Sample records for completely sequenced bacterial

  1. Complete Genome Sequence of Lactobacillus rhamnosus Strain BPL5 (CECT 8800), a Probiotic for Treatment of Bacterial Vaginosis.

    PubMed

    Chenoll, Empar; Codoñer, Francisco M; Martinez-Blanch, Juan F; Ramón, Daniel; Genovés, Salvador; Menabrito, Marco

    2016-04-21

    ITALIC! Lactobacillus rhamnosusBPL5 (CECT 8800), is a probiotic strain suitable for the treatment of bacterial vaginosis. Here, we report its complete genome sequence deciphered by PacBio single-molecule real-time (SMRT) technology. Analysis of the sequence may provide insight into its functional activity. Copyright © 2016 Chenoll et al.

  2. Insights from 20 years of bacterial genome sequencing

    DOE PAGES

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran; ...

    2015-02-27

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.« less

  3. Insights from 20 years of bacterial genome sequencing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Land, Miriam L.; Hauser, Loren; Jun, Se-Ran

    Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.« less

  4. Complete Genome Sequence of a Putative New Bacterial Strain, I507, Isolated from the Indian Ocean

    PubMed Central

    Wang, Shu-yan; Wei, Jia-qiang

    2018-01-01

    ABSTRACT Bacterial strain I507 was isolated from the central Indian Ocean and may be a potential novel species, according to the 16S rRNA gene sequence. Here, we present its complete genome sequence and expect that it will provide researchers with valuable information to further understand its classification and function in the future. PMID:29674539

  5. Efficient generation of complete sequences of MDR-encoding plasmids by rapid assembly of MinION barcoding sequencing data.

    PubMed

    Li, Ruichao; Xie, Miaomiao; Dong, Ning; Lin, Dachuan; Yang, Xuemei; Wong, Marcus Ho Yin; Chan, Edward Wai-Chi; Chen, Sheng

    2018-03-01

    Multidrug resistance (MDR)-encoding plasmids are considered major molecular vehicles responsible for transmission of antibiotic resistance genes among bacteria of the same or different species. Delineating the complete sequences of such plasmids could provide valuable insight into the evolution and transmission mechanisms underlying bacterial antibiotic resistance development. However, due to the presence of multiple repeats of mobile elements, complete sequencing of MDR plasmids remains technically complicated, expensive, and time-consuming. Here, we demonstrate a rapid and efficient approach to obtaining multiple MDR plasmid sequences through the use of the MinION nanopore sequencing platform, which is incorporated in a portable device. By assembling the long sequencing reads generated by a single MinION run according to a rapid barcoding sequencing protocol, we obtained the complete sequences of 20 plasmids harbored by multiple bacterial strains. Importantly, single long reads covering a plasmid end-to-end were recorded, indicating that de novo assembly may be unnecessary if the single reads exhibit high accuracy. This workflow represents a convenient and cost-effective approach for systematic assessment of MDR plasmids responsible for treatment failure of bacterial infections, offering the opportunity to perform detailed molecular epidemiological studies to probe the evolutionary and transmission mechanisms of MDR-encoding elements.

  6. Complete Genome Sequence of Ralstonia solanacearum FJAT-1458, a Potential Biocontrol Agent for Tomato Wilt.

    PubMed

    Chen, Deju; Liu, Bo; Zhu, Yujing; Wang, Jieping; Chen, Zheng; Che, Jiamei; Zheng, Xuefang; Chen, Xiaoqiang

    2017-04-06

    An avirulent strain of Ralstonia solanacearum FJAT-1458 was isolated from a living tomato. Here, we report the complete R. solanacearum FJAT-1458 genome sequence of 6,059,899 bp and 5,241 genes. This bacterial strain is a potential candidate as a biocontrol agent in the form of a plant vaccine for bacterial wilt. Copyright © 2017 Chen et al.

  7. Gene calling and bacterial genome annotation with BG7.

    PubMed

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).

  8. Microbial Genomes Multiply

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.

    2002-01-01

    The publication of the first complete sequence of a bacterial genome in 1995 was a signal event, underscored by the fact that the article has been cited more than 2,100 times during the intervening seven years. It was a marvelous technical achievement, made possible by automatic DNA-sequencing machines. The feat is the more impressive in that complete genome sequencing has now been adopted in many different laboratories around the world. Four years ago in these columns I examined the situation after a dozen microbial genomes had been completed. Now, with upwards of 60 microbial genome sequences determined and twice that many in progress, it seems reasonable to assess just what is being learned. Are new concepts emerging about how cells work? Have there been practical benefits in the fields of medicine and agriculture? Is it feasible to determine the genomic sequence of every bacterial species on Earth? The answers to these questions maybe Yes, Perhaps, and No, respectively.

  9. Comprehensive phylogenetic analysis of bacterial reverse transcriptases.

    PubMed

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.

  10. Comprehensive Phylogenetic Analysis of Bacterial Reverse Transcriptases

    PubMed Central

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology. PMID:25423096

  11. Complete Genome Sequence of Streptococcus pneumoniae Strain A026, a Clinical Multidrug-Resistant Isolate Carrying Tn2010

    PubMed Central

    Sui, Zhihai; Zhou, Wenqing; Yao, Kaihu; Liu, Li; Zhang, Gang; Yang, Yonghong

    2013-01-01

    Streptococcus pneumoniae is a primary cause of bacterial infection in humans. Here, we present the complete genome sequence of S. pneumoniae strain A026, which is a multidrug-resistant strain isolated from cerebrospinal fluid. PMID:24336372

  12. Complete Genome Sequence of the Neonatal Meningitis-Causing Escherichia coli Strain NMEC O18

    PubMed Central

    Nicholson, Bryon A.; Wannemuehler, Yvonne M.; Logue, Catherine M.; Li, Ganwu

    2016-01-01

    Neonatal meningitis Escherichia coli (NMEC) is a common agent of neonatal bacterial meningitis, causing high neonatal mortality and neurologic sequelae in its victims. Here, we present the complete genome sequence of NMEC O18 (also known as NMEC 58), a highly virulent (O18ac:K1, ST416) strain. PMID:27811114

  13. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.

    PubMed

    Pfeiffer, Friedhelm; Zamora-Lagos, Maria-Antonia; Blettinger, Martin; Yeroslaviz, Assa; Dahl, Andreas; Gruber, Stephan; Habermann, Bianca H

    2018-01-05

    Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental.

  14. Xylella genomics and bacterial pathogenicity to plants.

    PubMed

    Dow, J M; Daniels, M J

    2000-12-01

    Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics. Copyright 2000 John Wiley & Sons, Ltd.

  15. Complete genome sequence of Parvibaculum lavamentivorans type strain (DS-1(T)).

    PubMed

    Schleheck, David; Weiss, Michael; Pitluck, Sam; Bruce, David; Land, Miriam L; Han, Shunsheng; Saunders, Elizabeth; Tapia, Roxanne; Detter, Chris; Brettin, Thomas; Han, James; Woyke, Tanja; Goodwin, Lynne; Pennacchio, Len; Nolan, Matt; Cook, Alasdair M; Kjelleberg, Staffan; Thomas, Torsten

    2011-12-31

    Parvibaculum lavamentivorans DS-1(T) is the type species of the novel genus Parvibaculum in the novel family Rhodobiaceae (formerly Phyllobacteriaceae) of the order Rhizobiales of Alphaproteobacteria. Strain DS-1(T) is a non-pigmented, aerobic, heterotrophic bacterium and represents the first tier member of environmentally important bacterial communities that catalyze the complete degradation of synthetic laundry surfactants. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,914,745 bp long genome with its predicted 3,654 protein coding genes is the first completed genome sequence of the genus Parvibaculum, and the first genome sequence of a representative of the family Rhodobiaceae.

  16. Complete Genome and Methylome Analysis of Psychrotrophic Bacterial Isolates from Lake Untersee in Antarctica.

    PubMed

    Fomenkov, Alexey; Akimov, Vladimir N; Vasilyeva, Lina V; Andersen, Dale T; Vincze, Tamas; Roberts, Richard J

    2017-03-16

    This paper describes the complete genome sequences and methylome analysis of six psychrotrophic strains isolated from perennially ice-covered Lake Untersee in Antarctica. Copyright © 2017 Fomenkov et al.

  17. Investigation of bacterial and archaeal communities: novel protocols using modern sequencing by Illumina MiSeq and traditional DGGE-cloning.

    PubMed

    Kraková, Lucia; Šoltys, Katarína; Budiš, Jaroslav; Grivalský, Tomáš; Ďuriš, František; Pangallo, Domenico; Szemes, Tomáš

    2016-09-01

    Different protocols based on Illumina high-throughput DNA sequencing and denaturing gradient gel electrophoresis (DGGE)-cloning were developed and applied for investigating hot spring related samples. The study was focused on three target genes: archaeal and bacterial 16S rRNA and mcrA of methanogenic microflora. Shorter read lengths of the currently most popular technology of sequencing by Illumina do not allow analysis of the complete 16S rRNA region, or of longer gene fragments, as was the case of Sanger sequencing. Here, we demonstrate that there is no need for special indexed or tailed primer sets dedicated to short variable regions of 16S rRNA since the presented approach allows the analysis of complete bacterial 16S rRNA amplicons (V1-V9) and longer archaeal 16S rRNA and mcrA sequences. Sample augmented with transposon is represented by a set of approximately 300 bp long fragments that can be easily sequenced by Illumina MiSeq. Furthermore, a low proportion of chimeric sequences was observed. DGGE-cloning based strategies were performed combining semi-nested PCR, DGGE and clone library construction. Comparing both investigation methods, a certain degree of complementarity was observed confirming that the DGGE-cloning approach is not obsolete. Novel protocols were created for several types of laboratories, utilizing the traditional DGGE technique or using the most modern Illumina sequencing.

  18. SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology.

    PubMed

    Mariano, Diego C B; Pereira, Felipe L; Aguiar, Edgar L; Oliveira, Letícia C; Benevides, Leandro; Guimarães, Luís C; Folador, Edson L; Sousa, Thiago J; Ghosh, Preetam; Barh, Debmalya; Figueiredo, Henrique C P; Silva, Artur; Ramos, Rommel T J; Azevedo, Vasco A C

    2016-12-15

    The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several projects in laboratories. SIMBA source code is available to download and install in local webservers at http://ufmg-simba.sourceforge.net .

  19. Microbial minimalism: genome reduction in bacterial pathogens.

    PubMed

    Moran, Nancy A

    2002-03-08

    When bacterial lineages make the transition from free-living or facultatively parasitic life cycles to permanent associations with hosts, they undergo a major loss of genes and DNA. Complete genome sequences are providing an understanding of how extreme genome reduction affects evolutionary directions and metabolic capabilities of obligate pathogens and symbionts.

  20. Complete Genome Sequences of Six Copper-Resistant Xanthomonas Strains Causing Bacterial Spot of Solaneous Plants, Belonging to X. gardneri, X. euvesicatoria, and X. vesicatoria, Using Long-Read Technology.

    PubMed

    Richard, Damien; Boyer, Claudine; Lefeuvre, Pierre; Canteros, Blanca I; Beni-Madhu, Shyam; Portier, Perrine; Pruvost, Olivier

    2017-02-23

    Xanthomonas vesicatoria , Xanthomonas euvesicatoria , and Xanthomonas gardneri cause bacterial spot disease. Copper has been applied since the 1920s as part of integrated management programs. The first copper-resistant strains were reported some decades later. Here, we fully sequenced six Xanthomonas strains pathogenic to tomato and/or pepper and having a copper-resistant phenotype. Copyright © 2017 Richard et al.

  1. Assessing the Robustness of Complete Bacterial Genome Segmentations

    NASA Astrophysics Data System (ADS)

    Devillers, Hugo; Chiapello, Hélène; Schbath, Sophie; El Karoui, Meriem

    Comparison of closely related bacterial genomes has revealed the presence of highly conserved sequences forming a "backbone" that is interrupted by numerous, less conserved, DNA fragments. Segmentation of bacterial genomes into backbone and variable regions is particularly useful to investigate bacterial genome evolution. Several software tools have been designed to compare complete bacterial chromosomes and a few online databases store pre-computed genome comparisons. However, very few statistical methods are available to evaluate the reliability of these software tools and to compare the results obtained with them. To fill this gap, we have developed two local scores to measure the robustness of bacterial genome segmentations. Our method uses a simulation procedure based on random perturbations of the compared genomes. The scores presented in this paper are simple to implement and our results show that they allow to discriminate easily between robust and non-robust bacterial genome segmentations when using aligners such as MAUVE and MGA.

  2. Identification of characteristic oligonucleotides in the bacterial 16S ribosomal RNA sequence dataset

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengdong; Willson, Richard C.; Fox, George E.

    2002-01-01

    MOTIVATION: The phylogenetic structure of the bacterial world has been intensively studied by comparing sequences of 16S ribosomal RNA (16S rRNA). This database of sequences is now widely used to design probes for the detection of specific bacteria or groups of bacteria one at a time. The success of such methods reflects the fact that there are local sequence segments that are highly characteristic of particular organisms or groups of organisms. It is not clear, however, the extent to which such signature sequences exist in the 16S rRNA dataset. A better understanding of the numbers and distribution of highly informative oligonucleotide sequences may facilitate the design of hybridization arrays that can characterize the phylogenetic position of an unknown organism or serve as the basis for the development of novel approaches for use in bacterial identification. RESULTS: A computer-based algorithm that characterizes the extent to which any individual oligonucleotide sequence in 16S rRNA is characteristic of any particular bacterial grouping was developed. A measure of signature quality, Q(s), was formulated and subsequently calculated for every individual oligonucleotide sequence in the size range of 5-11 nucleotides and for 15mers with reference to each cluster and subcluster in a 929 organism representative phylogenetic tree. Subsequently, the perfect signature sequences were compared to the full set of 7322 sequences to see how common false positives were. The work completed here establishes beyond any doubt that highly characteristic oligonucleotides exist in the bacterial 16S rRNA sequence dataset in large numbers. Over 16,000 15mers were identified that might be useful as signatures. Signature oligonucleotides are available for over 80% of the nodes in the representative tree.

  3. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing

    PubMed Central

    Eastman, Alexander W.; Yuan, Ze-Chun

    2015-01-01

    Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID:25653642

  4. Determination of the Core of a Minimal Bacterial Gene Set†

    PubMed Central

    Gil, Rosario; Silva, Francisco J.; Peretó, Juli; Moya, Andrés

    2004-01-01

    The availability of a large number of complete genome sequences raises the question of how many genes are essential for cellular life. Trying to reconstruct the core of the protein-coding gene set for a hypothetical minimal bacterial cell, we have performed a computational comparative analysis of eight bacterial genomes. Six of the analyzed genomes are very small due to a dramatic genome size reduction process, while the other two, corresponding to free-living relatives, are larger. The available data from several systematic experimental approaches to define all the essential genes in some completely sequenced bacterial genomes were also considered, and a reconstruction of a minimal metabolic machinery necessary to sustain life was carried out. The proposed minimal genome contains 206 protein-coding genes with all the genetic information necessary for self-maintenance and reproduction in the presence of a full complement of essential nutrients and in the absence of environmental stress. The main features of such a minimal gene set, as well as the metabolic functions that must be present in the hypothetical minimal cell, are discussed. PMID:15353568

  5. Genome Sequencing of Steroid Producing Bacteria Using Ion Torrent Technology and a Reference Genome.

    PubMed

    Sola-Landa, Alberto; Rodríguez-García, Antonio; Barreiro, Carlos; Pérez-Redondo, Rosario

    2017-01-01

    The Next-Generation Sequencing technology has enormously eased the bacterial genome sequencing and several tens of thousands of genomes have been sequenced during the last 10 years. Most of the genome projects are published as draft version, however, for certain applications the complete genome sequence is required.In this chapter, we describe the strategy that allowed the complete genome sequencing of Mycobacterium neoaurum NRRL B-3805, an industrial strain exploited for steroid production, using Ion Torrent sequencing reads and the genome of a close strain as the reference. This protocol can be applied to analyze the genetic variations between closely related strains; for example, to elucidate the point mutations between a parental strain and a random mutagenesis-derived mutant.

  6. Complete sequence of the first chimera genome constructed by cloning the whole genome of Synechocystis strain PCC6803 into the Bacillus subtilis 168 genome.

    PubMed

    Watanabe, Satoru; Shiwa, Yuh; Itaya, Mitsuhiro; Yoshikawa, Hirofumi

    2012-12-01

    Genome synthesis of existing or designed genomes is made feasible by the first successful cloning of a cyanobacterium, Synechocystis PCC6803, in Gram-positive, endospore-forming Bacillus subtilis. Whole-genome sequence analysis of the isolate and parental B. subtilis strains provides clues for identifying single nucleotide polymorphisms (SNPs) in the 2 complete bacterial genomes in one cell.

  7. Complete genome sequence of Pseudomonas rhizosphaerae IH5T (=DSM 16299T), a phosphate-solubilizing rhizobacterium for bacterial biofertilizer.

    PubMed

    Kwak, Yunyoung; Jung, Byung Kwon; Shin, Jae-Ho

    2015-01-10

    Pseudomonas rhizosphaerae IH5(T) (=DSM 16299(T)), isolated from the rhizospheric soil of grass growing in Spain, has been reported as a novel species of the genus Pseudomonas harboring insoluble phosphorus solubilizing activity. To understanding the multifunctional biofertilizer better, we report the complete genome sequence of P. rhizosphaerae IH5(T). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Complete Genome Sequences of 38 Gordonia sp. Bacteriophages

    PubMed Central

    Montgomery, Matthew T.; Bonilla, J. Alfred; Dejong, Randall; Garlena, Rebecca A.; Guerrero Bustamante, Carlos; Klyczek, Karen K.; Russell, Daniel A.; Wertz, John T.; Jacobs-Sera, Deborah; Hatfull, Graham F.

    2017-01-01

    ABSTRACT We report here the genome sequences of 38 newly isolated bacteriophages using Gordonia terrae 3612 (ATCC 25594) and Gordonia neofelifaecis NRRL59395 as bacterial hosts. All of the phages are double-stranded DNA (dsDNA) tail phages with siphoviral morphologies, with genome sizes ranging from 17,118 bp to 93,843 bp and spanning considerable nucleotide sequence diversity. PMID:28057748

  9. GFinisher: a new strategy to refine and finish bacterial genome assemblies

    NASA Astrophysics Data System (ADS)

    Guizelini, Dieval; Raittz, Roberto T.; Cruz, Leonardo M.; Souza, Emanuel M.; Steffens, Maria B. R.; Pedrosa, Fabio O.

    2016-10-01

    Despite the development in DNA sequencing technology, improving the number and the length of reads, the process of reconstruction of complete genome sequences, the so called genome assembly, is still complex. Only 13% of the prokaryotic genome sequencing projects have been completed. Draft genome sequences deposited in public databases are fragmented in contigs and may lack the full gene complement. The aim of the present work is to identify assembly errors and improve the assembly process of bacterial genomes. The biological patterns observed in genomic sequences and the application of a priori information can allow the identification of misassembled regions, and the reorganization and improvement of the overall de novo genome assembly. GFinisher starts generating a Fuzzy GC skew graphs for each contig in an assembly and follows breaking down the contigs in critical points in order to reassemble and close them using jFGap. This has been successfully applied to dataset from 96 genome assemblies, decreasing the number of contigs by up to 86%. GFinisher can easily optimize assemblies of prokaryotic draft genomes and can be used to improve the assembly programs based on nucleotide sequence patterns in the genome. The software and source code are available at http://gfinisher.sourceforge.net/.

  10. GFinisher: a new strategy to refine and finish bacterial genome assemblies.

    PubMed

    Guizelini, Dieval; Raittz, Roberto T; Cruz, Leonardo M; Souza, Emanuel M; Steffens, Maria B R; Pedrosa, Fabio O

    2016-10-10

    Despite the development in DNA sequencing technology, improving the number and the length of reads, the process of reconstruction of complete genome sequences, the so called genome assembly, is still complex. Only 13% of the prokaryotic genome sequencing projects have been completed. Draft genome sequences deposited in public databases are fragmented in contigs and may lack the full gene complement. The aim of the present work is to identify assembly errors and improve the assembly process of bacterial genomes. The biological patterns observed in genomic sequences and the application of a priori information can allow the identification of misassembled regions, and the reorganization and improvement of the overall de novo genome assembly. GFinisher starts generating a Fuzzy GC skew graphs for each contig in an assembly and follows breaking down the contigs in critical points in order to reassemble and close them using jFGap. This has been successfully applied to dataset from 96 genome assemblies, decreasing the number of contigs by up to 86%. GFinisher can easily optimize assemblies of prokaryotic draft genomes and can be used to improve the assembly programs based on nucleotide sequence patterns in the genome. The software and source code are available at http://gfinisher.sourceforge.net/.

  11. Complete genome sequence of a Klebsiella pneumoniae strain isolated from a known cotton insect boll vector

    USDA-ARS?s Scientific Manuscript database

    Klebsiella pneumoniae (associated with bacterial pneumonia) was previously isolated from Nezara viridula, a significant vector of cotton boll-rot pathogens. We provide the first annotated genome sequence of the cotton opportunistic strain K. pneumoniae 5-1. This data provides guidance to study the...

  12. A snapshot of the microbiome of Amblyomma tuberculatum ticks infesting the gopher tortoise, an endangered species.

    PubMed

    Budachetri, Khemraj; Gaillard, Daniel; Williams, Jaclyn; Mukherjee, Nabanita; Karim, Shahid

    2016-10-01

    The gopher tortoise tick, Amblyomma tuberculatum, has a unique relationship with the gopher tortoise, Gopherus polyphemus, found in sandy habitats across the southeastern United States. We aimed to understand the overall bacterial community associated with A. tuberculatum while also focusing on spotted fever group Rickettsia. These tortoises in the Southern Mississippi region are a federally threatened species; therefore, we have carefully trapped the tortoises and removed the species-specific ticks attached to them. Genomic DNA was extracted from individual ticks and used to explore overall bacterial load using pyrosequencing of bacterial 16S rRNA on 454-sequencing platform. The spotted fever group of Rickettsia was explored by amplifying rickettsial outer membrane protein A (rompA) gene by nested PCR. Sequencing results revealed 330 bacterial operational taxonomic units (OTUs) after all the necessary curation of sequences. Four whole A. tuberculatum ticks showed Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes as the most dominant phyla with a total of 74 different bacterial genera detected. Together Rickettsiae and Francisella showed >85% abundance, thus dominating the bacterial community structure. Partial sequences obtained from ompA amplicons revealed the presence of an uncharacterized Rickettsia similar to the Rickettsial endosymbiont of A. tuberculatum. This is the first preliminary profile of a complete bacterial community from gopher tortoise ticks and warrants further investigation regarding the functional role of Rickettsial and Francisella-like endosymbionts in tick physiology. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Histophagous ciliate Pseudocollinia brintoni and bacterial assemblage interaction with krill Nyctiphanes simplex. I. Transmission process.

    PubMed

    Gómez-Gutiérrez, Jaime; López-Cortés, Alejandro; Aguilar-Méndez, Mario J; Del Angel-Rodríguez, Jorge A; Tremblay, Nelly; Zenteno-Savín, Tania; Robinson, Carlos J

    2015-10-27

    Histophagous ciliates of the genus Pseudocollinia cause epizootic events that kill adult female krill (Euphausiacea), but their mode of transmission is unknown. We compared 16S rRNA sequences of bacterial strains isolated from stomachs of healthy krill Nyctiphanes simplex specimens with sequences of bacterial isolates and sequences of natural bacterial communities from the hemocoel of N. simplex specimens infected with P. brintoni to determine possible transmission pathways. All P. brintoni endoparasitic life stages and the transmission tomite stage (outside the host) were associated with bacterial assemblages. 16S rRNA sequences from isolated bacterial strains showed that Photobacterium spp. and Pseudoalteromonas spp. were dominant members of the bacterial assemblages during all life phases of P. brintoni and potential pathobionts. They were apparently unaffected by the krill's immune system or the histophagous activity of P. brintoni. However, other bacterial strains were found only in certain P. brintoni life phases, indicating that as the infection progressed, microhabitat conditions and microbial interactions may have become unfavorable for some strains of bacteria. Trophic infection is the most parsimonious explanation for how P. brintoni infects krill. We estimated N. simplex vulnerability to P. brintoni infection during more than three-fourths of their life span, infecting mostly adult females. The ciliates have relatively high prevalence levels (albeit at <10% of sampled stations) and a short life cycle (estimated <7 d). Histophagous ciliate-krill interactions may occur in other krill species, particularly those that form dense swarms and attain high population densities that potentially enhance trophic transmission and allow completion of the Pseudocollinia spp. life cycle.

  14. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    DOE PAGES

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; ...

    2017-08-08

    Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less

  15. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas

    Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less

  16. Long-read whole genome sequencing and comparative analysis of six strains of the human pathogen Orientia tsutsugamushi.

    PubMed

    Batty, Elizabeth M; Chaemchuen, Suwittra; Blacksell, Stuart; Richards, Allen L; Paris, Daniel; Bowden, Rory; Chan, Caroline; Lachumanan, Ramkumar; Day, Nicholas; Donnelly, Peter; Chen, Swaine; Salje, Jeanne

    2018-06-01

    Orientia tsutsugamushi is a clinically important but neglected obligate intracellular bacterial pathogen of the Rickettsiaceae family that causes the potentially life-threatening human disease scrub typhus. In contrast to the genome reduction seen in many obligate intracellular bacteria, early genetic studies of Orientia have revealed one of the most repetitive bacterial genomes sequenced to date. The dramatic expansion of mobile elements has hampered efforts to generate complete genome sequences using short read sequencing methodologies, and consequently there have been few studies of the comparative genomics of this neglected species. We report new high-quality genomes of O. tsutsugamushi, generated using PacBio single molecule long read sequencing, for six strains: Karp, Kato, Gilliam, TA686, UT76 and UT176. In comparative genomics analyses of these strains together with existing reference genomes from Ikeda and Boryong strains, we identify a relatively small core genome of 657 genes, grouped into core gene islands and separated by repeat regions, and use the core genes to infer the first whole-genome phylogeny of Orientia. Complete assemblies of multiple Orientia genomes verify initial suggestions that these are remarkable organisms. They have larger genomes compared with most other Rickettsiaceae, with widespread amplification of repeat elements and massive chromosomal rearrangements between strains. At the gene level, Orientia has a relatively small set of universally conserved genes, similar to other obligate intracellular bacteria, and the relative expansion in genome size can be accounted for by gene duplication and repeat amplification. Our study demonstrates the utility of long read sequencing to investigate complex bacterial genomes and characterise genomic variation.

  17. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence information

    PubMed Central

    2014-01-01

    Background The recent introduction of the Pacific Biosciences RS single molecule sequencing technology has opened new doors to scaffolding genome assemblies in a cost-effective manner. The long read sequence information is promised to enhance the quality of incomplete and inaccurate draft assemblies constructed from Next Generation Sequencing (NGS) data. Results Here we propose a novel hybrid assembly methodology that aims to scaffold pre-assembled contigs in an iterative manner using PacBio RS long read information as a backbone. On a test set comprising six bacterial draft genomes, assembled using either a single Illumina MiSeq or Roche 454 library, we show that even a 50× coverage of uncorrected PacBio RS long reads is sufficient to drastically reduce the number of contigs. Comparisons to the AHA scaffolder indicate our strategy is better capable of producing (nearly) complete bacterial genomes. Conclusions The current work describes our SSPACE-LongRead software which is designed to upgrade incomplete draft genomes using single molecule sequences. We conclude that the recent advances of the PacBio sequencing technology and chemistry, in combination with the limited computational resources required to run our program, allow to scaffold genomes in a fast and reliable manner. PMID:24950923

  18. Complete genome sequence of community-associated methicillin-resistant Staphylococcus aureus (strain USA400-0051), a prototype of the USA400 clone

    PubMed Central

    Côrtes, Marina Farrel; Costa, Maiana OC; Lima, Nicholas CB; Souza, Rangel C; Almeida, Luiz GP; Guedes, Luciane Prioli Ciapina; Vasconcelos, Ana TR; Nicolás, Marisa F; Figueiredo, Agnes MS

    2017-01-01

    Staphylococcus aureus subsp. aureus, commonly referred as S. aureus, is an important bacterial pathogen frequently involved in hospital- and community-acquired infections in humans, ranging from skin infections to more severe diseases such as pneumonia, bacteraemia, endocarditis, osteomyelitis, and disseminated infections. Here, we report the complete closed genome sequence of a community-acquired methicillin-resistant S. aureus strain, USA400-0051, which is a prototype of the USA400 clone. PMID:29091141

  19. Transmission of Methicillin-Resistant Staphylococcus aureus via Deceased Donor Liver Transplantation Confirmed by Whole Genome Sequencing

    PubMed Central

    Altman, D. R.; Sebra, R.; Hand, J.; Attie, O.; Deikus, G.; Carpini, K. W. D.; Patel, G.; Rana, M.; Arvelakis, A.; Grewal, P.; Dutta, J.; Rose, H.; Shopsin, B.; Daefler, S.; Schadt, E.; Kasarskis, A.; van Bakel, H.; Bashir, A.; Huprikar, S.

    2015-01-01

    Donor-derived bacterial infection is a recognized complication of solid organ transplantation (SOT). The present report describes the clinical details and successful outcome in a liver transplant recipient despite transmission of methicillin-resistant Staphylococcus aureus (MRSA) from a deceased donor with MRSA endocarditis and bacteremia. We further describe whole genome sequencing (WGS) and complete de novo assembly of the donor and recipient MRSA isolate genomes, which confirms that both isolates are genetically 100% identical. We propose that similar application of WGS techniques to future investigations of donor bacterial transmission would strengthen the definition of proven bacterial transmission in SOT, particularly in the presence of highly clonal bacteria such as MRSA. WGS will further improve our understanding of the epidemiology of bacterial transmission in SOT and the risk of adverse patient outcomes when it occurs. PMID:25250641

  20. A New Era of the Vaginal Microbiome: Advances using Next-Generation Sequencing

    PubMed Central

    Fettweis, Jennifer M.; Serrano, Myrna G.; Girerd, Philippe H.; Jefferson, Kimberly K.

    2012-01-01

    Until recently, bacterial species that inhabit the human vagina have been primarily studied using organism-centric approaches. Understanding how these bacterial species interact with each other and the host vaginal epithelium is essential for a more complete understanding of vaginal health. Molecular approaches have already led to the identification of uncultivated bacterial taxa associated with bacterial vaginosis. Here, we review recent studies of the vaginal microbiome and discuss how culture-independent approaches, such as applications of next-generation sequencing, are advancing the field and shifting our understanding of how vaginal health is defined. This work may to lead to improved diagnostic tools and treatments for women who suffer from, or are at risk for, vaginal imbalances, pregnancy complications, and sexually acquired infections. These approaches may also transform our understanding of how host genetic factors, physiological conditions (e.g. menopause) and environmental exposures (e.g. smoking, antibiotic usage) influence the vaginal microbiome. PMID:22589096

  1. Complete Genome Sequence of EtG, the First Phage Sequenced from Erwinia tracheiphila.

    PubMed

    Andrade-Domínguez, Andrés; Kolter, Roberto; Shapiro, Lori R

    2018-02-22

    Erwinia tracheiphila is the causal agent of bacterial wilt of cucurbits. Here, we report the genome sequence of the temperate phage EtG, which was isolated from an E. tracheiphila -infected cucumber plant. Phage EtG has a linear 30,413-bp double-stranded DNA genome with cohesive ends and 45 predicted open reading frames. Copyright © 2018 Andrade-Domínguez et al.

  2. Kullback Leibler divergence in complete bacterial and phage genomes

    PubMed Central

    Akhter, Sajia; Kashef, Mona T.; Ibrahim, Eslam S.; Bailey, Barbara

    2017-01-01

    The amino acid content of the proteins encoded by a genome may predict the coding potential of that genome and may reflect lifestyle restrictions of the organism. Here, we calculated the Kullback–Leibler divergence from the mean amino acid content as a metric to compare the amino acid composition for a large set of bacterial and phage genome sequences. Using these data, we demonstrate that (i) there is a significant difference between amino acid utilization in different phylogenetic groups of bacteria and phages; (ii) many of the bacteria with the most skewed amino acid utilization profiles, or the bacteria that host phages with the most skewed profiles, are endosymbionts or parasites; (iii) the skews in the distribution are not restricted to certain metabolic processes but are common across all bacterial genomic subsystems; (iv) amino acid utilization profiles strongly correlate with GC content in bacterial genomes but very weakly correlate with the G+C percent in phage genomes. These findings might be exploited to distinguish coding from non-coding sequences in large data sets, such as metagenomic sequence libraries, to help in prioritizing subsequent analyses. PMID:29204318

  3. Kullback Leibler divergence in complete bacterial and phage genomes.

    PubMed

    Akhter, Sajia; Aziz, Ramy K; Kashef, Mona T; Ibrahim, Eslam S; Bailey, Barbara; Edwards, Robert A

    2017-01-01

    The amino acid content of the proteins encoded by a genome may predict the coding potential of that genome and may reflect lifestyle restrictions of the organism. Here, we calculated the Kullback-Leibler divergence from the mean amino acid content as a metric to compare the amino acid composition for a large set of bacterial and phage genome sequences. Using these data, we demonstrate that (i) there is a significant difference between amino acid utilization in different phylogenetic groups of bacteria and phages; (ii) many of the bacteria with the most skewed amino acid utilization profiles, or the bacteria that host phages with the most skewed profiles, are endosymbionts or parasites; (iii) the skews in the distribution are not restricted to certain metabolic processes but are common across all bacterial genomic subsystems; (iv) amino acid utilization profiles strongly correlate with GC content in bacterial genomes but very weakly correlate with the G+C percent in phage genomes. These findings might be exploited to distinguish coding from non-coding sequences in large data sets, such as metagenomic sequence libraries, to help in prioritizing subsequent analyses.

  4. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas

    We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequencemore » (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less

  5. Complete Genome Sequences of Two Geographically Distinct Legionella micdadei Clinical Isolates

    PubMed Central

    Jose, Bethany R.; Perry, Jasper; Smeele, Zoe; Aitken, Jack; Gardner, Paul P.

    2017-01-01

    ABSTRACT Legionella is a highly diverse genus of intracellular bacterial pathogens that cause Legionnaire’s disease (LD), an often severe form of pneumonia. Two L. micdadei sp. clinical isolates, obtained from patients hospitalized with LD from geographically distinct areas, were sequenced using PacBio SMRT cell technology, identifying incomplete phage regions, which may impact virulence. PMID:28572318

  6. Calculating orthologs in bacteria and Archaea: a divide and conquer approach.

    PubMed

    Halachev, Mihail R; Loman, Nicholas J; Pallen, Mark J

    2011-01-01

    Among proteins, orthologs are defined as those that are derived by vertical descent from a single progenitor in the last common ancestor of their host organisms. Our goal is to compute a complete set of protein orthologs derived from all currently available complete bacterial and archaeal genomes. Traditional approaches typically rely on all-against-all BLAST searching which is prohibitively expensive in terms of hardware requirements or computational time (requiring an estimated 18 months or more on a typical server). Here, we present xBASE-Orth, a system for ongoing ortholog annotation, which applies a "divide and conquer" approach and adopts a pragmatic scheme that trades accuracy for speed. Starting at species level, xBASE-Orth carefully constructs and uses pan-genomes as proxies for the full collections of coding sequences at each level as it progressively climbs the taxonomic tree using the previously computed data. This leads to a significant decrease in the number of alignments that need to be performed, which translates into faster computation, making ortholog computation possible on a global scale. Using xBASE-Orth, we analyzed an NCBI collection of 1,288 bacterial and 94 archaeal complete genomes with more than 4 million coding sequences in 5 weeks and predicted more than 700 million ortholog pairs, clustered in 175,531 orthologous groups. We have also identified sets of highly conserved bacterial and archaeal orthologs and in so doing have highlighted anomalies in genome annotation and in the proposed composition of the minimal bacterial genome. In summary, our approach allows for scalable and efficient computation of the bacterial and archaeal ortholog annotations. In addition, due to its hierarchical nature, it is suitable for incorporating novel complete genomes and alternative genome annotations. The computed ortholog data and a continuously evolving set of applications based on it are integrated in the xBASE database, available at http://www.xbase.ac.uk/.

  7. Draft Genome Sequences of Five Enterococcus Species Isolated from the Gut of Patients with Suspected Clostridium difficile Infection

    PubMed Central

    Castro-Nallar, Eduardo; Valenzuela, Sandro L.; Baquedano, Sebastián; Sánchez, Carolina; Fernández, Fabiola

    2017-01-01

    ABSTRACT We present draft genome sequences of five Enterococcus species from patients suspected of Clostridium difficile infection. Genome completeness was confirmed by presence of bacterial orthologs (97%). Gene searches using Hidden-Markov models revealed that the isolates harbor between seven and 11 genes involved in antibiotic resistance to tetracyclines, beta-lactams, and vancomycin. PMID:28522725

  8. Complete genome sequence of Flavobacterium psychrophilum strain CSF259-93 used to select rainbow trout for increased genetic resistance against bacterial cold water disease

    USDA-ARS?s Scientific Manuscript database

    The genome sequence of Flavobacterium psychrophilum strain CSF259-93, isolated from rainbow trout (Oncorhynchus mykiss), consists of a single circular genome of 2,900,735 bp and 2,701 predicted open reading frames (ORFs). Strain CSF259-93 has been used to select a line of rainbow trout with increase...

  9. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle

    PubMed Central

    Takano, Shun-ichiro; Tuda, Midori; Takasu, Keiji; Furuya, Naruto; Imamura, Yuya; Kim, Sangwan; Tashiro, Kosuke; Iiyama, Kazuhiro; Tavares, Matias; Amaral, Acacio Cardoso

    2017-01-01

    Maternally inherited bacterial endosymbionts in arthropods manipulate host reproduction to increase the fitness of infected females. Cytoplasmic incompatibility (CI) is one such manipulation, in which uninfected females produce few or no offspring when they mate with infected males. To date, two bacterial endosymbionts, Wolbachia and Cardinium, have been reported as CI inducers. Only Wolbachia induces complete CI, which causes 100% offspring mortality in incompatible crosses. Here we report a third CI inducer that belongs to a unique clade of Alphaproteobacteria detected within the coconut beetle, Brontispa longissima. This beetle comprises two cryptic species, the Asian clade and the Pacific clade, which show incompatibility in hybrid crosses. Different bacterial endosymbionts, a unique clade of Alphaproteobacteria in the Pacific clade and Wolbachia in the Asian clade, induced bidirectional CI between hosts. The former induced complete CI (100% mortality), whereas the latter induced partial CI (70% mortality). Illumina MiSeq sequencing and denaturing gradient gel electrophoresis patterns showed that the predominant bacterium detected in the Pacific clade of B. longissima was this unique clade of Alphaproteobacteria alone, indicating that this endosymbiont was responsible for the complete CI. Sex distortion did not occur in any of the tested crosses. The 1,160 bp of 16S rRNA gene sequence obtained for this endosymbiont had only 89.3% identity with that of Wolbachia, indicating that it can be recognized as a distinct species. We discuss the potential use of this bacterium as a biological control agent. PMID:28533374

  10. Structural features of the rice chromosome 4 centromere.

    PubMed

    Zhang, Yu; Huang, Yuchen; Zhang, Lei; Li, Ying; Lu, Tingting; Lu, Yiqi; Feng, Qi; Zhao, Qiang; Cheng, Zhukuan; Xue, Yongbiao; Wing, Rod A; Han, Bin

    2004-01-01

    A complete sequence of a chromosome centromere is necessary for fully understanding centromere function. We reported the sequence structures of the first complete rice chromosome centromere through sequencing a large insert bacterial artificial chromosome clone-based contig, which covered the rice chromosome 4 centromere. Complete sequencing of the 124-kb rice chromosome 4 centromere revealed that it consisted of 18 tracts of 379 tandemly arrayed repeats known as CentO and a total of 19 centromeric retroelements (CRs) but no unique sequences were detected. Four tracts, composed of 65 CentO repeats, were located in the opposite orientation, and 18 CentO tracts were flanked by 19 retroelements. The CRs were classified into four types, and the type I retroelements appeared to be more specific to rice centromeres. The preferential insert of the CRs among CentO repeats indicated that the centromere-specific retroelements may contribute to centromere expansion during evolution. The presence of three intact retrotransposons in the centromere suggests that they may be responsible for functional centromere initiation through a transcription-mediated mechanism.

  11. The Divided Bacterial Genome: Structure, Function, and Evolution.

    PubMed

    diCenzo, George C; Finan, Turlough M

    2017-09-01

    Approximately 10% of bacterial genomes are split between two or more large DNA fragments, a genome architecture referred to as a multipartite genome. This multipartite organization is found in many important organisms, including plant symbionts, such as the nitrogen-fixing rhizobia, and plant, animal, and human pathogens, including the genera Brucella , Vibrio , and Burkholderia . The availability of many complete bacterial genome sequences means that we can now examine on a broad scale the characteristics of the different types of DNA molecules in a genome. Recent work has begun to shed light on the unique properties of each class of replicon, the unique functional role of chromosomal and nonchromosomal DNA molecules, and how the exploitation of novel niches may have driven the evolution of the multipartite genome. The aims of this review are to (i) outline the literature regarding bacterial genomes that are divided into multiple fragments, (ii) provide a meta-analysis of completed bacterial genomes from 1,708 species as a way of reviewing the abundant information present in these genome sequences, and (iii) provide an encompassing model to explain the evolution and function of the multipartite genome structure. This review covers, among other topics, salient genome terminology; mechanisms of multipartite genome formation; the phylogenetic distribution of multipartite genomes; how each part of a genome differs with respect to genomic signatures, genetic variability, and gene functional annotation; how each DNA molecule may interact; as well as the costs and benefits of this genome structure. Copyright © 2017 American Society for Microbiology.

  12. Evolution of bacterial-like phosphoprotein phosphatases in photosynthetic eukaryotes features ancestral mitochondrial or archaeal origin and possible lateral gene transfer.

    PubMed

    Uhrig, R Glen; Kerk, David; Moorhead, Greg B

    2013-12-01

    Protein phosphorylation is a reversible regulatory process catalyzed by the opposing reactions of protein kinases and phosphatases, which are central to the proper functioning of the cell. Dysfunction of members in either the protein kinase or phosphatase family can have wide-ranging deleterious effects in both metazoans and plants alike. Previously, three bacterial-like phosphoprotein phosphatase classes were uncovered in eukaryotes and named according to the bacterial sequences with which they have the greatest similarity: Shewanella-like (SLP), Rhizobiales-like (RLPH), and ApaH-like (ALPH) phosphatases. Utilizing the wealth of data resulting from recently sequenced complete eukaryotic genomes, we conducted database searching by hidden Markov models, multiple sequence alignment, and phylogenetic tree inference with Bayesian and maximum likelihood methods to elucidate the pattern of evolution of eukaryotic bacterial-like phosphoprotein phosphatase sequences, which are predominantly distributed in photosynthetic eukaryotes. We uncovered a pattern of ancestral mitochondrial (SLP and RLPH) or archaeal (ALPH) gene entry into eukaryotes, supplemented by possible instances of lateral gene transfer between bacteria and eukaryotes. In addition to the previously known green algal and plant SLP1 and SLP2 protein forms, a more ancestral third form (SLP3) was found in green algae. Data from in silico subcellular localization predictions revealed class-specific differences in plants likely to result in distinct functions, and for SLP sequences, distinctive and possibly functionally significant differences between plants and nonphotosynthetic eukaryotes. Conserved carboxyl-terminal sequence motifs with class-specific patterns of residue substitutions, most prominent in photosynthetic organisms, raise the possibility of complex interactions with regulatory proteins.

  13. [Bacterial diversity within different sections of summer sea-ice samples from the Prydz Bay, Antarctica].

    PubMed

    Ma, Jifei; Du, Zongjun; Luo, Wei; Yu, Yong; Zeng, Yixin; Chen, Bo; Li, Huirong

    2013-02-04

    In order to assess bacterial abundance and diversity within three different sections of summer sea-ice samples collected from the Prydz Bay, Antarctica. Fluorescence in situ hybridization was applied to determine the proportions of Bacteria in sea-ice. Bacterial community composition within sea ice was analyzed by 16S rRNA gene clone library construction. Correlation analysis was performed between the physicochemical parameters and the bacterial diversity and abundance within sea ice. The result of fluorescence in situ hybridization shows that bacteria were abundant in the bottom section, and the concentration of total organic carbon, total organic nitrogen and phosphate may be the main factors for bacterial abundance. In bacterial 16S rRNA gene libraries of sea-ice, nearly complete 16S rRNA gene sequences were grouped into three distinct lineages of Bacteria (gamma-Proteobacteria, alpha-Proteobacteria and Bacteroidetes). Most clone sequences were related to cultured bacterial isolates from the marine environment, arctic and Antarctic sea-ice with high similarity. The member of Bacteroidetes was not detected in the bottom section of sea-ice. The bacterial communities within sea-ice were little heterogeneous at the genus-level between different sections, and the concentration of NH4+ may cause this distribution. The number of bacteria was abundant in the bottom section of sea-ice. Gamma-proteobacteria was the dominant bacterial lineage in sea-ice.

  14. Comparative Genomic Analysis of Xanthomonas axonopodis pv. citrumelo F1, Which Causes Citrus Bacterial Spot Disease, and Related Strains Provides Insights into Virulence and Host Specificity ▿ #

    PubMed Central

    Jalan, Neha; Aritua, Valente; Kumar, Dibyendu; Yu, Fahong; Jones, Jeffrey B.; Graham, James H.; Setubal, João C.; Wang, Nian

    2011-01-01

    Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity. PMID:21908674

  15. Primer design for a prokaryotic differential display RT-PCR.

    PubMed Central

    Fislage, R; Berceanu, M; Humboldt, Y; Wendt, M; Oberender, H

    1997-01-01

    We have developed a primer set for a prokaryotic differential display of mRNA in the Enterobacteriaceae group. Each combination of ten 10mer and ten 11mer primers generates up to 85 bands from total Escherichia coli RNA, thus covering expressed sequences of a complete bacterial genome. Due to the lack of polyadenylation in prokaryotic RNA the type T11VN anchored oligonucleotides for the reverse transcriptase reaction had to be replaced with respect to the original method described by Liang and Pardee [ Science , 257, 967-971 (1992)]. Therefore, the sequences of both the 10mer and the new 11mer oligonucleotides were determined by a statistical evaluation of species-specific coding regions extracted from the EMBL database. The 11mer primers used for reverse transcription were selected for localization in the 3'-region of the bacterial RNA. The 10mer primers preferentially bind to the 5'-end of the RNA. None of the primers show homology to rRNA or other abundant small RNA species. Randomly sampled cDNA bands were checked for their bacterial origin either by re-amplification, cloning and sequencing or by re-amplification and direct sequencing with 10mer and 11mer primers after asymmetric PCR. PMID:9108168

  16. Primer design for a prokaryotic differential display RT-PCR.

    PubMed

    Fislage, R; Berceanu, M; Humboldt, Y; Wendt, M; Oberender, H

    1997-05-01

    We have developed a primer set for a prokaryotic differential display of mRNA in the Enterobacteriaceae group. Each combination of ten 10mer and ten 11mer primers generates up to 85 bands from total Escherichia coli RNA, thus covering expressed sequences of a complete bacterial genome. Due to the lack of polyadenylation in prokaryotic RNA the type T11VN anchored oligonucleotides for the reverse transcriptase reaction had to be replaced with respect to the original method described by Liang and Pardee [ Science , 257, 967-971 (1992)]. Therefore, the sequences of both the 10mer and the new 11mer oligonucleotides were determined by a statistical evaluation of species-specific coding regions extracted from the EMBL database. The 11mer primers used for reverse transcription were selected for localization in the 3'-region of the bacterial RNA. The 10mer primers preferentially bind to the 5'-end of the RNA. None of the primers show homology to rRNA or other abundant small RNA species. Randomly sampled cDNA bands were checked for their bacterial origin either by re-amplification, cloning and sequencing or by re-amplification and direct sequencing with 10mer and 11mer primers after asymmetric PCR.

  17. Status of the Microbial Census

    PubMed Central

    Schloss, Patrick D.; Handelsman, Jo

    2004-01-01

    Over the past 20 years, more than 78,000 16S rRNA gene sequences have been deposited in GenBank and the Ribosomal Database Project, making the 16S rRNA gene the most widely studied gene for reconstructing bacterial phylogeny. While there is a general appreciation that these sequences are largely unique and derived from diverse species of bacteria, there has not been a quantitative attempt to describe the extent of sequencing efforts to date. We constructed rarefaction curves for each bacterial phylum and for the entire bacterial domain to assess the current state of sampling and the relative taxonomic richness of each phylum. This analysis quantifies the general sense among microbiologists that we are a long way from a complete census of the bacteria on Earth. Moreover, the analysis indicates that current sampling strategies might not be the most effective ones to describe novel diversity because there remain numerous phyla that are globally distributed yet poorly sampled. Based on the current level of sampling, it is not possible to estimate the total number of bacterial species on Earth, but the minimum species richness is 35,498. Considering previous global species richness estimates of 107 to 109, we are certain that this estimate will increase with additional sequencing efforts. The data support previous calls for extensive surveys of multiple chemically disparate environments and of specific phylogenetic groups to advance the census most rapidly. PMID:15590780

  18. PathogenFinder--distinguishing friend from foe using bacterial whole genome sequence data.

    PubMed

    Cosentino, Salvatore; Voldby Larsen, Mette; Møller Aarestrup, Frank; Lund, Ole

    2013-01-01

    Although the majority of bacteria are harmless or even beneficial to their host, others are highly virulent and can cause serious diseases, and even death. Due to the constantly decreasing cost of high-throughput sequencing there are now many completely sequenced genomes available from both human pathogenic and innocuous strains. The data can be used to identify gene families that correlate with pathogenicity and to develop tools to predict the pathogenicity of newly sequenced strains, investigations that previously were mainly done by means of more expensive and time consuming experimental approaches. We describe PathogenFinder (http://cge.cbs.dtu.dk/services/PathogenFinder/), a web-server for the prediction of bacterial pathogenicity by analysing the input proteome, genome, or raw reads provided by the user. The method relies on groups of proteins, created without regard to their annotated function or known involvement in pathogenicity. The method has been built to work with all taxonomic groups of bacteria and using the entire training-set, achieved an accuracy of 88.6% on an independent test-set, by correctly classifying 398 out of 449 completely sequenced bacteria. The approach here proposed is not biased on sets of genes known to be associated with pathogenicity, thus the approach could aid the discovery of novel pathogenicity factors. Furthermore the pathogenicity prediction web-server could be used to isolate the potential pathogenic features of both known and unknown strains.

  19. Reducing assembly complexity of microbial genomes with single-molecule sequencing.

    PubMed

    Koren, Sergey; Harhay, Gregory P; Smith, Timothy P L; Bono, James L; Harhay, Dayna M; Mcvey, Scott D; Radune, Diana; Bergman, Nicholas H; Phillippy, Adam M

    2013-01-01

    The short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem. To measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads. Automated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to $1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.

  20. Complete Genome Sequence of a New Firmicutes Species Isolated from Anaerobic Biomass Hydrolysis.

    PubMed

    Abendroth, Christian; Hahnke, Sarah; Codoñer, Francisco M; Klocke, Michael; Luschnig, Olaf; Porcar, Manuel

    2017-10-05

    A new Firmicutes isolate, strain HV4-6-A5C, was obtained from the hydrolysis stage of a mesophilic and anaerobic two-stage lab-scale leach-bed system for biomethanation of fresh grass. It is assumed that the bacterial isolate contributes to plant biomass degradation. Here, we report a draft annotated genome sequence of this organism. Copyright © 2017 Abendroth et al.

  1. MOSAIC: an online database dedicated to the comparative genomics of bacterial strains at the intra-species level.

    PubMed

    Chiapello, Hélène; Gendrault, Annie; Caron, Christophe; Blum, Jérome; Petit, Marie-Agnès; El Karoui, Meriem

    2008-11-27

    The recent availability of complete sequences for numerous closely related bacterial genomes opens up new challenges in comparative genomics. Several methods have been developed to align complete genomes at the nucleotide level but their use and the biological interpretation of results are not straightforward. It is therefore necessary to develop new resources to access, analyze, and visualize genome comparisons. Here we present recent developments on MOSAIC, a generalist comparative bacterial genome database. This database provides the bacteriologist community with easy access to comparisons of complete bacterial genomes at the intra-species level. The strategy we developed for comparison allows us to define two types of regions in bacterial genomes: backbone segments (i.e., regions conserved in all compared strains) and variable segments (i.e., regions that are either specific to or variable in one of the aligned genomes). Definition of these segments at the nucleotide level allows precise comparative and evolutionary analyses of both coding and non-coding regions of bacterial genomes. Such work is easily performed using the MOSAIC Web interface, which allows browsing and graphical visualization of genome comparisons. The MOSAIC database now includes 493 pairwise comparisons and 35 multiple maximal comparisons representing 78 bacterial species. Genome conserved regions (backbones) and variable segments are presented in various formats for further analysis. A graphical interface allows visualization of aligned genomes and functional annotations. The MOSAIC database is available online at http://genome.jouy.inra.fr/mosaic.

  2. dBBQs: dataBase of Bacterial Quality scores.

