RVBs belong to a novel genotype. Furthermore, significantly low amino acid sequence identities were observed for NSP4 (36.1-39.3%) between bovine RVBs and the RVBs of other species. In contrast, hydrophobic plot analysis of NSP4 revealed profiles similar to those of RVBs of other species and rotavirus A (RVA) strains. Phylogenetic analyses of all gene segments revealed that bovine RVB strains formed a cluster that branched distantly from other RVBs. These results suggest that bovine RVBs have evolved independently from other RVBs but in a similar manner to other rotaviruses. These findings provide insights into the evolution and diversity of RVB strains. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. FRAGS: estimation of coding sequence substitution rates from fragmentary data

    PubMed Central

    Swart, Estienne C; Hide, Winston A; Seoighe, Cathal

    2004-01-01

    Background Rates of substitution in protein-coding sequences can provide important insights into evolutionary processes that are of biomedical and theoretical interest. Increased availability of coding sequence data has enabled researchers to estimate more accurately the coding sequence divergence of pairs of organisms. However the use of different data sources, alignment protocols and methods to estimate substitution rates leads to widely varying estimates of key parameters that define the coding sequence divergence of orthologous genes. Although complete genome sequence data are not available for all organisms, fragmentary sequence data can provide accurate estimates of substitution rates provided that an appropriate and consistent methodology is used and that differences in the estimates obtainable from different data sources are taken into account. Results We have developed FRAGS, an application framework that uses existing, freely available software components to construct in-frame alignments and estimate coding substitution rates from fragmentary sequence data. Coding sequence substitution estimates for human and chimpanzee sequences, generated by FRAGS, reveal that methodological differences can give rise to significantly different estimates of important substitution parameters. The estimated substitution rates were also used to infer upper-bounds on the amount of sequencing error in the datasets that we have analysed. Conclusion We have developed a system that performs robust estimation of substitution rates for orthologous sequences from a pair of organisms. Our system can be used when fragmentary genomic or transcript data is available from one of the organisms and the other is a completely sequenced genome within the Ensembl database. As well as estimating substitution statistics our system enables the user to manage and query alignment and substitution data. PMID:15005802

  13. The complete mitochondrial genome of the green lizard Lacerta viridis viridis (Reptilia: Lacertidae) and its phylogenetic position within squamate reptiles.

    PubMed

    Böhme, M U; Fritzsch, G; Tippmann, A; Schlegel, M; Berendonk, T U

    2007-06-01

    For the first time the complete mitochondrial genome was sequenced for a member of Lacertidae. Lacerta viridis viridis was sequenced in order to compare the phylogenetic relationships of this family to other reptilian lineages. Using the long-polymerase chain reaction (long PCR) we characterized a mitochondrial genome, 17,156 bp long showing a typical vertebrate pattern with 13 protein coding genes, 22 transfer RNAs (tRNA), two ribosomal RNAs (rRNA) and one major noncoding region. The noncoding region of L. v. viridis was characterized by a conspicuous 35 bp tandem repeat at its 5' terminus. A phylogenetic study including all currently available squamate mitochondrial sequences demonstrates the position of Lacertidae within a monophyletic squamate group. We obtained a narrow relationship of Lacertidae to Scincidae, Iguanidae, Varanidae, Anguidae, and Cordylidae. Although, the internal relationships within this group yielded only a weak resolution and low bootstrap support, the revealed relationships were more congruent with morphological studies than with recent molecular analyses.

  14. Sequence characterization of S100A8 gene reveals structural differences of protein and transcriptional factor binding sites in water buffalo and yak.

    PubMed

    Kathiravan, P; Goyal, S; Kataria, R S; Mishra, B P; Jayakumar, S; Joshi, B K

    2011-01-01

    The present study was undertaken to characterize the structure of S100A8 gene and its promoter in water buffalo and yak. Sequence data of 2.067 kb, 2.071 kb, and 2.052 kb with respect to complete S100A8 gene including 5' flanking region was generated in river buffalo, swamp buffalo, and yak, respectively. BLAST analysis of coding DNA sequences (CDS) of S100A8 gene revealed 95% homology of buffalo sequence with cattle, 85% with pig and horse, 83% with dog, 72-73% with murines, and around 79% with primates and humans. Phylogenetic analysis of predicted CDS revealed distinct clustering of murines, primates, and domestic animals with bovines and bubalines forming a subcluster among farm animals. In silico translation of predicted CDS revealed a sequence of 89 amino acids with 7 amino acid changes between cattle and buffalo and 2 changes between cattle and yak. The search for Pfam family revealed the N-terminal calcium binding domain and the noncanonical EF hand domain in the carboxy terminus, with more variations being observed in the N-terminal domain among different species. Two amino acid changes observed in carboxy terminal EF hand domain resulted in altered secondary structure of yak S100A8 protein. Analysis of S100A8 gene promoter revealed 14 putative motifs for transcriptional factor binding sites. Two putative motifs viz. C/EBP and v-Myb were found to be absent in swamp buffalo as compared to river buffalo and cattle. Differences in the structure of S100A8 protein and the transcriptional factor binding sites identified in the present study need to be analyzed further for their functional significance in yak and swamp buffalo respectively. Copyright © Taylor & Francis Group, LLC

  15. Skipping of exon 27 in C3 gene compromises TED domain and results in complete human C3 deficiency.

    PubMed

    da Silva, Karina Ribeiro; Fraga, Tatiana Rodrigues; Lucatelli, Juliana Faggion; Grumach, Anete Sevciovic; Isaac, Lourdes

    2016-05-01

    Primary deficiency of complement C3 is rare and usually associated with increased susceptibility to bacterial infections. In this work, we investigated the molecular basis of complete C3 deficiency in a Brazilian 9-year old female patient with a family history of consanguinity. Hemolytic assays revealed complete lack of complement-mediated hemolytic activity in the patient's serum. While levels of the complement regulatory proteins Factor I, Factor H and Factor B were normal in the patient's and family members' sera, complement C3 levels were undetectable in the patient's serum and were reduced by at least 50% in the sera of the patient's parents and brother. Additionally, no C3 could be observed in the patient's plasma and cell culture supernatants by Western blot. We also observed that patient's skin fibroblasts stimulated with Escherichia coli LPS were unable to secrete C3, which might be accumulated within the cells before being intracellularly degraded. Sequencing analysis of the patient's C3 cDNA revealed a genetic mutation responsible for the complete skipping of exon 27, resulting in the loss of 99 nucleotides (3450-3549) located in the TED domain. Sequencing of the intronic region between the exons 26 and 27 of the C3 gene (nucleotides 6690313-6690961) showed a nucleotide exchange (T→C) at position 6690626 located in a splicing donor site, resulting in the complete skipping of exon 27 in the C3 mRNA. Copyright © 2016. Published by Elsevier GmbH.

  16. Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea.

    PubMed Central

    Brown, D P; Idler, K B; Katz, L

    1990-01-01

    The 18.1-kilobase plasmid pSE211 integrates into the chromosome of Saccharopolyspora erythraea at a specific attB site. Restriction analysis of the integrated plasmid, pSE211int, and adjacent chromosomal sequences allowed identification of attP, the plasmid attachment site. Nucleotide sequencing of attP, attB, attL, and attR revealed a 57-base-pair sequence common to all sites with no duplications of adjacent plasmid or chromosomal sequences in the integrated state, indicating that integration takes place through conservative, reciprocal strand exchange. An analysis of the sequences indicated the presence of a putative gene for Phe-tRNA at attB which is preserved at attL after integration has occurred. A comparison of the attB site for a number of actinomycete plasmids is presented. Integration at attB was also observed when a 2.4-kilobase segment of pSE211 containing attP and the adjacent plasmid sequence was used to transform a pSE211- host. Nucleotide sequencing of this segment revealed the presence of two complete open reading frames (ORFs) and a segment of a third ORF. The ORF adjacent to attP encodes a putative polypeptide 437 amino acids in length that shows similarity, at its C-terminal domain, to sequences of site-specific recombinases of the integrase family. The adjacent ORF encodes a putative 98-amino-acid basic polypeptide that contains a helix-turn-helix motif at its N terminus which corresponds to domains in the Xis proteins of a number of bacteriophages. A proposal for the function of this polypeptide is presented. The deduced amino acid sequence of the third ORF did not reveal similarities to polypeptide sequences in the current data banks. Images FIG. 2 FIG. 3 PMID:2180909

  17. Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies.

    PubMed

    Bakker, Bjorn; Taudt, Aaron; Belderbos, Mirjam E; Porubsky, David; Spierings, Diana C J; de Jong, Tristan V; Halsema, Nancy; Kazemier, Hinke G; Hoekstra-Wakker, Karina; Bradley, Allan; de Bont, Eveline S J M; van den Berg, Anke; Guryev, Victor; Lansdorp, Peter M; Colomé-Tatché, Maria; Foijer, Floris

    2016-05-31

    Chromosome instability leads to aneuploidy, a state in which cells have abnormal numbers of chromosomes, and is found in two out of three cancers. In a chromosomal instable p53 deficient mouse model with accelerated lymphomagenesis, we previously observed whole chromosome copy number changes affecting all lymphoma cells. This suggests that chromosome instability is somehow suppressed in the aneuploid lymphomas or that selection for frequently lost/gained chromosomes out-competes the CIN-imposed mis-segregation. To distinguish between these explanations and to examine karyotype dynamics in chromosome instable lymphoma, we use a newly developed single-cell whole genome sequencing (scWGS) platform that provides a complete and unbiased overview of copy number variations (CNV) in individual cells. To analyse these scWGS data, we develop AneuFinder, which allows annotation of copy number changes in a fully automated fashion and quantification of CNV heterogeneity between cells. Single-cell sequencing and AneuFinder analysis reveals high levels of copy number heterogeneity in chromosome instability-driven murine T-cell lymphoma samples, indicating ongoing chromosome instability. Application of this technology to human B cell leukaemias reveals different levels of karyotype heterogeneity in these cancers. Our data show that even though aneuploid tumours select for particular and recurring chromosome combinations, single-cell analysis using AneuFinder reveals copy number heterogeneity. This suggests ongoing chromosome instability that other platforms fail to detect. As chromosome instability might drive tumour evolution, karyotype analysis using single-cell sequencing technology could become an essential tool for cancer treatment stratification.

  18. Genomic characterization and taxonomic position of a rhabdovirus from a hybrid snakehead.

    PubMed

    Zeng, Weiwei; Wang, Qing; Wang, Yingying; Liu, Cun; Liang, Hongru; Fang, Xiang; Wu, Shuqin

    2014-09-01

    A new rhabdovirus, tentatively designated as hybrid snakehead rhabdovirus C1207 (HSHRV-C1207), was first isolated from a moribund hybrid snakehead (Channa maculata×Channa argus) in China. We present the complete genome sequence of HSHRV-C1207 and a comprehensive sequence comparison between HSHRV-C1207 and other rhabdoviruses. Sequence alignment and phylogenetic analysis revealed that HSHRV-C1207 shared the highest degree of homology with Monopterus albus rhabdovirus and Siniperca chuatsi rhabdovirus. All three viruses clustered into a single group that was distinct from the recognized genera in the family Rhabdoviridae. Our analysis suggests that HSHRV-C1207, as well as MARV and SCRV, should be assigned to a new rhabdovirus genus.

  19. Simultaneous Differentiation and Typing of Entamoeba histolytica and Entamoeba dispar

    PubMed Central

    Zaki, Mehreen; Meelu, Parool; Sun, Wei; Clark, C. Graham

    2002-01-01

    Sequences corresponding to some of the polymorphic loci previously reported from Entamoeba histolytica have been detected in Entamoeba dispar. Comparison of nucleotide sequences of two loci between E. dispar strain SAW760 and E. histolytica strain HM-1:IMSS revealed significant differences in both repeat and flanking regions. The tandem repeat units varied not only in sequence but also in number and arrangement between the two species at both the loci. Using the sequences obtained, primer pairs aimed at amplifying species-specific products were designed and tested on a variety of E. histolytica and E. dispar samples. Amplification results were in complete agreement with the original species classification in all cases, and the PCR products displayed discernible size and pattern variations among the isolates. PMID:11923344

  20. Non-exomic and synonymous variants in ABCA4 are an important cause of Stargardt disease

    PubMed Central

    Braun, Terry A.; Mullins, Robert F.; Wagner, Alex H.; Andorf, Jeaneen L.; Johnston, Rebecca M.; Bakall, Benjamin B.; Deluca, Adam P.; Fishman, Gerald A.; Lam, Byron L.; Weleber, Richard G.; Cideciyan, Artur V.; Jacobson, Samuel G.; Sheffield, Val C.; Tucker, Budd A.; Stone, Edwin M.

    2013-01-01

    Mutations in ABCA4 cause Stargardt disease and other blinding autosomal recessive retinal disorders. However, sequencing of the complete coding sequence in patients with clinical features of Stargardt disease sometimes fails to detect one or both mutations. For example, among 208 individuals with clear clinical evidence of ABCA4 disease ascertained at a single institution, 28 had only one disease-causing allele identified in the exons and splice junctions of the primary retinal transcript of the gene. Haplotype analysis of these 28 probands revealed 3 haplotypes shared among ten families, suggesting that 18 of the 28 missing alleles were rare enough to be present only once in the cohort. We hypothesized that mutations near rare alternate splice junctions in ABCA4 might cause disease by increasing the probability of mis-splicing at these sites. Next-generation sequencing of RNA extracted from human donor eyes revealed more than a dozen alternate exons that are occasionally incorporated into the ABCA4 transcript in normal human retina. We sequenced the genomic DNA containing 15 of these minor exons in the 28 one-allele subjects and observed five instances of two different variations in the splice signals of exon 36.1 that were not present in normal individuals (P < 10−6). Analysis of RNA obtained from the keratinocytes of patients with these mutations revealed the predicted alternate transcript. This study illustrates the utility of RNA sequence analysis of human donor tissue and patient-derived cell lines to identify mutations that would be undetectable by exome sequencing. PMID:23918662

  1. The Complete Mitochondrial Genome of Galba pervia (Gastropoda: Mollusca), an Intermediate Host Snail of Fasciola spp

    PubMed Central

    Huang, Wei-Yi; Zhao, Guang-Hui; Wei, Shu-Jun; Song, Hui-Qun; Xu, Min-Jun; Lin, Rui-Qing; Zhou, Dong-Hui; Zhu, Xing-Quan

    2012-01-01

    Complete mitochondrial (mt) genomes and the gene rearrangements are increasingly used as molecular markers for investigating phylogenetic relationships. Contributing to the complete mt genomes of Gastropoda, especially Pulmonata, we determined the mt genome of the freshwater snail Galba pervia, which is an important intermediate host for Fasciola spp. in China. The complete mt genome of G. pervia is 13,768 bp in length. Its genome is circular, and consists of 37 genes, including 13 genes for proteins, 2 genes for rRNA, 22 genes for tRNA. The mt gene order of G. pervia showed novel arrangement (tRNA-His, tRNA-Gly and tRNA-Tyr change positions and directions) when compared with mt genomes of Pulmonata species sequenced to date, indicating divergence among different species within the Pulmonata. A total of 3655 amino acids were deduced to encode 13 protein genes. The most frequently used amino acid is Leu (15.05%), followed by Phe (11.24%), Ser (10.76%) and IIe (8.346%). Phylogenetic analyses using the concatenated amino acid sequences of the 13 protein-coding genes, with three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian analysis), all revealed that the families Lymnaeidae and Planorbidae are closely related two snail families, consistent with previous classifications based on morphological and molecular studies. The complete mt genome sequence of G. pervia showed a novel gene arrangement and it represents the first sequenced high quality mt genome of the family Lymnaeidae. These novel mtDNA data provide additional genetic markers for studying the epidemiology, population genetics and phylogeographics of freshwater snails, as well as for understanding interplay between the intermediate snail hosts and the intra-mollusca stages of Fasciola spp.. PMID:22844544

  2. Complete plastid genome sequence of Daucus carota: Implications for biotechnology and phylogeny of angiosperms

    PubMed Central

    Ruhlman, Tracey; Lee, Seung-Bum; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-01-01

    Background Carrot (Daucus carota) is a major food crop in the US and worldwide. Its capacity for storage and its lifecycle as a biennial make it an attractive species for the introduction of foreign genes, especially for oral delivery of vaccines and other therapeutic proteins. Until recently efforts to express recombinant proteins in carrot have had limited success in terms of protein accumulation in the edible tap roots. Plastid genetic engineering offers the potential to overcome this limitation, as demonstrated by the accumulation of BADH in chromoplasts of carrot taproots to confer exceedingly high levels of salt resistance. The complete plastid genome of carrot provides essential information required for genetic engineering. Additionally, the sequence data add to the rapidly growing database of plastid genomes for assessing phylogenetic relationships among angiosperms. Results The complete carrot plastid genome is 155,911 bp in length, with 115 unique genes and 21 duplicated genes within the IR. There are four ribosomal RNAs, 30 distinct tRNA genes and 18 intron-containing genes. Repeat analysis reveals 12 direct and 2 inverted repeats ≥ 30 bp with a sequence identity ≥ 90%. Phylogenetic analysis of nucleotide sequences for 61 protein-coding genes using both maximum parsimony (MP) and maximum likelihood (ML) were performed for 29 angiosperms. Phylogenies from both methods provide strong support for the monophyly of several major angiosperm clades, including monocots, eudicots, rosids, asterids, eurosids II, euasterids I, and euasterids II. Conclusion The carrot plastid genome contains a number of dispersed direct and inverted repeats scattered throughout coding and non-coding regions. This is the first sequenced plastid genome of the family Apiaceae and only the second published genome sequence of the species-rich euasterid II clade. Both MP and ML trees provide very strong support (100% bootstrap) for the sister relationship of Daucus with Panax in the euasterid II clade. These results provide the best taxon sampling of complete chloroplast genomes and the strongest support yet for the sister relationship of Caryophyllales to the asterids. The availability of the complete plastid genome sequence should facilitate improved transformation efficiency and foreign gene expression in carrot through utilization of endogenous flanking sequences and regulatory elements. PMID:16945140

  3. Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing.

    PubMed

    Hargreaves, Adam D; Mulley, John F

    2015-01-01

    Portable DNA sequencers such as the Oxford Nanopore MinION device have the potential to be truly disruptive technologies, facilitating new approaches and analyses and, in some cases, taking sequencing out of the lab and into the field. However, the capabilities of these technologies are still being revealed. Here we show that single-molecule cDNA sequencing using the MinION accurately characterises venom toxin-encoding genes in the painted saw-scaled viper, Echis coloratus. We find the raw sequencing error rate to be around 12%, improved to 0-2% with hybrid error correction and 3% with de novo error correction. Our corrected data provides full coding sequences and 5' and 3' UTRs for 29 of 33 candidate venom toxins detected, far superior to Illumina data (13/40 complete) and Sanger-based ESTs (15/29). We suggest that, should the current pace of improvement continue, the MinION will become the default approach for cDNA sequencing in a variety of species.

  4. Assessing the utility of the Oxford Nanopore MinION for snake venom gland cDNA sequencing

    PubMed Central

    Hargreaves, Adam D.

    2015-01-01

    Portable DNA sequencers such as the Oxford Nanopore MinION device have the potential to be truly disruptive technologies, facilitating new approaches and analyses and, in some cases, taking sequencing out of the lab and into the field. However, the capabilities of these technologies are still being revealed. Here we show that single-molecule cDNA sequencing using the MinION accurately characterises venom toxin-encoding genes in the painted saw-scaled viper, Echis coloratus. We find the raw sequencing error rate to be around 12%, improved to 0–2% with hybrid error correction and 3% with de novo error correction. Our corrected data provides full coding sequences and 5′ and 3′ UTRs for 29 of 33 candidate venom toxins detected, far superior to Illumina data (13/40 complete) and Sanger-based ESTs (15/29). We suggest that, should the current pace of improvement continue, the MinION will become the default approach for cDNA sequencing in a variety of species. PMID:26623194

  5. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110

    PubMed Central

    2012-01-01

    Background Actinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known. Results Here, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison. Besides the already published acarbose biosynthetic gene cluster sequence, several new non-ribosomal peptide synthetase-, polyketide synthase- and hybrid-clusters were identified on the Actinoplanes genome. Another key feature of the genome represents the discovery of a functional actinomycete integrative and conjugative element. Conclusions The complete genome sequence of Actinoplanes sp. SE50/110 marks an important step towards the rational genetic optimization of the acarbose production. In this regard, the identified actinomycete integrative and conjugative element could play a central role by providing the basis for the development of a genetic transformation system for Actinoplanes sp. SE50/110 and other Actinoplanes spp. Furthermore, the identified non-ribosomal peptide synthetase- and polyketide synthase-clusters potentially encode new antibiotics and/or other bioactive compounds, which might be of pharmacologic interest. PMID:22443545

  6. The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110.

    PubMed

    Schwientek, Patrick; Szczepanowski, Rafael; Rückert, Christian; Kalinowski, Jörn; Klein, Andreas; Selber, Klaus; Wehmeier, Udo F; Stoye, Jens; Pühler, Alfred

    2012-03-23

    Actinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known. Here, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison. Besides the already published acarbose biosynthetic gene cluster sequence, several new non-ribosomal peptide synthetase-, polyketide synthase- and hybrid-clusters were identified on the Actinoplanes genome. Another key feature of the genome represents the discovery of a functional actinomycete integrative and conjugative element. The complete genome sequence of Actinoplanes sp. SE50/110 marks an important step towards the rational genetic optimization of the acarbose production. In this regard, the identified actinomycete integrative and conjugative element could play a central role by providing the basis for the development of a genetic transformation system for Actinoplanes sp. SE50/110 and other Actinoplanes spp. Furthermore, the identified non-ribosomal peptide synthetase- and polyketide synthase-clusters potentially encode new antibiotics and/or other bioactive compounds, which might be of pharmacologic interest.

  7. Cloning of a neonatal calcium atpase isoform (SERCA 1B) from extraocular muscle of adult blue marlin (Makaira nigricans).

    PubMed

    Londraville, R L; Cramer, T D; Franck, J P; Tullis, A; Block, B A

    2000-10-01

    Complete cDNAs for the fast-twitch Ca2+ -ATPase isoform (SERCA 1) were cloned and sequenced from blue marlin (Makaira nigricans) extraocular muscle (EOM). Complete cDNAs for SERCA 1 were also cloned from fast-twitch skeletal muscle of the same species. The two sequences are identical over the coding region except for the last five codons on the carboxyl end; EOM SERCA 1 cDNA codes for 996 amino acids and the fast-twitch cDNAs code for 991 aa. Phylogenetic analysis revealed that EOM SERCA 1 clusters with an isoform of Ca2+ -ATPase normally expressed in early development of mammals (SERCA 1B). This is the first report of SERCA 1B in an adult vertebrate. RNA hybridization assays indicate that 1B expression is limited to extraocular muscles. Because EOM gives rise to the thermogenic heater organ in marlin, we investigated whether SERCA 1B may play a role in heat generation, or if 1B expression is common in EOM among vertebrates. Chicken also expresses SERCA 1B in EOM, but rat expresses SERCA 1A; because SERCA 1B is not specific to heater tissue we conclude it is unlikely that it plays a specific role in intracellular heat production. Comparative sequence analysis does reveal, however, several sites that may be the source of functional differences between fish and mammalian SERCAs.

  8. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species.

    PubMed

    Salzberg, Steven L; Dunning Hotopp, Julie C; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C

    2005-01-01

    The Trace Archive is a repository for the raw, unanalyzed data generated by large-scale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank.

  9. High Quality Maize Centromere 10 Sequence Reveals Evidence of Frequent Recombination Events

    PubMed Central

    Wolfgruber, Thomas K.; Nakashima, Megan M.; Schneider, Kevin L.; Sharma, Anupma; Xie, Zidian; Albert, Patrice S.; Xu, Ronghui; Bilinski, Paul; Dawe, R. Kelly; Ross-Ibarra, Jeffrey; Birchler, James A.; Presting, Gernot G.

    2016-01-01

    The ancestral centromeres of maize contain long stretches of the tandemly arranged CentC repeat. The abundance of tandem DNA repeats and centromeric retrotransposons (CR) has presented a significant challenge to completely assembling centromeres using traditional sequencing methods. Here, we report a nearly complete assembly of the 1.85 Mb maize centromere 10 from inbred B73 using PacBio technology and BACs from the reference genome project. The error rates estimated from overlapping BAC sequences are 7 × 10−6 and 5 × 10−5 for mismatches and indels, respectively. The number of gaps in the region covered by the reassembly was reduced from 140 in the reference genome to three. Three expressed genes are located between 92 and 477 kb from the inferred ancestral CentC cluster, which lies within the region of highest centromeric repeat density. The improved assembly increased the count of full-length CR from 5 to 55 and revealed a 22.7 kb segmental duplication that occurred approximately 121,000 years ago. Our analysis provides evidence of frequent recombination events in the form of partial retrotransposons, deletions within retrotransposons, chimeric retrotransposons, segmental duplications including higher order CentC repeats, a deleted CentC monomer, centromere-proximal inversions, and insertion of mitochondrial sequences. Double-strand DNA break (DSB) repair is the most plausible mechanism for these events and may be the major driver of centromere repeat evolution and diversity. In many cases examined here, DSB repair appears to be mediated by microhomology, suggesting that tandem repeats may have evolved to efficiently repair frequent DSBs in centromeres. PMID:27047500

  10. Whole genome sequence of two Rathayibacter toxicus strains reveals a tunicamycin biosynthetic cluster similar to Streptomyces chartreusis

    USDA-ARS?s Scientific Manuscript database

    Rathayibacter toxicus is a forage grass associated Gram-positive bacterium of major concern to food safety and agriculture. The species is listed by USDA-APHIS as a plant pathogen select agent due to the fact that it produces a tunicamycin-like toxin that is lethal to livestock. The complete genomes...

  11. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist

    USDA-ARS?s Scientific Manuscript database

    Fibrobacter succinogenes S85 is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of two known species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particu...

  12. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana.

    PubMed

    Mayer, K; Schüller, C; Wambutt, R; Murphy, G; Volckaert, G; Pohl, T; Düsterhöft, A; Stiekema, W; Entian, K D; Terryn, N; Harris, B; Ansorge, W; Brandt, P; Grivell, L; Rieger, M; Weichselgartner, M; de Simone, V; Obermaier, B; Mache, R; Müller, M; Kreis, M; Delseny, M; Puigdomenech, P; Watson, M; Schmidtheini, T; Reichert, B; Portatelle, D; Perez-Alonso, M; Boutry, M; Bancroft, I; Vos, P; Hoheisel, J; Zimmermann, W; Wedler, H; Ridley, P; Langham, S A; McCullagh, B; Bilham, L; Robben, J; Van der Schueren, J; Grymonprez, B; Chuang, Y J; Vandenbussche, F; Braeken, M; Weltjens, I; Voet, M; Bastiaens, I; Aert, R; Defoor, E; Weitzenegger, T; Bothe, G; Ramsperger, U; Hilbert, H; Braun, M; Holzer, E; Brandt, A; Peters, S; van Staveren, M; Dirske, W; Mooijman, P; Klein Lankhorst, R; Rose, M; Hauf, J; Kötter, P; Berneiser, S; Hempel, S; Feldpausch, M; Lamberth, S; Van den Daele, H; De Keyser, A; Buysshaert, C; Gielen, J; Villarroel, R; De Clercq, R; Van Montagu, M; Rogers, J; Cronin, A; Quail, M; Bray-Allen, S; Clark, L; Doggett, J; Hall, S; Kay, M; Lennard, N; McLay, K; Mayes, R; Pettett, A; Rajandream, M A; Lyne, M; Benes, V; Rechmann, S; Borkova, D; Blöcker, H; Scharfe, M; Grimm, M; Löhnert, T H; Dose, S; de Haan, M; Maarse, A; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Fartmann, B; Granderath, K; Dauner, D; Herzl, A; Neumann, S; Argiriou, A; Vitale, D; Liguori, R; Piravandi, E; Massenet, O; Quigley, F; Clabauld, G; Mündlein, A; Felber, R; Schnabl, S; Hiller, R; Schmidt, W; Lecharny, A; Aubourg, S; Chefdor, F; Cooke, R; Berger, C; Montfort, A; Casacuberta, E; Gibbons, T; Weber, N; Vandenbol, M; Bargues, M; Terol, J; Torres, A; Perez-Perez, A; Purnelle, B; Bent, E; Johnson, S; Tacon, D; Jesse, T; Heijnen, L; Schwarz, S; Scholler, P; Heber, S; Francs, P; Bielke, C; Frishman, D; Haase, D; Lemcke, K; Mewes, H W; Stocker, S; Zaccaria, P; Bevan, M; Wilson, R K; de la Bastide, M; Habermann, K; Parnell, L; Dedhia, N; Gnoj, L; Schutz, K; Huang, E; Spiegel, L; Sehkon, M; Murray, J; Sheet, P; Cordes, M; Abu-Threideh, J; Stoneking, T; Kalicki, J; Graves, T; Harmon, G; Edwards, J; Latreille, P; Courtney, L; Cloud, J; Abbott, A; Scott, K; Johnson, D; Minx, P; Bentley, D; Fulton, B; Miller, N; Greco, T; Kemp, K; Kramer, J; Fulton, L; Mardis, E; Dante, M; Pepin, K; Hillier, L; Nelson, J; Spieth, J; Ryan, E; Andrews, S; Geisel, C; Layman, D; Du, H; Ali, J; Berghoff, A; Jones, K; Drone, K; Cotton, M; Joshu, C; Antonoiu, B; Zidanic, M; Strong, C; Sun, H; Lamar, B; Yordan, C; Ma, P; Zhong, J; Preston, R; Vil, D; Shekher, M; Matero, A; Shah, R; Swaby, I K; O'Shaughnessy, A; Rodriguez, M; Hoffmann, J; Till, S; Granat, S; Shohdy, N; Hasegawa, A; Hameed, A; Lodhi, M; Johnson, A; Chen, E; Marra, M; Martienssen, R; McCombie, W R

    1999-12-16

    The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

  13. Bifidobacterium animalis subsp. lactis ATCC 27673 Is a Genomically Unique Strain within Its Conserved Subspecies

    PubMed Central

    Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Stahl, Buffy; Chen, Chun

    2013-01-01

    Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains. PMID:23995933

  14. Birth and death of genes linked to chromosomal inversion

    PubMed Central

    Furuta, Yoshikazu; Kawai, Mikihiko; Yahara, Koji; Takahashi, Noriko; Handa, Naofumi; Tsuru, Takeshi; Oshima, Kenshiro; Yoshida, Masaru; Azuma, Takeshi; Hattori, Masahira; Uchiyama, Ikuo; Kobayashi, Ichizo

    2011-01-01

    The birth and death of genes is central to adaptive evolution, yet the underlying genome dynamics remain elusive. The availability of closely related complete genome sequences helps to follow changes in gene contents and clarify their relationship to overall genome organization. Helicobacter pylori, bacteria in our stomach, are known for their extreme genome plasticity through mutation and recombination and will make a good target for such an analysis. In comparing their complete genome sequences, we found that gain and loss of genes (loci) for outer membrane proteins, which mediate host interaction, occurred at breakpoints of chromosomal inversions. Sequence comparison there revealed a unique mechanism of DNA duplication: DNA duplication associated with inversion. In this process, a DNA segment at one chromosomal locus is copied and inserted, in an inverted orientation, into a distant locus on the same chromosome, while the entire region between these two loci is also inverted. Recognition of this and three more inversion modes, which occur through reciprocal recombination between long or short sequence similarity or adjacent to a mobile element, allowed reconstruction of synteny evolution through inversion events in this species. These results will guide the interpretation of extensive DNA sequencing results for understanding long- and short-term genome evolution in various organisms and in cancer cells. PMID:21212362

  15. Comparative and genetic analysis of the four sequenced Paenibacillus polymyxa genomes reveals a diverse metabolism and conservation of genes relevant to plant-growth promotion and competitiveness.

    PubMed

    Eastman, Alexander W; Heinrichs, David E; Yuan, Ze-Chun

    2014-10-03

    Members of the genus Paenibacillus are important plant growth-promoting rhizobacteria that can serve as bio-reactors. Paenibacillus polymyxa promotes the growth of a variety of economically important crops. Our lab recently completed the genome sequence of Paenibacillus polymyxa CR1. As of January 2014, four P. polymyxa genomes have been completely sequenced but no comparative genomic analyses have been reported. Here we report the comparative and genetic analyses of four sequenced P. polymyxa genomes, which revealed a significantly conserved core genome. Complex metabolic pathways and regulatory networks were highly conserved and allow P. polymyxa to rapidly respond to dynamic environmental cues. Genes responsible for phytohormone synthesis, phosphate solubilization, iron acquisition, transcriptional regulation, σ-factors, stress responses, transporters and biomass degradation were well conserved, indicating an intimate association with plant hosts and the rhizosphere niche. In addition, genes responsible for antimicrobial resistance and non-ribosomal peptide/polyketide synthesis are present in both the core and accessory genome of each strain. Comparative analyses also reveal variations in the accessory genome, including large plasmids present in strains M1 and SC2. Furthermore, a considerable number of strain-specific genes and genomic islands are irregularly distributed throughout each genome. Although a variety of plant-growth promoting traits are encoded by all strains, only P. polymyxa CR1 encodes the unique nitrogen fixation cluster found in other Paenibacillus sp. Our study revealed that genomic loci relevant to host interaction and ecological fitness are highly conserved within the P. polymyxa genomes analysed, despite variations in the accessory genome. This work suggets that plant-growth promotion by P. polymyxa is mediated largely through phytohormone production, increased nutrient availability and bio-control mechanisms. This study provides an in-depth understanding of the genome architecture of this species, thus facilitating future genetic engineering and applications in agriculture, industry and medicine. Furthermore, this study highlights the current gap in our understanding of complex plant biomass metabolism in Gram-positive bacteria.

  16. Comparative Analysis of the Complete Plastomes of Apostasia wallichii and Neuwiedia singapureana (Apostasioideae) Reveals Different Evolutionary Dynamics of IR/SSC Boundary among Photosynthetic Orchids.

    PubMed

    Niu, Zhitao; Pan, Jiajia; Zhu, Shuying; Li, Ludan; Xue, Qingyun; Liu, Wei; Ding, Xiaoyu

    2017-01-01

    Apostasioideae, consists of only two genera, Apostasia and Neuwiedia , which are mainly distributed in Southeast Asia and northern Australia. The floral structure, taxonomy, biogeography, and genome variation of Apostasioideae have been intensively studied. However, detailed analyses of plastome composition and structure and comparisons with those of other orchid subfamilies have not yet been conducted. Here, the complete plastome sequences of Apostasia wallichii and Neuwiedia singapureana were sequenced and compared with 43 previously published photosynthetic orchid plastomes to characterize the plastome structure and evolution in the orchids. Unlike many orchid plastomes (e.g., Paphiopedilum and Vanilla ), the plastomes of Apostasioideae contain a full set of 11 functional NADH dehydrogenase ( ndh ) genes. The distribution of repeat sequences and simple sequence repeat elements enhanced the view that the mutation rate of non-coding regions was higher than that of coding regions. The 10 loci- ndhA intron, matK-5'trnK , clpP-psbB , rps8-rpl14 , trnT-trnL , 3'trnK-matK , clpP intron , psbK-trnK , trnS-psbC , and ndhF-rpl32 -that had the highest degrees of sequence variability were identified as mutational hotspots for the Apostasia plastome. Furthermore, our results revealed that plastid genes exhibited a variable evolution rate within and among different orchid genus. Considering the diversified evolution of both coding and non-coding regions, we suggested that the plastome-wide evolution of orchid species was disproportional. Additionally, the sequences flanking the inverted repeat/small single copy (IR/SSC) junctions of photosynthetic orchid plastomes were categorized into three types according to the presence/absence of ndh genes. Different evolutionary dynamics for each of the three IR/SSC types of photosynthetic orchid plastomes were also proposed.

  17. Comparative Analysis of the Complete Plastomes of Apostasia wallichii and Neuwiedia singapureana (Apostasioideae) Reveals Different Evolutionary Dynamics of IR/SSC Boundary among Photosynthetic Orchids

    PubMed Central

    Niu, Zhitao; Pan, Jiajia; Zhu, Shuying; Li, Ludan; Xue, Qingyun; Liu, Wei; Ding, Xiaoyu

    2017-01-01

    Apostasioideae, consists of only two genera, Apostasia and Neuwiedia, which are mainly distributed in Southeast Asia and northern Australia. The floral structure, taxonomy, biogeography, and genome variation of Apostasioideae have been intensively studied. However, detailed analyses of plastome composition and structure and comparisons with those of other orchid subfamilies have not yet been conducted. Here, the complete plastome sequences of Apostasia wallichii and Neuwiedia singapureana were sequenced and compared with 43 previously published photosynthetic orchid plastomes to characterize the plastome structure and evolution in the orchids. Unlike many orchid plastomes (e.g., Paphiopedilum and Vanilla), the plastomes of Apostasioideae contain a full set of 11 functional NADH dehydrogenase (ndh) genes. The distribution of repeat sequences and simple sequence repeat elements enhanced the view that the mutation rate of non-coding regions was higher than that of coding regions. The 10 loci—ndhA intron, matK-5′trnK, clpP-psbB, rps8-rpl14, trnT-trnL, 3′trnK-matK, clpP intron, psbK-trnK, trnS-psbC, and ndhF-rpl32—that had the highest degrees of sequence variability were identified as mutational hotspots for the Apostasia plastome. Furthermore, our results revealed that plastid genes exhibited a variable evolution rate within and among different orchid genus. Considering the diversified evolution of both coding and non-coding regions, we suggested that the plastome-wide evolution of orchid species was disproportional. Additionally, the sequences flanking the inverted repeat/small single copy (IR/SSC) junctions of photosynthetic orchid plastomes were categorized into three types according to the presence/absence of ndh genes. Different evolutionary dynamics for each of the three IR/SSC types of photosynthetic orchid plastomes were also proposed. PMID:29046685

  18. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs.

    PubMed

    Panda, Amaresh C; De, Supriyo; Grammatikakis, Ioannis; Munk, Rachel; Yang, Xiaoling; Piao, Yulan; Dudekula, Dawood B; Abdelmohsen, Kotb; Gorospe, Myriam

    2017-07-07

    High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  19. The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)

    PubMed Central

    2004-01-01

    The National Institutes of Health's Mammalian Gene Collection (MGC) project was designed to generate and sequence a publicly accessible cDNA resource containing a complete open reading frame (ORF) for every human and mouse gene. The project initially used a random strategy to select clones from a large number of cDNA libraries from diverse tissues. Candidate clones were chosen based on 5′-EST sequences, and then fully sequenced to high accuracy and analyzed by algorithms developed for this project. Currently, more than 11,000 human and 10,000 mouse genes are represented in MGC by at least one clone with a full ORF. The random selection approach is now reaching a saturation point, and a transition to protocols targeted at the missing transcripts is now required to complete the mouse and human collections. Comparison of the sequence of the MGC clones to reference genome sequences reveals that most cDNA clones are of very high sequence quality, although it is likely that some cDNAs may carry missense variants as a consequence of experimental artifact, such as PCR, cloning, or reverse transcriptase errors. Recently, a rat cDNA component was added to the project, and ongoing frog (Xenopus) and zebrafish (Danio) cDNA projects were expanded to take advantage of the high-throughput MGC pipeline. PMID:15489334

  20. Recovering complete mitochondrial genome sequences from RNA-Seq: A case study of Polytomella non-photosynthetic green algae.

    PubMed

    Tian, Yao; Smith, David Roy

    2016-05-01

    Thousands of mitochondrial genomes have been sequenced, but there are comparatively few available mitochondrial transcriptomes. This might soon be changing. High-throughput RNA sequencing (RNA-Seq) techniques have made it fast and cheap to generate massive amounts of mitochondrial transcriptomic data. Here, we explore the utility of RNA-Seq for assembling mitochondrial genomes and studying their expression patterns. Specifically, we investigate the mitochondrial transcriptomes from Polytomella non-photosynthetic green algae, which have among the smallest, most reduced mitochondrial genomes from the Archaeplastida as well as fragmented rRNA-coding regions, palindromic genes, and linear chromosomes with telomeres. Isolation of whole genomic RNA from the four known Polytomella species followed by Illumina paired-end sequencing generated enough mitochondrial-derived reads to easily recover almost-entire mitochondrial genome sequences. Read-mapping and coverage statistics also gave insights into Polytomella mitochondrial transcriptional architecture, revealing polycistronic transcripts and the expression of telomeres and palindromic genes. Ultimately, RNA-Seq is a promising, cost-effective technique for studying mitochondrial genetics, but it does have drawbacks, which are discussed. One of its greatest potentials, as shown here, is that it can be used to generate near-complete mitochondrial genome sequences, which could be particularly useful in situations where there is a lack of available mtDNA data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Identification and Resolution of Microdiversity through Metagenomic Sequencing of Parallel Consortia

    PubMed Central

    Maezato, Yukari; Wu, Yu-Wei; Romine, Margaret F.; Lindemann, Stephen R.

    2015-01-01

    To gain a predictive understanding of the interspecies interactions within microbial communities that govern community function, the genomic complement of every member population must be determined. Although metagenomic sequencing has enabled the de novo reconstruction of some microbial genomes from environmental communities, microdiversity confounds current genome reconstruction techniques. To overcome this issue, we performed short-read metagenomic sequencing on parallel consortia, defined as consortia cultivated under the same conditions from the same natural community with overlapping species composition. The differences in species abundance between the two consortia allowed reconstruction of near-complete (at an estimated >85% of gene complement) genome sequences for 17 of the 20 detected member species. Two Halomonas spp. indistinguishable by amplicon analysis were found to be present within the community. In addition, comparison of metagenomic reads against the consensus scaffolds revealed within-species variation for one of the Halomonas populations, one of the Rhodobacteraceae populations, and the Rhizobiales population. Genomic comparison of these representative instances of inter- and intraspecies microdiversity suggests differences in functional potential that may result in the expression of distinct roles in the community. In addition, isolation and complete genome sequence determination of six member species allowed an investigation into the sensitivity and specificity of genome reconstruction processes, demonstrating robustness across a wide range of sequence coverage (9× to 2,700×) within the metagenomic data set. PMID:26497460

  2. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs

    PubMed Central

    De, Supriyo; Grammatikakis, Ioannis; Munk, Rachel; Yang, Xiaoling; Piao, Yulan; Dudekula, Dawood B.; Gorospe, Myriam

    2017-01-01

    Abstract High-throughput RNA sequencing methods coupled with specialized bioinformatic analyses have recently uncovered tens of thousands of unique circular (circ)RNAs, but their complete sequences, genes of origin and functions are largely unknown. Given that circRNAs lack free ends and are thus relatively stable, their association with microRNAs (miRNAs) and RNA-binding proteins (RBPs) can influence gene expression programs. While exoribonuclease treatment is widely used to degrade linear RNAs and enrich circRNAs in RNA samples, it does not efficiently eliminate all linear RNAs. Here, we describe a novel method for the isolation of highly pure circRNA populations involving RNase R treatment followed by Polyadenylation and poly(A)+ RNA Depletion (RPAD), which removes linear RNA to near completion. High-throughput sequencing of RNA prepared using RPAD from human cervical carcinoma HeLa cells and mouse C2C12 myoblasts led to two surprising discoveries: (i) many exonic circRNA (EcircRNA) isoforms share an identical backsplice sequence but have different body sizes and sequences, and (ii) thousands of novel intronic circular RNAs (IcircRNAs) are expressed in cells. In sum, isolating high-purity circRNAs using the RPAD method can enable quantitative and qualitative analyses of circRNA types and sequence composition, paving the way for the elucidation of circRNA functions. PMID:28444238

  3. Identification and Resolution of Microdiversity through Metagenomic Sequencing of Parallel Consortia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, William C.; Maezato, Yukari; Wu, Yu-Wei

    2015-10-23

    To gain a predictive understanding of the interspecies interactions within microbial communities that govern community function, the genomic complement of every member population must be determined. Although metagenomic sequencing has enabled thede novoreconstruction of some microbial genomes from environmental communities, microdiversity confounds current genome reconstruction techniques. To overcome this issue, we performed short-read metagenomic sequencing on parallel consortia, defined as consortia cultivated under the same conditions from the same natural community with overlapping species composition. The differences in species abundance between the two consortia allowed reconstruction of near-complete (at an estimated >85% of gene complement) genome sequences for 17 ofmore » the 20 detected member species. TwoHalomonasspp. indistinguishable by amplicon analysis were found to be present within the community. In addition, comparison of metagenomic reads against the consensus scaffolds revealed within-species variation for one of theHalomonaspopulations, one of theRhodobacteraceaepopulations, and theRhizobialespopulation. Genomic comparison of these representative instances of inter- and intraspecies microdiversity suggests differences in functional potential that may result in the expression of distinct roles in the community. In addition, isolation and complete genome sequence determination of six member species allowed an investigation into the sensitivity and specificity of genome reconstruction processes, demonstrating robustness across a wide range of sequence coverage (9× to 2,700×) within the metagenomic data set.« less

  4. Analysis of the complete genome of the first Irkut virus isolate from China: comparison across the Lyssavirus genus.

    PubMed

    Liu, Ye; Li, Nan; Zhang, Shoufeng; Zhang, Fei; Lian, Hai; Wang, Ying; Zhang, Jinxia; Hu, Rongliang

    2013-12-01

    The genome of Irkut virus, isolate IRKV-THChina12, the first non-rabies lyssavirus from China (of bat origin), has been completely sequenced. In general, coding and non-coding regions of this viral genome are similar to those of other lyssaviruses. However, alignment of the deduced amino acid sequences of the structural proteins of IRKV-THChina12 with those of other lyssavirus representatives revealed significant variability between viral species. The nucleoprotein and matrix protein were found to be the most conserved, followed by the large protein, glycoprotein and phosphoprotein. Differences in the antigenic sites in glycoprotein may result in only partial protection of the available rabies biologics against Irkut virus, which is of particular concern for pre- and post-exposure rabies prophylaxis. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Apert Syndrome: Molecularly Confirmed C.758C>G (P.Pro253Arg) in FGFR2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha Gon, Lee, E-mail: leechagon@eulji.ac.kr

    A 5-day-old girl was referred to our clinic for evaluation of congenital malformations. She was identified with a pathogenic mutation c.758C>G (p.Pro253Arg) in FGFR2 gene using targeted exome sequencing. The de novo mutation was confirmed with Sanger sequencing in the patient and her parents. She showed occipital plagiocephaly with frontal bossing (Figure A and B). Skull frontal and lateral radiography revealed fusion of most of the sutures except coronal suture, with convolutional markings (Figure D and E). She had complete cleft palate (Figure C). Her fused bilateral hands showed type II syndactyly with complete syndactyly between the ring and themore » little fingers (Figure F1-F3). Both toes were simple syndactyly with side-to-side fusion of skin (Figure G1-)« less

  6. Complete mitochondrial genome of Xingguo red carp (Cyprinus carpio var. singuonensis) and purse red carp (Cyprinus carpio var. wuyuanensis).

    PubMed

    Hu, Guang-Fu; Liu, Xiang-Jiang; Li, Zhong; Liang, Hong-Wei; Hu, Shao-Na; Zou, Gui-Wei

    2016-01-01

    The complete mitochondrial genomes of Xingguo red carp (Cyprinus carpio var. singuonensis) and purse red carp (Cyprinus carpio var. wuyuanensis) were sequenced. Comparison of these two mitochondrial genomes revealed that the mtDNAs of these two common carp varieties were remarkably similar in genome length, gene order and content, and AT content. However, size variation between these two mitochondrial genomes presented here showed 39 site differences in overall length. About 2 site differences were located in rRNAs, 3 in tRNAs, 3 in the control region, 31 in protein-coding genes. Thirty-one variable bases in the protein-coding regions between the two varieties mitochondrial sequences led to three variable amino acids, which were mainly located in the protein ND5 and ND4.