    PubMed

    Wanchai, Visanu; Patumcharoenpol, Preecha; Nookaew, Intawat; Ussery, David

    2017-12-28

    It is well-known that genome sequencing technologies are becoming significantly cheaper and faster. As a result of this, the exponential growth in sequencing data in public databases allows us to explore ever growing large collections of genome sequences. However, it is less known that the majority of available sequenced genome sequences in public databases are not complete, drafts of varying qualities. We have calculated quality scores for around 100,000 bacterial genomes from all major genome repositories and put them in a fast and easy-to-use database. Prokaryotic genomic data from all sources were collected and combined to make a non-redundant set of bacterial genomes. The genome quality score for each was calculated by four different measurements: assembly quality, number of rRNA and tRNA genes, and the occurrence of conserved functional domains. The dataBase of Bacterial Quality scores (dBBQs) was designed to store and retrieve quality scores. It offers fast searching and download features which the result can be used for further analysis. In addition, the search results are shown in interactive JavaScript chart framework using DC.js. The analysis of quality scores across major public genome databases find that around 68% of the genomes are of acceptable quality for many uses. dBBQs (available at http://arc-gem.uams.edu/dbbqs ) provides genome quality scores for all available prokaryotic genome sequences with a user-friendly Web-interface. These scores can be used as cut-offs to get a high-quality set of genomes for testing bioinformatics tools or improving the analysis. Moreover, all data of the four measurements that were combined to make the quality score for each genome, which can potentially be used for further analysis. dBBQs will be updated regularly and is freely use for non-commercial purpose.

  3. Recovery of infectious virus from full-length cowpox virus (CPXV) DNA cloned as a bacterial artificial chromosome (BAC)

    PubMed Central

    2011-01-01

    Transmission from pet rats and cats to humans as well as severe infection in felids and other animal species have recently drawn increasing attention to cowpox virus (CPXV). We report the cloning of the entire genome of cowpox virus strain Brighton Red (BR) as a bacterial artificial chromosome (BAC) in Escherichia coli and the recovery of infectious virus from cloned DNA. Generation of a full-length CPXV DNA clone was achieved by first introducing a mini-F vector, which allows maintenance of large circular DNA in E. coli, into the thymidine kinase locus of CPXV by homologous recombination. Circular replication intermediates were then electroporated into E. coli DH10B cells. Upon successful establishment of the infectious BR clone, we modified the full-length clone such that recombination-mediated excision of bacterial sequences can occur upon transfection in eukaryotic cells. This self-excision of the bacterial replicon is made possible by a sequence duplication within mini-F sequences and allows recovery of recombinant virus progeny without remaining marker or vector sequences. The in vitro growth properties of viruses derived from both BAC clones were determined and found to be virtually indistinguishable from those of parental, wild-type BR. Finally, the complete genomic sequence of the infectious clone was determined and the cloned viral genome was shown to be identical to that of the parental virus. In summary, the generated infectious clone will greatly facilitate studies on individual genes and pathogenesis of CPXV. Moreover, the vector potential of CPXV can now be more systematically explored using this newly generated tool. PMID:21314965

  4. One Bacterial Cell, One Complete Genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated frommore » the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.« less

  5. Effectiveness of the standard and an alternative set of Streptococcus pneumoniae multi locus sequence typing primers.

    PubMed

    Adamiak, Paul; Vanderkooi, Otto G; Kellner, James D; Schryvers, Anthony B; Bettinger, Julie A; Alcantara, Joenel

    2014-06-03

    Multi-locus sequence typing (MLST) is a portable, broadly applicable method for classifying bacterial isolates at an intra-species level. This methodology provides clinical and scientific investigators with a standardized means of monitoring evolution within bacterial populations. MLST uses the DNA sequences from a set of genes such that each unique combination of sequences defines an isolate's sequence type. In order to reliably determine the sequence of a typing gene, matching sequence reads for both strands of the gene must be obtained. This study assesses the ability of both the standard, and an alternative set of, Streptococcus pneumoniae MLST primers to completely sequence, in both directions, the required typing alleles. The results demonstrated that for five (aroE, recP, spi, xpt, ddl) of the seven S. pneumoniae typing alleles, the standard primers were unable to obtain the complete forward and reverse sequences. This is due to the standard primers annealing too closely to the target regions, and current sequencing technology failing to sequence the bases that are too close to the primer. The alternative primer set described here, which includes a combination of primers proposed by the CDC and several designed as part of this study, addresses this limitation by annealing to highly conserved segments further from the target region. This primer set was subsequently employed to sequence type 105 S. pneumoniae isolates collected by the Canadian Immunization Monitoring Program ACTive (IMPACT) over a period of 18 years. The inability of several of the standard S. pneumoniae MLST primers to fully sequence the required region was consistently observed and is the result of a shift in sequencing technology occurring after the original primers were designed. The results presented here introduce clear documentation describing this phenomenon into the literature, and provide additional guidance, through the introduction of a widely validated set of alternative primers, to research groups seeking to undertake S. pneumoniae MLST based studies.

  6. Permanent draft genome sequence of Comamonas testosteroni KF-1

    PubMed Central

    Weiss, Michael; Kesberg, Anna I.; LaButti, Kurt M.; Pitluck, Sam; Bruce, David; Hauser, Loren; Copeland, Alex; Woyke, Tanja; Lowry, Stephen; Lucas, Susan; Land, Miriam; Goodwin, Lynne; Kjelleberg, Staffan; Cook, Alasdair M.; Buhmann, Matthias; Thomas, Torsten; Schleheck, David

    2013-01-01

    Comamonas testosteroni KF-1 is a model organism for the elucidation of the novel biochemical degradation pathways for xenobiotic 4-sulfophenylcarboxylates (SPC) formed during biodegradation of synthetic 4-sulfophenylalkane surfactants (linear alkylbenzenesulfonates, LAS) by bacterial communities. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 6,026,527 bp long chromosome (one sequencing gap) exhibits an average G+C content of 61.79% and is predicted to encode 5,492 protein-coding genes and 114 RNA genes. PMID:23991256

  7. Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

    PubMed

    Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi

    2017-07-01

    PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.

  8. The methylome and virulence of bovine respiratory disease bacterial pathogens

    USDA-ARS?s Scientific Manuscript database

    With the advent of single molecule, real-time (SMRT®) sequencing, it is now possible to study complete microbial epigenomes. It has been known for decades that methylation and other types of epigenetic modifications in bacteria are responsible for much more than restriction-modification mechanics, b...

  9. Raw Cow Milk Bacterial Population Shifts Attributable to Refrigeration

    PubMed Central

    Lafarge, Véronique; Ogier, Jean-Claude; Girard, Victoria; Maladen, Véronique; Leveau, Jean-Yves; Gruss, Alexandra; Delacroix-Buchet, Agnès

    2004-01-01

    We monitored the dynamic changes in the bacterial population in milk associated with refrigeration. Direct analyses of DNA by using temporal temperature gel electrophoresis (TTGE) and denaturing gradient gel electrophoresis (DGGE) allowed us to make accurate species assignments for bacteria with low-GC-content (low-GC%) (<55%) and medium- or high-GC% (>55%) genomes, respectively. We examined raw milk samples before and after 24-h conservation at 4°C. Bacterial identification was facilitated by comparison with an extensive bacterial reference database (∼150 species) that we established with DNA fragments of pure bacterial strains. Cloning and sequencing of fragments missing from the database were used to achieve complete species identification. Considerable evolution of bacterial populations occurred during conservation at 4°C. TTGE and DGGE are shown to be a powerful tool for identifying the main bacterial species of the raw milk samples and for monitoring changes in bacterial populations during conservation at 4°C. The emergence of psychrotrophic bacteria such as Listeria spp. or Aeromonas hydrophila is demonstrated. PMID:15345453

  10. Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinION™ portable nanopore sequencer

    PubMed Central

    Sanz, Yolanda

    2017-01-01

    Abstract The miniaturized and portable DNA sequencer MinION™ has demonstrated great potential in different analyses such as genome-wide sequencing, pathogen outbreak detection and surveillance, human genome variability, and microbial diversity. In this study, we tested the ability of the MinION™ platform to perform long amplicon sequencing in order to design new approaches to study microbial diversity using a multi-locus approach. After compiling a robust database by parsing and extracting the rrn bacterial region from more than 67000 complete or draft bacterial genomes, we demonstrated that the data obtained during sequencing of the long amplicon in the MinION™ device using R9 and R9.4 chemistries were sufficient to study 2 mock microbial communities in a multiplex manner and to almost completely reconstruct the microbial diversity contained in the HM782D and D6305 mock communities. Although nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, we presented a novel approach consisting of multi-locus and long amplicon sequencing using the MinION™ MkIb DNA sequencer and R9 and R9.4 chemistries that help to overcome the main disadvantage of this portable sequencing platform. Furthermore, the nanopore sequencing library, constructed with the last releases of pore chemistry (R9.4) and sequencing kit (SQK-LSK108), permitted the retrieval of the higher level of 1D read accuracy sufficient to characterize the microbial species present in each mock community analysed. Improvements in nanopore chemistry, such as minimizing base-calling errors and new library protocols able to produce rapid 1D libraries, will provide more reliable information in the near future. Such data will be useful for more comprehensive and faster specific detection of microbial species and strains in complex ecosystems. PMID:28605506

  11. The complete annotated genome sequences of three Campylobacter jejuni strains isolated from naturally colonized, farm raised chickens

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of bacterially derived foodborne illness worldwide. Human illness is commonly associated with handling and consumption of contaminated poultry products. Three C. jejuni strains were isolated from cecal contents of three different naturally colonized, farm rais...

  12. Complete genome sequence of Clavibacter michiganensis subsp. insidiosus

    USDA-ARS?s Scientific Manuscript database

    Clavibacter michiganensis subsp. insidiosus (Cmi) causes bacterial wilt disease of alfalfa (Medicago sativa L.) and can also infect the model legume plant M. truncatula. The virulence mechanisms of Cmi are yet to be identified, hampered by the lack of efficient mutagenesis tools as well as by the la...

  13. Complexity: an internet resource for analysis of DNA sequence complexity

    PubMed Central

    Orlov, Y. L.; Potapov, V. N.

    2004-01-01

    The search for DNA regions with low complexity is one of the pivotal tasks of modern structural analysis of complete genomes. The low complexity may be preconditioned by strong inequality in nucleotide content (biased composition), by tandem or dispersed repeats or by palindrome-hairpin structures, as well as by a combination of all these factors. Several numerical measures of textual complexity, including combinatorial and linguistic ones, together with complexity estimation using a modified Lempel–Ziv algorithm, have been implemented in a software tool called ‘Complexity’ (http://wwwmgs.bionet.nsc.ru/mgs/programs/low_complexity/). The software enables a user to search for low-complexity regions in long sequences, e.g. complete bacterial genomes or eukaryotic chromosomes. In addition, it estimates the complexity of groups of aligned sequences. PMID:15215465

  14. Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data.

    PubMed

    Robinson, Kelly M; Crabtree, Jonathan; Mattick, John S A; Anderson, Kathleen E; Dunning Hotopp, Julie C

    2017-01-25

    A variety of bacteria are known to influence carcinogenesis. Therefore, we sought to investigate if publicly available whole genome and whole transcriptome sequencing data generated by large public cancer genome efforts, like The Cancer Genome Atlas (TCGA), could be used to identify bacteria associated with cancer. The Burrows-Wheeler aligner (BWA) was used to align a subset of Illumina paired-end sequencing data from TCGA to the human reference genome and all complete bacterial genomes in the RefSeq database in an effort to identify bacterial read pairs from the microbiome. Through careful consideration of all of the bacterial taxa present in the cancer types investigated, their relative abundance, and batch effects, we were able to identify some read pairs from certain taxa as likely resulting from contamination. In particular, the presence of Mycobacterium tuberculosis complex in the ovarian serous cystadenocarcinoma (OV) and glioblastoma multiforme (GBM) samples was correlated with the sequencing center of the samples. Additionally, there was a correlation between the presence of Ralstonia spp. and two specific plates of acute myeloid leukemia (AML) samples. At the end, associations remained between Pseudomonas-like and Acinetobacter-like read pairs in AML, and Pseudomonas-like read pairs in stomach adenocarcinoma (STAD) that could not be explained through batch effects or systematic contamination as seen in other samples. This approach suggests that it is possible to identify bacteria that may be present in human tumor samples from public genome sequencing data that can be examined further experimentally. More weight should be given to this approach in the future when bacterial associations with diseases are suspected.

  15. SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.

    PubMed

    Johnson, Benjamin K; Scholz, Matthew B; Teal, Tracy K; Abramovitch, Robert B

    2016-02-04

    Many tools exist in the analysis of bacterial RNA sequencing (RNA-seq) transcriptional profiling experiments to identify differentially expressed genes between experimental conditions. Generally, the workflow includes quality control of reads, mapping to a reference, counting transcript abundance, and statistical tests for differentially expressed genes. In spite of the numerous tools developed for each component of an RNA-seq analysis workflow, easy-to-use bacterially oriented workflow applications to combine multiple tools and automate the process are lacking. With many tools to choose from for each step, the task of identifying a specific tool, adapting the input/output options to the specific use-case, and integrating the tools into a coherent analysis pipeline is not a trivial endeavor, particularly for microbiologists with limited bioinformatics experience. To make bacterial RNA-seq data analysis more accessible, we developed a Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis (SPARTA). SPARTA is a reference-based bacterial RNA-seq analysis workflow application for single-end Illumina reads. SPARTA is turnkey software that simplifies the process of analyzing RNA-seq data sets, making bacterial RNA-seq analysis a routine process that can be undertaken on a personal computer or in the classroom. The easy-to-install, complete workflow processes whole transcriptome shotgun sequencing data files by trimming reads and removing adapters, mapping reads to a reference, counting gene features, calculating differential gene expression, and, importantly, checking for potential batch effects within the data set. SPARTA outputs quality analysis reports, gene feature counts and differential gene expression tables and scatterplots. SPARTA provides an easy-to-use bacterial RNA-seq transcriptional profiling workflow to identify differentially expressed genes between experimental conditions. This software will enable microbiologists with limited bioinformatics experience to analyze their data and integrate next generation sequencing (NGS) technologies into the classroom. The SPARTA software and tutorial are available at sparta.readthedocs.org.

  16. Lights, Camera, Action! Antimicrobial Peptide Mechanisms Imaged in Space and Time

    PubMed Central

    Choi, Heejun; Rangarajan, Nambirajan; Weisshaar, James C.

    2015-01-01

    Deeper understanding of the bacteriostatic and bactericidal mechanisms of antimicrobial peptides (AMPs) should help in the design of new antibacterial agents. Over several decades, a variety of biochemical assays have been applied to bulk bacterial cultures. While some of these bulk assays provide time resolution on the order of 1 min, they do not capture faster mechanistic events. Nor can they provide subcellular spatial information or discern cell-to-cell heterogeneity within the bacterial population. Single-cell, time-resolved imaging assays bring a completely new spatiotemporal dimension to AMP mechanistic studies. We review recent work that provides new insights into the timing, sequence, and spatial distribution of AMP-induced effects on bacterial cells. PMID:26691950

  17. Molecular Identification of Bacteria from Aseptically Loose Implants

    PubMed Central

    Kobayashi, Naomi; Procop, Gary W.; Krebs, Viktor; Kobayashi, Hideo

    2008-01-01

    Polymerase chain reaction (PCR) assays have been used to detect bacteria adherent to failed orthopaedic implants, but some PCR assays have had problems with probable false-positive results. We used a combination of a Staphylococcus species-specific PCR and a universal PCR followed by DNA sequencing to identify bacteria on implants retrieved from 52 patients (92 implants) at revision arthroplasty. We addressed two questions in this study: (1) Is this method able to show the existence of bacterial DNA on presumed aseptic loosed implants?; and (2) What proportion of presumed aseptic or culture-negative implants was positive for bacterial DNA by PCR? Fourteen implants (15%) were believed infected, whereas 74 implants (85%) were believed aseptic. Each implant was sonicated and the resulting solution was submitted for dual real-time PCR assay and culture. All implants believed aseptically loose were culture-negative, but nine of the 74 (12%) had bacterial DNA by PCR; two (2.7%) were PCR-positive and also showed histologic findings suggestive of infection. Uniquely developed PCR and bacterial sequencing assays showed bacterial DNA on 12% of implants removed for presumed aseptic loosening. Additional studies are needed to determine the clinical importance of bacterial DNA detected by PCR but not by conventional culture. Level of Evidence: Level III, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18438724

  18. Bacterial microbiota of Kazakhstan cheese revealed by single molecule real time (SMRT) sequencing and its comparison with Belgian, Kalmykian and Italian artisanal cheeses.

    PubMed

    Li, Jing; Zheng, Yi; Xu, Haiyan; Xi, Xiaoxia; Hou, Qiangchuan; Feng, Shuzhen; Wuri, Laga; Bian, Yanfei; Yu, Zhongjie; Kwok, Lai-Yu; Sun, Zhihong; Sun, Tiansong

    2017-01-09

    In Kazakhstan, traditional artisanal cheeses have a long history and are widely consumed. The unique characteristics of local artisanal cheeses are almost completely preserved. However, their microbial communities have rarely been reported. The current study firstly generated the Single Molecule, Real-Time (SMRT) sequencing bacterial diversity profiles of 6 traditional artisanal cheese samples of Kazakhstan origin, followed by comparatively analyzed the microbiota composition between the current dataset and those from cheeses originated from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy. Across the Kazakhstan cheese samples, a total of 238 bacterial species belonging to 14 phyla and 140 genera were identified. Lactococcus lactis (28.93%), Lactobacillus helveticus (26.43%), Streptococcus thermophilus (12.18%) and Lactobacillus delbrueckii (12.15%) were the dominant bacterial species for these samples. To further evaluate the cheese bacterial diversity of Kazakhstan cheeses in comparison with those from other geographic origins, 16S rRNA datasets of 36 artisanal cheeses from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy were retrieved from public databases. The cheese bacterial microbiota communities were largely different across sample origins. By principal coordinate analysis (PCoA) and multivariate analysis of variance (MANOVA), the structure of the Kazakhstan artisanal cheese samples was found to be different from those of the other geographic origins. Furthermore, the redundancy analysis (RDA) identified 16 bacterial OTUs as the key variables responsible for such microbiota structural difference. Our results together suggest that the diversity of bacterial communities in different groups is stratified by geographic region. This study does not only provide novel information on the bacterial microbiota of traditional artisanal cheese of Kazakhstan at species level, but also interesting insights into the bacterial diversity of artisanal cheeses of various geographical origins.

  19. Toward Understanding Phage:Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria

    PubMed Central

    Gilbert, Rosalind A.; Kelly, William J.; Altermann, Eric; Leahy, Sinead C.; Minchin, Catherine; Ouwerkerk, Diane; Klieve, Athol V.

    2017-01-01

    The rumen is known to harbor dense populations of bacteriophages (phages) predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome. PMID:29259581

  20. Complete genome sequence of the fish pathogen Flavobacterium columnare strain C#2

    USDA-ARS?s Scientific Manuscript database

    Flavobacterium columnare is a Gram-negative bacterial pathogen that causes columnaris disease of freshwater fish. Flavobacterium columnare strain C#2 was isolated from a diseased warm water fish and is typed as genomovar II. The genome consists of a single 3.33 Mb circular chromosome with 2,689 pred...

  1. Modified RNA-seq method for microbial community and diversity analysis using rRNA in different types of environmental samples

    PubMed Central

    Yan, Yong-Wei; Zou, Bin; Zhu, Ting; Hozzein, Wael N.

    2017-01-01

    RNA-seq-based SSU (small subunit) rRNA (ribosomal RNA) analysis has provided a better understanding of potentially active microbial community within environments. However, for RNA-seq library construction, high quantities of purified RNA are typically required. We propose a modified RNA-seq method for SSU rRNA-based microbial community analysis that depends on the direct ligation of a 5’ adaptor to RNA before reverse-transcription. The method requires only a low-input quantity of RNA (10–100 ng) and does not require a DNA removal step. The method was initially tested on three mock communities synthesized with enriched SSU rRNA of archaeal, bacterial and fungal isolates at different ratios, and was subsequently used for environmental samples of high or low biomass. For high-biomass salt-marsh sediments, enriched SSU rRNA and total nucleic acid-derived RNA-seq datasets revealed highly consistent community compositions for all of the SSU rRNA sequences, and as much as 46.4%-59.5% of 16S rRNA sequences were suitable for OTU (operational taxonomic unit)-based community and diversity analyses with complete coverage of V1-V2 regions. OTU-based community structures for the two datasets were also highly consistent with those determined by all of the 16S rRNA reads. For low-biomass samples, total nucleic acid-derived RNA-seq datasets were analyzed, and highly active bacterial taxa were also identified by the OTU-based method, notably including members of the previously underestimated genus Nitrospira and phylum Acidobacteria in tap water, members of the phylum Actinobacteria on a shower curtain, and members of the phylum Cyanobacteria on leaf surfaces. More than half of the bacterial 16S rRNA sequences covered the complete region of primer 8F, and non-coverage rates as high as 38.7% were obtained for phylum-unclassified sequences, providing many opportunities to identify novel bacterial taxa. This modified RNA-seq method will provide a better snapshot of diverse microbial communities, most notably by OTU-based analysis, even communities with low-biomass samples. PMID:29016661

  2. Endosymbiont Dominated Bacterial Communities in a Dwarf Spider

    PubMed Central

    Vanthournout, Bram; Hendrickx, Frederik

    2015-01-01

    The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order. PMID:25706947

  3. Whole-genome sequencing in bacteriology: state of the art

    PubMed Central

    Dark, Michael J

    2013-01-01

    Over the last ten years, genome sequencing capabilities have expanded exponentially. There have been tremendous advances in sequencing technology, DNA sample preparation, genome assembly, and data analysis. This has led to advances in a number of facets of bacterial genomics, including metagenomics, clinical medicine, bacterial archaeology, and bacterial evolution. This review examines the strengths and weaknesses of techniques in bacterial genome sequencing, upcoming technologies, and assembly techniques, as well as highlighting recent studies that highlight new applications for bacterial genomics. PMID:24143115

  4. Sequence and Analysis of the Tomato JOINTLESS Locus1

    PubMed Central

    Mao, Long; Begum, Dilara; Goff, Stephen A.; Wing, Rod A.

    2001-01-01

    A 119-kb bacterial artificial chromosome from the JOINTLESS locus on the tomato (Lycopersicon esculentum) chromosome 11 contained 15 putative genes. Repetitive sequences in this region include one copia-like LTR retrotransposon, 13 simple sequence repeats, three copies of a novel type III foldback transposon, and four putative short DNA repeats. Database searches showed that the foldback transposon and the short DNA repeats seemed to be associated preferably with genes. The predicted tomato genes were compared with the complete Arabidopsis genome. Eleven out of 15 tomato open reading frames were found to be colinear with segments on five Arabidopsis bacterial artificial chromosome/P1-derived artificial chromosome clones. The synteny patterns, however, did not reveal duplicated segments in Arabidopsis, where over half of the genome is duplicated. Our analysis indicated that the microsynteny between the tomato and Arabidopsis genomes was still conserved at a very small scale but was complicated by the large number of gene families in the Arabidopsis genome. PMID:11457984

  5. Complete genome sequence of Polynucleobacter necessarius subsp. asymbioticus type strain (QLW-P1DMWA-1T)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meincke, Linda; Copeland, A; Lapidus, Alla L.

    2012-01-01

    Polynucleobacter necessarius subsp. asymbioticus Hahn et al. 2009 is one of currently two subspecies of P. necessarius. While P. necessarius subsp. asymbioticus is a free-living bacterium, the closely related second subspecies, P. necessarius subsp. necessarius is an obligate endosymbiont living in the cytoplasm of freshwater ciliates of the genus Euplotes aediculatus. The two P. necessarius subspecies were the closest thus far reported phylogenetic neighbors that differ in their lifestyle as obligately free-living vs. obligate endosymbiontic, and they are the only members of the genus Polynucleobacter with completely sequenced genomes. The genome-sequenced strain represents a group of closely related strains notmore » distinguishable by 16S rRNA, 16S-23S ITS or glnA sequences, which is persistent in the home habitat of the strain and frequently contributes > 10% of total bacterial numbers in water samples of the habitat. The 2,159,490 bp long chromosome with a total of 2,088 protein-coding and 48 RNA genes was sequenced as part of the DOE Joint Genome Institute Community Sequencing Program 2006.« less

  6. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life.

    PubMed

    Parks, Donovan H; Rinke, Christian; Chuvochina, Maria; Chaumeil, Pierre-Alain; Woodcroft, Ben J; Evans, Paul N; Hugenholtz, Philip; Tyson, Gene W

    2017-11-01

    Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by >30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter.

  7. Development of a Single Locus Sequence Typing (SLST) Scheme for Typing Bacterial Species Directly from Complex Communities.

    PubMed

    Scholz, Christian F P; Jensen, Anders

    2017-01-01

    The protocol describes a computational method to develop a Single Locus Sequence Typing (SLST) scheme for typing bacterial species. The resulting scheme can be used to type bacterial isolates as well as bacterial species directly from complex communities using next-generation sequencing technologies.

  8. Unraveling bacterial fingerprints of city subways from microbiome 16S gene profiles.

    PubMed

    Walker, Alejandro R; Grimes, Tyler L; Datta, Somnath; Datta, Susmita

    2018-05-22

    Microbial communities can be location specific, and the abundance of species within locations can influence our ability to determine whether a sample belongs to one city or another. As part of the 2017 CAMDA MetaSUB Inter-City Challenge, next generation sequencing (NGS) data was generated from swipe samples collected from subway stations in Boston, New York City hereafter New York, and Sacramento. DNA was extracted and Illumina sequenced. Sequencing data was provided for all cities as part of 2017 CAMDA contest challenge dataset. Principal component analysis (PCA) showed clear clustering of the samples for the three cities, with a substantial proportion of the variance explained by the first three components. We ran two different classifiers and results were robust for error rate (< 6%) and accuracy (> 95%). The analysis of variance (ANOVA) demonstrated that overall, bacterial composition across the three cities is significantly different. A similar conclusion was reached using a novel bootstrap based test using diversity indices. Last but not least, a co-abundance association network analyses for the taxonomic levels "order", "family", and "genus" found different patterns of bacterial networks for the three cities. Bacterial fingerprint can be useful to predict sample provenance. In this work prediction of provenance reported with over 95% accuracy. Association based network analysis, emphasized similarities between the closest cities sharing common bacterial composition. ANOVA showed different patterns of bacterial amongst cities, and these findings strongly suggest that bacterial signature across multiple cities are different. This work advocates a data analysis pipeline which could be followed in order to get biological insight from this data. However, the biological conclusions from this analysis is just an early indication out of a pilot microbiome data provided to us through CAMDA 2017 challenge and will be subject to change as we get more complete data sets in the near future. This microbiome data can have potential applications in forensics, ecology, and other sciences. This article was reviewed by Klas Udekwu, Alexandra Graf, and Rafal Mostowy.

  9. Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland.

    PubMed

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    Bacterial diversity in alkaline (pH 10.4) and permanently cold (4 degrees C) ikaite tufa columns from the Ikka Fjord, SW Greenland, was investigated using growth characterization of cultured bacterial isolates with Terminal-restriction fragment length polymorphism (T-RFLP) and sequence analysis of bacterial 16S rRNA gene fragments. More than 200 bacterial isolates were characterized with respect to pH and temperature tolerance, and it was shown that the majority were cold-active alkaliphiles. T-RFLP analysis revealed distinct bacterial communities in different fractions of three ikaite columns, and, along with sequence analysis, it showed the presence of rich and diverse bacterial communities. Rarefaction analysis showed that the 109 sequenced clones in the 16S rRNA gene library represented between 25 and 65% of the predicted species richness in the three ikaite columns investigated. Phylogenetic analysis of the 16S rRNA gene sequences revealed many sequences with similarity to alkaliphilic or psychrophilic bacteria, and showed that 33% of the cloned sequences and 33% of the cultured bacteria showed less than 97% sequence identity to known sequences in databases, and may therefore represent yet unknown species.

  10. Inability of Prevotella bryantii to Form a Functional Shine-Dalgarno Interaction Reflects Unique Evolution of Ribosome Binding Sites in Bacteroidetes

    PubMed Central

    Accetto, Tomaž; Avguštin, Gorazd

    2011-01-01

    The Shine-Dalgarno (SD) sequence is a key element directing the translation to initiate at the authentic start codons and also enabling translation initiation to proceed in 5′ untranslated mRNA regions (5′-UTRs) containing moderately strong secondary structures. Bioinformatic analysis of almost forty genomes from the major bacterial phylum Bacteroidetes revealed, however, a general absence of SD sequence, drop in GC content and consequently reduced tendency to form secondary structures in 5′-UTRs. The experiments using the Prevotella bryantii TC1-1 expression system were in agreement with these findings: neither addition nor omission of SD sequence in the unstructured 5′-UTR affected the level of the reporter protein, non-specific nuclease NucB. Further, NucB level in P. bryantii TC1-1, contrary to hMGFP level in Escherichia coli, was five times lower when SD sequence formed part of the secondary structure with a folding energy -5,2 kcal/mol. Also, the extended SD sequences did not affect protein levels as in E. coli. It seems therefore that a functional SD interaction does not take place during the translation initiation in P. bryanttii TC1-1 and possibly other members of phylum Bacteroidetes although the anti SD sequence is present in 16S rRNA genes of their genomes. We thus propose that in the absence of the SD sequence interaction, the selection of genuine start codons in Bacteroidetes is accomplished by binding of ribosomal protein S1 to unstructured 5′-UTR as opposed to coding region which is inaccessible due to mRNA secondary structure. Additionally, we found that sequence logos of region preceding the start codons may be used as taxonomical markers. Depending on whether complete sequence logo or only part of it, such as information content and base proportion at specific positions, is used, bacterial genera or families and in some cases even bacterial phyla can be distinguished. PMID:21857964

  11. Construction of random sheared fosmid library from Chinese cabbage and its use for Brassica rapa genome sequencing project.

    PubMed

    Park, Tae-Ho; Park, Beom-Seok; Kim, Jin-A; Hong, Joon Ki; Jin, Mina; Seol, Young-Joo; Mun, Jeong-Hwan

    2011-01-01

    As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa. Copyright © 2011. Published by Elsevier Ltd.

  12. The COG database: a tool for genome-scale analysis of protein functions and evolution

    PubMed Central

    Tatusov, Roman L.; Galperin, Michael Y.; Natale, Darren A.; Koonin, Eugene V.

    2000-01-01

    Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes (http://www.ncbi.nlm.nih.gov/COG ). The COGs were constructed by applying the criterion of consistency of genome-specific best hits to the results of an exhaustive comparison of all protein sequences from these genomes. The database comprises 2091 COGs that include 56–83% of the gene products from each of the complete bacterial and archaeal genomes and ~35% of those from the yeast Saccharomyces cerevisiae genome. The COG database is accompanied by the COGNITOR program that is used to fit new proteins into the COGs and can be applied to functional and phylogenetic annotation of newly sequenced genomes. PMID:10592175

  13. A Deeply Branching Thermophilic Bacterium with an Ancient Acetyl-CoA Pathway Dominates a Subsurface Ecosystem

    PubMed Central

    Takami, Hideto; Noguchi, Hideki; Takaki, Yoshihiro; Uchiyama, Ikuo; Toyoda, Atsushi; Nishi, Shinro; Chee, Gab-Joo; Arai, Wataru; Nunoura, Takuro; Itoh, Takehiko; Hattori, Masahira; Takai, Ken

    2012-01-01

    A nearly complete genome sequence of Candidatus ‘Acetothermum autotrophicum’, a presently uncultivated bacterium in candidate division OP1, was revealed by metagenomic analysis of a subsurface thermophilic microbial mat community. Phylogenetic analysis based on the concatenated sequences of proteins common among 367 prokaryotes suggests that Ca. ‘A. autotrophicum’ is one of the earliest diverging bacterial lineages. It possesses a folate-dependent Wood-Ljungdahl (acetyl-CoA) pathway of CO2 fixation, is predicted to have an acetogenic lifestyle, and possesses the newly discovered archaeal-autotrophic type of bifunctional fructose 1,6-bisphosphate aldolase/phosphatase. A phylogenetic analysis of the core gene cluster of the acethyl-CoA pathway, shared by acetogens, methanogens, some sulfur- and iron-reducers and dechlorinators, supports the hypothesis that the core gene cluster of Ca. ‘A. autotrophicum’ is a particularly ancient bacterial pathway. The habitat, physiology and phylogenetic position of Ca. ‘A. autotrophicum’ support the view that the first bacterial and archaeal lineages were H2-dependent acetogens and methanogenes living in hydrothermal environments. PMID:22303444

  14. Sequence characterization of 5S ribosomal RNA from eight gram positive procaryotes

    NASA Technical Reports Server (NTRS)

    Woese, C. R.; Luehrsen, K. R.; Pribula, C. D.; Fox, G. E.

    1976-01-01

    Complete nucleotide sequences are presented for 5S rRNA from Bacillus subtilis, B. firmus, B. pasteurii, B. brevis, Lactobacillus brevis, and Streptococcus faecalis, and 5S rRNA oligonucleotide catalogs and partial sequence data are given for B. cereus and Sporosarcina ureae. These data demonstrate a striking consistency of 5S rRNA primary and secondary structure within a given bacterial grouping. An exception is B. brevis, in which the 5S rRNA sequence varies significantly from that of other bacilli in the tuned helix and the procaryotic loop. The localization of these variations suggests that B. brevis occupies an ecological niche that selects such changes. It is noted that this organism produces antibiotics which affect ribosome function.

  15. Monitoring of oil pollution at Gemsa Bay and bioremediation capacity of bacterial isolates with biosurfactants and nanoparticles.

    PubMed

    El-Sheshtawy, H S; Khalil, N M; Ahmed, W; Abdallah, R I

    2014-10-15

    Fifteen crude oil-degrading bacterial isolates were isolated from an oil-polluted area in Gemsa Bay, Red Sea, Egypt. Two bacterial species showed the highest growth rate on crude oil hydrocarbons. From an analysis of 16S rRNA sequences, these isolates were identified as Pseudomonas xanthomarina KMM 1447 and Pseudomonas stutzeri ATCC 17588. Gas Chromatographic (GC) analysis of the crude oil remaining in the culture medium after one week at 30°C showed that the optimum biodegradation of crude petroleum oil was demonstrated at 50% in medium containing biosurfactant with two types of nanoparticles separately and two bacterial species. The complete degradation of some different members of polyaromatics and the percentage biodegradation of other polyaromatics increased in microcosm containing two different types of nanoparticles with biosurfactant after 7 days. In conclusion, these bacterial strains may be useful for the bioremediation process in the Gemsa Bay, Red Sea decreasing oil pollution in this marine ecosystem. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Genomics of high molecular weight plasmids isolated from an on-farm biopurification system.

    PubMed

    Martini, María C; Wibberg, Daniel; Lozano, Mauricio; Torres Tejerizo, Gonzalo; Albicoro, Francisco J; Jaenicke, Sebastian; van Elsas, Jan Dirk; Petroni, Alejandro; Garcillán-Barcia, M Pilar; de la Cruz, Fernando; Schlüter, Andreas; Pühler, Alfred; Pistorio, Mariano; Lagares, Antonio; Del Papa, María F

    2016-06-20

    The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.

  17. Identification of the bacterial etiology of culture-negative endocarditis by amplification and sequencing of a small ribosomal RNA gene.

    PubMed

    Khulordava, Irakli; Miller, Geraldine; Haas, David; Li, Haijing; McKinsey, Joel; Vanderende, Daniel; Tang, Yi-Wei

    2003-05-01

    We report two cases of culture-negative bacterial endocarditis in which the organisms were identified by amplification and sequencing of the bacterial 16S rRNA gene. These results support an important role for polymerase chain reaction followed by direct sequencing to determine the etiology of culture-negative bacterial endocarditis and to guide appropriate antimicrobial therapy.

  18. Sequence determination and analysis of S-adenosyl-L-homocysteine hydrolase from yellow lupine (Lupinus luteus).

    PubMed

    Brzeziński, K; Janowski, R; Podkowiński, J; Jaskólski, M

    2001-01-01

    The coding sequences of two S-adenosyl-L-homocysteine hydrolases (SAHases) were identified in yellow lupine by screenig of a cDNA library. One of them, corresponding to the complete protein, was sequenced and compared with 52 other SAHase sequences. Phylogenetic analysis of these proteins identified three groups of the enzymes. Group A comprises only bacterial sequences. Group B is subdivided into two subgroups, one of which (B1) is formed by animal sequences. Subgroup B2 consist of two distinct clusters, B2a and B2b. Cluster B2b comprises all known plant sequences, including the yellow lupine enzyme, which are distinguished by a 50-residue insert. Group C is heterogeneous and contains SAHases from Archaea as well as a new class of animal enzymes, distinctly different from those in group B1.

  19. Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China

    PubMed Central

    She, Xiaoman; Yu, Lin; Lan, Guobing; Tang, Yafei; He, Zifu

    2017-01-01

    Ralstonia solanacearum species complex is a devastating phytopathogen with an unusually wide host range, and new host plants are continuously being discovered. In June 2016, a new bacterial wilt on Cucurbita maxima was observed in Guangdong province, China. Initially, in the adult plant stage, several leaves of each plant withered suddenly and drooped; the plant then wilted completely, and the color of their vasculature changed to dark brown, ultimately causing the entire plant to die. Creamy-whitish bacterial masses were observed to ooze from crosscut stems of these diseased plants. To develop control strategies for C. maxima bacterial wilt, the causative pathogenic isolates were identified and characterized. Twenty-four bacterial isolates were obtained from diseased C. maxima plants, and 16S rRNA gene sequencing and pathogenicity analysis results indicated that the pathogen of C. maxima bacterial wilt was Ralstonia solanacearum. The results from DNA-based analysis, host range determination and bacteriological identification confirmed that the 24 isolates belonged to R. solanacearum phylotype I, race 1, and eight of these isolates belonged to biovar 3, while 16 belonged to biovar 4. Based on the results of partial egl gene sequence analysis, the 24 isolates clustered into three egl- sequence type groups, sequevars 17, 45, and 56. Sequevar 56 is a new sequevar which is described for the first time in this paper. An assessment of the resistance of 21 pumpkin cultivars revealed that C. moschata cv. Xiangyu1 is resistant to strain RS378, C. moschata cv. Xiangmi is moderately resistant to strain RS378, and 19 other pumpkin cultivars, including four C. maxima cultivars and 15 C. moschata cultivars, are susceptible to strain RS378. To the best of our knowledge, this is the first report of C. maxima bacterial wilt caused by R. solanacearum race 1 in the world. Our results provide valuable information for the further development of control strategies for C. maxima wilt disease. PMID:29093727

  20. Identification and Genetic Characterization of Ralstonia solanacearum Species Complex Isolates from Cucurbita maxima in China.

    PubMed

    She, Xiaoman; Yu, Lin; Lan, Guobing; Tang, Yafei; He, Zifu

    2017-01-01

    Ralstonia solanacearum species complex is a devastating phytopathogen with an unusually wide host range, and new host plants are continuously being discovered. In June 2016, a new bacterial wilt on Cucurbita maxima was observed in Guangdong province, China. Initially, in the adult plant stage, several leaves of each plant withered suddenly and drooped; the plant then wilted completely, and the color of their vasculature changed to dark brown, ultimately causing the entire plant to die. Creamy-whitish bacterial masses were observed to ooze from crosscut stems of these diseased plants. To develop control strategies for C. maxima bacterial wilt, the causative pathogenic isolates were identified and characterized. Twenty-four bacterial isolates were obtained from diseased C. maxima plants, and 16S rRNA gene sequencing and pathogenicity analysis results indicated that the pathogen of C. maxima bacterial wilt was Ralstonia solanacearum . The results from DNA-based analysis, host range determination and bacteriological identification confirmed that the 24 isolates belonged to R. solanacearum phylotype I, race 1, and eight of these isolates belonged to biovar 3, while 16 belonged to biovar 4. Based on the results of partial egl gene sequence analysis, the 24 isolates clustered into three egl- sequence type groups, sequevars 17, 45, and 56. Sequevar 56 is a new sequevar which is described for the first time in this paper. An assessment of the resistance of 21 pumpkin cultivars revealed that C. moschata cv. Xiangyu1 is resistant to strain RS378, C. moschata cv. Xiangmi is moderately resistant to strain RS378, and 19 other pumpkin cultivars, including four C. maxima cultivars and 15 C. moschata cultivars, are susceptible to strain RS378. To the best of our knowledge, this is the first report of C. maxima bacterial wilt caused by R. solanacearum race 1 in the world. Our results provide valuable information for the further development of control strategies for C. maxima wilt disease.

  1. First report of bacterial community from a Bat Guano using Illumina next-generation sequencing.

    PubMed

    De Mandal, Surajit; Zothansanga; Panda, Amritha Kumari; Bisht, Satpal Singh; Senthil Kumar, Nachimuthu

    2015-06-01

    V4 hypervariable region of 16S rDNA was analyzed for identifying the bacterial communities present in Bat Guano from the unexplored cave - Pnahkyndeng, Meghalaya, Northeast India. Metagenome comprised of 585,434 raw Illumina sequences with a 59.59% G+C content. A total of 416,490 preprocessed reads were clustered into 1282 OTUs (operational taxonomical units) comprising of 18 bacterial phyla. The taxonomic profile showed that the guano bacterial community is dominated by Chloroflexi, Actinobacteria and Crenarchaeota which account for 70.73% of all sequence reads and 43.83% of all OTUs. Metagenome sequence data are available at NCBI under the accession no. SRP051094. This study is the first to characterize Bat Guano bacterial community using next-generation sequencing approach.

  2. First report of bacterial community from a Bat Guano using Illumina next-generation sequencing

    PubMed Central

    De Mandal, Surajit; Zothansanga; Panda, Amritha Kumari; Bisht, Satpal Singh; Senthil Kumar, Nachimuthu

    2015-01-01

    V4 hypervariable region of 16S rDNA was analyzed for identifying the bacterial communities present in Bat Guano from the unexplored cave — Pnahkyndeng, Meghalaya, Northeast India. Metagenome comprised of 585,434 raw Illumina sequences with a 59.59% G+C content. A total of 416,490 preprocessed reads were clustered into 1282 OTUs (operational taxonomical units) comprising of 18 bacterial phyla. The taxonomic profile showed that the guano bacterial community is dominated by Chloroflexi, Actinobacteria and Crenarchaeota which account for 70.73% of all sequence reads and 43.83% of all OTUs. Metagenome sequence data are available at NCBI under the accession no. SRP051094. This study is the first to characterize Bat Guano bacterial community using next-generation sequencing approach. PMID:26484190

  3. Genomic Diversity in the Endosymbiotic Bacterium Rhizobium leguminosarum.

    PubMed

    Sánchez-Cañizares, Carmen; Jorrín, Beatriz; Durán, David; Nadendla, Suvarna; Albareda, Marta; Rubio-Sanz, Laura; Lanza, Mónica; González-Guerrero, Manuel; Prieto, Rosa Isabel; Brito, Belén; Giglio, Michelle G; Rey, Luis; Ruiz-Argüeso, Tomás; Palacios, José M; Imperial, Juan

    2018-01-24

    Rhizobium leguminosarum bv. viciae is a soil α-proteobacterium that establishes a diazotrophic symbiosis with different legumes of the Fabeae tribe. The number of genome sequences from rhizobial strains available in public databases is constantly increasing, although complete, fully annotated genome structures from rhizobial genomes are scarce. In this work, we report and analyse the complete genome of R. leguminosarum bv. viciae UPM791. Whole genome sequencing can provide new insights into the genetic features contributing to symbiotically relevant processes such as bacterial adaptation to the rhizosphere, mechanisms for efficient competition with other bacteria, and the ability to establish a complex signalling dialogue with legumes, to enter the root without triggering plant defenses, and, ultimately, to fix nitrogen within the host. Comparison of the complete genome sequences of two strains of R. leguminosarum bv. viciae , 3841 and UPM791, highlights the existence of different symbiotic plasmids and a common core chromosome. Specific genomic traits, such as plasmid content or a distinctive regulation, define differential physiological capabilities of these endosymbionts. Among them, strain UPM791 presents unique adaptations for recycling the hydrogen generated in the nitrogen fixation process.

  4. Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae

    PubMed Central

    Fisher, Madeline M.; Wilcox, Lee W.; Graham, Linda E.

    1998-01-01

    Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phylogenetic analysis, the cloned sequences were placed into several major lineages of the Bacteria domain: the Flexibacter/Cytophaga/Bacteroides phylum and the α, β, and γ subdivisions of the phylum Proteobacteria. Analysis at the subphylum level revealed that the majority of our sequences were not closely affiliated with those of known, cultured taxa, although the estimated evolutionary distances between our sequences and their nearest neighbors were always less than 0.1 (i.e., greater than 90% similar). This result suggests that the majority of sequences obtained in this study represent as yet phenotypically undescribed bacterial species and that the range of bacterial-algal interactions that occur in nature has not yet been fully described. PMID:9797295

  5. Comparative Genomics of Bacillus species and its Relevance in Industrial Microbiology.

    PubMed

    Sharma, Archana; Satyanarayana, T

    2013-01-01

    With the advent of high throughput sequencing platforms and relevant analytical tools, the rate of microbial genome sequencing has accelerated which has in turn led to better understanding of microbial molecular biology and genetics. The complete genome sequences of important industrial organisms provide opportunities for human health, industry, and the environment. Bacillus species are the dominant workhorses in industrial fermentations. Today, genome sequences of several Bacillus species are available, and comparative genomics of this genus helps in understanding their physiology, biochemistry, and genetics. The genomes of these bacterial species are the sources of many industrially important enzymes and antibiotics and, therefore, provide an opportunity to tailor enzymes with desired properties to suit a wide range of applications. A comparative account of strengths and weaknesses of the different sequencing platforms are also highlighted in the review.

  6. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    PubMed

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  7. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air.

    PubMed

    McGarvey, J A; Franco, R B; Palumbo, J D; Hnasko, R; Stanker, L; Mitloehner, F M

    2013-06-01

    To describe, at high resolution, the bacterial population dynamics and chemical transformations during the ensiling of alfalfa and subsequent exposure to air. Samples of alfalfa, ensiled alfalfa and silage exposed to air were collected and their bacterial population structures compared using 16S rRNA gene libraries containing approximately 1900 sequences each. Cultural and chemical analyses were also performed to complement the 16S gene sequence data. Sequence analysis revealed significant differences (P < 0·05) in the bacterial populations at each time point. The alfalfa-derived library contained mostly sequences associated with the Gammaproteobacteria (including the genera: Enterobacter, Erwinia and Pantoea); the ensiled material contained mostly sequences associated with the lactic acid bacteria (LAB) (including the genera: Lactobacillus, Pediococcus and Lactococcus). Exposure to air resulted in even greater percentages of LAB, especially among the genus Lactobacillus, and a significant drop in bacterial diversity. In-depth 16S rRNA gene sequence analysis revealed significant bacterial population structure changes during ensiling and again during exposure to air. This in-depth description of the bacterial population dynamics that occurred during ensiling and simulated feed out expands our knowledge of these processes. © 2013 The Society for Applied Microbiology No claim to US Government works.

  8. Complete Genome Sequence and Immunoproteomic Analyses of the Bacterial Fish Pathogen Streptococcus parauberis▿†

    PubMed Central

    Nho, Seong Won; Hikima, Jun-ichi; Cha, In Seok; Park, Seong Bin; Jang, Ho Bin; del Castillo, Carmelo S.; Kondo, Hidehiro; Hirono, Ikuo; Aoki, Takashi; Jung, Tae Sung

    2011-01-01

    Although Streptococcus parauberis is known as a bacterial pathogen associated with bovine udder mastitis, it has recently become one of the major causative agents of olive flounder (Paralichthys olivaceus) streptococcosis in northeast Asia, causing massive mortality resulting in severe economic losses. S. parauberis contains two serotypes, and it is likely that capsular polysaccharide antigens serve to differentiate the serotypes. In the present study, the complete genome sequence of S. parauberis (serotype I) was determined using the GS-FLX system to investigate its phylogeny, virulence factors, and antigenic proteins. S. parauberis possesses a single chromosome of 2,143,887 bp containing 1,868 predicted coding sequences (CDSs), with an average GC content of 35.6%. Whole-genome dot plot analysis and phylogenetic analysis of a 60-kDa chaperonin-encoding gene and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-encoding gene showed that the strain was evolutionarily closely related to Streptococcus uberis. S. parauberis antigenic proteins were analyzed using an immunoproteomic technique. Twenty-one antigenic protein spots were identified in S. parauberis, by reaction with an antiserum obtained from S. parauberis-challenged olive flounder. This work provides the foundation needed to understand more clearly the relationship between pathogen and host and develops new approaches toward prophylactic and therapeutic strategies to deal with streptococcosis in fish. The work also provides a better understanding of the physiology and evolution of a significant representative of the Streptococcaceae. PMID:21531805

  9. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    PubMed Central

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Glick, Bernard R.

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  10. Comparative Genomics of Erwinia amylovora and Related Erwinia Species—What do We Learn?

    PubMed Central

    Zhao, Youfu; Qi, Mingsheng

    2011-01-01

    Erwinia amylovora, the causal agent of fire blight disease of apples and pears, is one of the most important plant bacterial pathogens with worldwide economic significance. Recent reports on the complete or draft genome sequences of four species in the genus Erwinia, including E. amylovora, E. pyrifoliae, E. tasmaniensis, and E. billingiae, have provided us near complete genetic information about this pathogen and its closely-related species. This review describes in silico subtractive hybridization-based comparative genomic analyses of eight genomes currently available, and highlights what we have learned from these comparative analyses, as well as genetic and functional genomic studies. Sequence analyses reinforce the assumption that E. amylovora is a relatively homogeneous species and support the current classification scheme of E. amylovora and its related species. The potential evolutionary origin of these Erwinia species is also proposed. The current understanding of the pathogen, its virulence mechanism and host specificity from genome sequencing data is summarized. Future research directions are also suggested. PMID:24710213

  11. Complete Sequence and Molecular Epidemiology of IncK Epidemic Plasmid Encoding blaCTX-M-14

    PubMed Central

    Cottell, Jennifer L.; Webber, Mark A.; Coldham, Nick G.; Taylor, Dafydd L.; Cerdeño-Tárraga, Anna M.; Hauser, Heidi; Thomson, Nicholas R.; Woodward, Martin J.

    2011-01-01

    Antimicrobial drug resistance is a global challenge for the 21st century with the emergence of resistant bacterial strains worldwide. Transferable resistance to β-lactam antimicrobial drugs, mediated by production of extended-spectrum β-lactamases (ESBLs), is of particular concern. In 2004, an ESBL-carrying IncK plasmid (pCT) was isolated from cattle in the United Kingdom. The sequence was a 93,629-bp plasmid encoding a single antimicrobial drug resistance gene, blaCTX-M-14. From this information, PCRs identifying novel features of pCT were designed and applied to isolates from several countries, showing that the plasmid has disseminated worldwide in bacteria from humans and animals. Complete DNA sequences can be used as a platform to develop rapid epidemiologic tools to identify and trace the spread of plasmids in clinically relevant pathogens, thus facilitating a better understanding of their distribution and ability to transfer between bacteria of humans and animals. PMID:21470454

  12. Premature terminator analysis sheds light on a hidden world of bacterial transcriptional attenuation.

    PubMed

    Naville, Magali; Gautheret, Daniel

    2010-01-01

    Bacterial transcription attenuation occurs through a variety of cis-regulatory elements that control gene expression in response to a wide range of signals. The signal-sensing structures in attenuators are so diverse and rapidly evolving that only a small fraction have been properly annotated and characterized to date. Here we apply a broad-spectrum detection tool in order to achieve a more complete view of the transcriptional attenuation complement of key bacterial species. Our protocol seeks gene families with an unusual frequency of 5' terminators found across multiple species. Many of the detected attenuators are part of annotated elements, such as riboswitches or T-boxes, which often operate through transcriptional attenuation. However, a significant fraction of candidates were not previously characterized in spite of their unmistakable footprint. We further characterized some of these new elements using sequence and secondary structure analysis. We also present elements that may control the expression of several non-homologous genes, suggesting co-transcription and response to common signals. An important class of such elements, which we called mobile attenuators, is provided by 3' terminators of insertion sequences or prophages that may be exapted as 5' regulators when inserted directly upstream of a cellular gene. We show here that attenuators involve a complex landscape of signal-detection structures spanning the entire bacterial domain. We discuss possible scenarios through which these diverse 5' regulatory structures may arise or evolve.

  13. Spatial variations of bacterial community and its relationship with water chemistry in Sanya Bay, South China Sea as determined by DGGE fingerprinting and multivariate analysis.

    PubMed

    Ling, Juan; Zhang, Yan-Ying; Dong, Jun-De; Wang, You-Shao; Feng, Jing-Bing; Zhou, Wei-Hua

    2015-10-01

    Bacteria play important roles in the structure and function of marine food webs by utilizing nutrients and degrading the pollutants, and their distribution are determined by surrounding water chemistry to a certain extent. It is vital to investigate the bacterial community's structure and identifying the significant factors by controlling the bacterial distribution in the paper. Flow cytometry showed that the total bacterial abundance ranged from 5.27 × 10(5) to 3.77 × 10(6) cells/mL. Molecular fingerprinting technique, denaturing gradient gel electrophoresis (DGGE) followed by DNA sequencing has been employed to investigate the bacterial community composition. The results were then interpreted through multivariate statistical analysis and tended to explain its relationship to the environmental factors. A total of 270 bands at 83 different positions were detected in DGGE profiles and 29 distinct DGGE bands were sequenced. The predominant bacteria were related to Phyla Protebacteria species (31 %, nine sequences), Cyanobacteria (37.9 %, eleven sequences) and Actinobacteria (17.2 %, five sequences). Other phylogenetic groups identified including Firmicutes (6.9 %, two sequences), Bacteroidetes (3.5 %, one sequences) and Verrucomicrobia (3.5 %, one sequences). Conical correspondence analysis was used to elucidate the relationships between the bacterial community compositions and environmental factors. The results showed that the spatial variations in the bacterial community composition was significantly related to phosphate (P = 0.002, P < 0.01), dissolved organic carbon (P = 0.004, P < 0.01), chemical oxygen demand (P = 0.010, P < 0.05) and nitrite (P = 0.016, P < 0.05). This study revealed the spatial variations of bacterial community and significant environmental factors driving the bacterial composition shift. These results may be valuable for further investigation on the functional microbial structure and expression quantitatively under the polluted environments in the world.

  14. Whole-genome sequencing of staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species.

    PubMed

    Takeuchi, Fumihiko; Watanabe, Shinya; Baba, Tadashi; Yuzawa, Harumi; Ito, Teruyo; Morimoto, Yuh; Kuroda, Makoto; Cui, Longzhu; Takahashi, Mikio; Ankai, Akiho; Baba, Shin-ichi; Fukui, Shigehiro; Lee, Jean C; Hiramatsu, Keiichi

    2005-11-01

    Staphylococcus haemolyticus is an opportunistic bacterial pathogen that colonizes human skin and is remarkable for its highly antibiotic-resistant phenotype. We determined the complete genome sequence of S.haemolyticus to better understand its pathogenicity and evolutionary relatedness to the other staphylococcal species. A large proportion of the open reading frames in the genomes of S.haemolyticus, Staphylococcus aureus, and Staphylococcus epidermidis were conserved in their sequence and order on the chromosome. We identified a region of the bacterial chromosome just downstream of the origin of replication that showed little homology among the species but was conserved among strains within a species. This novel region, designated the "oriC environ," likely contributes to the evolution and differentiation of the staphylococcal species, since it was enriched for species-specific nonessential genes that contribute to the biological features of each staphylococcal species. A comparative analysis of the genomes of S.haemolyticus, S.aureus, and S.epidermidis elucidated differences in their biological and genetic characteristics and pathogenic potentials. We identified as many as 82 insertion sequences in the S.haemolyticus chromosome that probably mediated frequent genomic rearrangements, resulting in phenotypic diversification of the strain. Such rearrangements could have brought genomic plasticity to this species and contributed to its acquisition of antibiotic resistance.

  15. Bacterial Diversity in Human Subgingival Plaque

    PubMed Central

    Paster, Bruce J.; Boches, Susan K.; Galvin, Jamie L.; Ericson, Rebecca E.; Lau, Carol N.; Levanos, Valerie A.; Sahasrabudhe, Ashish; Dewhirst, Floyd E.

    2001-01-01

    The purpose of this study was to determine the bacterial diversity in the human subgingival plaque by using culture-independent molecular methods as part of an ongoing effort to obtain full 16S rRNA sequences for all cultivable and not-yet-cultivated species of human oral bacteria. Subgingival plaque was analyzed from healthy subjects and subjects with refractory periodontitis, adult periodontitis, human immunodeficiency virus periodontitis, and acute necrotizing ulcerative gingivitis. 16S ribosomal DNA (rDNA) bacterial genes from DNA isolated from subgingival plaque samples were PCR amplified with all-bacterial or selective primers and cloned into Escherichia coli. The sequences of cloned 16S rDNA inserts were used to determine species identity or closest relatives by comparison with sequences of known species. A total of 2,522 clones were analyzed. Nearly complete sequences of approximately 1,500 bases were obtained for putative new species. About 60% of the clones fell into 132 known species, 70 of which were identified from multiple subjects. About 40% of the clones were novel phylotypes. Of the 215 novel phylotypes, 75 were identified from multiple subjects. Known putative periodontal pathogens such as Porphyromonas gingivalis, Bacteroides forsythus, and Treponema denticola were identified from multiple subjects, but typically as a minor component of the plaque as seen in cultivable studies. Several phylotypes fell into two recently described phyla previously associated with extreme natural environments, for which there are no cultivable species. A number of species or phylotypes were found only in subjects with disease, and a few were found only in healthy subjects. The organisms identified only from diseased sites deserve further study as potential pathogens. Based on the sequence data in this study, the predominant subgingival microbial community consisted of 347 species or phylotypes that fall into 9 bacterial phyla. Based on the 347 species seen in our sample of 2,522 clones, we estimate that there are 68 additional unseen species, for a total estimate of 415 species in the subgingival plaque. When organisms found on other oral surfaces such as the cheek, tongue, and teeth are added to this number, the best estimate of the total species diversity in the oral cavity is approximately 500 species, as previously proposed. PMID:11371542

  16. Solving a Hamiltonian Path Problem with a bacterial computer

    PubMed Central

    Baumgardner, Jordan; Acker, Karen; Adefuye, Oyinade; Crowley, Samuel Thomas; DeLoache, Will; Dickson, James O; Heard, Lane; Martens, Andrew T; Morton, Nickolaus; Ritter, Michelle; Shoecraft, Amber; Treece, Jessica; Unzicker, Matthew; Valencia, Amanda; Waters, Mike; Campbell, A Malcolm; Heyer, Laurie J; Poet, Jeffrey L; Eckdahl, Todd T

    2009-01-01

    Background The Hamiltonian Path Problem asks whether there is a route in a directed graph from a beginning node to an ending node, visiting each node exactly once. The Hamiltonian Path Problem is NP complete, achieving surprising computational complexity with modest increases in size. This challenge has inspired researchers to broaden the definition of a computer. DNA computers have been developed that solve NP complete problems. Bacterial computers can be programmed by constructing genetic circuits to execute an algorithm that is responsive to the environment and whose result can be observed. Each bacterium can examine a solution to a mathematical problem and billions of them can explore billions of possible solutions. Bacterial computers can be automated, made responsive to selection, and reproduce themselves so that more processing capacity is applied to problems over time. Results We programmed bacteria with a genetic circuit that enables them to evaluate all possible paths in a directed graph in order to find a Hamiltonian path. We encoded a three node directed graph as DNA segments that were autonomously shuffled randomly inside bacteria by a Hin/hixC recombination system we previously adapted from Salmonella typhimurium for use in Escherichia coli. We represented nodes in the graph as linked halves of two different genes encoding red or green fluorescent proteins. Bacterial populations displayed phenotypes that reflected random ordering of edges in the graph. Individual bacterial clones that found a Hamiltonian path reported their success by fluorescing both red and green, resulting in yellow colonies. We used DNA sequencing to verify that the yellow phenotype resulted from genotypes that represented Hamiltonian path solutions, demonstrating that our bacterial computer functioned as expected. Conclusion We successfully designed, constructed, and tested a bacterial computer capable of finding a Hamiltonian path in a three node directed graph. This proof-of-concept experiment demonstrates that bacterial computing is a new way to address NP-complete problems using the inherent advantages of genetic systems. The results of our experiments also validate synthetic biology as a valuable approach to biological engineering. We designed and constructed basic parts, devices, and systems using synthetic biology principles of standardization and abstraction. PMID:19630940

  17. An efficient approach to BAC based assembly of complex genomes.

    PubMed

    Visendi, Paul; Berkman, Paul J; Hayashi, Satomi; Golicz, Agnieszka A; Bayer, Philipp E; Ruperao, Pradeep; Hurgobin, Bhavna; Montenegro, Juan; Chan, Chon-Kit Kenneth; Staňková, Helena; Batley, Jacqueline; Šimková, Hana; Doležel, Jaroslav; Edwards, David

    2016-01-01

    There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate 'gold' reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes.

  18. Acute bacterial meningitis in adults.

    PubMed

    McGill, Fiona; Heyderman, Robert S; Panagiotou, Stavros; Tunkel, Allan R; Solomon, Tom

    2016-12-17

    Over the past several decades, the incidence of bacterial meningitis in children has decreased but there remains a significant burden of disease in adults, with a mortality of up to 30%. Although the pathogenesis of bacterial meningitis is not completely understood, knowledge of bacterial invasion and entry into the CNS is improving. Clinical features alone cannot determine whether meningitis is present and analysis of cerebrospinal fluid is essential for diagnosis. Newer technologies, such as multiplex PCR, and novel diagnostic platforms that incorporate proteomics and genetic sequencing, might help provide a quicker and more accurate diagnosis. Even with appropriate antimicrobial therapy, mortality is high and so attention has focused on adjunctive therapies; adjunctive corticosteroids are beneficial in certain circumstances. Any further improvements in outcome are likely to come from either modulation of the host response or novel approaches to therapy, rather than new antibiotics. Ultimately, the best hope to reduce the disease burden is with broadly protective vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A genomic approach to the understanding of Xylella fastidiosa pathogenicity.

    PubMed

    Lambais, M R; Goldman, M H; Camargo, L E; Goldman, G H

    2000-10-01

    Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes several economically important plant diseases, including citrus variegated chlorosis (CVC). X. fastidiosa is the first plant pathogen to have its genome completely sequenced. In addition, it is probably the least previously studied of any organism for which the complete genome sequence is available. Several pathogenicity-related genes have been identified in the X. fastidiosa genome by similarity with other bacterial genes involved in pathogenesis in plants, as well as in animals. The X. fastidiosa genome encodes different classes of proteins directly or indirectly involved in cell-cell interactions, degradation of plant cell walls, iron homeostasis, anti-oxidant responses, synthesis of toxins, and regulation of pathogenicity. Neither genes encoding members of the type III protein secretion system nor avirulence-like genes have been identified in X. fastidiosa.

  20. Sequencing of a new target genome: the Pediculus humanus humanus (Phthiraptera: Pediculidae) genome project.

    PubMed

    Pittendrigh, B R; Clark, J M; Johnston, J S; Lee, S H; Romero-Severson, J; Dasch, G A

    2006-11-01

    The human body louse, Pediculus humanus humanus (L.), and the human head louse, Pediculus humanus capitis, belong to the hemimetabolous order Phthiraptera. The body louse is the primary vector that transmits the bacterial agents of louse-borne relapsing fever, trench fever, and epidemic typhus. The genomes of the bacterial causative agents of several of these aforementioned diseases have been sequenced. Thus, determining the body louse genome will enhance studies of host-vector-pathogen interactions. Although not important as a major disease vector, head lice are of major social concern. Resistance to traditional pesticides used to control head and body lice have developed. It is imperative that new molecular targets be discovered for the development of novel compounds to control these insects. No complete genome sequence exists for a hemimetabolous insect species primarily because hemimetabolous insects often have large (2000 Mb) to very large (up to 16,300 Mb) genomes. Fortuitously, we determined that the human body louse has one of the smallest genome sizes known in insects, suggesting it may be a suitable choice as a minimal hemimetabolous genome in which many genes have been eliminated during its adaptation to human parasitism. Because many louse species infest birds and mammals, the body louse genome-sequencing project will facilitate studies of their comparative genomics. A 6-8X coverage of the body louse genome, plus sequenced expressed sequence tags, should provide the entomological, evolutionary biology, medical, and public health communities with useful genetic information.

  1. Complete genome sequence of Escherichia coli Phage vB_EcoS Sa179lw isolated from surface water in a produce-growing area in northern california

    USDA-ARS?s Scientific Manuscript database

    Non-O157 Shiga toxin-producing E. coli (STEC) can cause foodborne illness as severe as STEC O157 strains and have been associated with produce outbreaks in Europe and US. Due to the lytic nature to their bacterial hosts, these bacteriophages (phages) have the potential to control STEC strains. Here,...

  2. Effect of DNA Extraction Methods on the Apparent Structure of Yak Rumen Microbial Communities as Revealed by 16S rDNA Sequencing.

    PubMed

    Chen, Ya-Bing; Lan, Dao-Liang; Tang, Cheng; Yang, Xiao-Nong; Li, Jian

    2015-01-01

    To more efficiently identify the microbial community of the yak rumen, the standardization of DNA extraction is key to ensure fidelity while studying environmental microbial communities. In this study, we systematically compared the efficiency of several extraction methods based on DNA yield, purity, and 16S rDNA sequencing to determine the optimal DNA extraction methods whose DNA products reflect complete bacterial communities. The results indicate that method 6 (hexadecyltrimethylammomium bromide-lysozyme-physical lysis by bead beating) is recommended for the DNA isolation of the rumen microbial community due to its high yield, operational taxonomic unit, bacterial diversity, and excellent cell-breaking capability. The results also indicate that the bead-beating step is necessary to effectively break down the cell walls of all of the microbes, especially Gram-positive bacteria. Another aim of this study was to preliminarily analyze the bacterial community via 16S rDNA sequencing. The microbial community spanned approximately 21 phyla, 35 classes, 75 families, and 112 genera. A comparative analysis showed some variations in the microbial community between yaks and cattle that may be attributed to diet and environmental differences. Interestingly, numerous uncultured or unclassified bacteria were found in yak rumen, suggesting that further research is required to determine the specific functional and ecological roles of these bacteria in yak rumen. In summary, the investigation of the optimal DNA extraction methods and the preliminary evaluation of the bacterial community composition of yak rumen support further identification of the specificity of the rumen microbial community in yak and the discovery of distinct gene resources.

  3. Prevalent bacterial species and novel phylotypes in advanced noma lesions.

    PubMed

    Paster, B J; Falkler Jr, W A; Enwonwu, C O; Idigbe, E O; Savage, K O; Levanos, V A; Tamer, M A; Ericson, R L; Lau, C N; Dewhirst, F E

    2002-06-01

    The purpose of this study was to determine the bacterial diversity in advanced noma lesions using culture-independent molecular methods. 16S ribosomal DNA bacterial genes from DNA isolated from advanced noma lesions of four Nigerian children were PCR amplified with universally conserved primers and spirochetal selective primers and cloned into Escherichia coli. Partial 16S rRNA sequences of approximately 500 bases from 212 cloned inserts were used initially to determine species identity or closest relatives by comparison with sequences of known species or phylotypes. Nearly complete sequences of approximately 1,500 bases were obtained for most of the potentially novel species. A total of 67 bacterial species or phylotypes were detected, 25 of which have not yet been grown in vitro. Nineteen of the species or phylotypes, including Propionibacterium acnes, Staphylococcus spp., and the opportunistic pathogens Stenotrophomonas maltophilia and Ochrobactrum anthropi were detected in more than one subject. Other known species that were detected included Achromobacter spp., Afipia spp., Brevundimonas diminuta, Capnocytophaga spp., Cardiobacterium sp., Eikenella corrodens, Fusobacterium spp., Gemella haemoylsans, and Neisseria spp. Phylotypes that were unique to noma infections included those in the genera Eubacterium, Flavobacterium, Kocuria, Microbacterium, and Porphyromonas and the related Streptococcus salivarius and genera Sphingomonas and TREPONEMA: Since advanced noma lesions are infections open to the environment, it was not surprising to detect species not commonly associated with the oral cavity, e.g., from soil. Several species previously implicated as putative pathogens of noma, such as spirochetes and Fusobacterium spp., were detected in at least one subject. However, due to the limited number of available noma subjects, it was not possible at this time to associate specific species with the disease.

  4. Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome.

    PubMed

    Saha, Surya; Hunter, Wayne B; Reese, Justin; Morgan, J Kent; Marutani-Hert, Mizuri; Huang, Hong; Lindeberg, Magdalen

    2012-01-01

    Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China.

  5. Survey of Endosymbionts in the Diaphorina citri Metagenome and Assembly of a Wolbachia wDi Draft Genome

    PubMed Central

    Saha, Surya; Hunter, Wayne B.; Reese, Justin; Morgan, J. Kent; Marutani-Hert, Mizuri; Huang, Hong; Lindeberg, Magdalen

    2012-01-01

    Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China. PMID:23166822

  6. Dendritic Cell-Based Immunotherapy of Breast Cancer: Modulation by CpG DNA

    DTIC Science & Technology

    2005-09-01

    tumor-associated antigens and bacterial DNA oligodeoxynucleotides containing unmethylated CpG sequences (CpG DNA) further augment the immune priming...associated antigens by cytotoxic T lymphocytes, and bacterial DNA oligodeoxy- nucleotides containing unmethylated CpG sequences (CpG DNA) can further...further amplify their immunostimulatory capacity and bacterial DNA oligodeoxynucleotides (ODN) containing unmethylated CpG sequences (CpG DNA) provide such

  7. Deppdb--DNA electrostatic potential properties database: electrostatic properties of genome DNA.

    PubMed

    Osypov, Alexander A; Krutinin, Gleb G; Kamzolova, Svetlana G

    2010-06-01

    The electrostatic properties of genome DNA influence its interactions with different proteins, in particular, the regulation of transcription by RNA-polymerases. DEPPDB--DNA Electrostatic Potential Properties Database--was developed to hold and provide all available information on the electrostatic properties of genome DNA combined with its sequence and annotation of biological and structural properties of genome elements and whole genomes. Genomes in DEPPDB are organized on a taxonomical basis. Currently, the database contains all the completely sequenced bacterial and viral genomes according to NCBI RefSeq. General properties of the genome DNA electrostatic potential profile and principles of its formation are revealed. This potential correlates with the GC content but does not correspond to it exactly and strongly depends on both the sequence arrangement and its context (flanking regions). Analysis of the promoter regions for bacterial and viral RNA polymerases revealed a correspondence between the scale of these proteins' physical properties and electrostatic profile patterns. We also discovered a direct correlation between the potential value and the binding frequency of RNA polymerase to DNA, supporting the idea of the role of electrostatics in these interactions. This matches a pronounced tendency of the promoter regions to possess higher values of the electrostatic potential.

  8. Automated Identification of Medically Important Bacteria by 16S rRNA Gene Sequencing Using a Novel Comprehensive Database, 16SpathDB▿

    PubMed Central

    Woo, Patrick C. Y.; Teng, Jade L. L.; Yeung, Juilian M. Y.; Tse, Herman; Lau, Susanna K. P.; Yuen, Kwok-Yung

    2011-01-01

    Despite the increasing use of 16S rRNA gene sequencing, interpretation of 16S rRNA gene sequence results is one of the most difficult problems faced by clinical microbiologists and technicians. To overcome the problems we encountered in the existing databases during 16S rRNA gene sequence interpretation, we built a comprehensive database, 16SpathDB (http://147.8.74.24/16SpathDB) based on the 16S rRNA gene sequences of all medically important bacteria listed in the Manual of Clinical Microbiology and evaluated its use for automated identification of these bacteria. Among 91 nonduplicated bacterial isolates collected in our clinical microbiology laboratory, 71 (78%) were reported by 16SpathDB as a single bacterial species having >98.0% nucleotide identity with the query sequence, 19 (20.9%) were reported as more than one bacterial species having >98.0% nucleotide identity with the query sequence, and 1 (1.1%) was reported as no match. For the 71 bacterial isolates reported as a single bacterial species, all results were identical to their true identities as determined by a polyphasic approach. For the 19 bacterial isolates reported as more than one bacterial species, all results contained their true identities as determined by a polyphasic approach and all of them had their true identities as the “best match in 16SpathDB.” For the isolate (Gordonibacter pamelaeae) reported as no match, the bacterium has never been reported to be associated with human disease and was not included in the Manual of Clinical Microbiology. 16SpathDB is an automated, user-friendly, efficient, accurate, and regularly updated database for 16S rRNA gene sequence interpretation in clinical microbiology laboratories. PMID:21389154

  9. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    PubMed

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  10. Novel division level bacterial diversity in a Yellowstone hot spring.

    PubMed

    Hugenholtz, P; Pitulle, C; Hershberger, K L; Pace, N R

    1998-01-01

    A culture-independent molecular phylogenetic survey was carried out for the bacterial community in Obsidian Pool (OP), a Yellowstone National Park hot spring previously shown to contain remarkable archaeal diversity (S. M. Barns, R. E. Fundyga, M. W. Jeffries, and N. R. Page, Proc. Natl. Acad. Sci. USA 91:1609-1613, 1994). Small-subunit rRNA genes (rDNA) were amplified directly from OP sediment DNA by PCR with universally conserved or Bacteria-specific rDNA primers and cloned. Unique rDNA types among > 300 clones were identified by restriction fragment length polymorphism, and 122 representative rDNA sequences were determined. These were found to represent 54 distinct bacterial sequence types or clusters (> or = 98% identity) of sequences. A majority (70%) of the sequence types were affiliated with 14 previously recognized bacterial divisions (main phyla; kingdoms); 30% were unaffiliated with recognized bacterial divisions. The unaffiliated sequence types (represented by 38 sequences) nominally comprise 12 novel, division level lineages termed candidate divisions. Several OP sequences were nearly identical to those of cultivated chemolithotrophic thermophiles, including the hydrogen-oxidizing Calderobacterium and the sulfate reducers Thermodesulfovibrio and Thermodesulfobacterium, or belonged to monophyletic assemblages recognized for a particular type of metabolism, such as the hydrogen-oxidizing Aquificales and the sulfate-reducing delta-Proteobacteria. The occurrence of such organisms is consistent with the chemical composition of OP (high in reduced iron and sulfur) and suggests a lithotrophic base for primary productivity in this hot spring, through hydrogen oxidation and sulfate reduction. Unexpectedly, no archaeal sequences were encountered in OP clone libraries made with universal primers. Hybridization analysis of amplified OP DNA with domain-specific probes confirmed that the analyzed community rDNA from OP sediment was predominantly bacterial. These results expand substantially our knowledge of the extent of bacterial diversity and call into question the commonly held notion that Archaea dominate hydrothermal environments. Finally, the currently known extent of division level bacterial phylogenetic diversity is collated and summarized.

  11. Dictionary-driven protein annotation.

    PubMed

    Rigoutsos, Isidore; Huynh, Tien; Floratos, Aris; Parida, Laxmi; Platt, Daniel

    2002-09-01

    Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/ bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were released publicly after we built the Bio-Dictionary that is used in our experiments. Finally, we have computed the annotations of more than 70 complete genomes and made them available on the World Wide Web at http://cbcsrv.watson.ibm.com/Annotations/.

  12. Automated Finishing with Autofinish

    PubMed Central

    Gordon, David; Desmarais, Cindy; Green, Phil

    2001-01-01

    Currently, the genome sequencing community is producing shotgun sequence data at a very high rate, but finishing (collecting additional directed sequence data to close gaps and improve the quality of the data) is not matching that rate. One reason for the difference is that shotgun sequencing is highly automated but finishing is not: Most finishing decisions, such as which directed reads to obtain and which specialized sequencing techniques to use, are made by people. If finishing rates are to increase to match shotgun sequencing rates, most finishing decisions also must be automated. The Autofinish computer program (which is part of the Consed computer software package) does this by automatically choosing finishing reads. Autofinish is able to suggest most finishing reads required for completion of each sequencing project, greatly reducing the amount of human attention needed. Autofinish sometimes completely finishes the project, with no human decisions required. It cannot solve the most complex problems, so we recommend that Autofinish be allowed to suggest reads for the first three rounds of finishing, and if the project still is not finished completely, a human finisher complete the work. We compared this Autofinish-Hybrid method of finishing against a human finisher in five different projects with a variety of shotgun depths by finishing each project twice—once with each method. This comparison shows that the Autofinish-Hybrid method saves many hours over a human finisher alone, while using roughly the same number and type of reads and closing gaps at roughly the same rate. Autofinish currently is in production use at several large sequencing centers. It is designed to be adaptable to the finishing strategy of the lab—it can finish using some or all of the following: resequencing reads, reverses, custom primer walks on either subclone templates or whole clone templates, PCR, or minilibraries. Autofinish has been used for finishing cDNA, genomic clones, and whole bacterial genomes (see http://www.phrap.org). PMID:11282977

  13. Bacterial adaptation to the gut environment favors successful colonization: microbial and metabonomic characterization of a simplified microbiota mouse model.

    PubMed

    Rezzonico, Enea; Mestdagh, Renaud; Delley, Michèle; Combremont, Séverine; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy; Bibiloni, Rodrigo

    2011-01-01

    Rodent models harboring a simple yet functional human intestinal microbiota provide a valuable tool to study the relationships between mammals and their bacterial inhabitants. In this study, we aimed to develop a simplified gnotobiotic mouse model containing 10 easy-to-grow bacteria, readily available from culture repositories, and of known genome sequence, that overall reflect the dominant commensal bacterial makeup found in adult human feces. We observed that merely inoculating a mix of fresh bacterial cultures into ex-germ free mice did not guarantee a successful intestinal colonization of the entire bacterial set, as mice inoculated simultaneously with all strains only harbored 3 after 21 d. Therefore, several inoculation procedures were tested and levels of individual strains were quantified using molecular tools. Best results were obtained by inoculating single bacterial strains into individual animals followed by an interval of two weeks before allowing the animals to socialize to exchange their commensal microbes. Through this procedure, animals were colonized with almost the complete bacterial set (9/10). Differences in the intestinal composition were also reflected in the urine and plasma metabolic profiles, where changes in lipids, SCFA, and amino acids were observed. We conclude that adaptation of bacterial strains to the host's gut environment (mono-colonization) may predict a successful establishment of a more complex microbiota in rodents.

  14. Phylogenetic and Protein Sequence Analysis of Bacterial Chemoreceptors.

    PubMed

    Ortega, Davi R; Zhulin, Igor B

    2018-01-01

    Identifying chemoreceptors in sequenced bacterial genomes, revealing their domain architecture, inferring their evolutionary relationships, and comparing them to chemoreceptors of known function become important steps in genome annotation and chemotaxis research. Here, we describe bioinformatics procedures that enable such analyses, using two closely related bacterial genomes as examples.

  15. Complete genome sequence of Conexibacter woesei type strain (ID131577T)

    PubMed Central

    Pukall, Rüdiger; Lapidus, Alla; Glavina Del Rio, Tijana; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Nolan, Matt; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Mavromatis, Konstantinos; Ivanova, Natalia; Ovchinnikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jeffries, Cynthia D.; Chain, Patrick; Meincke, Linda; Sims, David; Brettin, Thomas; Detter, John C.; Rohde, Manfred; Göker, Markus; Bristow, Jim; Eisen, Jonathan A.; Markowitz, Victor; Kyrpides, Nikos C.; Klenk, Hans-Peter; Hugenholtz, Philip

    2010-01-01

    The genus Conexibacter (Monciardini et al. 2003) represents the type genus of the family Conexibacteraceae (Stackebrandt 2005, emend. Zhi et al. 2009) with Conexibacter woesei as the type species of the genus. C. woesei is a representative of a deep evolutionary line of descent within the class Actinobacteria. Strain ID131577T was originally isolated from temperate forest soil in Gerenzano (Italy). Cells are small, short rods that are motile by peritrichous flagella. They may form aggregates after a longer period of growth and, then as a typical characteristic, an undulate structure is formed by self-aggregation of flagella with entangled bacterial cells. Here we describe the features of the organism, together with the complete sequence and annotation. The 6,359,369 bp long genome of C. woesei contains 5,950 protein-coding and 48 RNA genes and is part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:21304704

  16. Bacterial and archaeal phylogenetic diversity of a cold sulfur-rich spring on the shoreline of Lake Erie, Michigan

    USGS Publications Warehouse

    Chaudhary, A.; Haack, S.K.; Duris, J.W.; Marsh, T.L.

    2009-01-01

    Studies of sulfidic springs have provided new insights into microbial metabolism, groundwater biogeochemistry, and geologic processes. We investigated Great Sulphur Spring on the western shore of Lake Erie and evaluated the phylogenetic affiliations of 189 bacterial and 77 archaeal 16S rRNA gene sequences from three habitats: the spring origin (11-m depth), bacterial-algal mats on the spring pond surface, and whitish filamentous materials from the spring drain. Water from the spring origin water was cold, pH 6.3, and anoxic (H2, 5.4 nM; CH4, 2.70 ??M) with concentrations of S2- (0.03 mM), SO42- (14.8 mM), Ca2+ (15.7 mM), and HCO3- (4.1 mM) similar to those in groundwater from the local aquifer. No archaeal and few bacterial sequences were >95% similar to sequences of cultivated organisms. Bacterial sequences were largely affiliated with sulfur-metabolizing or chemolithotrophic taxa in Beta-, Gamma-, Delta-, and Epsilonproteobacteria. Epsilonproteobacteria sequences similar to those obtained from other sulfidic environments and a new clade of Cyanobacteria sequences were particularly abundant (16% and 40%, respectively) in the spring origin clone library. Crenarchaeota sequences associated with archaeal-bacterial consortia in whitish filaments at a German sulfidic spring were detected only in a similar habitat at Great Sulphur Spring. This study expands the geographic distribution of many uncultured Archaea and Bacteria sequences to the Laurentian Great Lakes, indicates possible roles for epsilonproteobacteria in local aquifer chemistry and karst formation, documents new oscillatorioid Cyanobacteria lineages, and shows that uncultured, cold-adapted Crenarchaeota sequences may comprise a significant part of the microbial community of some sulfidic environments. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  17. An Efficient Strategy for Broad-Range Detection of Low Abundance Bacteria without DNA Decontamination of PCR Reagents

    PubMed Central

    Chang, Shy-Shin; Hsu, Hsung-Ling; Cheng, Ju-Chien; Tseng, Ching-Ping

    2011-01-01

    Background Bacterial DNA contamination in PCR reagents has been a long standing problem that hampers the adoption of broad-range PCR in clinical and applied microbiology, particularly in detection of low abundance bacteria. Although several DNA decontamination protocols have been reported, they all suffer from compromised PCR efficiency or detection limits. To date, no satisfactory solution has been found. Methodology/Principal Findings We herein describe a method that solves this long standing problem by employing a broad-range primer extension-PCR (PE-PCR) strategy that obviates the need for DNA decontamination. In this method, we first devise a fusion probe having a 3′-end complementary to the template bacterial sequence and a 5′-end non-bacterial tag sequence. We then hybridize the probes to template DNA, carry out primer extension and remove the excess probes using an optimized enzyme mix of Klenow DNA polymerase and exonuclease I. This strategy allows the templates to be distinguished from the PCR reagent contaminants and selectively amplified by PCR. To prove the concept, we spiked the PCR reagents with Staphylococcus aureus genomic DNA and applied PE-PCR to amplify template bacterial DNA. The spiking DNA neither interfered with template DNA amplification nor caused false positive of the reaction. Broad-range PE-PCR amplification of the 16S rRNA gene was also validated and minute quantities of template DNA (10–100 fg) were detectable without false positives. When adapting to real-time and high-resolution melting (HRM) analytical platforms, the unique melting profiles for the PE-PCR product can be used as the molecular fingerprints to further identify individual bacterial species. Conclusions/Significance Broad-range PE-PCR is simple, efficient, and completely obviates the need to decontaminate PCR reagents. When coupling with real-time and HRM analyses, it offers a new avenue for bacterial species identification with a limited source of bacterial DNA, making it suitable for use in clinical and applied microbiology laboratories. PMID:21637859

  18. Composition and variation of respiratory microbiota in healthy military personnel.

    PubMed

    Hang, Jun; Zavaljevski, Nela; Yang, Yu; Desai, Valmik; Ruck, Richard C; Macareo, Louis R; Jarman, Richard G; Reifman, Jaques; Kuschner, Robert A; Keiser, Paul B

    2017-01-01

    Certain occupational and geographical exposures have been associated with an increased risk of lung disease. As a baseline for future studies, we sought to characterize the upper respiratory microbiomes of healthy military personnel in a garrison environment. Nasal, oropharyngeal, and nasopharyngeal swabs were collected from 50 healthy active duty volunteers eight times over the course of one year (1107 swabs, completion rate = 92.25%) and subjected to pyrosequencing of the V1-V3 region of 16S rDNA. Respiratory bacterial taxa were characterized at the genus level, using QIIME 1.8 and the Ribosomal Database Project classifier. High levels of Staphylococcus, Corynebacterium, and Propionibacterium were observed among both nasal and nasopharyngeal microbiota, comprising more than 75% of all operational taxonomical units (OTUs). In contrast, Streptococcus was the sole dominant bacterial genus (approximately 50% of all OTUs) in the oropharynx. The average bacterial diversity was greater in the oropharynx than in the nasal or nasopharyngeal region at all time points. Diversity analysis indicated a significant overlap between nasal and nasopharyngeal samples, whereas oropharyngeal samples formed a cluster distinct from these two regions. The study produced a large set of pyrosequencing data on the V1-V3 region of bacterial 16S rDNA for the respiratory microbiomes of healthy active duty Service Members. Pre-processing of sequencing reads showed good data quality. The derived microbiome profiles were consistent both internally and with previous reports, suggesting their utility for further analyses and association studies based on sequence and demographic data.

  19. New Multilocus Variable-Number Tandem-Repeat Analysis Tool for Surveillance and Local Epidemiology of Bacterial Leaf Blight and Bacterial Leaf Streak of Rice Caused by Xanthomonas oryzae

    PubMed Central

    Poulin, L.; Grygiel, P.; Magne, M.; Rodriguez-R, L. M.; Forero Serna, N.; Zhao, S.; El Rafii, M.; Dao, S.; Tekete, C.; Wonni, I.; Koita, O.; Pruvost, O.; Verdier, V.; Vernière, C.

    2014-01-01

    Multilocus variable-number tandem-repeat analysis (MLVA) is efficient for routine typing and for investigating the genetic structures of natural microbial populations. Two distinct pathovars of Xanthomonas oryzae can cause significant crop losses in tropical and temperate rice-growing countries. Bacterial leaf streak is caused by X. oryzae pv. oryzicola, and bacterial leaf blight is caused by X. oryzae pv. oryzae. For the latter, two genetic lineages have been described in the literature. We developed a universal MLVA typing tool both for the identification of the three X. oryzae genetic lineages and for epidemiological analyses. Sixteen candidate variable-number tandem-repeat (VNTR) loci were selected according to their presence and polymorphism in 10 draft or complete genome sequences of the three X. oryzae lineages and by VNTR sequencing of a subset of loci of interest in 20 strains per lineage. The MLVA-16 scheme was then applied to 338 strains of X. oryzae representing different pathovars and geographical locations. Linkage disequilibrium between MLVA loci was calculated by index association on different scales, and the 16 loci showed linear Mantel correlation with MLSA data on 56 X. oryzae strains, suggesting that they provide a good phylogenetic signal. Furthermore, analyses of sets of strains for different lineages indicated the possibility of using the scheme for deeper epidemiological investigation on small spatial scales. PMID:25398857

  20. MIPS bacterial genomes functional annotation benchmark dataset.

    PubMed

    Tetko, Igor V; Brauner, Barbara; Dunger-Kaltenbach, Irmtraud; Frishman, Goar; Montrone, Corinna; Fobo, Gisela; Ruepp, Andreas; Antonov, Alexey V; Surmeli, Dimitrij; Mewes, Hans-Wernen

    2005-05-15

    Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. BFAB is available at http://mips.gsf.de/proj/bfab

  1. Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy

    PubMed Central

    Ulrich, Nikea; Rosenberger, Abigail; Brislawn, Colin; Wright, Justin; Kessler, Collin; Toole, David; Solomon, Caroline; Strutt, Steven; McClure, Erin

    2016-01-01

    ABSTRACT Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. IMPORTANCE In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study investigated the bacterial communities during and after Superstorm Sandy to provide fine time point resolution of dynamic changes in bacterial composition. This study adds to the current literature by revealing the variation in bacterial community structure during the course of a storm. This study employed high-throughput DNA sequencing, which generated a deep analysis of inter- and intracommunity responses during a significant storm event. This study has highlighted the utility of applying high-throughput sequencing for water quality monitoring purposes, as this approach enabled a more comprehensive investigation of the bacterial community structure. Altogether, these data suggest a drastic restructuring of the stream bacterial community during a storm event and highlight the potential of high-throughput sequencing approaches for assessing the microbiological quality of our environment. PMID:27060115

  2. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    PubMed Central

    Wright, Justin; Kirchner, Veronica; Bernard, William; Ulrich, Nikea; McLimans, Christopher; Campa, Maria F.; Hazen, Terry; Macbeth, Tamzen; Marabello, David; McDermott, Jacob; Mackelprang, Rachel; Roth, Kimberly; Lamendella, Regina

    2017-01-01

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. This study investigates the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L. Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. Across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges, indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios. PMID:29213257

  3. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Justin; Kirchner, Veronica; Bernard, William

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges, indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios.« less

  4. Bacterial Community Dynamics in Dichloromethane-Contaminated Groundwater Undergoing Natural Attenuation

    DOE PAGES

    Wright, Justin; Kirchner, Veronica; Bernard, William; ...

    2017-11-22

    The uncontrolled release of the industrial solvent methylene chloride, also known as dichloromethane (DCM), has resulted in widespread groundwater contamination in the United States. Here we investigate the role of groundwater bacterial communities in the natural attenuation of DCM at an undisclosed manufacturing site in New Jersey. Here, we investigate the bacterial community structure of groundwater samples differentially contaminated with DCM to better understand the biodegradation potential of these autochthonous bacterial communities. Bacterial community analysis was completed using high-throughput sequencing of the 16S rRNA gene of groundwater samples (n = 26) with DCM contamination ranging from 0.89 to 9,800,000 μg/L.more » Significant DCM concentration-driven shifts in overall bacterial community structure were identified between samples, including an increase in the abundance of Firmicutes within the most contaminated samples. And across all samples, a total of 6,134 unique operational taxonomic units (OTUs) were identified, with 16 taxa having strong correlations with increased DCM concentration. Putative DCM degraders such as Pseudomonas, Dehalobacterium and Desulfovibrio were present within groundwater across all levels of DCM contamination. Interestingly, each of these taxa dominated specific DCM contamination ranges respectively. Potential DCM degrading lineages yet to be cited specifically as a DCM degrading organisms, such as the Desulfosporosinus, thrived within the most heavily contaminated groundwater samples. Co-occurrence network analysis revealed aerobic and anaerobic bacterial taxa with DCM-degrading potential were present at the study site. Our 16S rRNA gene survey serves as the first in situ bacterial community assessment of contaminated groundwater harboring DCM concentrations ranging over seven orders of magnitude. Diversity analyses revealed known as well as potentially novel DCM degrading taxa within defined DCM concentration ranges, indicating niche-specific responses of these autochthonous populations. Altogether, our findings suggest that monitored natural attenuation is an appropriate remediation strategy for DCM contamination, and that high-throughput sequencing technologies are a robust method for assessing the potential role of biodegrading bacterial assemblages in the apparent reduction of DCM concentrations in environmental scenarios.« less

  5. The impact of sampling, PCR, and sequencing replication on discerning changes in drinking water bacterial community over diurnal time-scales.

    PubMed

    Bautista-de Los Santos, Quyen Melina; Schroeder, Joanna L; Blakemore, Oliver; Moses, Jonathan; Haffey, Mark; Sloan, William; Pinto, Ameet J

    2016-03-01

    High-throughput and deep DNA sequencing, particularly amplicon sequencing, is being increasingly utilized to reveal spatial and temporal dynamics of bacterial communities in drinking water systems. Whilst the sampling and methodological biases associated with PCR and sequencing have been studied in other environments, they have not been quantified for drinking water. These biases are likely to have the greatest effect on the ability to characterize subtle spatio-temporal patterns influenced by process/environmental conditions. In such cases, intra-sample variability may swamp any underlying small, systematic variation. To evaluate this, we undertook a study with replication at multiple levels including sampling sites, sample collection, PCR amplification, and high throughput sequencing of 16S rRNA amplicons. The variability inherent to the PCR amplification and sequencing steps is significant enough to mask differences between bacterial communities from replicate samples. This was largely driven by greater variability in detection of rare bacteria (relative abundance <0.01%) across PCR/sequencing replicates as compared to replicate samples. Despite this, we captured significant changes in bacterial community over diurnal time-scales and find that the extent and pattern of diurnal changes is specific to each sampling location. Further, we find diurnal changes in bacterial community arise due to differences in the presence/absence of the low abundance bacteria and changes in the relative abundance of dominant bacteria. Finally, we show that bacterial community composition is significantly different across sampling sites for time-periods during which there are typically rapid changes in water use. This suggests hydraulic changes (driven by changes in water demand) contribute to shaping the bacterial community in bulk drinking water over diurnal time-scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Genome-derived vaccines.

    PubMed

    De Groot, Anne S; Rappuoli, Rino

    2004-02-01

    Vaccine research entered a new era when the complete genome of a pathogenic bacterium was published in 1995. Since then, more than 97 bacterial pathogens have been sequenced and at least 110 additional projects are now in progress. Genome sequencing has also dramatically accelerated: high-throughput facilities can draft the sequence of an entire microbe (two to four megabases) in 1 to 2 days. Vaccine developers are using microarrays, immunoinformatics, proteomics and high-throughput immunology assays to reduce the truly unmanageable volume of information available in genome databases to a manageable size. Vaccines composed by novel antigens discovered from genome mining are already in clinical trials. Within 5 years we can expect to see a novel class of vaccines composed by genome-predicted, assembled and engineered T- and Bcell epitopes. This article addresses the convergence of three forces--microbial genome sequencing, computational immunology and new vaccine technologies--that are shifting genome mining for vaccines onto the forefront of immunology research.

  7. A communal catalogue reveals Earth's multiscale microbial diversity.

    PubMed

    Thompson, Luke R; Sanders, Jon G; McDonald, Daniel; Amir, Amnon; Ladau, Joshua; Locey, Kenneth J; Prill, Robert J; Tripathi, Anupriya; Gibbons, Sean M; Ackermann, Gail; Navas-Molina, Jose A; Janssen, Stefan; Kopylova, Evguenia; Vázquez-Baeza, Yoshiki; González, Antonio; Morton, James T; Mirarab, Siavash; Zech Xu, Zhenjiang; Jiang, Lingjing; Haroon, Mohamed F; Kanbar, Jad; Zhu, Qiyun; Jin Song, Se; Kosciolek, Tomasz; Bokulich, Nicholas A; Lefler, Joshua; Brislawn, Colin J; Humphrey, Gregory; Owens, Sarah M; Hampton-Marcell, Jarrad; Berg-Lyons, Donna; McKenzie, Valerie; Fierer, Noah; Fuhrman, Jed A; Clauset, Aaron; Stevens, Rick L; Shade, Ashley; Pollard, Katherine S; Goodwin, Kelly D; Jansson, Janet K; Gilbert, Jack A; Knight, Rob

    2017-11-23

    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.

  8. The s29x gene of symbiotic bacteria in Amoeba proteus with a novel promoter.

    PubMed

    Pak, J W; Jeon, K W

    1996-05-24

    Gram-symbiotic bacteria (called X-bacteria), present in the xD strain of Amoeba proteus as required cell components, synthesize and export a large amount of a 29-kDa protein, S29x. S29x is exported into the host's cytoplasm across the bacterial membranes and the symbiosome membrane. The complete nucleotide (nt) sequence of the s29x gene of X-bacteria has been determined, and the promoter sequence and tsp have also been identified. The gene has a nonconventional promoter with putative nt sequences different from the known consensus sequences. When Escherichia coli cells are transformed with s29x, the gene is expressed and the product is secreted into the culture medium. Functions of S29x are not fully known, but it is suspected that S29x plays an important role in the symbiotic relationship between amoebae and X-bacteria.

  9. Genomic Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I) project

    DOE PAGES

    Kyrpides, Nikos C.; Woyke, Tanja; Eisen, Jonathan A.; ...

    2014-06-15

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project with the objective of sequencing 250 bacterial and archaeal genomes. The two major goals of that project were (a) to test the hypothesis that there are many benefits to the use the phylogenetic diversity of organisms in the tree of life as a primary criterion for generating their genome sequence and (b) to develop the necessary framework, technology and organization for large-scale sequencing of microbial isolate genomes. While the GEBA pilot project has not yet been entirely completed, both ofmore » the original goals have already been successfully accomplished, leading the way for the next phase of the project. Here we propose taking the GEBA project to the next level, by generating high quality draft genomes for 1,000 bacterial and archaeal strains. This represents a combined 16-fold increase in both scale and speed as compared to the GEBA pilot project (250 isolate genomes in 4+ years). We will follow a similar approach for organism selection and sequencing prioritization as was done for the GEBA pilot project (i.e. phylogenetic novelty, availability and growth of cultures of type strains and DNA extraction capability), focusing on type strains as this ensures reproducibility of our results and provides the strongest linkage between genome sequences and other knowledge about each strain. In turn, this project will constitute a pilot phase of a larger effort that will target the genome sequences of all available type strains of the Bacteria and Archaea.« less

  10. Genomic Encyclopedia of Type Strains, Phase I: The one thousand microbial genomes (KMG-I) project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyrpides, Nikos C.; Woyke, Tanja; Eisen, Jonathan A.

    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project with the objective of sequencing 250 bacterial and archaeal genomes. The two major goals of that project were (a) to test the hypothesis that there are many benefits to the use the phylogenetic diversity of organisms in the tree of life as a primary criterion for generating their genome sequence and (b) to develop the necessary framework, technology and organization for large-scale sequencing of microbial isolate genomes. While the GEBA pilot project has not yet been entirely completed, both ofmore » the original goals have already been successfully accomplished, leading the way for the next phase of the project. Here we propose taking the GEBA project to the next level, by generating high quality draft genomes for 1,000 bacterial and archaeal strains. This represents a combined 16-fold increase in both scale and speed as compared to the GEBA pilot project (250 isolate genomes in 4+ years). We will follow a similar approach for organism selection and sequencing prioritization as was done for the GEBA pilot project (i.e. phylogenetic novelty, availability and growth of cultures of type strains and DNA extraction capability), focusing on type strains as this ensures reproducibility of our results and provides the strongest linkage between genome sequences and other knowledge about each strain. In turn, this project will constitute a pilot phase of a larger effort that will target the genome sequences of all available type strains of the Bacteria and Archaea.« less

  11. Identification of Microbial Profile of Koji Using Single Molecule, Real-Time Sequencing Technology.

    PubMed

    Hui, Wenyan; Hou, Qiangchuan; Cao, Chenxia; Xu, Haiyan; Zhen, Yi; Kwok, Lai-Yu; Sun, Tiansong; Zhang, Heping; Zhang, Wenyi

    2017-05-01

    Koji is a kind of Japanese traditional fermented starter that has been used for centuries. Many fermented foods are made from koji, such as sake, miso, and soy sauce. This study used the single molecule real-time sequencing technology (SMRT) to investigate the bacterial and fungal microbiota of 3 Japanese koji samples. After SMRT analysis, a total of 39121 high-quality sequences were generated, including 14354 bacterial and 24767 fungal sequence reads. The high-quality gene sequences were assigned to 5 bacterial and 2 fungal plyla, dominated by Proteobacteria and Ascomycota, respectively. At the genus level, Ochrobactrum and Wickerhamomyces were the most abundant bacterial and fungal genera, respectively. The predominant bacterial and fungal species were Ochrobactrum lupini and Wickerhamomyces anomalus, respectively. Our study profiled the microbiota composition of 3 Japanese koji samples to the species level precision. The results may be useful for further development of traditional fermented products, especially optimization of koji preparation. Meanwhile, this study has demonstrated that SMRT is a robust tool for analyzing the microbial composition in food samples. © 2017 Institute of Food Technologists®.

  12. Whole-Genome Sequencing of Staphylococcus haemolyticus Uncovers the Extreme Plasticity of Its Genome and the Evolution of Human-Colonizing Staphylococcal Species

    PubMed Central

    Takeuchi, Fumihiko; Watanabe, Shinya; Baba, Tadashi; Yuzawa, Harumi; Ito, Teruyo; Morimoto, Yuh; Kuroda, Makoto; Cui, Longzhu; Takahashi, Mikio; Ankai, Akiho; Baba, Shin-ichi; Fukui, Shigehiro; Lee, Jean C.; Hiramatsu, Keiichi

    2005-01-01

    Staphylococcus haemolyticus is an opportunistic bacterial pathogen that colonizes human skin and is remarkable for its highly antibiotic-resistant phenotype. We determined the complete genome sequence of S.haemolyticus to better understand its pathogenicity and evolutionary relatedness to the other staphylococcal species. A large proportion of the open reading frames in the genomes of S.haemolyticus, Staphylococcus aureus, and Staphylococcus epidermidis were conserved in their sequence and order on the chromosome. We identified a region of the bacterial chromosome just downstream of the origin of replication that showed little homology among the species but was conserved among strains within a species. This novel region, designated the “oriC environ,” likely contributes to the evolution and differentiation of the staphylococcal species, since it was enriched for species-specific nonessential genes that contribute to the biological features of each staphylococcal species. A comparative analysis of the genomes of S.haemolyticus, S.aureus, and S.epidermidis elucidated differences in their biological and genetic characteristics and pathogenic potentials. We identified as many as 82 insertion sequences in the S.haemolyticus chromosome that probably mediated frequent genomic rearrangements, resulting in phenotypic diversification of the strain. Such rearrangements could have brought genomic plasticity to this species and contributed to its acquisition of antibiotic resistance. PMID:16237012

  13. Complete genome sequence of DSM 30083(T), the type strain (U5/41(T)) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy.

    PubMed

    Meier-Kolthoff, Jan P; Hahnke, Richard L; Petersen, Jörn; Scheuner, Carmen; Michael, Victoria; Fiebig, Anne; Rohde, Christine; Rohde, Manfred; Fartmann, Berthold; Goodwin, Lynne A; Chertkov, Olga; Reddy, Tbk; Pati, Amrita; Ivanova, Natalia N; Markowitz, Victor; Kyrpides, Nikos C; Woyke, Tanja; Göker, Markus; Klenk, Hans-Peter

    2014-01-01

    Although Escherichia coli is the most widely studied bacterial model organism and often considered to be the model bacterium per se, its type strain was until now forgotten from microbial genomics. As a part of the G enomic E ncyclopedia of B acteria and A rchaea project, we here describe the features of E. coli DSM 30083(T) together with its genome sequence and annotation as well as novel aspects of its phenotype. The 5,038,133 bp containing genome sequence includes 4,762 protein-coding genes and 175 RNA genes as well as a single plasmid. Affiliation of a set of 250 genome-sequenced E. coli strains, Shigella and outgroup strains to the type strain of E. coli was investigated using digital DNA:DNA-hybridization (dDDH) similarities and differences in genomic G+C content. As in the majority of previous studies, results show Shigella spp. embedded within E. coli and in most cases forming a single subgroup of it. Phylogenomic trees also recover the proposed E. coli phylotypes as monophyla with minor exceptions and place DSM 30083(T) in phylotype B2 with E. coli S88 as its closest neighbor. The widely used lab strain K-12 is not only genomically but also physiologically strongly different from the type strain. The phylotypes do not express a uniform level of character divergence as measured using dDDH, however, thus an alternative arrangement is proposed and discussed in the context of bacterial subspecies. Analyses of the genome sequences of a large number of E. coli strains and of strains from > 100 other bacterial genera indicate a value of 79-80% dDDH as the most promising threshold for delineating subspecies, which in turn suggests the presence of five subspecies within E. coli.

  14. Suitability of partial 16S ribosomal RNA gene sequence analysis for the identification of dangerous bacterial pathogens.

    PubMed

    Ruppitsch, W; Stöger, A; Indra, A; Grif, K; Schabereiter-Gurtner, C; Hirschl, A; Allerberger, F

    2007-03-01

    In a bioterrorism event a rapid tool is needed to identify relevant dangerous bacteria. The aim of the study was to assess the usefulness of partial 16S rRNA gene sequence analysis and the suitability of diverse databases for identifying dangerous bacterial pathogens. For rapid identification purposes a 500-bp fragment of the 16S rRNA gene of 28 isolates comprising Bacillus anthracis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Yersinia pestis, and eight genus-related and unrelated control strains was amplified and sequenced. The obtained sequence data were submitted to three public and two commercial sequence databases for species identification. The most frequent reason for incorrect identification was the lack of the respective 16S rRNA gene sequences in the database. Sequence analysis of a 500-bp 16S rDNA fragment allows the rapid identification of dangerous bacterial species. However, for discrimination of closely related species sequencing of the entire 16S rRNA gene, additional sequencing of the 23S rRNA gene or sequencing of the 16S-23S rRNA intergenic spacer is essential. This work provides comprehensive information on the suitability of partial 16S rDNA analysis and diverse databases for rapid and accurate identification of dangerous bacterial pathogens.

  15. Identification of Bacterial Species in Kuwaiti Waters Through DNA Sequencing

    NASA Astrophysics Data System (ADS)

    Chen, K.

    2017-01-01

    With an objective of identifying the bacterial diversity associated with ecosystem of various Kuwaiti Seas, bacteria were cultured and isolated from 3 water samples. Due to the difficulties for cultured and isolated fecal coliforms on the selective agar plates, bacterial isolates from marine agar plates were selected for molecular identification. 16S rRNA genes were successfully amplified from the genome of the selected isolates using Universal Eubacterial 16S rRNA primers. The resulted amplification products were subjected to automated DNA sequencing. Partial 16S rDNA sequences obtained were compared directly with sequences in the NCBI database using BLAST as well as with the sequences available with Ribosomal Database Project (RDP).

  16. Electromagnetic signals are produced by aqueous nanostructures derived from bacterial DNA sequences.

    PubMed

    Montagnier, Luc; Aïssa, Jamal; Ferris, Stéphane; Montagnier, Jean-Luc; Lavallée, Claude

    2009-06-01

    A novel property of DNA is described: the capacity of some bacterial DNA sequences to induce electromagnetic waves at high aqueous dilutions. It appears to be a resonance phenomenon triggered by the ambient electromagnetic background of very low frequency waves. The genomic DNA of most pathogenic bacteria contains sequences which are able to generate such signals. This opens the way to the development of highly sensitive detection system for chronic bacterial infections in human and animal diseases.