  7. First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution.

    PubMed

    Smith, David Roy; Kayal, Ehsan; Yanagihara, Angel A; Collins, Allen G; Pirro, Stacy; Keeling, Patrick J

    2012-01-01

    Animal mitochondrial DNAs (mtDNAs) are typically single circular chromosomes, with the exception of those from medusozoan cnidarians (jellyfish and hydroids), which are linear and sometimes fragmented. Most medusozoans have linear monomeric or linear bipartite mitochondrial genomes, but preliminary data have suggested that box jellyfish (cubozoans) have mtDNAs that consist of many linear chromosomes. Here, we present the complete mtDNA sequence from the winged box jellyfish Alatina moseri (the first from a cubozoan). This genome contains unprecedented levels of fragmentation: 18 unique genes distributed over eight 2.9- to 4.6-kb linear chromosomes. The telomeres are identical within and between chromosomes, and recombination between subtelomeric sequences has led to many genes initiating or terminating with sequences from other genes (the most extreme case being 150 nt of a ribosomal RNA containing the 5' end of nad2), providing evidence for a gene conversion-based model of telomere evolution. The silent-site nucleotide variation within the A. moseri mtDNA is among the highest observed from a eukaryotic genome and may be associated with elevated rates of recombination.

  8. The CARBONATE project: Mid-latitude Carbonate Systems - Complete Sequences from Cold-Water Coral Carbonate Mounds in the Northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Wheeler, A.; Freiwald, A.; Hebbeln, D.; Swennen, R.; van Weering, T.; de Haas, H.; Dorschel, B.

    2007-12-01

    Up to now the carbonate stored in carbonate mounds has not been considered in any global carbonate budget or linked to any global carbon budget involving greenhouse gases. A major challenge exists to quantify the amount and flux of carbon stored by these newly discovered areas of enhanced carbonate accumulation in intermediate water depth. Furthermore, investigations so far reveal that all mounds possess different growth histories depending on the environmental setting and the involved faunal associations. Unfortunately, existing cores only penetrated the upper few meters of the mounds thus limiting mound research to the very late stage of mound development. Access to the longer sequences preserved in giant carbonate mounds was overcome in May 2005 when the IODP Expedition 307 (Porcupine Mound Drilling) recovered complete sedimentary records from one 155 m high "Challenger Mound" in the Porcupine Seabight west off Ireland. Furthermore, EU-FP projects have revealed late stage history of giant mounds in different settings showing that different mounds respond in different ways to environmental forcing factors with no one mound being typical of all. CARBONATE will drill complete sequences through a number of mounds in differing environmental settings using the portable drill rig MeBo (University of Bremen). By understanding how biogeochemical processes control the development of these carbonate mounds and their response to climate change, we will make an important step in quantifying their role as mid-latitude carbonate sinks. In the end, a better understanding of the processes involved in mound formation and development may also result in new views on fossil analogues many of which are less accessible hydrocarbon reservoirs.

  9. The Complete Mitochondrial Genomes of Two Octopods Cistopus chinensis and Cistopus taiwanicus: Revealing the Phylogenetic Position of the Genus Cistopus within the Order Octopoda

    PubMed Central

    Cheng, Rubin; Zheng, Xiaodong; Ma, Yuanyuan; Li, Qi

    2013-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequences of two species of Cistopus, namely C. chinensis and C. taiwanicus, and conducted a comparative mt genome analysis across the class Cephalopoda. The mtDNA length of C. chinensis and C. taiwanicus are 15706 and 15793 nucleotides with an AT content of 76.21% and 76.5%, respectively. The sequence identity of mtDNA between C. chinensis and C. taiwanicus was 88%, suggesting a close relationship. Compared with C. taiwanicus and other octopods, C. chinensis encoded two additional tRNA genes, showing a novel gene arrangement. In addition, an unusual 23 poly (A) signal structure is found in the ATP8 coding region of C. chinensis. The entire genome and each protein coding gene of the two Cistopus species displayed notable levels of AT and GC skews. Based on sliding window analysis among Octopodiformes, ND1 and DN5 were considered to be more reliable molecular beacons. Phylogenetic analyses based on the 13 protein-coding genes revealed that C. chinensis and C. taiwanicus form a monophyletic group with high statistical support, consistent with previous studies based on morphological characteristics. Our results also indicated that the phylogenetic position of the genus Cistopus is closer to Octopus than to Amphioctopus and Callistoctopus. The complete mtDNA sequence of C. chinensis and C. taiwanicus represent the first whole mt genomes in the genus Cistopus. These novel mtDNA data will be important in refining the phylogenetic relationships within Octopodiformes and enriching the resource of markers for systematic, population genetic and evolutionary biological studies of Cephalopoda. PMID:24358345

  10. Gene structure and evolution of transthyretin in the order Chiroptera.

    PubMed

    Khwanmunee, Jiraporn; Leelawatwattana, Ladda; Prapunpoj, Porntip

    2016-02-01

    Bats are mammals in the order Chiroptera. Although many extensive morphologic and molecular genetics analyses have been attempted, phylogenetic relationships of bats has not been completely resolved. The paraphyly of microbats is of particular controversy that needs to be confirmed. In this study, we attempted to use the nucleotide sequence of transthyretin (TTR) intron 1 to resolve the relationship among bats. To explore its utility, the complete sequences of TTR gene and intron 1 region of bats in Vespertilionidae: genus Eptesicus (Eptesicus fuscus) and genus Myotis (Myotis brandtii, Myotis davidii, and Myotis lucifugus), and Pteropodidae (Pteropus alecto and Pteropus vampyrus) were extracted from the retrieved sequences, whereas those of Rhinoluphus affinis and Scotophilus kuhlii were amplified and sequenced. The derived overall amino sequences of bat TTRs were found to be very similar to those in other eutherians but differed from those in other classes of vertebrates. However, missing of amino acids from N-terminal or C-terminal region was observed. The phylogenetic analysis of amino acid sequences suggested bat and other eutherian TTRs lineal descent from a single most recent common ancestor which differed from those of non-placental mammals and the other classes of vertebrates. The splicing of bat TTR precursor mRNAs was similar to those of other eutherian but different from those of marsupial, bird, reptile and amphibian. Based on TTR intron 1 sequence, the inferred evolutionary relationship within Chiroptera revealed more closely relatedness of R. affinis to megabats than to microbats. Accordingly, the paraphyly of microbats was suggested.

  11. Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes.

    PubMed

    Kahlau, Sabine; Aspinall, Sue; Gray, John C; Bock, Ralph

    2006-08-01

    Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.

  12. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    PubMed Central

    Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H

    2005-01-01

    Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476

  13. The tick plasma lectin, Dorin M, is a fibrinogen-related molecule.

    PubMed

    Rego, Ryan O M; Kovár, Vojtĕch; Kopácek, Petr; Weise, Christoph; Man, Petr; Sauman, Ivo; Grubhoffer, Libor

    2006-04-01

    A lectin, named Dorin M, previously isolated and characterized from the hemolymph plasma of the soft tick, Ornithodoros moubata, was cloned and sequenced. The immunofluorescence using confocal microscopy revealed that Dorin M is produced in the tick hemocytes. A tryptic cleavage of Dorin M was performed and the resulting peptide fragments were sequenced by Edman degradation and/or mass spectrometry. Two of three internal peptide sequences displayed a significant similarity to the family of fibrinogen-related molecules. Degenerate primers were designed and used for PCR with hemocyte cDNA as a template. The sequence of the whole Dorin M cDNA was completed by the method of RACE. The tissue-specific expression investigated by RT-PCR revealed that Dorin M, in addition to hemocytes, is significantly expressed in salivary glands. The derived amino-acid sequence clearly shows that Dorin M has a fibrinogen-like domain, and exhibited the most significant similarity with tachylectins 5A and 5B from a horseshoe crab, Tachypleus tridentatus. In addition, other protein and binding characteristics suggest that Dorin M is closely related to tachylectins-5. Since these lectins have been reported to function as non-self recognizing molecules, we believe that Dorin M may play a similar role in an innate immunity of the tick and, possibly, also in pathogen transmission by this vector.

  14. Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing.

    PubMed

    Lalonde, Emilie; Albrecht, Steffen; Ha, Kevin C H; Jacob, Karine; Bolduc, Nathalie; Polychronakos, Constantin; Dechelotte, Pierre; Majewski, Jacek; Jabado, Nada

    2010-08-01

    Protein coding genes constitute approximately 1% of the human genome but harbor 85% of the mutations with large effects on disease-related traits. Therefore, efficient strategies for selectively sequencing complete coding regions (i.e., "whole exome") have the potential to contribute our understanding of human diseases. We used a method for whole-exome sequencing coupling Agilent whole-exome capture to the Illumina DNA-sequencing platform, and investigated two unrelated fetuses from nonconsanguineous families with Fowler Syndrome (FS), a stereotyped phenotype lethal disease. We report novel germline mutations in feline leukemia virus subgroup C cellular-receptor-family member 2, FLVCR2, which has recently been shown to cause FS. Using this technology, we identified three types of genetic abnormalities: point-mutations, insertions-deletions, and intronic splice-site changes (first pathogenic report using this technology), in the fetuses who both were compound heterozygotes for the disease. Although revealing a high level of allelic heterogeneity and mutational spectrum in FS, this study further illustrates the successful application of whole-exome sequencing to uncover genetic defects in rare Mendelian disorders. Of importance, we show that we can identify genes underlying rare, monogenic and recessive diseases using a limited number of patients (n=2), in the absence of shared genetic heritage and in the presence of allelic heterogeneity.

  15. Unravelling Glucan Recognition Systems by Glycome Microarrays Using the Designer Approach and Mass Spectrometry*

    PubMed Central

    Palma, Angelina S.; Liu, Yan; Zhang, Hongtao; Zhang, Yibing; McCleary, Barry V.; Yu, Guangli; Huang, Qilin; Guidolin, Leticia S.; Ciocchini, Andres E.; Torosantucci, Antonella; Wang, Denong; Carvalho, Ana Luísa; Fontes, Carlos M. G. A.; Mulloy, Barbara; Childs, Robert A.; Feizi, Ten; Chai, Wengang

    2015-01-01

    Glucans are polymers of d-glucose with differing linkages in linear or branched sequences. They are constituents of microbial and plant cell-walls and involved in important bio-recognition processes, including immunomodulation, anticancer activities, pathogen virulence, and plant cell-wall biodegradation. Translational possibilities for these activities in medicine and biotechnology are considerable. High-throughput micro-methods are needed to screen proteins for recognition of specific glucan sequences as a lead to structure–function studies and their exploitation. We describe construction of a “glucome” microarray, the first sequence-defined glycome-scale microarray, using a “designer” approach from targeted ligand-bearing glucans in conjunction with a novel high-sensitivity mass spectrometric sequencing method, as a screening tool to assign glucan recognition motifs. The glucome microarray comprises 153 oligosaccharide probes with high purity, representing major sequences in glucans. Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation was used for complete linkage analysis of gluco-oligosaccharides in linear “homo” and “hetero” and branched sequences. The system is validated using antibodies and carbohydrate-binding modules known to target α- or β-glucans in different biological contexts, extending knowledge on their specificities, and applied to reveal new information on glucan recognition by two signaling molecules of the immune system against pathogens: Dectin-1 and DC-SIGN. The sequencing of the glucan oligosaccharides by the MS method and their interrogation on the microarrays provides detailed information on linkage, sequence and chain length requirements of glucan-recognizing proteins, and are a sensitive means of revealing unsuspected sequences in the polysaccharides. PMID:25670804

  16. Genome organisation and sequence comparison suggest intraspecies incongruence in M RNA of Watermelon bud necrosis virus.

    PubMed

    Kumar, Rakesh; Mandal, B; Geetanjali, A S; Jain, R K; Jaiwal, P K

    2010-08-01

    Watermelon bud necrosis virus (WBNV), a member of the genus Tospovirus, family Bunyaviridae is an important viral pathogen in watermelon cultivation in India. The complete genome sequence properties of WBNV are not available. In the present study, the complete M RNA sequence and the genome organisation of a WBNV isolate infecting watermelon in Delhi (WBNV-wDel) were determined. The M RNA was 4,794 nucleotides (nt) long and potentially coded for a movement protein (NSm) of 34.22 kDa (307 amino acids) on the viral sense strand and a Gn/Gc glycoprotein precursor of 127.15 kDa (1,121 amino acids) on the complementary strand. The two open reading frames were separated by an intergenic region of 402 nt. The 5' and 3' untranslated regions were 55 and 47 nt long, respectively, containing complementary termini typical of tospoviruses. WBNV-wDel was most closely related (79.1% identity) to Groundnut bud necrosis virus, an important tospovirus that occurs in several crops in India, and was different (63.3-75.2% identity) from the other cucurbit-infecting tospoviruses known to occur in Taiwan and Japan. Sequence analysis of NSm and Gn/Gc revealed phylogenetic incongruence between WBNV-wDel and another isolate originating from central India (WBNV-Wm-Som isolate). The Wm-Som isolate showed evolutionary divergence from the wDel isolate in the Gn/Gc protein (74.6% identity) potentially due to recombination with the other tospoviruses that are known to occur in India. This is the first report of a comparison of complete sequences of M RNA of WBNV.

  17. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora).

    PubMed

    Nie, Xiaojun; Lv, Shuzuo; Zhang, Yingxin; Du, Xianghong; Wang, Le; Biradar, Siddanagouda S; Tan, Xiufang; Wan, Fanghao; Weining, Song

    2012-01-01

    Crofton weed (Ageratina adenophora) is one of the most hazardous invasive plant species, which causes serious economic losses and environmental damages worldwide. However, the sequence resource and genome information of A. adenophora are rather limited, making phylogenetic identification and evolutionary studies very difficult. Here, we report the complete sequence of the A. adenophora chloroplast (cp) genome based on Illumina sequencing. The A. adenophora cp genome is 150, 689 bp in length including a small single-copy (SSC) region of 18, 358 bp and a large single-copy (LSC) region of 84, 815 bp separated by a pair of inverted repeats (IRs) of 23, 755 bp. The genome contains 130 unique genes and 18 duplicated in the IR regions, with the gene content and organization similar to other Asteraceae cp genomes. Comparative analysis identified five DNA regions (ndhD-ccsA, psbI-trnS, ndhF-ycf1, ndhI-ndhG and atpA-trnR) containing parsimony-informative characters higher than 2%, which may be potential informative markers for barcoding and phylogenetic analysis. Repeat structure, codon usage and contraction of the IR were also investigated to reveal the pattern of evolution. Phylogenetic analysis demonstrated a sister relationship between A. adenophora and Guizotia abyssinica and supported a monophyly of the Asterales. We have assembled and analyzed the chloroplast genome of A. adenophora in this study, which was the first sequenced plastome in the Eupatorieae tribe. The complete chloroplast genome information is useful for plant phylogenetic and evolutionary studies within this invasive species and also within the Asteraceae family.

  18. Sensitive Next-Generation Sequencing Method Reveals Deep Genetic Diversity of HIV-1 in the Democratic Republic of the Congo.

    PubMed

    Rodgers, Mary A; Wilkinson, Eduan; Vallari, Ana; McArthur, Carole; Sthreshley, Larry; Brennan, Catherine A; Cloherty, Gavin; de Oliveira, Tulio

    2017-03-15

    As the epidemiological epicenter of the human immunodeficiency virus (HIV) pandemic, the Democratic Republic of the Congo (DRC) is a reservoir of circulating HIV strains exhibiting high levels of diversity and recombination. In this study, we characterized HIV specimens collected in two rural areas of the DRC between 2001 and 2003 to identify rare strains of HIV. The env gp41 region was sequenced and characterized for 172 HIV-positive specimens. The env sequences were predominantly subtype A (43.02%), but 7 other subtypes (33.14%), 20 circulating recombinant forms (CRFs; 11.63%), and 20 unclassified (11.63%) sequences were also found. Of the rare and unclassified subtypes, 18 specimens were selected for next-generation sequencing (NGS) by a modified HIV-switching mechanism at the 5' end of the RNA template (SMART) method to obtain full-genome sequences. NGS produced 14 new complete genomes, which included pure subtype C ( n = 2), D ( n = 1), F1 ( n = 1), H ( n = 3), and J ( n = 1) genomes. The two subtype C genomes and one of the subtype H genomes branched basal to their respective subtype branches but had no evidence of recombination. The remaining 6 genomes were complex recombinants of 2 or more subtypes, including subtypes A1, F, G, H, J, and K and unclassified fragments, including one subtype CRF25 isolate, which branched basal to all CRF25 references. Notably, all recombinant subtype H fragments branched basal to the H clade. Spatial-geographical analysis indicated that the diverse sequences identified here did not expand globally. The full-genome and subgenomic sequences identified in our study population significantly increase the documented diversity of the strains involved in the continually evolving HIV-1 pandemic. IMPORTANCE Very little is known about the ancestral HIV-1 strains that founded the global pandemic, and very few complete genome sequences are available from patients in the Congo Basin, where HIV-1 expanded early in the global pandemic. By sequencing a subgenomic fragment of the HIV-1 envelope from study participants in the DRC, we identified rare variants for complete genome sequencing. The basal branching of some of the complete genome sequences that we recovered suggests that these strains are more closely related to ancestral HIV-1 strains than to previously reported strains and is evidence that the local diversification of HIV in the DRC continues to outpace the diversity of global strains decades after the emergence of the pandemic. Copyright © 2017 Rodgers et al.

  19. Encephalitozoonosis in two inland bearded dragons (Pogona vitticeps).

    PubMed

    Richter, B; Csokai, J; Graner, I; Eisenberg, T; Pantchev, N; Eskens, H U; Nedorost, N

    2013-02-01

    Microsporidiosis is reported rarely in reptiles. Sporadic multisystemic granulomatous disease of captive bearded dragons (Pogona vitticeps) has been associated with microsporidia showing Encephalitozoon-like morphology. Two such cases are described herein. Both animals displayed clinical signs suggestive of renal failure. Necropsy examination revealed granulomatous lesions in the liver and adrenal area in both animals, and in several other organs in one animal. The lesions were associated with intracellular protozoa consistent with microsporidia. Ultrastructural examination of the organisms revealed morphology similar to Encephalitozoon spp. Immunohistochemistry and chromogenic in-situ hybridization for Encephalitozoon cuniculi were positive in both animals. Nucleotide sequencing of the partial small subunit ribosomal RNA gene and the complete internal transcribed spacer (ITS) region revealed high similarity with published E. cuniculi sequences in both animals. However, the ITS region showed a GTTT-repeat pattern distinct from mammalian E. cuniculi strains. This may be a novel E. cuniculi strain associated with multisystemic granulomatous disease in bearded dragons. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Analysis of full-length sequences of two Citrus yellow mosaic badnavirus isolates infecting Citrus jambhiri (Rough Lemon) and Citrus sinensis L. Osbeck (Sweet Orange) from a nursery in India.

    PubMed

    Anthony Johnson, A M; Borah, B K; Sai Gopal, D V R; Dasgupta, I

    2012-12-01

    Citrus yellow mosaic badna virus (CMBV), a member of the Family Caulimoviridae, Genus Badnavirus is the causative agent of mosaic disease among Citrus species in southern India. Despite its reported prevalence in several citrus species, complete information on clear functional genomics or functional information of full-length genomes from all the CMBV isolates infecting citrus species are not available in publicly accessible databases. CMBV isolates from Rough Lemon and Sweet Orange collected from a nursery were cloned and sequenced. The analysis revealed high sequence homology of the two CMBV isolates with previously reported CMBV sequences implying that they represent new variants. Based on computational analysis of the predicted secondary structures, the possible functions of some CMBV proteins have been analyzed.

  1. The primary structures of ribosomal proteins L16, L23 and L33 from the archaebacterium Halobacterium marismortui.

    PubMed

    Hatakeyama, T; Hatakeyama, T; Kimura, M

    1988-11-21

    The complete amino acid sequences of ribosomal proteins L16, L23 and L33 from the archaebacterium Halobacterium marismortui were determined. The sequences were established by manual sequencing of peptides produced with several proteases as well as by cleavage with dilute HCl. Proteins L16, L23 and L33 consist of 119, 154 and 69 amino acid residues, and their molecular masses are 13,538, 16,812 and 7620 Da, respectively. The comparison of their sequences with those of ribosomal proteins from other organisms revealed that L23 and L33 are related to eubacterial ribosomal proteins from Escherichia coli and Bacillus stearothermophilus, while protein L16 was found to be homologous to a eukaryotic ribosomal protein from yeast. These results provide information about the special phylogenetic position of archaebacteria.

  2. [Structural organization of 5S ribosomal DNA of Rosa rugosa].

    PubMed

    Tynkevych, Iu O; Volkov, R A

    2014-01-01

    In order to clarify molecular organization of the genomic region encoding 5S rRNA in diploid species Rosa rugosa several 5S rDNA repeated units were cloned and sequenced. Analysis of the obtained sequences revealed that only one length variant of 5S rDNA repeated units, which contains intact promoter elements in the intergenic spacer region (IGS) and appears to be transcriptionally active is present in the genome. Additionally, a limited number of 5S rDNA pseudogenes lacking a portion of coding sequence and the complete IGS was detected. A high level of sequence similarity (from 93.7 to 97.5%) between the IGS of major 5S rDNA variants of East Asian R. rugosa and North American R. nitida was found indicating comparatively recent divergence of these species.

  3. Complete genome sequencing and evolutionary analysis of Indian isolates of Dengue virus type 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dash, Paban Kumar, E-mail: pabandash@rediffmail.com; Sharma, Shashi; Soni, Manisha

    Highlights: •Complete genome of Indian DENV-2 was deciphered for the first time in this study. •The recent Indian DENV-2 revealed presence of many unique amino acid residues. •Genotype shift (American to Cosmopolitan) characterizes evolution of DENV-2 in India. •Circulation of a unique clade of DENV-2 in South Asia was identified. -- Abstract: Dengue is the most important arboviral infection of global public health significance. It is now endemic in most parts of the South East Asia including India. Though Dengue virus type 2 (DENV-2) is predominantly associated with major outbreaks in India, complete genome information of Indian DENV-2 is notmore » available. In this study, the full-length genome of five DENV-2 isolates (four from 2001 to 2011 and one from 1960), from different parts of India was determined. The complete genome of the Indian DENV-2 was found to be 10,670 bases long with an open reading frame coding for 3391 amino acids. The recent Indian DENV-2 (2001–2011) revealed a nucleotide sequence identity of around 90% and 97% with an older Indian DENV-2 (1960) and closely related Sri Lankan and Chinese DENV-2 respectively. Presence of unique amino acid residues and non-conservative substitutions in critical amino acid residues of major structural and non-structural proteins was observed in recent Indian DENV-2. Selection pressure analysis revealed positive selection in few amino acid sites of the genes encoding for structural and non-structural proteins. The molecular phylogenetic analysis based on comparison of both complete coding region and envelope protein gene with globally diverse DENV-2 viruses classified the recent Indian isolates into a unique South Asian clade within Cosmopolitan genotype. A shift of genotype from American to Cosmopolitan in 1970s characterized the evolution of DENV-2 in India. Present study is the first report on complete genome characterization of emerging DENV-2 isolates from India and highlights the circulation of a unique clade in South Asia.« less

  4. Selfish DNA in protein-coding genes of Rickettsia.

    PubMed

    Ogata, H; Audic, S; Barbe, V; Artiguenave, F; Fournier, P E; Raoult, D; Claverie, J M

    2000-10-13

    Rickettsia conorii, the aetiological agent of Mediterranean spotted fever, is an intracellular bacterium transmitted by ticks. Preliminary analyses of the nearly complete genome sequence of R. conorii have revealed 44 occurrences of a previously undescribed palindromic repeat (150 base pairs long) throughout the genome. Unexpectedly, this repeat was found inserted in-frame within 19 different R. conorii open reading frames likely to encode functional proteins. We found the same repeat in proteins of other Rickettsia species. The finding of a mobile element inserted in many unrelated genes suggests the potential role of selfish DNA in the creation of new protein sequences.

  5. Beet western yellows virus infects the carnivorous plant Nepenthes mirabilis.

    PubMed

    Miguel, Sissi; Biteau, Flore; Mignard, Benoit; Marais, Armelle; Candresse, Thierry; Theil, Sébastien; Bourgaud, Frédéric; Hehn, Alain

    2016-08-01

    Although poleroviruses are known to infect a broad range of higher plants, carnivorous plants have not yet been reported as hosts. Here, we describe the first polerovirus naturally infecting the pitcher plant Nepenthes mirabilis. The virus was identified through bioinformatic analysis of NGS transcriptome data. The complete viral genome sequence was assembled from overlapping PCR fragments and shown to share 91.1 % nucleotide sequence identity with the US isolate of beet western yellows virus (BWYV). Further analysis of other N. mirabilis plants revealed the presence of additional BWYV isolates differing by several insertion/deletion mutations in ORF5.

  6. Genomes by design

    PubMed Central

    Haimovich, Adrian D.; Muir, Paul; Isaacs, Farren J.

    2016-01-01

    Next-generation DNA sequencing has revealed the complete genome sequences of numerous organisms, establishing a fundamental and growing understanding of genetic variation and phenotypic diversity. Engineering at the gene, network and whole-genome scale aims to introduce targeted genetic changes both to explore emergent phenotypes and to introduce new functionalities. Expansion of these approaches into massively parallel platforms establishes the ability to generate targeted genome modifications, elucidating causal links between genotype and phenotype, as well as the ability to design and reprogramme organisms. In this Review, we explore techniques and applications in genome engineering, outlining key advances and defining challenges. PMID:26260262

  7. Whole-genome characterization of Uruguayan strains of avian infectious bronchitis virus reveals extensive recombination between the two major South American lineages.

    PubMed

    Marandino, Ana; Tomás, Gonzalo; Panzera, Yanina; Greif, Gonzalo; Parodi-Talice, Adriana; Hernández, Martín; Techera, Claudia; Hernández, Diego; Pérez, Ruben

    2017-10-01

    Infectious bronchitis virus (Gammacoronavirus, Coronaviridae) is a genetically variable RNA virus that causes one of the most persistent respiratory diseases in poultry. The virus is classified in genotypes and lineages with different epidemiological relevance. Two lineages of the GI genotype (11 and 16) have been widely circulating for decades in South America. GI-11 is an exclusive South American lineage while the GI-16 lineage is distributed in Asia, Europe and South America. Here, we obtained the whole genome of two Uruguayan strains of the GI-11 and GI-16 lineages using Illumina high-throughput sequencing. The strains here sequenced are the first obtained in South America for the infectious bronchitis virus and provide new insights into the origin, spreading and evolution of viral variants. The complete genome of the GI-11 and GI-16 strains have 27,621 and 27,638 nucleotides, respectively, and possess the same genomic organization. Phylogenetic incongruence analysis reveals that both strains have a mosaic genome that arose by recombination between Euro Asiatic strains of the GI-16 lineage and ancestral South American GI-11 viruses. The recombination occurred in South America and produced two viral variants that have retained the full-length S1 sequences of the parental lineages but are extremely similar in the rest of their genomes. These recombinant virus have been extraordinary successful, persisting in the continent for several years with a notorious wide geographic distribution. Our findings reveal a singular viral dynamics and emphasize the importance of complete genomic characterization to understand the emergence and evolutionary history of viral variants. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sequences of 95 human MHC haplotypes reveal extreme coding variation in genes other than highly polymorphic HLA class I and II

    PubMed Central

    Norman, Paul J.; Norberg, Steven J.; Guethlein, Lisbeth A.; Nemat-Gorgani, Neda; Royce, Thomas; Wroblewski, Emily E.; Dunn, Tamsen; Mann, Tobias; Alicata, Claudia; Hollenbach, Jill A.; Chang, Weihua; Shults Won, Melissa; Gunderson, Kevin L.; Abi-Rached, Laurent; Ronaghi, Mostafa; Parham, Peter

    2017-01-01

    The most polymorphic part of the human genome, the MHC, encodes over 160 proteins of diverse function. Half of them, including the HLA class I and II genes, are directly involved in immune responses. Consequently, the MHC region strongly associates with numerous diseases and clinical therapies. Notoriously, the MHC region has been intractable to high-throughput analysis at complete sequence resolution, and current reference haplotypes are inadequate for large-scale studies. To address these challenges, we developed a method that specifically captures and sequences the 4.8-Mbp MHC region from genomic DNA. For 95 MHC homozygous cell lines we assembled, de novo, a set of high-fidelity contigs and a sequence scaffold, representing a mean 98% of the target region. Included are six alternative MHC reference sequences of the human genome that we completed and refined. Characterization of the sequence and structural diversity of the MHC region shows the approach accurately determines the sequences of the highly polymorphic HLA class I and HLA class II genes and the complex structural diversity of complement factor C4A/C4B. It has also uncovered extensive and unexpected diversity in other MHC genes; an example is MUC22, which encodes a lung mucin and exhibits more coding sequence alleles than any HLA class I or II gene studied here. More than 60% of the coding sequence alleles analyzed were previously uncharacterized. We have created a substantial database of robust reference MHC haplotype sequences that will enable future population scale studies of this complicated and clinically important region of the human genome. PMID:28360230

  9. Company profile: Complete Genomics Inc.

    PubMed

    Reid, Clifford

    2011-02-01

    Complete Genomics Inc. is a life sciences company that focuses on complete human genome sequencing. It is taking a completely different approach to DNA sequencing than other companies in the industry. Rather than building a general-purpose platform for sequencing all organisms and all applications, it has focused on a single application - complete human genome sequencing. The company's Complete Genomics Analysis Platform (CGA™ Platform) comprises an integrated package of biochemistry, instrumentation and software that sequences human genomes at the highest quality, lowest cost and largest scale available. Complete Genomics offers a turnkey service that enables customers to outsource their human genome sequencing to the company's genome sequencing center in Mountain View, CA, USA. Customers send in their DNA samples, the company does all the library preparation, DNA sequencing, assembly and variant analysis, and customers receive research-ready data that they can use for biological discovery.

  10. Attentional load and implicit sequence learning.

    PubMed

    Shanks, David R; Rowland, Lee A; Ranger, Mandeep S

    2005-06-01

    A widely employed conceptualization of implicit learning hypothesizes that it makes minimal demands on attentional resources. This conjecture was investigated by comparing learning under single-task and dual-task conditions in the sequential reaction time (SRT) task. Participants learned probabilistic sequences, with dual-task participants additionally having to perform a counting task using stimuli that were targets in the SRT display. Both groups were then tested for sequence knowledge under single-task (Experiments 1 and 2) or dual-task (Experiment 3) conditions. Participants also completed a free generation task (Experiments 2 and 3) under inclusion or exclusion conditions to determine if sequence knowledge was conscious or unconscious in terms of its access to intentional control. The experiments revealed that the secondary task impaired sequence learning and that sequence knowledge was consciously accessible. These findings disconfirm both the notion that implicit learning is able to proceed normally under conditions of divided attention, and that the acquired knowledge is inaccessible to consciousness. A unitary framework for conceptualizing implicit and explicit learning is proposed.

  11. Novel antigenic shift in HA sequences of H1N1 viruses detected by big data analysis.

    PubMed

    Zhang, Ruiying; Xu, Chongfeng; Duan, Ziyuan

    2017-07-01

    The influenza virus H1N1 has been prevalent all over the world for nearly a century. Many studies on its evolutionary history, substitution rate and antigenicity-associated sites have been done with small datasets. To have a complete view, we analysed 3171 full-length HA sequences from human H1N1 viruses sampled from 1918 to 2016, and discovered a new clade has formed with sequences isolated in Iran. Based on genetic distance calculations, we revealed an uneven evolutionary rate among sequences isolated in different years. We also found that the HA1 fragment of the new clade is like that of viruses that existed in the 1930s, while the HA2 fragment is closely associated with strains isolated after the 2009 pandemic. This new, "mixed" HA sequence indicates a cryptic antigenic shift event occurred, and it should draw more attention to the new clade identified from sequences from Iran. Copyright © 2017. Published by Elsevier B.V.

  12. Horizontal Transfer of Segments of the 16S rRNA Genes between Species of the Streptococcus anginosus Group

    PubMed Central

    Schouls, Leo M.; Schot, Corrie S.; Jacobs, Jan A.

    2003-01-01

    The nature in variation of the 16S rRNA gene of members of the Streptococcus anginosus group was investigated by hybridization and DNA sequencing. A collection of 708 strains was analyzed by reverse line blot hybridization. This revealed the presence of distinct reaction patterns representing 11 different hybridization groups. The 16S rRNA genes of two strains of each hybridization group were sequenced to near-completion, and the sequence data confirmed the reverse line blot hybridization results. Closer inspection of the sequences revealed mosaic-like structures, strongly suggesting horizontal transfer of segments of the 16S rRNA gene between different species belonging to the Streptococcus anginosus group. Southern blot hybridization further showed that within a single strain all copies of the 16S rRNA gene had the same composition, indicating that the apparent mosaic structures were not PCR-induced artifacts. These findings indicate that the highly conserved rRNA genes are also subject to recombination and that these events may be fixed in the population. Such recombination may lead to the construction of incorrect phylogenetic trees based on the 16S rRNA genes. PMID:14645285

  13. The complete chloroplast genome sequence of Aster spathulifolius (Asteraceae); genomic features and relationship with Asteraceae.

    PubMed

    Choi, Kyoung Su; Park, SeonJoo

    2015-11-10

    Aster spathulifolius, a member of the Asteraceae family, is distributed along the coast of Japan and Korea. This plant is used for medicinal and ornamental purposes. The complete chloroplast (cp) genome of A. sphathulifolius consists of 149,473 bp that include a pair of inverted repeats of 24,751 bp separated by a large single copy region of 81,998 bp and a small single copy region of 17,973 bp. The chloroplast genome contains 78 coding genes, four rRNA genes and 29 tRNA genes. When compared to other cpDNA sequences of Asteraceae, A. spathulifolius showed the closest relationship with Jacobaea vulgaris, and its atpB gene was found to be a pseudogene, unlike J. vulgaris. Furthermore, evaluation of the gene compositions of J. vulgaris, Helianthus annuus, Guizotia abyssinica and A. spathulifolius revealed that 13.6-kb showed inversion from ndhF to rps15, unlike Lactuca of Asteraceae. Comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates with J. vulgaris revealed that synonymous genes related to a small subunit of the ribosome showed the highest value (0.1558), while nonsynonymous rates of genes related to ATP synthase genes were highest (0.0118). These findings revealed that substitution has occurred at similar rates in most genes, and the substitution rates suggested that most genes is a purified selection. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin-resistant Enterococcus faecium

    PubMed Central

    2013-01-01

    Background In this report we have explored the genomic and microbiological basis for a sustained increase in bloodstream infections at a major Australian hospital caused by Enterococcus faecium multi-locus sequence type (ST) 203, an outbreak strain that has largely replaced a predecessor ST17 sequence type. Results To establish a ST203 reference sequence we fully assembled and annotated the genome of Aus0085, a 2009 vancomycin-resistant Enterococcus faecium (VREfm) bloodstream isolate, and the first example of a completed ST203 genome. Aus0085 has a 3.2 Mb genome, comprising a 2.9 Mb circular chromosome and six circular plasmids (2 kb–130 kb). Twelve percent of the 3222 coding sequences (CDS) in Aus0085 are not present in ST17 E. faecium Aus0004 and ST18 E. faecium TX16. Extending this comparison to an additional 12 ST17 and 14 ST203 E. faecium hospital isolate genomes revealed only six genomic regions spanning 41 kb that were present in all ST203 and absent from all ST17 genomes. The 40 CDS have predicted functions that include ion transport, riboflavin metabolism and two phosphotransferase systems. Comparison of the vancomycin resistance-conferring Tn1549 transposon between Aus0004 and Aus0085 revealed differences in transposon length and insertion site, and van locus sequence variation that correlated with a higher vancomycin MIC in Aus0085. Additional phenotype comparisons between ST17 and ST203 isolates showed that while there were no differences in biofilm-formation and killing of Galleria mellonella, ST203 isolates grew significantly faster and out-competed ST17 isolates in growth assays. Conclusions Here we have fully assembled and annotated the first ST203 genome, and then characterized the genomic differences between ST17 and ST203 E. faecium. We also show that ST203 E. faecium are faster growing and can out-compete ST17 E. faecium. While a causal genetic basis for these phenotype differences is not provided here, this study revealed conserved genetic differences between the two clones, differences that can now be tested to explain the molecular basis for the success and emergence of ST203 E. faecium. PMID:24004955

  15. Mitochondrial genes in the colourless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns.

    PubMed Central

    Wolff, G; Burger, G; Lang, B F; Kück, U

    1993-01-01

    The mitochondrial DNA from the colourless alga Prototheca wickerhamii contains two mosaic genes as was revealed from complete sequencing of the circular extranuclear genome. The genes for the large subunit of the ribosomal RNA (LSUrRNA) as well as for subunit I of the cytochrome oxidase (coxI) carry two and three intronic sequences respectively. On the basis of their canonical nucleotide sequences they can be classified as group I introns. Phylogenetic comparisons of the coxI protein sequences allow us to conclude that the P.wickerhamii mtDNA is much closer related to higher plant mtDNAs than to those of the chlorophyte alga C.reinhardtii. The comparison of the intron sequences revealed several unusual features: (1) The P.wickerhamii introns are structurally related to mitochondrial introns from various ascomycetous fungi. (2) Phylogenetic analyses indicate a close relationship between fungal and algal intronic sequences. (3) The P. wickerhamii introns are located at positions within the structural genes which can be considered as preferred intron insertion sites in homologous mitochondrial genes from fungi or liverwort. In all cases, the sequences adjacent to the insertion sites are very well conserved over large evolutionary distances. Our finding of highly similar introns in fungi and algae is consistent with the idea that introns have already been present in the bacterial ancestors of present day mitochondria and evolved concomitantly with the organelles. PMID:7680126

  16. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes

    PubMed Central

    Saski, Christopher; Lee, Seung-Bum; Fjellheim, Siri; Guda, Chittibabu; Jansen, Robert K.; Luo, Hong; Tomkins, Jeffrey; Rognli, Odd Arne; Clarke, Jihong Liu

    2009-01-01

    Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5′ end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19–37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16–21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C–U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae. PMID:17534593

  17. Genetic differences between two strains of Xylella fastidiosa revealed by suppression subtractive hybridization.

    PubMed

    Harakava, Ricardo; Gabriel, Dean W

    2003-02-01

    Suppression subtractive hybridization was used to rapidly identify 18 gene differences between a citrus variegated chlorosis (CVC) strain and a Pierce's disease of grape (PD) strain of Xylella fastidiosa. The results were validated as being highly representative of actual differences by comparison of the completely sequenced genome of a CVC strain with that of a PD strain.

  18. The complete nucleotide sequence of the Barley yellow dwarf virus-RMV genome reveals it to be a new Polerovirus distantly related to other yellow dwarf viruses

    USDA-ARS?s Scientific Manuscript database

    The yellow dwarf viruses (YDVs) of the Luteoviridae family represent the most widespread group of cereal viruses worldwide. They include the Barley yellow dwarf viruses (BYDVs) of genus Luteovirus, the Cereal yellow dwarf viruses (CYDVs) and Wheat yellow dwarf virus (WYDV) of genus Polerovirus. All ...

  19. The complete chloroplast genome sequence of strawberry (Fragaria  × ananassa Duch.) and comparison with related species of Rosaceae

    PubMed Central

    Cheng, Hui; Li, Jinfeng; Zhang, Hong; Cai, Binhua; Gao, Zhihong

    2017-01-01

    Compared with other members of the family Rosaceae, the chloroplast genomes of Fragaria species exhibit low variation, and this situation has limited phylogenetic analyses; thus, complete chloroplast genome sequencing of Fragaria species is needed. In this study, we sequenced the complete chloroplast genome of F. × ananassa ‘Benihoppe’ using the Illumina HiSeq 2500-PE150 platform and then performed a combination of de novo assembly and reference-guided mapping of contigs to generate complete chloroplast genome sequences. The chloroplast genome exhibits a typical quadripartite structure with a pair of inverted repeats (IRs, 25,936 bp) separated by large (LSC, 85,531 bp) and small (SSC, 18,146 bp) single-copy (SC) regions. The length of the F. × ananassa ‘Benihoppe’ chloroplast genome is 155,549 bp, representing the smallest Fragaria chloroplast genome observed to date. The genome encodes 112 unique genes, comprising 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Comparative analysis of the overall nucleotide sequence identity among ten complete chloroplast genomes confirmed that for both coding and non-coding regions in Rosaceae, SC regions exhibit higher sequence variation than IRs. The Ka/Ks ratio of most genes was less than 1, suggesting that most genes are under purifying selection. Moreover, the mVISTA results also showed a high degree of conservation in genome structure, gene order and gene content in Fragaria, particularly among three octoploid strawberries which were F. × ananassa ‘Benihoppe’, F. chiloensis (GP33) and F. virginiana (O477). However, when the sequences of the coding and non-coding regions of F. × ananassa ‘Benihoppe’ were compared in detail with those of F. chiloensis (GP33) and F. virginiana (O477), a number of SNPs and InDels were revealed by MEGA 7. Six non-coding regions (trnK-matK, trnS-trnG, atpF-atpH, trnC-petN, trnT-psbD and trnP-psaJ) with a percentage of variable sites greater than 1% and no less than five parsimony-informative sites were identified and may be useful for phylogenetic analysis of the genus Fragaria. PMID:29038765

  20. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae).

    PubMed

    Dubey, Bhawna; Meganathan, P R; Haque, Ikramul

    2012-07-01

    This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.

  1. Evolutionary relationships in the ilarviruses: nucleotide sequence of prunus necrotic ringspot virus RNA 3.

    PubMed

    Sánchez-Navarro, J A; Pallás, V

    1997-01-01

    The complete nucleotide sequence of an isolate of prunus necrotic ringspot virus (PNRSV) RNA 3 has been determined. Elucidation of the amino acid sequence of the proteins encoded by the two large open reading frames (ORFs) allowed us to carry out comparative and phylogenetic studies on the movement (MP) and coat (CP) proteins in the ilarvirus group. Amino acid sequence comparison of the MP revealed a highly conserved basic sequence motif with an amphipathic alpha-helical structure preceding the conserved motif of the '30K superfamily' proposed by Mushegian and Koonin [26] for MP's. Within this '30K' motif a strictly conserved transmembrane domain is present in all ilarviruses sequenced so far. At the amino-terminal end, prune dwarf virus (PDV) has an extension not present in other ilarviruses but which is observed in all bromo- and cucumoviruses, suggesting a common ancestor or a recombinational event in the Bromoviridae family. Examination of the N-terminus of the CP's of all ilarviruses revealed a highly basic region, part of which resembles the Arg-rich motif that has been characterized in the RNA-binding protein family. This motif has also been found in the other members of the Bromoviridae family, suggesting its involvement in a structural function. Furthermore this region is required for infectivity in ilarviruses. The similarities found in this Arg-rich motif are discussed in terms of this process known as genome activation. Finally, phylogenetic analysis of both the MP and CP proteins revealed a higher relationship of A1MV to PNRSV, apple mosaic virus (ApMV) and PDV than any other member of the ilarvirus group. In that sense, A1MV should be considered as a true ilarvirus instead of forming a distinct group of viruses.

  2. Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches

    PubMed Central

    Paterson, Andrew H.; Wang, Xuelin; Xu, Yiqing; Wu, Dongyang; Qu, Yanshu; Jiang, Anna; Ye, Qiaolin

    2016-01-01

    Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp) genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt) DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb) in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of the G. raimondii mt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals that G. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense) than other rosids, and the clade formed by two Gossypium species is sister to Brassicales. The G. raimondii mt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants. PMID:27847816

  3. Complete genome analysis of dengue virus type 3 isolated from the 2013 dengue outbreak in Yunnan, China.

    PubMed

    Wang, Xiaodan; Ma, Dehong; Huang, Xinwei; Li, Lihua; Li, Duo; Zhao, Yujiao; Qiu, Lijuan; Pan, Yue; Chen, Junying; Xi, Juemin; Shan, Xiyun; Sun, Qiangming

    2017-06-15

    In the past few decades, dengue has spread rapidly and is an emerging disease in China. An unexpected dengue outbreak occurred in Xishuangbanna, Yunnan, China, resulting in 1331 patients in 2013. In order to obtain the complete genome information and perform mutation and evolutionary analysis of causative agent related to this largest outbreak of dengue fever. The viruses were isolated by cell culture and evaluated by genome sequence analysis. Phylogenetic trees were then constructed by Neighbor-Joining methods (MEGA6.0), followed by analysis of nucleotide mutation and amino acid substitution. The analysis of the diversity of secondary structure for E and NS1 protein were also performed. Then selection pressures acting on the coding sequences were estimated by PAML software. The complete genome sequences of two isolated strains (YNSW1, YNSW2) were 10,710 and 10,702 nucleotides in length, respectively. Phylogenetic analysis revealed both strain were classified as genotype II of DENV-3. The results indicated that both isolated strains of Xishuangbanna in 2013 and Laos 2013 stains (KF816161.1, KF816158.1, LC147061.1, LC147059.1, KF816162.1) were most similar to Bangladesh (AY496873.2) in 2002. After comparing with the DENV-3SS (H87) 62 amino acid substitutions were identified in translated regions, and 38 amino acid substitutions were identified in translated regions compared with DENV-3 genotype II stains Bangladesh (AY496873.2). 27(YNSW1) or 28(YNSW2) single nucleotide changes were observed in structural protein sequences with 7(YNSW1) or 8(YNSW2) non-synonymous mutations compared with AY496873.2. Of them, 4 non-synonymous mutations were identified in E protein sequences with (2 in the β-sheet, 2 in the coil). Meanwhile, 117(YNSW1) or 115 (YNSW2) single nucleotide changes were observed in non-structural protein sequences with 31(YNSW1) or 30 (YNSW2) non-synonymous mutations. Particularly, 14 single nucleotide changes were observed in NS1 sequences with 4/14 non-synonymous substitutions (4 in the coil). Selection pressure analysis revealed no positive selection in the amino acid sites of the genes encoding for structural and non-structural proteins. This study may help understand the intrinsic geographical relatedness of dengue virus 3 and contributes further to research on their infectivity, pathogenicity and vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. When COI barcodes deceive: complete genomes reveal introgression in hairstreaks

    PubMed Central

    Shen, Jinhui; Borek, Dominika; Robbins, Robert K.; Opler, Paul A.; Otwinowski, Zbyszek; Grishin, Nick V.

    2017-01-01

    Two species of hairstreak butterflies from the genus Calycopis are known in the United States: C. cecrops and C. isobeon. Analysis of mitochondrial COI barcodes of Calycopis revealed cecrops-like specimens from the eastern US with atypical barcodes that were 2.6% different from either USA species, but similar to Central American Calycopis species. To address the possibility that the specimens with atypical barcodes represent an undescribed cryptic species, we sequenced complete genomes of 27 Calycopis specimens of four species: C. cecrops, C. isobeon, C. quintana and C. bactra. Some of these specimens were collected up to 60 years ago and preserved dry in museum collections, but nonetheless produced genomes as complete as fresh samples. Phylogenetic trees reconstructed using the whole mitochondrial and nuclear genomes were incongruent. While USA Calycopis with atypical barcodes grouped with Central American species C. quintana by mitochondria, nuclear genome trees placed them within typical USA C. cecrops in agreement with morphology, suggesting mitochondrial introgression. Nuclear genomes also show introgression, especially between C. cecrops and C. isobeon. About 2.3% of each C. cecrops genome has probably (p-value < 0.01, FDR < 0.1) introgressed from C. isobeon and about 3.4% of each C. isobeon genome may have come from C. cecrops. The introgressed regions are enriched in genes encoding transmembrane proteins, mitochondria-targeting proteins and components of the larval cuticle. This study provides the first example of mitochondrial introgression in Lepidoptera supported by complete genome sequencing. Our results caution about relying solely on COI barcodes and mitochondrial DNA for species identification or discovery. PMID:28179510

  5. Species-specific identification of Dekkera/Brettanomyces yeasts by fluorescently labeled DNA probes targeting the 26S rRNA.

    PubMed

    Röder, Christoph; König, Helmut; Fröhlich, Jürgen

    2007-09-01

    Sequencing of the complete 26S rRNA genes of all Dekkera/Brettanomyces species colonizing different beverages revealed the potential for a specific primer and probe design to support diagnostic PCR approaches and FISH. By analysis of the complete 26S rRNA genes of all five currently known Dekkera/Brettanomyces species (Dekkera bruxellensis, D. anomala, Brettanomyces custersianus, B. nanus and B. naardenensis), several regions with high nucleotide sequence variability yet distinct from the D1/D2 domains were identified. FISH species-specific probes targeting the 26S rRNA gene's most variable regions were designed. Accessibility of probe targets for hybridization was facilitated by the construction of partially complementary 'side'-labeled probes, based on secondary structure models of the rRNA sequences. The specificity and routine applicability of the FISH-based method for yeast identification were tested by analyzing different wine isolates. Investigation of the prevalence of Dekkera/Brettanomyces yeasts in the German viticultural regions Wonnegau, Nierstein and Bingen (Rhinehesse, Rhineland-Palatinate) resulted in the isolation of 37 D. bruxellensis strains from 291 wine samples.

  6. Molecular characterization of class 1 integrons from Irish thermophilic Campylobacter spp.

    PubMed

    O'Halloran, Fiona; Lucey, Brigid; Cryan, Bartley; Buckley, Tom; Fanning, Séamus

    2004-06-01

    In this study a large random collection (n = 378) of Irish thermophilic Campylobacter isolates were investigated for the presence of integrons, genetic elements associated with the dissemination of antimicrobial resistance. Purified genomic DNA from each isolate was analysed by PCR for the presence of class 1 integrons. Four gene cassette-associated amplicons were completely characterized. Sixty-two of the isolates possessed a complete class 1 integron with a recombined gene cassette located within a 1.0 kb amplicon containing an aadA2 gene. This cassette was present in both Campylobacter jejuni and Campylobacter coli isolates and following sequence analysis was shown to be similar to sequences recently reported in Salmonella enterica Hadar and on an 85 kb plasmid conferring quinolone resistance in Escherichia coli. Aminoglycoside aadA2-encoding class 1 integrons were identified among unrelated Campylobacter spp. Amino acid sequence comparisons revealed identical structures in both Salmonella and E. coli. The presence of class 1 integrons in Campylobacter spp. may be significant should these organisms enter the food chain and especially when antimicrobial treatment for severe infections is being considered.

  7. Complete genome sequence of Bacillus velezensis QST713: A biocontrol agent that protects Agaricus bisporus crops against the green mould disease.

    PubMed

    Pandin, Caroline; Le Coq, Dominique; Deschamps, Julien; Védie, Régis; Rousseau, Thierry; Aymerich, Stéphane; Briandet, Romain

    2018-04-24

    Bacillus subtilis QST713 is extensively used as a biological control agent in agricultural fields including in the button mushroom culture, Agaricus bisporus. This last use exploits its inhibitory activity against microbial pathogens such as Trichoderma aggressivum f. europaeum, the main button mushroom green mould competitor. Here, we report the complete genome sequence of this bacterium with a genome size of 4 233 757 bp, 4263 predicted genes and an average GC content of 45.9%. Based on phylogenomic analyses, strain QST713 is finally designated as Bacillus velezensis. Genomic analyses revealed two clusters encoding potential new antimicrobials with NRPS and TransATPKS synthetase. B. velezensis QST713 genome also harbours several genes previously described as being involved in surface colonization and biofilm formation. This strain shows a strong ability to form in vitro spatially organized biofilm and to antagonize T. aggressivum. The availability of this genome sequence could bring new elements to understand the interactions with micro or/and macroorganisms in crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Massive Collection of Full-Length Complementary DNA Clones and Microarray Analyses:. Keys to Rice Transcriptome Analysis

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shoshi

    2009-02-01

    Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.

  9. Investigating the genetic diversity of Echinococcus granulosus sensu stricto with new microsatellites.

    PubMed

    Umhang, Gérald; Grenouillet, Frédéric; Bastid, Vanessa; M'Rad, Selim; Valot, Benoît; Oudni-M'Rad, Myriam; Babba, Hamouda; Boué, Franck

    2018-06-18

    Cystic echinococcosis is a zoonotic disease with worldwide distribution caused by the larval stage of the Cestode parasite Echinococcus granulosus sensu lato. Due to the predominance or even the exclusive presence of E. granulosus sensu stricto (s.s.) among E. granulosus species in many areas, the genetic diversity needs to be further investigated at the species level to better understand the inter- and intra-focus epidemiological features. Short sequences of mitochondrial or nuclear genes generally lack or have limited discriminatory power, hindering the detection of polymorphisms to reflect geographically based peculiarities and/or any history of infection. A high discriminatory power can only be reached by sequencing complete or near complete mitogenomes or relatively long nuclear sequences, which is time-consuming and onerous. To overcome this issue, a systematic research for single-locus microsatellites was performed on the nuclear genome of E. granulosus s.s. in order to investigate its intra-species genetic diversity. Two microsatellites, EgSca6 and EgSca11, were selected and characterized. The test of a panel of 75 cystic echinococcosis samples revealed a very high discrimination index of 0.824 for EgSca6, 0.987 for EgSca11, and 0.994 when multiplexing both microsatellites. Testing cystic echinococcosis samples from both liver and lungs in five sheep revealed that these two microsatellites appear to be of particular interest for investigating genetic diversity at the intra-individual host level. As this method has many advantages compared to classical sequencing, the availability of other targets means that it is potentially possible to constitute a panel facilitating large-scale molecular epidemiology studies for E. granulosus s.l.

  10. Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae

    PubMed Central

    Zowawi, Hosam M.; Forde, Brian M.; Alfaresi, Mubarak; Alzarouni, Abdulqadir; Farahat, Yasser; Chong, Teik-Min; Yin, Wai-Fong; Chan, Kok-Gan; Li, Jian; Schembri, Mark A.; Beatson, Scott A.; Paterson, David L.

    2015-01-01

    Carbapenem resistant Enterobacteriaceae (CRE) pose an urgent risk to global human health. CRE that are non-susceptible to all commercially available antibiotics threaten to return us to the pre-antibiotic era. Using Single Molecule Real Time (SMRT) sequencing we determined the complete genome of a pandrug-resistant Klebsiella pneumoniae isolate, representing the first complete genome sequence of CRE resistant to all commercially available antibiotics. The precise location of acquired antibiotic resistance elements, including mobile elements carrying genes for the OXA-181 carbapenemase, were defined. Intriguingly, we identified three chromosomal copies of an ISEcp1-blaOXA-181 mobile element, one of which has disrupted the mgrB regulatory gene, accounting for resistance to colistin. Our findings provide the first description of pandrug-resistant CRE at the genomic level, and reveal the critical role of mobile resistance elements in accelerating the emergence of resistance to other last resort antibiotics. PMID:26478520

  11. Complete genome sequence of Bacillus velezensis LM2303, a biocontrol strain isolated from the dung of wild yak inhabited Qinghai-Tibet plateau.

    PubMed

    Chen, Liang

    2017-06-10

    Bacillus velezensis LM2303 is a biocontrol strain with a broad inhibitory spectrum against plant pathogens, isolated from the dung of wild yak inhabited Qinghai-Tibet plateau, China. Here we present its complete genome sequence, which consists of a single, circular chromosome of 3,989,393bp with a 46.68% G+C content. Genome analysis revealed genes encoding specialized functions for the biosynthesis of antifungal metabolites and antibacterial metabolites, the promotion of plant growth, the alleviation of oxidative stress and nutrient utilization. And the biosynthesis of antimicrobial metabolites in strain LM2303 was confirmed by biochemical analysis, while its plant growth promoting traits were confirmed by inoculation tests. Our results will establish a better foundation for further studies and biocontrol application of B. velezensis LM2303. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Complete genome sequence of “Enterobacter lignolyticus” SCF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAngelis, Kristen M.; D'Haeseleer, Patrik; Chivian, Dylan

    2011-09-23

    In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated 'Ente-robacter lignolyticus' SCF1 on minimal media with alkali lignin as the sole source of carbon. This organism was isolated anaerobically from tropical forest soils collected from the Short Cloud Forest site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in redox potential and are net methane producers. Because of its ability to grow on lignin anae-robically, we sequenced the genome. The genome of 'E. lignolyticus' SCF1 is 4.81 Mbpmore » with no detected plasmids, and includes a relatively small arsenal of lignocellulolytic carbohy-drate active enzymes. Lignin degradation was observed in culture, and the genome revealed two putative laccases, a putative peroxidase, and a complete 4-hydroxyphenylacetate degra-dation pathway encoded in a single gene cluster.« less

  13. Marine turtle mitogenome phylogenetics and evolution.

    PubMed

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Alonzo; Dutton, Peter H; Thomas P Gilbert, M; Morin, Phillip A

    2012-10-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae. Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all sea turtles, and reveal phylogeographic patterns within globally-distributed species. Although there was clear concordance between phylogenies and geographic origin of samples in most taxa, we found evidence of more recent dispersal events in the loggerhead and olive ridley turtles, suggesting more recent migrations (<1 Myr) in these species. Overall, our results demonstrate the complexity of sea-turtle diversity, and indicate the need for further research in phylogeography and molecular evolution. Published by Elsevier Inc.

  14. Seven New Complete Plastome Sequences Reveal Rampant Independent Loss of the ndh Gene Family across Orchids and Associated Instability of the Inverted Repeat/Small Single-Copy Region Boundaries.

    PubMed

    Kim, Hyoung Tae; Kim, Jung Sung; Moore, Michael J; Neubig, Kurt M; Williams, Norris H; Whitten, W Mark; Kim, Joo-Hwan

    2015-01-01

    Earlier research has revealed that the ndh loci have been pseudogenized, truncated, or deleted from most orchid plastomes sequenced to date, including in all available plastomes of the two most species-rich subfamilies, Orchidoideae and Epidendroideae. This study sought to resolve deeper-level phylogenetic relationships among major orchid groups and to refine the history of gene loss in the ndh loci across orchids. The complete plastomes of seven orchids, Oncidium sphacelatum (Epidendroideae), Masdevallia coccinea (Epidendroideae), Sobralia callosa (Epidendroideae), Sobralia aff. bouchei (Epidendroideae), Elleanthus sodiroi (Epidendroideae), Paphiopedilum armeniacum (Cypripedioideae), and Phragmipedium longifolium (Cypripedioideae) were sequenced and analyzed in conjunction with all other available orchid and monocot plastomes. Most ndh loci were found to be pseudogenized or lost in Oncidium, Paphiopedilum and Phragmipedium, but surprisingly, all ndh loci were found to retain full, intact reading frames in Sobralia, Elleanthus and Masdevallia. Character mapping suggests that the ndh genes were present in the common ancestor of orchids but have experienced independent, significant losses at least eight times across four subfamilies. In addition, ndhF gene loss was correlated with shifts in the position of the junction of the inverted repeat (IR) and small single-copy (SSC) regions. The Orchidaceae have unprecedented levels of homoplasy in ndh gene presence/absence, which may be correlated in part with the unusual life history of orchids. These results also suggest that ndhF plays a role in IR/SSC junction stability.

  15. Sequence stratigraphic interpretation of parts of Anambra Basin, Nigeria using geophysical well logs and biostratigraphic data

    NASA Astrophysics Data System (ADS)

    Anakwuba, E. K.; Ajaegwu, N. E.; Ejeke, C. F.; Onyekwelu, C. U.; Chinwuko, A. I.

    2018-03-01

    The Anambra basin constitutes the southeastern lower portion of the Benue Trough, which is a large structural depression that is divided into lower, middle and upper parts; and is one of the least studied inland sedimentary basins in Nigeria. Sequence stratigraphic interpretation had been carried out in parts of the Anambra Basin using data from three wells (Alo-1 Igbariam-1 and Ajire-1). Geophysical well logs and biostratigraphic data were integrated in order to identify key bounding surfaces, subdivide the sediment packages, correlate sand continuity and interpret the environment of deposition in the fields. Biostratigraphic interpretation, using foraminifera and plankton population and diversity, reveals five maximum flooding surfaces (MFS) in the fields. Five sequence boundaries (SB) were also identified using the well log analysis. Four 3rd order genetic sequences bounded by maximum flooding surfaces (MFS-1 to MFS-6) were identified in the areas; four complete sequences and one incomplete sequence were identified in both Alo-1 and Igbariam-1 wells while Ajire-1 has an no complete sequence. The identified system tracts delineated comprises Lowstand Systems Tracts (progradational to aggradational to retrogradational packages), Transgressive Systems Tracts (retrogradational packages) and Highstand Systems Tracts (aggradational to progradational packages) in each well. The sand continuity across the fields reveal sands S1 to S5 where S1 is present in Ajire-1 well and Igbariam-1 well but not in Alo-1 well. The sands S4 to S5 run across the three fields at different depths. The formations penetrated by the wells starting from the base are; Nkporo Formation (Campanian), Mamu Formation (Late Campanian to Early Maastrichtian), Ajali Sandstone (Maastrichtian), Nsukka Formation (Late Maastrichtian to Early Palaeocene), Imo Formation (Palaeocene) and Nanka Sand (Eocene). The environments of deposition revealed are from coastal to bathyal. The sands of lowstand system tract and highstand system tract found in Ajali, Nsukka, Nkporo and Imo (Ebenebe Sandstone) Formations show good continuity and as such good reservoir qualities while the shales of the transgressive system tracts which includes the Imo Formation, Mamu, and Nkporo Formations where most of the maximum flooding surfaces were delineated, can serve as seals to the numerous reservoir units. Combinations of the reservoir sands of the lowstand system tract and highstand system tract and the shale units of the transgressive system tract can form good stratigraphic traps for hydrocarbon and hence should be hydrocarbon exploration targets.

  16. Mammalian genome projects reveal new growth hormone (GH) sequences. Characterization of the GH-encoding genes of armadillo (Dasypus novemcinctus), hedgehog (Erinaceus europaeus), bat (Myotis lucifugus), hyrax (Procavia capensis), shrew (Sorex araneus), ground squirrel (Spermophilus tridecemlineatus), elephant (Loxodonta africana), cat (Felis catus) and opossum (Monodelphis domestica).

    PubMed

    Wallis, Michael

    2008-01-15

    Mammalian growth hormone (GH) sequences have been shown previously to display episodic evolution: the sequence is generally strongly conserved but on at least two occasions during mammalian evolution (on lineages leading to higher primates and ruminants) bursts of rapid evolution occurred. However, the number of mammalian orders studied previously has been relatively limited, and the availability of sequence data via mammalian genome projects provides the potential for extending the range of GH gene sequences examined. Complete or nearly complete GH gene sequences for six mammalian species for which no data were previously available have been extracted from the genome databases-Dasypus novemcinctus (nine-banded armadillo), Erinaceus europaeus (western European hedgehog), Myotis lucifugus (little brown bat), Procavia capensis (cape rock hyrax), Sorex araneus (European shrew), Spermophilus tridecemlineatus (13-lined ground squirrel). In addition incomplete data for several other species have been extended. Examination of the data in detail and comparison with previously available sequences has allowed assessment of the reliability of deduced sequences. Several of the new sequences differ substantially from the consensus sequence previously determined for eutherian GHs, indicating greater variability than previously recognised, and confirming the episodic pattern of evolution. The episodic pattern is not seen for signal sequences, 5' upstream sequence or synonymous substitutions-it is specific to the mature protein sequence, suggesting that it relates to the hormonal function. The substitutions accumulated during the course of GH evolution have occurred mainly on the side of the hormone facing away from the receptor, in a non-random fashion, and it is suggested that this may reflect interaction of the receptor-bound hormone with other proteins or small ligands.

  17. Differential sequence diversity at merozoite surface protein-1 locus of Plasmodium knowlesi from humans and macaques in Thailand.

    PubMed

    Putaporntip, Chaturong; Thongaree, Siriporn; Jongwutiwes, Somchai

    2013-08-01

    To determine the genetic diversity and potential transmission routes of Plasmodium knowlesi, we analyzed the complete nucleotide sequence of the gene encoding the merozoite surface protein-1 of this simian malaria (Pkmsp-1), an asexual blood-stage vaccine candidate, from naturally infected humans and macaques in Thailand. Analysis of Pkmsp-1 sequences from humans (n=12) and monkeys (n=12) reveals five conserved and four variable domains. Most nucleotide substitutions in conserved domains were dimorphic whereas three of four variable domains contained complex repeats with extensive sequence and size variation. Besides purifying selection in conserved domains, evidence of intragenic recombination scattering across Pkmsp-1 was detected. The number of haplotypes, haplotype diversity, nucleotide diversity and recombination sites of human-derived sequences exceeded that of monkey-derived sequences. Phylogenetic networks based on concatenated conserved sequences of Pkmsp-1 displayed a character pattern that could have arisen from sampling process or the presence of two independent routes of P. knowlesi transmission, i.e. from macaques to human and from human to humans in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Genomic organization and sequence of the Gus-s/sup a/ allele of the murine. beta. -glucuronidase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funkenstein, B.; Leary, S.L.; Stein, J.C.

    1988-03-01

    The Gus-s/sup ..cap alpha../ allele of the mouse ..beta..-glucuronidase gene exhibits a high degree of inducibility by androgens due to its linkage with the Gus-r/sup ..cap alpha../ regulatory locus. The authors isolated Gus-s/sup ..cap alpha../ on a 28-kilobase pair fragment of mouse chromosome 5 and found that it contains 12 exons and 11 intervening sequences spanning 14 kilobase pairs of this genomic segment. The mRNA cap site was identified by ribonuclease protection and primer extension analyses which revealed an unusually short 5' noncoding sequence of 12 nucleotides. Proximal regulatory sequences in the 5'-flanking DNA and the complete sequence of themore » Gus-s/sup ..cap alpha../ mRNA transcript were also determined. Comparison of the amino acid sequence determined from the Gus-s/sup ..cap alpha../ nucleotide sequence with that of human ..beta..-glucuronidase indicated that the two human mRNA species differ due to alternate splicing of an exon homologous to exon 6 of the mouse gene.« less

  19. The complete mitochondrial genomes of two rice planthoppers, Nilaparvata lugens and Laodelphax striatellus: conserved genome rearrangement in Delphacidae and discovery of new characteristics of atp8 and tRNA genes.

    PubMed

    Zhang, Kai-Jun; Zhu, Wen-Chao; Rong, Xia; Zhang, Yan-Kai; Ding, Xiu-Lei; Liu, Jing; Chen, Da-Song; Du, Yu; Hong, Xiao-Yue

    2013-06-22

    Nilaparvata lugens (the brown planthopper, BPH) and Laodelphax striatellus (the small brown planthopper, SBPH) are two of the most important pests of rice. Up to now, there was only one mitochondrial genome of rice planthopper has been sequenced and very few dependable information of mitochondria could be used for research on population genetics, phylogeographics and phylogenetic evolution of these pests. To get more valuable information from the mitochondria, we sequenced the complete mitochondrial genomes of BPH and SBPH. These two planthoppers were infected with two different functional Wolbachia (intracellular endosymbiont) strains (wLug and wStri). Since both mitochondria and Wolbachia are transmitted by cytoplasmic inheritance and it was difficult to separate them when purified the Wolbachia particles, concomitantly sequencing the genome of Wolbachia using next generation sequencing method, we also got nearly complete mitochondrial genome sequences of these two rice planthoppers. After gap closing, we present high quality and reliable complete mitochondrial genomes of these two planthoppers. The mitogenomes of N. lugens (BPH) and L. striatellus (SBPH) are 17, 619 bp and 16, 431 bp long with A + T contents of 76.95% and 77.17%, respectively. Both species have typical circular mitochondrial genomes that encode the complete set of 37 genes which are usually found in metazoans. However, the BPH mitogenome also possesses two additional copies of the trnC gene. In both mitochondrial genomes, the lengths of the atp8 gene were conspicuously shorter than that of all other known insect mitochondrial genomes (99 bp for BPH, 102 bp for SBPH). That two rearrangement regions (trnC-trnW and nad6-trnP-trnT) of mitochondrial genomes differing from other known insect were found in these two distantly related planthoppers revealed that the gene order of mitochondria might be conservative in Delphacidae. The large non-coding fragment (the A+T-rich region) putatively corresponding responsible for the control of replication and transcription of mitochondria contained a variable number of tandem repeats (VNTRs) block in different natural individuals of these two planthoppers. Comparison with a previously sequenced individual of SBPH revealed that the mitochondrial genetic variation within a species exists not only in the sequence and secondary structure of genes, but also in the gene order (the different location of trnH gene). The mitochondrial genome arrangement pattern found in planthoppers was involved in rearrangements of both tRNA genes and protein-coding genes (PCGs). Different species from different genera of Delphacidae possessing the same mitochondrial gene rearrangement suggests that gene rearrangements of mitochondrial genome probably occurred before the differentiation of this family. After comparatively analyzing the gene order of different species of Hemiptera, we propose that except for some specific taxonomical group (e.g. the whiteflies) the gene order might have diversified in family level of this order. The VNTRs detected in the control region might provide additional genetic markers for studying population genetics, individual difference and phylogeographics of planthoppers.

  20. The complete mitochondrial genomes of two rice planthoppers, Nilaparvata lugens and Laodelphax striatellus: conserved genome rearrangement in Delphacidae and discovery of new characteristics of atp8 and tRNA genes

    PubMed Central

    2013-01-01

    Background Nilaparvata lugens (the brown planthopper, BPH) and Laodelphax striatellus (the small brown planthopper, SBPH) are two of the most important pests of rice. Up to now, there was only one mitochondrial genome of rice planthopper has been sequenced and very few dependable information of mitochondria could be used for research on population genetics, phylogeographics and phylogenetic evolution of these pests. To get more valuable information from the mitochondria, we sequenced the complete mitochondrial genomes of BPH and SBPH. These two planthoppers were infected with two different functional Wolbachia (intracellular endosymbiont) strains (wLug and wStri). Since both mitochondria and Wolbachia are transmitted by cytoplasmic inheritance and it was difficult to separate them when purified the Wolbachia particles, concomitantly sequencing the genome of Wolbachia using next generation sequencing method, we also got nearly complete mitochondrial genome sequences of these two rice planthoppers. After gap closing, we present high quality and reliable complete mitochondrial genomes of these two planthoppers. Results The mitogenomes of N. lugens (BPH) and L. striatellus (SBPH) are 17, 619 bp and 16, 431 bp long with A + T contents of 76.95% and 77.17%, respectively. Both species have typical circular mitochondrial genomes that encode the complete set of 37 genes which are usually found in metazoans. However, the BPH mitogenome also possesses two additional copies of the trnC gene. In both mitochondrial genomes, the lengths of the atp8 gene were conspicuously shorter than that of all other known insect mitochondrial genomes (99 bp for BPH, 102 bp for SBPH). That two rearrangement regions (trnC-trnW and nad6-trnP-trnT) of mitochondrial genomes differing from other known insect were found in these two distantly related planthoppers revealed that the gene order of mitochondria might be conservative in Delphacidae. The large non-coding fragment (the A+T-rich region) putatively corresponding responsible for the control of replication and transcription of mitochondria contained a variable number of tandem repeats (VNTRs) block in different natural individuals of these two planthoppers. Comparison with a previously sequenced individual of SBPH revealed that the mitochondrial genetic variation within a species exists not only in the sequence and secondary structure of genes, but also in the gene order (the different location of trnH gene). Conclusion The mitochondrial genome arrangement pattern found in planthoppers was involved in rearrangements of both tRNA genes and protein-coding genes (PCGs). Different species from different genera of Delphacidae possessing the same mitochondrial gene rearrangement suggests that gene rearrangements of mitochondrial genome probably occurred before the differentiation of this family. After comparatively analyzing the gene order of different species of Hemiptera, we propose that except for some specific taxonomical group (e.g. the whiteflies) the gene order might have diversified in family level of this order. The VNTRs detected in the control region might provide additional genetic markers for studying population genetics, individual difference and phylogeographics of planthoppers. PMID:23799924

  1. Porcine Epidemic Diarrhea in Europe: In-Detail Analyses of Disease Dynamics and Molecular Epidemiology.

    PubMed

    Hanke, Dennis; Pohlmann, Anne; Sauter-Louis, Carola; Höper, Dirk; Stadler, Julia; Ritzmann, Mathias; Steinrigl, Adi; Schwarz, Bernd-Andreas; Akimkin, Valerij; Fux, Robert; Blome, Sandra; Beer, Martin

    2017-07-06

    Porcine epidemic diarrhea (PED) is an acute and highly contagious enteric disease of swine caused by the eponymous virus (PEDV) which belongs to the genus Alphacoronavirus within the Coronaviridae virus family. Following the disastrous outbreaks in Asia and the United States, PEDV has been detected also in Europe. In order to better understand the overall situation, the molecular epidemiology, and factors that might influence the most variable disease impact; 40 samples from swine feces were collected from different PED outbreaks in Germany and other European countries and sequenced by shot-gun next-generation sequencing. A total of 38 new PEDV complete coding sequences were generated. When compared on a global scale, all investigated sequences from Central and South-Eastern Europe formed a rather homogeneous PEDV S INDEL cluster, suggesting a recent re-introduction. However, in-detail analyses revealed two new clusters and putative ancestor strains. Based on the available background data, correlations between clusters and location, farm type or clinical presentation could not be established. Additionally, the impact of secondary infections was explored using the metagenomic data sets. While several coinfections were observed, no correlation was found with disease courses. However, in addition to the PEDV genomes, ten complete viral coding sequences from nine different data sets were reconstructed each representing new virus strains. In detail, three pasivirus A strains, two astroviruses, a porcine sapelovirus, a kobuvirus, a porcine torovirus, a posavirus, and an enterobacteria phage were almost fully sequenced.

  2. First Pass Annotation of Promoters on Human Chromosome 22

    PubMed Central

    Scherf, Matthias; Klingenhoff, Andreas; Frech, Kornelie; Quandt, Kerstin; Schneider, Ralf; Grote, Korbinian; Frisch, Matthias; Gailus-Durner, Valérie; Seidel, Alexander; Brack-Werner, Ruth; Werner, Thomas

    2001-01-01

    The publication of the first almost complete sequence of a human chromosome (chromosome 22) is a major milestone in human genomics. Together with the sequence, an excellent annotation of genes was published which certainly will serve as an information resource for numerous future projects. We noted that the annotation did not cover regulatory regions; in particular, no promoter annotation has been provided. Here we present an analysis of the complete published chromosome 22 sequence for promoters. A recent breakthrough in specific in silico prediction of promoter regions enabled us to attempt large-scale prediction of promoter regions on chromosome 22. Scanning of sequence databases revealed only 20 experimentally verified promoters, of which 10 were correctly predicted by our approach. Nearly 40% of our 465 predicted promoter regions are supported by the currently available gene annotation. Promoter finding also provides a biologically meaningful method for “chromosomal scaffolding”, by which long genomic sequences can be divided into segments starting with a gene. As one example, the combination of promoter region prediction with exon/intron structure predictions greatly enhances the specificity of de novo gene finding. The present study demonstrates that it is possible to identify promoters in silico on the chromosomal level with sufficient reliability for experimental planning and indicates that a wealth of information about regulatory regions can be extracted from current large-scale (megabase) sequencing projects. Results are available on-line at http://genomatix.gsf.de/chr22/. PMID:11230158

  3. Implementing genomic medicine in pathology.

    PubMed

    Williams, Eli S; Hegde, Madhuri

    2013-07-01

    The finished sequence of the Human Genome Project, published 50 years after Watson and Crick's seminal paper on the structure of DNA, pushed human genetics into the public eye and ushered in the genomic era. A significant, if overlooked, aspect of the race to complete the genome was the technology that propelled scientists to the finish line. DNA sequencing technologies have become more standardized, automated, and capable of higher throughput. This technology has continued to grow at an astounding rate in the decade since the Human Genome Project was completed. Today, massively parallel sequencing, or next-generation sequencing (NGS), allows the detection of genetic variants across the entire genome. This ability has led to the identification of new causes of disease and is changing the way we categorize, treat, and manage disease. NGS approaches such as whole-exome sequencing and whole-genome sequencing are rapidly becoming an affordable genetic testing strategy for the clinical laboratory. One test can now provide vast amounts of health information pertaining not only to the disease of interest, but information that may also predict adult-onset disease, reveal carrier status for a rare disease and predict drug responsiveness. The issue of what to do with these incidental findings, along with questions pertaining to NGS testing strategies, data interpretation and storage, and applying genetic testing results into patient care, remains without a clear answer. This review will explore these issues and others relevant to the implementation of NGS in the clinical laboratory.

  4. Characterization of the complete genome segments from BmCPV-SZ, a novel Bombyx mori cypovirus 1 isolate.

    PubMed

    Cao, Guangli; Meng, Xiangkun; Xue, Renyu; Zhu, Yuexiong; Zhang, Xiaorong; Pan, Zhonghua; Zheng, Xiaojian; Gong, Chengliang

    2012-07-01

    A novel Bombyx mori cypovirus 1 isolated from infected silkworm larvae and tentatively assigned as Bombyx mori cypovirus 1 isolate Suzhou (BmCPV-SZ). The complete nucleotide sequences of genomic segments S1-S10 from BmCPV-SZ were determined. All segments possessed a single open reading frame; however, bioinformatic evidence suggested a short overlapping coding sequence in S1. Each BmCPV-SZ segment possessed the conserved terminal sequences AGUAA and GUUAGCC at the 5' and 3' ends, respectively. The conserved A/G at the -3 position in relation to the AUG codon could be found in the BmCPV-SZ genome, and it was postulated that this conserved A/G may be the most important nucleotide for efficient translation initiation in cypoviruses (CPVs). Examination of the putative amino acid sequences encoded by BmCPV-SZ revealed some characteristic motifs. Homology searches showed that viral structural proteins VP1, VP3, and VP4 had localized homologies with proteins of Rice ragged stunt virus , a member of the genus Oryzavirus within the family Reoviridae. A phylogenetic tree based on RNA-dependent RNA polymerase sequences demonstrated that CPV is more closely related to Rice ragged stunt virus and Aedes pseudoscutellaris reovirus than to other members of Reoviridae, suggesting that they may have originated from common ancestors.

  5. Functional Genomics Analysis of Singapore Grouper Iridovirus: Complete Sequence Determination and Proteomic Analysis

    PubMed Central

    Song, Wen Jun; Qin, Qi Wei; Qiu, Jin; Huang, Can Hua; Wang, Fan; Hew, Choy Leong

    2004-01-01

    Here we report the complete genome sequence of Singapore grouper iridovirus (SGIV). Sequencing of the random shotgun and restriction endonuclease genomic libraries showed that the entire SGIV genome consists of 140,131 nucleotide bp. One hundred sixty-two open reading frames (ORFs) from the sense and antisense DNA strands, coding for lengths varying from 41 to 1,268 amino acids, were identified. Computer-assisted analyses of the deduced amino acid sequences revealed that 77 of the ORFs exhibited homologies to known virus genes, 23 of which matched functional iridovirus proteins. Forty-two putative conserved domains or signatures were detected in the National Center for Biotechnology Information CD-Search database and PROSITE database. An assortment of enzyme activities involved in DNA replication, transcription, nucleotide metabolism, cell signaling, etc., were identified. Viruses were cultured on a cell line derived from the embryonated egg of the grouper Epinephelus tauvina, isolated, and purified by sucrose gradient ultracentrifugation. The protein extract from the purified virions was analyzed by polyacrylamide gel electrophoresis followed by in-gel digestion of protein bands. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and database searching led to identification of 26 proteins. Twenty of these represented novel or previously unidentified genes, which were further confirmed by reverse transcription-PCR (RT-PCR) and DNA sequencing of their respective RT-PCR products. PMID:15507645

  6. A communal catalogue reveals Earth’s multiscale microbial diversity

    DOE PAGES

    Thompson, Luke R.; Sanders, Jon G.; McDonald, Daniel; ...

    2017-11-01

    Our growing awareness of the importance and diversity of the microbial world contrasts starkly with our limited understanding of its fundamental structure. Despite remarkable advances in DNA sequence generation, a lack of standardized protocols and common analytical framework impede useful comparison between studies, hindering development of global inferences about microbial life on Earth. Here, we show that with coordinated protocols, exact microbial 16S rRNA gene sequences can be followed across scores of individual studies, revealing patterns of diversity, community structure, and life history strategy at a planetary scale. Using 27,751 crowdsourced environmental samples comprising more than 2.2 billion reads, wemore » find sharp divides between host-associated and free-living communities. We show that the distribution of taxonomic and sequence diversity follows consistent trends across samples types and along gradients of environmental parameters, highlighting some of the global evolutionary patterns and ecological principles that underpin Earth’s microbiome. Here, this dataset provides the most complete environmental survey of our microbial world to date, and serves as a growing reference to provide immediate global context to future microbial surveys.« less

  7. Single molecule real-time sequencing of Xanthomonas oryzae genomes reveals a dynamic structure and complex TAL (transcription activator-like) effector gene relationships

    PubMed Central

    Booher, Nicholas J.; Carpenter, Sara C. D.; Sebra, Robert P.; Wang, Li; Salzberg, Steven L.; Leach, Jan E.

    2015-01-01

    Pathogen-injected, direct transcriptional activators of host genes, TAL (transcription activator-like) effectors play determinative roles in plant diseases caused by Xanthomonas spp. A large domain of nearly identical, 33–35 aa repeats in each protein mediates DNA recognition. This modularity makes TAL effectors customizable and thus important also in biotechnology. However, the repeats render TAL effector (tal) genes nearly impossible to assemble using next-generation, short reads. Here, we demonstrate that long-read, single molecule real-time (SMRT) sequencing solves this problem. Taking an ensemble approach to first generate local, tal gene contigs, we correctly assembled de novo the genomes of two strains of the rice pathogen X. oryzae completed previously using the Sanger method and even identified errors in those references. Sequencing two more strains revealed a dynamic genome structure and a striking plasticity in tal gene content. Our results pave the way for population-level studies to inform resistance breeding, improve biotechnology and probe TAL effector evolution. PMID:27148456

  8. The Genome of the Obligately Intracellular Bacterium Ehrlichia canis Reveals Themes of Complex Membrane Structure and Immune Evasion Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatis, K; Doyle, C Kuyler; Lykidis, A

    2006-01-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, {alpha}-proteobacterium, is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, 17 putative pseudogenes, and a substantial proportion of noncoding sequence (27%). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences and a unique serine-threonine bias associated with the potential for O glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associatedmore » with immune evasion were identified, one of which contains poly(G-C) tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Genes associated with pathogen-host interactions were identified, including a small group encoding proteins (n = 12) with tandem repeats and another group encoding proteins with eukaryote-like ankyrin domains (n = 7).« less

  9. A communal catalogue reveals Earth’s multiscale microbial diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Luke R.; Sanders, Jon G.; McDonald, Daniel

    Our growing awareness of the importance and diversity of the microbial world contrasts starkly with our limited understanding of its fundamental structure. Despite remarkable advances in DNA sequence generation, a lack of standardized protocols and common analytical framework impede useful comparison between studies, hindering development of global inferences about microbial life on Earth. Here, we show that with coordinated protocols, exact microbial 16S rRNA gene sequences can be followed across scores of individual studies, revealing patterns of diversity, community structure, and life history strategy at a planetary scale. Using 27,751 crowdsourced environmental samples comprising more than 2.2 billion reads, wemore » find sharp divides between host-associated and free-living communities. We show that the distribution of taxonomic and sequence diversity follows consistent trends across samples types and along gradients of environmental parameters, highlighting some of the global evolutionary patterns and ecological principles that underpin Earth’s microbiome. Here, this dataset provides the most complete environmental survey of our microbial world to date, and serves as a growing reference to provide immediate global context to future microbial surveys.« less

  10. Rhizobium etli asparaginase II

    PubMed Central

    Huerta-Saquero, Alejandro; Evangelista-Martínez, Zahaed; Moreno-Enriquez, Angélica; Perez-Rueda, Ernesto

    2013-01-01

    Bacterial l-asparaginase has been a universal component of therapies for childhood acute lymphoblastic leukemia since the 1970s. Two principal enzymes derived from Escherichia coli and Erwinia chrysanthemi are the only options clinically approved to date. We recently reported a study of recombinant l-asparaginase (AnsA) from Rhizobium etli and described an increasing type of AnsA family members. Sequence analysis revealed four conserved motifs with notable differences with respect to the conserved regions of amino acid sequences of type I and type II l-asparaginases, particularly in comparison with therapeutic enzymes from E. coli and E. chrysanthemi. These differences suggested a distinct immunological specificity. Here, we report an in silico analysis that revealed immunogenic determinants of AnsA. Also, we used an extensive approach to compare the crystal structures of E. coli and E. chrysantemi asparaginases with a computational model of AnsA and identified immunogenic epitopes. A three-dimensional model of AsnA revealed, as expected based on sequence dissimilarities, completely different folding and different immunogenic epitopes. This approach could be very useful in transcending the problem of immunogenicity in two major ways: by chemical modifications of epitopes to reduce drug immunogenicity, and by site-directed mutagenesis of amino acid residues to diminish immunogenicity without reduction of enzymatic activity. PMID:22895060

  11. Genetic variation and evolutionary demography of Fenneropenaeus chinensis populations, as revealed by the analysis of mitochondrial control region sequences

    PubMed Central

    2010-01-01

    Genetic variation and evolutionary demography of the shrimp Fenneropenaeus chinensis were investigated using sequence data of the complete mitochondrial control region (CR). Fragments of 993 bp of the CR were sequenced for 93 individuals from five localities over most of the species' range in the Yellow Sea and the Bohai Sea. There were 84 variable sites defining 68 haplotypes. Haplotype diversity levels were very high (0.95 ± 0.03-0.99 ± 0.02) in F. chinensis populations, whereas those of nucleotide diversity were moderate to low (0.66 ± 0.36%-0.84 ± 0.46%). Analysis of molecular variance and conventional population statistics (FST ) revealed no significant genetic structure throughout the range of F. chinensis. Mismatch distribution, estimates of population parameters and neutrality tests revealed that the significant fluctuations and shallow coalescence of mtDNA genealogies observed were coincident with estimated demographic parameters and neutrality tests, in implying important past-population size fluctuations or range expansion. Isolation with Migration (IM) coalescence results suggest that F. chinensis, distributed along the coasts of northern China and the Korean Peninsula (about 1000 km apart), diverged recently, the estimated time-split being 12,800 (7,400-18,600) years ago. PMID:21637498

  12. Rhizobium etli asparaginase II: an alternative for acute lymphoblastic leukemia (ALL) treatment.

    PubMed

    Huerta-Saquero, Alejandro; Evangelista-Martínez, Zahaed; Moreno-Enriquez, Angélica; Perez-Rueda, Ernesto

    2013-01-01

    Bacterial L-asparaginase has been a universal component of therapies for childhood acute lymphoblastic leukemia since the 1970s. Two principal enzymes derived from Escherichia coli and Erwinia chrysanthemi are the only options clinically approved to date. We recently reported a study of recombinant L-asparaginase (AnsA) from Rhizobium etli and described an increasing type of AnsA family members. Sequence analysis revealed four conserved motifs with notable differences with respect to the conserved regions of amino acid sequences of type I and type II L-asparaginases, particularly in comparison with therapeutic enzymes from E. coli and E. chrysanthemi. These differences suggested a distinct immunological specificity. Here, we report an in silico analysis that revealed immunogenic determinants of AnsA. Also, we used an extensive approach to compare the crystal structures of E. coli and E. chrysantemi asparaginases with a computational model of AnsA and identified immunogenic epitopes. A three-dimensional model of AsnA revealed, as expected based on sequence dissimilarities, completely different folding and different immunogenic epitopes. This approach could be very useful in transcending the problem of immunogenicity in two major ways: by chemical modifications of epitopes to reduce drug immunogenicity, and by site-directed mutagenesis of amino acid residues to diminish immunogenicity without reduction of enzymatic activity.

  13. A communal catalogue reveals Earth's multiscale microbial diversity.

    PubMed

    Thompson, Luke R; Sanders, Jon G; McDonald, Daniel; Amir, Amnon; Ladau, Joshua; Locey, Kenneth J; Prill, Robert J; Tripathi, Anupriya; Gibbons, Sean M; Ackermann, Gail; Navas-Molina, Jose A; Janssen, Stefan; Kopylova, Evguenia; Vázquez-Baeza, Yoshiki; González, Antonio; Morton, James T; Mirarab, Siavash; Zech Xu, Zhenjiang; Jiang, Lingjing; Haroon, Mohamed F; Kanbar, Jad; Zhu, Qiyun; Jin Song, Se; Kosciolek, Tomasz; Bokulich, Nicholas A; Lefler, Joshua; Brislawn, Colin J; Humphrey, Gregory; Owens, Sarah M; Hampton-Marcell, Jarrad; Berg-Lyons, Donna; McKenzie, Valerie; Fierer, Noah; Fuhrman, Jed A; Clauset, Aaron; Stevens, Rick L; Shade, Ashley; Pollard, Katherine S; Goodwin, Kelly D; Jansson, Janet K; Gilbert, Jack A; Knight, Rob

    2017-11-23

    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.

  14. Recovering complete and draft population genomes from metagenome datasets

    DOE PAGES

    Sangwan, Naseer; Xia, Fangfang; Gilbert, Jack A.

    2016-03-08

    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem ofmore » chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution.« less

  15. Recovering complete and draft population genomes from metagenome datasets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangwan, Naseer; Xia, Fangfang; Gilbert, Jack A.

    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem ofmore » chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution.« less

  16. Whole-Genome Sequence Variation among Multiple Isolates of Pseudomonas aeruginosa

    PubMed Central

    Spencer, David H.; Kas, Arnold; Smith, Eric E.; Raymond, Christopher K.; Sims, Elizabeth H.; Hastings, Michele; Burns, Jane L.; Kaul, Rajinder; Olson, Maynard V.

    2003-01-01

    Whole-genome shotgun sequencing was used to study the sequence variation of three Pseudomonas aeruginosa isolates, two from clonal infections of cystic fibrosis patients and one from an aquatic environment, relative to the genomic sequence of reference strain PAO1. The majority of the PAO1 genome is represented in these strains; however, at least three prominent islands of PAO1-specific sequence are apparent. Conversely, ∼10% of the sequencing reads derived from each isolate fail to align with the PAO1 backbone. While average sequence variation among all strains is roughly 0.5%, regions of pronounced differences were evident in whole-genome scans of nucleotide diversity. We analyzed two such divergent loci, the pyoverdine and O-antigen biosynthesis regions, by complete resequencing. A thorough analysis of isolates collected over time from one of the cystic fibrosis patients revealed independent mutations resulting in the loss of O-antigen synthesis alternating with a mucoid phenotype. Overall, we conclude that most of the PAO1 genome represents a core P. aeruginosa backbone sequence while the strains addressed in this study possess additional genetic material that accounts for at least 10% of their genomes. Approximately half of these additional sequences are novel. PMID:12562802

  17. Whole-genome sequencing of genotype VI Newcastle disease viruses from formalin-fixed paraffin-embedded tissues from wild pigeons reveals continuous evolution and previously unrecognized genetic diversity in the U.S.

    USDA-ARS?s Scientific Manuscript database

    Background: Newcastle disease viruses (NDV) are highly contagious and cause disease in both wild birds and poultry. A pigeon-adapted variant of genotype VI NDV, often termed pigeon paramyxovirus 1, is commonly isolated from columbids in the United States and worldwide. Complete genomic characterizat...

  18. Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium

    Treesearch

    Philip Stewart; Daniel Cullen

    1999-06-01

    The lignin peroxidases of Phanerochaete chrysosporium are encoded by a minimum of 10 closely related genes. Physical and genetic mapping of a cluster of eight lip genes revealed six genes occurring in pairs and transcriptionally convergent, suggesting that portions of the lip family arose by gene duplication events. The completed sequence of 1ipG and lipJ, together...

  19. The Genome Sequence of Methanohalophilus mahii SLP T Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spring, Stefan; Scheuner, Carmen; Lapidus, Alla

    Methanohalophilus mahii is the type species of the genus Methanohalophilus , which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLP T was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructedmore » energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.« less

  20. The Genome Sequence of Methanohalophilus mahii SLP T Reveals Differences in the Energy Metabolism among Members of the Methanosarcinaceae Inhabiting Freshwater and Saline Environments

    DOE PAGES

    Spring, Stefan; Scheuner, Carmen; Lapidus, Alla; ...

    2010-01-01

    Methanohalophilus mahii is the type species of the genus Methanohalophilus , which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLP T was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructedmore » energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.« less

  1. Genome mining-directed activation of a silent angucycline biosynthetic gene cluster in Streptomyces chattanoogensis.

    PubMed

    Zhou, Zhenxing; Xu, Qingqing; Bu, Qingting; Guo, Yuanyang; Liu, Shuiping; Liu, Yu; Du, Yiling; Li, Yongquan

    2015-02-09

    Genomic sequencing of actinomycetes has revealed the presence of numerous gene clusters seemingly capable of natural product biosynthesis, yet most clusters are cryptic under laboratory conditions. Bioinformatics analysis of the completely sequenced genome of Streptomyces chattanoogensis L10 (CGMCC 2644) revealed a silent angucycline biosynthetic gene cluster. The overexpression of a pathway-specific activator gene under the constitutive ermE* promoter successfully triggered the expression of the angucycline biosynthetic genes. Two novel members of the angucycline antibiotic family, chattamycins A and B, were further isolated and elucidated. Biological activity assays demonstrated that chattamycin B possesses good antitumor activities against human cancer cell lines and moderate antibacterial activities. The results presented here provide a feasible method to activate silent angucycline biosynthetic gene clusters to discover potential new drug leads. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Genome sequencing and analysis of a type A Clostridium perfringens isolate from a case of bovine clostridial abomasitis.

    PubMed

    Nowell, Victoria J; Kropinski, Andrew M; Songer, J Glenn; MacInnes, Janet I; Parreira, Valeria R; Prescott, John F

    2012-01-01

    Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified.

  3. Genome Sequencing and Analysis of a Type A Clostridium perfringens Isolate from a Case of Bovine Clostridial Abomasitis

    PubMed Central

    Nowell, Victoria J.; Kropinski, Andrew M.; Songer, J. Glenn; MacInnes, Janet I.; Parreira, Valeria R.; Prescott, John F.

    2012-01-01

    Clostridium perfringens is a common inhabitant of the avian and mammalian gastrointestinal tracts and can behave commensally or pathogenically. Some enteric diseases caused by type A C. perfringens, including bovine clostridial abomasitis, remain poorly understood. To investigate the potential basis of virulence in strains causing this disease, we sequenced the genome of a type A C. perfringens isolate (strain F262) from a case of bovine clostridial abomasitis. The ∼3.34 Mbp chromosome of C. perfringens F262 is predicted to contain 3163 protein-coding genes, 76 tRNA genes, and an integrated plasmid sequence, Cfrag (∼18 kb). In addition, sequences of two complete circular plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), and two incomplete plasmid fragments, pF262A (48.5 kb) and pF262B (50.0 kb), were identified. Comparison of the chromosome sequence of C. perfringens F262 to complete C. perfringens chromosomes, plasmids and phages revealed 261 unique genes. No novel toxin genes related to previously described clostridial toxins were identified: 60% of the 261 unique genes were hypothetical proteins. There was a two base pair deletion in virS, a gene reported to encode the main sensor kinase involved in virulence gene activation. Despite this frameshift mutation, C. perfringens F262 expressed perfringolysin O, alpha-toxin and the beta2-toxin, suggesting that another regulation system might contribute to the pathogenicity of this strain. Two complete plasmids, pF262C (4.8 kb) and pF262D (9.1 kb), unique to this strain of C. perfringens were identified. PMID:22412860

  4. Genomic analysis of WCP30 Phage of Weissella cibaria for Dairy Fermented Foods.

    PubMed

    Lee, Young-Duck; Park, Jong-Hyun

    2017-01-01

    In this study, we report the morphogenetic analysis and genome sequence of a new WCP30 phage of Weissella cibaria , isolated from a fermented food. Based on its morphology, as observed by transmission electron microscopy, WCP30 phage belongs to the family Siphoviridae . Genomic analysis of WCP30 phage showed that it had a 33,697-bp double-stranded DNA genome with 41.2% G+C content. Bioinformatics analysis of the genome revealed 35 open reading frames. A BLASTN search showed that WCP30 phage had low sequence similarity compared to other phages infecting lactic acid bacteria. This is the first report of the morphological features and complete genome sequence of WCP30 phage, which may be useful for controlling the fermentation of dairy foods.