  17. Active bacterial community structure along vertical redox gradients in Baltic Sea sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansson, Janet; Edlund, Anna; Hardeman, Fredrik

    Community structures of active bacterial populations were investigated along a vertical redox profile in coastal Baltic Sea sediments by terminal-restriction fragment length polymorphism (T-RFLP) and clone library analysis. According to correspondence analysis of T-RFLP results and sequencing of cloned 16S rRNA genes, the microbial community structures at three redox depths (179 mV, -64 mV and -337 mV) differed significantly. The bacterial communities in the community DNA differed from those in bromodeoxyuridine (BrdU)-labeled DNA, indicating that the growing members of the community that incorporated BrdU were not necessarily the most dominant members. The structures of the actively growing bacterial communities weremore » most strongly correlated to organic carbon followed by total nitrogen and redox potentials. Bacterial identification by sequencing of 16S rRNA genes from clones of BrdU-labeled DNA and DNA from reverse transcription PCR (rt-PCR) showed that bacterial taxa involved in nitrogen and sulfur cycling were metabolically active along the redox profiles. Several sequences had low similarities to previously detected sequences indicating that novel lineages of bacteria are present in Baltic Sea sediments. Also, a high number of different 16S rRNA gene sequences representing different phyla were detected at all sampling depths.« less

  18. Insights into the bacterial community and its temporal succession during the fermentation of wine grapes

    PubMed Central

    Piao, Hailan; Hawley, Erik; Kopf, Scott; DeScenzo, Richard; Sealock, Steven; Henick-Kling, Thomas; Hess, Matthias

    2015-01-01

    Grapes harbor complex microbial communities. It is well known that yeasts, typically Saccharomyces cerevisiae, and bacteria, commonly the lactic acid fermenting Oenococcus oeni, work sequentially during primary and secondary wine fermentation. In addition to these main players, several microbes, often with undesirable effects on wine quality, have been found in grapes and during wine fermentation. However, still little is known about the dynamics of the microbial community during the fermentation process. In previous studies culture dependent methods were applied to detect and identify microbial organisms associated with grapes and grape products, which resulted in a picture that neglected the non-culturable fraction of the microbes. To obtain a more complete picture of how microbial communities change during grape fermentation and how different fermentation techniques might affect the microbial community composition, we employed next-generation sequencing (NGS)—a culture-independent method. A better understanding of the microbial dynamics and their effect on the final product is of great importance to help winemakers produce wine styles of consistent and high quality. In this study, we focused on the bacterial community dynamics during wine vinification by amplifying and sequencing the hypervariable V1–V3 region of the 16S rRNA gene—a phylogenetic marker gene that is ubiquitous within prokaryotes. Bacterial communities and their temporal succession was observed for communities associated with organically and conventionally produced wines. In addition, we analyzed the chemical characteristics of the grape musts during the organic and conventional fermentation process. These analyses revealed distinct bacterial population with specific temporal changes as well as different chemical profiles for the organically and conventionally produced wines. In summary these results suggest a possible correlation between the temporal succession of the bacterial population and the chemical wine profiles. PMID:26347718

  19. Evolution and dynamics of megaplasmids with genome sizes larger than 100 kb in the Bacillus cereus group.

    PubMed

    Zheng, Jinshui; Peng, Donghai; Ruan, Lifang; Sun, Ming

    2013-12-02

    Plasmids play a crucial role in the evolution of bacterial genomes by mediating horizontal gene transfer. However, the origin and evolution of most plasmids remains unclear, especially for megaplasmids. Strains of the Bacillus cereus group contain up to 13 plasmids with genome sizes ranging from 2 kb to 600 kb, and thus can be used to study plasmid dynamics and evolution. This work studied the origin and evolution of 31 B. cereus group megaplasmids (>100 kb) focusing on the most conserved regions on plasmids, minireplicons. Sixty-five putative minireplicons were identified and classified to six types on the basis of proteins that are essential for replication. Twenty-nine of the 31 megaplasmids contained two or more minireplicons. Phylogenetic analysis of the protein sequences showed that different minireplicons on the same megaplasmid have different evolutionary histories. Therefore, we speculated that these megaplasmids are the results of fusion of smaller plasmids. All plasmids of a bacterial strain must be compatible. In megaplasmids of the B. cereus group, individual minireplicons of different megaplasmids in the same strain belong to different types or subtypes. Thus, the subtypes of each minireplicon they contain may determine the incompatibilities of megaplasmids. A broader analysis of all 1285 bacterial plasmids with putative known minireplicons whose complete genome sequences were available from GenBank revealed that 34% (443 plasmids) of the plasmids have two or more minireplicons. This indicates that plasmid fusion events are general among bacterial plasmids. Megaplasmids of B. cereus group are fusion of smaller plasmids, and the fusion of plasmids likely occurs frequently in the B. cereus group and in other bacterial taxa. Plasmid fusion may be one of the major mechanisms for formation of novel megaplasmids in the evolution of bacteria.

  20. Reconstruction of a Bacterial Genome from DNA Cassettes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Dupont; John Glass; Laura Sheahan

    2011-12-31

    This basic research program comprised two major areas: (1) acquisition and analysis of marine microbial metagenomic data and development of genomic analysis tools for broad, external community use; (2) development of a minimal bacterial genome. Our Marine Metagenomic Diversity effort generated and analyzed shotgun sequencing data from microbial communities sampled from over 250 sites around the world. About 40% of the 26 Gbp of sequence data has been made publicly available to date with a complete release anticipated in six months. Our results and those mining the deposited data have revealed a vast diversity of genes coding for critical metabolicmore » processes whose phylogenetic and geographic distributions will enable a deeper understanding of carbon and nutrient cycling, microbial ecology, and rapid rate evolutionary processes such as horizontal gene transfer by viruses and plasmids. A global assembly of the generated dataset resulted in a massive set (5Gbp) of genome fragments that provide context to the majority of the generated data that originated from uncultivated organisms. Our Synthetic Biology team has made significant progress towards the goal of synthesizing a minimal mycoplasma genome that will have all of the machinery for independent life. This project, once completed, will provide fundamentally new knowledge about requirements for microbial life and help to lay a basic research foundation for developing microbiological approaches to bioenergy.« less

  1. Analysis of five complete genome sequences for members of the class Peribacteria in the recently recognized Peregrinibacteria bacterial phylum

    DOE PAGES

    Anantharaman, Karthik; Brown, Christopher T.; Burstein, David; ...

    2016-01-28

    Five closely related populations of bacteria from the Candidate Phylum (CP) Peregrinibacteria, part of the bacterial Candidate Phyla Radiation (CPR), were sampled from filtered groundwater obtained from an aquifer adjacent to the Colorado River near the town of Rifle, CO, USA. Here, we present the first complete genome sequences for organisms from this phylum. These bacteria have small genomes and, unlike most organisms from other lineages in the CPR, have the capacity for nucleotide synthesis. They invest significantly in biosynthesis of cell wall and cell envelope components, including peptidoglycan, isoprenoids via the mevalonate pathway, and a variety of amino sugarsmore » including perosamine and rhamnose. The genomes encode an intriguing set of large extracellular proteins, some of which are very cysteine-rich and may function in attachment, possibly to other cells. Strain variation in these proteins is an important source of genotypic variety. Overall, the cell envelope features, combined with the lack of biosynthesis capacities for many required cofactors, fatty acids, and most amino acids point to a symbiotic lifestyle. Furthermore, phylogenetic analyses indicate that these bacteria likely represent a new class within the Peregrinibacteria phylum, although they ultimately may be recognized as members of a separate phylum. In conclusion, we propose the provisional taxonomic assignment as ‘ Candidatus Peribacter riflensis’, Genus Peribacter, Family Peribacteraceae, Order Peribacterales, Class Peribacteria in the phylum Peregrinibacteria.« less

  2. Perspectives on the Transition From Bacterial Phytopathogen Genomics Studies to Applications Enhancing Disease Management: From Promise to Practice.

    PubMed

    Sundin, George W; Wang, Nian; Charkowski, Amy O; Castiblanco, Luisa F; Jia, Hongge; Zhao, Youfu

    2016-10-01

    The advent of genomics has advanced science into a new era, providing a plethora of "toys" for researchers in many related and disparate fields. Genomics has also spawned many new fields, including proteomics and metabolomics, furthering our ability to gain a more comprehensive view of individual organisms and of interacting organisms. Genomic information of both bacterial pathogens and their hosts has provided the critical starting point in understanding the molecular bases of how pathogens disrupt host cells to cause disease. In addition, knowledge of the complete genome sequence of the pathogen provides a potentially broad slate of targets for the development of novel virulence inhibitors that are desperately needed for disease management. Regarding plant bacterial pathogens and disease management, the potential for utilizing genomics resources in the development of durable resistance is enhanced because of developing technologies that enable targeted modification of the host. Here, we summarize the role of genomics studies in furthering efforts to manage bacterial plant diseases and highlight novel genomics-enabled strategies heading down this path.

  3. Interplay of heritage and habitat in the distribution of bacterial signal transduction systems.

    PubMed

    Galperin, Michael Y; Higdon, Roger; Kolker, Eugene

    2010-04-01

    Comparative analysis of the complete genome sequences from a variety of poorly studied organisms aims at predicting ecological and behavioral properties of these organisms and helping in characterizing their habitats. This task requires finding appropriate descriptors that could be correlated with the core traits of each system and would allow meaningful comparisons. Using the relatively simple bacterial models, first attempts have been made to introduce suitable metrics to describe the complexity of organism's signaling machinery, which included introducing the "bacterial IQ" score. Here, we use an updated census of prokaryotic signal transduction systems to improve this parameter and evaluate its consistency within selected bacterial phyla. We also introduce a more elaborate descriptor, a set of profiles of relative abundance of members of each family of signal transduction proteins encoded in each genome. We show that these family profiles are well conserved within each genus and are often consistent within families of bacteria. Thus, they reflect evolutionary relationships between organisms as well as individual adaptations of each organism to its specific ecological niche.

  4. Molecular diversity of bacterial endosymbionts associated with dagger nematodes of the genus Xiphinema (Nematoda: Longidoridae) reveals a high degree of phylogenetic congruence with their host.

    PubMed

    Palomares-Rius, Juan E; Archidona-Yuste, Antonio; Cantalapiedra-Navarrete, Carolina; Prieto, Pilar; Castillo, Pablo

    2016-12-01

    Bacterial endosymbionts have been detected in some groups of plant-parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal-parasitic or free-living nematodes. This study was performed on a wide variety of plant-parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty-seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus 'Candidatus Xiphinematobacter' (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil-plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long-term evolutionary persistence between hosts and endosymbionts. © 2016 John Wiley & Sons Ltd.

  5. Sequence-Specific Affinity Chromatography of Bacterial Small Regulatory RNA-Binding Proteins from Bacterial Cells.

    PubMed

    Gans, Jonathan; Osborne, Jonathan; Cheng, Juliet; Djapgne, Louise; Oglesby-Sherrouse, Amanda G

    2018-01-01

    Bacterial small RNA molecules (sRNAs) are increasingly recognized as central regulators of bacterial stress responses and pathogenesis. In many cases, RNA-binding proteins are critical for the stability and function of sRNAs. Previous studies have adopted strategies to genetically tag an sRNA of interest, allowing isolation of RNA-protein complexes from cells. Here we present a sequence-specific affinity purification protocol that requires no prior genetic manipulation of bacterial cells, allowing isolation of RNA-binding proteins bound to native RNA molecules.

  6. Nodeomics: Pathogen Detection in Vertebrate Lymph Nodes Using Meta-Transcriptomics

    USGS Publications Warehouse

    Wittekindt, Nicola E.; Padhi, Abinash; Schuster, Stephan C.; Qi, Ji; Zhao, Fangqing; Tomsho, Lynn P.; Kasson, Lindsay R.; Packard, Michael; Cross, Paul C.; Poss, Mary

    2010-01-01

    The ongoing emergence of human infections originating from wildlife highlights the need for better knowledge of the microbial community in wildlife species where traditional diagnostic approaches are limited. Here we evaluate the microbial biota in healthy mule deer (Odocoileus hemionus) by analyses of lymph node meta-transcriptomes. cDNA libraries from five individuals and two pools of samples were prepared from retropharyngeal lymph node RNA enriched for polyadenylated RNA and sequenced using Roche-454 Life Sciences technology. Protein-coding and 16S ribosomal RNA (rRNA) sequences were taxonomically profiled using protein and rRNA specific databases. Representatives of all bacterial phyla were detected in the seven libraries based on protein-coding transcripts indicating that viable microbiota were present in lymph nodes. Residents of skin and rumen, and those ubiquitous in mule deer habitat dominated classifiable bacterial species. Based on detection of both rRNA and protein-coding transcripts, we identified two new proteobacterial species; a Helicobacter closely related to Helicobacter cetorum in the Helicobacter pylori/Helicobacter acinonychis complex and an Acinetobacter related to Acinetobacter schindleri. Among viruses, a novel gamma retrovirus and other members of the Poxviridae and Retroviridae were identified. We additionally evaluated bacterial diversity by amplicon sequencing the hypervariable V6 region of 16S rRNA and demonstrate that overall taxonomic diversity is higher with the meta-transcriptomic approach. These data provide the most complete picture to date of the microbial diversity within a wildlife host. Our research advances the use of meta-transcriptomics to study microbiota in wildlife tissues, which will facilitate detection of novel organisms with pathogenic potential to human and animals.

  7. RapGene: a fast and accurate strategy for synthetic gene assembly in Escherichia coli

    PubMed Central

    Zampini, Massimiliano; Stevens, Pauline Rees; Pachebat, Justin A.; Kingston-Smith, Alison; Mur, Luis A. J.; Hayes, Finbarr

    2015-01-01

    The ability to assemble DNA sequences de novo through efficient and powerful DNA fabrication methods is one of the foundational technologies of synthetic biology. Gene synthesis, in particular, has been considered the main driver for the emergence of this new scientific discipline. Here we describe RapGene, a rapid gene assembly technique which was successfully tested for the synthesis and cloning of both prokaryotic and eukaryotic genes through a ligation independent approach. The method developed in this study is a complete bacterial gene synthesis platform for the quick, accurate and cost effective fabrication and cloning of gene-length sequences that employ the widely used host Escherichia coli. PMID:26062748

  8. Diagnosis of Meningococcal Meningitis by Broad-Range Bacterial PCR with Cerebrospinal Fluid

    PubMed Central

    Kotilainen, Pirkko; Jalava, Jari; Meurman, Olli; Lehtonen, Olli-Pekka; Rintala, Esa; Seppälä, Olli-Pekka; Eerola, Erkki; Nikkari, Simo

    1998-01-01

    We used broad-range bacterial PCR combined with DNA sequencing to examine prospectively cerebrospinal fluid (CSF) samples from patients with suspected meningitis. Fifty-six CSF samples from 46 patients were studied during the year 1995. Genes coding for bacterial 16S and/or 23S rRNA genes could be amplified from the CSF samples from five patients with a clinical picture consistent with acute bacterial meningitis. For these patients, the sequenced PCR product shared 98.3 to 100% homology with the Neisseria meningitidis sequence. For one patient, the diagnosis was initially made by PCR alone. Of the remaining 51 CSF samples, for 50 (98.0%) samples the negative PCR findings were in accordance with the negative findings by bacterial culture and Gram staining, as well as with the eventual clinical diagnosis for the patient. However, the PCR test failed to detect the bacterial rRNA gene in one CSF sample, the culture of which yielded Listeria monocytogenes. These results invite new research efforts to be focused on the application of PCR with broad-range bacterial primers to improve the etiologic diagnosis of bacterial meningitis. In a clinical setting, Gram staining and bacterial culture still remain the cornerstones of diagnosis. PMID:9665992

  9. RNA-Seq for Bacterial Gene Expression.

    PubMed

    Poulsen, Line Dahl; Vinther, Jeppe

    2018-06-01

    RNA sequencing (RNA-seq) has become the preferred method for global quantification of bacterial gene expression. With the continued improvements in sequencing technology and data analysis tools, the most labor-intensive and expensive part of an RNA-seq experiment is the preparation of sequencing libraries, which is also essential for the quality of the data obtained. Here, we present a straightforward and inexpensive basic protocol for preparation of strand-specific RNA-seq libraries from bacterial RNA as well as a computational pipeline for the data analysis of sequencing reads. The protocol is based on the Illumina platform and allows easy multiplexing of samples and the removal of sequencing reads that are PCR duplicates. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  10. Brain Microbial Populations in HIV/AIDS: α-Proteobacteria Predominate Independent of Host Immune Status

    PubMed Central

    Branton, William G.; Ellestad, Kristofor K.; Maingat, Ferdinand; Wheatley, B. Matt; Rud, Erling; Warren, René L.; Holt, Robert A.; Surette, Michael G.; Power, Christopher

    2013-01-01

    The brain is assumed to be a sterile organ in the absence of disease although the impact of immune disruption is uncertain in terms of brain microbial diversity or quantity. To investigate microbial diversity and quantity in the brain, the profile of infectious agents was examined in pathologically normal and abnormal brains from persons with HIV/AIDS [HIV] (n = 12), other disease controls [ODC] (n = 14) and in cerebral surgical resections for epilepsy [SURG] (n = 6). Deep sequencing of cerebral white matter-derived RNA from the HIV (n = 4) and ODC (n = 4) patients and SURG (n = 2) groups revealed bacterially-encoded 16 s RNA sequences in all brain specimens with α-proteobacteria representing over 70% of bacterial sequences while the other 30% of bacterial classes varied widely. Bacterial rRNA was detected in white matter glial cells by in situ hybridization and peptidoglycan immunoreactivity was also localized principally in glia in human brains. Analyses of amplified bacterial 16 s rRNA sequences disclosed that Proteobacteria was the principal bacterial phylum in all human brain samples with similar bacterial rRNA quantities in HIV and ODC groups despite increased host neuroimmune responses in the HIV group. Exogenous viruses including bacteriophage and human herpes viruses-4, -5 and -6 were detected variably in autopsied brains from both clinical groups. Brains from SIV- and SHIV-infected macaques displayed a profile of bacterial phyla also dominated by Proteobacteria but bacterial sequences were not detected in experimentally FIV-infected cat or RAG1−/− mouse brains. Intracerebral implantation of human brain homogenates into RAG1−/− mice revealed a preponderance of α-proteobacteria 16 s RNA sequences in the brains of recipient mice at 7 weeks post-implantation, which was abrogated by prior heat-treatment of the brain homogenate. Thus, α-proteobacteria represented the major bacterial component of the primate brain’s microbiome regardless of underlying immune status, which could be transferred into naïve hosts leading to microbial persistence in the brain. PMID:23355888

  11. Death Becomes Them: Bacterial Community Dynamics and Stilbene Antibiotic Production in Cadavers of Galleria mellonella Killed by Heterorhabditis and Photorhabdus spp.

    PubMed Central

    Wollenberg, Amanda C.; Slough, Greg; Hoinville, Megan E.

    2016-01-01

    ABSTRACT Insect larvae killed by entomopathogenic nematodes are thought to contain bacterial communities dominated by a single bacterial genus, that of the nematode's bacterial symbiont. In this study, we used next-generation sequencing to profile bacterial community dynamics in greater wax moth (Galleria mellonella) larvae cadavers killed by Heterorhabditis nematodes and their Photorhabdus symbionts. We found that, although Photorhabdus strains did initially displace an Enterococcus-dominated community present in uninfected G. mellonella insect larvae, the cadaver community was not static. Twelve days postinfection, Photorhabdus shared the cadaver with Stenotrophomonas species. Consistent with this result, Stenotrophomonas strains isolated from infected cadavers were resistant to Photorhabdus-mediated toxicity in solid coculture assays. We isolated and characterized a Photorhabdus-produced antibiotic from G. mellonella cadavers, produced it synthetically, and demonstrated that both the natural and synthetic compounds decreased G. mellonella-associated Enterococcus growth, but not Stenotrophomonas growth, in vitro. Finally, we showed that the Stenotrophomonas strains described here negatively affected Photorhabdus growth in vitro. Our results add an important dimension to a broader understanding of Heterorhabditis-Photorhabdus biology and also demonstrate that interspecific bacterial competition likely characterizes even a theoretically monoxenic environment, such as a Heterorhabditis-Photorhabdus-parasitized insect cadaver. IMPORTANCE Understanding, and eventually manipulating, both human and environmental health depends on a complete accounting of the forces that act on and shape microbial communities. One of these underlying forces is hypothesized to be resource competition. A resource that has received little attention in the general microbiological literature, but likely has ecological and evolutionary importance, is dead/decaying multicellular organisms. Metazoan cadavers, including those of insects, are ephemeral and nutrient-rich environments, where resource competition might shape interspecific macrobiotic and microbiotic interactions. This study is the first to use a next-generation sequencing approach to study the community dynamics of bacteria within a model insect cadaver system: insect larvae parasitized by entomopathogenic nematodes and their bacterial symbionts. By integrating bioinformatic, biochemical, and classic in vitro microbiological approaches, we have provided mechanistic insight into how antibiotic-mediated bacterial interactions may shape community dynamics within insect cadavers. PMID:27451445

  12. Endophyte Microbiome Diversity in Micropropagated Atriplex canescens and Atriplex torreyi var griffithsii

    PubMed Central

    Lucero, Mary E.; Unc, Adrian; Cooke, Peter; Dowd, Scot; Sun, Shulei

    2011-01-01

    Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities. PMID:21437280

  13. Characterization of microbial communities in heavy crude oil from Saudi Arabia.

    PubMed

    Albokari, Majed; Mashhour, Ibrahim; Alshehri, Mohammed; Boothman, Chris; Al-Enezi, Mousa

    The complete mineralization of crude oil into carbon dioxide, water, inorganic compounds and cellular constituents can be carried out as part of a bioremediation strategy. This involves the transformation of complex organic contaminants into simpler organic compounds by microbial communities, mainly bacteria. A crude oil sample and an oil sludge sample were obtained from Saudi ARAMCO Oil Company and investigated to identify the microbial communities present using PCR-based culture-independent techniques. In total, analysis of 177 clones yielded 30 distinct bacterial sequences. Clone library analysis of the oil sample was found to contain Bacillus , Clostridia and Gammaproteobacteria species while the sludge sample revealed the presence of members of the Alphaproteobacteria , Betaproteobacteria , Gammaproteobacteria , Clostridia , Spingobacteria and Flavobacteria . The dominant bacterial class identified in oil and sludge samples was found to be Bacilli and Flavobacteria , respectively. Phylogenetic analysis showed that the dominant bacterium in the oil sample has the closest sequence identity to Enterococcus aquimarinus and the dominant bacterium in the sludge sample is most closely related to the uncultured Bacteroidetes bacterium designated AH.KK.

  14. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora.

    PubMed

    Lema, Kimberley A; Bourne, David G; Willis, Bette L

    2014-10-01

    Early establishment of coral-microbial symbioses is fundamental to the fitness of corals, but comparatively little is known about the onset and succession of bacterial communities in their early life history stages. In this study, bacterial associates of the coral Acropora millepora were characterized throughout the first year of life, from larvae and 1-week-old juveniles reared in laboratory conditions in the absence of the dinoflagellate endosymbiont Symbiodinium to field-outplanted juveniles with established Symbiodinium symbioses, and sampled at 2 weeks and at 3, 6 and 12 months. Using an amplicon pyrosequencing approach, the diversity of both nitrogen-fixing bacteria and of bacterial communities overall was assessed through analysis of nifH and 16S rRNA genes, respectively. The consistent presence of sequences affiliated with diazotrophs of the order Rhizobiales (23-58% of retrieved nifH sequences; 2-12% of 16S rRNA sequences), across all samples from larvae to 12-month-old coral juveniles, highlights the likely functional importance of this nitrogen-fixing order to the coral holobiont. Dominance of Roseobacter-affiliated sequences (>55% of retrieved 16S rRNA sequences) in larvae and 1-week-old juveniles, and the consistent presence of sequences related to Oceanospirillales and Altermonadales throughout all early life history stages, signifies their potential importance as coral associates. Increased diversity of bacterial communities once juveniles were transferred to the field, particularly of Cyanobacteria and Deltaproteobacteria, demonstrates horizontal (environmental) uptake of coral-associated bacterial communities. Although overall bacterial communities were dynamic, bacteria with likely important functional roles remain stable throughout early life stages of Acropora millepora. © 2014 John Wiley & Sons Ltd.

  15. Novel application of the MSSCP method in biodiversity studies.

    PubMed

    Tomczyk-Żak, Karolina; Kaczanowski, Szymon; Górecka, Magdalena; Zielenkiewicz, Urszula

    2012-02-01

    Analysis of 16S rRNA sequence diversity is widely performed for characterizing the biodiversity of microbial samples. The number of determined sequences has a considerable impact on complete results. Although the cost of mass sequencing is decreasing, it is often still too high for individual projects. We applied the multi-temperature single-strand conformational polymorphism (MSSCP) method to decrease the number of analysed sequences. This was a novel application of this method. As a control, the same sample was analysed using random sequencing. In this paper, we adapted the MSSCP technique for screening of unique sequences of the 16S rRNA gene library and bacterial strains isolated from biofilms growing on the walls of an ancient gold mine in Poland and determined whether the results obtained by both methods differed and whether random sequencing could be replaced by MSSCP. Although it was biased towards the detection of rare sequences in the samples, the qualitative results of MSSCP were not different than those of random sequencing. Unambiguous discrimination of unique clones and strains creates an opportunity to effectively estimate the biodiversity of natural communities, especially in populations which are numerous but species poor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Detection of Bacterial Pathogens from Broncho-Alveolar Lavage by Next-Generation Sequencing.

    PubMed

    Leo, Stefano; Gaïa, Nadia; Ruppé, Etienne; Emonet, Stephane; Girard, Myriam; Lazarevic, Vladimir; Schrenzel, Jacques

    2017-09-20

    The applications of whole-metagenome shotgun sequencing (WMGS) in routine clinical analysis are still limited. A combination of a DNA extraction procedure, sequencing, and bioinformatics tools is essential for the removal of human DNA and for improving bacterial species identification in a timely manner. We tackled these issues with a broncho-alveolar lavage (BAL) sample from an immunocompromised patient who had developed severe chronic pneumonia. We extracted DNA from the BAL sample with protocols based either on sequential lysis of human and bacterial cells or on the mechanical disruption of all cells. Metagenomic libraries were sequenced on Illumina HiSeq platforms. Microbial community composition was determined by k-mer analysis or by mapping to taxonomic markers. Results were compared to those obtained by conventional clinical culture and molecular methods. Compared to mechanical cell disruption, a sequential lysis protocol resulted in a significantly increased proportion of bacterial DNA over human DNA and higher sequence coverage of Mycobacterium abscessus , Corynebacterium jeikeium and Rothia dentocariosa , the bacteria reported by clinical microbiology tests. In addition, we identified anaerobic bacteria not searched for by the clinical laboratory. Our results further support the implementation of WMGS in clinical routine diagnosis for bacterial identification.

  17. Ericoid Roots and Mycospheres Govern Plant-Specific Bacterial Communities in Boreal Forest Humus.

    PubMed

    Timonen, Sari; Sinkko, Hanna; Sun, Hui; Sietiö, Outi-Maaria; Rinta-Kanto, Johanna M; Kiheri, Heikki; Heinonsalo, Jussi

    2017-05-01

    In this study, the bacterial populations of roots and mycospheres of the boreal pine forest ericoid plants, heather (Calluna vulgaris), bilberry (Vaccinium myrtillus), and lingonberry (Vaccinium vitis-idaea), were studied by qPCR and next-generation sequencing (NGS). All bacterial communities of mycosphere soils differed from soils uncolonized by mycorrhizal mycelia. Colonization by mycorrhizal hyphae increased the total number of bacterial 16S ribosomal DNA (rDNA) gene copies in the humus but decreased the number of different bacterial operational taxonomic units (OTUs). Nevertheless, ericoid roots and mycospheres supported numerous OTUs not present in uncolonized humus. Bacterial communities in bilberry mycospheres were surprisingly similar to those in pine mycospheres but not to bacterial communities in heather and lingonberry mycospheres. In contrast, bacterial communities of ericoid roots were more similar to each other than to those of pine roots. In all sample types, the relative abundances of bacterial sequences belonging to Alphaproteobacteria and Acidobacteria were higher than the sequences belonging to other classes. Soil samples contained more Actinobacteria, Deltaproteobacteria, Opitutae, and Planctomycetia, whereas Armatimonadia, Betaproteobacteria, Gammaproteobacteria, and Sphingobacteriia were more common to roots. All mycosphere soils and roots harbored bacteria unique to that particular habitat. Our study suggests that the habitation by ericoid plants increases the overall bacterial diversity of boreal forest soils.

  18. Modeling the integration of bacterial rRNA fragments into the human cancer genome.

    PubMed

    Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C

    2016-03-21

    Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

  19. Characterization of the vaginal microbiota among sexual risk behavior groups of women with bacterial vaginosis.

    PubMed

    Muzny, Christina A; Sunesara, Imran R; Kumar, Ranjit; Mena, Leandro A; Griswold, Michael E; Martin, David H; Lefkowitz, Elliot J; Schwebke, Jane R; Swiatlo, Edwin

    2013-01-01

    The pathogenesis of bacterial vaginosis (BV) remains elusive. BV may be more common among women who have sex with women (WSW). The objective of this study was to use 454 pyrosequencing to investigate the vaginal microbiome of WSW, women who have sex with women and men (WSWM), and women who have sex with men (WSM) with BV to determine if there are differences in organism composition between groups that may inform new hypotheses regarding the pathogenesis of BV. Vaginal swab specimens from eligible women with BV at the Mississippi State Department of Health STD Clinic were used. After DNA extraction, 454 pyrosequencing of PCR-amplified 16S rRNA gene sequences was performed. Sequence data was classified using the Ribosomal Database Program classifer. Complete linkage clustering analysis was performed to compare bacterial community composition among samples. Differences in operational taxonomic units with an abundance of ≥ 2% between risk behavior groups were determined. Alpha and beta diversity were measured using Shannon's Index implemented in QIIME and Unifrac analysis, respectively. 33 WSW, 35 WSWM, and 44 WSM were included. The vaginal bacterial communities of all women clustered into four taxonomic groups with the dominant taxonomic group in each being Lactobacillus, Lachnospiraceae, Prevotella, and Sneathia. Regarding differences in organism composition between risk behavior groups, the abundance of Atopobium (relative ratio (RR)=0.24; 95%CI 0.11-0.54) and Parvimonas (RR=0.33; 95%CI 0.11-0.93) were significantly lower in WSW than WSM, the abundance of Prevotella was significantly higher in WSW than WSWM (RR=1.77; 95%CI 1.10-2.86), and the abundance of Atopobium (RR=0.41; 95%CI 0.18-0.88) was significantly lower in WSWM than WSM. Overall, WSM had the highest diversity of bacterial taxa. The microbiology of BV among women in different risk behavior groups is heterogeneous. WSM in this study had the highest diversity of bacterial taxa. Additional studies are needed to better understand these differences.

  20. Effects of sample treatments on genome recovery via single-cell genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clingenpeel, Scott; Schwientek, Patrick; Hugenholtz, Philip

    2014-06-13

    It is known that single-cell genomics is a powerful tool for accessing genetic information from uncultivated microorganisms. Methods of handling samples before single-cell genomic amplification may affect the quality of the genomes obtained. Using three bacterial strains we demonstrate that, compared to cryopreservation, lower-quality single-cell genomes are recovered when the sample is preserved in ethanol or if the sample undergoes fluorescence in situ hybridization, while sample preservation in paraformaldehyde renders it completely unsuitable for sequencing.

  1. Microbial taxonomy in the post-genomic era: Rebuilding from scratch?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Cristiane C.; Amaral, Gilda R.; Campeão, Mariana

    2014-12-23

    Microbial taxonomy should provide adequate descriptions of bacterial, archaeal, and eukaryotic microbial diversity in ecological, clinical, and industrial environments. We re-evaluated the prokaryote species twice. It is time to revisit polyphasic taxonomy, its principles, and its practice, including its underlying pragmatic species concept. We will be able to realize an old dream of our predecessor taxonomists and build a genomic-based microbial taxonomy, using standardized and automated curation of high-quality complete genome sequences as the new gold standard.

  2. Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease

    PubMed Central

    Owen, Joseph R.; Noyes, Noelle; Young, Amy E.; Prince, Daniel J.; Blanchard, Patricia C.; Lehenbauer, Terry W.; Aly, Sharif S.; Davis, Jessica H.; O’Rourke, Sean M.; Abdo, Zaid; Belk, Keith; Miller, Michael R.; Morley, Paul; Van Eenennaam, Alison L.

    2017-01-01

    Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease–associated bacterial isolates (Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis. While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni, M. haemolytica, and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% (P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes. PMID:28739600

  3. Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease.

    PubMed

    Owen, Joseph R; Noyes, Noelle; Young, Amy E; Prince, Daniel J; Blanchard, Patricia C; Lehenbauer, Terry W; Aly, Sharif S; Davis, Jessica H; O'Rourke, Sean M; Abdo, Zaid; Belk, Keith; Miller, Michael R; Morley, Paul; Van Eenennaam, Alison L

    2017-09-07

    Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease-associated bacterial isolates ( Histophilus somni , Mycoplasma bovis , Mannheimia haemolytica , and Pasteurella multocida ) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni , M. haemolytica , and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% ( P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes. Copyright © 2017 Owen et al.

  4. Composition and variation of respiratory microbiota in healthy military personnel

    PubMed Central

    Zavaljevski, Nela; Yang, Yu; Desai, Valmik; Ruck, Richard C.; Macareo, Louis R.; Jarman, Richard G.; Reifman, Jaques; Kuschner, Robert A.; Keiser, Paul B.

    2017-01-01

    Certain occupational and geographical exposures have been associated with an increased risk of lung disease. As a baseline for future studies, we sought to characterize the upper respiratory microbiomes of healthy military personnel in a garrison environment. Nasal, oropharyngeal, and nasopharyngeal swabs were collected from 50 healthy active duty volunteers eight times over the course of one year (1107 swabs, completion rate = 92.25%) and subjected to pyrosequencing of the V1–V3 region of 16S rDNA. Respiratory bacterial taxa were characterized at the genus level, using QIIME 1.8 and the Ribosomal Database Project classifier. High levels of Staphylococcus, Corynebacterium, and Propionibacterium were observed among both nasal and nasopharyngeal microbiota, comprising more than 75% of all operational taxonomical units (OTUs). In contrast, Streptococcus was the sole dominant bacterial genus (approximately 50% of all OTUs) in the oropharynx. The average bacterial diversity was greater in the oropharynx than in the nasal or nasopharyngeal region at all time points. Diversity analysis indicated a significant overlap between nasal and nasopharyngeal samples, whereas oropharyngeal samples formed a cluster distinct from these two regions. The study produced a large set of pyrosequencing data on the V1–V3 region of bacterial 16S rDNA for the respiratory microbiomes of healthy active duty Service Members. Pre-processing of sequencing reads showed good data quality. The derived microbiome profiles were consistent both internally and with previous reports, suggesting their utility for further analyses and association studies based on sequence and demographic data. PMID:29216202

  5. Cloning of human prourokinase cDNA without the signal peptide and expression in Escherichia coli.

    PubMed

    Hu, B; Li, J; Yu, W; Fang, J

    1993-01-01

    Human prourokinase (pro-UK) cDNA without the signal peptide was obtained using synthetic oligonucleotide and DNA recombination techniques and was successfully expressed in E. coli. The plasmid pMMUK which contained pro-UK cDNA (including both the entire coding sequence and the sequence for signal peptide) was digested with Hind III and PstI, so that the N-terminal 371-bp fragment could be recovered. A 304-bp fragment was collected from the 371-bp fragment after partial digestion with Fnu4HI in order to remove the signal peptide sequence. An intermediate plasmid was formed after this 304-bp fragment and the synthetic oligonucleotide was ligated with pUC18. Correctness of the ligation was confirmed by enzyme digestion and sequencing. By joining the PstI-PstI fragment of pro-UK to the plasmid we obtained the final plasmid which contained the entire coding sequence of pro-UK without the signal peptide. The coding sequence with correct orientation was inserted into pBV220 under the control of the temperature-induced promoter PRPL, and mature pro-UK was expressed in E. coli at 42 degrees C. Both sonicated supernatant and inclusion bodies of the bacterial host JM101 showed positive results by ELISA and FAPA assays. After renaturation, the biological activity of the expressed product was increased from 500-1000IU/L to about 60,000IU/L. The bacterial pro-UK showed a molecular weight of about 47,000 daltons by Western blot analysis. It can be completely inhibited by UK antiserum but not by t-PA antiserum nor by normal rabbit serum.

  6. Comparative genomic survey, exon-intron annotation and phylogenetic analysis of NAT-homologous sequences in archaea, protists, fungi, viruses, and invertebrates

    USDA-ARS?s Scientific Manuscript database

    We have previously published extensive genomic surveys [1-3], reporting NAT-homologous sequences in hundreds of sequenced bacterial, fungal and vertebrate genomes. We present here the results of our latest search of 2445 genomes, representing 1532 (70 archaeal, 1210 bacterial, 43 protist, 97 fungal,...

  7. Genomic library screening for viruses from the human dental plaque revealed pathogen-specific lytic phage sequences.

    PubMed

    Al-Jarbou, Ahmed Nasser

    2012-01-01

    Bacterial pathogenesis presents an astounding arsenal of virulence factors that allow them to conquer many different niches throughout the course of infection. Principally fascinating is the fact that some bacterial species are able to induce different diseases by expression of different combinations of virulence factors. Nevertheless, studies aiming at screening for the presence of bacteriophages in humans have been limited. Such screening procedures would eventually lead to identification of phage-encoded properties that impart increased bacterial fitness and/or virulence in a particular niche, and hence, would potentially be used to reverse the course of bacterial infections. As the human oral cavity represents a rich and dynamic ecosystem for several upper respiratory tract pathogens. However, little is known about virus diversity in human dental plaque which is an important reservoir. We applied the culture-independent approach to characterize virus diversity in human dental plaque making a library from a virus DNA fraction amplified using a multiple displacement method and sequenced 80 clones. The resulting sequence showed 44% significant identities to GenBank databases by TBLASTX analysis. TBLAST homology comparisons showed that 66% was viral; 18% eukarya; 10% bacterial; 6% mobile elements. These sequences were sorted into 6 contigs and 45 single sequences in which 4 contigs and a single sequence showed significant identity to a small region of a putative prophage in the Corynebacterium diphtheria genome. These findings interestingly highlight the uniqueness of over half of the sequences, whilst the dominance of a pathogen-specific prophage sequences imply their role in virulence.

  8. Vertical Distribution of Bacterial Communities in the Indian Ocean as Revealed by Analyses of 16S rRNA and nasA Genes.

    PubMed

    Jiang, Xuexia; Jiao, Nianzhi

    2016-09-01

    Bacteria play an important role in the marine biogeochemical cycles. However, research on the bacterial community structure of the Indian Ocean is scarce, particularly within the vertical dimension. In this study, we investigated the bacterial diversity of the pelagic, mesopelagic and bathypelagic zones of the southwestern Indian Ocean (50.46°E, 37.71°S). The clone libraries constructed by 16S rRNA gene sequence revealed that most phylotypes retrieved from the Indian Ocean were highly divergent from those retrieved from other oceans. Vertical differences were observed based on the analysis of natural bacterial community populations derived from the 16S rRNA gene sequences. Based on the analysis of the nasA gene sequences from GenBank database, a pair of general primers was developed and used to amplify the bacterial nitrate-assimilating populations. Environmental factors play an important role in mediating the bacterial communities in the Indian Ocean revealed by canonical correlation analysis.

  9. Cytochrome P450 diversity in the tree of life.

    PubMed

    Nelson, David R

    2018-01-01

    Sequencing in all areas of the tree of life has produced >300,000 cytochrome P450 (CYP) sequences that have been mined and collected. Nomenclature has been assigned to >41,000 CYP sequences and the majority of the remainder has been sorted by BLAST searches into clans, families and subfamilies in preparation for naming. The P450 sequence space is being systematically explored and filled in. Well-studied groups like vertebrates are covered in greater depth while new insights are being added into uncharted territories like horseshoe crab (Limulus polyphemus), tardigrades (Hypsibius dujardini), velvet worm (Euperipatoides_rowelli), and basal land plants like hornworts, liverworts and mosses. CYPs from the fungi, one of the most diverse groups, are being explored and organized as nearly 800 fungal species are now sequenced. The CYP clan structure in fungi is emerging with 805 CYP families sorting into 32 CYP clans. >3000 bacterial sequences are named, mostly from terrestrial or freshwater sources. Of 18,379 bacterial sequences downloaded from the CYPED database, all are >43% identical to named CYPs. Therefore, they fit in the 602 named P450 prokaryotic families. Diversity in this group is becoming saturated, however 25% of 3305 seawater bacterial P450s did not match known P450 families, indicating marine bacterial CYPs are not as well sampled as land/freshwater based bacterial CYPs. Future sequencing plans of the Genome 10K project, i5k and GIGA (Global Invertebrate Genomics Alliance) are expected to produce more than one million cytochrome P450 sequences by 2020. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product.

    PubMed

    Mishra, Rashmi Ranjan; Prajapati, Sunita; Das, Jyotirmayee; Dangar, Tushar Kanti; Das, Nigamananda; Thatoi, Hrudayanath

    2011-08-01

    Two Gram (+) bacterial strains, BSB6 and BSB12, showing resistance and potential for Se(IV) reduction among 26 moderately halotolerant isolates from the Bhitarkanika mangrove soil were characterized by biochemical and 16S rDNA sequence analyses. Both of them were strictly aerobic and able to grow in a wide range of pH (4-11), temperature (4-40°C) and salt concentration (4-12%) having an optimum growth at 37°C, pH ∼7.5 and 7% salt (NaCl). The biochemical characteristics and 16S rDNA sequence analysis of BSB6 and BSB12 showed the closest phylogenetic similarity with the species Bacillus megaterium. Both the strains effectively reduced Se(IV) and complete reduction of selenite (up to 0.25 mM) was achieved within 40 h. SEM with energy dispersive X-ray and TEM analyses revealed the formation of nano size spherical selenium particles in and around the bacterial cells which were also supported by the confocal micrograph study. The UV-Vis diffuse reflectance spectra and XRD of selenium precipitates revealed that the selenium particles are in the nanometric range and crystalline in nature. These bacterial strains may be exploited further for bioremediation process of Se(IV) at relatively high salt concentrations and green synthesis of selenium nanoparticles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Blocking the RecA activity and SOS-response in bacteria with a short α-helical peptide.

    PubMed

    Yakimov, Alexander; Pobegalov, Georgii; Bakhlanova, Irina; Khodorkovskii, Mikhail; Petukhov, Michael; Baitin, Dmitry

    2017-09-19

    The RecX protein, a very active natural RecA protein inhibitor, can completely disassemble RecA filaments at nanomolar concentrations that are two to three orders of magnitude lower than that of RecA protein. Based on the structure of RecX protein complex with the presynaptic RecA filament, we designed a short first in class α-helical peptide that both inhibits RecA protein activities in vitro and blocks the bacterial SOS-response in vivo. The peptide was designed using SEQOPT, a novel method for global sequence optimization of protein α-helices. SEQOPT produces artificial peptide sequences containing only 20 natural amino acids with the maximum possible conformational stability at a given pH, ionic strength, temperature, peptide solubility. It also accounts for restrictions due to known amino acid residues involved in stabilization of protein complexes under consideration. The results indicate that a few key intermolecular interactions inside the RecA protein presynaptic complex are enough to reproduce the main features of the RecX protein mechanism of action. Since the SOS-response provides a major mechanism of bacterial adaptation to antibiotics, these results open new ways for the development of antibiotic co-therapy that would not cause bacterial resistance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Dictionary-driven protein annotation

    PubMed Central

    Rigoutsos, Isidore; Huynh, Tien; Floratos, Aris; Parida, Laxmi; Platt, Daniel

    2002-01-01

    Computational methods seeking to automatically determine the properties (functional, structural, physicochemical, etc.) of a protein directly from the sequence have long been the focus of numerous research groups. With the advent of advanced sequencing methods and systems, the number of amino acid sequences that are being deposited in the public databases has been increasing steadily. This has in turn generated a renewed demand for automated approaches that can annotate individual sequences and complete genomes quickly, exhaustively and objectively. In this paper, we present one such approach that is centered around and exploits the Bio-Dictionary, a collection of amino acid patterns that completely covers the natural sequence space and can capture functional and structural signals that have been reused during evolution, within and across protein families. Our annotation approach also makes use of a weighted, position-specific scoring scheme that is unaffected by the over-representation of well-conserved proteins and protein fragments in the databases used. For a given query sequence, the method permits one to determine, in a single pass, the following: local and global similarities between the query and any protein already present in a public database; the likeness of the query to all available archaeal/bacterial/eukaryotic/viral sequences in the database as a function of amino acid position within the query; the character of secondary structure of the query as a function of amino acid position within the query; the cytoplasmic, transmembrane or extracellular behavior of the query; the nature and position of binding domains, active sites, post-translationally modified sites, signal peptides, etc. In terms of performance, the proposed method is exhaustive, objective and allows for the rapid annotation of individual sequences and full genomes. Annotation examples are presented and discussed in Results, including individual queries and complete genomes that were released publicly after we built the Bio-Dictionary that is used in our experiments. Finally, we have computed the annotations of more than 70 complete genomes and made them available on the World Wide Web at http://cbcsrv.watson.ibm.com/Annotations/. PMID:12202776

  13. Detecting macroecological patterns in bacterial communities across independent studies of global soils.

    PubMed

    Ramirez, Kelly S; Knight, Christopher G; de Hollander, Mattias; Brearley, Francis Q; Constantinides, Bede; Cotton, Anne; Creer, Si; Crowther, Thomas W; Davison, John; Delgado-Baquerizo, Manuel; Dorrepaal, Ellen; Elliott, David R; Fox, Graeme; Griffiths, Robert I; Hale, Chris; Hartman, Kyle; Houlden, Ashley; Jones, David L; Krab, Eveline J; Maestre, Fernando T; McGuire, Krista L; Monteux, Sylvain; Orr, Caroline H; van der Putten, Wim H; Roberts, Ian S; Robinson, David A; Rocca, Jennifer D; Rowntree, Jennifer; Schlaeppi, Klaus; Shepherd, Matthew; Singh, Brajesh K; Straathof, Angela L; Bhatnagar, Jennifer M; Thion, Cécile; van der Heijden, Marcel G A; de Vries, Franciska T

    2018-02-01

    The emergence of high-throughput DNA sequencing methods provides unprecedented opportunities to further unravel bacterial biodiversity and its worldwide role from human health to ecosystem functioning. However, despite the abundance of sequencing studies, combining data from multiple individual studies to address macroecological questions of bacterial diversity remains methodically challenging and plagued with biases. Here, using a machine-learning approach that accounts for differences among studies and complex interactions among taxa, we merge 30 independent bacterial data sets comprising 1,998 soil samples from 21 countries. Whereas previous meta-analysis efforts have focused on bacterial diversity measures or abundances of major taxa, we show that disparate amplicon sequence data can be combined at the taxonomy-based level to assess bacterial community structure. We find that rarer taxa are more important for structuring soil communities than abundant taxa, and that these rarer taxa are better predictors of community structure than environmental factors, which are often confounded across studies. We conclude that combining data from independent studies can be used to explore bacterial community dynamics, identify potential 'indicator' taxa with an important role in structuring communities, and propose hypotheses on the factors that shape bacterial biogeography that have been overlooked in the past.

  14. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure.

    PubMed

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: [Formula: see text] (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters.

  15. Substrate Type and Free Ammonia Determine Bacterial Community Structure in Full-Scale Mesophilic Anaerobic Digesters Treating Cattle or Swine Manure

    PubMed Central

    Li, Jiabao; Rui, Junpeng; Yao, Minjie; Zhang, Shiheng; Yan, Xuefeng; Wang, Yuanpeng; Yan, Zhiying; Li, Xiangzhen

    2015-01-01

    The microbial-mediated anaerobic digestion (AD) process represents an efficient biological process for the treatment of organic waste along with biogas harvest. Currently, the key factors structuring bacterial communities and the potential core and unique bacterial populations in manure anaerobic digesters are not completely elucidated yet. In this study, we collected sludge samples from 20 full-scale anaerobic digesters treating cattle or swine manure, and investigated the variations of bacterial community compositions using high-throughput 16S rRNA amplicon sequencing. Clustering and correlation analysis suggested that substrate type and free ammonia (FA) play key roles in determining the bacterial community structure. The COD: NH4+-N (C:N) ratio of substrate and FA were the most important available operational parameters correlating to the bacterial communities in cattle and swine manure digesters, respectively. The bacterial populations in all of the digesters were dominated by phylum Firmicutes, followed by Bacteroidetes, Proteobacteria and Chloroflexi. Increased FA content selected Firmicutes, suggesting that they probably play more important roles under high FA content. Syntrophic metabolism by Proteobacteria, Chloroflexi, Synergistetes and Planctomycetes are likely inhibited when FA content is high. Despite the different manure substrates, operational conditions and geographical locations of digesters, core bacterial communities were identified. The core communities were best characterized by phylum Firmicutes, wherein Clostridium predominated overwhelmingly. Substrate-unique and abundant communities may reflect the properties of manure substrate and operational conditions. These findings extend our current understanding of the bacterial assembly in full-scale manure anaerobic digesters. PMID:26648921

  16. Isolation and Whole-genome Sequence Analysis of the Imipenem Heteroresistant Acinetobacter baumannii Clinical Isolate HRAB-85.

    PubMed

    Li, Puyuan; Huang, Yong; Yu, Lan; Liu, Yannan; Niu, Wenkai; Zou, Dayang; Liu, Huiying; Zheng, Jing; Yin, Xiuyun; Yuan, Jing; Yuan, Xin; Bai, Changqing

    2017-09-01

    Heteroresistance is a phenomenon in which there are various responses to antibiotics from bacterial cells within the same population. Here, we isolated and characterised an imipenem heteroresistant Acinetobacter baumannii strain (HRAB-85). The genome of strain HRAB-85 was completely sequenced and analysed to understand its antibiotic resistance mechanisms. Population analysis and multilocus sequence typing were performed. Subpopulations grew in the presence of imipenem at concentrations of up to 64μg/mL, and the strain was found to belong to ST208. The total length of strain HRAB-85 was 4,098,585bp with a GC content of 39.98%. The genome harboured at least four insertion sequences: the common ISAba1, ISAba22, ISAba24, and newly reported ISAba26. Additionally, 19 antibiotic-resistance genes against eight classes of antimicrobial agents were found, and 11 genomic islands (GIs) were identified. Among them, GI3, GI10, and GI11 contained many ISs and antibiotic-resistance determinants. The existence of imipenem heteroresistant phenotypes in A. baumannii was substantiated in this hospital, and imipenem pressure, which could induce imipenem-heteroresistant subpopulations, may select for highly resistant strains. The complete genome sequencing and bioinformatics analysis of HRAB-85 could improve our understanding of the epidemiology and resistance mechanisms of carbapenem-heteroresistant A. baumannii. Copyright © 2017. Published by Elsevier Ltd.

  17. Differential signatures of bacterial and mammalian IMP dehydrogenase enzymes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, R.; Evans, G.; Rotella, F.

    1999-06-01

    IMP dehydrogenase (IMPDH) is an essential enzyme of de novo guanine nucleotide synthesis. IMPDH inhibitors have clinical utility as antiviral, anticancer or immunosuppressive agents. The essential nature of this enzyme suggests its therapeutic applications may be extended to the development of antimicrobial agents. Bacterial IMPDH enzymes show bio- chemical and kinetic characteristics that are different than the mammalian IMPDH enzymes, suggesting IMPDH may be an attractive target for the development of antimicrobial agents. We suggest that the biochemical and kinetic differences between bacterial and mammalian enzymes are a consequence of the variance of specific, identifiable amino acid residues. Identification ofmore » these residues or combination of residues that impart this mammalian or bacterial enzyme signature is a prerequisite for the rational identification of agents that specifically target the bacterial enzyme. We used sequence alignments of IMPDH proteins to identify sequence signatures associated with bacterial or eukaryotic IMPDH enzymes. These selections were further refined to discern those likely to have a role in catalysis using information derived from the bacterial and mammalian IMPDH crystal structures and site-specific mutagenesis. Candidate bacterial sequence signatures identified by this process include regions involved in subunit interactions, the active site flap and the NAD binding region. Analysis of sequence alignments in these regions indicates a pattern of catalytic residues conserved in all enzymes and a secondary pattern of amino acid conservation associated with the major phylogenetic groups. Elucidation of the basis for this mammalian/bacterial IMPDH signature will provide insight into the catalytic mechanism of this enzyme and the foundation for the development of highly specific inhibitors.« less

  18. Soil Parameters Drive the Structure, Diversity and Metabolic Potentials of the Bacterial Communities Across Temperate Beech Forest Soil Sequences.

    PubMed

    Jeanbille, M; Buée, M; Bach, C; Cébron, A; Frey-Klett, P; Turpault, M P; Uroz, S

    2016-02-01

    Soil and climatic conditions as well as land cover and land management have been shown to strongly impact the structure and diversity of the soil bacterial communities. Here, we addressed under a same land cover the potential effect of the edaphic parameters on the soil bacterial communities, excluding potential confounding factors as climate. To do this, we characterized two natural soil sequences occurring in the Montiers experimental site. Spatially distant soil samples were collected below Fagus sylvatica tree stands to assess the effect of soil sequences on the edaphic parameters, as well as the structure and diversity of the bacterial communities. Soil analyses revealed that the two soil sequences were characterized by higher pH and calcium and magnesium contents in the lower plots. Metabolic assays based on Biolog Ecoplates highlighted higher intensity and richness in usable carbon substrates in the lower plots than in the middle and upper plots, although no significant differences occurred in the abundance of bacterial and fungal communities along the soil sequences as assessed using quantitative PCR. Pyrosequencing analysis of 16S ribosomal RNA (rRNA) gene amplicons revealed that Proteobacteria, Acidobacteria and Bacteroidetes were the most abundantly represented phyla. Acidobacteria, Proteobacteria and Chlamydiae were significantly enriched in the most acidic and nutrient-poor soils compared to the Bacteroidetes, which were significantly enriched in the soils presenting the higher pH and nutrient contents. Interestingly, aluminium, nitrogen, calcium, nutrient availability and pH appeared to be the best predictors of the bacterial community structures along the soil sequences.