  5. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation

    NASA Astrophysics Data System (ADS)

    Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.

    2016-06-01

    Mass spectrometry-based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications.

  6. Nucleotide sequence analysis of the gene encoding the Deinococcus radiodurans surface protein, derived amino acid sequence, and complementary protein chemical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, J.; Peters, M.; Lottspeich, F.

    1987-11-01

    The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate (HPI))-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and M/sub r/ estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%)more » of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.« less

  7. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation

    PubMed Central

    Sheynkman, Gloria M.; Shortreed, Michael R.; Cesnik, Anthony J.; Smith, Lloyd M.

    2016-01-01

    Mass spectrometry–based proteomics has emerged as the leading method for detection, quantification, and characterization of proteins. Nearly all proteomic workflows rely on proteomic databases to identify peptides and proteins, but these databases typically contain a generic set of proteins that lack variations unique to a given sample, precluding their detection. Fortunately, proteogenomics enables the detection of such proteomic variations and can be defined, broadly, as the use of nucleotide sequences to generate candidate protein sequences for mass spectrometry database searching. Proteogenomics is experiencing heightened significance due to two developments: (a) advances in DNA sequencing technologies that have made complete sequencing of human genomes and transcriptomes routine, and (b) the unveiling of the tremendous complexity of the human proteome as expressed at the levels of genes, cells, tissues, individuals, and populations. We review here the field of human proteogenomics, with an emphasis on its history, current implementations, the types of proteomic variations it reveals, and several important applications. PMID:27049631

  8. Phylogenetic relationships among the major lineages of the birds-of-paradise (Paradisaeidae) using mitochondrial DNA gene sequences.

    PubMed

    Nunn, G B; Cracraft, J

    1996-06-01

    Complete mitochondrial cytochrome b gene sequences were determined from 12 species of the Australo-Papuan birds-of-paradise (Paradisaeidae) representing 9 genera. Phylogenetic analysis of these and 5 previously published sequences reveals a radiation of the main paradisaeinine lineages that took place over a relatively short evolutionary time scale. The core paradisaeinines are resolved as the monophyletic sister-group to the crow-like manucodines. The genus Parotia is basal to other paradisaeinines and is not closely related to the morphologically similar genera Ptiloris and Lophorina. Three major clades within the paradisaeinine ingroup include: (1) Cicinnurus and Diphyllodes, (2) Ptiloris and Lophorina, and (3) the genus Paradisaea. The monotypic genus Seleucidis is apparently closely related to clades (1) and (2). Cytochrome b sequences did not provide evidence for the monophyly of the sicklebill genera Epimachus and Drepanornis. The paradisaeid tree is characterized by short internodal distances. Thus, some clades cannot be strongly resolved by cytochrome b sequences alone.

  9. Insights into Conifer Giga-Genomes1

    PubMed Central

    De La Torre, Amanda R.; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K.; Jansson, Stefan; Jones, Steven J.M.; Keeling, Christopher I.; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-01-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world’s forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20–30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325

  10. Insights into conifer giga-genomes.

    PubMed

    De La Torre, Amanda R; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K; Jansson, Stefan; Jones, Steven J M; Keeling, Christopher I; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg

    2014-12-01

    Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. © 2014 American Society of Plant Biologists. All Rights Reserved.

  11. The complete genomic sequence of egg drop syndrome virus strain AAV-2.

    PubMed

    Jin, Q; Zeng, L; Yang, F; Li, M; Hou, Y

    1999-12-01

    In the search for the genome of egg drop syndrome virus (EDSV-76) Chinese strain AAV-2, part of restriction endonuclease physical map is analyzed, the complete genomic library is organized. On basis of this, the complete genome nucleotide sequences (32 838 bp in length, including terminal structures) are determined. The data analysis shows: compared with the other Adenoviruses, strain AAV-2 has more disparity on genomic structure and the distribution of open reading frame (ORF). There are no clear E1, E3 and E4 regions in AAV-2 genome. Two segments located at both ends of genome (1.1 kb and 8.3 kb in length respectively) have no homology with the other adenovirus genomes. In addition, strain AAV-2 genome lacks ORFs encoding ElA, pV and pIX, which are common ORFs encoding early, lately proteins in Adenovirus. This reveals differences between EDSA-76, the sole standard strain of group III Avian Adenoviruses, and the other Avian Adenoviruses for the first time. It will help the search for Avian Adenovirus and will also help the search of all Adenoviruses.

  12. Identification and nucleotide sequence analysis of the repetitive DNA element in the genome of fish lymphocystis disease virus.

    PubMed

    Schnitzler, P; Delius, H; Scholz, J; Touray, M; Orth, E; Darai, G

    1987-12-01

    The genome of the fish lymphocystis disease virus (FLDV) was screened for the existence of repetitive DNA sequences using a defined and complete gene library of the viral genome (98 kbp) by DNA-DNA hybridization, heteroduplex analysis, and restriction fine mapping. A repetitive DNA sequence was detected at the coordinates 0.034 to 0.057 and 0.718 to 0.736 map units (m.u.) of the FLDV genome. The first region (0.034 to 0.057 m.u.) corresponds to the 5' terminus of the EcoRI FLDV DNA fragment B (0.034 to 0.165 m.u.) and the second region (0.718 to 0.736 m.u.) is identical to the EcoRI DNA fragment M of the viral genome. The DNA nucleotide sequence of the EcoRI FLDV DNA fragment M was determined. This analysis revealed the presence of many short direct and inverted repetitions, e.g., a 18-mer direct repetition (TTTAAAATTTAATTAA) that started at nucleotide positions 812 and 942 and a 14-mer inverted repeat (TTAAATTTAAATTT) at nucleotide positions 820 and 959. Only short open reading frames were detected within this region. The DNA repetitions are discussed as sequences that play a possible regulatory role for virus replication. Furthermore, hybridization experiments revealed that the repetitive DNA sequences are conserved in the genome of different strains of fish lymphocystis disease virus isolated from two species of Pleuronectidae (flounder and dab).

  13. Complete amino acid sequences of the ribosomal proteins L25, L29 and L31 from the archaebacterium Halobacterium marismortui.

    PubMed

    Hatakeyama, T; Kimura, M

    1988-03-15

    Ribosomal proteins were extracted from 50S ribosomal subunits of the archaebacterium Halobacterium marismortui by decreasing the concentration of Mg2+ and K+, and the proteins were separated and purified by ion-exchange column chromatography on DEAE-cellulose. Ten proteins were purified to homogeneity and three of these proteins were subjected to sequence analysis. The complete amino acid sequences of the ribosomal proteins L25, L29 and L31 were established by analyses of the peptides obtained by enzymatic digestion with trypsin, Staphylococcus aureus protease, chymotrypsin and lysylendopeptidase. Proteins L25, L29 and L31 consist of 84, 115 and 95 amino acid residues with the molecular masses of 9472 Da, 12293 Da and 10418 Da respectively. A comparison of their sequences with those of other large-ribosomal-subunit proteins from other organisms revealed that protein L25 from H. marismortui is homologous to protein L23 from Escherichia coli (34.6%), Bacillus stearothermophilus (41.8%), and tobacco chloroplasts (16.3%) as well as to protein L25 from yeast (38.0%). Proteins L29 and L31 do not appear to be homologous to any other ribosomal proteins whose structures are so far known.

  14. Deep Sequencing Analysis of RNAs from Citrus Plants Grown in a Citrus Sudden Death-Affected Area Reveals Diverse Known and Putative Novel Viruses.

    PubMed

    Matsumura, Emilyn E; Coletta-Filho, Helvecio D; Nouri, Shahideh; Falk, Bryce W; Nerva, Luca; Oliveira, Tiago S; Dorta, Silvia O; Machado, Marcos A

    2017-04-24

    Citrus sudden death (CSD) has caused the death of approximately four million orange trees in a very important citrus region in Brazil. Although its etiology is still not completely clear, symptoms and distribution of affected plants indicate a viral disease. In a search for viruses associated with CSD, we have performed a comparative high-throughput sequencing analysis of the transcriptome and small RNAs from CSD-symptomatic and -asymptomatic plants using the Illumina platform. The data revealed mixed infections that included Citrus tristeza virus (CTV) as the most predominant virus, followed by the Citrus sudden death-associated virus (CSDaV), Citrus endogenous pararetrovirus (CitPRV) and two putative novel viruses tentatively named Citrus jingmen-like virus (CJLV), and Citrus virga-like virus (CVLV). The deep sequencing analyses were sensitive enough to differentiate two genotypes of both viruses previously associated with CSD-affected plants: CTV and CSDaV. Our data also showed a putative association of the CSD-symptomatic plants with a specific CSDaV genotype and a likely association with CitPRV as well, whereas the two putative novel viruses showed to be more associated with CSD-asymptomatic plants. This is the first high-throughput sequencing-based study of the viral sequences present in CSD-affected citrus plants, and generated valuable information for further CSD studies.

  15. Phylogenetic and Genome-Wide Deep-Sequencing Analyses of Canine Parvovirus Reveal Co-Infection with Field Variants and Emergence of a Recent Recombinant Strain

    PubMed Central

    Pérez, Ruben; Calleros, Lucía; Marandino, Ana; Sarute, Nicolás; Iraola, Gregorio; Grecco, Sofia; Blanc, Hervé; Vignuzzi, Marco; Isakov, Ofer; Shomron, Noam; Carrau, Lucía; Hernández, Martín; Francia, Lourdes; Sosa, Katia; Tomás, Gonzalo; Panzera, Yanina

    2014-01-01

    Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity. PMID:25365348

  16. Molecular homogeneity of heat-stable enterotoxins produced by bovine enterotoxigenic Escherichia coli.

    PubMed Central

    Saeed, A M; Magnuson, N S; Sriranganathan, N; Burger, D; Cosand, W

    1984-01-01

    Heat-stable enterotoxins (STs) from four strains of bovine enterotoxigenic Escherichia coli representing four serogroups were purified to homogeneity by utilizing previously published purification schemata. Biochemical characterization of the purified STs showed that they met the basic criteria for the heat-stable enterotoxins of E. coli. Amino acid analysis of the purified STs revealed that they were peptides of identical amino acid composition. This composition consisted of 18 residues of 10 different amino acids, 6 of which were cysteine. The amino acid composition of the four ST peptides was identical to that reported for the STs of human and porcine E. coli. In addition, complete sequence analysis of two of the ST peptides and partial sequencing of several others revealed strong homology to the sequences of STs from human and porcine E. coli and to the sequence predicted from the last 18 codons of the transposon Tn1681. There was also substantial homology to the sequence predicted from the ST-coding genetic element of human E. coli, which may indicate the existence of identical bioactive configuration among ST peptides of E. coli strains of various host origins. These data support the hypothesis that STs produced by human, bovine, and porcine E. coli are coded by a closely related genetic element which may have originated from a single, widely disseminated transposon. Images PMID:6376355

  17. Comparative Genomics of Completely Sequenced Lactobacillus helveticus Genomes Provides Insights into Strain-Specific Genes and Resolves Metagenomics Data Down to the Strain Level.

    PubMed

    Schmid, Michael; Muri, Jonathan; Melidis, Damianos; Varadarajan, Adithi R; Somerville, Vincent; Wicki, Adrian; Moser, Aline; Bourqui, Marc; Wenzel, Claudia; Eugster-Meier, Elisabeth; Frey, Juerg E; Irmler, Stefan; Ahrens, Christian H

    2018-01-01

    Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences' long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus -to our knowledge-identified a core genome of 988 genes and sets of unique, strain-specific genes ranging from about 30 to more than 200 genes. Importantly, the comparison of MiSeq- and PacBio-based assemblies uncovered that not only accessory but also core genes can be missed in incomplete genome assemblies based on short reads. Analysis of the three genomes revealed that a large number of pseudogenes were enriched for functional Gene Ontology categories such as amino acid transmembrane transport and carbohydrate metabolism, which is in line with a reductive genome evolution in the rich natural habitat of L. helveticus . Notably, the functional Clusters of Orthologous Groups of proteins categories "cell wall/membrane biogenesis" and "defense mechanisms" were found to be enriched among the strain-specific genes. A genome mining effort uncovered examples where an experimentally observed phenotype could be linked to the underlying genotype, such as for cell envelope proteinase PrtH3 of strain FAM8627. Another possible link identified for peptidoglycan hydrolases will require further experiments. Of note, strain FAM22155 did not harbor a CRISPR/Cas system; its loss was also observed in other L. helveticus strains and lactobacillus species, thus questioning the value of the CRISPR/Cas system for diagnostic purposes. Importantly, the complete genome sequences proved to be very useful for the analysis of natural whey starter cultures with metagenomics, as a larger percentage of the sequenced reads of these complex mixtures could be unambiguously assigned down to the strain level.

  18. Comparative Genomics of Completely Sequenced Lactobacillus helveticus Genomes Provides Insights into Strain-Specific Genes and Resolves Metagenomics Data Down to the Strain Level

    PubMed Central

    Schmid, Michael; Muri, Jonathan; Melidis, Damianos; Varadarajan, Adithi R.; Somerville, Vincent; Wicki, Adrian; Moser, Aline; Bourqui, Marc; Wenzel, Claudia; Eugster-Meier, Elisabeth; Frey, Juerg E.; Irmler, Stefan; Ahrens, Christian H.

    2018-01-01

    Although complete genome sequences hold particular value for an accurate description of core genomes, the identification of strain-specific genes, and as the optimal basis for functional genomics studies, they are still largely underrepresented in public repositories. Based on an assessment of the genome assembly complexity for all lactobacilli, we used Pacific Biosciences' long read technology to sequence and de novo assemble the genomes of three Lactobacillus helveticus starter strains, raising the number of completely sequenced strains to 12. The first comparative genomics study for L. helveticus—to our knowledge—identified a core genome of 988 genes and sets of unique, strain-specific genes ranging from about 30 to more than 200 genes. Importantly, the comparison of MiSeq- and PacBio-based assemblies uncovered that not only accessory but also core genes can be missed in incomplete genome assemblies based on short reads. Analysis of the three genomes revealed that a large number of pseudogenes were enriched for functional Gene Ontology categories such as amino acid transmembrane transport and carbohydrate metabolism, which is in line with a reductive genome evolution in the rich natural habitat of L. helveticus. Notably, the functional Clusters of Orthologous Groups of proteins categories “cell wall/membrane biogenesis” and “defense mechanisms” were found to be enriched among the strain-specific genes. A genome mining effort uncovered examples where an experimentally observed phenotype could be linked to the underlying genotype, such as for cell envelope proteinase PrtH3 of strain FAM8627. Another possible link identified for peptidoglycan hydrolases will require further experiments. Of note, strain FAM22155 did not harbor a CRISPR/Cas system; its loss was also observed in other L. helveticus strains and lactobacillus species, thus questioning the value of the CRISPR/Cas system for diagnostic purposes. Importantly, the complete genome sequences proved to be very useful for the analysis of natural whey starter cultures with metagenomics, as a larger percentage of the sequenced reads of these complex mixtures could be unambiguously assigned down to the strain level. PMID:29441050

  19. Gene silencing reveals multiple functions of Na+/K+-ATPase in the salmon louse (Lepeophtheirus salmonis).

    PubMed

    Komisarczuk, Anna Z; Kongshaug, Heidi; Nilsen, Frank

    2018-02-01

    Na + /K + -ATPase has a key function in a variety of physiological processes including membrane excitability, osmoregulation, regulation of cell volume, and transport of nutrients. While knowledge about Na + /K + -ATPase function in osmoregulation in crustaceans is extensive, the role of this enzyme in other physiological and developmental processes is scarce. Here, we report characterization, transcriptional distribution and likely functions of the newly identified L. salmonis Na + /K + -ATPase (LsalNa + /K + -ATPase) α subunit in various developmental stages. The complete mRNA sequence was identified, with 3003 bp open reading frame encoding a putative protein of 1001 amino acids. Putative protein sequence of LsalNa + /K + -ATPase revealed all typical features of Na + /K + -ATPase and demonstrated high sequence identity to other invertebrate and vertebrate species. Quantitative RT-PCR analysis revealed higher LsalNa + /K + -ATPase transcript level in free-living stages in comparison to parasitic stages. In situ hybridization analysis of copepodids and adult lice revealed LsalNa + /K + -ATPase transcript localization in a wide variety of tissues such as nervous system, intestine, reproductive system, and subcuticular and glandular tissue. RNAi mediated knock-down of LsalNa + /K + -ATPase caused locomotion impairment, and affected reproduction and feeding. Morphological analysis of dsRNA treated animals revealed muscle degeneration in larval stages, severe changes in the oocyte formation and maturation in females and abnormalities in tegmental glands. Thus, the study represents an important foundation for further functional investigation and identification of physiological pathways in which Na + /K + -ATPase is directly or indirectly involved. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Strategies for high-altitude adaptation revealed from high-quality draft genome of non-violacein producing Janthinobacterium lividum ERGS5:01.

    PubMed

    Kumar, Rakshak; Acharya, Vishal; Singh, Dharam; Kumar, Sanjay

    2018-01-01

    A light pink coloured bacterial strain ERGS5:01 isolated from glacial stream water of Sikkim Himalaya was affiliated to Janthinobacterium lividum based on 16S rRNA gene sequence identity and phylogenetic clustering. Whole genome sequencing was performed for the strain to confirm its taxonomy as it lacked the typical violet pigmentation of the genus and also to decipher its survival strategy at the aquatic ecosystem of high elevation. The PacBio RSII sequencing generated genome of 5,168,928 bp with 4575 protein-coding genes and 118 RNA genes. Whole genome-based multilocus sequence analysis clustering, in silico DDH similarity value of 95.1% and, the ANI value of 99.25% established the identity of the strain ERGS5:01 (MCC 2953) as a non-violacein producing J. lividum . The genome comparisons across genus Janthinobacterium revealed an open pan-genome with the scope of the addition of new orthologous cluster to complete the genomic inventory. The genomic insight provided the genetic basis of freezing and frequent freeze-thaw cycle tolerance and, for industrially important enzymes. Extended insight into the genome provided clues of crucial genes associated with adaptation in the harsh aquatic ecosystem of high altitude.

  1. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    NASA Technical Reports Server (NTRS)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  2. Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah).

    PubMed

    He, Ying-Ying; Lee, Wei-Hui; Zhang, Yun

    2004-09-01

    Thirteen complete and three partial cDNA sequences were cloned from the constructed king cobra (Ophiophagus hannah) venom gland cDNA library. Phylogenetic analysis of nucleotide sequences of king cobra with those from other snake venoms revealed that obtained cDNAs are highly homologous to snake venom alpha-neurotoxins. Alignment of deduced mature peptide sequences of the obtained clones with those of other reported alpha-neurotoxins from the king cobra venom indicates that our obtained 16 clones belong to long-chain neurotoxins (seven), short-chain neurotoxins (seven), weak toxin (one) and variant (one), respectively. Up to now, two out of 16 newly cloned king cobra alpha-neurotoxins have identical amino acid sequences with CM-11 and Oh-6A/6B, which have been characterized from the same venom. Furthermore, five long-chain alpha-neurotoxins and two short-chain alpha-neurotoxins were purified from crude venom and their N-terminal amino acid sequences were determined. The cDNAs encoding the putative precursors of the purified native peptide were also determined based on the N-terminal amino acid sequencing. The purified alpha-neurotoxins showed different lethal activities on mice.

  3. The proximal-to-distal sequence in upper-limb motions on multiple levels and time scales.

    PubMed

    Serrien, Ben; Baeyens, Jean-Pierre

    2017-10-01

    The proximal-to-distal sequence is a phenomenon that can be observed in a large variety of motions of the upper limbs in both humans and other mammals. The mechanisms behind this sequence are not completely understood and motor control theories able to explain this phenomenon are currently incomplete. The aim of this narrative review is to take a theoretical constraints-led approach to the proximal-to-distal sequence and provide a broad multidisciplinary overview of relevant literature. This sequence exists at multiple levels (brain, spine, muscles, kinetics and kinematics) and on multiple time scales (motion, motor learning and development, growth and possibly even evolution). We hypothesize that the proximodistal spatiotemporal direction on each time scale and level provides part of the organismic constraints that guide the dynamics at the other levels and time scales. The constraint-led approach in this review may serve as a first onset towards integration of evidence and a framework for further experimentation to reveal the dynamics of the proximal-to-distal sequence. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Genetic variability among Schistosoma japonicum isolates from the Philippines, Japan and China revealed by sequence analysis of three mitochondrial genes.

    PubMed

    Chen, Fen; Li, Juan; Sugiyama, Hiromu; Zhou, Dong-Hui; Song, Hui-Qun; Zhao, Guang-Hui; Zhu, Xing-Quan

    2015-02-01

    The present study examined sequence variability in the mitochondrial (mt) protein-coding genes cytochrome b (cytb), NADH dehydrogenase subunits 2 and 6 (nad2 and nad6) among 24 isolates of Schistosoma japonicum from different endemic regions in the Philippines, Japan and China. The complete cytb, nad2 and nad6 genes were amplified and sequenced separately from individual schistosome. Sequence variations for isolates from the Philippines were 0-0.5% for cytb, 0-0.6% for nad2, and 0-0.9% for nad6. Variation was 0-0.5%, 0.1-0.8%, 0-0.7% for corresponding genes for schistosome samples from mainland China. For worms in Japan, genetic variations were 0-0.2%, 0.1-0.2% and 0 for the three genes, respectively. Sequence variations were 0-1.0%, 0-1.8% and 0-1.1% for cytb, nad2 and nad6, respectively, among schistosome isolates from different geographical strains in the Philippines, Japan and China. Of the three countries, lowest sequence variations were found between isolates from mainland China and the Philippines and highest were detected between Japan and the Philippines in three mtDNA genes. Phylogenetic analyses based on the combined sequences of cytb, nad2 and nad6 revealed that all isolates in the Philippines clustered together sistered to samples from Yunnan and Zhejiang provinces in China, while isolates from Yamanashi in Japan were in a solitary clade. These results demonstrated the usefulness of the combined three mtDNA sequences for studying genetic diversity and population structure among S. japonicum isolates from the Philippines, China and Japan.

  5. Complete Genome Sequence of Pigmentation Negative Yersinia Pestis strain Cadman Running head: Complete Genome Sequence of Y. pestis strain Cadman

    DTIC Science & Technology

    2016-10-27

    Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA 9 10 11 Running head: Complete Genome Sequence of Y. pestis strain Cadman...1 Complete Genome Sequence of Pigmentation Negative Yersinia pestis strain Cadman 1 2 3 Sean Lovetta, Kitty Chaseb, Galina Korolevaa, Gustavo...we report the genome sequence of Yersinia pestis strain Cadman, an attenuated strain 25 lacking the pgm locus. Y. pestis is the causative agent of

  6. In silico characterization and analysis of RTBP1 and NgTRF1 protein through MD simulation and molecular docking - A comparative study.

    PubMed

    Mukherjee, Koel; Pandey, Dev Mani; Vidyarthi, Ambarish Saran

    2015-02-06

    Gaining access to sequence and structure information of telomere binding proteins helps in understanding the essential biological processes involve in conserved sequence specific interaction between DNA and the proteins. Rice telomere binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix turn helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain but till now there is very less communication on the in silico studies of these complete proteins.Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK web server.Digging up all the facts about the proteins it was reveled that around 120 amino acids in the tail part was showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicates the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and Energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.

  7. Complete genome sequencing and phylogenetic analysis of dengue type 1 virus isolated from Jeddah, Saudi Arabia.

    PubMed

    Azhar, Esam I; Hashem, Anwar M; El-Kafrawy, Sherif A; Abol-Ela, Said; Abd-Alla, Adly M M; Sohrab, Sayed Sartaj; Farraj, Suha A; Othman, Norah A; Ben-Helaby, Huda G; Ashshi, Ahmed; Madani, Tariq A; Jamjoom, Ghazi

    2015-01-16

    Dengue viruses (DENVs) are mosquito-borne viruses which can cause disease ranging from mild fever to severe dengue infection. These viruses are endemic in several tropical and subtropical regions. Multiple outbreaks of DENV serotypes 1, 2 and 3 (DENV-1, DENV-2 and DENV-3) have been reported from the western region in Saudi Arabia since 1994. Strains from at least two genotypes of DENV-1 (Asia and America/Africa genotypes) have been circulating in western Saudi Arabia until 2006. However, all previous studies reported from Saudi Arabia were based on partial sequencing data of the envelope (E) gene without any reports of full genome sequences for any DENV serotypes circulating in Saudi Arabia. Here, we report the isolation and the first complete genome sequence of a DENV-1 strain (DENV-1-Jeddah-1-2011) isolated from a patient from Jeddah, Saudi Arabia in 2011. Whole genome sequence alignment and phylogenetic analysis showed high similarity between DENV-1-Jeddah-1-2011 strain and D1/H/IMTSSA/98/606 isolate (Asian genotype) reported from Djibouti in 1998. Further analysis of the full envelope gene revealed a close relationship between DENV-1-Jeddah-1-2011 strain and isolates reported between 2004-2006 from Jeddah as well as recent isolates from Somalia, suggesting the widespread of the Asian genotype in this region. These data suggest that strains belonging to the Asian genotype might have been introduced into Saudi Arabia long before 2004 most probably by African pilgrims and continued to circulate in western Saudi Arabia at least until 2011. Most importantly, these results indicate that pilgrims from dengue endemic regions can play an important role in the spread of new DENVs in Saudi Arabia and the rest of the world. Therefore, availability of complete genome sequences would serve as a reference for future epidemiological studies of DENV-1 viruses.

  8. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schofield, Michael M.; Jain, Sunit; Porat, Daphne

    Ecteinascidin 743 (ET-743, Yondelis) is a clinically approved chemotherapeutic natural product isolated from the Caribbean mangrove tunicate Ecteinascidia turbinata. Researchers have long suspected that a microorganism may be the true producer of the anti-cancer drug, but its genome has remained elusive due to our inability to culture the bacterium in the laboratory using standard techniques. Here, we sequenced and assembled the complete genome of the ET-743 producer, Candidatus Endoecteinascidia frumentensis, directly from metagenomic DNA isolated from the tunicate. Analysis of the ~631 kb microbial genome revealed strong evidence of an endosymbiotic lifestyle and extreme genome reduction. Phylogenetic analysis suggested thatmore » the producer of the anti-cancer drug is taxonomically distinct from other sequenced microorganisms and could represent a new family of Gammaproteobacteria. The complete genome has also greatly expanded our understanding of ET-743 production and revealed new biosynthetic genes dispersed across more than 173 kb of the small genome. The gene cluster’s architecture and its preservation demonstrate that the drug is likely essential to the interactions of the microorganism with its mangrove tunicate host. In conclusion, taken together, these studies elucidate the lifestyle of a unique, and pharmaceutically-important microorganism and highlight the wide diversity of bacteria capable of making potent natural products.« less

  9. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743

    DOE PAGES

    Schofield, Michael M.; Jain, Sunit; Porat, Daphne; ...

    2015-07-21

    Ecteinascidin 743 (ET-743, Yondelis) is a clinically approved chemotherapeutic natural product isolated from the Caribbean mangrove tunicate Ecteinascidia turbinata. Researchers have long suspected that a microorganism may be the true producer of the anti-cancer drug, but its genome has remained elusive due to our inability to culture the bacterium in the laboratory using standard techniques. Here, we sequenced and assembled the complete genome of the ET-743 producer, Candidatus Endoecteinascidia frumentensis, directly from metagenomic DNA isolated from the tunicate. Analysis of the ~631 kb microbial genome revealed strong evidence of an endosymbiotic lifestyle and extreme genome reduction. Phylogenetic analysis suggested thatmore » the producer of the anti-cancer drug is taxonomically distinct from other sequenced microorganisms and could represent a new family of Gammaproteobacteria. The complete genome has also greatly expanded our understanding of ET-743 production and revealed new biosynthetic genes dispersed across more than 173 kb of the small genome. The gene cluster’s architecture and its preservation demonstrate that the drug is likely essential to the interactions of the microorganism with its mangrove tunicate host. In conclusion, taken together, these studies elucidate the lifestyle of a unique, and pharmaceutically-important microorganism and highlight the wide diversity of bacteria capable of making potent natural products.« less

  10. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu.

    PubMed

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes.

  11. Comparative Genomics of Acetobacterpasteurianus Ab3, an Acetic Acid Producing Strain Isolated from Chinese Traditional Rice Vinegar Meiguichu

    PubMed Central

    Xia, Kai; Li, Yudong; Sun, Jing; Liang, Xinle

    2016-01-01

    Acetobacter pasteurianus, an acetic acid resistant bacterium belonging to alpha-proteobacteria, has been widely used to produce vinegar in the food industry. To understand the mechanism of its high tolerance to acetic acid and robust ability of oxidizing ethanol to acetic acid (> 12%, w/v), we described the 3.1 Mb complete genome sequence (including 0.28 M plasmid sequence) with a G+C content of 52.4% of A. pasteurianus Ab3, which was isolated from the traditional Chinese rice vinegar (Meiguichu) fermentation process. Automatic annotation of the complete genome revealed 2,786 protein-coding genes and 73 RNA genes. The comparative genome analysis among A. pasteurianus strains revealed that A. pasteurianus Ab3 possesses many unique genes potentially involved in acetic acid resistance mechanisms. In particular, two-component systems or toxin-antitoxin systems may be the signal pathway and modulatory network in A. pasteurianus to cope with acid stress. In addition, the large numbers of unique transport systems may also be related to its acid resistance capacity and cell fitness. Our results provide new clues to understanding the underlying mechanisms of acetic acid resistance in Acetobacter species and guiding industrial strain breeding for vinegar fermentation processes. PMID:27611790

  12. Bacteriophage prevalence in the genus Azospirillum and analysis of the first genome sequence of an Azospirillum brasilense integrative phage.

    PubMed

    Boyer, Mickaël; Haurat, Jacqueline; Samain, Sylvie; Segurens, Béatrice; Gavory, Frédérick; González, Víctor; Mavingui, Patrick; Rohr, René; Bally, René; Wisniewski-Dyé, Florence

    2008-02-01

    The prevalence of bacteriophages was investigated in 24 strains of four species of plant growth-promoting rhizobacteria belonging to the genus Azospirillum. Upon induction by mitomycin C, the release of phage particles was observed in 11 strains from three species. Transmission electron microscopy revealed two distinct sizes of particles, depending on the identity of the Azospirillum species, typical of the Siphoviridae family. Pulsed-field gel electrophoresis and hybridization experiments carried out on phage-encapsidated DNAs revealed that all phages isolated from A. lipoferum and A. doebereinerae strains had a size of about 10 kb whereas all phages isolated from A. brasilense strains displayed genome sizes ranging from 62 to 65 kb. Strong DNA hybridizing signals were shown for most phages hosted by the same species whereas no homology was found between phages harbored by different species. Moreover, the complete sequence of the A. brasilense Cd bacteriophage (phiAb-Cd) genome was determined as a double-stranded DNA circular molecule of 62,337 pb that encodes 95 predicted proteins. Only 14 of the predicted proteins could be assigned functions, some of which were involved in DNA processing, phage morphogenesis, and bacterial lysis. In addition, the phiAb-Cd complete genome was mapped as a prophage on a 570-kb replicon of strain A. brasilense Cd, and a region of 27.3 kb of phiAb-Cd was found to be duplicated on the 130-kb pRhico plasmid previously sequenced from A. brasilense Sp7, the parental strain of A. brasilense Cd.

  13. Bacteriophage Prevalence in the Genus Azospirillum and Analysis of the First Genome Sequence of an Azospirillum brasilense Integrative Phage▿

    PubMed Central

    Boyer, Mickaël; Haurat, Jacqueline; Samain, Sylvie; Segurens, Béatrice; Gavory, Frédérick; González, Víctor; Mavingui, Patrick; Rohr, René; Bally, René; Wisniewski-Dyé, Florence

    2008-01-01

    The prevalence of bacteriophages was investigated in 24 strains of four species of plant growth-promoting rhizobacteria belonging to the genus Azospirillum. Upon induction by mitomycin C, the release of phage particles was observed in 11 strains from three species. Transmission electron microscopy revealed two distinct sizes of particles, depending on the identity of the Azospirillum species, typical of the Siphoviridae family. Pulsed-field gel electrophoresis and hybridization experiments carried out on phage-encapsidated DNAs revealed that all phages isolated from A. lipoferum and A. doebereinerae strains had a size of about 10 kb whereas all phages isolated from A. brasilense strains displayed genome sizes ranging from 62 to 65 kb. Strong DNA hybridizing signals were shown for most phages hosted by the same species whereas no homology was found between phages harbored by different species. Moreover, the complete sequence of the A. brasilense Cd bacteriophage (ΦAb-Cd) genome was determined as a double-stranded DNA circular molecule of 62,337 pb that encodes 95 predicted proteins. Only 14 of the predicted proteins could be assigned functions, some of which were involved in DNA processing, phage morphogenesis, and bacterial lysis. In addition, the ΦAb-Cd complete genome was mapped as a prophage on a 570-kb replicon of strain A. brasilense Cd, and a region of 27.3 kb of ΦAb-Cd was found to be duplicated on the 130-kb pRhico plasmid previously sequenced from A. brasilense Sp7, the parental strain of A. brasilense Cd. PMID:18065619

  14. Seven New Complete Plastome Sequences Reveal Rampant Independent Loss of the ndh Gene Family across Orchids and Associated Instability of the Inverted Repeat/Small Single-Copy Region Boundaries

    PubMed Central

    Moore, Michael J.; Neubig, Kurt M.; Williams, Norris H.; Whitten, W. Mark; Kim, Joo-Hwan

    2015-01-01

    Earlier research has revealed that the ndh loci have been pseudogenized, truncated, or deleted from most orchid plastomes sequenced to date, including in all available plastomes of the two most species-rich subfamilies, Orchidoideae and Epidendroideae. This study sought to resolve deeper-level phylogenetic relationships among major orchid groups and to refine the history of gene loss in the ndh loci across orchids. The complete plastomes of seven orchids, Oncidium sphacelatum (Epidendroideae), Masdevallia coccinea (Epidendroideae), Sobralia callosa (Epidendroideae), Sobralia aff. bouchei (Epidendroideae), Elleanthus sodiroi (Epidendroideae), Paphiopedilum armeniacum (Cypripedioideae), and Phragmipedium longifolium (Cypripedioideae) were sequenced and analyzed in conjunction with all other available orchid and monocot plastomes. Most ndh loci were found to be pseudogenized or lost in Oncidium, Paphiopedilum and Phragmipedium, but surprisingly, all ndh loci were found to retain full, intact reading frames in Sobralia, Elleanthus and Masdevallia. Character mapping suggests that the ndh genes were present in the common ancestor of orchids but have experienced independent, significant losses at least eight times across four subfamilies. In addition, ndhF gene loss was correlated with shifts in the position of the junction of the inverted repeat (IR) and small single-copy (SSC) regions. The Orchidaceae have unprecedented levels of homoplasy in ndh gene presence/absence, which may be correlated in part with the unusual life history of orchids. These results also suggest that ndhF plays a role in IR/SSC junction stability. PMID:26558895

  15. Complete Amino Acid Sequence of a Copper/Zinc-Superoxide Dismutase from Ginger Rhizome.

    PubMed

    Nishiyama, Yuki; Fukamizo, Tamo; Yoneda, Kazunari; Araki, Tomohiro

    2017-04-01

    Superoxide dismutase (SOD) is an antioxidant enzyme protecting cells from oxidative stress. Ginger (Zingiber officinale) is known for its antioxidant properties, however, there are no data on SODs from ginger rhizomes. In this study, we purified SOD from the rhizome of Z. officinale (Zo-SOD) and determined its complete amino acid sequence using N terminal sequencing, amino acid analysis, and de novo sequencing by tandem mass spectrometry. Zo-SOD consists of 151 amino acids with two signature Cu/Zn-SOD motifs and has high similarity to other plant Cu/Zn-SODs. Multiple sequence alignment showed that Cu/Zn-binding residues and cysteines forming a disulfide bond, which are highly conserved in Cu/Zn-SODs, are also present in Zo-SOD. Phylogenetic analysis revealed that plant Cu/Zn-SODs clustered into distinct chloroplastic, cytoplasmic, and intermediate groups. Among them, only chloroplastic enzymes carried amino acid substitutions in the region functionally important for enzymatic activity, suggesting that chloroplastic SODs may have a function distinct from those of SODs localized in other subcellular compartments. The nucleotide sequence of the Zo-SOD coding region was obtained by reverse-translation, and the gene was synthesized, cloned, and expressed. The recombinant Zo-SOD demonstrated pH stability in the range of 5-10, which is similar to other reported Cu/Zn-SODs, and thermal stability in the range of 10-60 °C, which is higher than that for most plant Cu/Zn-SODs but lower compared to the enzyme from a Z. officinale relative Curcuma aromatica.

  16. Long-read whole genome sequencing and comparative analysis of six strains of the human pathogen Orientia tsutsugamushi.

    PubMed

    Batty, Elizabeth M; Chaemchuen, Suwittra; Blacksell, Stuart; Richards, Allen L; Paris, Daniel; Bowden, Rory; Chan, Caroline; Lachumanan, Ramkumar; Day, Nicholas; Donnelly, Peter; Chen, Swaine; Salje, Jeanne

    2018-06-01

    Orientia tsutsugamushi is a clinically important but neglected obligate intracellular bacterial pathogen of the Rickettsiaceae family that causes the potentially life-threatening human disease scrub typhus. In contrast to the genome reduction seen in many obligate intracellular bacteria, early genetic studies of Orientia have revealed one of the most repetitive bacterial genomes sequenced to date. The dramatic expansion of mobile elements has hampered efforts to generate complete genome sequences using short read sequencing methodologies, and consequently there have been few studies of the comparative genomics of this neglected species. We report new high-quality genomes of O. tsutsugamushi, generated using PacBio single molecule long read sequencing, for six strains: Karp, Kato, Gilliam, TA686, UT76 and UT176. In comparative genomics analyses of these strains together with existing reference genomes from Ikeda and Boryong strains, we identify a relatively small core genome of 657 genes, grouped into core gene islands and separated by repeat regions, and use the core genes to infer the first whole-genome phylogeny of Orientia. Complete assemblies of multiple Orientia genomes verify initial suggestions that these are remarkable organisms. They have larger genomes compared with most other Rickettsiaceae, with widespread amplification of repeat elements and massive chromosomal rearrangements between strains. At the gene level, Orientia has a relatively small set of universally conserved genes, similar to other obligate intracellular bacteria, and the relative expansion in genome size can be accounted for by gene duplication and repeat amplification. Our study demonstrates the utility of long read sequencing to investigate complex bacterial genomes and characterise genomic variation.

  17. Phylogenetic Relationship of Necoclí Virus to Other South American Hantaviruses (Bunyaviridae: Hantavirus).

    PubMed

    Montoya-Ruiz, Carolina; Cajimat, Maria N B; Milazzo, Mary Louise; Diaz, Francisco J; Rodas, Juan David; Valbuena, Gustavo; Fulhorst, Charles F

    2015-07-01

    The results of a previous study suggested that Cherrie's cane rat (Zygodontomys cherriei) is the principal host of Necoclí virus (family Bunyaviridae, genus Hantavirus) in Colombia. Bayesian analyses of complete nucleocapsid protein gene sequences and complete glycoprotein precursor gene sequences in this study confirmed that Necoclí virus is phylogenetically closely related to Maporal virus, which is principally associated with the delicate pygmy rice rat (Oligoryzomys delicatus) in western Venezuela. In pairwise comparisons, nonidentities between the complete amino acid sequence of the nucleocapsid protein of Necoclí virus and the complete amino acid sequences of the nucleocapsid proteins of other hantaviruses were ≥8.7%. Likewise, nonidentities between the complete amino acid sequence of the glycoprotein precursor of Necoclí virus and the complete amino acid sequences of the glycoprotein precursors of other hantaviruses were ≥11.7%. Collectively, the unique association of Necoclí virus with Z. cherriei in Colombia, results of the Bayesian analyses of complete nucleocapsid protein gene sequences and complete glycoprotein precursor gene sequences, and results of the pairwise comparisons of amino acid sequences strongly support the notion that Necoclí virus represents a novel species in the genus Hantavirus. Further work is needed to determine whether Calabazo virus (a hantavirus associated with Z. brevicauda cherriei in Panama) and Necoclí virus are conspecific.

  18. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics.

    PubMed

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica . All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/.

  19. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics

    PubMed Central

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica. All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/. PMID:28261563

  20. Molecular epidemiology of goat pox viruses.

    PubMed

    Roy, P; Jaisree, S; Balakrishnan, S; Senthilkumar, K; Mahaprabhu, R; Mishra, A; Maity, B; Ghosh, T K; Karmakar, A P

    2018-02-01

    Goat pox disease outbreaks were observed in different places affecting Black Bengal Goats in West Bengal (WB) and Tellicherry, Vembur and non-descriptive breeds in Tamil Nadu (TN) causing severe lesions and mortality up to 30%. Clinical specimens from all the outbreaks were screened by polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP) and confirmed the diseases as Goat Pox. Virus isolation in Vero cell line was done with randomly selected ten samples, cytopathic effects (CPE) characterized by syncytia and intracytoplasmic inclusion bodies were observed after several blind passages. Nucleotide sequence of complete p32 gene using randomly selected two isolates and three clinical specimens revealed presence of Goat pox virus (GTPV)-specific signature residues in all the sequences. Phylogenetic analysis using the present five sequences along with GenBank data of GTPV complete p32 gene sequences showed all the GTPV sequences cluster together except Pellor strain (NC004003) and FZ Chinese strain (KC951854). The five sequences either from WB or TN cluster more closely with GTPV isolates of Maharashtra state that were responsible for cross species outbreak of pox disease in both sheep (KF468759) and goats (KF468762) in India during the year 2010. All the Indian goat pox viruses, including the Mukteswar strain, isolated in 1946 and sequence reported in 2004 clustered together with the GTPVs causing the recent outbreaks. It was observed that GTPVs caused similar clinical manifestation irrespective of their geographical locations and breed characteristics, no variation observed among the Indian isolates based on p32 gene over the period of seventy years and disease outbreaks could not be observed or reported in vaccinated goats. © 2017 Blackwell Verlag GmbH.

  1. Bioinformatics analysis and genetic diversity of the poliovirus.

    PubMed

    Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Wang, Shujing; Xu, Ruixue

    2014-12-01

    Poliomyelitis, a disease which can manifest as muscle paralysis, is caused by the poliovirus, which is a human enterovirus and member of the family Picornaviridae that usually transmits by the faecal-oral route. The viruses of the OPV (oral poliovirus attenuated-live vaccine) strains can mutate in the human intestine during replication and some of these mutations can lead to the recovery of serious neurovirulence. Informatics research of the poliovirus genome can be used to explain further the characteristics of this virus. In this study, sequences from 100 poliovirus isolates were acquired from GenBank. To determine the evolutionary relationship between the strains, we compared and analysed the sequences of the complete poliovirus genome and the VP1 region. The reconstructed phylogenetic trees for the complete sequences and the VP1 sequences were both divided into two branches, indicating that the genetic relationships of the whole poliovirus genome and the VP1 sequences are very similar. This branching indicates that the virulence and pathogenicity of poliomyelitis may be associated with the VP1 region. Sequence alignment of the VP1 region revealed numerous mutation sites in which mutation rates of >30 % were detected. In a group of strains recorded in the USA, mutation sites and mutation types were the same and this may be associated with their distribution in the evolutionary tree and their genetic relationship. In conclusion, the genetic evolutionary relationships of poliovirus isolate sequences are determined to a great extent by the VP1 protein, and poliovirus strains located on the same branch of the phylogenetic tree contain the same mutation spots and mutation types. Hence, the genetic characteristics of the VP1 region in the poliovirus genome should be analysed to identify the transmission route of poliovirus and provide the basis of viral immunity development. © 2014 The Authors.

  2. The complete nucleotide sequence of RNA 3 of a peach isolate of Prunus necrotic ringspot virus.

    PubMed

    Hammond, R W; Crosslin, J M

    1995-04-01

    The complete nucleotide sequence of RNA 3 of the PE-5 peach isolate of Prunus necrotic ringspot ilarvirus (PNRSV) was obtained from cloned cDNA. The RNA sequence is 1941 nucleotides and contains two open reading frames (ORFs). ORF 1 consisted of 284 amino acids with a calculated molecular weight of 31,729 Da and ORF 2 contained 224 amino acids with a calculated molecular weight of 25,018 Da. ORF 2 corresponds to the coat protein gene. Expression of ORF 2 engineered into a pTrcHis vector in Escherichia coli results in a fusion polypeptide of approximately 28 kDa which cross-reacts with PNRSV polyclonal antiserum. Analysis of the coat protein amino acid sequence reveals a putative "zinc-finger" domain at the amino-terminal portion of the protein. Two tetranucleotide AUGC motifs occur in the 3'-UTR of the RNA and may function in coat protein binding and genome activation. ORF 1 homologies to other ilarviruses and alfalfa mosaic virus are confined to limited regions of conserved amino acids. The translated amino acid sequence of the coat protein gene shows 92% similarity to one isolate of apple mosaic virus, a closely related member of the ilarvirus group of plant viruses, but only 66% similarity to the amino acid sequence of the coat protein gene of a second isolate. These relationships are also reflected at the nucleotide sequence level. These results in one instance confirm the close similarities observed at the biophysical and serological levels between these two viruses, but on the other hand call into question the nomenclature used to describe these viruses.

  3. A search for pre-main-sequence stars in high-latitude molecular clouds. 3: A survey of the Einstein database

    NASA Technical Reports Server (NTRS)

    Caillault, Jean-Pierre; Magnani, Loris; Fryer, Chris

    1995-01-01

    In order to discern whether the high-latitude molecular clouds are regions of ongoing star formation, we have used X-ray emission as a tracer of youthful stars. The entire Einstein database yields 18 images which overlap 10 of the clouds mapped partially or completely in the CO (1-0) transition, providing a total of approximately 6 deg squared of overlap. Five previously unidentified X-ray sources were detected: one has an optical counterpart which is a pre-main-sequence (PMS) star, and two have normal main-sequence stellar counterparts, while the other two are probably extragalactic sources. The PMS star is located in a high Galactic latitude Lynds dark cloud, so this result is not too suprising. The translucent clouds, though, have yet to reveal any evidence of star formation.

  4. Analysis of 16S-23S intergenic spacer regions of the rRNA operons in Edwardsiella ictaluri and Edwardsiella tarda isolates from fish.

    PubMed

    Panangala, V S; van Santen, V L; Shoemaker, C A; Klesius, P H

    2005-01-01

    To analyse interspecies and intraspecies differences based on the 16S-23S rRNA intergenic spacer region (ISR) sequences of the fish pathogens Edwardsiella ictaluri and Edwardsiella tarda. The 16S-23S rRNA spacer regions of 19 Edw. ictaluri and four Edw. tarda isolates from four geographical regions were amplified by PCR with primers complementary to conserved sequences within the flanking 16S-23S rRNA coding sequences. Two products were generated from all isolates, without interspecies or intraspecific size polymorphisms. Sequence analysis of the amplified fragments revealed a smaller ISR of 350 bp, which contained a gene for tRNA(Glu), and a larger ISR of 441 bp, which contained genes for tRNA(Ile) and tRNA(Ala). The sequences of the smaller ISR of different Edw. ictaluri isolates were essentially identical to each other. Partial sequences of larger ISR from several Edw. ictaluri isolates also revealed no differences from the one complete Edw. ictaluri large ISR sequence obtained. The sequences of the smaller ISR of Edw. tarda were 97% identical to the Edw. ictaluri smaller ISR and the larger ISR were 96-98% identical to the Edw. ictaluri larger ISR sequence. The Edw. tarda isolates displayed limited ISR sequence heterogeneity, with > or =97% sequence identity among isolates for both small and large ISR. There is a high degree of size and sequence similarity of 16S-23S ISR both among isolates within Edw. ictaluri and Edw. tarda species and between the two species. Our results confirm a close genetic relationship between Edw. ictaluri and Edw. tarda and the relative homogeneity of Edw. ictaluri isolates compared with Edw. tarda isolates. Because no differences were found in ISR sequences among Edw. ictaluri isolates, sequence analysis of the ISR will not be useful to distinguish isolates of Edw. ictaluri. However, we identified restriction sites that differ between ISR sequences of Edw. ictaluri and Edw. tarda, which will be useful in distinguishing the two species.

  5. Chromosomal Organization and Sequence Diversity of Genes Encoding Lachrymatory Factor Synthase in Allium cepa L.

    PubMed Central

    Masamura, Noriya; McCallum, John; Khrustaleva, Ludmila; Kenel, Fernand; Pither-Joyce, Meegham; Shono, Jinji; Suzuki, Go; Mukai, Yasuhiko; Yamauchi,, Naoki; Shigyo, Masayoshi

    2012-01-01

    Lachrymatory factor synthase (LFS) catalyzes the formation of lachrymatory factor, one of the most distinctive traits of bulb onion (Allium cepa L.). Therefore, we used LFS as a model for a functional gene in a huge genome, and we examined the chromosomal organization of LFS in A. cepa by multiple approaches. The first-level analysis completed the chromosomal assignment of LFS gene to chromosome 5 of A. cepa via the use of a complete set of A. fistulosum–shallot (A. cepa L. Aggregatum group) monosomic addition lines. Subsequent use of an F2 mapping population from the interspecific cross A. cepa × A. roylei confirmed the assignment of an LFS locus to this chromosome. Sequence comparison of two BAC clones bearing LFS genes, LFS amplicons from diverse germplasm, and expressed sequences from a doubled haploid line revealed variation consistent with duplicated LFS genes. Furthermore, the BAC-FISH study using the two BAC clones as a probe showed that LFS genes are localized in the proximal region of the long arm of the chromosome. These results suggested that LFS in A. cepa is transcribed from at least two loci and that they are localized on chromosome 5. PMID:22690373

  6. Complete sequencing and pan-genomic analysis of Lactobacillus delbrueckii subsp. bulgaricus reveal its genetic basis for industrial yogurt production.

    PubMed

    Hao, Pei; Zheng, Huajun; Yu, Yao; Ding, Guohui; Gu, Wenyi; Chen, Shuting; Yu, Zhonghao; Ren, Shuangxi; Oda, Munehiro; Konno, Tomonobu; Wang, Shengyue; Li, Xuan; Ji, Zai-Si; Zhao, Guoping

    2011-01-17

    Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production.

  7. Complete Sequencing and Pan-Genomic Analysis of Lactobacillus delbrueckii subsp. bulgaricus Reveal Its Genetic Basis for Industrial Yogurt Production

    PubMed Central

    Ding, Guohui; Gu, Wenyi; Chen, Shuting; Yu, Zhonghao; Ren, Shuangxi; Oda, Munehiro; Konno, Tomonobu; Wang, Shengyue; Li, Xuan; Ji, Zai-Si; Zhao, Guoping

    2011-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (Lb. bulgaricus) is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. The genome of Lb. bulgaricus 2038, an industrial strain mainly used for yogurt production, was completely sequenced and compared against the other two ATCC collection strains of the same subspecies. Specific physiological properties of strain 2038, such as lysine biosynthesis, formate production, aspartate-related carbon-skeleton intermediate metabolism, unique EPS synthesis and efficient DNA restriction/modification systems, are all different from those of the collection strains that might benefit the industrial production of yogurt. Other common features shared by Lb. bulgaricus strains, such as efficient protocooperation with Streptococcus thermophilus and lactate production as well as well-equipped stress tolerance mechanisms may account for it being selected originally for yogurt fermentation industry. Multiple lines of evidence suggested that Lb. bulgaricus 2038 was genetically closer to the common ancestor of the subspecies than the other two sequenced collection strains, probably due to a strict industrial maintenance process for strain 2038 that might have halted its genome decay and sustained a gene network suitable for large scale yogurt production. PMID:21264216

  8. Glareosin: a novel sexually dimorphic urinary lipocalin in the bank vole, Myodes glareolus.

    PubMed

    Loxley, Grace M; Unsworth, Jennifer; Turton, Michael J; Jebb, Alexandra; Lilley, Kathryn S; Simpson, Deborah M; Rigden, Daniel J; Hurst, Jane L; Beynon, Robert J

    2017-09-01

    The urine of bank voles ( Myodes glareolus ) contains substantial quantities of a small protein that is expressed at much higher levels in males than females, and at higher levels in males in the breeding season. This protein was purified and completely sequenced at the protein level by mass spectrometry. Leucine/isoleucine ambiguity was completely resolved by metabolic labelling, monitoring the incorporation of dietary deuterated leucine into specific sites in the protein. The predicted mass of the sequenced protein was exactly consonant with the mass of the protein measured in bank vole urine samples, correcting for the formation of two disulfide bonds. The sequence of the protein revealed that it was a lipocalin related to aphrodisin and other odorant-binding proteins (OBPs), but differed from all OBPs previously described. The pattern of secretion in urine used for scent marking by male bank voles, and the similarity to other lipocalins used as chemical signals in rodents, suggest that this protein plays a role in male sexual and/or competitive communication. We propose the name glareosin for this novel protein to reflect the origin of the protein and to emphasize the distinction from known OBPs. © 2017 The Authors.

  9. First report of a complete genome sequence for a begomovirus infecting Jatropha gossypifolia in the Americas.

    PubMed

    Simmonds-Gordon, R N; Collins-Fairclough, A M; Stewart, C S; Roye, M E

    2014-10-01

    Jatropha gossypifolia is a weed that is commonly found with yellow mosaic symptoms growing along the roadside and in close proximity to cultivated crops in many farming communities in Jamaica. For the first time, the complete genome sequence of a new begomovirus, designated jatropha mosaic virus-[Jamaica:Spanish Town:2004] (JMV-[JM:ST:04]), was determined from field-infected J. gossypifolia in the western hemisphere. DNA-A nucleotide sequence comparisons showed closest identity (84 %) to two tobacco-infecting viruses from Cuba, tobacco mottle leaf curl virus-[Cuba:Sancti Spiritus:03] (TbMoLCV-[CU:SS:03]) and tobacco leaf curl Cuba virus-[Cuba:Taguasco:2005] (TbLCuCUV-[CU:Tag:05]), and two weed-infecting viruses from Cuba and Jamaica, Rhynchosia rugose golden mosaic virus-[Cuba:Camaguey:171:2009] (RhRGMV- [CU:Cam:171:09]) and Wissadula golden mosaic St. Thomas virus-[Jamaica:Albion:2005] (WGMSTV-[JM:Alb:05]). Phylogenetic analysis revealed that JMV-[JM:ST:04] is most closely related to tobacco and tomato viruses from Cuba and WGMSTV-[JM:Alb:05], a common malvaceous-weed-infecting virus from eastern Jamaica, and that it is distinct from begomoviruses infecting Jatropha species in India and Nigeria.

  10. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla.

    PubMed

    Lin, C S; Sun, Y L; Liu, C Y; Yang, P C; Chang, L C; Cheng, I C; Mao, S J; Huang, M C

    1999-08-05

    The complete nucleotide sequence of the pig (Sus scrofa) mitochondrial genome, containing 16613bp, is presented in this report. The genome is not a specific length because of the presence of the variable numbers of tandem repeats, 5'-CGTGCGTACA in the displacement loop (D-loop). Genes responsible for 12S and 16S rRNAs, 22 tRNAs, and 13 protein-coding regions are found. The genome carries very few intergenic nucleotides with several instances of overlap between protein-coding or tRNA genes, except in the D-loop region. For evaluating the possible evolutionary relationships between Artiodactyla and Cetacea, the nucleotide substitutions and amino acid sequences of 13 protein-coding genes were aligned by pairwise comparisons of the pig, cow, and fin whale. By comparing these sequences, we suggest that there is a closer relationship between the pig and cow than that between either of these species and fin whale. In addition, the accumulation of transversions and gaps in pig 12S and 16S rRNA genes was compared with that in other eutherian species, including cow, fin whale, human, horse, and harbor seal. The results also reveal a close phylogenetic relationship between pig and cow, as compared to fin whale and others. Thus, according to the sequence differences of mitochondrial rRNA genes in eutherian species, the evolutionary separation of pig and cow occurred about 53-60 million years ago.

  11. Complete genome sequence of 'Halanaeroarchaeum sulfurireducens' M27-SA2, a sulfur-reducing and acetate-oxidizing haloarchaeon from the deep-sea hypersaline anoxic lake Medee.

    PubMed

    Messina, Enzo; Sorokin, Dimitry Y; Kublanov, Ilya V; Toshchakov, Stepan; Lopatina, Anna; Arcadi, Erika; Smedile, Francesco; La Spada, Gina; La Cono, Violetta; Yakimov, Michail M

    2016-01-01

    Strain M27-SA2 was isolated from the deep-sea salt-saturated anoxic lake Medee, which represents one of the most hostile extreme environments on our planet. On the basis of physiological studies and phylogenetic positioning this extremely halophilic euryarchaeon belongs to a novel genus 'Halanaeroarchaeum' within the family Halobacteriaceae. All members of this genus cultivated so far are strict anaerobes using acetate as the sole carbon and energy source and elemental sulfur as electron acceptor. Here we report the complete genome sequence of the strain M27-SA2 which is composed of a 2,129,244-bp chromosome and a 124,256-bp plasmid. This is the second complete genome sequence within the genus Halanaeroarchaeum. We demonstrate that genome of 'Halanaeroarchaeum sulfurireducens' M27-SA2 harbors complete metabolic pathways for acetate and sulfur catabolism and for de novo biosynthesis of 19 amino acids. The genomic analysis also reveals that 'Halanaeroarchaeum sulfurireducens' M27-SA2 harbors two prophage loci and one CRISPR locus, highly similar to that of Kulunda Steppe (Altai, Russia) isolate 'H. sulfurireducens' HSR2(T). The discovery of sulfur-respiring acetate-utilizing haloarchaeon in deep-sea hypersaline anoxic lakes has certain significance for understanding the biogeochemical functioning of these harsh ecosystems, which are incompatible with life for common organisms. Moreover, isolations of Halanaeroarchaeum members from geographically distant salt-saturated sites of different origin suggest a high degree of evolutionary success in their adaptation to this type of extreme biotopes around the world.

  12. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem

    DOE PAGES

    Johnston, Eric R.; Rodriguez-R, Luis M.; Luo, Chengwei; ...

    2016-04-25

    How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA genemore » amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete ( > 80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems.« less

  13. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem.

    PubMed

    Johnston, Eric R; Rodriguez-R, Luis M; Luo, Chengwei; Yuan, Mengting M; Wu, Liyou; He, Zhili; Schuur, Edward A G; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong; Konstantinidis, Konstantinos T

    2016-01-01

    How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems.

  14. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem

    PubMed Central

    Johnston, Eric R.; Rodriguez-R, Luis M.; Luo, Chengwei; Yuan, Mengting M.; Wu, Liyou; He, Zhili; Schuur, Edward A. G.; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong; Konstantinidis, Konstantinos T.

    2016-01-01

    How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1–2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100–530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems. PMID:27199914

  15. Genome-wide characterization of centromeric satellites from multiple mammalian genomes.

    PubMed

    Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario

    2011-01-01

    Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.

  16. In vitro characteristics of an Atlantic salmon (Salmo salar L.) hind gut microbial community in relation to different dietary treatments.

    PubMed

    Zarkasi, Kamarul Zaman; Taylor, Richard S; Glencross, Brett D; Abell, Guy C J; Tamplin, Mark L; Bowman, John P

    2017-10-01

    In this study, microbial community dynamics were assessed within a simple in vitro model system in order to understand those changes influenced by diet. The abundance and diversity of bacteria were monitored within different treatment slurries inoculated with salmon faecal samples in order to mimic the effects of dietary variables. A total of five complete diets and two ingredients (plant meal) were tested. The total viable counts (TVCs) and sequencing data revealed that there was very clear separation between the complete diets and the plant meal treatments, suggesting a dynamic response by the allochthonous bacteria to the treatments. Automated ribosomal intergenic spacer analysis (ARISA) results showed that different diet formulations produced different patterns of fragments, with no separation between the complete diets. However, plant-based protein ingredients were clearly separated from the other treatments. 16S rRNA Illumina-based sequencing analysis showed that members of the genera Aliivibrio, Vibrio and Photobacterium became predominant for all complete diets treatments. The plant-based protein ingredient treatments only sustained weak growth of the genus Sphingomonas. In vitro based testing of diets could be a useful strategy to determine the potential impact of either complete feeds or ingredients on major fish gastrointestinal tract microbiome members. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Complete genome sequence of Clavibacter michiganensis subsp. insidiosus R1-1 using PacBio single-molecule real-time technology

    USDA-ARS?s Scientific Manuscript database

    We report the complete genome sequence of Clavibacter michiganensis subsp. insidiosus R1-1 isolated in Minnesota, USA. The R1-1 genome, generated by de novo assembly of PacBio sequencing data, is the first complete genome sequence available for this subspecies....

  18. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill.

    PubMed

    Mason, Olivia U; Hazen, Terry C; Borglin, Sharon; Chain, Patrick S G; Dubinsky, Eric A; Fortney, Julian L; Han, James; Holman, Hoi-Ying N; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M; Tringe, Susannah G; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M; Jansson, Janet K

    2012-09-01

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  19. Molecular Characterization of Tomato 3-Dehydroquinate Dehydratase-Shikimate:NADP Oxidoreductase1

    PubMed Central

    Bischoff, Markus; Schaller, Andreas; Bieri, Fabian; Kessler, Felix; Amrhein, Nikolaus; Schmid, Jürg

    2001-01-01

    Analysis of cDNAs encoding the bifunctional 3-dehydroquinate dehydratase-shikimate:NADP oxidoreductase (DHQase-SORase) from tomato (Lycopersicon esculentum) revealed two classes of cDNAs that differed by 57 bp within the coding regions, but were otherwise identical. Comparison of these cDNA sequences with the sequence of the corresponding single gene unequivocally proved that the primary transcript is differentially spliced, potentially giving rise to two polypeptides that differ by 19 amino acids. Quantitative real-time polymerase chain reaction revealed that the longer transcript constitutes at most 1% to 2% of DHQase-SORase transcripts. Expression of the respective polypeptides in Escherichia coli mutants lacking the DHQase or the SORase activity gave functional complementation only in case of the shorter polypeptide, indicating that skipping of a potential exon is a prerequisite for the production of an enzymatically active protein. The deduced amino acid sequence revealed that the DHQase-SORase is most likely synthesized as a precursor with a very short (13-amino acid) plastid-specific transit peptide. Like other genes encoding enzymes of the prechorismate pathway in tomato, this gene is elicitor-inducible. Tissue-specific expression resembles the patterns obtained for 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase 2 and dehydroquinate synthase genes. This work completes our studies of the prechorismate pathway in that cDNAs for all seven enzymes (including isozymes) of the prechorismate pathway from tomato have now been characterized. PMID:11299368

  20. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing

    PubMed Central

    2011-01-01

    Background Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. Results A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. Conclusions The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models. PMID:21542930

  1. Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing.

    PubMed

    Straub, Shannon C K; Fishbein, Mark; Livshultz, Tatyana; Foster, Zachary; Parks, Matthew; Weitemier, Kevin; Cronn, Richard C; Liston, Aaron

    2011-05-04

    Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.) could be useful in characterizing the genome of a plant without prior genomic information and for development of genomic resources as a step toward further developing A. syriaca as a model in ecology and evolution. A 0.5× genome of A. syriaca was produced using Illumina sequencing. A virtually complete chloroplast genome of 158,598 bp was assembled, revealing few repeats and loss of three genes: accD, clpP, and ycf1. A nearly complete rDNA cistron (18S-5.8S-26S; 7,541 bp) and 5S rDNA (120 bp) sequence were obtained. Assessment of polymorphism revealed that the rDNA cistron and 5S rDNA had 0.3% and 26.7% polymorphic sites, respectively. A partial mitochondrial genome sequence (130,764 bp), with identical gene content to tobacco, was also assembled. An initial characterization of repeat content indicated that Ty1/copia-like retroelements are the most common repeat type in the milkweed genome. At least one A. syriaca microread hit 88% of Catharanthus roseus (Apocynaceae) unigenes (median coverage of 0.29×) and 66% of single copy orthologs (COSII) in asterids (median coverage of 0.14×). From this partial characterization of the A. syriaca genome, markers for population genetics (microsatellites) and phylogenetics (low-copy nuclear genes) studies were developed. The results highlight the promise of next generation sequencing for development of genomic resources for any organism. Low coverage genome sequencing allows characterization of the high copy fraction of the genome and exploration of the low copy fraction of the genome, which facilitate the development of molecular tools for further study of a target species and its relatives. This study represents a first step in the development of a community resource for further study of plant-insect co-evolution, anti-herbivore defense, floral developmental genetics, reproductive biology, chemical evolution, population genetics, and comparative genomics using milkweeds, and A. syriaca in particular, as ecological and evolutionary models.

  2. Ovine mitochondrial DNA sequence variation and its association with production and reproduction traits within an Afec-Assaf flock.

    PubMed

    Reicher, S; Seroussi, E; Weller, J I; Rosov, A; Gootwine, E

    2012-07-01

    Polymorphisms in mitochondrial DNA (mtDNA) protein- and tRNA-coding genes were shown to be associated with various diseases in humans as well as with production and reproduction traits in livestock. Alignment of full length mitochondria sequences from the 5 known ovine haplogroups: HA (n = 3), HB (n = 5), HC (n = 3), HD (n = 2), and HE (n = 2; GenBank accession nos. HE577847-50 and 11 published complete ovine mitochondria sequences) revealed sequence variation in 10 out of the 13 protein coding mtDNA sequences. Twenty-six of the 245 variable sites found in the protein coding sequences represent non-synonymous mutations. Sequence variation was observed also in 8 out of the 22 tRNA mtDNA sequences. On the basis of the mtDNA control region and cytochrome b partial sequences along with information on maternal lineages within an Afec-Assaf flock, 1,126 Afec-Assaf ewes were assigned to mitochondrial haplogroups HA, HB, and HC, with frequencies of 0.43, 0.43, and 0.14, respectively. Analysis of birth weight and growth rate records of lamb (n = 1286) and productivity from 4,993 lambing records revealed no association between mitochondrial haplogroup affiliation and female longevity, lambs perinatal survival rate, birth weight, and daily growth rate of lambs up to 150 d that averaged 1,664 d, 88.3%, 4.5 kg, and 320 g/d, respectively. However, significant (P < 0.0001) differences among the haplogroups were found for prolificacy of ewes, with prolificacies (mean ± SE) of 2.14 ± 0.04, 2.25 ± 0.04, and 2.30 ± 0.06 lamb born/ewe lambing for the HA, HB, and the HC haplogroups, respectively. Our results highlight the ovine mitogenome genetic variation in protein- and tRNA coding genes and suggest that sequence variation in ovine mtDNA is associated with variation in ewe prolificacy.

  3. Genetic and phylogenetic divergence of feline immunodeficiency virus in the puma (Puma concolor).

    PubMed Central

    Carpenter, M A; Brown, E W; Culver, M; Johnson, W E; Pecon-Slattery, J; Brousset, D; O'Brien, S J

    1996-01-01

    Feline immunodeficiency virus (FIV) is a lentivirus which causes an AIDS-like disease in domestic cats (Felis catus). A number of other felid species, including the puma (Puma concolor), carry a virus closely related to domestic cat FIV. Serological testing revealed the presence of antibodies to FIV in 22% of 434 samples from throughout the geographic range of the puma. FIV-Pco pol gene sequences isolated from pumas revealed extensive sequence diversity, greater than has been documented in the domestic cat. The puma sequences formed two highly divergent groups, analogous to the clades which have been defined for domestic cat and lion (Panthera leo) FIV. The puma clade A was made up of samples from Florida and California, whereas clade B consisted of samples from other parts of North America, Central America, and Brazil. The difference between these two groups was as great as that reported among three lion FIV clades. Within puma clades, sequence variation is large, comparable to between-clade differences seen for domestic cat clades, allowing recognition of 15 phylogenetic lineages (subclades) among puma FIV-Pco. Large sequence divergence among isolates, nearly complete species monophyly, and widespread geographic distribution suggest that FIV-Pco has evolved within the puma species for a long period. The sequence data provided evidence for vertical transmission of FIV-Pco from mothers to their kittens, for coinfection of individuals by two different viral strains, and for cross-species transmission of FIV from a domestic cat to a puma. These factors may all be important for understanding the epidemiology and natural history of FIV in the puma. PMID:8794304

  4. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure

    PubMed Central

    2013-01-01

    Background Candida albicans is a ubiquitous opportunistic fungal pathogen that afflicts immunocompromised human hosts. With rare and transient exceptions the yeast is diploid, yet despite its clinical relevance the respective sequences of its two homologous chromosomes have not been completely resolved. Results We construct a phased diploid genome assembly by deep sequencing a standard laboratory wild-type strain and a panel of strains homozygous for particular chromosomes. The assembly has 700-fold coverage on average, allowing extensive revision and expansion of the number of known SNPs and indels. This phased genome significantly enhances the sensitivity and specificity of allele-specific expression measurements by enabling pooling and cross-validation of signal across multiple polymorphic sites. Additionally, the diploid assembly reveals pervasive and unexpected patterns in allelic differences between homologous chromosomes. Firstly, we see striking clustering of indels, concentrated primarily in the repeat sequences in promoters. Secondly, both indels and their repeat-sequence substrate are enriched near replication origins. Finally, we reveal an intimate link between repeat sequences and indels, which argues that repeat length is under selective pressure for most eukaryotes. This connection is described by a concise one-parameter model that explains repeat-sequence abundance in C. albicans as a function of the indel rate, and provides a general framework to interpret repeat abundance in species ranging from bacteria to humans. Conclusions The phased genome assembly and insights into repeat plasticity will be valuable for better understanding allele-specific phenomena and genome evolution. PMID:24025428

  5. The complete chloroplast genome of two Brassica species, Brassica nigra and B. Oleracea.

    PubMed

    Seol, Young-Joo; Kim, Kyunghee; Kang, Sang-Ho; Perumal, Sampath; Lee, Jonghoon; Kim, Chang-Kug

    2017-03-01

    The two Brassica species, Brassica nigra and Brassica oleracea, are important agronomic crops. The chloroplast genome sequences were generated by de novo assembly using whole genome next-generation sequences. The chloroplast genomes of B. nigra and B. oleracea were 153 633 bp and 153 366 bp in size, respectively, and showed conserved typical chloroplast structure. The both chloroplast genomes contained a total of 114 genes including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis revealed that B. oleracea is closely related to B. rapa and B. napus but B. nigra is more diverse than the neighbor species Raphanus sativus.

  6. 2500 high-quality genomes reveal that the biogeochemical cycles of C, N, S and H are cross-linked by metabolic handoffs in the terrestrial subsurface

    NASA Astrophysics Data System (ADS)

    Anantharaman, K.; Brown, C. T.; Hug, L. A.; Sharon, I.; Castelle, C. J.; Shelton, A.; Bonet, B.; Probst, A. J.; Thomas, B. C.; Singh, A.; Wilkins, M.; Williams, K. H.; Tringe, S. G.; Beller, H. R.; Brodie, E.; Hubbard, S. S.; Banfield, J. F.

    2015-12-01

    Microorganisms drive the transformations of carbon compounds in the terrestrial subsurface, a key reservoir of carbon on earth, and impact other linked biogeochemical cycles. Our current knowledge of the microbial ecology in this environment is primarily based on 16S rRNA gene sequences that paint a biased picture of microbial community composition and provide no reliable information on microbial metabolism. Consequently, little is known about the identity and metabolic roles of the uncultivated microbial majority in the subsurface. In turn, this lack of understanding of the microbial processes that impact the turnover of carbon in the subsurface has restricted the scope and ability of biogeochemical models to capture key aspects of the carbon cycle. In this study, we used a culture-independent, genome-resolved metagenomic approach to decipher the metabolic capabilities of microorganisms in an aquifer adjacent to the Colorado River, near Rifle, CO, USA. We sequenced groundwater and sediment samples collected across fifteen different geochemical regimes. Sequence assembly, binning and manual curation resulted in the recovery of 2,542 high-quality genomes, 27 of which are complete. These genomes represent 1,300 non-redundant organisms comprising both abundant and rare community members. Phylogenetic analyses involving ribosomal proteins and 16S rRNA genes revealed the presence of up to 34 new phyla that were hitherto unknown. Less than 11% of all genomes belonged to the 4 most commonly represented phyla that constitute 93% of all currently available genomes. Genome-specific analyses of metabolic potential revealed the co-occurrence of important functional traits such as carbon fixation, nitrogen fixation and use of electron donors and electron acceptors. Finally, we predict that multiple organisms are often required to complete redox pathways through a complex network of metabolic handoffs that extensively cross-link subsurface biogeochemical cycles.

  7. Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids.

    PubMed

    Der Sarkissian, Clio; Vilstrup, Julia T; Schubert, Mikkel; Seguin-Orlando, Andaine; Eme, David; Weinstock, Jacobo; Alberdi, Maria Teresa; Martin, Fabiana; Lopez, Patricio M; Prado, Jose L; Prieto, Alfredo; Douady, Christophe J; Stafford, Tom W; Willerslev, Eske; Orlando, Ludovic

    2015-03-01

    Hippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago. The evolutionary origin of the three known Hippidion morphospecies is still disputed. Based on palaeontological data, Hippidion could have diverged from the lineage leading to modern equids before 10 Ma. In contrast, a much later divergence date, with Hippidion nesting within modern equids, was indicated by partial ancient mitochondrial DNA sequences. Here, we characterized eight Hippidion complete mitochondrial genomes at 3.4-386.3-fold coverage using target-enrichment capture and next-generation sequencing. Our dataset reveals that the two morphospecies sequenced (H. saldiasi and H. principale) formed a monophyletic clade, basal to extant and extinct Equus lineages. This contrasts with previous genetic analyses and supports Hippidion as a distinct genus, in agreement with palaeontological models. We date the Hippidion split from Equus at 5.6-6.5 Ma, suggesting an early divergence in North America prior to the colonization of South America, after the formation of the Panamanian Isthmus 3.5 Ma and the Great American Biotic Interchange. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Deppdb--DNA electrostatic potential properties database: electrostatic properties of genome DNA.

    PubMed

    Osypov, Alexander A; Krutinin, Gleb G; Kamzolova, Svetlana G

    2010-06-01

    The electrostatic properties of genome DNA influence its interactions with different proteins, in particular, the regulation of transcription by RNA-polymerases. DEPPDB--DNA Electrostatic Potential Properties Database--was developed to hold and provide all available information on the electrostatic properties of genome DNA combined with its sequence and annotation of biological and structural properties of genome elements and whole genomes. Genomes in DEPPDB are organized on a taxonomical basis. Currently, the database contains all the completely sequenced bacterial and viral genomes according to NCBI RefSeq. General properties of the genome DNA electrostatic potential profile and principles of its formation are revealed. This potential correlates with the GC content but does not correspond to it exactly and strongly depends on both the sequence arrangement and its context (flanking regions). Analysis of the promoter regions for bacterial and viral RNA polymerases revealed a correspondence between the scale of these proteins' physical properties and electrostatic profile patterns. We also discovered a direct correlation between the potential value and the binding frequency of RNA polymerase to DNA, supporting the idea of the role of electrostatics in these interactions. This matches a pronounced tendency of the promoter regions to possess higher values of the electrostatic potential.

  9. Novel Sequence-Based Mapping of Recently Emerging H5NX Influenza Viruses Reveals Pandemic Vaccine Candidates

    PubMed Central

    Anderson, Christopher S.; DeDiego, Marta L.; Thakar, Juilee; Topham, David J.

    2016-01-01

    Recently, an avian influenza virus, H5NX subclade 2.3.4.4, emerged and spread to North America. This subclade has frequently reassorted, leading to multiple novel viruses capable of human infection. Four cases of human infections, three leading to death, have already occurred. Existing vaccine strains do not protect against these new viruses, raising a need to identify new vaccine candidate strains. We have developed a novel sequence-based mapping (SBM) tool capable of visualizing complex protein sequence data sets using a single intuitive map. We applied SBM on the complete set of avian H5 viruses in order to better understand hemagglutinin protein variance amongst H5 viruses and identify any patterns associated with this variation. The analysis successfully identified the original reassortments that lead to the emergence of this new subclade of H5 viruses, as well as their known unusual ability to re-assort among neuraminidase subtypes. In addition, our analysis revealed distinct clusters of 2.3.4.4 variants that would not be covered by existing strains in the H5 vaccine stockpile. The results suggest that our method may be useful for pandemic candidate vaccine virus selection. PMID:27494186

  10. Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids

    PubMed Central

    Der Sarkissian, Clio; Vilstrup, Julia T.; Schubert, Mikkel; Seguin-Orlando, Andaine; Eme, David; Weinstock, Jacobo; Alberdi, Maria Teresa; Martin, Fabiana; Lopez, Patricio M.; Prado, Jose L.; Prieto, Alfredo; Douady, Christophe J.; Stafford, Tom W.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    Hippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago. The evolutionary origin of the three known Hippidion morphospecies is still disputed. Based on palaeontological data, Hippidion could have diverged from the lineage leading to modern equids before 10 Ma. In contrast, a much later divergence date, with Hippidion nesting within modern equids, was indicated by partial ancient mitochondrial DNA sequences. Here, we characterized eight Hippidion complete mitochondrial genomes at 3.4–386.3-fold coverage using target-enrichment capture and next-generation sequencing. Our dataset reveals that the two morphospecies sequenced (H. saldiasi and H. principale) formed a monophyletic clade, basal to extant and extinct Equus lineages. This contrasts with previous genetic analyses and supports Hippidion as a distinct genus, in agreement with palaeontological models. We date the Hippidion split from Equus at 5.6–6.5 Ma, suggesting an early divergence in North America prior to the colonization of South America, after the formation of the Panamanian Isthmus 3.5 Ma and the Great American Biotic Interchange. PMID:25762573

  11. Identification and expression analysis of cDNA encoding insulin-like growth factor 2 in horses

    PubMed Central

    KIKUCHI, Kohta; SASAKI, Keisuke; AKIZAWA, Hiroki; TSUKAHARA, Hayato; BAI, Hanako; TAKAHASHI, Masashi; NAMBO, Yasuo; HATA, Hiroshi; KAWAHARA, Manabu

    2017-01-01

    Insulin-like growth factor 2 (IGF2) is responsible for a broad range of physiological processes during fetal development and adulthood, but genomic analyses of IGF2 containing the 5ʹ- and 3ʹ-untranslated regions (UTRs) in equines have been limited. In this study, we characterized the IGF2 mRNA containing the UTRs, and determined its expression pattern in the fetal tissues of horses. The complete equine IGF2 mRNA sequence harboring another exon approximately 2.8 kb upstream from the canonical transcription start site was identified as a new transcript variant. As this upstream exon did not contain the start codon, the amino acid sequence was identical to the canonical variant. Analysis of the deduced amino acid sequence revealed that the protein possessed two major domains, IlGF and IGF2_C, and analysis of IGF2 sequence polymorphism in fetal tissues of Hokkaido native horse and Thoroughbreds revealed a single nucleotide polymorphism (T to C transition) at position 398 in Thoroughbreds, which caused an amino acid substitution at position 133 in the IGF2 sequence. Furthermore, the expression pattern of the IGF2 mRNA in the fetal tissues of horses was determined for the first time, and was found to be consistent with those of other species. Taken together, these results suggested that the transcriptional and translational products of the IGF2 gene have conserved functions in the fetal development of mammals, including horses. PMID:29151450

  12. Identification of photoactivated adenylyl cyclases in Naegleria australiensis and BLUF-containing protein in Naegleria fowleri.

    PubMed

    Yasukawa, Hiro; Sato, Aya; Kita, Ayaka; Kodaira, Ken-Ichi; Iseki, Mineo; Takahashi, Tetsuo; Shibusawa, Mami; Watanabe, Masakatsu; Yagita, Kenji

    2013-01-01

    Complete genome sequencing of Naegleria gruberi has revealed that the organism encodes polypeptides similar to photoactivated adenylyl cyclases (PACs). Screening in the N. australiensis genome showed that the organism also encodes polypeptides similar to PACs. Each of the Naegleria proteins consists of a "sensors of blue-light using FAD" domain (BLUF domain) and an adenylyl cyclase domain (AC domain). PAC activity of the Naegleria proteins was assayed by comparing sensitivities of Escherichia coli cells heterologously expressing the proteins to antibiotics in a dark condition and a blue light-irradiated condition. Antibiotics used in the assays were fosfomycin and fosmidomycin. E. coli cells expressing the Naegleria proteins showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light, indicating that the proteins functioned as PACs in the bacterial cells. Analysis of the N. fowleri genome revealed that the organism encodes a protein bearing an amino acid sequence similar to that of BLUF. A plasmid expressing a chimeric protein consisting of the BLUF-like sequence found in N. fowleri and the adenylyl cyclase domain of N. gruberi PAC was constructed to determine whether the BLUF-like sequence functioned as a sensor of blue light. E. coli cells expressing a chimeric protein showed increased fosfomycin sensitivity and fosmidomycin sensitivity when incubated under blue light. These experimental results indicated that the sequence similar to the BLUF domain found in N. fowleri functioned as a sensor of blue light.

  13. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.J.; Walthers, E.A.; Richmond, K.L.

    1997-04-01

    PCR analysis of 198 Bacillus anthracis isolates revealed a variable region of DNA sequence differing in length among the isolates. Five Polymorphisms differed by the presence Of two to six copies of the 12-bp tandem repeat 5{prime}-CAATATCAACAA-3{prime}. This variable-number tandem repeat (VNTR) region is located within a larger sequence containing one complete open reading frame that encodes a putative 30-kDa protein. Length variation did not change the reading frame of the encoded protein and only changed the copy number of a 4-amino-acid sequence (QYQQ) from 2 to 6. The structure of the VNTR region suggests that these multiple repeats aremore » generated by recombination or polymerase slippage. Protein structures predicted from the reverse-translated DNA sequence suggest that any structural changes in the encoded protein are confined to the region encoded by the VNTR sequence. Copy number differences in the VNTR region were used to define five different B. anthracis alleles. Characterization of 198 isolates revealed allele frequencies of 6.1, 17.7, 59.6, 5.6, and 11.1% sequentially from shorter to longer alleles. The high degree of polymorphism in the VNTR region provides a criterion for assigning isolates to five allelic categories. There is a correlation between categories and geographic distribution. Such molecular markers can be used to monitor the epidemiology of anthrax outbreaks in domestic and native herbivore populations. 22 refs., 4 figs., 3 tabs.« less

  14. Biology of a Novel Mycobacteriophage, SWU1, Isolated from Chinese Soil as Revealed by Genomic Characteristics

    PubMed Central

    Fan, Xiangyu; Teng, Tieshan; Wang, Honghai

    2012-01-01

    Mycobacteriophage SWU1 is a newly isolated phage from a soil sample collected at Gongping village, Pingchang County, Sichuan Province, China, using Mycobacterium smegmatis mc2155 as a host. Plaques of SWU1 appear as a unique bull's-eye on an M. smegmatis lawn. In this paper, we report the complete genome sequence of SWU1 and some major findings from the analysis result. PMID:22923793

  15. Biology of a novel mycobacteriophage, SWU1, isolated from Chinese soil as revealed by genomic characteristics.

    PubMed

    Fan, Xiangyu; Teng, Tieshan; Wang, Honghai; Xie, Jianping

    2012-09-01

    Mycobacteriophage SWU1 is a newly isolated phage from a soil sample collected at Gongping village, Pingchang County, Sichuan Province, China, using Mycobacterium smegmatis mc(2)155 as a host. Plaques of SWU1 appear as a unique bull's-eye on an M. smegmatis lawn. In this paper, we report the complete genome sequence of SWU1 and some major findings from the analysis result.

  16. Temperate bacteriophage {phi}O18P from an Aeromonas media isolate: Characterization and complete genome sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beilstein, Frauke; Dreiseikelmann, Brigitte

    2008-03-30

    A group of 74 Aeromonas isolates from surface water of three ponds in Bielefeld, Germany was screened for prophage induction after UV irradiation. The phage {phi}O18P was induced from the Aeromonas media isolate O18. {phi}O18P belongs to the Myoviridae phage family. The complete nucleotide sequence of the double stranded DNA genome of bacteriophage {phi}O18P consists of 33,985 bp. The genome has 5' protruding cohesive ends of 16 bases. On the {phi}O18P genome 46 open reading frames (orfs) were identified which are organized in the modules integration and regulation, replication, head, packaging, tail and lysis. Additionally the phage DNA includes amore » methylase gene. Comparison of the genome architecture with those of other bacteriophages revealed significant similarities to the P2 phage family and especially to the prophages of Aeromonas salmonicida and the Vibrio cholerae phage K139.« less

  17. Reanalysis and revision of the complete mitochondrial genome of Rachycentron canadum (Teleostei, Perciformes, Rachycentridae).

    PubMed

    Musika, Jidapa; Khongchatee, Adison; Phinchongsakuldit, Jaros

    2014-08-01

    The complete mitochondrial genome of cobia, Rachycentron canadum, was reanalyzed and revised. The genome is 18,008 bp in length, containing 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region or displacement loop (D-loop). The gene arrangement is identical to that observed in most vertebrates. Base composition on the heavy strand is 30.14% A, 25.22% C, 15.80% G and 28.84% T. The D-loop region exhibits an A + T rich pattern, containing short tandem repeats of TATATACATGG, TATATGCACAA and TATATGCACGG. The mitochondrial genome studied differs from the previously published genome in two segments; the control region to 12S and ND5 to tRNA(Glu). The 12S sequence also differs from those published in the databases. Phylogeny analyses revealed that the differences could be due to errors in sequence assembly and/or sample misidentification of the previous studies.

  18. A New Approach for Mining Order-Preserving Submatrices Based on All Common Subsequences.

    PubMed

    Xue, Yun; Liao, Zhengling; Li, Meihang; Luo, Jie; Kuang, Qiuhua; Hu, Xiaohui; Li, Tiechen

    2015-01-01

    Order-preserving submatrices (OPSMs) have been applied in many fields, such as DNA microarray data analysis, automatic recommendation systems, and target marketing systems, as an important unsupervised learning model. Unfortunately, most existing methods are heuristic algorithms which are unable to reveal OPSMs entirely in NP-complete problem. In particular, deep OPSMs, corresponding to long patterns with few supporting sequences, incur explosive computational costs and are completely pruned by most popular methods. In this paper, we propose an exact method to discover all OPSMs based on frequent sequential pattern mining. First, an existing algorithm was adjusted to disclose all common subsequence (ACS) between every two row sequences, and therefore all deep OPSMs will not be missed. Then, an improved data structure for prefix tree was used to store and traverse ACS, and Apriori principle was employed to efficiently mine the frequent sequential pattern. Finally, experiments were implemented on gene and synthetic datasets. Results demonstrated the effectiveness and efficiency of this method.

  19. Genomic Characterization of Travel-Associated Dengue Viruses Isolated from the Entry-Exit Ports in Fujian Province, China, 2013-2015.

    PubMed

    Gao, Bo; Zhang, Jianming; Wang, Yuping; Chen, Fan; Zheng, Chaohui; Xie, Lianhui

    2017-09-25

    Over the past decade, indigenous dengue outbreaks have occurred occasionally in Fujian province in southeastern China because of sporadic imported dengue viruses (DENV). In this study, 3 DENV-2 and 2 DENV-4 strains were isolated from suspected febrile travelers at 2 ports of entry in Fujian between 2013-2015. Complete viral genome sequences of these new isolates were obtained with Sanger chemistry. Genomic sequence analyses revealed that these strains belonged to genotypes of 2-Cosmopolitan and 4-II. Consistent with the patients' travel information, phylogenetic analyses of the complete coding regions also indicated that most of the new isolates were genetically similar to the circulating strains in Southeast Asia rather than previous Chinese strains that were available. Therefore, phylogenetic analyses of the imported DENV demonstrated that multiple introductions of DENV emerged continuously in Fujian, and highlighted the importance of dengue surveillance at entry-exit ports in the subtropical regions of southern China.

  20. Novel primers for complete mitochondrial cytochrome b genesequencing in mammals

    USGS Publications Warehouse

    Naidu, Ashwin; Fitak, Robert R.; Munguia-Vega, Adrian; Culver, Melanie

    2011-01-01

    Sequence-based species identification relies on the extent and integrity of sequence data available in online databases such as GenBank. When identifying species from a sample of unknown origin, partial DNA sequences obtained from the sample are aligned against existing sequences in databases. When the sequence from the matching species is not present in the database, high-scoring alignments with closely related sequences might produce unreliable results on species identity. For species identification in mammals, the cytochrome b (cyt b) gene has been identified to be highly informative; thus, large amounts of reference sequence data from the cyt b gene are much needed. To enhance availability of cyt b gene sequence data on a large number of mammalian species in GenBank and other such publicly accessible online databases, we identified a primer pair for complete cyt b gene sequencing in mammals. Using this primer pair, we successfully PCR amplified and sequenced the complete cyt b gene from 40 of 44 mammalian species representing 10 orders of mammals. We submitted 40 complete, correctly annotated, cyt b protein coding sequences to GenBank. To our knowledge, this is the first single primer pair to amplify the complete cyt b gene in a broad range of mammalian species. This primer pair can be used for the addition of new cyt b gene sequences and to enhance data available on species represented in GenBank. The availability of novel and complete gene sequences as high-quality reference data can improve the reliability of sequence-based species identification.

  1. Complete Genome Sequence of Clavibacter michiganensis subsp. insidiosus R1-1 Using PacBio Single-Molecule Real-Time Technology

    PubMed Central

    Lu, You; Samac, Deborah A.; Glazebrook, Jane

    2015-01-01

    We report here the complete genome sequence of Clavibacter michiganensis subsp. insidiosus R1-1, isolated in Minnesota, USA. The R1-1 genome, generated by a de novo assembly of PacBio sequencing data, is the first complete genome sequence available for this subspecies. PMID:25953184

  2. Complete Chloroplast Genome of Pinus massoniana (Pinaceae): Gene Rearrangements, Loss of ndh Genes, and Short Inverted Repeats Contraction, Expansion.

    PubMed

    Ni, ZhouXian; Ye, YouJu; Bai, Tiandao; Xu, Meng; Xu, Li-An

    2017-09-11

    The chloroplast genome (CPG) of Pinus massoniana belonging to the genus Pinus (Pinaceae), which is a primary source of turpentine, was sequenced and analyzed in terms of gene rearrangements, ndh genes loss, and the contraction and expansion of short inverted repeats (IRs). P. massoniana CPG has a typical quadripartite structure that includes large single copy (LSC) (65,563 bp), small single copy (SSC) (53,230 bp) and two IRs (IRa and IRb, 485 bp). The 108 unique genes were identified, including 73 protein-coding genes, 31 tRNAs, and 4 rRNAs. Most of the 81 simple sequence repeats (SSRs) identified in CPG were mononucleotides motifs of A/T types and located in non-coding regions. Comparisons with related species revealed an inversion (21,556 bp) in the LSC region; P. massoniana CPG lacks all 11 intact ndh genes (four ndh genes lost completely; the five remained truncated as pseudogenes; and the other two ndh genes remain as pseudogenes because of short insertions or deletions). A pair of short IRs was found instead of large IRs, and size variations among pine species were observed, which resulted from short insertions or deletions and non-synchronized variations between "IRa" and "IRb". The results of phylogenetic analyses based on whole CPG sequences of 16 conifers indicated that the whole CPG sequences could be used as a powerful tool in phylogenetic analyses.

  3. The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale, intra-species genomic comparison reveal an unusual amplification of conjugative and mobile transposons and identify a novel Prevotella-lineage-specific repeat

    PubMed Central

    Naito, Mariko; Ogura, Yoshitoshi; Itoh, Takehiko; Shoji, Mikio; Okamoto, Masaaki; Hayashi, Tetsuya; Nakayama, Koji

    2016-01-01

    Prevotella intermedia is a pathogenic bacterium involved in periodontal diseases. Here, we present the complete genome sequence of a clinical strain, OMA14, of this bacterium along with the results of comparative genome analysis with strain 17 of the same species whose genome has also been sequenced, but not fully analysed yet. The genomes of both strains consist of two circular chromosomes: the larger chromosomes are similar in size and exhibit a high overall linearity of gene organizations, whereas the smaller chromosomes show a significant size variation and have undergone remarkable genome rearrangements. Unique features of the Pre. intermedia genomes are the presence of a remarkable number of essential genes on the second chromosomes and the abundance of conjugative and mobilizable transposons (CTns and MTns). The CTns/MTns are particularly abundant in the second chromosomes, involved in its extensive genome rearrangement, and have introduced a number of strain-specific genes into each strain. We also found a novel 188-bp repeat sequence that has been highly amplified in Pre. intermedia and are specifically distributed among the Pre. intermedia-related species. These findings expand our understanding of the genetic features of Pre. intermedia and the roles of CTns and MTns in the evolution of bacteria. PMID:26645327

  4. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae.

    PubMed

    Szczecińska, Monika; Sawicki, Jakub

    2015-09-15

    The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161-162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and Pulsatilla vernalis. The determination of complete plastid genome and nuclear rRNA cluster sequences in three species of the genus Pulsatilla is an important contribution to our knowledge of the evolution and phylogeography of those endangered taxa. The resulting data can be used to identify regions that are particularly useful for barcoding, phylogenetic and phylogeographic studies. The investigated taxa can be identified at each stage of development based on their species-specific SNPs. The nuclear and plastid genomic resources enable advanced studies on hybridization, including identification of parent species, including their roles in that process. The identified nonsynonymous mutations could play an important role in adaptations to changing environments. The results of the study will also provide valuable information about the evolution of the plastome structure in the family Ranunculaceae.

  5. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae

    PubMed Central

    Szczecińska, Monika; Sawicki, Jakub

    2015-01-01

    Background: The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Methodology/principal findings: Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161–162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and Pulsatilla vernalis. Conclusions/significance: The determination of complete plastid genome and nuclear rRNA cluster sequences in three species of the genus Pulsatilla is an important contribution to our knowledge of the evolution and phylogeography of those endangered taxa. The resulting data can be used to identify regions that are particularly useful for barcoding, phylogenetic and phylogeographic studies. The investigated taxa can be identified at each stage of development based on their species-specific SNPs. The nuclear and plastid genomic resources enable advanced studies on hybridization, including identification of parent species, including their roles in that process. The identified nonsynonymous mutations could play an important role in adaptations to changing environments. The results of the study will also provide valuable information about the evolution of the plastome structure in the family Ranunculaceae. PMID:26389887

  6. The Cosmic Skidmark: witnessing galaxy transformation at z = 0.19

    NASA Astrophysics Data System (ADS)

    Murphy, David N. A.