  19. Reads2Type: a web application for rapid microbial taxonomy identification.

    PubMed

    Saputra, Dhany; Rasmussen, Simon; Larsen, Mette V; Haddad, Nizar; Sperotto, Maria Maddalena; Aarestrup, Frank M; Lund, Ole; Sicheritz-Pontén, Thomas

    2015-11-25

    Identification of bacteria may be based on sequencing and molecular analysis of a specific locus such as 16S rRNA, or a set of loci such as in multilocus sequence typing. In the near future, healthcare institutions and routine diagnostic microbiology laboratories may need to sequence the entire genome of microbial isolates. Therefore we have developed Reads2Type, a web-based tool for taxonomy identification based on whole bacterial genome sequence data. Raw sequencing data provided by the user are mapped against a set of marker probes that are derived from currently available bacteria complete genomes. Using a dataset of 1003 whole genome sequenced bacteria from various sequencing platforms, Reads2Type was able to identify the species with 99.5 % accuracy and on the minutes time scale. In comparison with other tools, Reads2Type offers the advantage of not needing to transfer sequencing files, as the entire computational analysis is done on the computer of whom utilizes the web application. This also prevents data privacy issues to arise. The Reads2Type tool is available at http://www.cbs.dtu.dk/~dhany/reads2type.html.

  20. Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans

    PubMed Central

    Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo

    2012-01-01

    Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122

  1. A 2,4-dichlorophenoxyacetic acid degradation plasmid pM7012 discloses distribution of an unclassified megaplasmid group across bacterial species.

    PubMed

    Sakai, Yoriko; Ogawa, Naoto; Shimomura, Yumi; Fujii, Takeshi

    2014-03-01

    Analysis of the complete nucleotide sequence of plasmid pM7012 from 2,4-dichlorophenoxyacetic-acid (2,4-D)-degrading bacterium Burkholderia sp. M701 revealed that the plasmid had 582 142 bp, with 541 putative protein-coding sequences and 39 putative tRNA genes for the transport of the standard 20 aa. pM7012 contains sequences homologous to the regions involved in conjugal transfer and plasmid maintenance found in plasmids byi_2p from Burkholderia sp. YI23 and pBVIE01 from Burkholderia sp. G4. No relaxase gene was found in any of these plasmids, although genes for a type IV secretion system and type IV coupling proteins were identified. Plasmids with no relaxase gene have been classified as non-mobile plasmids. However, nucleotide sequences with a high level of similarity to the genes for plasmid transfer, plasmid maintenance, 2,4-D degradation and arsenic resistance contained on pM7012 were also detected in eight other megaplasmids (~600 or 900 kb) found in seven Burkholderia strains and a strain of Cupriavidus, which were isolated as 2,4-D-degrading bacteria in Japan and the United States. These results suggested that the 2,4-D degradation megaplasmids related to pM7012 are mobile and distributed across various bacterial species worldwide, and that the plasmid group could be distinguished from known mobile plasmid groups.

  2. A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts.

    PubMed

    Galperin, Michael Y

    2005-06-14

    Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. This paper presents results of a comprehensive census of signal transduction proteins--histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases--encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set) can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the highest IQ, including the current leader Wolinella succinogenes, are found among the poorly studied beta-, delta- and epsilon-proteobacteria. Among all bacterial phyla, only cyanobacteria appear to be true introverts, probably due to their capacity to conduct oxygenic photosynthesis, using a complex system of intracellular membranes. The census data, available at http://www.ncbi.nlm.nih.gov/Complete_Genomes/SignalCensus.html, can be used to get an insight into metabolic and behavioral propensities of each given organism and improve prediction of the organism's properties based solely on its genome sequence.

  3. Variability of Bacterial Communities in the Moth Heliothis virescens Indicates Transient Association with the Host

    PubMed Central

    Staudacher, Heike; Kaltenpoth, Martin; Breeuwer, Johannes A. J.; Menken, Steph B. J.; Heckel, David G.; Groot, Astrid T.

    2016-01-01

    Microbes associated with insects can confer a wide range of ecologically relevant benefits to their hosts. Since insect-associated bacteria often increase the nutritive value of their hosts' diets, the study of bacterial communities is especially interesting in species that are important agricultural pests. We investigated the composition of bacterial communities in the noctuid moth Heliothis virescens and its variability in relation to developmental stage, diet and population (field and laboratory), using bacterial tag-encoded FLX pyrosequencing of 16S rRNA amplicons. In larvae, bacterial communities differed depending on the food plant on which they had been reared, although the within-group variation between biological replicates was high as well. Moreover, larvae originating from a field or laboratory population did not share any OTUs. Interestingly, Enterococcus sp. was found to be the dominant taxon in laboratory-reared larvae, but was completely absent from field larvae, indicating dramatic shifts in microbial community profiles upon cultivation of the moths in the laboratory. Furthermore, microbiota composition varied strongly across developmental stages in individuals of the field population, and we found no evidence for vertical transmission of bacteria from mothers to offspring. Since sample sizes in our study were small due to pooling of samples for sequencing, we cautiously conclude that the high variability in bacterial communities suggests a loose and temporary association of the identified bacteria with H. virescens. PMID:27139886

  4. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children

    PubMed Central

    Dannemiller, Karen C.; Gent, Janneane F.; Leaderer, Brian P.; Peccia, Jordan

    2015-01-01

    Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next-generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structure were non-random and demonstrated species segregation (C-score, p<0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (p<0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building’s physical and occupant characteristics. PMID:25833176

  5. Bacterial membrane proteomics.

    PubMed

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  6. Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil.

    PubMed

    Hussain, Sabir; Sørensen, Sebastian R; Devers-Lamrani, Marion; El-Sebai, Talaat; Martin-Laurent, Fabrice

    2009-11-01

    The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was found to be rapidly mineralized by a bacterial culture isolated from an agricultural soil regularly exposed to IPU. Molecular analysis of the bacterial culture by DNA fingerprinting, cloning and sequencing of the 16S rRNA genes revealed that it consisted of six different members among whom the dominant was related to Sphingomonas sp. Six bacterial strains belonging to genera Ancylobacter, Pseudomonas, Stenotrophomonas, Methylobacterium, Variovorax and Agrobacterium were isolated from the IPU-degrading culture. None of these were able to degrade IPU in pure culture and only the intact culture sustained the ability to mineralize IPU. The composition of the culture appeared stable suggesting that yet unknown interactions are involved in the IPU mineralization. IPU degradation involved the transitory accumulation of three known IPU metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropylaniline and their further degradation. Thus, it indicates a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain. This culture did not degrade other structurally related phenylurea herbicides. The degrading activity of the bacterial culture was deeply influenced by the pH, being completely inhibited at pH 5.5 and optimal at pH 7.5.

  7. Bacterial Genome Engineering and Synthetic Biology: Combating Pathogens

    DTIC Science & Technology

    2016-11-04

    engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats ( CRISPR ), and bacterial cell-cell...Cholera# Yersinia pseudotuberculosis# Staphylococcus aureus* Phage Engineering CRISPR /Cas9 Delivery of CRISPR genes and RNA guides for sequence...bear very close sequence alignment to the harmless strains via the use of the CRISPR /Cas9 system. The CRISPR system specifically targets a DNA sequence

  8. Bacterial diversity in three distinct sub-habitats within the pitchers of the northern pitcher plant, Sarracenia purpurea.

    PubMed

    Krieger, Joseph R; Kourtev, Peter S

    2012-03-01

    Pitcher plants have been widely used in ecological studies of food webs; however, their bacterial communities are poorly characterized. Pitchers of Sarracenia purpurea contain several distinct sub-habitats, namely the bottom sediment, the liquid, and the internal pitcher wall. We hypothesized that those three sub-habitats within pitcher plants are inhabited by distinct bacterial populations. We used denaturing gradient gel electrophoresis and 16S rRNA gene sequencing to characterize bacterial populations in pitchers from three bogs. DGGE and sequencing revealed that in any given pitcher, the three sub-habitats contain significantly different bacterial populations. However, there was significant variability between bacterial populations inhabiting the same type of habitat in different pitchers, even at the same site. Therefore, no consistent set of bacterial populations was enriched in any of the three sub-habitats. All sub-habitats appeared to be dominated by alpha- and betaproteobacteria in differing proportions. In addition, sequences from the Bacteroidetes and Firmicutes were obtained from all three sub-habitats. We conclude that container aquatic habitats such as the pitchers of S. purpurea possess a very high bacterial diversity, with many unique bacterial populations enriched in individual pitchers. Within an individual pitcher, populations of certain bacterial families may be enriched in one of the three studied sub-habitats. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. The Comprehensive Phytopathogen Genomics Resource: a web-based resource for data-mining plant pathogen genomes.

    PubMed

    Hamilton, John P; Neeno-Eckwall, Eric C; Adhikari, Bishwo N; Perna, Nicole T; Tisserat, Ned; Leach, Jan E; Lévesque, C André; Buell, C Robin

    2011-01-01

    The Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches. Curated lists of bacterial genes relevant to pathogenicity and avirulence are also provided. The Plant Pathogen Transcript Assemblies Database provides annotated assemblies of the transcribed regions of 82 eukaryotic genomes from publicly available single pass Expressed Sequence Tags. Data-mining tools are provided along with tools to create candidate diagnostic markers, an emerging use for genomic sequence data in plant pathology. The Plant Pathogen Ribosomal DNA (rDNA) database is a resource for pathogens that lack genome or transcriptome data sets and contains 131 755 rDNA sequences from GenBank for 17 613 species identified as plant pathogens and related genera. Database URL: http://cpgr.plantbiology.msu.edu.

  10. Bacterial inosine 5'-monophosphate dehydrogenase ("IMPDH") DNA as a dominant selectable marker in mammals and other eukaryotes

    DOEpatents

    Huberman, Eliezer [Chicago, IL; Baccam, Mekhine J [Woodridge, IL

    2007-02-27

    The present invention relates to a nucleic acid sequence and its corresponding protein sequence useful as a dominant selectable marker in eukaryotes. More specifically the invention relates to a nucleic acid encoding a bacterial IMPDH gene that has been engineered into a eukaryotic expression vectors, thereby permitting bacterial IMPDH expression in mammalian cells. Bacterial IMPDH expression confers resistance to MPA which can be used as dominant selectable marker in eukaryotes including mammals. The invention also relates to expression vectors and cells that express the bacterial IMPDH gene as well as gene therapies and protein synthesis.

  11. Genetic Diversity of Bacterial Communities and Gene Transfer Agents in Northern South China Sea

    PubMed Central

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Jiang, Zhao-Yu; Sun, Cui-Ci; Cheng, Hao

    2014-01-01

    Pyrosequencing of the 16S ribosomal RNA gene (rDNA) amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS) and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS) than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA) major capsid gene (g5) was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS), temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments. PMID:25364820

  12. A comprehensive and quantitative exploration of thousands of viral genomes

    PubMed Central

    Mahmoudabadi, Gita

    2018-01-01

    The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends – such as gene density, noncoding percentage, and abundances of functional gene categories – across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends. PMID:29624169

  13. Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation.

    PubMed

    Kelleher, Philip; Bottacini, Francesca; Mahony, Jennifer; Kilcawley, Kieran N; van Sinderen, Douwe

    2017-03-29

    Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production. In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon. Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.

  14. A comprehensive and quantitative exploration of thousands of viral genomes.

    PubMed

    Mahmoudabadi, Gita; Phillips, Rob

    2018-04-19

    The complete assembly of viral genomes from metagenomic datasets (short genomic sequences gathered from environmental samples) has proven to be challenging, so there are significant blind spots when we view viral genomes through the lens of metagenomics. One approach to overcoming this problem is to leverage the thousands of complete viral genomes that are publicly available. Here we describe our efforts to assemble a comprehensive resource that provides a quantitative snapshot of viral genomic trends - such as gene density, noncoding percentage, and abundances of functional gene categories - across thousands of viral genomes. We have also developed a coarse-grained method for visualizing viral genome organization for hundreds of genomes at once, and have explored the extent of the overlap between bacterial and bacteriophage gene pools. Existing viral classification systems were developed prior to the sequencing era, so we present our analysis in a way that allows us to assess the utility of the different classification systems for capturing genomic trends. © 2018, Mahmoudabadi et al.

  15. Metagenomic analysis of bacterial and archaeal assemblages in the soil-mousse surrounding a geothermal spring.

    PubMed

    Bhatia, Sonu; Batra, Navneet; Pathak, Ashish; Joshi, Amit; Souza, Leila; Almeida, Paulo; Chauhan, Ashvini

    2015-09-01

    The soil-mousse surrounding a geothermal spring was analyzed for bacterial and archaeal diversity using 16S rRNA gene amplicon metagenomic sequencing which revealed the presence of 18 bacterial phyla distributed across 109 families and 219 genera. Firmicutes, Actinobacteria, and the Deinococcus-Thermus group were the predominant bacterial assemblages with Crenarchaeota and Thaumarchaeota as the main archaeal assemblages in this largely understudied geothermal habitat. Several metagenome sequences remained taxonomically unassigned suggesting the presence of a repertoire of hitherto undescribed microbes in this geothermal soil-mousse econiche.

  16. Bacterial and diazotrophic diversities of endophytes in Dendrobium catenatum determined through barcoded pyrosequencing.

    PubMed

    Li, Ou; Xiao, Rong; Sun, Lihua; Guan, Chenglin; Kong, Dedong; Hu, Xiufang

    2017-01-01

    As an epiphyte orchid, Dendrobium catenatum relies on microorganisms for requisite nutrients. Metagenome pyrosequencing based on 16S rRNA and nifH genes was used to characterize the bacterial and diazotrophic communities associated with D. catenatum collected from 5 districts in China. Based on Meta-16S rRNA sequencing, 22 bacterial phyla and 699 genera were identified, distributed as 125 genera from 8 phyla and 319 genera from 10 phyla shared by all the planting bases and all the tissues, respectively. The predominant Proteobacteria varied from 71.81% (GZ) to 96.08% (YN), and Delftia (10.39-38.42%), Burkholderia (2.71-15.98%), Escherichia/Shigella (4.90-25.12%), Pseudomonas (2.68-30.72%) and Sphingomonas (1.83-2.05%) dominated in four planting bases. Pseudomonas (17.94-22.06%), Escherichia/Shigella (6.59-11.59%), Delftia (9.65-22.14%) and Burkholderia (3.12-11.05%) dominated in all the tissues. According to Meta-nifH sequencing, 4 phyla and 45 genera were identified, while 17 genera and 24 genera from 4 phyla were shared by all the planting bases and all the tissues, respectively. Burkholderia and Bradyrhizobium were the most popular in the planting bases, followed by Methylovirgula and Mesorhizobium. Mesorhizobium was the most popular in different tissues, followed by Beijerinckia, Xanthobacter, and Burkholderia. Among the genera, 39 were completely overlapped with the results based on the 16S rRNA gene. In conclusion, abundant bacteria and diazotrophs were identified in common in different tissues of D. catenatum from five planting bases, which might play a great role in the supply of nutrients such as nitrogen. The exact abundance of phylum and genus on the different tissues from different planting bases need deeper sequencing with more samples.

  17. Neptune: a bioinformatics tool for rapid discovery of genomic variation in bacterial populations

    PubMed Central

    Marinier, Eric; Zaheer, Rahat; Berry, Chrystal; Weedmark, Kelly A.; Domaratzki, Michael; Mabon, Philip; Knox, Natalie C.; Reimer, Aleisha R.; Graham, Morag R.; Chui, Linda; Patterson-Fortin, Laura; Zhang, Jian; Pagotto, Franco; Farber, Jeff; Mahony, Jim; Seyer, Karine; Bekal, Sadjia; Tremblay, Cécile; Isaac-Renton, Judy; Prystajecky, Natalie; Chen, Jessica; Slade, Peter

    2017-01-01

    Abstract The ready availability of vast amounts of genomic sequence data has created the need to rethink comparative genomics algorithms using ‘big data’ approaches. Neptune is an efficient system for rapidly locating differentially abundant genomic content in bacterial populations using an exact k-mer matching strategy, while accommodating k-mer mismatches. Neptune’s loci discovery process identifies sequences that are sufficiently common to a group of target sequences and sufficiently absent from non-targets using probabilistic models. Neptune uses parallel computing to efficiently identify and extract these loci from draft genome assemblies without requiring multiple sequence alignments or other computationally expensive comparative sequence analyses. Tests on simulated and real datasets showed that Neptune rapidly identifies regions that are both sensitive and specific. We demonstrate that this system can identify trait-specific loci from different bacterial lineages. Neptune is broadly applicable for comparative bacterial analyses, yet will particularly benefit pathogenomic applications, owing to efficient and sensitive discovery of differentially abundant genomic loci. The software is available for download at: http://github.com/phac-nml/neptune. PMID:29048594

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobottka, Marcelo, E-mail: sobottka@mtm.ufsc.br; Hart, Andrew G., E-mail: ahart@dim.uchile.cl

    Highlights: {yields} We propose a simple stochastic model to construct primitive DNA sequences. {yields} The model provide an explanation for Chargaff's second parity rule in primitive DNA sequences. {yields} The model is also used to predict a novel type of strand symmetry in primitive DNA sequences. {yields} We extend the results for bacterial DNA sequences and compare distributional properties intrinsic to the model to statistical estimates from 1049 bacterial genomes. {yields} We find out statistical evidences that the novel type of strand symmetry holds for bacterial DNA sequences. -- Abstract: Chargaff's second parity rule for short oligonucleotides states that themore » frequency of any short nucleotide sequence on a strand is approximately equal to the frequency of its reverse complement on the same strand. Recent studies have shown that, with the exception of organellar DNA, this parity rule generally holds for double-stranded DNA genomes and fails to hold for single-stranded genomes. While Chargaff's first parity rule is fully explained by the Watson-Crick pairing in the DNA double helix, a definitive explanation for the second parity rule has not yet been determined. In this work, we propose a model based on a hidden Markov process for approximating the distributional structure of primitive DNA sequences. Then, we use the model to provide another possible theoretical explanation for Chargaff's second parity rule, and to predict novel distributional aspects of bacterial DNA sequences.« less

  19. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses

    PubMed Central

    Yang, Seung Hak; Lim, Joung Soo; Khan, Modabber Ahmed; Kim, Bong Soo; Choi, Dong Yoon; Lee, Eun Young; Ahn, Hee Kwon

    2015-01-01

    The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gene sequences in the leachate was the highest at 6 weeks, in contrast to those at 2 and 14 weeks. The relative abundance of Firmicutes was reduced, while the proportion of Bacteroidetes and Proteobacteria increased from 3–6 weeks. The representation of phyla was restored after 14 weeks. However, the community structures between the samples taken at 1–2 and 14 weeks differed at the bacterial classification level. The trend in pH was similar to the changes seen in bacterial communities, indicating that the pH of the leachate could be related to the shift in the microbial community. The results indicate that the composition of bacterial communities in leachates of decomposing pig carcasses shifted continuously during the study period and might be influenced by the burial site. PMID:26500442

  20. Microbial community analysis of a coastal hot spring in Kagoshima, Japan, using molecular- and culture-based approaches.

    PubMed

    Nishiyama, Minako; Yamamoto, Shuichi; Kurosawa, Norio

    2013-08-01

    Ibusuki hot spring is located on the coastline of Kagoshima Bay, Japan. The hot spring water is characterized by high salinity, high temperature, and neutral pH. The hot spring is covered by the sea during high tide, which leads to severe fluctuations in several environmental variables. A combination of molecular- and culture-based techniques was used to determine the bacterial and archaeal diversity of the hot spring. A total of 48 thermophilic bacterial strains were isolated from two sites (Site 1: 55.6°C; Site 2: 83.1°C) and they were categorized into six groups based on their 16S rRNA gene sequence similarity. Two groups (including 32 isolates) demonstrated low sequence similarity with published species, suggesting that they might represent novel taxa. The 148 clones from the Site 1 bacterial library included 76 operational taxonomy units (OTUs; 97% threshold), while 132 clones from the Site 2 bacterial library included 31 OTUs. Proteobacteria, Bacteroidetes, and Firmicutes were frequently detected in both clone libraries. The clones were related to thermophilic, mesophilic and psychrophilic bacteria. Approximately half of the sequences in bacterial clone libraries shared <92% sequence similarity with their closest sequences in a public database, suggesting that the Ibusuki hot spring may harbor a unique and novel bacterial community. By contrast, 77 clones from the Site 2 archaeal library contained only three OTUs, most of which were affiliated with Thaumarchaeota.

  1. A Hybrid Approach for the Automated Finishing of Bacterial Genomes

    PubMed Central

    Robins, William P.; Chin, Chen-Shan; Webster, Dale; Paxinos, Ellen; Hsu, David; Ashby, Meredith; Wang, Susana; Peluso, Paul; Sebra, Robert; Sorenson, Jon; Bullard, James; Yen, Jackie; Valdovino, Marie; Mollova, Emilia; Luong, Khai; Lin, Steven; LaMay, Brianna; Joshi, Amruta; Rowe, Lori; Frace, Michael; Tarr, Cheryl L.; Turnsek, Maryann; Davis, Brigid M; Kasarskis, Andrew; Mekalanos, John J.; Waldor, Matthew K.; Schadt, Eric E.

    2013-01-01

    Dramatic improvements in DNA sequencing technology have revolutionized our ability to characterize most genomic diversity. However, accurate resolution of large structural events has remained challenging due to the comparatively shorter read lengths of second-generation technologies. Emerging third-generation sequencing technologies, which yield markedly increased read length on rapid time scales and for low cost, have the potential to address assembly limitations. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at > 99.9% accuracy. Complex regions with clinically significant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 reference we obtain 14 and 8 scaffolds greater than 1kb, respectively, correcting several errors in the underlying source data. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly. PMID:22750883

  2. Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum.

    PubMed

    Cho, Kwang-Soo; Cheon, Kyeong-Sik; Hong, Su-Young; Cho, Ji-Hong; Im, Ju-Seong; Mekapogu, Manjulatha; Yu, Yei-Soo; Park, Tae-Ho

    2016-10-01

    Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.

  3. Full genome virus detection in fecal samples using sensitive nucleic acid preparation, deep sequencing, and a novel iterative sequence classification algorithm.

    PubMed

    Cotten, Matthew; Oude Munnink, Bas; Canuti, Marta; Deijs, Martin; Watson, Simon J; Kellam, Paul; van der Hoek, Lia

    2014-01-01

    We have developed a full genome virus detection process that combines sensitive nucleic acid preparation optimised for virus identification in fecal material with Illumina MiSeq sequencing and a novel post-sequencing virus identification algorithm. Enriched viral nucleic acid was converted to double-stranded DNA and subjected to Illumina MiSeq sequencing. The resulting short reads were processed with a novel iterative Python algorithm SLIM for the identification of sequences with homology to known viruses. De novo assembly was then used to generate full viral genomes. The sensitivity of this process was demonstrated with a set of fecal samples from HIV-1 infected patients. A quantitative assessment of the mammalian, plant, and bacterial virus content of this compartment was generated and the deep sequencing data were sufficient to assembly 12 complete viral genomes from 6 virus families. The method detected high levels of enteropathic viruses that are normally controlled in healthy adults, but may be involved in the pathogenesis of HIV-1 infection and will provide a powerful tool for virus detection and for analyzing changes in the fecal virome associated with HIV-1 progression and pathogenesis.

  4. Full Genome Virus Detection in Fecal Samples Using Sensitive Nucleic Acid Preparation, Deep Sequencing, and a Novel Iterative Sequence Classification Algorithm

    PubMed Central

    Cotten, Matthew; Oude Munnink, Bas; Canuti, Marta; Deijs, Martin; Watson, Simon J.; Kellam, Paul; van der Hoek, Lia

    2014-01-01

    We have developed a full genome virus detection process that combines sensitive nucleic acid preparation optimised for virus identification in fecal material with Illumina MiSeq sequencing and a novel post-sequencing virus identification algorithm. Enriched viral nucleic acid was converted to double-stranded DNA and subjected to Illumina MiSeq sequencing. The resulting short reads were processed with a novel iterative Python algorithm SLIM for the identification of sequences with homology to known viruses. De novo assembly was then used to generate full viral genomes. The sensitivity of this process was demonstrated with a set of fecal samples from HIV-1 infected patients. A quantitative assessment of the mammalian, plant, and bacterial virus content of this compartment was generated and the deep sequencing data were sufficient to assembly 12 complete viral genomes from 6 virus families. The method detected high levels of enteropathic viruses that are normally controlled in healthy adults, but may be involved in the pathogenesis of HIV-1 infection and will provide a powerful tool for virus detection and for analyzing changes in the fecal virome associated with HIV-1 progression and pathogenesis. PMID:24695106

  5. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehling, J.; Gryganskyi, A.; Hameed, K.

    Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. Furthermore, we sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primarymore » metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/ absence of M. cysteinexigens. In independent comparative phylogenomic analyses of fungal and bacterial genomes we find that they are consistent with an ancient origin for M. elongata M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.« less

  6. Comparative genomics of Mortierella elongata and its bacterial endosymbiont Mycoavidus cysteinexigens

    DOE PAGES

    Uehling, J.; Gryganskyi, A.; Hameed, K.; ...

    2017-01-11

    Endosymbiosis of bacteria by eukaryotes is a defining feature of cellular evolution. In addition to well-known bacterial origins for mitochondria and chloroplasts, multiple origins of bacterial endosymbiosis are known within the cells of diverse animals, plants and fungi. Early-diverging lineages of terrestrial fungi harbor endosymbiotic bacteria belonging to the Burkholderiaceae. Furthermore, we sequenced the metagenome of the soil-inhabiting fungus Mortierella elongata and assembled the complete circular chromosome of its endosymbiont, Mycoavidus cysteinexigens, which we place within a lineage of endofungal symbionts that are sister clade to Burkholderia. The genome of M. elongata strain AG77 features a core set of primarymore » metabolic pathways for degradation of simple carbohydrates and lipid biosynthesis, while the M. cysteinexigens (AG77) genome is reduced in size and function. Experiments using antibiotics to cure the endobacterium from the host demonstrate that the fungal host metabolism is highly modulated by presence/ absence of M. cysteinexigens. In independent comparative phylogenomic analyses of fungal and bacterial genomes we find that they are consistent with an ancient origin for M. elongata M. cysteinexigens symbiosis, most likely over 350 million years ago and concomitant with the terrestrialization of Earth and diversification of land fungi and plants.« less

  7. Aerobic biological treatment of low-strength synthetic wastewater in membrane-coupled bioreactors: the structure and function of bacterial enrichment cultures as the net growth rate approaches zero.

    PubMed

    Chen, Ruoyu; LaPara, Timothy M

    2006-01-01

    The goal of the current research was to determine if the stringent nutrient limitation imposed by membrane-coupled bioreactors (MBRs) could be used to force mixed bacterial communities to exhibit a zero net growth rate over an extended time period. Mechanistically, this zero net growth rate could be achieved when the amount of energy available for growth is balanced by the maintenance requirements of the bacterial community. Bench-scale MBRs were fed synthetic feed medium containing gelatin as the major organic substrate. Biomass concentrations initially increased rapidly, but subsequently declined until an asymptote was reached. Leucine aminopeptidase activities concomitantly increased by at least 10-fold, suggesting that bacterial catabolic activity remained high even while growth rates became negligible. In contrast, alpha-glucosidase and heptanoate esterase activities decreased, indicating that the bacterial community specifically adapted to the carbon source in the feed medium. Bacterial community analysis by denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments (PCR-DGGE) suggested that the bacterial community structure completely changed from the beginning to the end of each MBR. Excision and nucleotide sequence analysis of prominent PCR-DGGE bands suggested that many of the dominant populations were similar to novel bacterial strains that were previously uncultivated or recently cultivated during studies specifically targeting these novel populations. This research demonstrates that MBRs have substantial practical applications for biological wastewater treatment; in addition, MBRs are a useful tool to study the ecology of slow-growing bacteria.

  8. Draft Genome Sequence of Xanthomonas arboricola pv. pruni Strain Xap33, Causal Agent of Bacterial Spot Disease on Almond

    PubMed Central

    Garita-Cambronero, J.; Sena-Vélez, M.; Palacio-Bielsa, A.

    2014-01-01

    We report the annotated genome sequence of Xanthomonas arboricola pv. pruni strain Xap33, isolated from almond leaves showing bacterial spot disease symptoms in Spain. The availability of this genome sequence will aid our understanding of the infection mechanism of this bacterium as well as its relationship to other species of the same genus. PMID:24903863

  9. Bacterial DNA Detected in Japanese Rice Wines and the Fermentation Starters.

    PubMed

    Terasaki, Momoka; Fukuyama, Akari; Takahashi, Yurika; Yamada, Masato; Nishida, Hiromi

    2017-12-01

    As Japanese rice wine (sake) brewing is not done aseptically, bacterial contamination is conceivable during the process of sake production. There are two types of the fermentation starter, sokujo-moto and yamahai-moto (kimoto). We identified bacterial DNA found in various sakes, the sokujo-moto and the yamahai-moto making just after sake yeast addition. Each sake has a unique variety of bacterial DNA not observed in other sakes. Although most bacterial DNA sequences detected in the sokujo-moto were found in sakes of different sake breweries, most bacterial DNA sequences detected in the yamahai-moto at the early stage of the starter fermentation were not detected in any sakes. Our findings demonstrate that various bacteria grow and then die during the process of sake brewing, as indicated by the presence of trace levels of bacterial DNA.

  10. LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slezak, T; Borucki, M; Lenhoff, R

    2009-09-29

    The Lawrence Livermore National Lab Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to obtain more sequence information across a large range of pathogens, near neighbors, and across a broad geographical and host range. Our role in this project is to research available sequence data for the organisms of interest and identify critical microbial sequence and knowledge gaps that need to be filled to meet TMTI objectives. This effort includes:more » (1) assessing current genomic sequence for each agent including phylogenetic and geographical diversity, host range, date of isolation range, virulence, sequence availability of key near neighbors, and other characteristics; (2) identifying Subject Matter Experts (SME's) and potential holders of isolate collections, contacting appropriate SME's with known expertise and isolate collections to obtain information on isolate availability and specific recommendations; (3) identifying sequence as well as knowledge gaps (eg virulence, host range, and antibiotic resistance determinants); (4) providing specific recommendations as to the most valuable strains to be placed on the DTRA sequencing queue. We acknowledge that criteria for prioritization of isolates for sequencing falls into two categories aligning with priority queues 1 and 2 as described in the summary. (Priority queue 0 relates to DTRA operational isolates whose availability is not predictable in advance.) 1. Selection of isolates that appear to have likelihood to provide information on virulence and antibiotic resistance. This will include sequence of known virulent strains. Particularly valuable would be virulent strains that have genetically similar yet avirulent, or non human transmissible, counterparts that can be used for comparison to help identify key virulence or host range genes. This approach will provide information that can be used by structural biologists to help develop therapeutics and vaccines. We have pointed out such high priority strains of which we are aware, and note that if any such isolates should be discovered, they will rise to the top priority. We anticipate difficulty locating samples with unusual resistance phenotypes, in particular. Sequencing strategies for isolates in queue 1 should aim for as complete finishing status as possible, since high-quality initial annotation (gene-calling) will be necessary for the follow-on protein structure analyses contributing to countermeasure development. Queue 2 for sequencing determination will be more dynamic than queue 1, and samples will be added to it as they become available to the TMTI program. 2. Selection of isolates that will provide broader information about diversity and phylogenetics and aid in specific detection as well as forensics. This approach focuses on sequencing of isolates that will provide better resolution of variants that are (or were) circulating in nature. The finishing strategy for queue 2 does not require complete closing with annotation. This queue is more static, as there is considerable phylogenetic data, and in this report we have sought to reveal gaps and make suggestions to fill them given existing sequence data and strain information. In this report we identify current sequencing gaps in both priority queue categories. Note that this is most applicable to the bacterial pathogens, as most viruses are by default in queue 1. The Phase I focus of this project is on viral hemorrhagic fever viruses and Category A bacterial agents as defined to us by TMTI. We have carried out individual analyses on each species of interest, and these are included as chapters in this report. Viruses and bacteria are biologically very distinct from each other and require different methods of analysis and criteria for sequencing prioritization. Therefore, we will describe our methods, analyses and conclusions separately for each category.« less

  11. tRNADB-CE: tRNA gene database well-timed in the era of big sequence data.

    PubMed

    Abe, Takashi; Inokuchi, Hachiro; Yamada, Yuko; Muto, Akira; Iwasaki, Yuki; Ikemura, Toshimichi

    2014-01-01

    The tRNA gene data base curated by experts "tRNADB-CE" (http://trna.ie.niigata-u.ac.jp) was constructed by analyzing 1,966 complete and 5,272 draft genomes of prokaryotes, 171 viruses', 121 chloroplasts', and 12 eukaryotes' genomes plus fragment sequences obtained by metagenome studies of environmental samples. 595,115 tRNA genes in total, and thus two times of genes compiled previously, have been registered, for which sequence, clover-leaf structure, and results of sequence-similarity and oligonucleotide-pattern searches can be browsed. To provide collective knowledge with help from experts in tRNA researches, we added a column for enregistering comments to each tRNA. By grouping bacterial tRNAs with an identical sequence, we have found high phylogenetic preservation of tRNA sequences, especially at the phylum level. Since many species-unknown tRNAs from metagenomic sequences have sequences identical to those found in species-known prokaryotes, the identical sequence group (ISG) can provide phylogenetic markers to investigate the microbial community in an environmental ecosystem. This strategy can be applied to a huge amount of short sequences obtained from next-generation sequencers, as showing that tRNADB-CE is a well-timed database in the era of big sequence data. It is also discussed that batch-learning self-organizing-map with oligonucleotide composition is useful for efficient knowledge discovery from big sequence data.

  12. Identification of 16S Ribosomal DNA-Defined Bacterial Populations at a Shallow Submarine Hydrothermal Vent near Milos Island (Greece)

    PubMed Central

    Sievert, Stefan M.; Kuever, Jan; Muyzer, Gerard

    2000-01-01

    In a recent publication (S. M. Sievert, T. Brinkhoff, G. Muyzer, W. Ziebis, and J. Kuever, Appl. Environ. Microbiol. 65:3834–3842, 1999) we described spatiotemporal changes in the bacterial community structure at a shallow-water hydrothermal vent in the Aegean Sea near the isle of Milos (Greece). Here we describe identification and phylogenetic analysis of the predominant bacterial populations at the vent site and their distribution at the vent site as determined by sequencing of DNA molecules (bands) excised from denaturing gradient gels. A total of 36 bands could be sequenced, and there were representatives of eight major lineages of the domain Bacteria. Cytophaga-Flavobacterium and Acidobacterium were the most frequently retrieved bacterial groups. Less than 33% of the sequences exhibited 90% or more identity with cultivated organisms. The predominance of putative heterotrophic populations in the sequences retrieved is explained by the input of allochthonous organic matter at the vent site. PMID:10877814

  13. Phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences

    NASA Technical Reports Server (NTRS)

    Villanueva, E.; Delihas, N.; Luehrsen, K. R.; Fox, G. E.; Gibson, J.

    1985-01-01

    The complete nucleotide sequences of 5S ribosomal RNAs from Rhodocyclus gelatinosa, Rhodobacter sphaeroides, and Pseudomonas cepacia were determined. Comparisons of these 5S RNA sequences show that rather than being phylogenetically related to one another, the two photosynthetic bacterial 5S RNAs share more sequence and signature homology with the RNAs of two nonphotosynthetic strains. Rhodobacter sphaeroides is specifically related to Paracoccus denitrificans and Rc. gelatinosa is related to Ps. cepacia. These results support earlier 16S ribosomal RNA studies and add two important groups to the 5S RNA data base. Unique 5S RNA structural features previously found in P. denitrificans are present also in the 5S RNA of Rb. sphaeroides; these provide the basis for subdivisional signatures. The immediate consequence of obtaining these new sequences is that it is possible to clarify the phylogenetic origins of the plant mitochondrion. In particular, a close phylogenetic relationship is found between the plant mitochondria and members of the alpha subdivision of the purple photosynthetic bacteria, namely, Rb. sphaeroides, P. denitrificans, and Rhodospirillum rubrum.

  14. Comparative Analysis of the Gut Microbial Communities in Forest and Alpine Musk Deer Using High-Throughput Sequencing

    PubMed Central

    Hu, Xiaolong; Liu, Gang; Shafer, Aaron B. A.; Wei, Yuting; Zhou, Juntong; Lin, Shaobi; Wu, Haibin; Zhou, Mi; Hu, Defu; Liu, Shuqiang

    2017-01-01

    The gut ecosystem is characterized by dynamic and reciprocal interactions between the host and bacteria. Although characterizing microbiota for herbivores has become recognized as important tool for gauging species health, no study to date has investigated the bacterial communities and evaluated the age-related bacterial dynamics of musk deer. Moreover, gastrointestinal diseases have been hypothesized to be a limiting factor of population growth in captive musk deer. Here, high-throughput sequencing of the bacterial 16S rRNA gene was used to profile the fecal bacterial communities in juvenile and adult alpine and forest musk deer. The two musk deer species harbored similar bacterial communities at the phylum level, whereas the key genera for the two species were distinct. The bacterial communities were dominated by Firmicutes and Bacteroidetes, with the bacterial diversity being higher in forest musk deer. The Firmicutes to Bacteroidetes ratio also increased from juvenile to adult, while the bacterial diversity, within-group and between-group similarity, all increased with age. This work serves as the first sequence-based analysis of variation in bacterial communities within and between musk deer species, and demonstrates how the gut microbial community dynamics vary among closely related species and shift with age. As gastrointestinal diseases have been observed in captive populations, this study provides valuable data that might benefit captive management and future reintroduction programs. PMID:28421061

  15. Sharing of carbapenemase-encoding plasmids between Enterobacteriaceae in UK sewage uncovered by MinION sequencing

    PubMed Central

    Blane, Beth; Coll, Francesc; Naydenova, Plamena; Hunt, Martin; Tracey, Alan; Hopkins, Katie L.; Brown, Nicholas M.; Woodford, Neil; Parkhill, Julian

    2017-01-01

    Dissemination of carbapenem resistance among pathogenic Gram-negative bacteria is a looming medical emergency. Efficient spread of resistance within and between bacterial species is facilitated by mobile genetic elements. We hypothesized that wastewater contributes to the dissemination of carbapenemase-producing Enterobacteriaceae (CPE), and studied this through a cross-sectional observational study of wastewater in the East of England. We isolated clinically relevant species of CPE in untreated and treated wastewater, confirming that waste treatment does not prevent release of CPE into the environment. We observed that CPE-positive plants were restricted to those in direct receipt of hospital waste, suggesting that hospital effluent may play a role in disseminating carbapenem resistance. We postulated that plasmids carrying carbapenemase genes were exchanged between bacterial hosts in sewage, and used short-read (Illumina) and long-read (MinION) technologies to characterize plasmids encoding resistance to antimicrobials and heavy metals. We demonstrated that different CPE species (Enterobacter kobei and Raoultella ornithinolytica) isolated from wastewater from the same treatment plant shared two plasmids of 63 and 280 kb. The former plasmid conferred resistance to carbapenems (blaOXA-48), and the latter to numerous drug classes and heavy metals. We also report the complete genome sequence for Enterobacter kobei. Small, portable sequencing instruments such as the MinION have the potential to improve the quality of information gathered on antimicrobial resistance in the environment. PMID:29026655

  16. Kingdom-agnostic Metagenomics and the Importance of Complete Characterization of Enteric Microbial Communities

    PubMed Central

    Norman, Jason M.; Handley, Scott A.; Virgin, Herbert W.

    2014-01-01

    Advanced sequencing techniques have shown that bacteria are not the only complex and important microbes in the human intestine. Non-bacterial organisms, particularly the virome and the mycobiome, are important regulators of intestinal immunity and inflammation. The virome is mucosal and systemic; it can alter the host response to bacteria and interact with host genes and bacteria to contribute to disease pathogenesis. The human mycobiome is also complex and can contribute to intestinal inflammation. We review what has recently been learned about the non-bacterial and non-archaeal microbes in the gastrointestinal tract, discussing their potential effects on health and disease and analytical approaches for their study. Studies of associations between the microbiome and intestinal pathology should incorporate kingdom-agnostic approaches if we are to fully understand intestinal health and disease. PMID:24508599

  17. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae.

    PubMed

    Ostria-Hernández, Martha Lorena; Sánchez-Vallejo, Carlos Javier; Ibarra, J Antonio; Castro-Escarpulli, Graciela

    2015-08-04

    In recent years the emergence of multidrug resistant Klebsiella pneumoniae strains has been an increasingly common event. This opportunistic species is one of the five main bacterial pathogens that cause hospital infections worldwide and multidrug resistance has been associated with the presence of high molecular weight plasmids. Plasmids are generally acquired through horizontal transfer and therefore is possible that systems that prevent the entry of foreign genetic material are inactive or absent. One of these systems is CRISPR/Cas. However, little is known regarding the clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) system in K. pneumoniae. The adaptive immune system CRISPR/Cas has been shown to limit the entry of foreign genetic elements into bacterial organisms and in some bacteria it has been shown to be involved in regulation of virulence genes. Thus in this work we used bioinformatics tools to determine the presence or absence of CRISPR/Cas systems in available K. pneumoniae genomes. The complete CRISPR/Cas system was identified in two out of the eight complete K. pneumoniae genomes sequences and in four out of the 44 available draft genomes sequences. The cas genes in these strains comprises eight cas genes similar to those found in Escherichia coli, suggesting they belong to the type I-E group, although their arrangement is slightly different. As for the CRISPR sequences, the average lengths of the direct repeats and spacers were 29 and 33 bp, respectively. BLAST searches demonstrated that 38 of the 116 spacer sequences (33%) are significantly similar to either plasmid, phage or genome sequences, while the remaining 78 sequences (67%) showed no significant similarity to other sequences. The region where the CRISPR/Cas systems were located is the same in all the Klebsiella genomes containing it, it has a syntenic architecture, and is located among genes encoding for proteins likely involved in metabolism and resistance to antibiotics. The CRISPR/Cas system is not widely distributed in K. pneumoniae genomes, those present most likely belong to type I-E with few differences from the arrangement of the cse3 gene and most of the spacers have not been are not described yet. Given that the CRISPR/Cas system is scarcely distributed among K. pneumoniae genomes it is not clear whether it is involved in either immunity against foreign genetic material or virulence. We consider that this study represents a first step to understand the role of CRISPR/Cas in K. pneumoniae.

  18. Outbreak Investigation Using High-Throughput Genome Sequencing within a Diagnostic Microbiology Laboratory

    PubMed Central

    Sherry, Norelle L.; Porter, Jessica L.; Seemann, Torsten; Watkins, Andrew; Stinear, Timothy P.

    2013-01-01

    Next-generation sequencing (NGS) of bacterial genomes has recently become more accessible and is now available to the routine diagnostic microbiology laboratory. However, questions remain regarding its feasibility, particularly with respect to data analysis in nonspecialist centers. To test the applicability of NGS to outbreak investigations, Ion Torrent sequencing was used to investigate a putative multidrug-resistant Escherichia coli outbreak in the neonatal unit of the Mercy Hospital for Women, Melbourne, Australia. Four suspected outbreak strains and a comparator strain were sequenced. Genome-wide single nucleotide polymorphism (SNP) analysis demonstrated that the four neonatal intensive care unit (NICU) strains were identical and easily differentiated from the comparator strain. Genome sequence data also determined that the NICU strains belonged to multilocus sequence type 131 and carried the blaCTX-M-15 extended-spectrum beta-lactamase. Comparison of the outbreak strains to all publicly available complete E. coli genome sequences showed that they clustered with neonatal meningitis and uropathogenic isolates. The turnaround time from a positive culture to the completion of sequencing (prior to data analysis) was 5 days, and the cost was approximately $300 per strain (for the reagents only). The main obstacles to a mainstream adoption of NGS technologies in diagnostic microbiology laboratories are currently cost (although this is decreasing), a paucity of user-friendly and clinically focused bioinformatics platforms, and a lack of genomics expertise outside the research environment. Despite these hurdles, NGS technologies provide unparalleled high-resolution genotyping in a short time frame and are likely to be widely implemented in the field of diagnostic microbiology in the next few years, particularly for epidemiological investigations (replacing current typing methods) and the characterization of resistance determinants. Clinical microbiologists need to familiarize themselves with these technologies and their applications. PMID:23408689

  19. Discovery and Complete Genome Sequence of a Bacteriophage from an Obligate Intracellular Symbiont of a Cellulolytic Protist in the Termite Gut

    PubMed Central

    Pramono, Ajeng K.; Kuwahara, Hirokazu; Itoh, Takehiko; Toyoda, Atsushi; Yamada, Akinori; Hongoh, Yuichi

    2017-01-01

    Termites depend nutritionally on their gut microbes, and protistan, bacterial, and archaeal gut communities have been extensively studied. However, limited information is available on viruses in the termite gut. We herein report the complete genome sequence (99,517 bp) of a phage obtained during a genome analysis of “Candidatus Azobacteroides pseudotrichonymphae” phylotype ProJPt-1, which is an obligate intracellular symbiont of the cellulolytic protist Pseudotrichonympha sp. in the gut of the termite Prorhinotermes japonicus. The genome of the phage, designated ProJPt-Bp1, was circular or circularly permuted, and was not integrated into the two circular chromosomes or five circular plasmids composing the host ProJPt-1 genome. The phage was putatively affiliated with the order Caudovirales based on sequence similarities with several phage-related genes; however, most of the 52 protein-coding sequences had no significant homology to sequences in the databases. The phage genome contained a tRNA-Gln (CAG) gene, which showed the highest sequence similarity to the tRNA-Gln (CAA) gene of the host “Ca. A. pseudotrichonymphae” phylotype ProJPt-1. Since the host genome lacked a tRNA-Gln (CAG) gene, the phage tRNA gene may compensate for differences in codon usage bias between the phage and host genomes. The phage genome also contained a non-coding region with high nucleotide sequence similarity to a region in one of the host plasmids. No other phage-related sequences were found in the host ProJPt-1 genome. To the best of our knowledge, this is the first report of a phage from an obligate, mutualistic endosymbiont permanently associated with eukaryotic cells. PMID:28321010

  20. Metagenomic analysis of bacterial and archaeal assemblages in the soil-mousse surrounding a geothermal spring

    PubMed Central

    Bhatia, Sonu; Batra, Navneet; Pathak, Ashish; Joshi, Amit; Souza, Leila; Almeida, Paulo; Chauhan, Ashvini

    2015-01-01

    The soil-mousse surrounding a geothermal spring was analyzed for bacterial and archaeal diversity using 16S rRNA gene amplicon metagenomic sequencing which revealed the presence of 18 bacterial phyla distributed across 109 families and 219 genera. Firmicutes, Actinobacteria, and the Deinococcus-Thermus group were the predominant bacterial assemblages with Crenarchaeota and Thaumarchaeota as the main archaeal assemblages in this largely understudied geothermal habitat. Several metagenome sequences remained taxonomically unassigned suggesting the presence of a repertoire of hitherto undescribed microbes in this geothermal soil-mousse econiche. PMID:26484255

  1. New perspectives on bacterial ferredoxin evolution

    NASA Technical Reports Server (NTRS)

    George, D. G.; Hunt, L. T.; Yeh, L.-S. L.; Barker, W. C.

    1985-01-01

    Ferredoxins are low-molecular-weight, nonheme, iron proteins which function as electron carriers in a wide variety of electron transport chains. Howard et al. (1983) have suggested that the amino end of Azotobacter vinelandii ferredoxin shows a greater similarity to the carboxyl end of ferredoxin from Chromatium vinosum and that their half-chain sequences are homologous when the half-chains of either species are considered in inverse order. Examination of this proposition has made it necessary to reevaluate previous conclusions concerning the evolution of bacterial ferredoxin. Attention is given to the properties of the bacterial ferredoxin sequences, and the evolution of the bacterial ferredoxins.

  2. Bacterial DNA detected on pathologically changed heart valves using 16S rRNA gene amplification.

    PubMed

    Chalupova, Miroslava; Skalova, Anna; Hajek, Tomas; Geigerova, Lenka; Kralova, Dana; Liska, Pavel; Hecova, Hana; Molacek, Jiri; Hrabak, Jaroslav

    2018-05-22

    Nowadays, dental diseases are one of the most common illnesses in the world. Some of them can lead to translocation of oral bacteria to the bloodstream causing intermittent bacteraemia. Therefore, a potential association between oral infection and cardiovascular diseases has been discussed in recent years as a result of adhesion of oral microbes to the heart valves. The aim of this study was to detect oral bacteria on pathologically changed heart valves not caused by infective endocarditis. In the study, patients with pathologically changed heart valves were involved. Samples of heart valves removed during heart valve replacement surgery were cut into two parts. One aliquot was cultivated aerobically and anaerobically. Bacterial DNA was extracted using Ultra-Deep Microbiome Prep (Molzym GmbH, Bremen, Germany) followed by a 16S rRNA gene PCR amplification using Mastermix 16S Complete kit (Molzym GmbH, Bremen, Germany). Positive PCR products were sequenced and the sequences were analyzed using BLAST database ( http://www.ncbi.nlm.nih/BLAST ). During the study period, 41 samples were processed. Bacterial DNA of the following bacteria was detected in 21 samples: Cutibacterium acnes (formerly Propionibacterium acnes) (n = 11; 52.38% of patients with positive bacterial DNA detection), Staphylococcus sp. (n = 9; 42.86%), Streptococcus sp. (n = 1; 4.76%), Streptococcus sanguinis (n = 4; 19.05%), Streptococcus oralis (n = 1; 4.76%), Carnobacterium sp. (n = 1; 4.76%), Bacillus sp. (n = 2; 9.52%), and Bergeyella sp. (n = 1; 4.76%). In nine samples, multiple bacteria were found. Our results showed significant appearance of bacteria on pathologically changed heart valves in patients with no symptoms of infective endocarditis.

  3. Expression and Purification of the Main Component Contained in Camel Milk and Its Antimicrobial Activities Against Bacterial Plant Pathogens.

    PubMed

    Tanhaeian, Abbas; Shahriari Ahmadi, Farajollah; Sekhavati, Mohammad Hadi; Mamarabadi, Mojtaba

    2018-04-04

    Lactoferrin is the most dominant protein in milk after casein. This protein plays a crucial role in many biological processes including the regulation of iron metabolism, induction and modulation of the immune system, the primary defense against microorganisms, inhibiting lipid peroxidation and presenting antimicrobial activity against various pathogens such as parasites, fungi, bacteria, and viruses. The major antimicrobial effect of lactoferrin is related to its N-terminal tail where different peptides for instance lactoferricin and lactoferrampin which are important for their antimicrobial abilities are present. The growth rate of bacterial cells in camel milk is lower than that of the cow milk due to having more antimicrobial compounds. In this study, we have fused a codon-optimized partial camel lactoferrcin and lactoferrampin DNA sequences in order to construct a fused peptide via a lysine. This chimeric 42-mer peptide consists of complete and partial amino acid sequence of camel lactoferrampin and lactoferricin, respectively. Human embryonic kidney 293 (HEK-293) cells were used for synthesizing this recombinant peptide. Finally, the antibacterial activities of this constructed peptide were investigated under in vitro condition. The result showed that, all construction, cloning and expression processes were successfully performed in HEK-293. One His-tag tail was added to the chimera in order to optimize the isolation and purification processes and also reduce the cost of production. Additionally, His-tag retained the antimicrobial activity of the chimera. The antimicrobial tests showed that the growth rate in the majority of bacterial plant pathogens, including gram negative and positive bacteria, was inhibited by recombinant chimera as the level of MIC values were evaluated between 0.39 and 25.07 μg/ml for different bacterial isolates.

  4. Spatial and vertical distribution of bacterial community in the northern South China Sea.

    PubMed

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Sun, Cui-Ci; Cheng, Hao

    2015-10-01

    Microbial communities are highly diverse in coastal oceans and response rapidly with changing environments. Learning about this will help us understand the ecology of microbial populations in marine ecosystems. This study aimed to assess the spatial and vertical distributions of the bacterial community in the northern South China Sea. Multi-dimensional scaling analyses revealed structural differences of the bacterial community among sampling sites and vertical depth. Result also indicated that bacterial community in most sites had higher diversity in 0-75 m depths than those in 100-200 m depths. Bacterial community of samples was positively correlation with salinity and depth, whereas was negatively correlation with temperature. Proteobacteria and Cyanobacteria were the dominant groups, which accounted for the majority of sequences. The α-Proteobacteria was highly diverse, and sequences belonged to Rhodobacterales bacteria were dominant in all characterized sequences. The current data indicate that the Rhodobacterales bacteria, especially Roseobacter clade are the diverse group in the tropical waters.

  5. Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria.