    2015-02-01

    We present an early-look analysis of the ``Cosmic Skidmark''. Discovered following visual inspection of the Geach, Murphy & Bower (2011) SDSS Stripe 82 cluster catalogue generated by ORCA (an automated cluster algorithm searching for red-sequences; Murphy, Geach & Bower 2012), this z = 0.19 1.4L* galaxy appears to have been caught in the rare act of transformation while accreting onto an estimated 1013-1014 h -1 M⊙-mass galaxy group. SDSS spectroscopy reveals clear signatures of star formation whilst deep optical imaging reveals a pronounced 50 kpc cometary tail. Pending completion of our ALMA Cycle 2 and IFU observations, we show here preliminary analysis of this target.

  7. Geographic Population Structure in Epstein-Barr Virus Revealed by Comparative Genomics

    PubMed Central

    Chiara, Matteo; Manzari, Caterina; Lionetti, Claudia; Mechelli, Rosella; Anastasiadou, Eleni; Chiara Buscarinu, Maria; Ristori, Giovanni; Salvetti, Marco; Picardi, Ernesto; D’Erchia, Anna Maria; Pesole, Graziano; Horner, David S.

    2016-01-01

    Epstein-Barr virus (EBV) latently infects the majority of the human population and is implicated as a causal or contributory factor in numerous diseases. We sequenced 27 complete EBV genomes from a cohort of Multiple Sclerosis (MS) patients and healthy controls from Italy, although no variants showed a statistically significant association with MS. Taking advantage of the availability of ∼130 EBV genomes with known geographical origins, we reveal a striking geographic distribution of EBV sub-populations with distinct allele frequency distributions. We discuss mechanisms that potentially explain these observations, and their implications for understanding the association of EBV with human disease. PMID:27635051

  8. First report of the complete sequence of Sida golden yellow vein virus from Jamaica.

    PubMed

    Stewart, Cheryl S; Kon, Tatsuya; Gilbertson, Robert L; Roye, Marcia E

    2011-08-01

    Begomoviruses are phytopathogens that threaten food security [18]. Sida spp. are ubiquitous weed species found in Jamaica. Sida samples were collected island-wide, DNA was extracted via a modified Dellaporta method, and the viral genome was amplified using degenerate and sequence-specific primers [2, 11]. The amplicons were cloned and sequenced. Sequence analysis revealed that a DNA-A molecule isolated from a plant in Liguanea, St. Andrew, was 90.9% similar to Sida golden yellow vein virus-[United States of America:Homestead:A11], making it a strain of SiGYVV. It was named Sida golden yellow vein virus-[Jamaica:Liguanea 2:2008] (SiGYVV-[JM:Lig2:08]). The cognate DNA-B, previously unreported, was successfully cloned and was most similar to that of Malvastrum yellow mosaic Jamaica virus (MaYMJV). Phylogenetic analysis suggested that this virus was most closely related to begomoviruses that infect malvaceous hosts in Jamaica, Cuba and Florida in the United States.

  9. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia

    PubMed Central

    Jaklitsch, W.M.; Voglmayr, H.

    2015-01-01

    The first large-scale survey of sexual and asexual Trichoderma morphs collected from plant and fungal materials conducted in Southern Europe and Macaronesia including a few collections from French islands east of Africa yielded more than 650 specimens identified to the species level. Routine sequencing of tef1 revealed a genetic variation among these isolates that exceeds previous experience and ca. 90 species were recognized, of which 74 are named and 17 species newly described. Aphysiostroma stercorarium is combined in Trichoderma. For the first time a sexual morph is described for T. hamatum. The hitherto most complete phylogenetic tree is presented for the entire genus Trichoderma, based on rpb2 sequences. For the first time also a genus-wide phylogenetic tree based on acl1 sequences is shown. Detailed phylogenetic analyses using tef1 sequences are presented in four separate trees representing major clades of Trichoderma. Discussions involve species composition of clades and ecological and biogeographic considerations including distribution of species. PMID:26955191

  10. Comparing the Dictyostelium and Entamoeba Genomes Reveals an Ancient Split in the Conosa Lineage

    PubMed Central

    Song, Jie; Xu, Qikai; Olsen, Rolf; Loomis, William F; Shaulsky, Gad; Kuspa, Adam; Sucgang, Richard

    2005-01-01

    The Amoebozoa are a sister clade to the fungi and the animals, but are poorly sampled for completely sequenced genomes. The social amoeba Dictyostelium discoideum and amitochondriate pathogen Entamoeba histolytica are the first Amoebozoa with genomes completely sequenced. Both organisms are classified under the Conosa subphylum. To identify Amoebozoa-specific genomic elements, we compared these two genomes to each other and to other eukaryotic genomes. An expanded phylogenetic tree built from the complete predicted proteomes of 23 eukaryotes places the two amoebae in the same lineage, although the divergence is estimated to be greater than that between animals and fungi, and probably happened shortly after the Amoebozoa split from the opisthokont lineage. Most of the 1,500 orthologous gene families shared between the two amoebae are also shared with plant, animal, and fungal genomes. We found that only 42 gene families are distinct to the amoeba lineage; among these are a large number of proteins that contain repeats of the FNIP domain, and a putative transcription factor essential for proper cell type differentiation in D. discoideum. These Amoebozoa-specific genes may be useful in the design of novel diagnostics and therapies for amoebal pathologies. PMID:16362072

  11. First complete genome sequence of infectious laryngotracheitis virus

    PubMed Central

    2011-01-01

    Background Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV. Results The complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence. Conclusions This is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains. PMID:21501528

  12. Multicomponent analysis of a digital Trail Making Test.

    PubMed

    Fellows, Robert P; Dahmen, Jessamyn; Cook, Diane; Schmitter-Edgecombe, Maureen

    2017-01-01

    The purpose of the current study was to use a newly developed digital tablet-based variant of the TMT to isolate component cognitive processes underlying TMT performance. Similar to the paper-based trail making test, this digital variant consists of two conditions, Part A and Part B. However, this digital version automatically collects additional data to create component subtest scores to isolate cognitive abilities. Specifically, in addition to the total time to completion and number of errors, the digital Trail Making Test (dTMT) records several unique components including the number of pauses, pause duration, lifts, lift duration, time inside each circle, and time between circles. Participants were community-dwelling older adults who completed a neuropsychological evaluation including measures of processing speed, inhibitory control, visual working memory/sequencing, and set-switching. The abilities underlying TMT performance were assessed through regression analyses of component scores from the dTMT with traditional neuropsychological measures. Results revealed significant correlations between paper and digital variants of Part A (r s  = .541, p < .001) and paper and digital versions of Part B (r s  = .799, p < .001). Regression analyses with traditional neuropsychological measures revealed that Part A components were best predicted by speeded processing, while inhibitory control and visual/spatial sequencing were predictors of specific components of Part B. Exploratory analyses revealed that specific dTMT-B components were associated with a performance-based medication management task. Taken together, these results elucidate specific cognitive abilities underlying TMT performance, as well as the utility of isolating digital components.

  13. Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis

    PubMed Central

    DeLuca, Adam P.; Whitmore, S. Scott; Barnes, Jenna; Sharma, Tasneem P.; Westfall, Trudi A.; Scott, C. Anthony; Weed, Matthew C.; Wiley, Jill S.; Wiley, Luke A.; Johnston, Rebecca M.; Schnieders, Michael J.; Lentz, Steven R.; Tucker, Budd A.; Mullins, Robert F.; Scheetz, Todd E.; Stone, Edwin M.; Slusarski, Diane C.

    2016-01-01

    Retinitis pigmentosa (RP) is a highly heterogeneous group of disorders characterized by degeneration of the retinal photoreceptor cells and progressive loss of vision. While hundreds of mutations in more than 100 genes have been reported to cause RP, discovering the causative mutations in many patients remains a significant challenge. Exome sequencing in an individual affected with non-syndromic RP revealed two plausibly disease-causing variants in TRNT1, a gene encoding a nucleotidyltransferase critical for tRNA processing. A total of 727 additional unrelated individuals with molecularly uncharacterized RP were completely screened for TRNT1 coding sequence variants, and a second family was identified with two members who exhibited a phenotype that was remarkably similar to the index patient. Inactivating mutations in TRNT1 have been previously shown to cause a severe congenital syndrome of sideroblastic anemia, B-cell immunodeficiency, recurrent fevers and developmental delay (SIFD). Complete blood counts of all three of our patients revealed red blood cell microcytosis and anisocytosis with only mild anemia. Characterization of TRNT1 in patient-derived cell lines revealed reduced but detectable TRNT1 protein, consistent with partial function. Suppression of trnt1 expression in zebrafish recapitulated several features of the human SIFD syndrome, including anemia and sensory organ defects. When levels of trnt1 were titrated, visual dysfunction was found in the absence of other phenotypes. The visual defects in the trnt1-knockdown zebrafish were ameliorated by the addition of exogenous human TRNT1 RNA. Our findings indicate that hypomorphic TRNT1 mutations can cause a recessive disease that is almost entirely limited to the retina. PMID:26494905

  14. Complete Genome Sequence of Clavibacter michiganensis subsp. insidiosus R1-1 Using PacBio Single-Molecule Real-Time Technology.

    PubMed

    Lu, You; Samac, Deborah A; Glazebrook, Jane; Ishimaru, Carol A

    2015-05-07

    We report here the complete genome sequence of Clavibacter michiganensis subsp. insidiosus R1-1, isolated in Minnesota, USA. The R1-1 genome, generated by a de novo assembly of PacBio sequencing data, is the first complete genome sequence available for this subspecies. Copyright © 2015 Lu et al.

  15. First Complete Squash leaf curl China virus Genomic Segment DNA-A Sequence from East Timor

    PubMed Central

    Maina, Solomon; Edwards, Owain R.; de Almeida, Luis; Ximenes, Abel

    2017-01-01

    ABSTRACT We present here the first complete Squash leaf curl China virus (SLCCV) genomic segment DNA-A sequence from East Timor. It was isolated from a pumpkin plant. When compared with 15 complete SLCCV DNA-A genome sequences from other world regions, it most resembled the Malaysian isolate MC1 sequence. PMID:28619789

  16. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity

    NASA Astrophysics Data System (ADS)

    Corcoran, Martin M.; Phad, Ganesh E.; Bernat, Néstor Vázquez; Stahl-Hennig, Christiane; Sumida, Noriyuki; Persson, Mats A. A.; Martin, Marcel; Hedestam, Gunilla B. Karlsson

    2016-12-01

    Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%. IgDiscover uses a cluster identification process to produce candidate sequences that, once filtered, results in individualized germline V gene databases. IgDiscover was tested in multiple species, validated by genomic cloning and cross library comparisons and produces comprehensive gene databases even where limited genomic sequence is available. IgDiscover analysis of the allelic content of the Indian and Chinese-origin rhesus macaques reveals high levels of immunoglobulin gene diversity in this species. Further, we describe a novel human IGHV3-21 allele and confirm significant gene differences between Balb/c and C57BL6 mouse strains, demonstrating the power of IgDiscover as a germline V gene discovery tool.

  17. Neutral lipid-storage disease with myopathy and extended phenotype with novel PNPLA2 mutation.

    PubMed

    Massa, Roberto; Pozzessere, Simone; Rastelli, Emanuele; Serra, Laura; Terracciano, Chiara; Gibellini, Manuela; Bozzali, Marco; Arca, Marcello

    2016-04-01

    Neutral lipid-storage disease with myopathy is caused by mutations in PNPLA2, which produce skeletal and cardiac myopathy. We report a man with multiorgan neutral lipid storage and unusual multisystem clinical involvement, including cognitive impairment. Quantitative brain MRI with voxel-based morphometry and extended neuropsychological assessment were performed. In parallel, the coding sequences and intron/exon boundaries of the PNPLA2 gene were screened by direct sequencing. Neuropsychological assessment revealed global cognitive impairment, and brain MRI showed reduced gray matter volume in the temporal lobes. Molecular characterization revealed a novel homozygous mutation in exon 5 of PNPLA2 (c.714C>A), resulting in a premature stop codon (p.Cys238*). Some PNPLA2 mutations, such as the one described here, may present with an extended phenotype, including brain involvement. In these cases, complete neuropsychological testing, combined with quantitative brain MRI, may help to characterize and quantify cognitive impairment. © 2016 Wiley Periodicals, Inc.

  18. Discovery of a trans-Dichloroethene-Respiring Dehalogenimonas Species in the 1,1,2,2-Tetrachloroethane-Dechlorinating WBC-2 Consortium

    PubMed Central

    Manchester, Marie J.; Hug, Laura A.; Zarek, Matt; Zila, Anna

    2012-01-01

    The WBC-2 consortium is an organohalide-respiring anaerobic microbial enrichment culture capable of dechlorinating 1,1,2,2-tetrachloroethane (TeCA) to ethene. In the WBC-2 culture, TeCA is first transformed to trans-dichloroethene (tDCE) by dichloroelimination; tDCE is subsequently transformed to vinyl chloride (VC) and then to ethene by hydrogenolysis. Analysis of 16S rRNA gene clone libraries from culture DNA revealed sequences from three putative dechlorinating organisms belonging to Dehalococcoides, Dehalobacter, and Dehalogenimonas genera. Quantitative PCR primers were designed for each of these sequences, and their abundance was quantified in enrichment cultures over time. These data revealed that complete dechlorination of TeCA to ethene involves all three organisms. Dehalobacter spp. grew during the dihaloelimination of TeCA to tDCE, while Dehalococcoides and Dehalogenimonas spp. grew during hydrogenolysis of tDCE to ethene. This is the first time a genus other than Dehalococcoides has been implicated in dechlorination of tDCE to VC. PMID:22635995

  19. A combined computational-experimental analyses of selected metabolic enzymes in Pseudomonas species.

    PubMed

    Perumal, Deepak; Lim, Chu Sing; Chow, Vincent T K; Sakharkar, Kishore R; Sakharkar, Meena K

    2008-09-10

    Comparative genomic analysis has revolutionized our ability to predict the metabolic subsystems that occur in newly sequenced genomes, and to explore the functional roles of the set of genes within each subsystem. These computational predictions can considerably reduce the volume of experimental studies required to assess basic metabolic properties of multiple bacterial species. However, experimental validations are still required to resolve the apparent inconsistencies in the predictions by multiple resources. Here, we present combined computational-experimental analyses on eight completely sequenced Pseudomonas species. Comparative pathway analyses reveal that several pathways within the Pseudomonas species show high plasticity and versatility. Potential bypasses in 11 metabolic pathways were identified. We further confirmed the presence of the enzyme O-acetyl homoserine (thiol) lyase (EC: 2.5.1.49) in P. syringae pv. tomato that revealed inconsistent annotations in KEGG and in the recently published SYSTOMONAS database. These analyses connect and integrate systematic data generation, computational data interpretation, and experimental validation and represent a synergistic and powerful means for conducting biological research.

  20. Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity

    PubMed Central

    Corcoran, Martin M.; Phad, Ganesh E.; Bernat, Néstor Vázquez; Stahl-Hennig, Christiane; Sumida, Noriyuki; Persson, Mats A.A.; Martin, Marcel; Hedestam, Gunilla B. Karlsson

    2016-01-01

    Comprehensive knowledge of immunoglobulin genetics is required to advance our understanding of B cell biology. Validated immunoglobulin variable (V) gene databases are close to completion only for human and mouse. We present a novel computational approach, IgDiscover, that identifies germline V genes from expressed repertoires to a specificity of 100%. IgDiscover uses a cluster identification process to produce candidate sequences that, once filtered, results in individualized germline V gene databases. IgDiscover was tested in multiple species, validated by genomic cloning and cross library comparisons and produces comprehensive gene databases even where limited genomic sequence is available. IgDiscover analysis of the allelic content of the Indian and Chinese-origin rhesus macaques reveals high levels of immunoglobulin gene diversity in this species. Further, we describe a novel human IGHV3-21 allele and confirm significant gene differences between Balb/c and C57BL6 mouse strains, demonstrating the power of IgDiscover as a germline V gene discovery tool. PMID:27995928

  1. The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding.

    PubMed

    Shirasawa, Kenta; Isuzugawa, Kanji; Ikenaga, Mitsunobu; Saito, Yutaro; Yamamoto, Toshiya; Hirakawa, Hideki; Isobe, Sachiko

    2017-10-01

    We determined the genome sequence of sweet cherry (Prunus avium) using next-generation sequencing technology. The total length of the assembled sequences was 272.4 Mb, consisting of 10,148 scaffold sequences with an N50 length of 219.6 kb. The sequences covered 77.8% of the 352.9 Mb sweet cherry genome, as estimated by k-mer analysis, and included >96.0% of the core eukaryotic genes. We predicted 43,349 complete and partial protein-encoding genes. A high-density consensus map with 2,382 loci was constructed using double-digest restriction site-associated DNA sequencing. Comparing the genetic maps of sweet cherry and peach revealed high synteny between the two genomes; thus the scaffolds were integrated into pseudomolecules using map- and synteny-based strategies. Whole-genome resequencing of six modern cultivars found 1,016,866 SNPs and 162,402 insertions/deletions, out of which 0.7% were deleterious. The sequence variants, as well as simple sequence repeats, can be used as DNA markers. The genomic information helps us to identify agronomically important genes and will accelerate genetic studies and breeding programs for sweet cherries. Further information on the genomic sequences and DNA markers is available in DBcherry (http://cherry.kazusa.or.jp (8 May 2017, date last accessed)). © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  2. The First Chameleon Transcriptome: Comparative Genomic Analysis of the OXPHOS System Reveals Loss of COX8 in Iguanian Lizards

    PubMed Central

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system. PMID:24009133

  3. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards.

    PubMed

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.

  4. Distant sequences determine 5′ end formation of cox3 transcripts in Arabidopsis thaliana ecotype C24

    PubMed Central

    Forner, Joachim; Weber, Bärbel; Wiethölter, Caterina; Meyer, Rhonda C.; Binder, Stefan

    2005-01-01

    The genomic environments and the transcripts of the mitochondrial cox3 gene are investigated in three Arabidopsis thaliana ecotypes. While the proximate 5′ sequences up to nucleotide position −584, the coding regions and the 3′ flanking regions are identical in Columbia (Col), C24 and Landsberg erecta (Ler), genomic variation is detected in regions further upstream. In the mitochondrial DNA of Col, a 1790 bp fragment flanked by a nonanucleotide direct repeat is present beyond position −584 with respect to the ATG. While in Ler only part of this insertion is conserved, this sequence is completely absent in C24, except for a single copy of the nonanucleotide direct repeat. Northern hybridization reveals identical major transcripts in the three ecotypes, but identifies an additional abundant 60 nt larger mRNA species in C24. The extremities of the most abundant mRNA species are identical in the three ecotypes. In C24, an extra major 5′ end is abundant. This terminus and the other major 5′ ends are located in identical sequence regions. Inspection of Atcox3 transcripts in C24/Col hybrids revealed a female inheritance of the mRNA species with the extra 5′ terminus. Thus, a mitochondrially encoded factor determines the generation of an extra 5′ mRNA end. PMID:16107557

  5. Complementary DNA cloning, sequence analysis, and tissue transcription profile of a novel U2AF2 gene from the Chinese Banna mini-pig inbred line.

    PubMed

    Wang, S Y; Huo, J L; Miao, Y W; Cheng, W M; Zeng, Y Z

    2013-04-02

    U2 small nuclear RNA auxiliary factor 2 (U2AF2) is an important gene for pre-messenger RNA splicing in higher eukaryotes. In this study, the Banna mini-pig inbred line (BMI) U2AF2 coding sequence (CDS) was cloned, sequenced, and characterized. The U2AF2 complete CDS was amplified using the reverse transcription-polymerase chain reaction (RT-PCR) technique based on the conserved sequence information of cattle and known highly homologous swine expressed sequence tags. This novel gene was deposited into the National Center for Biotechnology Information database (Accession No. JQ839267). Sequence analysis revealed that the BMI U2AF2 coding sequence consisted of 1416 bp and encoded 471 amino acids with a molecular weight of 53.12 kDa. The protein sequence has high sequence homology with U2AF65 of 6 species - Homo sapiens (100%), Equus caballus (100%), Canis lupus (100%), Macaca mulatta (99.8%), Bos taurus (74.4%), and Mus musculus (74.4%). The phylogenetic tree analysis revealed that BMI U2AF65 has a closer genetic relationship with B. taurus U2AF65 than with U2AF65 of E. caballus, C. lupus, M. mulatta, H. sapiens, and M. musculus. RT-PCR analysis showed that BMI U2AF2 was most highly expressed in the brain; moderately expressed in the spleen, lung, muscle, and skin; and weakly expressed in the liver, kidney, and ovary. Its expression was nearly silent in the spinal cord, nerve fiber, heart, stomach, pancreas, and intestine. Three microRNA target sites were predicted in the CDS of BMI U2AF2 messenger RNA. Our results establish a foundation for further insight into this swine gene.

  6. Composition and Function of Sulfate-Reducing Prokaryotes in Eutrophic and Pristine Areas of the Florida Everglades†

    PubMed Central

    Castro, Hector; Reddy, K. R.; Ogram, Andrew

    2002-01-01

    As a result of agricultural activities in regions adjacent to the northern boundary of the Florida Everglades, a nutrient gradient developed that resulted in physicochemical and ecological changes from the original system. Sulfate input from agricultural runoff and groundwater is present in soils of the Northern Everglades, and sulfate-reducing prokaryotes (SRP) may play an important role in biogeochemical processes such as carbon cycling. The goal of this project was to utilize culture-based and non-culture-based approaches to study differences between the composition of assemblages of SRP in eutrophic and pristine areas of the Everglades. Sulfate reduction rates and most-probable-number enumerations revealed SRP populations and activities to be greater in eutrophic zones than in more pristine soils. In eutrophic regions, methanogenesis rates were higher, the addition of acetate stimulated methanogenesis, and SRP able to utilize acetate competed to a limited degree with acetoclastic methanogens. A surprising amount of diversity within clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) genes was observed, and the majority of DSR sequences were associated with gram-positive spore-forming Desulfotomaculum and uncultured microorganisms. Sequences associated with Desulfotomaculum fall into two categories: in the eutrophic regions, 94.7% of the sequences related to Desulfotomaculum were associated with those able to completely oxidize substrates, and in samples from pristine regions, all Desulfotomaculum-like sequences were related to incomplete oxidizers. This metabolic selection may be linked to the types of substrates that Desulfotomaculum spp. utilize; it may be that complete oxidizers are more versatile and likelier to proliferate in nutrient-rich zones of the Everglades. Desulfotomaculum incomplete oxidizers may outcompete complete oxidizers for substrates such as hydrogen in pristine zones where diverse carbon sources are less available. PMID:12450837

  7. A novel enterovirus species identified from severe diarrheal goats.

    PubMed

    Wang, Mingyue; He, Jia; Lu, Haibing; Liu, Yajing; Deng, Yingrui; Zhu, Lisai; Guo, Changming; Tu, Changchun; Wang, Xinping

    2017-01-01

    The Enterovirus genus of the family of Picornaviridae consists of 9 species of Enteroviruses and 3 species of Rhinoviruses based on the latest virus taxonomy. Those viruses contribute significantly to respiratory and digestive disorders in human and animals. Out of 9 Enterovirus species, Enterovirus E-G are closely related to diseases affecting on livestock industry. While enterovirus infection has been increasingly reported in cattle and swine, the enterovirus infections in small ruminants remain largely unknown. Virology, molecular and bioinformatics methods were employed to characterize a novel enterovirus CEV-JL14 from goats manifesting severe diarrhea with morbidity and mortality respectively up to 84% and 54% in China. CEV-JL14 was defined and proposed as a new Enterovirus species L within the genus of Enterovirus of the family Picornaviridae. CEV-JL14 had a complete genome sequence of 7461 nucleotides with an ORF encoding 2172 amino acids, and shared 77.1% of genomic sequence identity with TB4-OEV, an ovine enterovirus. Comparison of 5'-UTR and structural genes of CEV-JL14 with known Enterovirus species revealed highly genetic variations among CEV-JL14 with known Enterovirus species. VP1 nucleotide sequence identities of CEV-14 were 51.8%-53.5% with those of Enterovirus E and F, 30.9%-65.3% with Enterovirus G, and 43.8-51. 5% with Enterovirus A-D, respectively. CEV-JL14 was proposed as a novel species within the genus of Enterovirus according to the current ICTV demarcation criteria of enteroviruses. CEV-JL14 clustered phylogenetically to neither Enterovirus E and F, nor to Enterovirus G. It was defined and proposed as novel species L within the genus of Enterovirus. This is the first report of caprine enterovirus in China, the first complete genomic sequence of a caprine enterovirus revealed, and the unveiling of significant genetic variations between ovine enterovirus and caprine enterovirus, thus broadening the current understanding of enteroviruses.

  8. A novel enterovirus species identified from severe diarrheal goats

    PubMed Central

    Liu, Yajing; Deng, Yingrui; Zhu, Lisai; Guo, Changming; Tu, Changchun; Wang, Xinping

    2017-01-01

    Backgrounds The Enterovirus genus of the family of Picornaviridae consists of 9 species of Enteroviruses and 3 species of Rhinoviruses based on the latest virus taxonomy. Those viruses contribute significantly to respiratory and digestive disorders in human and animals. Out of 9 Enterovirus species, Enterovirus E-G are closely related to diseases affecting on livestock industry. While enterovirus infection has been increasingly reported in cattle and swine, the enterovirus infections in small ruminants remain largely unknown. Methods Virology, molecular and bioinformatics methods were employed to characterize a novel enterovirus CEV-JL14 from goats manifesting severe diarrhea with morbidity and mortality respectively up to 84% and 54% in China. Results CEV-JL14 was defined and proposed as a new Enterovirus species L within the genus of Enterovirus of the family Picornaviridae. CEV-JL14 had a complete genome sequence of 7461 nucleotides with an ORF encoding 2172 amino acids, and shared 77.1% of genomic sequence identity with TB4-OEV, an ovine enterovirus. Comparison of 5’-UTR and structural genes of CEV-JL14 with known Enterovirus species revealed highly genetic variations among CEV-JL14 with known Enterovirus species. VP1 nucleotide sequence identities of CEV-14 were 51.8%-53.5% with those of Enterovirus E and F, 30.9%-65.3% with Enterovirus G, and 43.8–51. 5% with Enterovirus A-D, respectively. CEV-JL14 was proposed as a novel species within the genus of Enterovirus according to the current ICTV demarcation criteria of enteroviruses. Conclusions CEV-JL14 clustered phylogenetically to neither Enterovirus E and F, nor to Enterovirus G. It was defined and proposed as novel species L within the genus of Enterovirus. This is the first report of caprine enterovirus in China, the first complete genomic sequence of a caprine enterovirus revealed, and the unveiling of significant genetic variations between ovine enterovirus and caprine enterovirus, thus broadening the current understanding of enteroviruses. PMID:28376123

  9. The complete mitogenome of brown trout (Salmo trutta fario) and its phylogeny.

    PubMed

    Sahoo, Prabhati K; Singh, Lalit; Sharma, Lata; Kumar, Rohit; Singh, Vijay K; Ali, S; Singh, Atul K; Barat, Ashoktaru

    2016-11-01

    The complete mitochondrial genome of Salmo trutta fario, commonly known as brown trout, was sequenced using NGS technology. The mitochondrial genome size was determined to be 16 677 bp and composed of 13 protein-coding gene (PCG), 22 tRNAs, 2 rRNA genes, and 1 putative control region. The overall mitogenome composition of S. trutta fario is A: 28.13%, G: 16.44%, C: 29.47%, and T: 25.96% with A + T content of 54.09% and G + C content of 45.91%. The gene arrangement and the order are similar to other vertebrates. The phylogenetic tree constructed using 42 complete mitogenomes of Salmonidae fishes confirmed the position of the present species under the genus Salmo of subfamily Salmoninae. NGS platform was proved to be a rapid and time-saving technology to reveal complete mitogenomes.

  10. Molecular Evolution and Intraclade Recombination of Enterovirus D68 during the 2014 Outbreak in the United States

    PubMed Central

    Tan, Yi; Hassan, Ferdaus; Schuster, Jennifer E.; Simenauer, Ari; Selvarangan, Rangaraj; Halpin, Rebecca A.; Lin, Xudong; Fedorova, Nadia; Stockwell, Timothy B.; Lam, Tommy Tsan-Yuk; Chappell, James D.; Hartert, Tina V.; Holmes, Edward C.

    2015-01-01

    ABSTRACT In August 2014, an outbreak of enterovirus D68 (EV-D68) occurred in North America, causing severe respiratory disease in children. Due to a lack of complete genome sequence data, there is only a limited understanding of the molecular evolution and epidemiology of EV-D68 during this outbreak, and it is uncertain whether the differing clinical manifestations of EV-D68 infection are associated with specific viral lineages. We developed a high-throughput complete genome sequencing pipeline for EV-D68 that produced a total of 59 complete genomes from respiratory samples with a 95% success rate, including 57 genomes from Kansas City, MO, collected during the 2014 outbreak. With these data in hand, we performed phylogenetic analyses of complete genome and VP1 capsid protein sequences. Notably, we observed considerable genetic diversity among EV-D68 isolates in Kansas City, manifest as phylogenetically distinct lineages, indicative of multiple introductions of this virus into the city. In addition, we identified an intersubclade recombination event within EV-D68, the first recombinant in this virus reported to date. Finally, we found no significant association between EV-D68 genetic variation, either lineages or individual mutations, and a variety of demographic and clinical variables, suggesting that host factors likely play a major role in determining disease severity. Overall, our study revealed the complex pattern of viral evolution within a single geographic locality during a single outbreak, which has implications for the design of effective intervention and prevention strategies. IMPORTANCE Until recently, EV-D68 was considered to be an uncommon human pathogen, associated with mild respiratory illness. However, in 2014 EV-D68 was responsible for more than 1,000 disease cases in North America, including severe respiratory illness in children and acute flaccid myelitis, raising concerns about its potential impact on public health. Despite the emergence of EV-D68, a lack of full-length genome sequences means that little is known about the molecular evolution of this virus within a single geographic locality during a single outbreak. Here, we doubled the number of publicly available complete genome sequences of EV-D68 by performing high-throughput next-generation sequencing, characterized the evolutionary history of this outbreak in detail, identified a recombination event, and investigated whether there was any correlation between the demographic and clinical characteristics of the patients and the viral variant that infected them. Overall, these results will help inform the design of intervention strategies for EV-D68. PMID:26656685

  11. Detection of novel divergent arenaviruses in boid snakes with inclusion body disease in The Netherlands.

    PubMed

    Bodewes, R; Kik, M J L; Raj, V Stalin; Schapendonk, C M E; Haagmans, B L; Smits, S L; Osterhaus, A D M E

    2013-06-01

    Arenaviruses are bi-segmented negative-stranded RNA viruses, which were until recently only detected in rodents and humans. Now highly divergent arenaviruses have been identified in boid snakes with inclusion body disease (IBD). Here, we describe the identification of a new species and variants of the highly divergent arenaviruses, which were detected in tissues of captive boid snakes with IBD in The Netherlands by next-generation sequencing. Phylogenetic analysis of the complete sequence of the open reading frames of the four predicted proteins of one of the detected viruses revealed that this virus was most closely related to the recently identified Golden Gate virus, while considerable sequence differences were observed between the highly divergent arenaviruses detected in this study. These findings add to the recent identification of the highly divergent arenaviruses in boid snakes with IBD in the United States and indicate that these viruses also circulate among boid snakes in Europe.

  12. A nucleotide substitution in one of the beta-tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-yl-carbamate.

    PubMed

    Goldman, G H; Temmerman, W; Jacobs, D; Contreras, R; Van Montagu, M; Herrera-Estrella, A

    1993-07-01

    We characterized a Trichoderma viride strain that is resistant to the antimitotic drug methyl benzimidazole-2-yl-carbamate (MBC). This species has two beta-tubulin genes (tub1 and tub2) and by reverse genetics we showed that a mutation in the tub2 gene confers MBC resistance in this strain. Comparison of the tub2 sequence of the mutant strain with that of the wild type revealed that a single amino acid substitution of tyrosine for histidine at a position 6 is responsible for the MBC tolerance. Furthermore, we showed that this gene can be used as a homologous dominant selectable marker in T. viride transformation. Both tubulin genes were completely sequenced. They differ by 48 residues and the degree of identity between their deduced amino acid sequences is 86.3%.

  13. Purification and characterization of plantaricin Y, a novel bacteriocin produced by Lactobacillus plantarum 510.

    PubMed

    Chen, Yi-sheng; Wang, Yan-chong; Chow, Yiou-shing; Yanagida, Fujitoshi; Liao, Chen-chung; Chiu, Chi-ming

    2014-03-01

    Lactobacillus plantarum 510, previously isolated from a koshu vineyard in Japan, was found to produce a bacteriocin-like inhibitory substance which was purified and characterized. Mass spectrometry analysis showed that the mass of this bacteriocin is 4,296.65 Da. A partial sequence, NH2- SSSLLNTAWRKFG, was obtained by N-terminal amino acid sequence analysis. A BLAST search revealed that this is a unique sequence; this peptide is thus a novel bacteriocin produced by Lactobacillus plantarum 510 and was termed plantaricin Y. Plantaricin Y shows strong inhibitory activity against Listeria monocytogenes BCRC 14845, but no activity against other pathogens tested. Bacteriocin activity decreased slightly after autoclaving (121 °C for 15 min), but was completely inactivated by protease K. Furthermore, trypsin-digested bacteriocin product fragments retained activity against L. monocytogenes BCRC 14845 and exhibited a different inhibitory spectrum.

  14. Complete genome sequence of Vibrio parahaemolyticus strain FORC_008, a foodborne pathogen from a flounder fish in South Korea.

    PubMed

    Kim, Suyeon; Chung, Han Young; Lee, Dong-Hoon; Lim, Jong Gyu; Kim, Se Keun; Ku, Hye-Jin; Kim, You-Tae; Kim, Heebal; Ryu, Sangryeol; Lee, Ju-Hoon; Choi, Sang Ho

    2016-07-01

    Vibrio parahaemolyticus is a Gram-negative, motile, nonspore-forming pathogen that causes foodborne illness associated with the consumption of contaminated seafoods. Although many cases of foodborne outbreaks caused by V. parahaemolyticus have been reported, the genomes of only five strains have been completely sequenced and analyzed using bioinformatics. In order to characterize overall virulence factors and pathogenesis of V. parahaemolyticus associated with foodborne outbreak in South Korea, a new strain FORC_008 was isolated from flounder fish and its genome was completely sequenced. The genomic analysis revealed that the genome of FORC_008 consists of two circular DNA chromosomes of 3266 132 bp (chromosome I) and 1772 036 bp (chromosome II) with a GC content of 45.36% and 45.53%, respectively. The entire genome contains 4494 predicted open reading frames, 129 tRNAs and 31 rRNA genes. While the strain FORC_008 does not have genes encoding thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH), its genome encodes many other virulence factors including hemolysins, pathogenesis-associated secretion systems and iron acquisition systems, suggesting that it may be a potential pathogen. This report provides an extended understanding on V. parahaemolyticus in genomic level and would be helpful for rapid detection, epidemiological investigation and prevention of foodborne outbreak in South Korea. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Complete mitochondrial genome from South American catfish Pseudoplatystoma reticulatum (Eigenmann & Eigenmann) and its impact in Siluriformes phylogenetic tree.

    PubMed

    Villela, Luciana Cristine Vasques; Alves, Anderson Luis; Varela, Eduardo Sousa; Yamagishi, Michel Eduardo Beleza; Giachetto, Poliana Fernanda; da Silva, Naiara Milagres Augusto; Ponzetto, Josi Margarete; Paiva, Samuel Rezende; Caetano, Alexandre Rodrigues

    2017-02-01

    The cachara (Pseudoplatystoma reticulatum) is a Neotropical freshwater catfish from family Pimelodidae (Siluriformes) native to Brazil. The species is of relative economic importance for local aquaculture production and basic biological information is under development to help boost efforts to domesticate and raise the species in commercial systems. The complete cachara mitochondrial genome was obtained by assembling Illumina RNA-seq data from pooled samples. The full mitogenome was found to be 16,576 bp in length, showing the same basic structure, order, and genetic organization observed in other Pimelodidae, with 13 protein-coding genes, 2 rNA genes, 22 trNAs, and a control region. Observed base composition was 24.63% T, 28.47% C, 31.45% A, and 15.44% G. With the exception of NAD6 and eight tRNAs, all of the observed mitochondrial genes were found to be coded on the H strand. A total of 107 SNPs were identified in P. reticulatum mtDNA, 67 of which were located in coding regions. Of these SNPs, 10 result in amino acid changes. Analysis of the obtained sequence with 94 publicly available full Siluriformes mitogenomes resulted in a phylogenetic tree that generally agreed with available phylogenetic proposals for the order. The first report of the complete Pseudoplatystoma reticulatum mitochondrial genome sequence revealed general gene organization, structure, content, and order similar to most vertebrates. Specific sequence and content features were observed and may have functional attributes which are now available for further investigation.

  16. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes.

    PubMed

    Lin, Feng-Jiau; Liu, Yuan; Sha, Zhongli; Tsang, Ling Ming; Chu, Ka Hou; Chan, Tin-Yam; Liu, Ruiyu; Cui, Zhaoxia

    2012-11-16

    The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda.

  17. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes

    PubMed Central

    2012-01-01

    Background The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. Results We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Conclusions Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda. PMID:23153176

  18. Molecular characterization and combined genotype association study of bovine cluster of differentiation 14 gene with clinical mastitis in crossbred dairy cattle

    PubMed Central

    Selvan, A. Sakthivel; Gupta, I. D.; Verma, A.; Chaudhari, M. V.; Magotra, A.

    2016-01-01

    Aim: The present study was undertaken with the objectives to characterize and to analyze combined genotypes of cluster of differentiation 14 (CD14) gene to explore its association with clinical mastitis in Karan Fries (KF) cows maintained in the National Dairy Research Institute herd, Karnal. Materials and Methods: Genomic DNA was extracted using blood of randomly selected 94 KF lactating cattle by phenol-chloroform method. After checking its quality and quantity, polymerase chain reaction (PCR) was carried out using six sets of reported gene-specific primers to amplify complete KF CD14 gene. The forward and reverse sequences for each PCR fragments were assembled to form complete sequence for the respective region of KF CD14 gene. The multiple sequence alignments of the edited sequence with the corresponding reference with reported Bos taurus sequence (EU148610.1) were performed with ClustalW software to identify single nucleotide polymorphisms (SNPs). Basic Local Alignment Search Tool analysis was performed to compare the sequence identity of KF CD14 gene with other species. The restriction fragment length polymorphism (RFLP) analysis was carried out in all KF cows using Helicobacter pylori 188I (Hpy188I) (contig 2) and Haemophilus influenzae I (HinfI) (contig 4) restriction enzyme (RE). Cows were assigned genotypes obtained by PCR-RFLP analysis, and association study was done using Chi-square (χ2) test. The genotypes of both contigs (loci) number 2 and 4 were combined with respect to each animal to construct combined genotype patterns. Results: Two types of sequences of KF were obtained: One with 2630 bp having one insertion at 616 nucleotide (nt) position and one deletion at 1117 nt position, and the another sequence was of 2629 bp having only one deletion at 615 nt position. ClustalW, multiple alignments of KF CD14 gene sequence with B. taurus cattle sequence (EU148610.1), revealed 24 nt changes (SNPs). Cows were also screened using PCR-RFLP with Hpy188I (contig 2) and HinfI (contig 4) RE, which revealed three genotypes each that differed significantly regarding mastitis incidence. The maximum possible combination of these two loci shown nine combined genotype patterns and it was observed only eight combined genotypes out of nine: AACC, AACD, AADD, ABCD, ABDD, BBCC, BBCD, and BBDD. The combined genotype ABCC was not observed in the studied population of KF cows. Out of 94 animals, AACD combined genotype animals (10.63%) were found to be not affected with mastitis, and ABDD combined genotyped animals was observed having the highest mastitis incidence of 15.96%. Conclusion: AACD typed cows were found to be least susceptible to mastitis incidence as compared to other combined genotypes. PMID:27536026

  19. Molecular characterization and combined genotype association study of bovine cluster of differentiation 14 gene with clinical mastitis in crossbred dairy cattle.

    PubMed

    Selvan, A Sakthivel; Gupta, I D; Verma, A; Chaudhari, M V; Magotra, A

    2016-07-01

    The present study was undertaken with the objectives to characterize and to analyze combined genotypes of cluster of differentiation 14 (CD14) gene to explore its association with clinical mastitis in Karan Fries (KF) cows maintained in the National Dairy Research Institute herd, Karnal. Genomic DNA was extracted using blood of randomly selected 94 KF lactating cattle by phenol-chloroform method. After checking its quality and quantity, polymerase chain reaction (PCR) was carried out using six sets of reported gene-specific primers to amplify complete KF CD14 gene. The forward and reverse sequences for each PCR fragments were assembled to form complete sequence for the respective region of KF CD14 gene. The multiple sequence alignments of the edited sequence with the corresponding reference with reported Bos taurus sequence (EU148610.1) were performed with ClustalW software to identify single nucleotide polymorphisms (SNPs). Basic Local Alignment Search Tool analysis was performed to compare the sequence identity of KF CD14 gene with other species. The restriction fragment length polymorphism (RFLP) analysis was carried out in all KF cows using Helicobacter pylori 188I (Hpy188I) (contig 2) and Haemophilus influenzae I (HinfI) (contig 4) restriction enzyme (RE). Cows were assigned genotypes obtained by PCR-RFLP analysis, and association study was done using Chi-square (χ (2)) test. The genotypes of both contigs (loci) number 2 and 4 were combined with respect to each animal to construct combined genotype patterns. Two types of sequences of KF were obtained: One with 2630 bp having one insertion at 616 nucleotide (nt) position and one deletion at 1117 nt position, and the another sequence was of 2629 bp having only one deletion at 615 nt position. ClustalW, multiple alignments of KF CD14 gene sequence with B. taurus cattle sequence (EU148610.1), revealed 24 nt changes (SNPs). Cows were also screened using PCR-RFLP with Hpy188I (contig 2) and HinfI (contig 4) RE, which revealed three genotypes each that differed significantly regarding mastitis incidence. The maximum possible combination of these two loci shown nine combined genotype patterns and it was observed only eight combined genotypes out of nine: AACC, AACD, AADD, ABCD, ABDD, BBCC, BBCD, and BBDD. The combined genotype ABCC was not observed in the studied population of KF cows. Out of 94 animals, AACD combined genotype animals (10.63%) were found to be not affected with mastitis, and ABDD combined genotyped animals was observed having the highest mastitis incidence of 15.96%. AACD typed cows were found to be least susceptible to mastitis incidence as compared to other combined genotypes.

  20. The complete genome sequence, occurrence and host range of Tomato mottle mosaic virus Chinese isolate.

    PubMed

    Li, Yueyue; Wang, Yang; Hu, John; Xiao, Long; Tan, Guanlin; Lan, Pingxiu; Liu, Yong; Li, Fan

    2017-01-31

    Tomato mottle mosaic virus (ToMMV) is a recently identified species in the genus Tobamovirus and was first reported from a greenhouse tomato sample collected in Mexico in 2013. In August 2013, ToMMV was detected on peppers (Capsicum spp.) in China. However, little is known about the molecular and biological characteristics of ToMMV. Reverse transcription-polymerase chain reaction (RT-PCR) and rapid identification of cDNA ends (RACE) were carried out to obtain the complete genomic sequences of ToMMV. Sap transmission was used to test the host range and pathogenicity of ToMMV. The full-length genomes of two ToMMV isolates infecting peppers in Yunnan Province and Tibet Autonomous Region of China were determined and analyzed. The complete genomic sequences of both ToMMV isolates consisted of 6399 nucleotides and contained four open reading frames (ORFs) encoding 126, 183, 30 and 18 kDa proteins from the 5' to 3' end, respectively. Overall similarities of the ToMMV genome sequence to those of the other tobamoviruses available in GenBank ranged from 49.6% to 84.3%. Phylogenetic analyses of the sequences of full-genome nucleotide and the amino acids of its four proteins confirmed that ToMMV was most closely related to Tomato mosaic virus (ToMV). According to the genetic structure, host of origin and phylogenetic relationships, the available 32 tobamoviruses could be divided into at least eight subgroups based on the host plant family they infect: Solanaceae-, Brassicaceae-, Cactaceae-, Apocynaceae-, Cucurbitaceae-, Malvaceae-, Leguminosae-, and Passifloraceae-infecting subgroups. The detection of ToMMV on some solanaceous, cucurbitaceous, brassicaceous and leguminous plants in Yunnan Province and other few parts of China revealed ToMMV only occurred on peppers so far. However, the host range test results showed ToMMV could infect most of the tested solanaceous and cruciferous plants, and had a high affinity for the solanaceous plants. The complete nucleotide sequences of two Chinese ToMMV isolates from naturally infected peppers were verified. The tobamoviruses were divided into at least eight subgroups, with ToMMV belonging to the subgroup that infected plants in the Solanaceae. In China, ToMMV only occurred on peppers in the fields till now. ToMMV could infect the plants in family Solanaceae and Cucurbitaceae by sap transmission.

  1. The complete chloroplast genome sequence of Gossypium hirsutum: organization and phylogenetic relationships to other angiosperms

    PubMed Central

    Lee, Seung-Bum; Kaittanis, Charalambos; Jansen, Robert K; Hostetler, Jessica B; Tallon, Luke J; Town, Christopher D; Daniell, Henry

    2006-01-01

    Background Cotton (Gossypium hirsutum) is the most important fiber crop grown in 90 countries. In 2004–2005, US farmers planted 79% of the 5.7-million hectares of nuclear transgenic cotton. Unfortunately, genetically modified cotton has the potential to hybridize with other cultivated and wild relatives, resulting in geographical restrictions to cultivation. However, chloroplast genetic engineering offers the possibility of containment because of maternal inheritance of transgenes. The complete chloroplast genome of cotton provides essential information required for genetic engineering. In addition, the sequence data were used to assess phylogenetic relationships among the major clades of rosids using cotton and 25 other completely sequenced angiosperm chloroplast genomes. Results The complete cotton chloroplast genome is 160,301 bp in length, with 112 unique genes and 19 duplicated genes within the IR, containing a total of 131 genes. There are four ribosomal RNAs, 30 distinct tRNA genes and 17 intron-containing genes. The gene order in cotton is identical to that of tobacco but lacks rpl22 and infA. There are 30 direct and 24 inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Most of the direct repeats are within intergenic spacer regions, introns and a 72 bp-long direct repeat is within the psaA and psaB genes. Comparison of protein coding sequences with expressed sequence tags (ESTs) revealed nucleotide substitutions resulting in amino acid changes in ndhC, rpl23, rpl20, rps3 and clpP. Phylogenetic analysis of a data set including 61 protein-coding genes using both maximum likelihood and maximum parsimony were performed for 28 taxa, including cotton and five other angiosperm chloroplast genomes that were not included in any previous phylogenies. Conclusion Cotton chloroplast genome lacks rpl22 and infA and contains a number of dispersed direct and inverted repeats. RNA editing resulted in amino acid changes with significant impact on their hydropathy. Phylogenetic analysis provides strong support for the position of cotton in the Malvales in the eurosids II clade sister to Arabidopsis in the Brassicales. Furthermore, there is strong support for the placement of the Myrtales sister to the eurosid I clade, although expanded taxon sampling is needed to further test this relationship. PMID:16553962

  2. Complete genome sequence of Fer-de-Lance Virus reveals a novel gene in reptilian Paramyxoviruses

    USGS Publications Warehouse

    Kurath, G.; Batts, W.N.; Ahne, W.; Winton, J.R.

    2004-01-01

    The complete RNA genome sequence of the archetype reptilian paramyxovirus, Fer-de-Lance virus (FDLV), has been determined. The genome is 15,378 nucleotides in length and consists of seven nonoverlapping genes in the order 3??? N-U-P-M-F-HN-L 5???, coding for the nucleocapsid, unknown, phospho-, matrix, fusion, hemagglutinin-neuraminidase, and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and tri-nucleotide intergenic regions similar to those of other Paramyxoviridae. The FDLV P gene expression strategy is like that of rubulaviruses, which express the accessory V protein from the primary transcript and edit a portion of the mRNA to encode P and I proteins. There is also an overlapping open reading frame potentially encoding a small basic protein in the P gene. The gene designated U (unknown), encodes a deduced protein of 19.4 kDa that has no counterpart in other paramyxoviruses and has no similarity with sequences in the National Center for Biotechnology Information database. Active transcription of the U gene in infected cells was demonstrated by Northern blot analysis, and bicistronic N-U mRNA was also evident. The genomes of two other snake paramyxovirus genotypes were also found to have U genes, with 11 to 16% nucleotide divergence from the FDLV U gene. Pairwise comparisons of amino acid identities and phylogenetic analyses of all deduced FDLV protein sequences with homologous sequences from other Paramyxoviridae indicate that FDLV represents a new genus within the subfamily Paramyxovirinae. We suggest the name Ferlavirus for the new genus, with FDLV as the type species.

  3. Complete chloroplast genome sequence of MD-2 pineapple and its comparative analysis among nine other plants from the subclass Commelinidae.

    PubMed

    Redwan, R M; Saidin, A; Kumar, S V

    2015-08-12

    Pineapple (Ananas comosus var. comosus) is known as the king of fruits for its crown and is the third most important tropical fruit after banana and citrus. The plant, which is indigenous to South America, is the most important species in the Bromeliaceae family and is largely traded for fresh fruit consumption. Here, we report the complete chloroplast sequence of the MD-2 pineapple that was sequenced using the PacBio sequencing technology. In this study, the high error rate of PacBio long sequence reads of A. comosus's total genomic DNA were improved by leveraging on the high accuracy but short Illumina reads for error-correction via the latest error correction module from Novocraft. Error corrected long PacBio reads were assembled by using a single tool to produce a contig representing the pineapple chloroplast genome. The genome of 159,636 bp in length is featured with the conserved quadripartite structure of chloroplast containing a large single copy region (LSC) with a size of 87,482 bp, a small single copy region (SSC) with a size of 18,622 bp and two inverted repeat regions (IRA and IRB) each with the size of 26,766 bp. Overall, the genome contained 117 unique coding regions and 30 were repeated in the IR region with its genes contents, structure and arrangement similar to its sister taxon, Typha latifolia. A total of 35 repeats structure were detected in both the coding and non-coding regions with a majority being tandem repeats. In addition, 205 SSRs were detected in the genome with six protein-coding genes contained more than two SSRs. Comparative chloroplast genomes from the subclass Commelinidae revealed a conservative protein coding gene albeit located in a highly divergence region. Analysis of selection pressure on protein-coding genes using Ka/Ks ratio showed significant positive selection exerted on the rps7 gene of the pineapple chloroplast with P less than 0.05. Phylogenetic analysis confirmed the recent taxonomical relation among the member of commelinids which support the monophyly relationship between Arecales and Dasypogonaceae and between Zingiberales to the Poales, which includes the A. comosus. The complete sequence of the chloroplast of pineapple provides insights to the divergence of genic chloroplast sequences from the members of the subclass Commelinidae. The complete pineapple chloroplast will serve as a reference for in-depth taxonomical studies in the Bromeliaceae family when more species under the family are sequenced in the future. The genetic sequence information will also make feasible other molecular applications of the pineapple chloroplast for plant genetic improvement.

  4. The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms

    PubMed Central

    Bausher, Michael G; Singh, Nameirakpam D; Lee, Seung-Bum; Jansen, Robert K; Daniell, Henry

    2006-01-01

    Background The production of Citrus, the largest fruit crop of international economic value, has recently been imperiled due to the introduction of the bacterial disease Citrus canker. No significant improvements have been made to combat this disease by plant breeding and nuclear transgenic approaches. Chloroplast genetic engineering has a number of advantages over nuclear transformation; it not only increases transgene expression but also facilitates transgene containment, which is one of the major impediments for development of transgenic trees. We have sequenced the Citrus chloroplast genome to facilitate genetic improvement of this crop and to assess phylogenetic relationships among major lineages of angiosperms. Results The complete chloroplast genome sequence of Citrus sinensis is 160,129 bp in length, and contains 133 genes (89 protein-coding, 4 rRNAs and 30 distinct tRNAs). Genome organization is very similar to the inferred ancestral angiosperm chloroplast genome. However, in Citrus the infA gene is absent. The inverted repeat region has expanded to duplicate rps19 and the first 84 amino acids of rpl22. The rpl22 gene in the IRb region has a nonsense mutation resulting in 9 stop codons. This was confirmed by PCR amplification and sequencing using primers that flank the IR/LSC boundaries. Repeat analysis identified 29 direct and inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Comparison of protein-coding sequences with expressed sequence tags revealed six putative RNA edits, five of which resulted in non-synonymous modifications in petL, psbH, ycf2 and ndhA. Phylogenetic analyses using maximum parsimony (MP) and maximum likelihood (ML) methods of a dataset composed of 61 protein-coding genes for 30 taxa provide strong support for the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids and asterids. The MP and ML trees are incongruent in three areas: the position of Amborella and Nymphaeales, relationship of the magnoliid genus Calycanthus, and the monophyly of the eurosid I clade. Both MP and ML trees provide strong support for the monophyly of eurosids II and for the placement of Citrus (Sapindales) sister to a clade including the Malvales/Brassicales. Conclusion This is the first complete chloroplast genome sequence for a member of the Rutaceae and Sapindales. Expansion of the inverted repeat region to include rps19 and part of rpl22 and presence of two truncated copies of rpl22 is unusual among sequenced chloroplast genomes. Availability of a complete Citrus chloroplast genome sequence provides valuable information on intergenic spacer regions and endogenous regulatory sequences for chloroplast genetic engineering. Phylogenetic analyses resolve relationships among several major clades of angiosperms and provide strong support for the monophyly of the eurosid II clade and the position of the Sapindales sister to the Brassicales/Malvales. PMID:17010212

  5. Complete mitochondrial genome sequence of Indian medium carp, Labeo gonius (Hamilton, 1822) and its comparison with other related carp species.

    PubMed

    Behera, Bijay Kumar; Kumari, Kavita; Baisvar, Vishwamitra Singh; Rout, Ajaya Kumar; Pakrashi, Sudip; Paria, Prasenjet; Jena, J K

    2017-01-01

    In the present study, the complete mitochondrial genome sequence of Labeo gonius is reported using PGM sequencer (Ion Torrent). The complete mitogenome of L. gonius is obtained by the de novo sequences assembly of genomic reads using the Torrent Mapping Alignment Program (TMAP) which is 16 614 bp in length. The mitogenome of L. gonius comprised of 13 protein-coding genes, 22 tRNAs, 2 rRNA genes, and D-loop as control region along with gene order and organization, being similar to most of other fish mitogenomes of NCBI databases. The mitogenome in the present study has 99% similarity to the complete mitogenome sequence of Labeo fimbriatus, as reported earlier. The phylogenetic analysis of Cypriniformes depicted that their mitogenomes are closely related to each other. The complete mitogenome sequence of L. gonius would be helpful in understanding the population genetics, phylogenetics, and evolution of Indian Carps.

  6. Artificial Intelligence and Robotics.

    DTIC Science & Technology

    1984-02-01

    assertibly, seam welding and surface finishing, have clearly revealed the inabilities of current robots. Research prototypes have explored the use of...oriletats SysCtes fhat sae iuch representaios iay’n riot be ca al~esr todn solt ion givn roemes Teeaifch userr a complete ear pronsldurens and...rangle of1 possible (sequences of) *(4411pli:4444 4140 \\ -s. that r( ima rarlteed to achieve the goal, llotwitlhst and ing errors. lProt:4hli1)"i~ bv fh

  7. Complete genomic sequences of Propionibacterium freudenreichii phages from Swiss cheese reveal greater diversity than Cutibacterium (formerly Propionibacterium) acnes phages.

    PubMed

    Cheng, Lucy; Marinelli, Laura J; Grosset, Noël; Fitz-Gibbon, Sorel T; Bowman, Charles A; Dang, Brian Q; Russell, Daniel A; Jacobs-Sera, Deborah; Shi, Baochen; Pellegrini, Matteo; Miller, Jeff F; Gautier, Michel; Hatfull, Graham F; Modlin, Robert L

    2018-03-01

    A remarkable exception to the large genetic diversity often observed for bacteriophages infecting a specific bacterial host was found for the Cutibacterium acnes (formerly Propionibacterium acnes) phages, which are highly homogeneous. Phages infecting the related species, which is also a member of the Propionibacteriaceae family, Propionibacterium freudenreichii, a bacterium used in production of Swiss-type cheeses, have also been described and are common contaminants of the cheese manufacturing process. However, little is known about their genetic composition and diversity. We obtained seven independently isolated bacteriophages that infect P. freudenreichii from Swiss-type cheese samples, and determined their complete genome sequences. These data revealed that all seven phage isolates are of similar genomic length and GC% content, but their genomes are highly diverse, including genes encoding the capsid, tape measure, and tail proteins. In contrast to C. acnes phages, all P. freudenreichii phage genomes encode a putative integrase protein, suggesting they are capable of lysogenic growth. This is supported by the finding of related prophages in some P. freudenreichii strains. The seven phages could further be distinguished as belonging to two distinct genomic types, or 'clusters', based on nucleotide sequences, and host range analyses conducted on a collection of P. freudenreichii strains show a higher degree of host specificity than is observed for the C. acnes phages. Overall, our data demonstrate P. freudenreichii bacteriophages are distinct from C. acnes phages, as evidenced by their higher genetic diversity, potential for lysogenic growth, and more restricted host ranges. This suggests substantial differences in the evolution of these related species from the Propionibacteriaceae family and their phages, which is potentially related to their distinct environmental niches.

  8. Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater.

    PubMed

    Foong, Choon Pin; Lau, Nyok-Sean; Deguchi, Shigeru; Toyofuku, Takashi; Taylor, Todd D; Sudesh, Kumar; Matsui, Minami

    2014-12-24

    Special features of the Japanese ocean include its ranges of latitude and depth. This study is the first to examine the diversity of Class I and II PHA synthases (PhaC) in DNA samples from pelagic seawater taken from the Japan Trench and Nankai Trough from a range of depths from 24 m to 5373 m. PhaC is the key enzyme in microorganisms that determines the types of monomer units that are polymerized into polyhydroxyalkanoate (PHA) and thus affects the physicochemical properties of this thermoplastic polymer. Complete putative PhaC sequences were determined via genome walking, and the activities of newly discovered PhaCs were evaluated in a heterologous host. A total of 76 putative phaC PCR fragments were amplified from the whole genome amplified seawater DNA. Of these 55 clones contained conserved PhaC domains and were classified into 20 genetic groups depending on their sequence similarity. Eleven genetic groups have undisclosed PhaC activity based on their distinct phylogenetic lineages from known PHA producers. Three complete DNA coding sequences were determined by IAN-PCR, and one PhaC was able to produce poly(3-hydroxybutyrate) in recombinant Cupriavidus necator PHB-4 (PHB-negative mutant). A new functional PhaC that has close identity to Marinobacter sp. was discovered in this study. Phylogenetic classification for all the phaC genes isolated from uncultured bacteria has revealed that seawater and other environmental resources harbor a great diversity of PhaCs with activities that have not yet been investigated. Functional evaluation of these in silico-based PhaCs via genome walking has provided new insights into the polymerizing ability of these enzymes.

  9. Clinical, radiographic, and magnetic resonance imaging findings of gastrocnemius musculotendinopathy in various dog breeds.

    PubMed

    Kaiser, Susanne M; Harms, Oliver; Konar, Martin; Staudacher, Anne; Langer, Anna; Thiel, Cetina; Kramer, Martin; Schaub, Sebastian; von Pückler, Kerstin H

    2016-11-23

    To describe clinical, radiographic, and magnetic resonance imaging (MRI) findings in 16 dogs diagnosed with gastrocnemius musculotendinopathy. Retrospective evaluation of medical records, radiographs, and MRI results, as well as follow-up completed by telephone questionnaire. Most dogs had chronic hindlimb lameness with no history of trauma or athletic activities. Clinical examination revealed signs of pain on palpation without stifle joint instability. Seven dogs had radiographic signs of osteophyte formation on the lateral fabella. Magnetic resonance imaging revealed T2 hyperintensity and uptake of contrast agent in the region of the origin of the gastrocnemius muscle. Changes were found in the lateral and medial heads of the gastrocnemius. Conservative treatment resulted in return to full function in 11 dogs. Two dogs showed partial restoration of normal function, one dog showed no improvement. Two dogs were lost to follow-up. Gastrocnemius musculotendinopathy is a potential cause of chronic hindlimb lameness in medium to large breed dogs. A history of athletic activity must not necessarily be present. Magnetic resonance imaging shows signal changes and uptake of contrast agent in the region of the origin of the gastrocnemius muscle. A combination of T1 pre- and post-contrast administration and T2 weighted sequences completed by a fat-suppressed sequence in the sagittal plane are well-suited for diagnosis. Conservative treatment generally results in return to normal function.

  10. The Complete Genomic Sequence of Pepper Yellow Leaf Curl Virus (PYLCV) and Its Implications for Our Understanding of Evolution Dynamics in the Genus Polerovirus

    PubMed Central

    Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel

    2013-01-01

    We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range. PMID:23936244

  11. The complete genomic sequence of pepper yellow leaf curl virus (PYLCV) and its implications for our understanding of evolution dynamics in the genus polerovirus.

    PubMed

    Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel

    2013-01-01

    We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range.

  12. Hydrogen-deuterium exchange mass spectrometry reveals folding and allostery in protein-protein interactions.

    PubMed

    Ramirez-Sarmiento, Cesar A; Komives, Elizabeth A

    2018-04-06

    Hydrogen-deuterium exchange mass spectrometry (HDXMS) has emerged as a powerful approach for revealing folding and allostery in protein-protein interactions. The advent of higher resolution mass spectrometers combined with ion mobility separation and ultra performance liquid chromatographic separations have allowed the complete coverage of large protein sequences and multi-protein complexes. Liquid-handling robots have improved the reproducibility and accurate temperature control of the sample preparation. Many researchers are also appreciating the power of combining biophysical approaches such as stopped-flow fluorescence, single molecule FRET, and molecular dynamics simulations with HDXMS. In this review, we focus on studies that have used a combination of approaches to reveal (re)folding of proteins as well as on long-distance allosteric changes upon interaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Complete Chloroplast Genome of the Multifunctional Crop Globe Artichoke and Comparison with Other Asteraceae

    PubMed Central

    Curci, Pasquale L.; De Paola, Domenico; Danzi, Donatella; Vendramin, Giovanni G.; Sonnante, Gabriella

    2015-01-01

    With over 20,000 species, Asteraceae is the second largest plant family. High-throughput sequencing of nuclear and chloroplast genomes has allowed for a better understanding of the evolutionary relationships within large plant families. Here, the globe artichoke chloroplast (cp) genome was obtained by a combination of whole-genome and BAC clone high-throughput sequencing. The artichoke cp genome is 152,529 bp in length, consisting of two single-copy regions separated by a pair of inverted repeats (IRs) of 25,155 bp, representing the longest IRs found in the Asteraceae family so far. The large (LSC) and the small (SSC) single-copy regions span 83,578 bp and 18,641 bp, respectively. The artichoke cp sequence was compared to the other eight Asteraceae complete cp genomes available, revealing an IR expansion at the SSC/IR boundary. This expansion consists of 17 bp of the ndhF gene generating an overlap between the ndhF and ycf1 genes. A total of 127 cp simple sequence repeats (cpSSRs) were identified in the artichoke cp genome, potentially suitable for future population studies in the Cynara genus. Parsimony-informative regions were evaluated and allowed to place a Cynara species within the Asteraceae family tree. The eight most informative coding regions were also considered and tested for “specific barcode” purpose in the Asteraceae family. Our results highlight the usefulness of cp genome sequencing in exploring plant genome diversity and retrieving reliable molecular resources for phylogenetic and evolutionary studies, as well as for specific barcodes in plants. PMID:25774672

  14. Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae.

    PubMed

    Curci, Pasquale L; De Paola, Domenico; Danzi, Donatella; Vendramin, Giovanni G; Sonnante, Gabriella

    2015-01-01

    With over 20,000 species, Asteraceae is the second largest plant family. High-throughput sequencing of nuclear and chloroplast genomes has allowed for a better understanding of the evolutionary relationships within large plant families. Here, the globe artichoke chloroplast (cp) genome was obtained by a combination of whole-genome and BAC clone high-throughput sequencing. The artichoke cp genome is 152,529 bp in length, consisting of two single-copy regions separated by a pair of inverted repeats (IRs) of 25,155 bp, representing the longest IRs found in the Asteraceae family so far. The large (LSC) and the small (SSC) single-copy regions span 83,578 bp and 18,641 bp, respectively. The artichoke cp sequence was compared to the other eight Asteraceae complete cp genomes available, revealing an IR expansion at the SSC/IR boundary. This expansion consists of 17 bp of the ndhF gene generating an overlap between the ndhF and ycf1 genes. A total of 127 cp simple sequence repeats (cpSSRs) were identified in the artichoke cp genome, potentially suitable for future population studies in the Cynara genus. Parsimony-informative regions were evaluated and allowed to place a Cynara species within the Asteraceae family tree. The eight most informative coding regions were also considered and tested for "specific barcode" purpose in the Asteraceae family. Our results highlight the usefulness of cp genome sequencing in exploring plant genome diversity and retrieving reliable molecular resources for phylogenetic and evolutionary studies, as well as for specific barcodes in plants.

  15. Characterization and mapping of cDNA encoding aspartate aminotransferase in rice, Oryza sativa L.

    PubMed

    Song, J; Yamamoto, K; Shomura, A; Yano, M; Minobe, Y; Sasaki, T

    1996-10-31

    Fifteen cDNA clones, putatively identified as encoding aspartate aminotransferase (AST, EC 2.6.1.1.), were isolated and partially sequenced. Together with six previously isolated clones putatively identified to encode ASTs (Sasaki, et al. 1994, Plant Journal 6, 615-624), their sequences were characterized and classified into 4 cDNA species. Two of the isolated clones, C60213 and C2079, were full-length cDNAs, and their complete nucleotide sequences were determined. C60213 was 1612 bp long and its deduced amino acid sequence showed 88% homology with that of Panicum miliaceum L. mitochondrial AST. The C60213-encoded protein had an N-terminal amino acid sequence that was characteristic of a mitochondrial transit peptide. On the other hand, C2079 was 1546 bp long and had 91% amino acid sequence homology with P. miliaceum L. cytosolic AST but lacked in the transit peptide sequence. The homologies of nucleotide sequences and deduced amino acid sequences of C2079 and C60213 were 54% and 52%, respectively. C2079 and C60213 were mapped on chromosomes 1 and 6, respectively, by restriction fragment length polymorphism linkage analysis. Northern blot analysis using C2079 as a probe revealed much higher transcript levels in callus and root than in green and etiolated shoots, suggesting tissue-specific variations of AST gene expression.

  16. Evolutionary profiles from the QR factorization of multiple sequence alignments

    PubMed Central

    Sethi, Anurag; O'Donoghue, Patrick; Luthey-Schulten, Zaida

    2005-01-01

    We present an algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of the homologous group. The method, based on the multidimensional QR factorization of numerically encoded multiple sequence alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. We observe a general trend that these smaller, more evolutionarily balanced profiles have comparable and, in many cases, better performance in database searches than conventional profiles containing hundreds of sequences, constructed in an iterative and computationally intensive procedure. For more diverse families or superfamilies, with sequence identity <30%, structural alignments, based purely on the geometry of the protein structures, provide better alignments than pure sequence-based methods. Merging the structure and sequence information allows the construction of accurate profiles for distantly related groups. These structure-based profiles outperformed other sequence-based methods for finding distant homologs and were used to identify a putative class II cysteinyl-tRNA synthetase (CysRS) in several archaea that eluded previous annotation studies. Phylogenetic analysis showed the putative class II CysRSs to be a monophyletic group and homology modeling revealed a constellation of active site residues similar to that in the known class I CysRS. PMID:15741270

  17. Brief Report: Late-Onset Cryopyrin-Associated Periodic Syndrome Due to Myeloid-Restricted Somatic NLRP3 Mosaicism.

    PubMed

    Mensa-Vilaro, Anna; Teresa Bosque, María; Magri, Giuliana; Honda, Yoshitaka; Martínez-Banaclocha, Helios; Casorran-Berges, Marta; Sintes, Jordi; González-Roca, Eva; Ruiz-Ortiz, Estibaliz; Heike, Toshio; Martínez-Garcia, Juan J; Baroja-Mazo, Alberto; Cerutti, Andrea; Nishikomori, Ryuta; Yagüe, Jordi; Pelegrín, Pablo; Delgado-Beltran, Concha; Aróstegui, Juan I

    2016-12-01

    Gain-of-function NLRP3 mutations cause cryopyrin-associated periodic syndrome (CAPS), with gene mosaicism playing a relevant role in the pathogenesis. This study was undertaken to characterize the genetic cause underlying late-onset but otherwise typical CAPS. We studied a 64-year-old patient who presented with recurrent episodes of urticaria-like rash, fever, conjunctivitis, and oligoarthritis at age 56 years. DNA was extracted from both unfractionated blood and isolated leukocyte and CD34+ subpopulations. Genetic studies were performed using both the Sanger method of DNA sequencing and next-generation sequencing (NGS) methods. In vitro and ex vivo analyses were performed to determine the consequences that the presence of the variant have in the normal structure or function of the protein of the detected variant. NGS analyses revealed the novel p.Gln636Glu NLRP3 variant in unfractionated blood, with an allele frequency (18.4%) compatible with gene mosaicism. Sanger sequence chromatograms revealed a small peak corresponding to the variant allele. Amplicon-based deep sequencing revealed somatic NLRP3 mosaicism restricted to myeloid cells (31.8% in monocytes, 24.6% in neutrophils, and 11.2% in circulating CD34+ common myeloid progenitor cells) and its complete absence in lymphoid cells. Functional analyses confirmed the gain-of-function behavior of the gene variant and hyperactivity of the NLRP3 inflammasome in the patient. Treatment with anakinra resulted in good control of the disease. We identified the novel gain-of-function p.Gln636Glu NLRP3 mutation, which was detected as a somatic mutation restricted to myeloid cells, as the cause of late-onset but otherwise typical CAPS. Our results expand the diversity of CAPS toward milder phenotypes than previously reported, including those starting during adulthood. © 2016, American College of Rheumatology.

  18. Comparative analysis of complete orthologous centromeres from two subspecies of rice reveals rapid variation of centromere organization and structure.

    PubMed

    Wu, Jianzhong; Fujisawa, Masaki; Tian, Zhixi; Yamagata, Harumi; Kamiya, Kozue; Shibata, Michie; Hosokawa, Satomi; Ito, Yukiyo; Hamada, Masao; Katagiri, Satoshi; Kurita, Kanako; Yamamoto, Mayu; Kikuta, Ari; Machita, Kayo; Karasawa, Wataru; Kanamori, Hiroyuki; Namiki, Nobukazu; Mizuno, Hiroshi; Ma, Jianxin; Sasaki, Takuji; Matsumoto, Takashi

    2009-12-01

    Centromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. This function is conserved across species, but the DNA components that are involved in kinetochore formation differ greatly, even between closely related species. To shed light on the nature, evolutionary timing and evolutionary dynamics of rice centromeres, we decoded a 2.25-Mb DNA sequence covering the centromeric region of chromosome 8 of an indica rice variety, 'Kasalath' (Kas-Cen8). Analysis of repetitive sequences in Kas-Cen8 led to the identification of 222 long terminal repeat (LTR)-retrotransposon elements and 584 CentO satellite monomers, which account for 59.2% of the region. A comparison of the Kas-Cen8 sequence with that of japonica rice 'Nipponbare' (Nip-Cen8) revealed that about 66.8% of the Kas-Cen8 sequence was collinear with that of Nip-Cen8. Although the 27 putative genes are conserved between the two subspecies, only 55.4% of the total LTR-retrotransposon elements in 'Kasalath' had orthologs in 'Nipponbare', thus reflecting recent proliferation of a considerable number of LTR-retrotransposons since the divergence of two rice subspecies of indica and japonica within Oryza sativa. Comparative analysis of the subfamilies, time of insertion, and organization patterns of inserted LTR-retrotransposons between the two Cen8 regions revealed variations between 'Kasalath' and 'Nipponbare' in the preferential accumulation of CRR elements, and the expansion of CentO satellite repeats within the core domain of Cen8. Together, the results provide insights into the recent proliferation of LTR-retrotransposons, and the rapid expansion of CentO satellite repeats, underlying the dynamic variation and plasticity of plant centromeres.

  19. Metagenome Sequence Analysis of Filamentous Microbial Communities Obtained from Geochemically Distinct Geothermal Channels Reveals Specialization of Three Aquificales Lineages

    PubMed Central

    Takacs-Vesbach, Cristina; Inskeep, William P.; Jay, Zackary J.; Herrgard, Markus J.; Rusch, Douglas B.; Tringe, Susannah G.; Kozubal, Mark A.; Hamamura, Natsuko; Macur, Richard E.; Fouke, Bruce W.; Reysenbach, Anna-Louise; McDermott, Timothy R.; Jennings, Ryan deM.; Hengartner, Nicolas W.; Xie, Gary

    2013-01-01

    The Aquificales are thermophilic microorganisms that inhabit hydrothermal systems worldwide and are considered one of the earliest lineages of the domain Bacteria. We analyzed metagenome sequence obtained from six thermal “filamentous streamer” communities (∼40 Mbp per site), which targeted three different groups of Aquificales found in Yellowstone National Park (YNP). Unassembled metagenome sequence and PCR-amplified 16S rRNA gene libraries revealed that acidic, sulfidic sites were dominated by Hydrogenobaculum (Aquificaceae) populations, whereas the circum-neutral pH (6.5–7.8) sites containing dissolved sulfide were dominated by Sulfurihydrogenibium spp. (Hydrogenothermaceae). Thermocrinis (Aquificaceae) populations were found primarily in the circum-neutral sites with undetectable sulfide, and to a lesser extent in one sulfidic system at pH 8. Phylogenetic analysis of assembled sequence containing 16S rRNA genes as well as conserved protein-encoding genes revealed that the composition and function of these communities varied across geochemical conditions. Each Aquificales lineage contained genes for CO2 fixation by the reverse-TCA cycle, but only the Sulfurihydrogenibium populations perform citrate cleavage using ATP citrate lyase (Acl). The Aquificaceae populations use an alternative pathway catalyzed by two separate enzymes, citryl-CoA synthetase (Ccs), and citryl-CoA lyase (Ccl). All three Aquificales lineages contained evidence of aerobic respiration, albeit due to completely different types of heme Cu oxidases (subunit I) involved in oxygen reduction. The distribution of Aquificales populations and differences among functional genes involved in energy generation and electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, H2, O2) have resulted in niche specialization among members of the Aquificales. PMID:23755042

  20. Molecular cloning, sequence identification and tissue expression profile of three novel sheep (Ovis aries) genes - BCKDHA, NAGA and HEXA.

    PubMed

    Liu, G Y; Gao, S Z

    2009-01-01

    The complete coding sequences of three sheep genes- BCKDHA, NAGA and HEXA were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR), based on the conserved sequence information of the mouse or other mammals. The nucleotide sequences of these three genes revealed that the sheep BCKDHA gene encodes a protein of 313 amino acids which has high homology with the BCKDHA gene that encodes a protein of 447 amino acids that has high homology with the Branched chain keto acid dehydrogenase El, alpha polypeptide (BCKDHA) of five species chimpanzee (93%), human (96%), crab-eating macaque (93%), bovine (98%) and mouse (91%). The sheep NAGA gene encodes a protein of 411 amino acids that has high homology with the alpha-N-acetylgalactosaminidase (NAGA) of five species human (85%), bovine (94%), mouse (91%), rat (83%) and chicken (74%). The sheep HEXA gene encodes a protein of 529 amino acids that has high homology with the hexosaminidase A(HEXA) of five species bovine (98%), human (84%), Bornean orangután (84%), rat (80%) and mouse (81%). Finally these three novel sheep genes were assigned to GenelDs: 100145857, 100145858 and 100145856. The phylogenetic tree analysis revealed that the sheep BCKDHA, NAGA, and HEXA all have closer genetic relationships to the BCKDHA, NAGA, and HEXA of bovine. Tissue expression profile analysis was also carried out and results revealed that sheep BCKDHA, NAGA and HEXA genes were differentially expressed in tissues including muscle, heart, liver, fat, kidney, lung, small and large intestine. Our experiment is the first to establish the primary foundation for further research on these three sheep genes.

  1. Recovery of divergent avian bornaviruses from cases of proventricular dilatation disease: Identification of a candidate etiologic agent

    PubMed Central

    Kistler, Amy L; Gancz, Ady; Clubb, Susan; Skewes-Cox, Peter; Fischer, Kael; Sorber, Katherine; Chiu, Charles Y; Lublin, Avishai; Mechani, Sara; Farnoushi, Yigal; Greninger, Alexander; Wen, Christopher C; Karlene, Scott B; Ganem, Don; DeRisi, Joseph L

    2008-01-01

    Background Proventricular dilatation disease (PDD) is a fatal disorder threatening domesticated and wild psittacine birds worldwide. It is characterized by lymphoplasmacytic infiltration of the ganglia of the central and peripheral nervous system, leading to central nervous system disorders as well as disordered enteric motility and associated wasting. For almost 40 years, a viral etiology for PDD has been suspected, but to date no candidate etiologic agent has been reproducibly linked to the disease. Results Analysis of 2 PDD case-control series collected independently on different continents using a pan-viral microarray revealed a bornavirus hybridization signature in 62.5% of the PDD cases (5/8) and none of the controls (0/8). Ultra high throughput sequencing was utilized to recover the complete viral genome sequence from one of the virus-positive PDD cases. This revealed a bornavirus-like genome organization for this agent with a high degree of sequence divergence from all prior bornavirus isolates. We propose the name avian bornavirus (ABV) for this agent. Further specific ABV PCR analysis of an additional set of independently collected PDD cases and controls yielded a significant difference in ABV detection rate among PDD cases (71%, n = 7) compared to controls (0%, n = 14) (P = 0.01; Fisher's Exact Test). Partial sequence analysis of a total of 16 ABV isolates we have now recovered from these and an additional set of cases reveals at least 5 distinct ABV genetic subgroups. Conclusion These studies clearly demonstrate the existence of an avian reservoir of remarkably diverse bornaviruses and provide a compelling candidate in the search for an etiologic agent of PDD. PMID:18671869

  2. Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer

    PubMed Central

    D’Addabbo, Pietro; Caizzi, Ruggiero

    2016-01-01

    Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon’s co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon’s evolutionary dynamics and increases our understanding on the Tc1-mariner elements’ biology. PMID:27213270

  3. Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer.

    PubMed

    Palazzo, Antonio; Lovero, Domenica; D'Addabbo, Pietro; Caizzi, Ruggiero; Marsano, René Massimiliano

    2016-01-01

    Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon's co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon's evolutionary dynamics and increases our understanding on the Tc1-mariner elements' biology.

  4. The biological features and genetic diversity of novel fish rhabdovirus isolates in China.

    PubMed

    Fu, Xiaozhe; Lin, Qiang; Liang, Hongru; Liu, Lihui; Huang, Zhibin; Li, Ningqiu; Su, Jianguo

    2017-09-01

    The Rhabdoviridae is a diverse family of negative-sense single-stranded RNA viruses which infects mammals, birds, reptiles, fish, insects and plants. Herein, we reported the isolation and characterization of 6 novel viruses from diseased fish collected from China including SCRV-QY, SCRV-SS, SCRV-GM, CmRV-FS, MsRV-SS, OmbRV-JM. The typical clinical symptom of diseased fish was hemorrhaging. Efficient propagation of these isolates in a Chinese perch brain cell line was determined by means of observation of cytopathic effect, RT-PCR and electron microscopy. Sequence alignment and phylogenetic analysis of the complete G protein sequences revealed that these isolates were clustered into one monophyletic lineage belonging to the species Siniperca chuatsi rhabdovirus.

  5. Sequence Analysis of the Genome of Carnation (Dianthus caryophyllus L.)

    PubMed Central

    Yagi, Masafumi; Kosugi, Shunichi; Hirakawa, Hideki; Ohmiya, Akemi; Tanase, Koji; Harada, Taro; Kishimoto, Kyutaro; Nakayama, Masayoshi; Ichimura, Kazuo; Onozaki, Takashi; Yamaguchi, Hiroyasu; Sasaki, Nobuhiro; Miyahara, Taira; Nishizaki, Yuzo; Ozeki, Yoshihiro; Nakamura, Noriko; Suzuki, Takamasa; Tanaka, Yoshikazu; Sato, Shusei; Shirasawa, Kenta; Isobe, Sachiko; Miyamura, Yoshinori; Watanabe, Akiko; Nakayama, Shinobu; Kishida, Yoshie; Kohara, Mitsuyo; Tabata, Satoshi

    2014-01-01

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. ‘Francesco’ was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568 887 315 bp, consisting of 45 088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16 644 bp and 60 737 bp, respectively, and the longest scaffold was 1 287 144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at http://carnation.kazusa.or.jp. PMID:24344172

  6. EuroPineDB: a high-coverage web database for maritime pine transcriptome

    PubMed Central

    2011-01-01

    Background Pinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases. Description EuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided. Conclusions The EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and provides deeper knowledge on the maritime pine transcriptome. PMID:21762488

  7. Toward Understanding Phage:Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria

    PubMed Central

    Gilbert, Rosalind A.; Kelly, William J.; Altermann, Eric; Leahy, Sinead C.; Minchin, Catherine; Ouwerkerk, Diane; Klieve, Athol V.

    2017-01-01

    The rumen is known to harbor dense populations of bacteriophages (phages) predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome. PMID:29259581

  8. A proteome view of structural, functional, and taxonomic characteristics of major protein domain clusters.

    PubMed

    Sun, Chia-Tsen; Chiang, Austin W T; Hwang, Ming-Jing

    2017-10-27

    Proteome-scale bioinformatics research is increasingly conducted as the number of completely sequenced genomes increases, but analysis of protein domains (PDs) usually relies on similarity in their amino acid sequences and/or three-dimensional structures. Here, we present results from a bi-clustering analysis on presence/absence data for 6,580 unique PDs in 2,134 species with a sequenced genome, thus covering a complete set of proteins, for the three superkingdoms of life, Bacteria, Archaea, and Eukarya. Our analysis revealed eight distinctive PD clusters, which, following an analysis of enrichment of Gene Ontology functions and CATH classification of protein structures, were shown to exhibit structural and functional properties that are taxa-characteristic. For examples, the largest cluster is ubiquitous in all three superkingdoms, constituting a set of 1,472 persistent domains created early in evolution and retained in living organisms and characterized by basic cellular functions and ancient structural architectures, while an Archaea and Eukarya bi-superkingdom cluster suggests its PDs may have existed in the ancestor of the two superkingdoms, and others are single superkingdom- or taxa (e.g. Fungi)-specific. These results contribute to increase our appreciation of PD diversity and our knowledge of how PDs are used in species, yielding implications on species evolution.

  9. Phylogenomic relationship of feijoa (Acca sellowiana (O.Berg) Burret) with other Myrtaceae based on complete chloroplast genome sequences.

    PubMed

    Machado, Lilian de Oliveira; Vieira, Leila do Nascimento; Stefenon, Valdir Marcos; Oliveira Pedrosa, Fábio de; Souza, Emanuel Maltempi de; Guerra, Miguel Pedro; Nodari, Rubens Onofre

    2017-04-01

    Given their distribution, importance, and richness, Myrtaceae species comprise a model system for studying the evolution of tropical plant diversity. In addition, chloroplast (cp) genome sequencing is an efficient tool for phylogenetic relationship studies. Feijoa [Acca sellowiana (O. Berg) Burret; CN: pineapple-guava] is a Myrtaceae species that occurs naturally in southern Brazil and northern Uruguay. Feijoa is known for its exquisite perfume and flavorful fruits, pharmacological properties, ornamental value and increasing economic relevance. In the present work, we reported the complete cp genome of feijoa. The feijoa cp genome is a circular molecule of 159,370 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC 88,028 bp) and a Small Single Copy region (SSC 18,598 bp) separated by Inverted Repeat regions (IRs 26,372 bp). The genome structure, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. When compared to other cp genome sequences of Myrtaceae, feijoa showed closest relationship with pitanga (Eugenia uniflora L.). Furthermore, a comparison of pitanga synonymous (Ks) and nonsynonymous (Ka) substitution rates revealed extremely low values. Maximum Likelihood and Bayesian Inference analyses produced phylogenomic trees identical in topology. These trees supported monophyly of three Myrtoideae clades.

  10. The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species.

    PubMed

    Asaf, Sajjad; Waqas, Muhammad; Khan, Abdul L; Khan, Muhammad A; Kang, Sang-Mo; Imran, Qari M; Shahzad, Raheem; Bilal, Saqib; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Oryza minuta , a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysis of the composition and diversity of the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with a typical quadripartite structure and consisting of a pair of inverted repeats separated by small and large single copies, 139 representative genes, and 419 randomly distributed microsatellites. The genomic organization, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem and 20 palindromic repeats were detected in the O . minuta cp genome. Comparison of the complete O. minuta cp genome with another eleven Oryza species showed a high degree of sequence similarity and relatively high divergence of intergenic spacers. Phylogenetic analyses were conducted based on the complete genome sequence, 65 shared genes and matK gene showed same topologies and O. minuta forms a single clade with parental O. punctata . Thus, the complete O . minuta cp genome provides interesting insights and valuable information that can be used to identify related species and reconstruct its phylogeny.

  11. Detection of a New Luteovirus in Imported Nectarine Trees: A Case Study to Propose Adoption of Metagenomics in Post-Entry Quarantine.

    PubMed

    Bag, Sudeep; Al Rwahnih, Maher; Li, Ashley; Gonzalez, Asaul; Rowhani, Adib; Uyemoto, Jerry K; Sudarshana, Mysore R

    2015-06-01

    In spring 2013, 5-year-old nectarine (Prunus persica) trees, grafted on peach rootstock Nemaguard, were found stunted in a propagation block in California. These trees had been propagated from budwood of three nectarine cultivars imported from France and cleared through the post-entry quarantine procedure. Examination of the canopy failed to reveal any obvious symptoms. However, examination of the trunks, after stripping the bark, revealed extensive pitting on the woody cylinder. To investigate the etiological agent, double-stranded RNA was extracted from bark scrapings from the scion and rootstock portions, and a cDNA library was prepared and sequenced using the Illumina platform. BLAST analysis of the contigs generated by the de novo assembly of sequence reads indicated the presence of a novel luteovirus. Complete sequence of the viral genome was determined by sequencing of three overlapping cDNA clones generated by reverse transcription-polymerase chain reaction (RT-PCR) and by rapid amplification of the 5'- and 3'-termini. The virus genome was comprised of 4,991 nucleotides with a gene organization similar to members of the genus Luteovirus (family Luteoviridae). The presence of the virus, tentatively named Nectarine stem pitting-associated virus, was confirmed in symptomatic trees by RT-PCR. Discovery of a new virus in nectarine trees after post-entry quarantine indicates the importance of including (i) metagenomic analysis by next-generation sequencing approach as an essential tool to assess the plant health status, and (ii) examination of the woody cylinders as part of the indexing process.

  12. Circulation of Endemic Type 2 Vaccine-Derived Poliovirus in Egypt from 1983 to 1993

    PubMed Central

    Yang, Chen-Fu; Naguib, Tary; Yang, Su-Ju; Nasr, Eman; Jorba, Jaume; Ahmed, Nahed; Campagnoli, Ray; van der Avoort, Harrie; Shimizu, Hiroyuki; Yoneyama, Tetsuo; Miyamura, Tatsuo; Pallansch, Mark; Kew, Olen

    2003-01-01

    From 1988 to 1993, 30 cases of poliomyelitis associated with poliovirus type 2 were found in seven governorates of Egypt. Because many of the cases were geographically and temporally clustered and because the case isolates differed antigenically from the vaccine strain, it was initially assumed that the cases signaled the continued circulation of wild type 2 poliovirus. However, comparison of sequences encoding the major capsid protein, VP1 (903 nucleotides), revealed that the isolates were related (93 to 97% nucleotide sequence identity) to the Sabin type 2 oral poliovirus vaccine (OPV) strain and unrelated (<82% nucleotide sequence identity) to the wild type 2 polioviruses previously indigenous to Egypt (last known isolate: 1979) or to any contemporary wild type 2 polioviruses found elsewhere. The rate and pattern of VP1 divergence among the circulating vaccine-derived poliovirus (cVDPV) isolates suggested that all lineages were derived from a single OPV infection that occurred around 1983 and that progeny from the initiating infection circulated for approximately a decade within Egypt along several independent chains of transmission. Complete genomic sequences of an early (1988) and a late (1993) cVDPV isolate revealed that their 5′ untranslated region (5′ UTR) and noncapsid- 3′ UTR sequences were derived from other species C enteroviruses. Circulation of type 2 cVDPVs occurred at a time of low OPV coverage in the affected communities and ceased when OPV coverage rates increased. The potential for cVDPVs to circulate in populations with low immunity to poliovirus has important implications for current and future strategies to eradicate polio worldwide. PMID:12857906

  13. Genetic diversity of Grapevine virus A in Washington and California vineyards.

    PubMed

    Alabi, Olufemi J; Al Rwahnih, Maher; Mekuria, Tefera A; Naidu, Rayapati A

    2014-05-01

    Grapevine virus A (GVA; genus Vitivirus, family Betaflexiviridae) has been implicated with the Kober stem grooving disorder of the rugose wood disease complex. In this study, 26 isolates of GVA recovered from wine grape (Vitis vinifera) cultivars from California and Washington were analyzed for their genetic diversity. An analysis of a portion of the RNA-dependent RNA polymerase (RdRp) and complete coat protein (CP) sequences revealed intra- and inter-isolate sequence diversity. Our results indicated that both RdRp and CP are under strong negative selection based on the normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site. A global phylogenetic analysis of CP sequences revealed segregation of virus isolates into four major clades with no geographic clustering. In contrast, the RdRp-based phylogenetic tree indicated segregation of GVA isolates from California and Washington into six clades, independent of geographic origin or cultivar. Phylogenetic network coupled with recombination analyses showed putative recombination events in both RdRp and CP sequence data sets, with more of these events located in the CP sequence. The preponderance of divergent variants of GVA co-replicating within individual grapevines could increase viral genotypic complexity with implications for phylogenetic analysis and evolutionary history of the virus. The knowledge of genetic diversity of GVA generated in this study will provide a foundation for elucidating the epidemiological characteristics of virus populations at different scales and implementing appropriate management strategies for minimizing the spread of genetic variants of the virus by vectors and via planting materials supplied to nurseries and grape growers.

  14. Circulation of endemic type 2 vaccine-derived poliovirus in Egypt from 1983 to 1993.

    PubMed

    Yang, Chen-Fu; Naguib, Tary; Yang, Su-Ju; Nasr, Eman; Jorba, Jaume; Ahmed, Nahed; Campagnoli, Ray; van der Avoort, Harrie; Shimizu, Hiroyuki; Yoneyama, Tetsuo; Miyamura, Tatsuo; Pallansch, Mark; Kew, Olen

    2003-08-01

    From 1988 to 1993, 30 cases of poliomyelitis associated with poliovirus type 2 were found in seven governorates of Egypt. Because many of the cases were geographically and temporally clustered and because the case isolates differed antigenically from the vaccine strain, it was initially assumed that the cases signaled the continued circulation of wild type 2 poliovirus. However, comparison of sequences encoding the major capsid protein, VP1 (903 nucleotides), revealed that the isolates were related (93 to 97% nucleotide sequence identity) to the Sabin type 2 oral poliovirus vaccine (OPV) strain and unrelated (<82% nucleotide sequence identity) to the wild type 2 polioviruses previously indigenous to Egypt (last known isolate: 1979) or to any contemporary wild type 2 polioviruses found elsewhere. The rate and pattern of VP1 divergence among the circulating vaccine-derived poliovirus (cVDPV) isolates suggested that all lineages were derived from a single OPV infection that occurred around 1983 and that progeny from the initiating infection circulated for approximately a decade within Egypt along several independent chains of transmission. Complete genomic sequences of an early (1988) and a late (1993) cVDPV isolate revealed that their 5' untranslated region (5' UTR) and noncapsid- 3' UTR sequences were derived from other species C enteroviruses. Circulation of type 2 cVDPVs occurred at a time of low OPV coverage in the affected communities and ceased when OPV coverage rates increased. The potential for cVDPVs to circulate in populations with low immunity to poliovirus has important implications for current and future strategies to eradicate polio worldwide.

  15. The complete mitochondrial genome of dhole Cuon alpinus: phylogenetic analysis and dating evolutionary divergence within Canidae.

    PubMed

    Zhang, Honghai; Chen, Lei

    2011-03-01

    The dhole (Cuon alpinus) is the only existent species in the genus Cuon (Carnivora: Canidae). In the present study, the complete mitochondrial genome of the dhole was sequenced. The total length is 16672 base pairs which is the shortest in Canidae. Sequence analysis revealed that most mitochondrial genomic functional regions were highly consistent among canid animals except the CSB domain of the control region. The difference in length among the Canidae mitochondrial genome sequences is mainly due to the number of short segments of tandem repeated in the CSB domain. Phylogenetic analysis was progressed based on the concatenated data set of 14 mitochondrial genes of 8 canid animals by using maximum parsimony (MP), maximum likelihood (ML) and Bayesian (BI) inference methods. The genera Vulpes and Nyctereutes formed a sister group and split first within Canidae, followed by that in the Cuon. The divergence in the genus Canis was the latest. The divarication of domestic dogs after that of the Canis lupus laniger is completely supported by all the three topologies. Pairwise sequence divergence data of different mitochondrial genes among canid animals were also determined. Except for the synonymous substitutions in protein-coding genes, the control region exhibits the highest sequence divergences. The synonymous rates are approximately two to six times higher than those of the non-synonymous sites except for a slightly higher rate in the non-synonymous substitution between Cuon alpinus and Vulpes vulpes. 16S rRNA genes have a slightly faster sequence divergence than 12S rRNA and tRNA genes. Based on nucleotide substitutions of tRNA genes and rRNA genes, the times since divergence between dhole and other canid animals, and between domestic dogs and three subspecies of wolves were evaluated. The result indicates that Vulpes and Nyctereutes have a close phylogenetic relationship and the divergence of Nyctereutes is a little earlier. The Tibetan wolf may be an archaic pedigree within wolf subspecies. The genetic distance between wolves and domestic dogs is less than that among different subspecies of wolves. The domestication of dogs was about 1.56-1.92 million years ago or even earlier.

  16. Complete genome sequence of ‘Candidatus Liberibacter africanus’

    USDA-ARS?s Scientific Manuscript database

    The complete genome sequence of ‘Candidatus Liberibacter africanus’ (Laf), strain ptsapsy, was obtained by an Illumina HiSeq 2000. The Laf genome comprises 1,192,232 nucleotides, 34.5% GC content, 1,141 predicted coding sequences, 44 tRNAs, 3 complete copies of ribosomal RNA genes (16S, 23S and 5S) ...

  17. Complete genome sequence of salmonella enterica subsp. enterica Serovar Thompson Strain RM6836

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica subsp. enterica serovar Thompson (S. Thompson) strain RM6836 was isolated from lettuce in 2002. We report the complete sequence and annotation of the genome of S. Thompson strain RM6836. This is the first reported complete genome sequence for S. Thompson and will provide a point ...

  18. Complete genome sequence of the clinical Campylobacter coli isolate 15-537360

    USDA-ARS?s Scientific Manuscript database

    Campylobacter coli strain 15-537360 was originally isolated from a 42 year-old patient with gastroenteritis. Here we report its complete genome sequence, which comprises a 1.7 Mbp chromosome and a 29 kbp conjugative cryptic plasmid. This is the first complete genome sequence of a clinical isolate of...