    PubMed

    Li, Meng; Ford, Tim; Li, Xiaoyan; Gu, Ji-Dong

    2011-04-15

    A newly designed primer set (AnnirS), together with a previously published primer set (ScnirS), was used to detect anammox bacterial nirS genes from sediments collected from three marine environments. Phylogenetic analysis demonstrated that all retrieved sequences were clearly different from typical denitrifiers' nirS, but do group together with the known anammox bacterial nirS. Sequences targeted by ScnirS are closely related to Scalindua nirS genes recovered from the Peruvian oxygen minimum zone (OMZ), whereas sequences targeted by AnnirS are more closely affiliated with the nirS of Candidatus 'Kuenenia stuttgartiensis' and even form a new phylogenetic nirS clade, which might be related to other genera of the anammox bacteria. Analysis demonstrated that retrieved sequences had higher sequence identities (>60%) with known anammox bacterial nirS genes than with denitrifiers' nirS, on both nucleotide and amino acid levels. Compared to the 16S rRNA and hydrazine oxidoreductase (hzo) genes, the anammox bacterial nirS not only showed consistent phylogenetic relationships but also demonstrated more reliable quantification of anammox bacteria because of the single copy of the nirS gene in the anammox bacterial genome and the specificity of PCR primers for different genera of anammox bacteria, thus providing a suitable functional biomarker for investigation of anammox bacteria.

  6. Alterations of microbiota in urine from women with interstitial cystitis

    PubMed Central

    2012-01-01

    Background Interstitial Cystitis (IC) is a chronic inflammatory condition of the bladder with unknown etiology. The aim of this study was to characterize the microbial community present in the urine from IC female patients by 454 high throughput sequencing of the 16S variable regions V1V2 and V6. The taxonomical composition, richness and diversity of the IC microbiota were determined and compared to the microbial profile of asymptomatic healthy female (HF) urine. Results The composition and distribution of bacterial sequences differed between the urine microbiota of IC patients and HFs. Reduced sequence richness and diversity were found in IC patient urine, and a significant difference in the community structure of IC urine in relation to HF urine was observed. More than 90% of the IC sequence reads were identified as belonging to the bacterial genus Lactobacillus, a marked increase compared to 60% in HF urine. Conclusion The 16S rDNA sequence data demonstrates a shift in the composition of the bacterial community in IC urine. The reduced microbial diversity and richness is accompanied by a higher abundance of the bacterial genus Lactobacillus, compared to HF urine. This study demonstrates that high throughput sequencing analysis of urine microbiota in IC patients is a powerful tool towards a better understanding of this enigmatic disease. PMID:22974186

  7. Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden

    PubMed Central

    Lührig, Katharina; Canbäck, Björn; Paul, Catherine J.; Johansson, Tomas; Persson, Kenneth M.; Rådström, Peter

    2015-01-01

    Next-generation sequencing of the V1–V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82–87%), with 22–40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities. PMID:25739379

  8. Bacterial community analysis of drinking water biofilms in southern Sweden.

    PubMed

    Lührig, Katharina; Canbäck, Björn; Paul, Catherine J; Johansson, Tomas; Persson, Kenneth M; Rådström, Peter

    2015-01-01

    Next-generation sequencing of the V1-V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82-87%), with 22-40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities.

  9. Toward a Genome-Wide Systems Biology Analysis of Host-Pathogen Interactions in Group A Streptococcus

    PubMed Central

    Musser, James M.; DeLeo, Frank R.

    2005-01-01

    Genome-wide analysis of microbial pathogens and molecular pathogenesis processes has become an area of considerable activity in the last 5 years. These studies have been made possible by several advances, including completion of the human genome sequence, publication of genome sequences for many human pathogens, development of microarray technology and high-throughput proteomics, and maturation of bioinformatics. Despite these advances, relatively little effort has been expended in the bacterial pathogenesis arena to develop and use integrated research platforms in a systems biology approach to enhance our understanding of disease processes. This review discusses progress made in exploiting an integrated genome-wide research platform to gain new knowledge about how the human bacterial pathogen group A Streptococcus causes disease. Results of these studies have provided many new avenues for basic pathogenesis research and translational research focused on development of an efficacious human vaccine and novel therapeutics. One goal in summarizing this line of study is to bring exciting new findings to the attention of the investigative pathology community. In addition, we hope the review will stimulate investigators to consider using analogous approaches for analysis of the molecular pathogenesis of other microbes. PMID:16314461

  10. An acid-stable bacterial laccase identified from the endophyte Pantoea ananatis Sd-1 genome exhibiting lignin degradation and dye decolorization abilities.

    PubMed

    Shi, Xiaowei; Liu, Qian; Ma, Jiangshan; Liao, Hongdong; Xiong, Xianqiu; Zhang, Keke; Wang, Tengfei; Liu, Xuanmin; Xu, Ting; Yuan, Shanshan; Zhang, Xin; Zhu, Yonghua

    2015-11-01

    Isolation and identification of a novel laccase (namely Lac4) with various industrial applications potentials from an endophytical bacterium. Endophyte Sd-1 cultured in rice straw showed intra- and extra-cellular laccase activities. Genomic analysis of Sd-1 identified four putative laccases, Lac1 to Lac4. However, only Lac4 contains the complete signature sequence of laccase and shares at most 64 % sequence identity with other characterized bacterial multi-copper oxidases. Recombinant Lac4 can oxidize non-phenolic and phenolic compounds under acidic conditions and at 30-50 °C; Km values of Lac4 for ABTS at pH 2.5 and for guaiacol at pH 4.5 were 1 ± 0.15 and 6.1 ± 1.7 mM, respectively. The activity of Lac4 was stimulated by 0.8 mM Cu(2+) and 5 mM Fe(2+). In addition, Lac4 could decolorize various synthetic dyes and exhibit the degradation rate of 38 % for lignin. The data suggest that Lac4 possesses promising biotechnological potentials.

  11. Culturable bacterial diversity at the Princess Elisabeth Station (Utsteinen, Sør Rondane Mountains, East Antarctica) harbours many new taxa.

    PubMed

    Peeters, Karolien; Ertz, Damien; Willems, Anne

    2011-07-01

    We studied the culturable heterotrophic bacterial diversity present at the site of the new Princess Elisabeth Station at Utsteinen (Dronning Maud Land, East Antarctica) before construction. About 800 isolates were picked from two terrestrial microbial mat samples after incubation on several growth media at different temperatures. They were grouped using rep-PCR fingerprinting and partial 16S rRNA gene sequencing. Phylogenetic analysis of the complete 16S rRNA gene sequences of 93 representatives showed that the isolates belonged to five major phyla: Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes and Deinococcus-Thermus. Isolates related to the genus Arthrobacter were the most prevalent whereas the genera Hymenobacter, Deinococcus, Cryobacterium and Sphingomonas were also recovered in high numbers in both samples. A total of 35 different genera were found, the majority of which has previously been reported from Antarctica. For the genera Aeromicrobium, Aurantimonas, Rothia, Subtercola, Tessaracoccus and Xylophilus, this is the first report in Antarctica. In addition, numerous potential new species and new genera were recovered; many of them currently restricted to Antarctica, particularly in the phyla Bacteroidetes and Deinococcus-Thermus. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Bacterial taxa–area and distance–decay relationships in marine environments

    PubMed Central

    Zinger, L; Boetius, A; Ramette, A

    2014-01-01

    The taxa–area relationship (TAR) and the distance–decay relationship (DDR) both describe spatial turnover of taxa and are central patterns of biodiversity. Here, we compared TAR and DDR of bacterial communities across different marine realms and ecosystems at the global scale. To obtain reliable global estimates for both relationships, we quantified the poorly assessed effects of sequencing depth, rare taxa removal and number of sampling sites. Slope coefficients of bacterial TARs were within the range of those of plants and animals, whereas slope coefficients of bacterial DDR were much lower. Slope coefficients were mostly affected by removing rare taxa and by the number of sampling sites considered in the calculations. TAR and DDR slope coefficients were overestimated at sequencing depth <4000 sequences per sample. Noticeably, bacterial TAR and DDR patterns did not correlate with each other both within and across ecosystem types, suggesting that (i) TAR cannot be directly derived from DDR and (ii) TAR and DDR may be influenced by different ecological factors. Nevertheless, we found marine bacterial TAR and DDR to be steeper in ecosystems associated with high environmental heterogeneity or spatial isolation, namely marine sediments and coastal environments compared with pelagic ecosystems. Hence, our study provides information on macroecological patterns of marine bacteria, as well as methodological and conceptual insights, at a time when biodiversity surveys increasingly make use of high-throughput sequencing technologies. PMID:24460915

  13. Identification and Antimicrobial Resistance of Bacteria Isolated from Probiotic Products Used in Shrimp Culture.

    PubMed

    Noor Uddin, Gazi Md; Larsen, Marianne Halberg; Christensen, Henrik; Aarestrup, Frank M; Phu, Tran Minh; Dalsgaard, Anders

    2015-01-01

    Probiotics are increasingly used in aquaculture to control diseases and improve feed digestion and pond water quality; however, little is known about the antimicrobial resistance properties of such probiotic bacteria and to what extent they may contribute to the development of bacterial resistance in aquaculture ponds. Concerns have been raised that the declared information on probiotic product labels are incorrect and information on bacterial composition are often missing. We therefore evaluated seven probiotics commonly used in Vietnamese shrimp culture for their bacterial species content, phenotypic antimicrobial resistance and associated transferable resistance genes. The bacterial species was established by 16S rRNA sequence analysis of 125 representative bacterial isolates. MIC testing was done for a range of antimicrobials and whole genome sequencing of six multiple antimicrobial resistant Bacillus spp. used to identify resistance genes and genetic elements associated with horizontal gene transfer. Thirteen bacterial species declared on the probiotic products could not be identified and 11 non-declared Bacillus spp. were identified. Although our culture-based isolation and identification may have missed a few bacterial species present in the tested products this would represent minor bias, but future studies may apply culture independent identification methods like pyro sequencing. Only 6/60 isolates were resistant to more than four antimicrobials and whole genome sequencing showed that they contained macrolide (ermD), tetracycline (tetL), phenicol (fexA) and trimethoprim (dfrD, dfrG and dfrK) resistance genes, but not known structures associated with horizontal gene transfer. Probiotic bacterial strains used in Vietnamese shrimp culture seem to contribute with very limited types and numbers of resistance genes compared to the naturally occurring bacterial species in aquaculture environments. Approval procedures of probiotic products must be strengthened through scientific-based efficacy trials and product labels should allow identification of individual bacterial strains and inform the farmer on specific purpose, dosage and correct application measures.

  14. Serratia marcescens outbreak in a neonatal intensive care unit (NICU): new insights from next-generation sequencing applications.

    PubMed

    Martineau, Christine; Li, Xuejing; Lalancette, Cindy; Perreault, Thérèse; Fournier, Eric; Tremblay, Julien; Gonzales, Milagros; Yergeau, Étienne; Quach, Caroline

    2018-06-13

    Serratia marcescens is an environmental bacterium commonly associated with outbreaks in neonatal intensive care units (NICU). Investigation of S. marcescens outbreaks requires efficient recovery and typing of clinical and environmental isolates. In this study, we described how the use of next-generation sequencing applications, such as bacterial whole-genome sequencing (WGS) and bacterial community profiling, could improve S. marcescens outbreak investigation. Phylogenomic links and potential antibiotic resistance genes and plasmids in S. marcescens isolates were investigated using WGS, while bacterial communities and relative abundances of Serratia in environmental samples were assessed using sequencing of bacterial phylogenetic marker genes (16S rRNA and gyrB genes). Typing results obtained using WGS for the ten S. marcescens isolates recovered during a NICU outbreak investigation were highly consistent with those from pulse-field gel electrophoresis (PFGE), the current gold standard typing method for this bacterium. WGS also allowed for the identification of genes associated with antibiotic resistance in all isolates, while no plasmid was detected. Sequencing of the 16S rRNA and gyrB genes both showed higher relative abundances of Serratia in environmental sampling sites that were in close contact with infected babies. Much lower relative abundances of Serratia were observed following disinfection of a room, indicating that the protocol used was efficient. Variations in the bacterial community composition and structure following room disinfection and between sampling sites were also identified through 16S rRNA gene sequencing. Globally, results from this study highlight the potential for next-generation sequencing tools to improve and facilitate outbreak investigation. Copyright © 2018 American Society for Microbiology.

  15. Assembled sequence contigs by SOAPdenova and Volvet algorithms from metagenomic short reads of a new bacterial isolate of gut origin

    USDA-ARS?s Scientific Manuscript database

    Assembled sequence contigs by SOAPdenova and Volvet algorithms from metagenomic short reads of a new bacterial isolate of gut origin. This study included 2 submissions with a total of 9.8 million bp of assembled contigs....

  16. Joint analysis of bacterial DNA methylation, predicted promoter and regulation motifs for biological significance

    USDA-ARS?s Scientific Manuscript database

    Advances in long-read, single molecule real-time sequencing technology and analysis software over the last two years has enabled the efficient production of closed bacterial genome sequences. However, consistent annotation of these genomes has lagged behind the ability to create them, while the avai...

  17. Responses of Baltic Sea Ice and Open-Water Natural Bacterial Communities to Salinity Change

    PubMed Central

    Kaartokallio, Hermanni; Laamanen, Maria; Sivonen, Kaarina

    2005-01-01

    To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure. PMID:16085826

  18. rpoB Gene Sequence-Based Identification of Aerobic Gram-Positive Cocci of the Genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella

    PubMed Central

    Drancourt, Michel; Roux, Véronique; Fournier, Pierre-Edouard; Raoult, Didier

    2004-01-01

    We developed a new molecular tool based on rpoB gene (encoding the beta subunit of RNA polymerase) sequencing to identify streptococci. We first sequenced the complete rpoB gene for Streptococcus anginosus, S. equinus, and Abiotrophia defectiva. Sequences were aligned with these of S. pyogenes, S. agalactiae, and S. pneumoniae available in GenBank. Using an in-house analysis program (SVARAP), we identified a 740-bp variable region surrounded by conserved, 20-bp zones and, by using these conserved zones as PCR primer targets, we amplified and sequenced this variable region in an additional 30 Streptococcus, Enterococcus, Gemella, Granulicatella, and Abiotrophia species. This region exhibited 71.2 to 99.3% interspecies homology. We therefore applied our identification system by PCR amplification and sequencing to a collection of 102 streptococci and 60 bacterial isolates belonging to other genera. Amplicons were obtained in streptococci and Bacillus cereus, and sequencing allowed us to make a correct identification of streptococci. Molecular signatures were determined for the discrimination of closely related species within the S. pneumoniae-S. oralis-S. mitis group and the S. agalactiae-S. difficile group. These signatures allowed us to design a S. pneumoniae-specific PCR and sequencing primer pair. PMID:14766807

  19. Development of phoH as a Novel Signature Gene for Assessing Marine Phage Diversity▿

    PubMed Central

    Goldsmith, Dawn B.; Crosti, Giuseppe; Dwivedi, Bhakti; McDaniel, Lauren D.; Varsani, Arvind; Suttle, Curtis A.; Weinbauer, Markus G.; Sandaa, Ruth-Anne; Breitbart, Mya

    2011-01-01

    Phages play a key role in the marine environment by regulating the transfer of energy between trophic levels and influencing global carbon and nutrient cycles. The diversity of marine phage communities remains difficult to characterize because of the lack of a signature gene common to all phages. Recent studies have demonstrated the presence of host-derived auxiliary metabolic genes in phage genomes, such as those belonging to the Pho regulon, which regulates phosphate uptake and metabolism under low-phosphate conditions. Among the completely sequenced phage genomes in GenBank, this study identified Pho regulon genes in nearly 40% of the marine phage genomes, while only 4% of nonmarine phage genomes contained these genes. While several Pho regulon genes were identified, phoH was the most prevalent, appearing in 42 out of 602 completely sequenced phage genomes. Phylogenetic analysis demonstrated that phage phoH sequences formed a cluster distinct from those of their bacterial hosts. PCR primers designed to amplify a region of the phoH gene were used to determine the diversity of phage phoH sequences throughout a depth profile in the Sargasso Sea and at six locations worldwide. phoH was present at all sites examined, and a high diversity of phoH sequences was recovered. Most phoH sequences belonged to clusters without any cultured representatives. Each depth and geographic location had a distinct phoH composition, although most phoH clusters were recovered from multiple sites. Overall, phoH is an effective signature gene for examining phage diversity in the marine environment. PMID:21926220

  20. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance.

    PubMed

    Thomsen, Martin Christen Frølund; Ahrenfeldt, Johanne; Cisneros, Jose Luis Bellod; Jurtz, Vanessa; Larsen, Mette Voldby; Hasman, Henrik; Aarestrup, Frank Møller; Lund, Ole

    2016-01-01

    Recent advances in whole genome sequencing have made the technology available for routine use in microbiological laboratories. However, a major obstacle for using this technology is the availability of simple and automatic bioinformatics tools. Based on previously published and already available web-based tools we developed a single pipeline for batch uploading of whole genome sequencing data from multiple bacterial isolates. The pipeline will automatically identify the bacterial species and, if applicable, assemble the genome, identify the multilocus sequence type, plasmids, virulence genes and antimicrobial resistance genes. A short printable report for each sample will be provided and an Excel spreadsheet containing all the metadata and a summary of the results for all submitted samples can be downloaded. The pipeline was benchmarked using datasets previously used to test the individual services. The reported results enable a rapid overview of the major results, and comparing that to the previously found results showed that the platform is reliable and able to correctly predict the species and find most of the expected genes automatically. In conclusion, a combined bioinformatics platform was developed and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely available at: https://cge.cbs.dtu.dk/services/CGEpipeline-1.1 and it is the intention that it will continue to be expanded with new features as these become available.

  1. Short genome report of cellulose-producing commensal Escherichia coli 1094.

    PubMed

    Bernal-Bayard, Joaquin; Gomez-Valero, Laura; Wessel, Aimee; Khanna, Varun; Bouchier, Christiane; Ghigo, Jean-Marc

    2018-01-01

    Bacterial surface colonization and biofilm formation often rely on the production of an extracellular polymeric matrix that mediates cell-cell and cell-surface contacts. In Escherichia coli and many Betaproteobacteria and Gammaproteobacteria cellulose is often the main component of the extracellular matrix. Here we report the complete genome sequence of the cellulose producing strain E. coli 1094 and compare it with five other closely related genomes within E. coli phylogenetic group A. We present a comparative analysis of the regions encoding genes responsible for cellulose biosynthesis and discuss the changes that could have led to the loss of this important adaptive advantage in several E. coli strains. Data deposition: The annotated genome sequence has been deposited at the European Nucleotide Archive under the accession number PRJEB21000.

  2. Fastidian gum: the Xylella fastidiosa exopolysaccharide possibly involved in bacterial pathogenicity.

    PubMed

    da Silva, F R; Vettore, A L; Kemper, E L; Leite, A; Arruda, P

    2001-09-25

    The Gram-negative bacterium Xylella fastidiosa was the first plant pathogen to be completely sequenced. This species causes several economically important plant diseases, including citrus variegated chlorosis (CVC). Analysis of the genomic sequence of X. fastidiosa revealed a 12 kb DNA fragment containing an operon closely related to the gum operon of Xanthomonas campestris. The presence of all genes involved in the synthesis of sugar precursors, existence of exopolysaccharide (EPS) production regulators in the genome, and the absence of three of the X. campestris gum genes suggested that X. fastidiosa is able to synthesize an EPS different from that of xanthan gum. This novel EPS probably consists of polymerized tetrasaccharide repeating units assembled by the sequential addition of glucose-1-phosphate, glucose, mannose and glucuronic acid on a polyprenol phosphate carrier.

  3. The development of permafrost bacterial communities under submarine conditions

    NASA Astrophysics Data System (ADS)

    Mitzscherling, Julia; Winkel, Matthias; Winterfeld, Maria; Horn, Fabian; Yang, Sizhong; Grigoriev, Mikhail N.; Wagner, Dirk; Overduin, Pier P.; Liebner, Susanne

    2017-07-01

    Submarine permafrost is more vulnerable to thawing than permafrost on land. Besides increased heat transfer from the ocean water, the penetration of salt lowers the freezing temperature and accelerates permafrost degradation. Microbial communities in thawing permafrost are expected to be stimulated by warming, but how they develop under submarine conditions is completely unknown. We used the unique records of two submarine permafrost cores from the Laptev Sea on the East Siberian Arctic Shelf, inundated about 540 and 2500 years ago, to trace how bacterial communities develop depending on duration of the marine influence and pore water chemistry. Combined with geochemical analysis, we quantified total cell numbers and bacterial gene copies and determined the community structure of bacteria using deep sequencing of the bacterial 16S rRNA gene. We show that submarine permafrost is an extreme habitat for microbial life deep below the seafloor with changing thermal and chemical conditions. Pore water chemistry revealed different pore water units reflecting the degree of marine influence and stages of permafrost thaw. Millennia after inundation by seawater, bacteria stratify into communities in permafrost, marine-affected permafrost, and seabed sediments. In contrast to pore water chemistry, the development of bacterial community structure, diversity, and abundance in submarine permafrost appears site specific, showing that both sedimentation and permafrost thaw histories strongly affect bacteria. Finally, highest microbial abundance was observed in the ice-bonded seawater unaffected but warmed permafrost of the longer inundated core, suggesting that permafrost bacterial communities exposed to submarine conditions start to proliferate millennia after warming.

  4. Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values.

    PubMed

    Cheng, Weixiao; Chen, Hong; Yan, ShuHai; Su, Jianqiang

    2014-09-01

    Short-chain fatty acids (SCFAs) can be produced by primary and waste activated sludge anaerobic fermentation. The yield and product spectrum distribution of SCFAs can be significantly affected by different initial pH values. However, most studies have focused on the physical and chemical aspects of SCFA production by waste activated sludge fermentation at different pH values. Information on the bacterial community structures during acidogenic fermentation is limited. In this study, comparisons of the bacterial communities during the co-substrate fermentation of food wastes and sewage sludge at different pH values were performed using the barcoded Illumina paired-end sequencing method. The results showed that different pH environments harbored a characteristic bacterial community, including sequences related to Lactobacillus, Prevotella, Mitsuokella, Treponema, Clostridium, and Ureibacillus. The most abundant bacterial operational taxonomic units in the different pH environments were those related to carbohydrate-degrading bacteria, which are associated with constituents of co-substrate fermentation. Further analyses showed that during organic matter fermentation, a core microbiota composed of Firmicutes, Proteobacteria, and Bacteroidetes existed. Comparison analyses revealed that the bacterial community during fermentation was significantly affected by the pH, and that the diverse product distribution was related to the shift in bacterial communities.

  5. Assessing the impact of fungicide enostroburin application on bacterial community in wheat phyllosphere.

    PubMed

    Gu, Likun; Bai, Zhihui; Jin, Bo; Hu, Qing; Wang, Huili; Zhuang, Guoqiang; Zhang, Hongxun

    2010-01-01

    Fungicides have been used extensively for controlling fungal pathogens of plants. However, little is known regarding the effects that fungicides upon the indigenous bacterial communities within the plant phyllosphere. The aims of this study were to assess the impact of fungicide enostroburin upon bacterial communities in wheat phyllosphere. Culture-independent methodologies of 16S rDNA clone library and 16S rDNA directed polymerase chain reaction with denaturing gradient gel electrophoresis (PCR-DGGE) were used for monitoring the change of bacterial community. The 16S rDNA clone library and PCR-DGGE analysis both confirmed the microbial community of wheat plant phyllosphere were predominantly of the gamma-Proteobacteria phyla. Results from PCR-DGGE analysis indicated a significant change in bacterial community structure within the phyllosphere following fungicide enostroburin application. Bands sequenced within control cultures were predominantly of Pseudomonas genus, but those bands sequenced in the treated samples were predominantly strains of Pantoea genus and Pseudomonas genus. Of interest was the appearance of two DGGE bands following fungicide treatment, one of which had sequence similarities (98%) to Pantoea sp. which might be a competitor of plant pathogens. This study revealed the wheat phyllosphere bacterial community composition and a shift in the bacterial community following fungicide enostroburin application.

  6. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE PAGES

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.; ...

    2018-03-20

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  7. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    PubMed Central

    Moon, JiWon; Veach, Allison M.; Mosher, Jennifer J.; Wymore, Ann M.; van Nostrand, Joy D.; Zhou, Jizhong; Hazen, Terry C.; Arkin, Adam P.; Elias, Dwayne A.

    2018-01-01

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion of the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems. PMID:29558522

  8. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  9. Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis

    PubMed Central

    Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Zhang, Wei-Peng; Bajic, Vladimir

    2014-01-01

    ABSTRACT Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. PMID:25370493

  10. Isolation, identification, and algicidal activity of aerobic denitrifying bacterium R11 and its effect on Microcystis aeruginosa.

    PubMed

    Su, Jun-feng; Shao, Si-cheng; Huang, Ting-lin; Ma, Fang; Zhang, Kai; Wen, Gang; Zheng, Sheng-chen

    2016-01-01

    Recently, algicidal bacteria have attracted attention as possible agents for the inhibition of algal water blooms. In this study, an aerobic denitrifying bacterium, R11, with high algicidal activity against the toxic Microcystis aeruginosa was isolated from lake sediments. Based on its physiological characteristics and 16S rRNA gene sequence, it was identified as Raoultella, indicating that the bacterium R11 has a good denitrifying ability at 30 °C and can reduce the concentration of nitrate-N completely within 36 h. Additionally, different algicidal characteristics against Microcystis aeruginosa were tested. The results showed that the initial bacterial cell density and algal cell densities strongly influence the removal rates of chlorophyll a. Algicidal activity increased with an increase in the bacterial cell density. With densities of bacterial culture at over 2.4 × 10(5) cell/mL, algicidal activity of up to 80% was obtained in 4 days. We have demonstrated that, with the low initial algal cell density (OD680 less than 0.220), the algicidal activity reached was higher than 90% after 6 days.

  11. 16S rRNA Gene-Based Metagenomic Analysis of Ozark Cave Bacteria.

    PubMed

    Oliveira, Cássia; Gunderman, Lauren; Coles, Cathryn A; Lochmann, Jason; Parks, Megan; Ballard, Ethan; Glazko, Galina; Rahmatallah, Yasir; Tackett, Alan J; Thomas, David J

    2017-09-01

    The microbial diversity within cave ecosystems is largely unknown. Ozark caves maintain a year-round stable temperature (12-14 °C), but most parts of the caves experience complete darkness. The lack of sunlight and geological isolation from surface-energy inputs generate nutrient-poor conditions that may limit species diversity in such environments. Although microorganisms play a crucial role in sustaining life on Earth and impacting human health, little is known about their diversity, ecology, and evolution in community structures. We used five Ozark region caves as test sites for exploring bacterial diversity and monitoring long-term biodiversity. Illumina MiSeq sequencing of five cave soil samples and a control sample revealed a total of 49 bacterial phyla, with seven major phyla: Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Chloroflexi, Bacteroidetes, and Nitrospirae. Variation in bacterial composition was observed among the five caves studied. Sandtown Cave had the lowest richness and most divergent community composition. 16S rRNA gene-based metagenomic analysis of cave-dwelling microbial communities in the Ozark caves revealed that species abundance and diversity are vast and included ecologically, agriculturally, and economically relevant taxa.

  12. Influence of housing characteristics on bacterial and fungal communities in homes of asthmatic children.

    PubMed

    Dannemiller, K C; Gent, J F; Leaderer, B P; Peccia, J

    2016-04-01

    Variations in home characteristics, such as moisture and occupancy, affect indoor microbial ecology as well as human exposure to microorganisms. Our objective was to determine how indoor bacterial and fungal community structure and diversity are associated with the broader home environment and its occupants. Next-generation DNA sequencing was used to describe fungal and bacterial communities in house dust sampled from 198 homes of asthmatic children in southern New England. Housing characteristics included number of people/children, level of urbanization, single/multifamily home, reported mold, reported water leaks, air conditioning (AC) use, and presence of pets. Both fungal and bacterial community structures were non-random and demonstrated species segregation (C-score, P < 0.00001). Increased microbial richness was associated with the presence of pets, water leaks, longer AC use, suburban (vs. urban) homes, and dust composition measures (P < 0.05). The most significant differences in community composition were observed for AC use and occupancy (people, children, and pets) characteristics. Occupant density measures were associated with beneficial bacterial taxa, including Lactobacillus johnsonii as measured by qPCR. A more complete knowledge of indoor microbial communities is useful for linking housing characteristics to human health outcomes. Microbial assemblies in house dust result, in part, from the building's physical and occupant characteristics. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes.

    PubMed

    Li, Meng; Jain, Sunit; Dick, Gregory J

    2016-01-01

    Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes.

  14. Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes

    PubMed Central

    Li, Meng; Jain, Sunit; Dick, Gregory J.

    2016-01-01

    Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes. PMID:27512389

  15. Isolation and Molecular Characterization of Novel Chlorpyrifos and 3,5,6-trichloro-2-pyridinol-degrading Bacteria from Sugarcane Farm Soils

    PubMed Central

    Rayu, Smriti; Nielsen, Uffe N.; Nazaries, Loïc; Singh, Brajesh K.

    2017-01-01

    Chlorpyrifos (CP) is one of the most widely used organophosphate pesticides in agriculture worldwide, but its extensive use has led to the contamination of various soil and water systems. Microbial bioremediation is considered to be one of the most viable options for the removal of CP from the environment; however, little is known about the soil bacterial diversity that degrade CP. Sequential soil and liquid culture enrichments enabled the isolation of bacterial CP degraders with sequence homologies to Xanthomonas sp., Pseudomonas sp., and Rhizobium sp. The efficacy of the three isolated strains: Xanthomonas sp. 4R3-M1, Pseudomonas sp. 4H1-M3, and Rhizobium sp. 4H1-M1 was further investigated for biodegradation of CP and its primary metabolic product, 3,5,6-trichloro-2-pyridinol (TCP). The results indicate that all three bacterial strains almost completely metabolized CP (10 mg/L) and TCP, occurring as a metabolic degradation product, in mineral salt media as a sole source of carbon and nitrogen. The isolated bacterial strains Xanthomonas sp. 4R3-M1 and Pseudomonas sp. 4H1-M3 could also degrade TCP (10 mg/L) as a sole carbon and nitrogen source, when provided externally. Thus, these bacterial strains may be effective in practical application of bioremediation of both CP and TCP. PMID:28421040

  16. Characterization of Microbial Communities Associated With Deep-Sea Hydrothermal Vent Animals of the East Pacific Rise and the Galápagos Rift

    NASA Astrophysics Data System (ADS)

    Ward, N.; Page, S.; Heidelberg, J.; Eisen, J. A.; Fraser, C. M.

    2002-12-01

    The composition of microbial communities associated with deep-sea hydrothermal vent animals is of interest because of the key role of bacterial symbionts in driving the chemosynthetic food chain of the vent system, and also because bacterial biofilms attached to animal exterior surfaces may play a part in settlement of larval forms. Sequence analysis of 16S ribosomal RNA (rRNA) genes from such communities provides a snapshot of community structure, as this gene is present in all Bacteria and Archaea, and a useful phylogenetic marker for both cultivated microbial species, and uncultivated species such as many of those found in the deep-sea environment. Specimens of giant tube worms (Riftia pachyptila), mussels (Bathymodiolus thermophilus), and clams (Calyptogena magnifica) were collected during the 2002 R/V Atlantis research cruises to the East Pacific Rise (9N) and Galápagos Rift. Microbial biofilms attached to the exterior surfaces of individual animals were sampled, as were tissues known to harbor chemosynthetic bacterial endosymbionts. Genomic DNA was extracted from the samples using a commercially available kit, and 16S rRNA genes amplified from the mixed bacterial communities using the polymerase chain reaction (PCR) and oligonucleotide primers targeting conserved terminal regions of the 16S rRNA gene. The PCR products obtained were cloned into a plasmid vector and the recombinant plasmids transformed into cells of Escherichia coli. Individual cloned 16S rRNA genes were sequenced at the 5' end of the gene (the most phylogenetically informative region in most taxa) and the sequence data compared to publicly available gene sequence databases, to allow a preliminary assignment of clones to taxonomic groups within the Bacteria and Archaea, and to determine the overall composition and phylogenetic diversity of the animal-associated microbial communities. Analysis of Riftia pachyptila exterior biofilm samples revealed the presence of members of the delta and epsilon proteobacteria, low GC Gram positive bacteria (firmicutes), spirochetes, CFB (Cytophaga-Flavobacterium-Bacteroides) group, green nonsulfur bacteria, acidobacteria, verrucomicrobia, and planctomycetes. The presence of the latter three taxonomic groups is of special interest, as they represent phylogenetically distinct groups within the Bacteria for which specific ecological functions have not yet been identified, but which have been found to be widely distributed and often numerically significant in diverse terrestrial and aquatic habitats. Although further sequencing is required to demonstrate the presence of a Riftia-associated microbial population distinct from that of the surrounding seawater, results available from three Riftia individuals from the East Pacific Rise suggest this to be the case. Analysis of microbial communities associated with the gill tissue of the mussel Bathymodiolus thermophilus shows a population dominated by gamma-Proteobacterial chemoautotrophic symbionts, although lower frequency novel phylotypes have been detected. Representatives of specific taxonomic groups have been selected for sequencing of the complete 16S rRNA gene, and the sequences used to reconstruct phylogenetic trees to more accurately determine the evolutionary relationships between the novel sequences, and available sequences for both cultured and non-cultured bacteria.

  17. Bacterial collagen-like proteins that form triple-helical structures

    PubMed Central

    Yu, Zhuoxin; An, Bo; Ramshaw, John A.M.; Brodsky, Barbara

    2014-01-01

    A large number of collagen-like proteins have been identified in bacteria during the past ten years, principally from analysis of genome databases. These bacterial collagens share the distinctive Gly-Xaa-Yaa repeating amino acid sequence of animal collagens which underlies their unique triple-helical structure. A number of the bacterial collagens have been expressed in E. coli, and they all adopt a triple-helix conformation. Unlike animal collagens, these bacterial proteins do not contain the post-translationally modified amino acid, hydroxyproline, which is known to stabilize the triple-helix structure and may promote self-assembly. Despite the absence of collagen hydroxylation, the triple-helix structures of the bacterial collagens studied exhibit a high thermal stability of 35–39 °C, close to that seen for mammalian collagens. These bacterial collagens are readily produced in large quantities by recombinant methods, either in the original amino acid sequence or in genetically manipulated sequences. This new family of recombinant, easy to modify collagens could provide a novel system for investigating structural and functional motifs in animal collagens and could also form the basis of new biomedical materials with designed structural properties and functions. PMID:24434612

  18. Phylogenetic congruence of armored scale insects (Hemiptera: Diaspididae) and their primary endosymbionts from the phylum Bacteroidetes.

    PubMed

    Gruwell, Matthew E; Morse, Geoffrey E; Normark, Benjamin B

    2007-07-01

    Insects in the sap-sucking hemipteran suborder Sternorrhyncha typically harbor maternally transmitted bacteria housed in a specialized organ, the bacteriome. In three of the four superfamilies of Sternorrhyncha (Aphidoidea, Aleyrodoidea, Psylloidea), the bacteriome-associated (primary) bacterial lineage is from the class Gammaproteobacteria (phylum Proteobacteria). The fourth superfamily, Coccoidea (scale insects), has a diverse array of bacterial endosymbionts whose affinities are largely unexplored. We have amplified fragments of two bacterial ribosomal genes from each of 68 species of armored scale insects (Diaspididae). In spite of initially using primers designed for Gammaproteobacteria, we consistently amplified sequences from a different bacterial phylum: Bacteroidetes. We use these sequences (16S and 23S, 2105 total base pairs), along with previously published sequences from the armored scale hosts (elongation factor 1alpha and 28S rDNA) to investigate phylogenetic congruence between the two clades. The Bayesian tree for the bacteria is roughly congruent with that of the hosts, with 67% of nodes identical. Partition homogeneity tests found no significant difference between the host and bacterial data sets. Of thirteen Shimodaira-Hasegawa tests, comparing the original Bayesian bacterial tree to bacterial trees with incongruent clades forced to match the host tree, 12 found no significant difference. A significant difference in topology was found only when the entire host tree was compared with the entire bacterial tree. For the bacterial data set, the treelengths of the most parsimonious host trees are only 1.8-2.4% longer than that of the most parsimonious bacterial trees. The high level of congruence between the topologies indicates that these Bacteroidetes are the primary endosymbionts of armored scale insects. To investigate the phylogenetic affinities of these endosymbionts, we aligned some of their 16S rDNA sequences with other known Bacteroidetes endosymbionts and with other similar sequences identified by BLAST searches. Although the endosymbionts of armored scales are only distantly related to the endosymbionts of the other sternorrhynchan insects, they are closely related to bacteria associated with eriococcid and margarodid scale insects, to cockroach and auchenorrynchan endosymbionts (Blattabacterium and Sulcia), and to male-killing endosymbionts of ladybird beetles. We propose the name "Candidatus Uzinura diaspidicola" for the primary endosymbionts of armored scale insects.

  19. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing.

    PubMed

    Naveed, Muhammad; Mubeen, Samavia; Khan, SamiUllah; Ahmed, Iftikhar; Khalid, Nauman; Suleria, Hafiz Ansar Rasul; Bano, Asghari; Mumtaz, Abdul Samad

    2014-01-01

    In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization.

  20. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.

    PubMed

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, "bacterial-like" enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the "eukaryotic-like" phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research.

  1. Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting.

    PubMed

    Valiente Moro, Claire; Thioulouse, Jean; Chauve, Claude; Normand, Philippe; Zenner, Lionel

    2009-01-01

    Dermanyssus gallinae (Arthropoda, Mesostigmata) is suspected to be involved in the transmission of a wide variety of pathogens, but nothing is known about its associated non-pathogenic bacterial community. To address this question, we examined the composition of bacterial communities in D. gallinae collected from standard poultry farms in Brittany, France. Genetic fingerprints of bacterial communities were generated by temporal temperature gradient gel electrophoresis (TTGE) separation of individual polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments, followed by DNA sequence analysis. Most of the sequences belonged to the Proteobacteria and Firmicute phyla, with a majority of sequences corresponding to the Enterobacteriales order and the Staphylococcus genus. By using statistical analysis, we showed differences in biodiversity between poultry farms. We also determined the major phylotypes that compose the characteristic microbiota associated with D. gallinae. Saprophytes, opportunistic pathogens and pathogenic agents such as Pasteurella multocida, Erysipelothrix rhusiopathiae and sequences close to the genus Aerococcus were identified. Endosymbionts such as Schineria sp., Spiroplasma sp. Anistosticta, "Candidatus Cardinium hertigii" and Rickettsiella sp. were also present in the subdominant bacterial community. Identification of potential targets within the symbiont community may be considered in the future as a means of ectoparasite control.

  2. A Bioinformatic Strategy for the Detection, Classification and Analysis of Bacterial Autotransporters

    PubMed Central

    Celik, Nermin; Webb, Chaille T.; Leyton, Denisse L.; Holt, Kathryn E.; Heinz, Eva; Gorrell, Rebecca; Kwok, Terry; Naderer, Thomas; Strugnell, Richard A.; Speed, Terence P.; Teasdale, Rohan D.; Likić, Vladimir A.; Lithgow, Trevor

    2012-01-01

    Autotransporters are secreted proteins that are assembled into the outer membrane of bacterial cells. The passenger domains of autotransporters are crucial for bacterial pathogenesis, with some remaining attached to the bacterial surface while others are released by proteolysis. An enigma remains as to whether autotransporters should be considered a class of secretion system, or simply a class of substrate with peculiar requirements for their secretion. We sought to establish a sensitive search protocol that could identify and characterize diverse autotransporters from bacterial genome sequence data. The new sequence analysis pipeline identified more than 1500 autotransporter sequences from diverse bacteria, including numerous species of Chlamydiales and Fusobacteria as well as all classes of Proteobacteria. Interrogation of the proteins revealed that there are numerous classes of passenger domains beyond the known proteases, adhesins and esterases. In addition the barrel-domain-a characteristic feature of autotransporters-was found to be composed from seven conserved sequence segments that can be arranged in multiple ways in the tertiary structure of the assembled autotransporter. One of these conserved motifs overlays the targeting information required for autotransporters to reach the outer membrane. Another conserved and diagnostic motif maps to the linker region between the passenger domain and barrel-domain, indicating it as an important feature in the assembly of autotransporters. PMID:22905239

  3. Identification and characterization of rhizospheric microbial diversity by 16S ribosomal RNA gene sequencing

    PubMed Central

    Naveed, Muhammad; Mubeen, Samavia; khan, SamiUllah; Ahmed, Iftikhar; Khalid, Nauman; Suleria, Hafiz Ansar Rasul; Bano, Asghari; Mumtaz, Abdul Samad

    2014-01-01

    In the present study, samples of rhizosphere and root nodules were collected from different areas of Pakistan to isolate plant growth promoting rhizobacteria. Identification of bacterial isolates was made by 16S rRNA gene sequence analysis and taxonomical confirmation on EzTaxon Server. The identified bacterial strains were belonged to 5 genera i.e. Ensifer, Bacillus, Pseudomona, Leclercia and Rhizobium. Phylogenetic analysis inferred from 16S rRNA gene sequences showed the evolutionary relationship of bacterial strains with the respective genera. Based on phylogenetic analysis, some candidate novel species were also identified. The bacterial strains were also characterized for morphological, physiological, biochemical tests and glucose dehydrogenase (gdh) gene that involved in the phosphate solublization using cofactor pyrroloquinolone quinone (PQQ). Seven rhizoshperic and 3 root nodulating stains are positive for gdh gene. Furthermore, this study confirms a novel association between microbes and their hosts like field grown crops, leguminous and non-leguminous plants. It was concluded that a diverse group of bacterial population exist in the rhizosphere and root nodules that might be useful in evaluating the mechanisms behind plant microbial interactions and strains QAU-63 and QAU-68 have sequence similarity of 97 and 95% which might be declared as novel after further taxonomic characterization. PMID:25477935

  4. Detection of Mixed Infection from Bacterial Whole Genome Sequence Data Allows Assessment of Its Role in Clostridium difficile Transmission

    PubMed Central

    Eyre, David W.; Cule, Madeleine L.; Griffiths, David; Crook, Derrick W.; Peto, Tim E. A.

    2013-01-01

    Bacterial whole genome sequencing offers the prospect of rapid and high precision investigation of infectious disease outbreaks. Close genetic relationships between microorganisms isolated from different infected cases suggest transmission is a strong possibility, whereas transmission between cases with genetically distinct bacterial isolates can be excluded. However, undetected mixed infections—infection with ≥2 unrelated strains of the same species where only one is sequenced—potentially impairs exclusion of transmission with certainty, and may therefore limit the utility of this technique. We investigated the problem by developing a computationally efficient method for detecting mixed infection without the need for resource-intensive independent sequencing of multiple bacterial colonies. Given the relatively low density of single nucleotide polymorphisms within bacterial sequence data, direct reconstruction of mixed infection haplotypes from current short-read sequence data is not consistently possible. We therefore use a two-step maximum likelihood-based approach, assuming each sample contains up to two infecting strains. We jointly estimate the proportion of the infection arising from the dominant and minor strains, and the sequence divergence between these strains. In cases where mixed infection is confirmed, the dominant and minor haplotypes are then matched to a database of previously sequenced local isolates. We demonstrate the performance of our algorithm with in silico and in vitro mixed infection experiments, and apply it to transmission of an important healthcare-associated pathogen, Clostridium difficile. Using hospital ward movement data in a previously described stochastic transmission model, 15 pairs of cases enriched for likely transmission events associated with mixed infection were selected. Our method identified four previously undetected mixed infections, and a previously undetected transmission event, but no direct transmission between the pairs of cases under investigation. These results demonstrate that mixed infections can be detected without additional sequencing effort, and this will be important in assessing the extent of cryptic transmission in our hospitals. PMID:23658511

  5. Control of artefactual variation in reported inter-sample relatedness during clinical use of a Mycobacterium tuberculosis sequencing pipeline.

    PubMed

    Wyllie, David H; Sanderson, Nicholas; Myers, Richard; Peto, Tim; Robinson, Esther; Crook, Derrick W; Smith, E Grace; Walker, A Sarah

    2018-06-06

    Contact tracing requires reliable identification of closely related bacterial isolates. When we noticed the reporting of artefactual variation between M. tuberculosis isolates during routine next generation sequencing of Mycobacterium spp, we investigated its basis in 2,018 consecutive M. tuberculosis isolates. In the routine process used, clinical samples were decontaminated and inoculated into broth cultures; from positive broth cultures DNA was extracted, sequenced, reads mapped, and consensus sequences determined. We investigated the process of consensus sequence determination, which selects the most common nucleotide at each position. Having determined the high-quality read depth and depth of minor variants across 8,006 M. tuberculosis genomic regions, we quantified the relationship between the minor variant depth and the amount of non-Mycobacterial bacterial DNA, which originates from commensal microbes killed during sample decontamination. In the presence of non-Mycobacterial bacterial DNA, we found significant increases in minor variant frequencies of more than 1.5 fold in 242 regions covering 5.1% of the M. tuberculosis genome. Included within these were four high variation regions strongly influenced by the amount of non-Mycobacterial bacterial DNA. Excluding these four regions from pairwise distance comparisons reduced biologically implausible variation from 5.2% to 0% in an independent validation set derived from 226 individuals. Thus, we have demonstrated an approach identifying critical genomic regions contributing to clinically relevant artefactual variation in bacterial similarity searches. The approach described monitors the outputs of the complex multi-step laboratory and bioinformatics process, allows periodic process adjustments, and will have application to quality control of routine bacterial genomics. Copyright © 2018 Wyllie et al.

  6. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    USGS Publications Warehouse

    Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.

    2009-01-01

    Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an Australian origin for B. pseudomallei, characterized by a single introduction event into Southeast Asia during a recent glacial period, and variable levels of lateral gene transfer within populations. These patterns provide insights into mechanisms of genetic diversification in B. pseudomallei and its closest relatives, and provide a framework for integrating the traditionally separate fields of population genetics and phylogenetics for other bacterial species with high levels of lateral gene transfer. ?? 2009 Pearson et al; licensee BioMed Central Ltd.

  7. Transforming microbial genotyping: a robotic pipeline for genotyping bacterial strains.

    PubMed

    O'Farrell, Brian; Haase, Jana K; Velayudhan, Vimalkumar; Murphy, Ronan A; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost.

  8. Transforming Microbial Genotyping: A Robotic Pipeline for Genotyping Bacterial Strains

    PubMed Central

    Velayudhan, Vimalkumar; Murphy, Ronan A.; Achtman, Mark

    2012-01-01

    Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost. PMID:23144721

  9. Archaeal and bacterial diversity in two hot springs from geothermal regions in Bulgaria as demostrated by 16S rRNA and GH-57 genes.

    PubMed

    Stefanova, Katerina; Tomova, Iva; Tomova, Anna; Radchenkova, Nadja; Atanassov, Ivan; Kambourova, Margarita

    2015-12-01

    Archaeal and bacterial diversity in two Bulgarian hot springs, geographically separated with different tectonic origin and different temperature of water was investigated exploring two genes, 16S rRNA and GH-57. Archaeal diversity was significantly higher in the hotter spring Levunovo (LV) (82°C); on the contrary, bacterial diversity was higher in the spring Vetren Dol (VD) (68°C). The analyzed clones from LV library were referred to twenty eight different sequence types belonging to five archaeal groups from Crenarchaeota and Euryarchaeota. A domination of two groups was observed, Candidate Thaumarchaeota and Methanosarcinales. The majority of the clones from VD were referred to HWCG (Hot Water Crenarchaeotic Group). The formation of a group of thermophiles in the order Methanosarcinales was suggested. Phylogenetic analysis revealed high numbers of novel sequences, more than one third of archaeal and half of the bacterial phylotypes displayed similarity lower than 97% with known ones. The retrieved GH-57 gene sequences showed a complex phylogenic distribution. The main part of the retrieved homologous GH-57 sequences affiliated with bacterial phyla Bacteroidetes, Deltaproteobacteria, Candidate Saccharibacteria and affiliation of almost half of the analyzed sequences is not fully resolved. GH-57 gene analysis allows an increased resolution of the biodiversity assessment and in depth analysis of specific taxonomic groups. [Int Microbiol 18(4):217-223 (2015)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  10. Bypassing bacterial infection in phage display by sequencing DNA released from phage particles.

    PubMed

    Villequey, Camille; Kong, Xu-Dong; Heinis, Christian

    2017-11-01

    Phage display relies on a bacterial infection step in which the phage particles are replicated to perform multiple affinity selection rounds and to enable the identification of isolated clones by DNA sequencing. While this process is efficient for wild-type phage, the bacterial infection rate of phage with mutant or chemically modified coat proteins can be low. For example, a phage mutant with a disulfide-free p3 coat protein, used for the selection of bicyclic peptides, has a more than 100-fold reduced infection rate compared to the wild-type. A potential strategy for bypassing the bacterial infection step is to directly sequence DNA extracted from phage particles after a single round of phage panning using high-throughput sequencing. In this work, we have quantified the fraction of phage clones that can be identified by directly sequencing DNA from phage particles. The results show that the DNA of essentially all of the phage particles can be 'decoded', and that the sequence coverage for mutants equals that of amplified DNA extracted from cells infected with wild-type phage. This procedure is particularly attractive for selections with phage that have a compromised infection capacity, and it may allow phage display to be performed with particles that are not infective at all. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader

    Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738,more » which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.« less

  12. A functional role of Rv1738 in Mycobacterium tuberculosis persistence suggested by racemic protein crystallography

    DOE PAGES

    Bunker, Richard D.; Mandal, Kalyaneswar; Bashiri, Ghader; ...

    2015-04-07

    Racemic protein crystallography was used to determine the X-ray structure of the predicted Mycobacterium tuberculosis protein Rv1738, which had been completely recalcitrant to crystallization in its natural L-form. Native chemical ligation was used to synthesize both L-protein and D-protein enantiomers of Rv1738. Crystallization of the racemic {D-protein + L-protein} mixture was immediately successful. The resulting crystals diffracted to high resolution and also enabled facile structure determination because of the quantized phases of the data from centrosymmetric crystals. The X-ray structure of Rv1738 revealed striking similarity with bacterial hibernation factors, despite minimal sequence similarity. As a result, we predict that Rv1738,more » which is highly up-regulated in conditions that mimic the onset of persistence, helps trigger dormancy by association with the bacterial ribosome.« less

  13. Next-Generation Sequencing Reveals Significant Bacterial Diversity of Botrytized Wine

    PubMed Central

    Bokulich, Nicholas A.; Joseph, C. M. Lucy; Allen, Greg; Benson, Andrew K.; Mills, David A.

    2012-01-01

    While wine fermentation has long been known to involve complex microbial communities, the composition and role of bacteria other than a select set of lactic acid bacteria (LAB) has often been assumed either negligible or detrimental. This study served as a pilot study for using barcoded amplicon next-generation sequencing to profile bacterial community structure in wines and grape musts, comparing the taxonomic depth achieved by sequencing two different domains of prokaryotic 16S rDNA (V4 and V5). This study was designed to serve two goals: 1) to empirically determine the most taxonomically informative 16S rDNA target region for barcoded amplicon sequencing of wine, comparing V4 and V5 domains of bacterial 16S rDNA to terminal restriction fragment length polymorphism (TRFLP) of LAB communities; and 2) to explore the bacterial communities of wine fermentation to better understand the biodiversity of wine at a depth previously unattainable using other techniques. Analysis of amplicons from the V4 and V5 provided similar views of the bacterial communities of botrytized wine fermentations, revealing a broad diversity of low-abundance taxa not traditionally associated with wine, as well as atypical LAB communities initially detected by TRFLP. The V4 domain was determined as the more suitable read for wine ecology studies, as it provided greater taxonomic depth for profiling LAB communities. In addition, targeted enrichment was used to isolate two species of Alphaproteobacteria from a finished fermentation. Significant differences in diversity between inoculated and uninoculated samples suggest that Saccharomyces inoculation exerts selective pressure on bacterial diversity in these fermentations, most notably suppressing abundance of acetic acid bacteria. These results determine the bacterial diversity of botrytized wines to be far higher than previously realized, providing further insight into the fermentation dynamics of these wines, and demonstrate the utility of next-generation sequencing for wine ecology studies. PMID:22563494

  14. Bacterial diversity in the oral cavity of ten healthy individuals

    PubMed Central

    Bik, Elisabeth M.; Long, Clara Davis; Armitage, Gary C.; Loomer, Peter; Emerson, Joanne; Mongodin, Emmanuel F.; Nelson, Karen E.; Gill, Steven R.; Fraser-Liggett, Claire M.; Relman, David A.