  19. The first genome sequences of human bocaviruses from Vietnam

    PubMed Central

    Thanh, Tran Tan; Van, Hoang Minh Tu; Hong, Nguyen Thi Thu; Nhu, Le Nguyen Truc; Anh, Nguyen To; Tuan, Ha Manh; Hien, Ho Van; Tuong, Nguyen Manh; Kien, Trinh Trung; Khanh, Truong Huu; Nhan, Le Nguyen Thanh; Hung, Nguyen Thanh; Chau, Nguyen Van Vinh; Thwaites, Guy; van Doorn, H. Rogier; Tan, Le Van

    2017-01-01

    As part of an ongoing effort to generate complete genome sequences of hand, foot and mouth disease-causing enteroviruses directly from clinical specimens, two complete coding sequences and two partial genomic sequences of human bocavirus 1 (n=3) and 2 (n=1) were co-amplified and sequenced, representing the first genome sequences of human bocaviruses from Vietnam. The sequences may aid future study aiming at understanding the evolution of the virus. PMID:28090592

  20. The complete mitochondrial genome of threatened chocolate mahseer (Neolissochilus hexagonolepis) and its phylogeny.

    PubMed

    Sahoo, Prabhati Kumari; Goel, Chirag; Kumar, Rohit; Dhama, Nisha; Ali, Shahnawaz; Sarma, Dandadhar; Nanda, Prasanta; Barat, Ashoktaru

    2015-10-10

    The chocolate mahseer (Neolissochilus hexagonolepis) is an important food and game fish of North Eastern India. To study the phylogenetic status we sequenced the complete mitochondrial genome of N. hexagonolepis. The mitogenome is 16,563 bp in length and composed of 13 protein coding genes, 22 tRNAs, 2 rRNAs and one putative control region. The overall base composition was A 31.8%, T 25.0%, G 15.8%, C 27.4% and A+T content 56.9%, G+C content 43.1%. The phylogenetic analysis using the complete mitochondrial genome revealed that the chocolate mahseer belonged to same clade of mahseer group of fishes but different from genera Barbus and Acrossocheilus. The present study will be helpful for the evolution and conservation genetic studies of N. hexagonolepis. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Complete nucleotide sequence of a novel Hibiscus-infecting Cilevirus from Florida and its relationship with closely associated Cileviruses

    USDA-ARS?s Scientific Manuscript database

    The complete nucleotide sequence of a recently discovered Florida (FL) isolate of Hibiscus infecting Cilevirus (HiCV) was determined by Sanger sequencing. The movement- and coat- protein gene sequences of the HiCV-FL isolate are more divergent than other genes of the previously sequenced HiCV-HA (Ha...

  2. Complete genome sequence of Southern tomato virus naturally infecting tomatoes in Bangladesh using small RNA deep sequencing

    USDA-ARS?s Scientific Manuscript database

    The complete genome sequence of a Southern tomato virus (STV) isolate on tomato plants in a seed production field in Bangladesh was obtained for the first time using next generation sequencing. The identified isolate STV_BD-13 shares high degree of sequence identity (99%) with several known STV isol...

  3. Complete genome sequence of southern tomato virus identified from China using next generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Complete genome sequence of a double-stranded RNA (dsRNA) virus, southern tomato virus (STV), on tomatoes in China, was elucidated using small RNAs deep sequencing. The identified STV_CN12 shares 99% sequence identity to other isolates from Mexico, France, Spain, and U.S. This is the first report ...

  4. Whole genome sequence analysis of BT-474 using complete Genomics' standard and long fragment read technologies.

    PubMed

    Ciotlos, Serban; Mao, Qing; Zhang, Rebecca Yu; Li, Zhenyu; Chin, Robert; Gulbahce, Natali; Liu, Sophie Jia; Drmanac, Radoje; Peters, Brock A

    2016-01-01

    The cell line BT-474 is a popular cell line for studying the biology of cancer and developing novel drugs. However, there is no complete, published genome sequence for this highly utilized scientific resource. In this study we sought to provide a comprehensive and useful data set for the scientific community by generating a whole genome sequence for BT-474. Five μg of genomic DNA, isolated from an early passage of the BT-474 cell line, was used to generate a whole genome sequence (114X coverage) using Complete Genomics' standard sequencing process. To provide additional variant phasing and structural variation data we also processed and analyzed two separate libraries of 5 and 6 individual cells to depths of 99X and 87X, respectively, using Complete Genomics' Long Fragment Read (LFR) technology. BT-474 is a highly aneuploid cell line with an extremely complex genome sequence. This ~300X total coverage genome sequence provides a more complete understanding of this highly utilized cell line at the genomic level.

  5. Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect.

    PubMed

    Thuan, Nguyen Huy; Dhakal, Dipesh; Pokhrel, Anaya Raj; Chu, Luan Luong; Van Pham, Thi Thuy; Shrestha, Anil; Sohng, Jae Kyung

    2018-05-01

    Streptomyces peucetius ATCC 27952 produces two major anthracyclines, doxorubicin (DXR) and daunorubicin (DNR), which are potent chemotherapeutic agents for the treatment of several cancers. In order to gain detailed insight on genetics and biochemistry of the strain, the complete genome was determined and analyzed. The result showed that its complete sequence contains 7187 protein coding genes in a total of 8,023,114 bp, whereas 87% of the genome contributed to the protein coding region. The genomic sequence included 18 rRNA, 66 tRNAs, and 3 non-coding RNAs. In silico studies predicted ~ 68 biosynthetic gene clusters (BCGs) encoding diverse classes of secondary metabolites, including non-ribosomal polyketide synthase (NRPS), polyketide synthase (PKS I, II, and III), terpenes, and others. Detailed analysis of the genome sequence revealed versatile biocatalytic enzymes such as cytochrome P450 (CYP), electron transfer systems (ETS) genes, methyltransferase (MT), glycosyltransferase (GT). In addition, numerous functional genes (transporter gene, SOD, etc.) and regulatory genes (afsR-sp, metK-sp, etc.) involved in the regulation of secondary metabolites were found. This minireview summarizes the genome-based genome mining (GM) of diverse BCGs and genome exploration (GE) of versatile biocatalytic enzymes, and other enzymes involved in maintenance and regulation of metabolism of S. peucetius. The detailed analysis of genome sequence provides critically important knowledge useful in the bioengineering of the strain or harboring catalytically efficient enzymes for biotechnological applications.

  6. DNA repair in Chromobacterium violaceum.

    PubMed

    Duarte, Fábio Teixeira; Carvalho, Fabíola Marques de; Bezerra e Silva, Uaska; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella; Batistuzzo de Medeiros, Silvia Regina

    2004-03-31

    Chromobacterium violaceum is a Gram-negative beta-proteobacterium that inhabits a variety of ecosystems in tropical and subtropical regions, including the water and banks of the Negro River in the Brazilian Amazon. This bacterium has been the subject of extensive study over the last three decades, due to its biotechnological properties, including the characteristic violacein pigment, which has antimicrobial and anti-tumoral activities. C. violaceum promotes the solubilization of gold in a mercury-free process, and has been used in the synthesis of homopolyesters suitable for the production of biodegradable polymers. The complete genome sequence of this organism has been completed by the Brazilian National Genome Project Consortium. The aim of our group was to study the DNA repair genes in this organism, due to their importance in the maintenance of genomic integrity. We identified DNA repair genes involved in different pathways in C. violaceum through a similarity search against known sequences deposited in databases. The phylogenetic analyses were done using programs of the PHILYP package. This analysis revealed various metabolic pathways, including photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, recombinational repair, and the SOS system. The similarity between the C. violaceum sequences and those of Neisserie miningitidis and Ralstonia solanacearum was greater than that between the C. violaceum and Escherichia coli sequences. The peculiarities found in the C. violaceum genome were the absence of LexA, some horizontal transfer events and a large number of repair genes involved with alkyl and oxidative DNA damage.

  7. First Report of a Fatal Case Associated with EV-D68 Infection in Hong Kong and Emergence of an Interclade Recombinant in China Revealed by Genome Analysis.

    PubMed

    Yip, Cyril C Y; Lo, Janice Y C; Sridhar, Siddharth; Lung, David C; Luk, Shik; Chan, Kwok-Hung; Chan, Jasper F W; Cheng, Vincent C C; Woo, Patrick C Y; Yuen, Kwok-Yung; Lau, Susanna K P

    2017-05-16

    A fatal case associated with enterovirus D68 (EV-D68) infection affecting a 10-year-old boy was reported in Hong Kong in 2014. To examine if a new strain has emerged in Hong Kong, we sequenced the partial genome of the EV-D68 strain identified from the fatal case and the complete VP1, and partial 5'UTR and 2C sequences of nine additional EV-D68 strains isolated from patients in Hong Kong. Sequence analysis indicated that a cluster of strains including the previously recognized A2 strains should belong to a separate clade, clade D, which is further divided into subclades D1 and D2. Among the 10 EV-D68 strains, 7 (including the fatal case) belonged to the previously described, newly emerged subclade B3, 2 belonged to subclade B1, and 1 belonged to subclade D1. Three EV-D68 strains, each from subclades B1, B3, and D1, were selected for complete genome sequencing and recombination analysis. While no evidence of recombination was noted among local strains, interclade recombination was identified in subclade D2 strains detected in mainland China in 2008 with VP2 acquired from clade A. This study supports the reclassification of subclade A2 into clade D1, and demonstrates interclade recombination between clades A and D2 in EV-D68 strains from China.

  8. Hunting the Extinct Steppe Bison (Bison priscus) Mitochondrial Genome in the Trois-Frères Paleolithic Painted Cave

    PubMed Central

    Marsolier-Kergoat, Marie-Claude; Palacio, Pauline; Berthonaud, Véronique; Maksud, Frédéric; Stafford, Thomas; Bégouën, Robert; Elalouf, Jean-Marc

    2015-01-01

    Despite the abundance of fossil remains for the extinct steppe bison (Bison priscus), an animal that was painted and engraved in numerous European Paleolithic caves, a complete mitochondrial genome sequence has never been obtained for this species. In the present study we collected bone samples from a sector of the Trois-Frères Paleolithic cave (Ariège, France) that formerly functioned as a pitfall and was sealed before the end of the Pleistocene. Screening the DNA content of the samples collected from the ground surface revealed their contamination by Bos DNA. However, a 19,000-year-old rib collected on a rock apart the pathway delineated for modern visitors was devoid of such contaminants and reproducibly yielded Bison priscus DNA. High-throughput shotgun sequencing combined with conventional PCR analysis of the rib DNA extract enabled to reconstruct a complete mitochondrial genome sequence of 16,318 bp for the extinct steppe bison with a 10.4-fold coverage. Phylogenetic analyses robustly established the position of the Bison priscus mitochondrial genome as basal to the clade delineated by the genomes of the modern American Bison bison. The extinct steppe bison sequence, which exhibits 93 specific polymorphisms as compared to the published Bison bison mitochondrial genomes, provides an additional resource for the study of Bovinae specimens. Moreover this study of ancient DNA delineates a new research pathway for the analysis of the Magdalenian Trois-Frères cave. PMID:26083419

  9. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA.

    PubMed

    Medina, M; Collins, A G; Silberman, J D; Sogin, M L

    2001-08-14

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of a monophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.

  10. Hunting the Extinct Steppe Bison (Bison priscus) Mitochondrial Genome in the Trois-Frères Paleolithic Painted Cave.

    PubMed

    Marsolier-Kergoat, Marie-Claude; Palacio, Pauline; Berthonaud, Véronique; Maksud, Frédéric; Stafford, Thomas; Bégouën, Robert; Elalouf, Jean-Marc

    2015-01-01

    Despite the abundance of fossil remains for the extinct steppe bison (Bison priscus), an animal that was painted and engraved in numerous European Paleolithic caves, a complete mitochondrial genome sequence has never been obtained for this species. In the present study we collected bone samples from a sector of the Trois-Frères Paleolithic cave (Ariège, France) that formerly functioned as a pitfall and was sealed before the end of the Pleistocene. Screening the DNA content of the samples collected from the ground surface revealed their contamination by Bos DNA. However, a 19,000-year-old rib collected on a rock apart the pathway delineated for modern visitors was devoid of such contaminants and reproducibly yielded Bison priscus DNA. High-throughput shotgun sequencing combined with conventional PCR analysis of the rib DNA extract enabled to reconstruct a complete mitochondrial genome sequence of 16,318 bp for the extinct steppe bison with a 10.4-fold coverage. Phylogenetic analyses robustly established the position of the Bison priscus mitochondrial genome as basal to the clade delineated by the genomes of the modern American Bison bison. The extinct steppe bison sequence, which exhibits 93 specific polymorphisms as compared to the published Bison bison mitochondrial genomes, provides an additional resource for the study of Bovinae specimens. Moreover this study of ancient DNA delineates a new research pathway for the analysis of the Magdalenian Trois-Frères cave.

  11. The complete genome sequencing of Prevotella intermedia strain OMA14 and a subsequent fine-scale, intra-species genomic comparison reveal an unusual amplification of conjugative and mobile transposons and identify a novel Prevotella-lineage-specific repeat.

    PubMed

    Naito, Mariko; Ogura, Yoshitoshi; Itoh, Takehiko; Shoji, Mikio; Okamoto, Masaaki; Hayashi, Tetsuya; Nakayama, Koji

    2016-02-01

    Prevotella intermedia is a pathogenic bacterium involved in periodontal diseases. Here, we present the complete genome sequence of a clinical strain, OMA14, of this bacterium along with the results of comparative genome analysis with strain 17 of the same species whose genome has also been sequenced, but not fully analysed yet. The genomes of both strains consist of two circular chromosomes: the larger chromosomes are similar in size and exhibit a high overall linearity of gene organizations, whereas the smaller chromosomes show a significant size variation and have undergone remarkable genome rearrangements. Unique features of the Pre. intermedia genomes are the presence of a remarkable number of essential genes on the second chromosomes and the abundance of conjugative and mobilizable transposons (CTns and MTns). The CTns/MTns are particularly abundant in the second chromosomes, involved in its extensive genome rearrangement, and have introduced a number of strain-specific genes into each strain. We also found a novel 188-bp repeat sequence that has been highly amplified in Pre. intermedia and are specifically distributed among the Pre. intermedia-related species. These findings expand our understanding of the genetic features of Pre. intermedia and the roles of CTns and MTns in the evolution of bacteria. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  12. Analysis of the complete mitochondrial genome of the Zhedong White goose and characterization of NUMTs: Reveal domestication history of goose in China and Euro.

    PubMed

    Ren, Ting; Liang, Shiri; Zhao, Ayong; He, Ke

    2016-02-10

    To understand the phyletic evolution of geese, the complete mitogenome of the Zhedong goose was sequenced for the first time. It is composed of 37 genes and 1 control region, and the structure and arrangement of all genes sequenced are identical to those of other goose breeds. We confirmed the accuracy of the mitogenome sequence through RT-PCR and found numts from amplification in genomic DNA. Comparisons of the phylogenetic trees and sequences of geese that were suggested a clade of Chinese geese, except the Yili goose, were classified in the Euro clade. Several breed-specific mutations and Chinese breed-specific mutations were found. Our results suggest that Chinese geese evolved from the swan goose, splitting from their common ancestors at different times, which was consistent with studies before. Furthermore, numts in most genes of Zhedong goose clustered with European geese in the phylogenetic tree, suggesting that the haplotypes in the Euro clade might be more ancient. However, the mitogenome of the swan goose shows distinctive evolutionary positions in some genes, which suggest its unclear relationship with Chinese geese and European geese. The current study added to the understanding of the evolution of geese and provided evidence that the typing of numts is an encouraging way for the evolutionary study of geese and the mitochondrial genomes of geese deserve further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, Monica; Collins, Allen G.; Silberman, Jeffrey

    2001-06-21

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combinedmore » data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of amonophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny.« less

  14. Physics and evolution of thermophilic adaptation.

    PubMed

    Berezovsky, Igor N; Shakhnovich, Eugene I

    2005-09-06

    Analysis of structures and sequences of several hyperthermostable proteins from various sources reveals two major physical mechanisms of their thermostabilization. The first mechanism is "structure-based," whereby some hyperthermostable proteins are significantly more compact than their mesophilic homologues, while no particular interaction type appears to cause stabilization; rather, a sheer number of interactions is responsible for thermostability. Other hyperthermostable proteins employ an alternative, "sequence-based" mechanism of their thermal stabilization. They do not show pronounced structural differences from mesophilic homologues. Rather, a small number of apparently strong interactions is responsible for high thermal stability of these proteins. High-throughput comparative analysis of structures and complete genomes of several hyperthermophilic archaea and bacteria revealed that organisms develop diverse strategies of thermophilic adaptation by using, to a varying degree, two fundamental physical mechanisms of thermostability. The choice of a particular strategy depends on the evolutionary history of an organism. Proteins from organisms that originated in an extreme environment, such as hyperthermophilic archaea (Pyrococcus furiosus), are significantly more compact and more hydrophobic than their mesophilic counterparts. Alternatively, organisms that evolved as mesophiles but later recolonized a hot environment (Thermotoga maritima) relied in their evolutionary strategy of thermophilic adaptation on "sequence-based" mechanism of thermostability. We propose an evolutionary explanation of these differences based on physical concepts of protein designability.

  15. The Complete Sequence of a Human Parainfluenzavirus 4 Genome

    PubMed Central

    Yea, Carmen; Cheung, Rose; Collins, Carol; Adachi, Dena; Nishikawa, John; Tellier, Raymond

    2009-01-01

    Although the human parainfluenza virus 4 (HPIV4) has been known for a long time, its genome, alone among the human paramyxoviruses, has not been completely sequenced to date. In this study we obtained the first complete genomic sequence of HPIV4 from a clinical isolate named SKPIV4 obtained at the Hospital for Sick Children in Toronto (Ontario, Canada). The coding regions for the N, P/V, M, F and HN proteins show very high identities (95% to 97%) with previously available partial sequences for HPIV4B. The sequence for the L protein and the non-coding regions represent new information. A surprising feature of the genome is its length, more than 17 kb, making it the longest genome within the genus Rubulavirus, although the length is well within the known range of 15 kb to 19 kb for the subfamily Paramyxovirinae. The availability of a complete genomic sequence will facilitate investigations on a respiratory virus that is still not completely characterized. PMID:21994536

  16. Complete genome sequence of probiotic Bacillus coagulans HM-08: A potential lactic acid producer.

    PubMed

    Yao, Guoqiang; Gao, Pengfei; Zhang, Wenyi

    2016-06-20

    Bacillus coagulans HM-08 is a commercialized probiotic strain in China. Its genome contains a 3.62Mb circular chromosome with an average GC content of 46.3%. In silico analysis revealed the presence of one xyl operon as well as several other genes that are correlated to xylose utilization. The genetic information provided here may help to expand its future biotechnology potential in lactic acid production. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Complete genome sequence of a novel H9N2 subtype influenza virus FJG9 strain in china reveals a natural reassortant event

    USDA-ARS?s Scientific Manuscript database

    A Chicken/FJ/G9/09 (FJ/G9) is an H9N2 subtype strain of avian influenza virus (H9N2 AIV) strain causing high morbidity, that was isolated from broilers in Fujian province, China, in 2009. The FJ/G9 has been used as the vaccine strain against H9N2 AIV infection in Fujian Province of China. Here, we r...

  18. Molecular Genetics of Mycobacteriophages

    PubMed Central

    HATFULL, GRAHAM F.

    2014-01-01

    Mycobacteriophages have provided numerous essential tools for mycobacterial genetics, including delivery systems for transposons, reporter genes, and allelic exchange substrates, and components for plasmid vectors and mutagenesis. Their genetically diverse genomes also reveal insights into the broader nature of the phage population and the evolutionary mechanisms that give rise to it. The substantial advances in our understanding of the biology of mycobacteriophages including a large collection of completely sequenced genomes indicates a rich potential for further contributions in tuberculosis genetics and beyond. PMID:25328854

  19. Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: A somatic view of the germline

    PubMed Central

    Duret, Laurent; Cohen, Jean; Jubin, Claire; Dessen, Philippe; Goût, Jean-François; Mousset, Sylvain; Aury, Jean-Marc; Jaillon, Olivier; Noël, Benjamin; Arnaiz, Olivier; Bétermier, Mireille; Wincker, Patrick; Meyer, Eric; Sperling, Linda

    2008-01-01

    Ciliates are the only unicellular eukaryotes known to separate germinal and somatic functions. Diploid but silent micronuclei transmit the genetic information to the next sexual generation. Polyploid macronuclei express the genetic information from a streamlined version of the genome but are replaced at each sexual generation. The macronuclear genome of Paramecium tetraurelia was recently sequenced by a shotgun approach, providing access to the gene repertoire. The 72-Mb assembly represents a consensus sequence for the somatic DNA, which is produced after sexual events by reproducible rearrangements of the zygotic genome involving elimination of repeated sequences, precise excision of unique-copy internal eliminated sequences (IES), and amplification of the cellular genes to high copy number. We report use of the shotgun sequencing data (>106 reads representing 13× coverage of a completely homozygous clone) to evaluate variability in the somatic DNA produced by these developmental genome rearrangements. Although DNA amplification appears uniform, both of the DNA elimination processes produce sequence heterogeneity. The variability that arises from IES excision allowed identification of hundreds of putative new IESs, compared to 42 that were previously known, and revealed cases of erroneous excision of segments of coding sequences. We demonstrate that IESs in coding regions are under selective pressure to introduce premature termination of translation in case of excision failure. PMID:18256234

  20. Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences.

    PubMed

    Chen, Zhuo; Xu, Shixia; Zhou, Kaiya; Yang, Guang

    2011-10-27

    A diversity of hypotheses have been proposed based on both morphological and molecular data to reveal phylogenetic relationships within the order Cetacea (dolphins, porpoises, and whales), and great progress has been made in the past two decades. However, there is still some controversy concerning relationships among certain cetacean taxa such as river dolphins and delphinoid species, which needs to be further addressed with more markers in an effort to address unresolved portions of the phylogeny. An analysis of additional SINE insertions and SINE-flanking sequences supported the monophyly of the order Cetacea as well as Odontocete, Delphinoidea (Delphinidae + Phocoenidae + Mondontidae), and Delphinidae. A sister relationship between Delphinidae and Phocoenidae + Mondontidae was supported, and members of classical river dolphins and the genera Tursiops and Stenella were found to be paraphyletic. Estimates of divergence times revealed rapid divergences of basal Odontocete lineages in the Oligocene and Early Miocene, and a recent rapid diversification of Delphinidae in the Middle-Late Miocene and Pliocene within a narrow time frame. Several novel SINEs were found to differentiate Delphinidae from the other two families (Monodontidae and Phocoenidae), whereas the sister grouping of the latter two families with exclusion of Delphinidae was further revealed using the SINE-flanking sequences. Interestingly, some anomalous PCR amplification patterns of SINE insertions were detected, which can be explained as the result of potential ancestral SINE polymorphisms and incomplete lineage sorting. Although a few loci were potentially anomalous, this study demonstrated that the SINE-based approach is a powerful tool in phylogenetic studies. Identifying additional SINE elements that resolve the relationships in the superfamily Delphinoidea and family Delphinidae will be important steps forward in completely resolving cetacean phylogenetic relationships in the future.

  1. Whale phylogeny and rapid radiation events revealed using novel retroposed elements and their flanking sequences

    PubMed Central

    2011-01-01

    Background A diversity of hypotheses have been proposed based on both morphological and molecular data to reveal phylogenetic relationships within the order Cetacea (dolphins, porpoises, and whales), and great progress has been made in the past two decades. However, there is still some controversy concerning relationships among certain cetacean taxa such as river dolphins and delphinoid species, which needs to be further addressed with more markers in an effort to address unresolved portions of the phylogeny. Results An analysis of additional SINE insertions and SINE-flanking sequences supported the monophyly of the order Cetacea as well as Odontocete, Delphinoidea (Delphinidae + Phocoenidae + Mondontidae), and Delphinidae. A sister relationship between Delphinidae and Phocoenidae + Mondontidae was supported, and members of classical river dolphins and the genera Tursiops and Stenella were found to be paraphyletic. Estimates of divergence times revealed rapid divergences of basal Odontocete lineages in the Oligocene and Early Miocene, and a recent rapid diversification of Delphinidae in the Middle-Late Miocene and Pliocene within a narrow time frame. Conclusions Several novel SINEs were found to differentiate Delphinidae from the other two families (Monodontidae and Phocoenidae), whereas the sister grouping of the latter two families with exclusion of Delphinidae was further revealed using the SINE-flanking sequences. Interestingly, some anomalous PCR amplification patterns of SINE insertions were detected, which can be explained as the result of potential ancestral SINE polymorphisms and incomplete lineage sorting. Although a few loci were potentially anomalous, this study demonstrated that the SINE-based approach is a powerful tool in phylogenetic studies. Identifying additional SINE elements that resolve the relationships in the superfamily Delphinoidea and family Delphinidae will be important steps forward in completely resolving cetacean phylogenetic relationships in the future. PMID:22029548

  2. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics.

    PubMed

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-08-01

    RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity ([Formula: see text] quartic time). Breaking this barrier, we introduce the novel Sankoff-style algorithm 'sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)', which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff's original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. © The Author 2015. Published by Oxford University Press.

  3. The complete CDS of the prion protein (PRNP) gene of African lion (Panthera leo).

    PubMed

    Maj, Andrzej; Spellman, Garth M; Sarver, Shane K

    2008-04-01

    We provide the complete PRNP CDS sequence for the African lion, which is different from the previously published sequence and more similar to other carnivore sequences. The newly obtained prion protein sequence differs from the domestic cat sequence at three amino acid positions and contains only four octapeptide repeats. We recommend that this sequence be used as the reference sequence for future studies of the PRNP gene for this species.

  4. Complete genome sequence of chinese strain of ‘Candidatus Liberibacter asiaticus’

    USDA-ARS?s Scientific Manuscript database

    The complete genome sequence of ‘Candidatus Liberibacter asiaticus’ strain (Las) Guangxi-1(GX-1) was obtained by an Illumina HiSeq 2000. The GX-1 genome comprises 1,268,237 nucleotides, 36.5 % GC content, 1,141 predicted coding sequences, 44 tRNAs, 3 complete copies of ribosomal RNA genes (16S, 23S ...

  5. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946

    USDA-ARS?s Scientific Manuscript database

    Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...

  6. Molecular cloning and characterization of an acetylcholinesterase cDNA in the brown planthopper, Nilaparvata lugens.

    PubMed

    Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing

    2010-01-01

    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain.

  7. Viral discovery in the invasive Australian cane toad (Rhinella marina) using metatranscriptomic and genomic approaches.

    PubMed

    Russo, Alice G; Eden, John-Sebastian; Enosi Tuipulotu, Daniel; Shi, Mang; Selechnik, Daniel; Shine, Richard; Rollins, Lee Ann; Holmes, Edward C; White, Peter A

    2018-06-13

    Cane toads are a notorious invasive species, inhabiting over 1.2 million km 2 of Australia and threatening native biodiversity. Release of pathogenic cane toad viruses is one possible biocontrol strategy yet is currently hindered by the poorly-described cane toad virome. Metatranscriptomic analysis of 16 cane toad livers revealed the presence of a novel and full-length picornavirus, Rhimavirus A (RhiV-A), a member of a reptile and amphibian specific-cluster of the Picornaviridae basal to the Kobuvirus -like group. In the combined liver transcriptome, we also identified a complete genome sequence of a distinct epsilonretrovirus, R. marina endogenous retrovirus (RMERV). The recently sequenced cane toad genome contains eight complete RMERV proviruses, as well as 21 additional truncated insertions. The oldest full length RMERV provirus was estimated to have inserted 1.9 MYA. To screen for these viral sequences in additional toads, we analysed publicly available transcriptomes from six diverse Australian locations. RhiV-A transcripts were identified in toads sampled from three locations across 1,000 km of Australia, stretching to the current Western Australia (WA) invasion front, whilst RMERV transcripts were observed at all six sites. Lastly, we scanned the cane toad genome for non-retroviral endogenous viral elements, finding three sequences related to small DNA viruses in the family Circoviridae This shows ancestral circoviral infection with subsequent genomic integration. The identification of these current and past viral infections enriches our knowledge of the cane toad virome, an understanding of which will facilitate future work on infection and disease in this important invasive species. Importance Cane toads are poisonous amphibians which were introduced to Australia in 1935 for insect control. Since then, their population has increased dramatically, and they now threat many native Australian species. One potential method to control the population is to release a cane toad virus with high mortality, yet few cane toad viruses have been characterised. This study samples cane toads from different Australian locations and uses an RNA sequencing and computational approach to find new viruses. We report novel complete picornavirus and retrovirus sequences which were genetically similar to viruses infecting frogs, reptiles and fish. Using data generated in other studies, we show that these viral sequences are present in cane toads from distinct Australian locations. Three sequences related to circoviruses were also found in the toad genome. The identification of new viral sequences will aid future studies which investigate their prevalence and potential as agents for biocontrol. Copyright © 2018 American Society for Microbiology.

  8. Transcriptome Assembly, Gene Annotation and Tissue Gene Expression Atlas of the Rainbow Trout

    PubMed Central

    Salem, Mohamed; Paneru, Bam; Al-Tobasei, Rafet; Abdouni, Fatima; Thorgaard, Gary H.; Rexroad, Caird E.; Yao, Jianbo

    2015-01-01

    Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complemented by transcriptome information that will enhance genome assembly and annotation. Previously, transcriptome reference sequences were reported using data from different sources. Although the previous work added a great wealth of sequences, a complete and well-annotated transcriptome is still needed. In addition, gene expression in different tissues was not completely addressed in the previous studies. In this study, non-normalized cDNA libraries were sequenced from 13 different tissues of a single doubled haploid rainbow trout from the same source used for the rainbow trout genome sequence. A total of ~1.167 billion paired-end reads were de novo assembled using the Trinity RNA-Seq assembler yielding 474,524 contigs > 500 base-pairs. Of them, 287,593 had homologies to the NCBI non-redundant protein database. The longest contig of each cluster was selected as a reference, yielding 44,990 representative contigs. A total of 4,146 contigs (9.2%), including 710 full-length sequences, did not match any mRNA sequences in the current rainbow trout genome reference. Mapping reads to the reference genome identified an additional 11,843 transcripts not annotated in the genome. A digital gene expression atlas revealed 7,678 housekeeping and 4,021 tissue-specific genes. Expression of about 16,000–32,000 genes (35–71% of the identified genes) accounted for basic and specialized functions of each tissue. White muscle and stomach had the least complex transcriptomes, with high percentages of their total mRNA contributed by a small number of genes. Brain, testis and intestine, in contrast, had complex transcriptomes, with a large numbers of genes involved in their expression patterns. This study provides comprehensive de novo transcriptome information that is suitable for functional and comparative genomics studies in rainbow trout, including annotation of the genome. PMID:25793877

  9. Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences.

    PubMed

    Zeng, Y H; Chen, X H; Jiao, N Z

    2007-12-01

    To assess how completely the diversity of anoxygenic phototrophic bacteria (APB) was sampled in natural environments. All nucleotide sequences of the APB marker gene pufM from cultures and environmental clones were retrieved from the GenBank database. A set of cutoff values (sequence distances 0.06, 0.15 and 0.48 for species, genus, and (sub)phylum levels, respectively) was established using a distance-based grouping program. Analysis of the environmental clones revealed that current efforts on APB isolation and sampling in natural environments are largely inadequate. Analysis of the average distance between each identified genus and an uncultured environmental pufM sequence indicated that the majority of cultured APB genera lack environmental representatives. The distance-based grouping method is fast and efficient for bulk functional gene sequences analysis. The results clearly show that we are at a relatively early stage in sampling the global richness of APB species. Periodical assessment will undoubtedly facilitate in-depth analysis of potential biogeographical distribution pattern of APB. This is the first attempt to assess the present understanding of APB diversity in natural environments. The method used is also useful for assessing the diversity of other functional genes.

  10. In silico genomic insights into aspects of food safety and defense mechanisms of a potentially probiotic Lactobacillus pentosus MP-10 isolated from brines of naturally fermented Aloreña green table olives.

    PubMed

    Abriouel, Hikmate; Pérez Montoro, Beatriz; Casado Muñoz, María Del Carmen; Knapp, Charles W; Gálvez, Antonio; Benomar, Nabil

    2017-01-01

    Lactobacillus pentosus MP-10, isolated from brines of naturally fermented Aloreña green table olives, exhibited high probiotic potential. The genome sequence of L. pentosus MP-10 is currently considered the largest genome among lactobacilli, highlighting the microorganism's ecological flexibility and adaptability. Here, we analyzed the complete genome sequence for the presence of acquired antibiotic resistance and virulence determinants to understand their defense mechanisms and explore its putative safety in food. The annotated genome sequence revealed evidence of diverse mobile genetic elements, such as prophages, transposases and transposons involved in their adaptation to brine-associated niches. In-silico analysis of L. pentosus MP-10 genome sequence identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) as an immune system against foreign genetic elements, which consisted of six arrays (4-12 repeats) and eleven predicted cas genes [CRISPR1 and CRISPR2 consisted of 3 (Type II-C) and 8 (Type I) genes] with high similarity to L. pentosus KCA1. Bioinformatic analyses revealed L. pentosus MP-10 to be absent of acquired antibiotic resistance genes, and most resistance genes were related to efflux mechanisms; no virulence determinants were found in the genome. This suggests that L. pentosus MP-10 could be considered safe and with high-adaptation potential, which could facilitate its application as a starter culture and probiotic in food preparations.

  11. Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Yasuhiro; Larimer, Frank W; Chain, Patrick S. G.

    The bacterial genus Rhodopseudomonas is comprised of photosynthetic bacteria found widely distributed in aquatic sediments. Members of the genus catalyze hydrogen gas production, carbon dioxide sequestration, and biomass turnover. The genome sequence of Rhodopseudomonas palustris CGA009 revealed a surprising richness of metabolic versatility that would seem to explain its ability to live in a heterogeneous environment like sediment. However, there is considerable genotypic diversity among Rhodopseudomonas isolates. Here we report the complete genome sequences of four additional members of the genus isolated from a restricted geographical area. The sequences confirm that the isolates belong to a coherent taxonomic unit, butmore » they also have significant differences. Whole genome alignments show that the circular chromosomes of the isolates consist of a collinear backbone with a moderate number of genomic rearrangements that impact local gene order and orientation. There are 3,319 genes, 70% of the genes in each genome, shared by four or more strains. Between 10% and 18% of the genes in each genome are strain specific. Some of these genes suggest specialized physiological traits, which we verified experimentally, that include expanded light harvesting, oxygen respiration, and nitrogen fixation capabilities, as well as anaerobic fermentation. Strain-specific adaptations include traits that may be useful in bioenergy applications. This work suggests that against a backdrop of metabolic versatility that is a defining characteristic of Rhodopseudomonas, different ecotypes have evolved to take advantage of physical and chemical conditions in sediment microenvironments that are too small for human observation.« less

  12. Genome sequence of Methanobacterium congolense strain Buetzberg, a hydrogenotrophic, methanogenic archaeon, isolated from a mesophilic industrial-scale biogas plant utilizing bio-waste.

    PubMed

    Tejerizo, Gonzalo Torres; Kim, Yong Sung; Maus, Irena; Wibberg, Daniel; Winkler, Anika; Off, Sandra; Pühler, Alfred; Scherer, Paul; Schlüter, Andreas

    2017-04-10

    Methanogenic Archaea are of importance at the end of the anaerobic digestion (AD) chain for biomass conversion. They finally produce methane, the end-product of AD. Among this group of microorganisms, members of the genus Methanobacterium are ubiquitously present in anaerobic habitats, such as bioreactors. The genome of a novel methanogenic archaeon, namely Methanobacterium congolense Buetzberg, originally isolated from a mesophilic biogas plant, was completely sequenced to analyze putative adaptive genome features conferring competitiveness of this isolate within the biogas reactor environment. Sequencing and assembly of the M. congolense Buetzberg genome yielded a chromosome with a size of 2,451,457bp and a mean GC-content of 38.51%. Additionally, a plasmid with a size of 18,118bp, featuring a GC content of 36.05% was identified. The M. congolense Buetzberg plasmid showed no sequence similarities with the plasmids described previously suggesting that it represents a new plasmid type. Analysis of the M. congolense Buetzberg chromosome architecture revealed a high collinearity with the Methanobacterium paludis chromosome. Furthermore, annotation of the genome and functional predictions disclosed several genes involved in cell wall and membrane biogenesis. Compilation of specific genes among Methanobacterium strains originating from AD environments revealed 474 genetic determinants that could be crucial for adaptation of these strains to specific conditions prevailing in AD habitats. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Stick insect locomotion in a complex environment: climbing over large gaps.

    PubMed

    Blaesing, Bettina; Cruse, Holk

    2004-03-01

    In a complex environment, animals are challenged by various types of obstacles. This requires the controller of their walking system to be highly flexible. In this study, stick insects were presented with large gaps to cross in order to observe how locomotion can be adapted to challenging environmental situations. Different approaches were used to investigate the sequence of gap-crossing behaviour. A detailed video analysis revealed that gap-crossing behaviour resembles modified walking behaviour with additional step types. The walking sequence is interrupted by an interval of exploration, in which the insect probes the gap space with its antennae and front legs. When reaching the gap, loss of contact of an antenna with the ground does not elicit any observable reactions. In contrast, an initial front leg step into the gap that often follows antennal 'non-contact' evokes slowing down of stance velocity. An ablation experiment showed that the far edge of the gap is detected by tactile antennal stimulation rather than by vision. Initial contact of an antenna or front leg with the far edge of the gap represents a 'point of no return', after which gap crossing is always successfully completed. Finally, flow chart diagrams of the gap-crossing sequence were constructed based on an ethogram of single elements of behaviour. Comparing flow charts for two gap sizes revealed differences in the frequency and succession of these elements, especially during the first part of the sequence.

  14. A snapshot of the microbiome of Amblyomma tuberculatum ticks infesting the gopher tortoise, an endangered species.

    PubMed

    Budachetri, Khemraj; Gaillard, Daniel; Williams, Jaclyn; Mukherjee, Nabanita; Karim, Shahid

    2016-10-01

    The gopher tortoise tick, Amblyomma tuberculatum, has a unique relationship with the gopher tortoise, Gopherus polyphemus, found in sandy habitats across the southeastern United States. We aimed to understand the overall bacterial community associated with A. tuberculatum while also focusing on spotted fever group Rickettsia. These tortoises in the Southern Mississippi region are a federally threatened species; therefore, we have carefully trapped the tortoises and removed the species-specific ticks attached to them. Genomic DNA was extracted from individual ticks and used to explore overall bacterial load using pyrosequencing of bacterial 16S rRNA on 454-sequencing platform. The spotted fever group of Rickettsia was explored by amplifying rickettsial outer membrane protein A (rompA) gene by nested PCR. Sequencing results revealed 330 bacterial operational taxonomic units (OTUs) after all the necessary curation of sequences. Four whole A. tuberculatum ticks showed Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as the most dominant phyla with a total of 74 different bacterial genera detected. Together Rickettsiae and Francisella showed >85% abundance, thus dominating the bacterial community structure. Partial sequences obtained from ompA amplicons revealed the presence of an uncharacterized Rickettsia similar to the Rickettsial endosymbiont of A. tuberculatum. This is the first preliminary profile of a complete bacterial community from gopher tortoise ticks and warrants further investigation regarding the functional role of Rickettsial and Francisella-like endosymbionts in tick physiology. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Isolation, purification and functional characterization of alpha-BnIA from Conus bandanus venom.

    PubMed

    Nguyen, Bao; Le Caer, Jean-Pierre; Aráoz, Romulo; Thai, Robert; Lamthanh, Hung; Benoit, Evelyne; Molgó, Jordi

    2014-12-01

    We report the isolation and characterization by proteomic approach of a native conopeptide, named BnIA, from the crude venom of Conus bandanus, a molluscivorous cone snail species, collected in the South central coast of Vietnam. Its primary sequence was determined by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry using collision-induced dissociation and confirmed by Edman's degradation of the pure native fraction. BnIA was present in high amounts in the crude venom and the complete sequence of the 16 amino acid peptide was the following GCCSHPACSVNNPDIC*, with C-terminal amidation deduced from Edman's degradation and theoretical monoisotopic mass calculation. Sequence alignment revealed that its -C1C2X4C3X7C4- pattern belongs to the A-superfamily of conopeptides. The cysteine connectivity of BnIA was 1-3/2-4 as determined by partial-reduction technique, like other α4/7-conotoxins, reported previously on other Conus species. Additionally, we found that native α-BnIA shared the same sequence alignment as Mr1.1, from the closely related molluscivorous Conus marmoreus venom, in specimens collected in the same coastal region of Vietnam. Functional studies revealed that native α-BnIA inhibited acetylcholine-evoked currents reversibly in oocytes expressing the human α7 nicotinic acetylcholine receptors, and blocked nerve-evoked skeletal muscle contractions in isolated mouse neuromuscular preparations, but with ∼200-times less potency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Complete Cellulase System in the Marine Bacterium Saccharophagus degradans Strain 2-40T

    PubMed Central

    Taylor, Larry E.; Henrissat, Bernard; Coutinho, Pedro M.; Ekborg, Nathan A.; Hutcheson, Steven W.; Weiner, Ronald M.

    2006-01-01

    Saccharophagus degradans strain 2-40 is a representative of an emerging group of marine complex polysaccharide (CP)-degrading bacteria. It is unique in its metabolic versatility, being able to degrade at least 10 distinct CPs from diverse algal, plant and invertebrate sources. The S. degradans genome has been sequenced to completion, and more than 180 open reading frames have been identified that encode carbohydrases. Over half of these are likely to act on plant cell wall polymers. In fact, there appears to be a full array of enzymes that degrade and metabolize plant cell walls. Genomic and proteomic analyses reveal 13 cellulose depolymerases complemented by seven accessory enzymes, including two cellodextrinases, three cellobiases, a cellodextrin phosphorylase, and a cellobiose phosphorylase. Most of these enzymes exhibit modular architecture, and some contain novel combinations of catalytic and/or substrate binding modules. This is exemplified by endoglucanase Cel5A, which has three internal family 6 carbohydrate binding modules (CBM6) and two catalytic modules from family five of glycosyl hydrolases (GH5) and by Cel6A, a nonreducing-end cellobiohydrolase from family GH6 with tandem CBM2s. This is the first report of a complete and functional cellulase system in a marine bacterium with a sequenced genome. PMID:16707677

  17. The complete mitochondrial genomes of five Eimeria species infecting domestic rabbits.

    PubMed

    Liu, Guo-Hua; Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-12-01

    Rabbit coccidiosis caused by members of the genus Eimeria can cause enormous economic impact worldwide, but the genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced and annotated the complete mitochondrial (mt) genomes of five Eimeria species that commonly infect the domestic rabbits. The complete mt genomes of Eimeria intestinalis, Eimeria flavescens, Eimeria media, Eimeria vejdovskyi and Eimeria irresidua were 6261bp, 6258bp, 6168bp, 6254bp, 6259bp in length, respectively. All of the mt genomes consist of 3 genes for proteins (cytb, cox1, and cox3), 14 gene fragments for the large subunit (LSU) rRNA and 11 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA (tRNA) genes. The gene order of the mt genomes is similar to that of Plasmodium, but distinct from Haemosporida and Theileria. Phylogenetic analyses based on full nucleotide sequences using Bayesian analysis revealed that the monophyly of the Eimeria of rabbits was strongly statistically supported with a Bayesian posterior probabilities. These data provide novel mtDNA markers for studying the population genetics and molecular epidemiology of the Eimeria species, and should have implications for the molecular diagnosis, prevention and control of coccidiosis in rabbits. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and an ATPase-like polypeptide.

    PubMed Central

    Albertini, A M; Caramori, T; Crabb, W D; Scoffone, F; Galizzi, A

    1991-01-01

    We cloned and sequenced 8.3 kb of Bacillus subtilis DNA corresponding to the flaA locus involved in flagellar biosynthesis, motility, and chemotaxis. The DNA sequence revealed the presence of 10 complete and 2 incomplete open reading frames. Comparison of the deduced amino acid sequences to data banks showed similarities of nine of the deduced products to a number of proteins of Escherichia coli and Salmonella typhimurium for which a role in flagellar functioning has been directly demonstrated. In particular, the sequence data suggest that the flaA operon codes for the M-ring protein, components of the motor switch, and the distal part of the basal-body rod. The gene order is remarkably similar to that described for region III of the enterobacterial flagellar regulon. One of the open reading frames was translated into a protein with 48% amino acid identity to S. typhimurium FliI and 29% identity to the beta subunit of E. coli ATP synthase. PMID:1828465

  19. Extensive sequencing of seven human genomes to characterize benchmark reference materials

    PubMed Central

    Zook, Justin M.; Catoe, David; McDaniel, Jennifer; Vang, Lindsay; Spies, Noah; Sidow, Arend; Weng, Ziming; Liu, Yuling; Mason, Christopher E.; Alexander, Noah; Henaff, Elizabeth; McIntyre, Alexa B.R.; Chandramohan, Dhruva; Chen, Feng; Jaeger, Erich; Moshrefi, Ali; Pham, Khoa; Stedman, William; Liang, Tiffany; Saghbini, Michael; Dzakula, Zeljko; Hastie, Alex; Cao, Han; Deikus, Gintaras; Schadt, Eric; Sebra, Robert; Bashir, Ali; Truty, Rebecca M.; Chang, Christopher C.; Gulbahce, Natali; Zhao, Keyan; Ghosh, Srinka; Hyland, Fiona; Fu, Yutao; Chaisson, Mark; Xiao, Chunlin; Trow, Jonathan; Sherry, Stephen T.; Zaranek, Alexander W.; Ball, Madeleine; Bobe, Jason; Estep, Preston; Church, George M.; Marks, Patrick; Kyriazopoulou-Panagiotopoulou, Sofia; Zheng, Grace X.Y.; Schnall-Levin, Michael; Ordonez, Heather S.; Mudivarti, Patrice A.; Giorda, Kristina; Sheng, Ying; Rypdal, Karoline Bjarnesdatter; Salit, Marc

    2016-01-01

    The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly. PMID:27271295

  20. Molecular identification of Ascaris lumbricoides and Ascaris suum recovered from humans and pigs in Thailand, Lao PDR, and Myanmar.

    PubMed

    Sadaow, Lakkhana; Sanpool, Oranuch; Phosuk, Issarapong; Rodpai, Rutchanee; Thanchomnang, Tongjit; Wijit, Adulsak; Anamnart, Witthaya; Laymanivong, Sakhone; Aung, Win Pa Pa; Janwan, Penchom; Maleewong, Wanchai; Intapan, Pewpan M

    2018-06-02

    Ascaris lumbricoides is the largest roundworm known from the human intestine while Ascaris suum is an internal parasite of pigs. Ascariasis, caused by Ascaris lumbricoides, has a worldwide distribution. Here, we have provided the first molecular identification of Ascaris eggs and adults recovered from humans and pigs in Thailand, Lao PDR, and Myanmar. We amplified and sequenced nuclear ribosomal DNA (ITS1 and ITS2 regions) and mitochondrial DNA (cox1 gene). Sequence chromatograms of PCR-amplified ITS1 region revealed a probable hybrid genotype from two human ascariasis cases from Chiang Mai Province, northern Thailand. All complete ITS2 sequences were identical and did not differ between the species. Phylogenetic trees and haplotype analysis of cox1 sequences showed three clusters with 99 haplotypes. Forty-seven samples from the present study represented 14 haplotypes, including 7 new haplotypes. To our knowledge, this is the first molecular confirmation of Ascaris species in Thailand, Lao PDR, and Myanmar. Zoonotic cross-transmission of Ascaris roundworm between pigs and humans probably occurs in these countries.

Top