    2010-01-01

    The composition of the oral microbiota from 10 individuals with healthy oral tissues was determined using culture-independent techniques. From each individual, 26 specimens, each from different oral sites at a single point in time, were collected and pooled. An eleventh pool was constructed using portions of the subgingival specimens from all 10 individuals. The 16S rRNA gene was amplified using broad-range bacterial primers, and clone libraries from the individual and subgingival pools were constructed. From a total of 11 368 high-quality, non-chimeric, near full-length sequences, 247 species-level phylotypes (using a 99% sequence identity threshold) and 9 bacteria phyla were identified. At least 15 bacterial genera were conserved among all 10 individuals, with significant interindividual differences at the species and strain level. Comparisons of these oral bacterial sequences to near full-length sequences found previously in the large intestines and feces of other healthy individuals suggest that the mouth and intestinal tract harbor distinct sets of bacteria. Co-occurrence analysis demonstrated significant segregation of taxa when community membership was examined at the level of genus, but not at the level of species, suggesting that ecologically-significant, competitive interactions are more apparent at a broader taxonomic level than species. This study is one of the more comprehensive, high-resolution analyses of bacterial diversity within the healthy human mouth to date, and highlights the value of tools from macroecology for enhancing our understanding of bacterial ecology in human health. PMID:20336157

  15. BAC end sequencing of Pacific white shrimp Litopenaeus vannamei: a glimpse into the genome of Penaeid shrimp

    NASA Astrophysics Data System (ADS)

    Zhao, Cui; Zhang, Xiaojun; Liu, Chengzhang; Huan, Pin; Li, Fuhua; Xiang, Jianhai; Huang, Chao

    2012-05-01

    Little is known about the genome of Pacific white shrimp ( Litopenaeus vannamei). To address this, we conducted BAC (bacterial artificial chromosome) end sequencing of L. vannamei. We selected and sequenced 7 812 BAC clones from the BAC library LvHE from the two ends of the inserts by Sanger sequencing. After trimming and quality filtering, 11 279 BAC end sequences (BESs) including 4 609 pairedends BESs were obtained. The total length of the BESs was 4 340 753 bp, representing 0.18% of the L. vannamei haploid genome. The lengths of the BESs ranged from 100 bp to 660 bp with an average length of 385 bp. Analysis of the BESs indicated that the L. vannamei genome is AT-rich and that the primary repeats patterns were simple sequence repeats (SSRs) and low complexity sequences. Dinucleotide and hexanucleotide repeats were the most common SSR types in the BESs. The most abundant transposable element was gypsy, which may contribute to the generation of the large genome size of L. vannamei. We successfully annotated 4 519 BESs by BLAST searching, including genes involved in immunity and sex determination. Our results provide an important resource for functional gene studies, map construction and integration, and complete genome assembly for this species.

  16. Deciphering the distance to antibiotic resistance for the pneumococcus using genome sequencing data

    PubMed Central

    Mobegi, Fredrick M.; Cremers, Amelieke J. H.; de Jonge, Marien I.; Bentley, Stephen D.; van Hijum, Sacha A. F. T.; Zomer, Aldert

    2017-01-01

    Advances in genome sequencing technologies and genome-wide association studies (GWAS) have provided unprecedented insights into the molecular basis of microbial phenotypes and enabled the identification of the underlying genetic variants in real populations. However, utilization of genome sequencing in clinical phenotyping of bacteria is challenging due to the lack of reliable and accurate approaches. Here, we report a method for predicting microbial resistance patterns using genome sequencing data. We analyzed whole genome sequences of 1,680 Streptococcus pneumoniae isolates from four independent populations using GWAS and identified probable hotspots of genetic variation which correlate with phenotypes of resistance to essential classes of antibiotics. With the premise that accumulation of putative resistance-conferring SNPs, potentially in combination with specific resistance genes, precedes full resistance, we retrogressively surveyed the hotspot loci and quantified the number of SNPs and/or genes, which if accumulated would confer full resistance to an otherwise susceptible strain. We name this approach the ‘distance to resistance’. It can be used to identify the creep towards complete antibiotics resistance in bacteria using genome sequencing. This approach serves as a basis for the development of future sequencing-based methods for predicting resistance profiles of bacterial strains in hospital microbiology and public health settings. PMID:28205635

  17. Composition and stability of bacterial communities associated with granular activated carbon and anthracite filters in a pilot scale municipal drinking water treatment facility.

    PubMed

    Shirey, T B; Thacker, R W; Olson, J B

    2012-06-01

    Granular activated carbon (GAC) is an alternative filter substrate for municipal water treatment as it provides a high surface area suitable for microbial colonization. The resulting microbial growth promotes biodegradation of organic materials and other contaminants from influent waters. Here, the community structure of the bacteria associated with three GAC and two anthracite filters was examined over 12 months to monitor changes in community composition. Nearly complete 16S rRNA genes were polymerase chain reaction amplified for terminal restriction fragment length polymorphism (T-RFLP) analyses. The identity of commonly occurring peaks was determined through the construction of five representative 16S rRNA clone libraries. Based on sequence analysis, the bacterial communities associated with both anthracite and GAC filters appear to be composed of environmentally derived bacteria, with no known human pathogens. Analysis of similarity tests revealed that significant differences in bacterial community structure occurred over time, with filter substrate playing an important role in determining community composition. GAC filters exhibited the greatest degree of bacterial community variability over the sampling period, while anthracite filters showed a lower degree of variability and less change in community composition. Thus, GAC may be a suitable biologically active filter substrate for the treatment of municipal drinking water.

  18. The bacteria and bacteriophages from a Mesquite Flats site of the Death Valley desert.

    PubMed

    Prestel, Eric; Regeard, Christophe; Salamitou, Sylvie; Neveu, Julie; Dubow, Michael S

    2013-06-01

    Arid zones cover over 30 % of the Earth's continental surface. In order to better understand the role of microbes in this type of harsh environment, we isolated and characterized the bacteriophages from samples of the surface sand of the Mesquite Flats region via electron microscopy and DNA sequencing of a select number of cloned phage DNAs. An electron microscopic analysis of the recovered virus-like particles revealed at least 11 apparently different morphotypes sharing structural characteristics of the Caudoviridae family of tailed phages. We found that 36 % of the sequences contained no significant identity (e-value >10(-3)) with sequences in the databases. Pilot sequencing of cloned 16S rRNA genes identified Bacteroidetes and Proteobacteria as the major bacterial groups present in this severe environment. The majority of the 16S rDNA sequences from the total (uncultured) bacterial population displayed ≤96 % identity to 16S rRNA genes in the database, suggesting an unexplored bacterial population likely adapted to a desert environment. In addition, we also isolated and identified 38 cultivable bacterial strains, the majority of which belonged to the genus Bacillus. Mitomycin-C treatment of the cultivable bacteria demonstrated that the vast majority (84 %) contained at least one SOS-inducible prophage.

  19. Complete genome sequence of "Thiodictyon syntrophicum" sp. nov. strain Cad16T, a photolithoautotrophic purple sulfur bacterium isolated from the alpine meromictic Lake Cadagno.

    PubMed

    Luedin, Samuel M; Pothier, Joël F; Danza, Francesco; Storelli, Nicola; Frigaard, Niels-Ulrik; Wittwer, Matthias; Tonolla, Mauro

    2018-01-01

    " Thiodictyon syntrophicum" sp. nov. strain Cad16 T is a photoautotrophic purple sulfur bacterium belonging to the family of Chromatiaceae in the class of Gammaproteobacteria . The type strain Cad16 T was isolated from the chemocline of the alpine meromictic Lake Cadagno in Switzerland. Strain Cad16 T represents a key species within this sulfur-driven bacterial ecosystem with respect to carbon fixation. The 7.74-Mbp genome of strain Cad16 T has been sequenced and annotated. It encodes 6237 predicted protein sequences and 59 RNA sequences. Phylogenetic comparison based on 16S rRNA revealed that Thiodictyon elegans strain DSM 232 T the most closely related species. Genes involved in sulfur oxidation, central carbon metabolism and transmembrane transport were found. Noteworthy, clusters of genes encoding the photosynthetic machinery and pigment biosynthesis are found on the 0.48 Mb plasmid pTs485. We provide a detailed insight into the Cad16 T genome and analyze it in the context of the microbial ecosystem of Lake Cadagno.

  20. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  1. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids

    NASA Astrophysics Data System (ADS)

    Jungbluth, Sean P.; Amend, Jan P.; Rappé, Michael S.

    2017-03-01

    The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation.

  2. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids.

    PubMed

    Jungbluth, Sean P; Amend, Jan P; Rappé, Michael S

    2017-03-28

    The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation.

  3. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids

    PubMed Central

    Jungbluth, Sean P.; Amend, Jan P.; Rappé, Michael S.

    2017-01-01

    The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation. PMID:28350381

  4. Complete genome sequence of Terriglobus saanensis type strain SP1PR4T, an Acidobacteria from tundra soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Suman R.; Mannisto, Minna; Starovoytov, Valentin

    2012-01-01

    Terriglobus saanensis SP1PR4T is a novel species of the genus Terriglobus. T. saanensis is of ecological interest because it is a representative of the phylum Acidobacteria, which are dominant members of bacterial soil microbiota in Arctic ecosystems. T. saanensis is a cold-adapted acidophile and a versatile heterotroph utilizing a suite of simple sugars and complex polysaccharides. The genome contained an abundance of genes assigned to metabolism and transport of carbohydrates including gene modules encoding for carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides. T. saanensis SP1PR4T represents the first member of genusmore » Terriglobus with a completed genome sequence, consisting of a single replicon of 5,095,226 base pairs (bp), 54 RNA genes and 4,279 protein-coding genes. We infer that the physiology and metabolic potential of T. saanensis is adapted to allow for resilience to the nutrient-deficient conditions and fluctuating temperatures of Arctic tundra soils.« less

  5. Complete genome sequence of new bacteriophage phiE142, which causes simultaneously lysis of multidrug-resistant Escherichia coli O157:H7 and Salmonella enterica.

    PubMed

    Amarillas, Luis; Chaidez, Cristobal; González-Robles, Arturo; León-Félix, Josefina

    2016-01-01

    The emergence of antibiotic-resistant foodborne bacteria is a global health problem that requires immediate attention. Bacteriophages are a promising biotechnological alternative approach against bacterial pathogens. However, a detailed analysis of phage genomes is essential to assess the safety of the phages prior to their use as biocontrol agents. Therefore, here we report the complete genome sequence of bacteriophage phiE142, which is able to lyse Salmonella and multidrug-resistant Escherichia coli O157:H7 strains. Bacteriophage phiE142 belongs to the Myoviridae family due to the presence of long non-flexible tail and icosahedral head. The genome is composed of 121,442 bp and contains 194 ORFs, and 2 tRNAs. Furthermore, the phiE142 genome does not contain any genes coding for food-borne allergens, antibiotics resistance, virulence factors, or associated with lysogenic conversion. The bacteriophage phiE142 is characterized by broad host range and compelling genetic attributes making them potential candidates as a biocontrol agent.

  6. Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum.

    PubMed

    Sattley, W Matthew; Blankenship, Robert E

    2010-06-01

    The complete annotated genome sequence of Heliobacterium modesticaldum strain Ice1 provides our first glimpse into the genetic potential of the Heliobacteriaceae, a unique family of anoxygenic phototrophic bacteria. H. modesticaldum str. Ice1 is the first completely sequenced phototrophic representative of the Firmicutes, and heliobacteria are the only phototrophic members of this large bacterial phylum. The H. modesticaldum genome consists of a single 3.1-Mb circular chromosome with no plasmids. Of special interest are genomic features that lend insight to the physiology and ecology of heliobacteria, including the genetic inventory of the photosynthesis gene cluster. Genes involved in transport, photosynthesis, and central intermediary metabolism are described and catalogued. The obligately heterotrophic metabolism of heliobacteria is a key feature of the physiology and evolution of these phototrophs. The conspicuous absence of recognizable genes encoding the enzyme ATP-citrate lyase prevents autotrophic growth via the reverse citric acid cycle in heliobacteria, thus being a distinguishing differential characteristic between heliobacteria and green sulfur bacteria. The identities of electron carriers that enable energy conservation by cyclic light-driven electron transfer remain in question.

  7. Chemotaxis and flagellar genes of Chromobacterium violaceum.

    PubMed

    Pereira, Maristela; Parente, Juliana Alves; Bataus, Luiz Artur Mendes; Cardoso, Divina das Dores de Paula; Soares, Renata Bastos Ascenço; Soares, Célia Maria de Almeida

    2004-03-31

    The availability of the complete genome of the Gram-negative beta-proteobacterium Chromobacterium violaceum has increasingly impacted our understanding of this microorganism. This review focuses on the genomic organization and structural analysis of the deduced proteins of the chemosensory adaptation system of C. violaceum. C. violaceum has multiple homologues of most chemotaxis genes, organized mostly in clusters in the bacterial genome. We found at least 67 genes, distributed in 10 gene clusters, involved in the chemotaxis of C. violaceum. A close examination of the chemoreceptors methyl-accepting chemotaxis proteins (MCPs), and the deduced sequences of the members of the two-component signaling system revealed canonical motifs, described as essential for the function of the deduced proteins. The chemoreceptors found in C. violaceum include the complete repertoire of such genes described in bacteria, designated as tsr, tar, trg, and tap; 41 MCP loci were found in the C. violaceum genome. Also, the C. violaceum genome includes a large repertoire of the proteins of the chemosensory transducer system. Multiple homologues of bacterial chemotaxis genes, including CheA, CheB, CheD, CheR, CheV, CheY, CheZ, and CheW, were found in the C. violaceum genome.

  8. Small Genomes and Sparse Metabolisms of Sediment-Associated Bacteria from Four Candidate Phyla

    PubMed Central

    Kantor, Rose S.; Wrighton, Kelly C.; Handley, Kim M.; Sharon, Itai; Hug, Laura A.; Castelle, Cindy J.; Thomas, Brian C.; Banfield, Jillian F.

    2013-01-01

    ABSTRACT Cultivation-independent surveys of microbial diversity have revealed many bacterial phyla that lack cultured representatives. These lineages, referred to as candidate phyla, have been detected across many environments. Here, we deeply sequenced microbial communities from acetate-stimulated aquifer sediment to recover the complete and essentially complete genomes of single representatives of the candidate phyla SR1, WWE3, TM7, and OD1. All four of these genomes are very small, 0.7 to 1.2 Mbp, and have large inventories of novel proteins. Additionally, all lack identifiable biosynthetic pathways for several key metabolites. The SR1 genome uses the UGA codon to encode glycine, and the same codon is very rare in the OD1 genome, suggesting that the OD1 organism could also transition to alternate coding. Interestingly, the relative abundance of the members of SR1 increased with the appearance of sulfide in groundwater, a pattern mirrored by a member of the phylum Tenericutes. All four genomes encode type IV pili, which may be involved in interorganism interaction. On the basis of these results and other recently published research, metabolic dependence on other organisms may be widely distributed across multiple bacterial candidate phyla. PMID:24149512

  9. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories.

    PubMed

    Woo, P C Y; Lau, S K P; Teng, J L L; Tse, H; Yuen, K-Y

    2008-10-01

    In the last decade, as a result of the widespread use of PCR and DNA sequencing, 16S rDNA sequencing has played a pivotal role in the accurate identification of bacterial isolates and the discovery of novel bacteria in clinical microbiology laboratories. For bacterial identification, 16S rDNA sequencing is particularly important in the case of bacteria with unusual phenotypic profiles, rare bacteria, slow-growing bacteria, uncultivable bacteria and culture-negative infections. Not only has it provided insights into aetiologies of infectious disease, but it also helps clinicians in choosing antibiotics and in determining the duration of treatment and infection control procedures. With the use of 16S rDNA sequencing, 215 novel bacterial species, 29 of which belong to novel genera, have been discovered from human specimens in the past 7 years of the 21st century (2001-2007). One hundred of the 215 novel species, 15 belonging to novel genera, have been found in four or more subjects. The largest number of novel species discovered were of the genera Mycobacterium (n = 12) and Nocardia (n = 6). The oral cavity/dental-related specimens (n = 19) and the gastrointestinal tract (n = 26) were the most important sites for discovery and/or reservoirs of novel species. Among the 100 novel species, Streptococcus sinensis, Laribacter hongkongensis, Clostridium hathewayi and Borrelia spielmanii have been most thoroughly characterized, with the reservoirs and routes of transmission documented, and S. sinensis, L. hongkongensis and C. hathewayi have been found globally. One of the greatest hurdles in putting 16S rDNA sequencing into routine use in clinical microbiology laboratories is automation of the technology. The only step that can be automated at the moment is input of the 16S rDNA sequence of the bacterial isolate for identification into one of the software packages that will generate the result of the identity of the isolate on the basis of its sequence database. However, studies on the accuracy of the software packages have given highly varied results, and interpretation of results remains difficult for most technicians, and even for clinical microbiologists. To fully utilize 16S rDNA sequencing in clinical microbiology, better guidelines are needed for interpretation of the identification results, and additional/supplementary methods are necessary for bacterial species that cannot be identified confidently by 16S rDNA sequencing alone.

  10. Serogroup-level resolution of the “Super-7” Shiga toxin-producing Escherichia coli using nanopore single-molecule DNA sequencing

    USDA-ARS?s Scientific Manuscript database

    DNA sequencing and other DNA-based methods, such as PCR, are now broadly used for detection and identification of bacterial foodborne pathogens. For the identification of foodborne bacterial pathogens, it is important to make taxonomic assignments to the species, or even subspecies level. Long-read ...

  11. Draft Genome Sequence of Chryseobacterium sp. JV274 Isolated from Maize Rhizosphere

    PubMed Central

    Vacheron, Jordan; Dubost, Audrey; Chapulliot, David; Prigent-Combaret, Claire

    2017-01-01

    ABSTRACT We report the draft genome sequence of Chryseobacterium sp. JV274. This strain was isolated from the rhizosphere of maize during a greenhouse experiment. JV274 harbors genes involved in flexirubin production (darA and darB genes), bacterial competition (type VI secretion system), and gliding (bacterial motility; type IX secretion system). PMID:28408666

  12. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  13. Horizon-Specific Bacterial Community Composition of German Grassland Soils, as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes ▿ †

    PubMed Central

    Will, Christiane; Thürmer, Andrea; Wollherr, Antje; Nacke, Heiko; Herold, Nadine; Schrumpf, Marion; Gutknecht, Jessica; Wubet, Tesfaye; Buscot, François; Daniel, Rolf

    2010-01-01

    The diversity of bacteria in soil is enormous, and soil bacterial communities can vary greatly in structure. Here, we employed a pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to characterize the overall and horizon-specific (A and B horizons) bacterial community compositions in nine grassland soils, which covered three different land use types. The entire data set comprised 752,838 sequences, 600,544 of which could be classified below the domain level. The average number of sequences per horizon was 41,824. The dominant taxonomic groups present in all samples and horizons were the Acidobacteria, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes. Despite these overarching dominant taxa, the abundance, diversity, and composition of bacterial communities were horizon specific. In almost all cases, the estimated bacterial diversity (H′) was higher in the A horizons than in the corresponding B horizons. In addition, the H′ was positively correlated with the organic carbon content, the total nitrogen content, and the C-to-N ratio, which decreased with soil depth. It appeared that lower land use intensity results in higher bacterial diversity. The majority of sequences affiliated with the Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Spirochaetes, Verrucomicrobia, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were derived from A horizons, whereas the majority of the sequences related to Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospira, TM7, and WS3 originated from B horizons. The distribution of some bacterial phylogenetic groups and subgroups in the different horizons correlated with soil properties such as organic carbon content, total nitrogen content, or microbial biomass. PMID:20729324

  14. The metabolic pathway of metamifop degradation by consortium ME-1 and its bacterial community structure.

    PubMed

    Dong, Weiliang; Liu, Kuan; Wang, Fei; Xin, Fengxue; Zhang, Wenming; Zhang, Min; Wu, Hao; Ma, Jiangfeng; Jiang, Min

    2017-06-01

    Metamifop is universally used in agriculture as a post-emergence aryloxyphenoxy propionate herbicide (AOPP), however its microbial degradation mechanism remains unclear. Consortium ME-1 isolated from AOPP-contaminated soil can degrade metamifop completely after 6 days and utilize it as the carbon source for bacterial growth. Meanwhile, consortium ME-1 possessed the ability to degrade metamifop stably under a wide range of pH (6.0-10.0) or temperature (20-42 °C). HPLC-MS analysis shows that N-(2-fluorophenyl)-2-(4-hydroxyphenoxy)-N-methyl propionamide, 2-(4-hydroxyphenoxy)-propionic acid, 6-chloro-2-benzoxazolinone and N-methyl-2-fluoroaniline, were detected and identified as four intermediate metabolites. Based on the metabolites identified, a putative metabolic pathway of metamifop was proposed for the first time. In addition, the consortium ME-1 was also able to transform or degrade other AOPP such as fenoxaprop-p-ethyl, clodinafop-propargyl, quizalofop-p-ethyl and cyhalofop-butyl. Moreover, the community structure of ME-1 with lower microbial diversity compared with the initial soil sample was investigated by high throughput sequencing. β-Proteobacteria and Sphingobacteria were the largest class with sequence percentages of 46.6% and 27.55% at the class level. In addition, 50 genera were classified in consortium ME-1, of which Methylobacillus, Sphingobacterium, Bordetella and Flavobacterium were the dominant genera with sequence percentages of 25.79, 25.61, 14.68 and 9.55%, respectively.

  15. The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species.

    PubMed

    Asaf, Sajjad; Waqas, Muhammad; Khan, Abdul L; Khan, Muhammad A; Kang, Sang-Mo; Imran, Qari M; Shahzad, Raheem; Bilal, Saqib; Yun, Byung-Wook; Lee, In-Jung

    2017-01-01

    Oryza minuta , a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysis of the composition and diversity of the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with a typical quadripartite structure and consisting of a pair of inverted repeats separated by small and large single copies, 139 representative genes, and 419 randomly distributed microsatellites. The genomic organization, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem and 20 palindromic repeats were detected in the O . minuta cp genome. Comparison of the complete O. minuta cp genome with another eleven Oryza species showed a high degree of sequence similarity and relatively high divergence of intergenic spacers. Phylogenetic analyses were conducted based on the complete genome sequence, 65 shared genes and matK gene showed same topologies and O. minuta forms a single clade with parental O. punctata . Thus, the complete O . minuta cp genome provides interesting insights and valuable information that can be used to identify related species and reconstruct its phylogeny.

  16. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells.

    PubMed

    Yajima, Misako; Ikuta, Kazufumi; Kanda, Teru

    2018-04-03

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  17. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells

    PubMed Central

    Ikuta, Kazufumi; Kanda, Teru

    2018-01-01

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically. PMID:29614006

  18. Isolation, characterization, and primary structure of rubredoxin from the photosynthetic bacterium, Heliobacillus mobilis

    NASA Technical Reports Server (NTRS)

    Lee, W. Y.; Brune, D. C.; LoBrutto, R.; Blankenship, R. E.

    1995-01-01

    Rubredoxin is a small nonheme iron protein that serves as an electron carrier in bacterial systems. Rubredoxin has now been isolated and characterized from the strictly anaerobic phototroph, Heliobacillus mobilis. THe molecular mass (5671.3 Da from the amino acid sequence) was confirmed and partial formylation of the N-terminal methionyl residue was established by matrix-assisted laser desorption mass spectroscopy. The complete 52-amino-acid sequence was determined by a combination of N-terminal sequencing by Edman degradation and C-terminal sequencing by a novel method using carboxypeptidase treatment in conjunction with amino acid analysis and laser desorption time of flight mass spectrometry. The molar absorption coefficient of Hc. mobilis rubredoxin at 490 nm is 6.9 mM-1 cm-1 and the midpoint redox potential at pH 8.0 is -46 mV. The EPR spectrum of the oxidized form shows resonances at g = 9.66 and 4.30 due to a high-spin ferric iron. The amino acid sequence is homologous to those of rubredoxins from other species, in particular, the gram-positive bacteria, and the phototrophic green sulfur bacteria, and the evolutionary implications of this are discussed.

  19. The genome of the Lactobacillus sanfranciscensis temperate phage EV3

    PubMed Central

    2013-01-01

    Background Bacteriophages infection modulates microbial consortia and transduction is one of the most important mechanism involved in the bacterial evolution. However, phage contamination brings food fermentations to a halt causing economic setbacks. The number of phage genome sequences of lactic acid bacteria especially of lactobacilli is still limited. We analysed the genome of a temperate phage active on Lactobacillus sanfranciscensis, the predominant strain in type I sourdough fermentations. Results Sequencing of the DNA of EV3 phage revealed a genome of 34,834 bp and a G + C content of 36.45%. Of the 43 open reading frames (ORFs) identified, all but eight shared homology with other phages of lactobacilli. A similar genomic organization and mosaic pattern of identities align EV3 with the closely related Lactobacillus vaginalis ATCC 49540 prophage. Four unknown ORFs that had no homologies in the databases or predicted functions were identified. Notably, EV3 encodes a putative dextranase. Conclusions EV3 is the first L. sanfranciscensis phage that has been completely sequenced so far. PMID:24308641

  20. Investigation of the Evolutionary Development of the Genus Bifidobacterium by Comparative Genomics

    PubMed Central

    Lugli, Gabriele Andrea; Milani, Christian; Turroni, Francesca; Duranti, Sabrina; Ferrario, Chiara; Viappiani, Alice; Mancabelli, Leonardo; Mangifesta, Marta; Taminiau, Bernard; Delcenserie, Véronique; van Sinderen, Douwe

    2014-01-01

    The Bifidobacterium genus currently encompasses 48 recognized taxa, which have been isolated from different ecosystems. However, the current phylogeny of bifidobacteria is hampered by the relative paucity of genotypic data. Here, we reassessed the taxonomy of this bacterial genus using genome-based approaches, which demonstrated that the previous taxonomic view of bifidobacteria contained several inconsistencies. In particular, high levels of genetic relatedness were shown to exist between particular Bifidobacterium taxa which would not justify their status as separate species. The results presented are here based on average nucleotide identity analysis involving the genome sequences for each type strain of the 48 bifidobacterial taxa, as well as phylogenetic comparative analysis of the predicted core genome of the Bifidobacterium genus. The results of this study demonstrate that the availability of complete genome sequences allows the reconstruction of a more robust bifidobacterial phylogeny than that obtained from a single gene-based sequence comparison, thus discouraging the assignment of a new or separate bifidobacterial taxon without such a genome-based validation. PMID:25107967

  1. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification.

    PubMed

    Borozan, Ivan; Watt, Stuart; Ferretti, Vincent

    2015-05-01

    Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. ivan.borozan@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  2. Integrating alignment-based and alignment-free sequence similarity measures for biological sequence classification

    PubMed Central

    Borozan, Ivan; Watt, Stuart; Ferretti, Vincent

    2015-01-01

    Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913

  3. The tmRNA website

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, Corey M.; Williams, Kelly P.

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less

  4. PCR detection of uncultured rumen bacteria.

    PubMed

    Rosero, Jaime A; Strosová, Lenka; Mrázek, Jakub; Fliegerová, Kateřina; Kopečný, Jan

    2012-07-01

    16S rRNA sequences of ruminal uncultured bacterial clones from public databases were phylogenetically examined. The sequences were found to form two unique clusters not affiliated with any known bacterial species: cluster of unidentified sequences of free floating rumen fluid uncultured bacteria (FUB) and cluster of unidentified sequences of bacteria associated with rumen epithelium (AUB). A set of PCR primers targeting 16S rRNA of ruminal free uncultured bacteria and rumen epithelium adhering uncultured bacteria was designed based on these sequences. FUB primers were used for relative quantification of uncultured bacteria in ovine rumen samples. The effort to increase the population size of FUB group has been successful in sulfate reducing broth and culture media supplied with cellulose.

  5. The tmRNA website

    DOE PAGES

    Hudson, Corey M.; Williams, Kelly P.

    2014-11-05

    We report that the transfer-messenger RNA (tmRNA) and its partner protein SmpB act together in resolving problems arising when translating bacterial ribosomes reach the end of mRNA with no stop codon. Their genes have been found in nearly all bacterial genomes and in some organelles. The tmRNA Website serves tmRNA sequences, alignments and feature annotations, and has recently moved to http: //bioinformatics.sandia.gov/tmrna/. New features include software used to find the sequences, an update raising the number of unique tmRNA sequences from 492 to 1716, and a database of SmpB sequences which are served along with the tmRNA sequence from themore » same organism.« less

  6. Statistical analysis of the Bacterial Carbohydrate Structure Data Base (BCSDB): Characteristics and diversity of bacterial carbohydrates in comparison with mammalian glycans

    PubMed Central

    Herget, Stephan; Toukach, Philip V; Ranzinger, René; Hull, William E; Knirel, Yuriy A; von der Lieth, Claus-Wilhelm

    2008-01-01

    Background There are considerable differences between bacterial and mammalian glycans. In contrast to most eukaryotic carbohydrates, bacterial glycans are often composed of repeating units with diverse functions ranging from structural reinforcement to adhesion, colonization and camouflage. Since bacterial glycans are typically displayed at the cell surface, they can interact with the environment and, therefore, have significant biomedical importance. Results The sequence characteristics of glycans (monosaccharide composition, modifications, and linkage patterns) for the higher bacterial taxonomic classes have been examined and compared with the data for mammals, with both similarities and unique features becoming evident. Compared to mammalian glycans, the bacterial glycans deposited in the current databases have a more than ten-fold greater diversity at the monosaccharide level, and the disaccharide pattern space is approximately nine times larger. Specific bacterial subclasses exhibit characteristic glycans which can be distinguished on the basis of distinctive structural features or sequence properties. Conclusion For the first time a systematic database analysis of the bacterial glycome has been performed. This study summarizes the current knowledge of bacterial glycan architecture and diversity and reveals putative targets for the rational design and development of therapeutic intervention strategies by comparing bacterial and mammalian glycans. PMID:18694500

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liolios, Konstantinos; Abt, Birte; Scheuner, Carmen

    Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacte- rium that is motile via periplasmic flagella. The type strain of the species, Z-7692T, was iso- lated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Considering the pending reclassification of S. caldaria to the genus Treponema, S. africana is only the second 'true' member of the genus Spirochaeta with a genome-sequenced type strainmore » to be pub- lished. The 3,285,855 bp long genome of strain Z-7692T with its 2,817 protein-coding and 57 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less

  8. Towards Spectral Library-free MALDI-TOF MS Bacterial Identification.

    PubMed

    Cheng, Ding; Qiao, Liang; Horvatovich, Péter

    2018-05-11

    Bacterial identification is of great importance in clinical diagnosis, environmental monitoring and food safety control. Among various strategies, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has drawn significant interests, and has been clinically used. Nevertheless, current bioinformatics solutions use spectral libraries for the identification of bacterial strains. Spectral library generation requires acquisition of MALDI-TOF spectra from monoculture bacterial colonies, which is time-consuming and not possible for many species and strains. We propose a strategy for bacterial typing by MALDI-TOF using protein sequences from public database, i.e. UniProt. Ten genes were identified to encode proteins most often observed by MALD-TOF from bacteria through 500 times repeated a 10-fold double cross-validation procedure, using 403 MALDI-TOF spectra corresponding to 14 genera, 81 species and 403 strains, and the protein sequences of 1276 species in UniProt. The 10 genes were then used to annotate peaks on MALDI-TOF spectra of bacteria for bacterial identification. With the approach, bacteria can be identified at the genus level by searching against a database containing the protein sequences of 42 genera of bacteria from UniProt. Our approach identified 84.1% of the 403 spectra correctly at the genus level. Source code of the algorithm is available at https://github.com/dipcarbon/BacteriaMSLF.

  9. Analysis of the distal gut bacterial community by 454-pyrosequencing in captive giraffes (Giraffa camelopardalis).

    PubMed

    AlZahal, Ousama; Valdes, Eduardo V; McBride, Brian W

    2016-01-01

    The objective of this study was to characterize the structure of the fecal bacterial community of five giraffes (Giraffa camelopardalis) at Disney's Animal Kingdom, FL. Fecal genomic DNA was extracted and variable regions 1-3 of the 16S rRNA gene was PCR-amplified and then sequenced. The MOTHUR software-program was used for sequence processing, diversity analysis, and classification. A total of 181,689 non-chimeric bacterial sequences were obtained, and average number of sequences per sample was 36,338 -± 8,818. Sequences were assigned to 8,284 operational taxonomic units (OTU) with 95% of genetic similarity, which included 2,942 singletons (36%). Number of OTUs per sample was 2,554 ± 264. Samples were normalized and alpha (intra-sample) diversity indices; Chao1, Inverse Simpson, Shannon, and coverage were estimated as 3,712 ± 430, 116 -± 70, 6.1 ± 0.4, and 96 ± 1%, respectively. Thirteen phyla were detected and Firmicutes, Bacteroidetes, and Spirochaetes were the most dominant phyla (more than 2% of total sequences), and constituted 92% of the classified sequences, 66% of total sequences, and 43% of total OTUs. Our computation predicted that three OTUs were likely to be present in at least three of the five samples at greater than 1% dominance rate. These OTUs were Treponema, an unidentified OTU belonging to the order Bacteroidales, and Ruminococcus. This report was the first to characterize the bacterial community of the distal gut in giraffes utilizing fecal samples, and it demonstrated that the distal gut of giraffes is likely a potential reservoir for a number of undocumented species of bacteria. © 2015 Wiley Periodicals, Inc.

  10. Terahertz spectroscopy for the isothermal detection of bacterial DNA by magnetic bead-based rolling circle amplification.

    PubMed

    Yang, Xiang; Yang, Ke; Zhao, Xiang; Lin, Zhongquan; Liu, Zhiyong; Luo, Sha; Zhang, Yang; Wang, Yunxia; Fu, Weiling

    2017-12-04

    The demand for rapid and sensitive bacterial detection is continuously increasing due to the significant requirements of various applications. In this study, a terahertz (THz) biosensor based on rolling circle amplification (RCA) was developed for the isothermal detection of bacterial DNA. The synthetic bacterium-specific sequence of 16S rDNA hybridized with a padlock probe (PLP) that contains a sequence fully complementary to the target sequence at the 5' and 3' ends. The linear PLP was circularized by ligation to form a circular PLP upon recognition of the target sequence; then the capture probe (CP) immobilized on magnetic beads (MBs) acted as a primer to initialize RCA. As DNA molecules are much less absorptive than water molecules in the THz range, the RCA products on the surface of the MBs cause a significant decrease in THz absorption, which can be sensitively probed by THz spectroscopy. Our results showed that 0.12 fmol of synthetic bacterial DNA and 0.05 ng μL -1 of genomic DNA could be effectively detected using this assay. In addition, the specificity of this strategy was demonstrated by its low signal response to interfering bacteria. The proposed strategy not only represents a new method for the isothermal detection of the target bacterial DNA but also provides a general methodology for sensitive and specific DNA biosensing using THz spectroscopy.

  11. Molecular and Ecological Evidence for Species Specificity and Coevolution in a Group of Marine Algal-Bacterial Symbioses

    PubMed Central

    Ashen, Jon B.; Goff, Lynda J.

    2000-01-01

    The phylogenetic relationships of bacterial symbionts from three gall-bearing species in the marine red algal genus Prionitis (Rhodophyta) were inferred from 16S rDNA sequence analysis and compared to host phylogeny also inferred from sequence comparisons (nuclear ribosomal internal-transcribed-spacer region). Gall formation has been described previously on two species of Prionitis, P. lanceolata (from central California) and P. decipiens (from Peru). This investigation reports gall formation on a third related host, Prionitis filiformis. Phylogenetic analyses based on sequence comparisons place the bacteria as a single lineage within the Roseobacter grouping of the α subclass of the division Proteobacteria (99.4 to 98.25% sequence identity among phylotypes). Comparison of symbiont and host molecular phylogenies confirms the presence of three gall-bearing algal lineages and is consistent with the hypothesis that these red seaweeds and their bacterial symbionts are coevolving. The species specificity of these associations was investigated in nature by whole-cell hybridization of gall bacteria and in the laboratory by using cross-inoculation trials. Whole-cell in situ hybridization confirmed that a single bacterial symbiont phylotype is present in galls on each host. In laboratory trials, bacterial symbionts were incapable of inducing galls on alternate hosts (including two non-gall-bearing species). Symbiont-host specificity in Prionitis gall formation indicates an effective ecological separation between these closely related symbiont phylotypes and provides an example of a biological context in which to consider the organismic significance of 16S rDNA sequence variation. PMID:10877801

  12. Bacterial discrimination by means of a universal array approach mediated by LDR (ligase detection reaction)

    PubMed Central

    Busti, Elena; Bordoni, Roberta; Castiglioni, Bianca; Monciardini, Paolo; Sosio, Margherita; Donadio, Stefano; Consolandi, Clarissa; Rossi Bernardi, Luigi; Battaglia, Cristina; De Bellis, Gianluca

    2002-01-01

    Background PCR amplification of bacterial 16S rRNA genes provides the most comprehensive and flexible means of sampling bacterial communities. Sequence analysis of these cloned fragments can provide a qualitative and quantitative insight of the microbial population under scrutiny although this approach is not suited to large-scale screenings. Other methods, such as denaturing gradient gel electrophoresis, heteroduplex or terminal restriction fragment analysis are rapid and therefore amenable to field-scale experiments. A very recent addition to these analytical tools is represented by microarray technology. Results Here we present our results using a Universal DNA Microarray approach as an analytical tool for bacterial discrimination. The proposed procedure is based on the properties of the DNA ligation reaction and requires the design of two probes specific for each target sequence. One oligo carries a fluorescent label and the other a unique sequence (cZipCode or complementary ZipCode) which identifies a ligation product. Ligated fragments, obtained in presence of a proper template (a PCR amplified fragment of the 16s rRNA gene) contain either the fluorescent label or the unique sequence and therefore are addressed to the location on the microarray where the ZipCode sequence has been spotted. Such an array is therefore "Universal" being unrelated to a specific molecular analysis. Here we present the design of probes specific for some groups of bacteria and their application to bacterial diagnostics. Conclusions The combined use of selective probes, ligation reaction and the Universal Array approach yielded an analytical procedure with a good power of discrimination among bacteria. PMID:12243651

  13. DNA microarray-based genome comparison of a pathogenic and a nonpathogenic strain of Xylella fastidiosa delineates genes important for bacterial virulence.

    PubMed

    Koide, Tie; Zaini, Paulo A; Moreira, Leandro M; Vêncio, Ricardo Z N; Matsukuma, Adriana Y; Durham, Alan M; Teixeira, Diva C; El-Dorry, Hamza; Monteiro, Patrícia B; da Silva, Ana Claudia R; Verjovski-Almeida, Sergio; da Silva, Aline M; Gomes, Suely L

    2004-08-01

    Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.

  14. DNA Microarray-Based Genome Comparison of a Pathogenic and a Nonpathogenic Strain of Xylella fastidiosa Delineates Genes Important for Bacterial Virulence†

    PubMed Central

    Koide, Tie; Zaini, Paulo A.; Moreira, Leandro M.; Vêncio, Ricardo Z. N.; Matsukuma, Adriana Y.; Durham, Alan M.; Teixeira, Diva C.; El-Dorry, Hamza; Monteiro, Patrícia B.; da Silva, Ana Claudia R.; Verjovski-Almeida, Sergio; da Silva, Aline M.; Gomes, Suely L.

    2004-01-01

    Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease. PMID:15292146

  15. Traffic at the tmRNA Gene

    PubMed Central

    Williams, Kelly P.

    2003-01-01

    A partial screen for genetic elements integrated into completely sequenced bacterial genomes shows more significant bias in specificity for the tmRNA gene (ssrA) than for any type of tRNA gene. Horizontal gene transfer, a major avenue of bacterial evolution, was assessed by focusing on elements using this single attachment locus. Diverse elements use ssrA; among enterobacteria alone, at least four different integrase subfamilies have independently evolved specificity for ssrA, and almost every strain analyzed presents a unique set of integrated elements. Even elements using essentially the same integrase can be very diverse, as is a group with an ssrA-specific integrase of the P4 subfamily. This same integrase appears to promote damage routinely at attachment sites, which may be adaptive. Elements in arrays can recombine; one such event mediated by invertible DNA segments within neighboring elements likely explains the monophasic nature of Salmonella enterica serovar Typhi. One of a limited set of conserved sequences occurs at the attachment site of each enterobacterial element, apparently serving as a transcriptional terminator for ssrA. Elements were usually found integrated into tRNA-like sequence at the 3′ end of ssrA, at subsites corresponding to those used in tRNA genes; an exception was found at the non-tRNA-like 3′ end produced by ssrA gene permutation in cyanobacteria, suggesting that, during the evolution of new site specificity by integrases, tropism toward a conserved 3′ end of an RNA gene may be as strong as toward a tRNA-like sequence. The proximity of ssrA and smpB, which act in concert, was also surveyed. PMID:12533482

  16. Canopy soil bacterial communities altered by severing host tree limbs

    PubMed Central

    Dangerfield, Cody R.; Nadkarni, Nalini M.

    2017-01-01

    Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities. PMID:28894646

  17. Canopy soil bacterial communities altered by severing host tree limbs.

    PubMed

    Dangerfield, Cody R; Nadkarni, Nalini M; Brazelton, William J

    2017-01-01

    Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  18. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh, Saudi Arabia.

    PubMed

    AlWakeel, Suaad S

    2017-09-01

    This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis , alpha-hemolytic streptococci, Staphylococcus hominis , coagulase-negative staphylococci, Leuconostoc mesenteroides , Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (<60% sensitivity) to the antibiotics ampicillin, erythromycin, clarithromycin and norfloxacin were observed. Ninety-seven percent similarity to the microbial bank species was noted when the isolates were compared to it. Most hematological indices recorded were within the normal range. In conclusion, exposure to toxic fumes and compounds within fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penn, Kevin; Jenkins, Caroline; Nett, Markus

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we reportmore » the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification« less

  20. Selective recognition of N4-methylcytosine in DNA by engineered transcription-activator-like effectors.

    PubMed

    Rathi, Preeti; Maurer, Sara; Summerer, Daniel

    2018-06-05

    The epigenetic DNA nucleobases 5-methylcytosine (5mC) and N 4-methylcytosine (4mC) coexist in bacterial genomes and have important functions in host defence and transcription regulation. To better understand the individual biological roles of both methylated nucleobases, analytical strategies for distinguishing unmodified cytosine (C) from 4mC and 5mC are required. Transcription-activator-like effectors (TALEs) are programmable DNA-binding repeat proteins, which can be re-engineered for the direct detection of epigenetic nucleobases in user-defined DNA sequences. We here report the natural, cytosine-binding TALE repeat to not strongly differentiate between 5mC and 4mC. To engineer repeats with selectivity in the context of C, 5mC and 4mC, we developed a homogeneous fluorescence assay and screened a library of size-reduced TALE repeats for binding to all three nucleobases. This provided insights into the requirements of size-reduced TALE repeats for 4mC binding and revealed a single mutant repeat as a selective binder of 4mC. Employment of a TALE with this repeat in affinity enrichment enabled the isolation of a user-defined DNA sequence containing a single 4mC but not C or 5mC from the background of a bacterial genome. Comparative enrichments with TALEs bearing this or the natural C-binding repeat provides an approach for the complete, programmable decoding of all cytosine nucleobases found in bacterial genomes.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'. © 2018 The Author(s).

  1. Metagenomic Evaluation of Bacterial and Archaeal Diversity in the Geothermal Hot Springs of Manikaran, India

    PubMed Central

    Pathak, Ashish; Green, Stefan J.; Joshi, Amit; Chauhan, Ashvini

    2015-01-01

    Bacterial and archaeal diversity in geothermal spring water were investigated using 16S rRNA gene amplicon metagenomic sequencing. This revealed the dominance of Firmicutes, Aquificae, and the Deinococcus-Thermus group in this thermophilic environment. A number of sequences remained taxonomically unresolved, indicating the presence of potentially novel microbes in this unique habitat. PMID:25700403

  2. A pipeline of programs for collecting and analyzing group II intron retroelement sequences from GenBank

    PubMed Central

    2013-01-01

    Background Accurate and complete identification of mobile elements is a challenging task in the current era of sequencing, given their large numbers and frequent truncations. Group II intron retroelements, which consist of a ribozyme and an intron-encoded protein (IEP), are usually identified in bacterial genomes through their IEP; however, the RNA component that defines the intron boundaries is often difficult to identify because of a lack of strong sequence conservation corresponding to the RNA structure. Compounding the problem of boundary definition is the fact that a majority of group II intron copies in bacteria are truncated. Results Here we present a pipeline of 11 programs that collect and analyze group II intron sequences from GenBank. The pipeline begins with a BLAST search of GenBank using a set of representative group II IEPs as queries. Subsequent steps download the corresponding genomic sequences and flanks, filter out non-group II introns, assign introns to phylogenetic subclasses, filter out incomplete and/or non-functional introns, and assign IEP sequences and RNA boundaries to the full-length introns. In the final step, the redundancy in the data set is reduced by grouping introns into sets of ≥95% identity, with one example sequence chosen to be the representative. Conclusions These programs should be useful for comprehensive identification of group II introns in sequence databases as data continue to rapidly accumulate. PMID:24359548

  3. Bacterial Population in Intestines of the Black Tiger Shrimp (Penaeus monodon) under Different Growth Stages

    PubMed Central

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities. PMID:23577162

  4. Bacterial population in intestines of the black tiger shrimp (Penaeus monodon) under different growth stages.

    PubMed

    Rungrassamee, Wanilada; Klanchui, Amornpan; Chaiyapechara, Sage; Maibunkaew, Sawarot; Tangphatsornruang, Sithichoke; Jiravanichpaisal, Pikul; Karoonuthaisiri, Nitsara

    2013-01-01

    Intestinal bacterial communities in aquaculture have been drawn to attention due to potential benefit to their hosts. To identify core intestinal bacteria in the black tiger shrimp (Penaeus monodon), bacterial populations of disease-free shrimp were characterized from intestines of four developmental stages (15-day-old post larvae (PL15), 1- (J1), 2- (J2), and 3-month-old (J3) juveniles) using pyrosequencing, real-time PCR and denaturing gradient gel electrophoresis (DGGE) approaches. A total of 25,121 pyrosequencing reads (reading length = 442±24 bases) were obtained, which were categorized by barcode for PL15 (7,045 sequences), J1 (3,055 sequences), J2 (13,130 sequences) and J3 (1,890 sequences). Bacteria in the phyla Bacteroides, Firmicutes and Proteobacteria were found in intestines at all four growth stages. There were 88, 14, 27, and 20 bacterial genera associated with the intestinal tract of PL15, J1, J2 and J3, respectively. Pyrosequencing analysis revealed that Proteobacteria (class Gammaproteobacteria) was a dominant bacteria group with a relative abundance of 89% for PL15 and 99% for J1, J2 and J3. Real-time PCR assay also confirmed that Gammaproteobacteria had the highest relative abundance in intestines from all growth stages. Intestinal bacterial communities from the three juvenile stages were more similar to each other than that of the PL shrimp based on PCA analyses of pyrosequencing results and their DGGE profiles. This study provides descriptive bacterial communities associated to the black tiger shrimp intestines during these growth development stages in rearing facilities.

  5. Using Amplicon Sequencing To Characterize and Monitor Bacterial Diversity in Drinking Water Distribution Systems

    PubMed Central

    Shaw, Jennifer L. A.; Weyrich, Laura S.; Sawade, Emma; Drikas, Mary; Cooper, Alan J.

    2015-01-01

    Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs. PMID:26162884

  6. A 5′ Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo

    PubMed Central

    Lu, Jiamiao; Williams, James A.; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A.

    2017-01-01

    We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5′ UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo. PMID:27903072

  7. Bacteria of an anaerobic 1,2-dichloropropane-dechlorinating mixed culture are phylogenetically related to those of other anaerobic dechlorinating consortia.

    PubMed

    Schlötelburg, C; von Wintzingerode, F; Hauck, R; Hegemann, W; Göbel, U B

    2000-07-01

    A 16S-rDNA-based molecular study was performed to determine the bacterial diversity of an anaerobic, 1,2-dichloropropane-dechlorinating bioreactor consortium derived from sediment of the River Saale, Germany. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified using conserved primers. A clone library was constructed and analysed by sequencing the 16S rDNA inserts of randomly chosen clones followed by dot blot hybridization with labelled polynucleotide probes. The phylogenetic analysis revealed significant sequence similarities of several as yet uncultured bacterial species in the bioreactor to those found in other reductively dechlorinating freshwater consortia. In contrast, no close relationship was obtained with as yet uncultured bacteria found in reductively dechlorinating consortia derived from marine habitats. One rDNA clone showed >97% sequence similarity to Dehalobacter species, known for reductive dechlorination of tri- and tetrachloroethene. These results suggest that reductive dechlorination in microbial freshwater habitats depends upon a specific bacterial community structure.

  8. Environmental factors influencing gene transfer agent (GTA) mediated transduction in the subtropical ocean.

    PubMed

    McDaniel, Lauren D; Young, Elizabeth C; Ritchie, Kimberly B; Paul, John H

    2012-01-01

    Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT). However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs) of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain) were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's) in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10-30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI) and ambient bacterial abundance. These results indicate that GTA-mediated HGT in the marine environment with the strains examined is favored during times of elevated bacterial and GTA abundance as well as in areas of higher salinity.

  9. Environmental Factors Influencing Gene Transfer Agent (GTA) Mediated Transduction in the Subtropical Ocean

    PubMed Central

    McDaniel, Lauren D.; Young, Elizabeth C.; Ritchie, Kimberly B.; Paul, John H.

    2012-01-01

    Microbial genomic sequence analyses have indicated widespread horizontal gene transfer (HGT). However, an adequate mechanism accounting for the ubiquity of HGT has been lacking. Recently, high frequencies of interspecific gene transfer have been documented, catalyzed by Gene Transfer Agents (GTAs) of marine α-Proteobacteria. It has been proposed that the presence of bacterial genes in highly purified viral metagenomes may be due to GTAs. However, factors influencing GTA-mediated gene transfer in the environment have not yet been determined. Several genomically sequenced strains containing complete GTA sequences similar to Rhodobacter capsulatus (RcGTA, type strain) were screened to ascertain if they produced putative GTAs, and at what abundance. Five of nine marine strains screened to date spontaneously produced virus-like particles (VLP's) in stationary phase. Three of these strains have demonstrated gene transfer activity, two of which were documented by this lab. These two strains Roseovarius nubinhibens ISM and Nitratireductor 44B9s, were utilized to produce GTAs designated RnGTA and NrGTA and gene transfer activity was verified in culture. Cell-free preparations of purified RnGTA and NrGTA particles from marked donor strains were incubated with natural microbial assemblages to determine the level of GTA-mediated gene transfer. In conjunction, several ambient environmental parameters were measured including lysogeny indicated by prophage induction. GTA production in culture systems indicated that approximately half of the strains produced GTA-like particles and maximal GTA counts ranged from 10–30% of host abundance. Modeling of GTA-mediated gene transfer frequencies in natural samples, along with other measured environmental variables, indicated a strong relationship between GTA mediated gene transfer and the combined factors of salinity, multiplicity of infection (MOI) and ambient bacterial abundance. These results indicate that GTA-mediated HGT in the marine environment with the strains examined is favored during times of elevated bacterial and GTA abundance as well as in areas of higher salinity. PMID:22905268

  10. Bacterial and diazotrophic diversities of endophytes in Dendrobium catenatum determined through barcoded pyrosequencing

    PubMed Central

    Li, Ou; Sun, Lihua; Guan, Chenglin; Kong, Dedong

    2017-01-01

    As an epiphyte orchid, Dendrobium catenatum relies on microorganisms for requisite nutrients. Metagenome pyrosequencing based on 16S rRNA and nifH genes was used to characterize the bacterial and diazotrophic communities associated with D. catenatum collected from 5 districts in China. Based on Meta-16S rRNA sequencing, 22 bacterial phyla and 699 genera were identified, distributed as 125 genera from 8 phyla and 319 genera from 10 phyla shared by all the planting bases and all the tissues, respectively. The predominant Proteobacteria varied from 71.81% (GZ) to 96.08% (YN), and Delftia (10.39–38.42%), Burkholderia (2.71–15.98%), Escherichia/Shigella (4.90–25.12%), Pseudomonas (2.68–30.72%) and Sphingomonas (1.83–2.05%) dominated in four planting bases. Pseudomonas (17.94–22.06%), Escherichia/Shigella (6.59–11.59%), Delftia (9.65–22.14%) and Burkholderia (3.12–11.05%) dominated in all the tissues. According to Meta-nifH sequencing, 4 phyla and 45 genera were identified, while 17 genera and 24 genera from 4 phyla were shared by all the planting bases and all the tissues, respectively. Burkholderia and Bradyrhizobium were the most popular in the planting bases, followed by Methylovirgula and Mesorhizobium. Mesorhizobium was the most popular in different tissues, followed by Beijerinckia, Xanthobacter, and Burkholderia. Among the genera, 39 were completely overlapped with the results based on the 16S rRNA gene. In conclusion, abundant bacteria and diazotrophs were identified in common in different tissues of D. catenatum from five planting bases, which might play a great role in the supply of nutrients such as nitrogen. The exact abundance of phylum and genus on the different tissues from different planting bases need deeper sequencing with more samples. PMID:28931073

  11. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics

    PubMed Central

    Antunes, Luciana Principal; Martins, Layla Farage; Pereira, Roberta Verciano; Thomas, Andrew Maltez; Barbosa, Deibs; Lemos, Leandro Nascimento; Silva, Gianluca Major Machado; Moura, Livia Maria Silva; Epamino, George Willian Condomitti; Digiampietri, Luciano Antonio; Lombardi, Karen Cristina; Ramos, Patricia Locosque; Quaggio, Ronaldo Bento; de Oliveira, Julio Cezar Franco; Pascon, Renata Castiglioni; Cruz, João Batista da; da Silva, Aline Maria; Setubal, João Carlos

    2016-01-01

    Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology. PMID:27941956

  12. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics.

    PubMed

    Antunes, Luciana Principal; Martins, Layla Farage; Pereira, Roberta Verciano; Thomas, Andrew Maltez; Barbosa, Deibs; Lemos, Leandro Nascimento; Silva, Gianluca Major Machado; Moura, Livia Maria Silva; Epamino, George Willian Condomitti; Digiampietri, Luciano Antonio; Lombardi, Karen Cristina; Ramos, Patricia Locosque; Quaggio, Ronaldo Bento; de Oliveira, Julio Cezar Franco; Pascon, Renata Castiglioni; Cruz, João Batista da; da Silva, Aline Maria; Setubal, João Carlos

    2016-12-12

    Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.

  13. Bacterial microbiome of the nose of healthy dogs and dogs with nasal disease

    PubMed Central

    Dorn, Elisabeth S.; Suchodolski, Jan S.; Nisar, Tariq; Ravindran, Prajesh; Weber, Karin; Hartmann, Katrin; Schulz, Bianka S.

    2017-01-01

    The role of bacterial communities in canine nasal disease has not been studied so far using next generation sequencing methods. Sequencing of bacterial 16S rRNA genes has revealed that the canine upper respiratory tract harbors a diverse microbial community; however, changes in the composition of nasal bacterial communities in dogs with nasal disease have not been described so far. Aim of the study was to characterize the nasal microbiome of healthy dogs and compare it to that of dogs with histologically confirmed nasal neoplasia and chronic rhinitis. Nasal swabs were collected from healthy dogs (n = 23), dogs with malignant nasal neoplasia (n = 16), and dogs with chronic rhinitis (n = 8). Bacterial DNA was extracted and sequencing of the bacterial 16S rRNA gene was performed. Data were analyzed using Quantitative Insights Into Microbial Ecology (QIIME). A total of 376 Operational Taxonomic Units out of 26 bacterial phyla were detected. In healthy dogs, Moraxella spp. was the most common species, followed by Phyllobacterium spp., Cardiobacteriaceae, and Staphylococcus spp. While Moraxella spp. were significantly decreased in diseased compared to healthy dogs (p = 0.005), Pasteurellaceae were significantly increased (p = 0.001). Analysis of similarities used on the unweighted UniFrac distance metric (p = 0.027) was significantly different when nasal microbial communities of healthy dogs were compared to those of dogs with nasal disease. The study showed that the canine nasal cavity is inhabited by a highly species-rich bacterial community, and suggests significant differences between the nasal microbiome of healthy dogs and dogs with nasal disease. PMID:28459886

  14. Bacterial microbiome of the nose of healthy dogs and dogs with nasal disease.

    PubMed

    Tress, Barbara; Dorn, Elisabeth S; Suchodolski, Jan S; Nisar, Tariq; Ravindran, Prajesh; Weber, Karin; Hartmann, Katrin; Schulz, Bianka S

    2017-01-01

    The role of bacterial communities in canine nasal disease has not been studied so far using next generation sequencing methods. Sequencing of bacterial 16S rRNA genes has revealed that the canine upper respiratory tract harbors a diverse microbial community; however, changes in the composition of nasal bacterial communities in dogs with nasal disease have not been described so far. Aim of the study was to characterize the nasal microbiome of healthy dogs and compare it to that of dogs with histologically confirmed nasal neoplasia and chronic rhinitis. Nasal swabs were collected from healthy dogs (n = 23), dogs with malignant nasal neoplasia (n = 16), and dogs with chronic rhinitis (n = 8). Bacterial DNA was extracted and sequencing of the bacterial 16S rRNA gene was performed. Data were analyzed using Quantitative Insights Into Microbial Ecology (QIIME). A total of 376 Operational Taxonomic Units out of 26 bacterial phyla were detected. In healthy dogs, Moraxella spp. was the most common species, followed by Phyllobacterium spp., Cardiobacteriaceae, and Staphylococcus spp. While Moraxella spp. were significantly decreased in diseased compared to healthy dogs (p = 0.005), Pasteurellaceae were significantly increased (p = 0.001). Analysis of similarities used on the unweighted UniFrac distance metric (p = 0.027) was significantly different when nasal microbial communities of healthy dogs were compared to those of dogs with nasal disease. The study showed that the canine nasal cavity is inhabited by a highly species-rich bacterial community, and suggests significant differences between the nasal microbiome of healthy dogs and dogs with nasal disease.

  15. Dynamic succession of substrate-associated bacterial composition and function during Ganoderma lucidum growth

    PubMed Central

    Li, Qiang; Zou, Jie; Tan, Hao; Tan, Wei; Peng, Weihong

    2018-01-01

    Background Ganoderma lucidum, a valuable medicinal fungus, is widely distributed in China. It grows alongside with a complex microbial ecosystem in the substrate. As sequencing technology advances, it is possible to reveal the composition and functions of substrate-associated bacterial communities. Methods We analyzed the bacterial community dynamics in the substrate during the four typical growth stages of G. lucidum using next-generation sequencing. Results The physicochemical properties of the substrate (e.g. acidity, moisture, total nitrogen, total phosphorus and total potassium) changed between different growth stages. A total of 598,771 sequences from 12 samples were obtained and assigned to 22 bacterial phyla. Proteobacteria and Firmicutes were the dominant phyla. Bacterial community composition and diversity significantly differed between the elongation stage and the other three growth stages. LEfSe analysis revealed a large number of bacterial taxa (e.g. Bacteroidetes, Acidobacteria and Nitrospirae) with significantly higher abundance at the elongation stage. Functional pathway prediction uncovered significant abundance changes of a number of bacterial functional pathways between the elongation stage and other growth stages. At the elongation stage, the abundance of the environmental information processing pathway (mainly membrane transport) decreased, whereas that of the metabolism-related pathways increased. Discussion The changes in bacterial community composition, diversity and predicted functions were most likely related to the changes in the moisture and nutrient conditions in the substrate with the growth of G. lucidum, particularly at the elongation stage. Our findings shed light on the G. lucidum-bacteria-substrate relationships, which should facilitate the industrial cultivation of G. lucidum. PMID:29915697

  16. The crystal structure of a bacterial Sufu-like protein defines a novel group of bacterial proteins that are similar to the N-terminal domain of human Sufu

    PubMed Central

    Das, Debanu; Finn, Robert D; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L; Bakolitsa, Constantina; Cai, Xiaohui; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C; Duan, Lian; Ellrott, Kyle; Farr, Carol L; Feuerhelm, Julie; Grant, Joanna C; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K; Klock, Heath E; Knuth, Mark W; Kozbial, Piotr; Sri Krishna, S; Kumar, Abhinav; Lam, Winnie W; Marciano, David; Miller, Mitchell D; Morse, Andrew T; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Tien, Henry J; Trame, Christine B; van den Bedem, Henry; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Yeh, Andrew; Zhou, Jiadong; Hodgson, Keith O; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2010-01-01

    Sufu (Suppressor of Fused), a two-domain protein, plays a critical role in regulating Hedgehog signaling and is conserved from flies to humans. A few bacterial Sufu-like proteins have previously been identified based on sequence similarity to the N-terminal domain of eukaryotic Sufu proteins, but none have been structurally or biochemically characterized and their function in bacteria is unknown. We have determined the crystal structure of a more distantly related Sufu-like homolog, NGO1391 from Neisseria gonorrhoeae, at 1.4 Å resolution, which provides the first biophysical characterization of a bacterial Sufu-like protein. The structure revealed a striking similarity to the N-terminal domain of human Sufu (r.m.s.d. of 2.6 Å over 93% of the NGO1391 protein), despite an extremely low sequence identity of ∼15%. Subsequent sequence analysis revealed that NGO1391 defines a new subset of smaller, Sufu-like proteins that are present in ∼200 bacterial species and has resulted in expansion of the SUFU (PF05076) family in Pfam. PMID:20836087

  17. Determining the culturability of the rumen bacterial microbiome

    PubMed Central

    Creevey, Christopher J; Kelly, William J; Henderson, Gemma; Leahy, Sinead C

    2014-01-01

    The goal of the Hungate1000 project is to generate a reference set of rumen microbial genome sequences. Toward this goal we have carried out a meta-analysis using information from culture collections, scientific literature, and the NCBI and RDP databases and linked this with a comparative study of several rumen 16S rRNA gene-based surveys. In this way we have attempted to capture a snapshot of rumen bacterial diversity to examine the culturable fraction of the rumen bacterial microbiome. Our analyses have revealed that for cultured rumen bacteria, there are many genera without a reference genome sequence. Our examination of culture-independent studies highlights that there are few novel but many uncultured taxa within the rumen bacterial microbiome. Taken together these results have allowed us to compile a list of cultured rumen isolates that are representative of abundant, novel and core bacterial species in the rumen. In addition, we have identified taxa, particularly within the phylum Bacteroidetes, where further cultivation efforts are clearly required. This information is being used to guide the isolation efforts and selection of bacteria from the rumen microbiota for sequencing through the Hungate1000. PMID:24986151

  18. A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and Illumina high-throughput sequencing.

    PubMed

    Huang, Kailong; Zhang, Xu-Xiang; Shi, Peng; Wu, Bing; Ren, Hongqiang

    2014-11-01

    In order to comprehensively investigate bacterial virulence in drinking water, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential pathogenic bacteria and virulence factors (VFs) in a full-scale drinking water treatment and distribution system. 16S rRNA gene pyrosequencing revealed high bacterial diversity in the drinking water (441-586 operational taxonomic units). Bacterial diversity decreased after chlorine disinfection, but increased after pipeline distribution. α-Proteobacteria was the most dominant taxonomic class. Alignment against the established pathogen database showed that several types of putative pathogens were present in the drinking water and Pseudomonas aeruginosa had the highest abundance (over 11‰ of total sequencing reads). Many pathogens disappeared after chlorine disinfection, but P. aeruginosa and Leptospira interrogans were still detected in the tap water. High-throughput sequencing revealed prevalence of various pathogenicity islands and virulence proteins in the drinking water, and translocases, transposons, Clp proteases and flagellar motor switch proteins were the predominant VFs. Both diversity and abundance of the detectable VFs increased after the chlorination, and decreased after the pipeline distribution. This study indicates that joint use of 454 pyrosequencing and Illumina sequencing can comprehensively characterize environmental pathogenesis, and several types of putative pathogens and various VFs are prevalent in drinking water. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure

    DOE PAGES

    None

    2014-12-01

    The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illuminamore » 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.« less

  20. Identifying the core seed bank of a complex boreal bacterial metacommunity.

    PubMed

    Ruiz-González, Clara; Niño-García, Juan Pablo; Kembel, Steven W; Del Giorgio, Paul A

    2017-09-01

    Seed banks are believed to contribute to compositional changes within and across microbial assemblages, but the application of this concept to natural communities remains challenging. Here we describe the core seed bank of a bacterial metacommunity from a boreal watershed, using the spatial distribution of bacterial operational taxonomic units (OTUs) across 223 heterogeneous terrestrial, aquatic and phyllosphere bacterial assemblages. Taxa were considered potential seeds if they transitioned from rare to abundant somewhere within the metacommunity and if they were ubiquitous and able to persist under unfavorable conditions, the latter assessed by checking their presence in three deeply sequenced samples (one soil, one river and one lake, 2.2-3 million reads per sample). We show that only a small fraction (13%) of all detected OTUs constitute a metacommunity seed bank that is shared between all terrestrial and aquatic communities, but not by phyllosphere assemblages, which seem to recruit from a different taxa pool. Our results suggest directional recruitment driven by the flow of water in the landscape, since most aquatic sequences were associated to OTUs found in a single deeply-sequenced soil sample, but only 45% of terrestrial sequences belonged to OTUs found in the two deeply-sequenced aquatic communities. Finally, we hypothesize that extreme rarity, and its interplay with water residence time and growth rates, may further constrain the size of the potential seed bank.

  1. Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea.

    PubMed

    Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng

    2015-09-01

    Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.

  2. Characterization of bovine ruminal epithelial bacterial communities using 16S rRNA sequencing, PCR-DGGE, and qRT-PCR analysis.

    PubMed

    Li, Meiju; Zhou, Mi; Adamowicz, Elizabeth; Basarab, John A; Guan, Le Luo

    2012-02-24

    Currently, knowledge regarding the ecology and function of bacteria attached to the epithelial tissue of the rumen wall is limited. In this study, the diversity of the bacterial community attached to the rumen epithelial tissue was compared to the rumen content bacterial community using 16S rRNA gene sequencing, PCR-DGGE, and qRT-PCR analysis. Sequence analysis of 2785 randomly selected clones from six 16S rDNA (∼1.4kb) libraries showed that the community structures of three rumen content libraries clustered together and were separated from the rumen tissue libraries. The diversity index of each library revealed that ruminal content bacterial communities (4.12/4.42/4.88) were higher than ruminal tissue communities (2.90/2.73/3.23), based on 97% similarity. The phylum Firmicutes was predominant in the ruminal tissue communities, while the phylum Bacteroidetes was predominant in the ruminal content communities. The phyla Fibrobacteres, Planctomycetes, and Verrucomicrobia were only detected in the ruminal content communities. PCR-DGGE analysis of the bacterial profiles of the rumen content and ruminal epithelial tissue samples from 22 steers further confirmed that there is a distinct bacterial community that inhibits the rumen epithelium. The distinctive epimural bacterial communities suggest that Firmicutes, together with other epithelial-specific species, may have additional functions other than food digestion. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Diversity and Evolution of Bacterial Twin Arginine Translocase Protein, TatC, Reveals a Protein Secretion System That Is Evolving to Fit Its Environmental Niche

    PubMed Central

    Simone, Domenico; Bay, Denice C.; Leach, Thorin; Turner, Raymond J.

    2013-01-01

    Background The twin-arginine translocation (Tat) protein export system enables the transport of fully folded proteins across a membrane. This system is composed of two integral membrane proteins belonging to TatA and TatC protein families and in some systems a third component, TatB, a homolog of TatA. TatC participates in substrate protein recognition through its interaction with a twin arginine leader peptide sequence. Methodology/Principal Findings The aim of this study was to explore TatC diversity, evolution and sequence conservation in bacteria to identify how TatC is evolving and diversifying in various bacterial phyla. Surveying bacterial genomes revealed that 77% of all species possess one or more tatC loci and half of these classes possessed only tatC and tatA genes. Phylogenetic analysis of diverse TatC homologues showed that they were primarily inherited but identified a small subset of taxonomically unrelated bacteria that exhibited evidence supporting lateral gene transfer within an ecological niche. Examination of bacilli tatCd/tatCy isoform operons identified a number of known and potentially new Tat substrate genes based on their frequent association to tatC loci. Evolutionary analysis of these Bacilli isoforms determined that TatCy was the progenitor of TatCd. A bacterial TatC consensus sequence was determined and highlighted conserved and variable regions within a three dimensional model of the Escherichia coli TatC protein. Comparative analysis between the TatC consensus sequence and Bacilli TatCd/y isoform consensus sequences revealed unique sites that may contribute to isoform substrate specificity or make TatA specific contacts. Synonymous to non-synonymous nucleotide substitution analyses of bacterial tatC homologues determined that tatC sequence variation differs dramatically between various classes and suggests TatC specialization in these species. Conclusions/Significance TatC proteins appear to be diversifying within particular bacterial classes and its specialization may be driven by the substrates it transports and the environment of its host. PMID:24236045

  4. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome.

    PubMed

    Hannigan, Geoffrey D; Meisel, Jacquelyn S; Tyldsley, Amanda S; Zheng, Qi; Hodkinson, Brendan P; SanMiguel, Adam J; Minot, Samuel; Bushman, Frederic D; Grice, Elizabeth A

    2015-10-20

    Viruses make up a major component of the human microbiota but are poorly understood in the skin, our primary barrier to the external environment. Viral communities have the potential to modulate states of cutaneous health and disease. Bacteriophages are known to influence the structure and function of microbial communities through predation and genetic exchange. Human viruses are associated with skin cancers and a multitude of cutaneous manifestations. Despite these important roles, little is known regarding the human skin virome and its interactions with the host microbiome. Here we evaluated the human cutaneous double-stranded DNA virome by metagenomic sequencing of DNA from purified virus-like particles (VLPs). In parallel, we employed metagenomic sequencing of the total skin microbiome to assess covariation and infer interactions with the virome. Samples were collected from 16 subjects at eight body sites over 1 month. In addition to the microenviroment, which is known to partition the bacterial and fungal microbiota, natural skin occlusion was strongly associated with skin virome community composition. Viral contigs were enriched for genes indicative of a temperate phage replication style and also maintained genes encoding potential antibiotic resistance and virulence factors. CRISPR spacers identified in the bacterial DNA sequences provided a record of phage predation and suggest a mechanism to explain spatial partitioning of skin phage communities. Finally, we modeled the structure of bacterial and phage communities together to reveal a complex microbial environment with a Corynebacterium hub. These results reveal the previously underappreciated diversity, encoded functions, and viral-microbial dynamic unique to the human skin virome. To date, most cutaneous microbiome studies have focused on bacterial and fungal communities. Skin viral communities and their relationships with their hosts remain poorly understood despite their potential to modulate states of cutaneous health and disease. Previous studies employing whole-metagenome sequencing without purification for virus-like particles (VLPs) have provided some insight into the viral component of the skin microbiome but have not completely characterized these communities or analyzed interactions with the host microbiome. Here we present an optimized virus purification technique and corresponding analysis tools for gaining novel insights into the skin virome, including viral "dark matter," and its potential interactions with the host microbiome. The work presented here establishes a baseline of the healthy human skin virome and is a necessary foundation for future studies examining viral perturbations in skin health and disease. Copyright © 2015 Hannigan et al.

  5. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems

    PubMed Central

    Makarova, Kira S.; Wolf, Yuri I.

    2017-01-01

    ABSTRACT The two-component signal transduction (TCS) machinery is a key mechanism of sensing environmental changes in the prokaryotic world. TCS systems have been characterized thoroughly in bacteria but to a much lesser extent in archaea. Here, we provide an updated census of more than 2,000 histidine kinases and response regulators encoded in 218 complete archaeal genomes, as well as unfinished genomes available from metagenomic data. We describe the domain architectures of the archaeal TCS components, including several novel output domains, and discuss the evolution of the archaeal TCS machinery. The distribution of TCS systems in archaea is strongly biased, with high levels of abundance in haloarchaea and thaumarchaea but none detected in the sequenced genomes from the phyla Crenarchaeota, Nanoarchaeota, and Korarchaeota. The archaeal sensor histidine kinases are generally similar to their well-studied bacterial counterparts but are often located in the cytoplasm and carry multiple PAS and/or GAF domains. In contrast, archaeal response regulators differ dramatically from the bacterial ones. Most archaeal genomes do not encode any of the major classes of bacterial response regulators, such as the DNA-binding transcriptional regulators of the OmpR/PhoB, NarL/FixJ, NtrC, AgrA/LytR, and ActR/PrrA families and the response regulators with GGDEF and/or EAL output domains. Instead, archaea encode multiple copies of response regulators containing either the stand-alone receiver (REC) domain or combinations of REC with PAS and/or GAF domains. Therefore, the prevailing mechanism of archaeal TCS signaling appears to be via a variety of protein-protein interactions, rather than direct transcriptional regulation. IMPORTANCE Although the Archaea represent a separate domain of life, their signaling systems have been assumed to be closely similar to the bacterial ones. A study of the domain architectures of the archaeal two-component signal transduction (TCS) machinery revealed an overall similarity of archaeal and bacterial sensory modules but substantial differences in the signal output modules. The prevailing mechanism of archaeal TCS signaling appears to involve various protein-protein interactions rather than direct transcription regulation. The complete list of histidine kinases and response regulators encoded in the analyzed archaeal genomes is available online at http://www.ncbi.nlm.nih.gov/Complete_Genomes/TCSarchaea.html. PMID:29263101

  6. Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems.

    PubMed

    Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2018-04-01

    The two-component signal transduction (TCS) machinery is a key mechanism of sensing environmental changes in the prokaryotic world. TCS systems have been characterized thoroughly in bacteria but to a much lesser extent in archaea. Here, we provide an updated census of more than 2,000 histidine kinases and response regulators encoded in 218 complete archaeal genomes, as well as unfinished genomes available from metagenomic data. We describe the domain architectures of the archaeal TCS components, including several novel output domains, and discuss the evolution of the archaeal TCS machinery. The distribution of TCS systems in archaea is strongly biased, with high levels of abundance in haloarchaea and thaumarchaea but none detected in the sequenced genomes from the phyla Crenarchaeota , Nanoarchaeota , and Korarchaeota The archaeal sensor histidine kinases are generally similar to their well-studied bacterial counterparts but are often located in the cytoplasm and carry multiple PAS and/or GAF domains. In contrast, archaeal response regulators differ dramatically from the bacterial ones. Most archaeal genomes do not encode any of the major classes of bacterial response regulators, such as the DNA-binding transcriptional regulators of the OmpR/PhoB, NarL/FixJ, NtrC, AgrA/LytR, and ActR/PrrA families and the response regulators with GGDEF and/or EAL output domains. Instead, archaea encode multiple copies of response regulators containing either the stand-alone receiver (REC) domain or combinations of REC with PAS and/or GAF domains. Therefore, the prevailing mechanism of archaeal TCS signaling appears to be via a variety of protein-protein interactions, rather than direct transcriptional regulation. IMPORTANCE Although the Archaea represent a separate domain of life, their signaling systems have been assumed to be closely similar to the bacterial ones. A study of the domain architectures of the archaeal two-component signal transduction (TCS) machinery revealed an overall similarity of archaeal and bacterial sensory modules but substantial differences in the signal output modules. The prevailing mechanism of archaeal TCS signaling appears to involve various protein-protein interactions rather than direct transcription regulation. The complete list of histidine kinases and response regulators encoded in the analyzed archaeal genomes is available online at http://www.ncbi.nlm.nih.gov/Complete_Genomes/TCSarchaea.html. Copyright © 2018 Galperin et al.

  7. 16S rRNA Gene-Based Metagenomic Analysis of Ozark Cave Bacteria

    PubMed Central

    Oliveira, Cássia; Gunderman, Lauren; Coles, Cathryn A.; Lochmann, Jason; Parks, Megan; Ballard, Ethan; Glazko, Galina; Rahmatallah, Yasir; Tackett, Alan J.; Thomas, David J.

    2018-01-01

    The microbial diversity within cave ecosystems is largely unknown. Ozark caves maintain a year-round stable temperature (12–14 °C), but most parts of the caves experience complete darkness. The lack of sunlight and geological isolation from surface-energy inputs generate nutrient-poor conditions that may limit species diversity in such environments. Although microorganisms play a crucial role in sustaining life on Earth and impacting human health, little is known about their diversity, ecology, and evolution in community structures. We used five Ozark region caves as test sites for exploring bacterial diversity and monitoring long-term biodiversity. Illumina MiSeq sequencing of five cave soil samples and a control sample revealed a total of 49 bacterial phyla, with seven major phyla: Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes, Chloroflexi, Bacteroidetes, and Nitrospirae. Variation in bacterial composition was observed among the five caves studied. Sandtown Cave had the lowest richness and most divergent community composition. 16S rRNA gene-based metagenomic analysis of cave-dwelling microbial communities in the Ozark caves revealed that species abundance and diversity are vast and included ecologically, agriculturally, and economically relevant taxa. PMID:29551950

  8. Plasmids foster diversification and adaptation of bacterial populations in soil.

    PubMed

    Heuer, Holger; Smalla, Kornelia

    2012-11-01

    It is increasingly being recognized that the transfer of conjugative plasmids across species boundaries plays a vital role in the adaptability of bacterial populations in soil. There are specific driving forces and constraints of plasmid transfer within bacterial communities in soils. Plasmid-mediated genetic variation allows bacteria to respond rapidly with adaptive responses to challenges such as irregular antibiotic or metal concentrations, or opportunities such as the utilization of xenobiotic compounds. Cultivation-independent detection and capture of plasmids from soil bacteria, and complete sequencing have provided new insights into the role and ecology of plasmids. Broad host range plasmids such as those belonging to IncP-1 transfer a wealth of accessory functions which are carried by similar plasmid backbones. Plasmids with a narrower host range can be more specifically adapted to particular species and often transfer genes which complement chromosomally encoded functions. Plasmids seem to be an ancient and successful strategy to ensure survival of a soil population in spatial and temporal heterogeneous conditions with various environmental stresses or opportunities that occur irregularly or as a novel challenge in soil. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Correlation between genome reduction and bacterial growth.

    PubMed

    Kurokawa, Masaomi; Seno, Shigeto; Matsuda, Hideo; Ying, Bei-Wen

    2016-12-01

    Genome reduction by removing dispensable genomic sequences in bacteria is commonly used in both fundamental and applied studies to determine the minimal genetic requirements for a living system or to develop highly efficient bioreactors. Nevertheless, whether and how the accumulative loss of dispensable genomic sequences disturbs bacterial growth remains unclear. To investigate the relationship between genome reduction and growth, a series of Escherichia coli strains carrying genomes reduced in a stepwise manner were used. Intensive growth analyses revealed that the accumulation of multiple genomic deletions caused decreases in the exponential growth rate and the saturated cell density in a deletion-length-dependent manner as well as gradual changes in the patterns of growth dynamics, regardless of the growth media. Accordingly, a perspective growth model linking genome evolution to genome engineering was proposed. This study provides the first demonstration of a quantitative connection between genomic sequence and bacterial growth, indicating that growth rate is potentially associated with dispensable genomic sequences. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  10. Bacterial genomes lacking long-range correlations may not be modeled by low-order Markov chains: the role of mixing statistics and frame shift of neighboring genes.

    PubMed

    Cocho, Germinal; Miramontes, Pedro; Mansilla, Ricardo; Li, Wentian

    2014-12-01

    We examine the relationship between exponential correlation functions and Markov models in a bacterial genome in detail. Despite the well known fact that Markov models generate sequences with correlation function that decays exponentially, simply constructed Markov models based on nearest-neighbor dimer (first-order), trimer (second-order), up to hexamer (fifth-order), and treating the DNA sequence as being homogeneous all fail to predict the value of exponential decay rate. Even reading-frame-specific Markov models (both first- and fifth-order) could not explain the fact that the exponential decay is very slow. Starting with the in-phase coding-DNA-sequence (CDS), we investigated correlation within a fixed-codon-position subsequence, and in artificially constructed sequences by packing CDSs with out-of-phase spacers, as well as altering CDS length distribution by imposing an upper limit. From these targeted analyses, we conclude that the correlation in the bacterial genomic sequence is mainly due to a mixing of heterogeneous statistics at different codon positions, and the decay of correlation is due to the possible out-of-phase between neighboring CDSs. There are also small contributions to the correlation from bases at the same codon position, as well as by non-coding sequences. These show that the seemingly simple exponential correlation functions in bacterial genome hide a complexity in correlation structure which is not suitable for a modeling by Markov chain in a homogeneous sequence. Other results include: use of the (absolute value) second largest eigenvalue to represent the 16 correlation functions and the prediction of a 10-11 base periodicity from the hexamer frequencies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Characterization of the Prokaryotic Diversity in Cold Saline Perennial Springs of the Canadian High Arctic▿

    PubMed Central

    Perreault, Nancy N.; Andersen, Dale T.; Pollard, Wayne H.; Greer, Charles W.; Whyte, Lyle G.

    2007-01-01

    The springs at Gypsum Hill and Colour Peak on Axel Heiberg Island in the Canadian Arctic originate from deep salt aquifers and are among the few known examples of cold springs in thick permafrost on Earth. The springs discharge cold anoxic brines (7.5 to 15.8% salts), with a mean oxidoreduction potential of −325 mV, and contain high concentrations of sulfate and sulfide. We surveyed the microbial diversity in the sediments of seven springs by denaturing gradient gel electrophoresis (DGGE) and analyzing clone libraries of 16S rRNA genes amplified with Bacteria and Archaea-specific primers. Dendrogram analysis of the DGGE banding patterns divided the springs into two clusters based on their geographic origin. Bacterial 16S rRNA clone sequences from the Gypsum Hill library (spring GH-4) were classified into seven phyla (Actinobacteria, Bacteroidetes, Firmicutes, Gemmatimonadetes, Proteobacteria, Spirochaetes, and Verrucomicrobia); Deltaproteobacteria and Gammaproteobacteria sequences represented half of the clone library. Sequences related to Proteobacteria (82%), Firmicutes (9%), and Bacteroidetes (6%) constituted 97% of the bacterial clone library from Colour Peak (spring CP-1). Most GH-4 archaeal clone sequences (79%) were related to the Crenarchaeota while half of the CP-1 sequences were related to orders Halobacteriales and Methanosarcinales of the Euryarchaeota. Sequences related to the sulfur-oxidizing bacterium Thiomicrospira psychrophila dominated both the GH-4 (19%) and CP-1 (45%) bacterial libraries, and 56 to 76% of the bacterial sequences were from potential sulfur-metabolizing bacteria. These results suggest that the utilization and cycling of sulfur compounds may play a major role in the energy production and maintenance of microbial communities in these unique, cold environments. PMID:17220254

  12. The Vaginal Eukaryotic DNA Virome and Preterm Birth.

    PubMed

    Wylie, Kristine M; Wylie, Todd N; Cahill, Alison G; Macones, George A; Tuuli, Methodius G; Stout, Molly J

    2018-05-05

    Despite decades of attempts to link infectious agents to preterm birth, an exact causative microbe or community of microbes remains elusive. Culture-independent sequencing of vaginal bacterial communities demonstrates community characteristics are associated with preterm birth, although none are specific enough to apply clinically. Viruses are important components of the vaginal microbiome and have dynamic relationships with vaginal bacterial communities. We hypothesized that vaginal eukaryotic DNA viral communities (the "vaginal virome") either alone or in the context of bacterial communities are associated with preterm birth. The objective of this study was to use high-throughput sequencing to examine the vaginal eukaryotic DNA virome in a cohort of pregnant women and examine associations between vaginal community characteristics and preterm birth. This is a nested case-control study within a prospective cohort study of women with singleton pregnancies, not on supplemental progesterone, and without cervical cerclage in situ. Serial mid-vaginal swabs were obtained at routine prenatal visits. DNA was extracted, bacterial communities were characterized by 16S rRNA gene sequencing, and eukaryotic viral communities were characterized by enrichment of viral nucleic acid with the ViroCap targeted sequence capture panel followed by nucleic acid sequencing. Viral communities were analyzed according to presence/absence of viruses, diversity, dynamics over time, and association with bacterial community data obtained from the same specimens. Sixty subjects contributed 128 vaginal swabs longitudinally across pregnancy. Twenty-four patients delivered preterm. Participants were predominantly African-American (65%). Six families of eukaryotic DNA viruses were detected in the vaginal samples. At least 1 virus was detected in 80% of women. No specific virus or group of viruses was associated with preterm delivery. Higher viral richness was significantly associated with preterm delivery in the full group and in the African American subgroup (P=0.0005 and P=0.0003, respectively). Having both high bacterial diversity and high viral diversity in the first trimester was associated with the highest risk for preterm birth. Higher vaginal viral diversity is associated with preterm birth. Changes in vaginal virome diversity appear similar to changes in the vaginal bacterial microbiome over pregnancy, suggesting that underlying physiology of pregnancy may regulate both bacterial and viral communities. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Characterization of tannase protein sequences of bacteria and fungi: an in silico study.

    PubMed

    Banerjee, Amrita; Jana, Arijit; Pati, Bikash R; Mondal, Keshab C; Das Mohapatra, Pradeep K

    2012-04-01

    The tannase protein sequences of 149 bacteria and 36 fungi were retrieved from NCBI database. Among them only 77 bacterial and 31 fungal tannase sequences were taken which have different amino acid compositions. These sequences were analysed for different physical and chemical properties, superfamily search, multiple sequence alignment, phylogenetic tree construction and motif finding to find out the functional motif and the evolutionary relationship among them. The superfamily search for these tannase exposed the occurrence of proline iminopeptidase-like, biotin biosynthesis protein BioH, O-acetyltransferase, carboxylesterase/thioesterase 1, carbon-carbon bond hydrolase, haloperoxidase, prolyl oligopeptidase, C-terminal domain and mycobacterial antigens families and alpha/beta hydrolase superfamily. Some bacterial and fungal sequence showed similarity with different families individually. The multiple sequence alignment of these tannase protein sequences showed conserved regions at different stretches with maximum homology from amino acid residues 389-469 and 482-523 which could be used for designing degenerate primers or probes specific for tannase producing bacterial and fungal species. Phylogenetic tree showed two different clusters; one has only bacteria and another have both fungi and bacteria showing some relationship between these different genera. Although in second cluster near about all fungal species were found together in a corner which indicates the sequence level similarity among fungal genera. The distributions of fourteen motifs analysis revealed Motif 1 with a signature amino acid sequence of 29 amino acids, i.e. GCSTGGREALKQAQRWPHDYDGIIANNPA, was uniformly observed in 83.3 % of studied tannase sequences representing its participation with the structure and enzymatic function.

  14. Genomic characterization and expression profiles upon bacterial infection of a novel cystatin B homologue from disk abalone (Haliotis discus discus).

    PubMed

    Premachandra, H K A; Wan, Qiang; Elvitigala, Don Anushka Sandaruwan; De Zoysa, Mahanama; Choi, Cheol Young; Whang, Ilson; Lee, Jehee

    2012-12-01

    Cystatins are a large family of cysteine proteinase inhibitors which are involved in diverse biological and pathological processes. In the present study, we identified a gene related to cystatin superfamily, AbCyt B, from disk abalone Haliotis discus discus by expressed sequence tag (EST) analysis and BAC library screening. The complete cDNA sequence of AbCyt B is comprised of 1967 nucleotides with a 306 bp open reading frame (ORF) encoding for 101 amino acids. The amino acid sequence consists of a single cystatin-like domain, which has a cysteine proteinase inhibitor signature, a conserved Gly in N-terminal region, QVVAG motif and a variant of PW motif. No signal peptide, disulfide bonds or carbohydrate side chains were identified. Analysis of deduced amino acid sequence revealed that AbCyt B shares up to 44.7% identity and 65.7% similarity with the cystatin B genes from other organisms. The genomic sequence of AbCyt B is approximately 8.4 Kb, consisting of three exons and two introns. Phylogenetic tree analysis showed that AbCyt B was closely related to the cystatin B from pacific oyster (Crassostrea gigas) under the family 1.Functional analysis of recombinant AbCyt B protein exhibited inhibitory activity against the papain, with almost 84% inhibition at a concentration of 3.5 μmol/L. In tissue expression analysis, AbCyt B transcripts were expressed abundantly in the hemocyte, gill, mantle, and digestive tract, while weakly in muscle, testis, and hepatopancreas. After the immune challenge with Vibrio parahemolyticus, the AbCyt B showed significant (P<0.05) up-regulation of relative mRNA expression in gill and hemocytes at 24 and 6 h of post infection, respectively. These results collectively suggest that AbCyst B is a potent inhibitor of cysteine proteinases and is also potentially involved in immune responses against invading bacterial pathogens in abalone. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Estimating Bacterial Diversity for Ecological Studies: Methods, Metrics, and Assumptions

    PubMed Central

    Birtel, Julia; Walser, Jean-Claude; Pichon, Samuel; Bürgmann, Helmut; Matthews, Blake

    2015-01-01

    Methods to estimate microbial diversity have developed rapidly in an effort to understand the distribution and diversity of microorganisms in natural environments. For bacterial communities, the 16S rRNA gene is the phylogenetic marker gene of choice, but most studies select only a specific region of the 16S rRNA to estimate bacterial diversity. Whereas biases derived from from DNA extraction, primer choice and PCR amplification are well documented, we here address how the choice of variable region can influence a wide range of standard ecological metrics, such as species richness, phylogenetic diversity, β-diversity and rank-abundance distributions. We have used Illumina paired-end sequencing to estimate the bacterial diversity of 20 natural lakes across Switzerland derived from three trimmed variable 16S rRNA regions (V3, V4, V5). Species richness, phylogenetic diversity, community composition, β-diversity, and rank-abundance distributions differed significantly between 16S rRNA regions. Overall, patterns of diversity quantified by the V3 and V5 regions were more similar to one another than those assessed by the V4 region. Similar results were obtained when analyzing the datasets with different sequence similarity thresholds used during sequences clustering and when the same analysis was used on a reference dataset of sequences from the Greengenes database. In addition we also measured species richness from the same lake samples using ARISA Fingerprinting, but did not find a strong relationship between species richness estimated by Illumina and ARISA. We conclude that the selection of 16S rRNA region significantly influences the estimation of bacterial diversity and species distributions and that caution is warranted when comparing data from different variable regions as well as when using different sequencing techniques. PMID:25915756

  16. Defining the Estimated Core Genome of Bacterial Populations Using a Bayesian Decision Model

    PubMed Central

    van Tonder, Andries J.; Mistry, Shilan; Bray, James E.; Hill, Dorothea M. C.; Cody, Alison J.; Farmer, Chris L.; Klugman, Keith P.; von Gottberg, Anne; Bentley, Stephen D.; Parkhill, Julian; Jolley, Keith A.; Maiden, Martin C. J.; Brueggemann, Angela B.

    2014-01-01

    The bacterial core genome is of intense interest and the volume of whole genome sequence data in the public domain available to investigate it has increased dramatically. The aim of our study was to develop a model to estimate the bacterial core genome from next-generation whole genome sequencing data and use this model to identify novel genes associated with important biological functions. Five bacterial datasets were analysed, comprising 2096 genomes in total. We developed a Bayesian decision model to estimate the number of core genes, calculated pairwise evolutionary distances (p-distances) based on nucleotide sequence diversity, and plotted the median p-distance for each core gene relative to its genome location. We designed visually-informative genome diagrams to depict areas of interest in genomes. Case studies demonstrated how the model could identify areas for further study, e.g. 25% of the core genes with higher sequence diversity in the Campylobacter jejuni and Neisseria meningitidis genomes encoded hypothetical proteins. The core gene with the highest p-distance value in C. jejuni was annotated in the reference genome as a putative hydrolase, but further work revealed that it shared sequence homology with beta-lactamase/metallo-beta-lactamases (enzymes that provide resistance to a range of broad-spectrum antibiotics) and thioredoxin reductase genes (which reduce oxidative stress and are essential for DNA replication) in other C. jejuni genomes. Our Bayesian model of estimating the core genome is principled, easy to use and can be applied to large genome datasets. This study also highlighted the lack of knowledge currently available for many core genes in bacterial genomes of significant global public health importance. PMID:25144616

  17. High throughput 16SrRNA gene sequencing reveals the correlation between Propionibacterium acnes and sarcoidosis.

    PubMed

    Zhao, Meng-Meng; Du, Shan-Shan; Li, Qiu-Hong; Chen, Tao; Qiu, Hui; Wu, Qin; Chen, Shan-Shan; Zhou, Ying; Zhang, Yuan; Hu, Yang; Su, Yi-Liang; Shen, Li; Zhang, Fen; Weng, Dong; Li, Hui-Ping

    2017-02-01

    This study aims to use high throughput 16SrRNA gene sequencing to examine the bacterial profile of lymph node biopsy samples of patients with sarcoidosis and to further verify the association between Propionibacterium acnes (P. acnes) and sarcoidosis. A total of 36 mediastinal lymph node biopsy specimens were collected from 17 cases of sarcoidosis, 8 tuberculosis (TB group), and 11 non-infectious lung diseases (control group). The V4 region of the bacterial 16SrRNA gene in the specimens was amplified and sequenced using the high throughput sequencing platform MiSeq, and bacterial profile was established. The data analysis software QIIME and Metastats were used to compare bacterial relative abundance in the three patient groups. Overall, 545 genera were identified; 38 showed significantly lower and 29 had significantly higher relative abundance in the sarcoidosis group than in the TB and control groups (P < 0.01). P. acnes 16SrRNA was exclusively found in all the 17 samples of the sarcoidosis group, whereas was not detected in the TB and control groups. The relative abundance of P. acnes in the sarcoidosis group (0.16% ± 0. 11%) was significantly higher than that in the TB (Metastats analysis: P = 0.0010, q = 0.0044) and control groups (Metastats analysis: P = 0.0010, q = 0.0038). The relative abundance of P. granulosum was only 0.0022% ± 0. 0044% in the sarcoidosis group. P. granulosum 16SrRNA was not detected in the other two groups. High throughput 16SrRNA gene sequencing appears to be a useful tool to investigate the bacterial profile of sarcoidosis specimens. The results suggest that P. acnes may be involved in sarcoidosis development.

  18. Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers.

    PubMed

    Stern, Joshua M; Moazami, Saman; Qiu, Yunping; Kurland, Irwin; Chen, Zigui; Agalliu, Ilir; Burk, Robert; Davies, Kelvin P

    2016-10-01

    The trillions of microbes that colonize our adult intestine are referred to as the gut microbiome (GMB). Functionally it behaves as a metabolic organ that communicates with, and complements, our own human metabolic apparatus. While the relationship between the GMB and kidney stone disease (KSD) has not been investigated, dysbiosis of the GMB has been associated with diabetes, obesity and cardiovascular disease. In this pilot study we sought to identify unique changes in the GMB of kidney stone patients compared to patients without KSD. With an IRB-approved protocol we enrolled 29 patients into our pilot study. 23 patients were kidney stone formers and six were non-stone forming controls. Specimens were collected after a 6h fast and were flash frozen in dry ice and then stored at -80 °C. Microbiome: determination of bacterial abundance was by analysis of 16 s rRNA marker gene sequences using next generation sequencing. Sequencing of the GMB identified 178 bacterial genera. The five most abundant enterotypes within each group made up to greater than 50 % of the bacterial abundance identified. Bacteroides was 3.4 times more abundant in the KSD group as compared to control (34.9 vs 10.2 %; p = 0.001). Prevotella was 2.8 times more abundant in the control group as compared to the KSD group (34.7 vs 12.3 %; p = 0.005). In a multivariate analysis including age, gender, BMI, and DM, kidney stone disease remained an increased risk for high prevalence for Bacteroides (OR = 3.26, p = 0.033), whereas there was an inverse association with Prevotella (OR = 0.37, p = 0.043). There were no statistically significant differences in bacterial abundance levels for Bacteroides or Prevotella when comparing patients with and without DM, obesity (BMI >30), HTN or HLD. 11 kidney stone patients completed 24 h urine analysis at the time of this writing. Looking at the bacterial genuses with at least 4 % abundance in the kidney stone group, Eubacterium was inversely correlated with oxalate levels (r = -0.60, p < 0.06) and Escherichia trended to an inverse correlation with citrate (r = -0.56, p < 0.08). We also compared bacterial abundance between uric acid (UA) stone formers (n = 5) and non UA stone formers (n = 18) and found no significant difference between them. We identified two genus of bacteria in the GMB that had significant association with KSD. Interestingly, components of the 24-h urine appear to be correlated to bacterial abundance. These preliminary studies for the first time associate differences in the GMB with kidney stone formation. Further studies are warranted to evaluate the potential causative role of preexisting dysbiosis in kidney stone disease.

  19. Metagenomic analyses of the dominant bacterial community in the Fildes Peninsula, King George Island (South Shetland Islands)

    NASA Astrophysics Data System (ADS)

    Foong, Choon Pin; Wong Vui Ling, Clemente Michael; González, Marcelo

    2010-08-01

    There is little information on the bacterial diversity of the Fildes Peninsula, King George Island. Hence, this study was conducted to determine the bacterial population of sediments and soils from the lakes, river, glacier and an abandoned oil tank area in the Fildes Peninsula, using a metagenomic approach. DNA was extracted from the sediment and soil samples, and analyzed using the 16S rDNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). A total of 299 DNA fragments resolved using the DGGE were sequenced. The results of the analysis provided an overview of the predominant groups of bacteria and the diversity of the bacterial communities. The most abundant phyla of bacteria in Fildes Peninsula were Bacteroidetes, Proteobacteria, Acidobacteria, Gemmatimonadetes, Nitrospira, Firmicutes, Actinobacteria, Chloroflexi, Cyanobacteria, Spirochaetes, Deinococcus-Thermus, WS3 and BRC1. All of the sediment samples from the lakes had different representatives of dominant bacterial species. Interestingly, 15% of the operational taxonomic units (OTUs) did not group into any of the existing phyla in the Ribosomal Database Project (RDP). One of the OTUs had a similarity of <0.90 when compared to the GenBank sequences and probably was a novel bacterium specific to that location. The majority of the bacterial 16S rDNA sequences were found to be closely related to those found elsewhere.

  20. Molecular analysis of meso- and thermophilic microbiota associated with anaerobic biowaste degradation

    PubMed Central

    2012-01-01

    Background Microbial anaerobic digestion (AD) is used as a waste treatment process to degrade complex organic compounds into methane. The archaeal and bacterial taxa involved in AD are well known, whereas composition of the fungal community in the process has been less studied. The present study aimed to reveal the composition of archaeal, bacterial and fungal communities in response to increasing organic loading in mesophilic and thermophilic AD processes by applying 454 amplicon sequencing technology. Furthermore, a DNA microarray method was evaluated in order to develop a tool for monitoring the microbiological status of AD. Results The 454 sequencing showed that the diversity and number of bacterial taxa decreased with increasing organic load, while archaeal i.e. methanogenic taxa remained more constant. The number and diversity of fungal taxa increased during the process and varied less in composition with process temperature than bacterial and archaeal taxa, even though the fungal diversity increased with temperature as well. Evaluation of the microarray using AD sample DNA showed correlation of signal intensities with sequence read numbers of corresponding target groups. The sensitivity of the test was found to be about 1%. Conclusions The fungal community survives in anoxic conditions and grows with increasing organic loading, suggesting that Fungi may contribute to the digestion by metabolising organic nutrients for bacterial and methanogenic groups. The microarray proof of principle tests suggest that the method has the potential for semiquantitative detection of target microbial groups given that comprehensive sequence data is available for probe design. PMID:22727142

  1. Using DGGE and 16S rRNA gene sequence analysis to evaluate changes in oral bacterial composition.

    PubMed

    Chen, Zhou; Trivedi, Harsh M; Chhun, Nok; Barnes, Virginia M; Saxena, Deepak; Xu, Tao; Li, Yihong

    2011-01-01

    To investigate whether a standard dental prophylaxis followed by tooth brushing with an antibacterial dentifrice will affect the oral bacterial community, as determined by denaturing gradient gel electrophoresis (DGGE) combined with 16S rRNA gene sequence analysis. Twenty-four healthy adults were instructed to brush their teeth using commercial dentifrice for 1 week during a washout period. An initial set of pooled supragingival plaque samples was collected from each participant at baseline (0 h) before prophylaxis treatment. The subjects were given a clinical examination and dental prophylaxis and asked to brush for 1 min with a dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride (Colgate Total). On the following day, a second set of pooled supragingival plaque samples (24 h) was collected. Total bacterial genomic DNA was isolated from the samples. Differences in the microbial composition before and after the prophylactic procedure and tooth brushing were assessed by comparing the DGGE profiles and 16S rRNA gene segments sequence analysis. Two distinct clusters of DGGE profiles were found, suggesting that a shift in the microbial composition had occurred 24 h after the prophylaxis and brushing. A detailed sequencing analysis of 16S rRNA gene segments further identified 6 phyla and 29 genera, including known and unknown bacterial species. Importantly, an increase in bacterial diversity was observed after 24 h, including members of the Streptococcaceae family, Prevotella, Corynebacterium, TM7 and other commensal bacteria. The results suggest that the use of a standard prophylaxis followed by the use of the dentifrice containing 0.3% triclosan, 2.0% PVM/MA copolymer and 0.243% sodium fluoride may promote a healthier composition within the oral bacterial community.

  2. Using Amplicon Sequencing To Characterize and Monitor Bacterial Diversity in Drinking Water Distribution Systems.

    PubMed

    Shaw, Jennifer L A; Monis, Paul; Weyrich, Laura S; Sawade, Emma; Drikas, Mary; Cooper, Alan J

    2015-09-01

    Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Characterization of the bacterial biodiversity in Pico cheese (an artisanal Azorean food).

    PubMed

    Riquelme, Cristina; Câmara, Sandra; Dapkevicius, Maria de Lurdes N Enes; Vinuesa, Pablo; da Silva, Célia Costa Gomes; Malcata, F Xavier; Rego, Oldemiro A

    2015-01-02

    This work presents the first study on the bacterial communities in Pico cheese, a traditional cheese of the Azores (Portugal), made from raw cow's milk. Pyrosequencing of tagged amplicons of the V3-V4 regions of the 16S rDNA and Operational Taxonomic Unit-based (OTU-based) analysis were applied to obtain an overall idea of the microbiota in Pico cheese and to elucidate possible differences between cheese-makers (A, B and C) and maturation times. Pyrosequencing revealed a high bacterial diversity in Pico cheese. Four phyla (Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes) and 54 genera were identified. The predominant genus was Lactococcus (77% of the sequences). Sequences belonging to major cheese-borne pathogens were not found. Staphylococcus accounted for 0.5% of the sequences. Significant differences in bacterial community composition were observed between cheese-maker B and the other two units that participated in the study. However, OTU analysis identified a set of taxa (Lactococcus, Streptococcus, Acinetobacter, Enterococcus, Lactobacillus, Staphylococcus, Rothia, Pantoea and unclassified genera belonging to the Enterobacteriaceae family) that would represent the core components of artisanal Pico cheese microbiota. A diverse bacterial community was present at early maturation, with an increase in the number of phylotypes up to 2 weeks, followed by a decrease at the end of ripening. The most remarkable trend in abundance patterns throughout ripening was an increase in the number of sequences belonging to the Lactobacillus genus, with a concomitant decrease in Acinetobacter, and Stenotrophomonas. Microbial rank abundance curves showed that Pico cheese's bacterial communities are characterized by a few dominant taxa and many low-abundance, highly diverse taxa that integrate the so-called "rare biosphere". Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History.

    PubMed

    Correa-Galeote, David; Bedmar, Eulogio J; Arone, Gregorio J

    2018-01-01

    The bacterial endophytic communities residing within roots of maize ( Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities.

  5. Maize Endophytic Bacterial Diversity as Affected by Soil Cultivation History

    PubMed Central

    Correa-Galeote, David; Bedmar, Eulogio J.; Arone, Gregorio J.

    2018-01-01

    The bacterial endophytic communities residing within roots of maize (Zea mays L.) plants cultivated by a sustainable management in soils from the Quechua maize belt (Peruvian Andes) were examined using tags pyrosequencing spanning the V4 and V5 hypervariable regions of the 16S rRNA. Across four replicate libraries, two corresponding to sequences of endophytic bacteria from long time maize-cultivated soils and the other two obtained from fallow soils, 793 bacterial sequences were found that grouped into 188 bacterial operational taxonomic units (OTUs, 97% genetic similarity). The numbers of OTUs in the libraries from the maize-cultivated soils were significantly higher than those found in the libraries from fallow soils. A mean of 30 genera were found in the fallow soil libraries and 47 were in those from the maize-cultivated soils. Both alpha and beta diversity indexes showed clear differences between bacterial endophytic populations from plants with different soil cultivation history and that the soils cultivated for long time requires a higher diversity of endophytes. The number of sequences corresponding to main genera Sphingomonas, Herbaspirillum, Bradyrhizobium and Methylophilus in the maize-cultivated libraries were statistically more abundant than those from the fallow soils. Sequences of genera Dyella and Sreptococcus were significantly more abundant in the libraries from the fallow soils. Relative abundance of genera Burkholderia, candidatus Glomeribacter, Staphylococcus, Variovorax, Bacillus and Chitinophaga were similar among libraries. A canonical correspondence analysis of the relative abundance of the main genera showed that the four libraries distributed in two clearly separated groups. Our results suggest that cultivation history is an important driver of endophytic colonization of maize and that after a long time of cultivation of the soil the maize plants need to increase the richness of the bacterial endophytes communities. PMID:29662471

  6. Short-Sequence DNA Repeats in Prokaryotic Genomes

    PubMed Central

    van Belkum, Alex; Scherer, Stewart; van Alphen, Loek; Verbrugh, Henri

    1998-01-01

    Short-sequence DNA repeat (SSR) loci can be identified in all eukaryotic and many prokaryotic genomes. These loci harbor short or long stretches of repeated nucleotide sequence motifs. DNA sequence motifs in a single locus can be identical and/or heterogeneous. SSRs are encountered in many different branches of the prokaryote kingdom. They are found in genes encoding products as diverse as microbial surface components recognizing adhesive matrix molecules and specific bacterial virulence factors such as lipopolysaccharide-modifying enzymes or adhesins. SSRs enable genetic and consequently phenotypic flexibility. SSRs function at various levels of gene expression regulation. Variations in the number of repeat units per locus or changes in the nature of the individual repeat sequences may result from recombination processes or polymerase inadequacy such as slipped-strand mispairing (SSM), either alone or in combination with DNA repair deficiencies. These rather complex phenomena can occur with relative ease, with SSM approaching a frequency of 10−4 per bacterial cell division and allowing high-frequency genetic switching. Bacteria use this random strategy to adapt their genetic repertoire in response to selective environmental pressure. SSR-mediated variation has important implications for bacterial pathogenesis and evolutionary fitness. Molecular analysis of changes in SSRs allows epidemiological studies on the spread of pathogenic bacteria. The occurrence, evolution and function of SSRs, and the molecular methods used to analyze them are discussed in the context of responsiveness to environmental factors, bacterial pathogenicity, epidemiology, and the availability of full-genome sequences for increasing numbers of microorganisms, especially those that are medically relevant. PMID:9618442

  7. Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.

    PubMed

    Rani, R Ranjani; Ramyachitra, D

    2016-12-01

    Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Impact of cultivation on characterisation of species composition of soil bacterial communities.

    PubMed

    McCaig, A E.; Grayston, S J.; Prosser, J I.; Glover, L A.

    2001-03-01

    The species composition of culturable bacteria in Scottish grassland soils was investigated using a combination of Biolog and 16S rDNA analysis for characterisation of isolates. The inclusion of a molecular approach allowed direct comparison of sequences from culturable bacteria with sequences obtained during analysis of DNA extracted directly from the same soil samples. Bacterial strains were isolated on Pseudomonas isolation agar (PIA), a selective medium, and on tryptone soya agar (TSA), a general laboratory medium. In total, 12 and 21 morphologically different bacterial cultures were isolated on PIA and TSA, respectively. Biolog and sequencing placed PIA isolates in the same taxonomic groups, the majority of cultures belonging to the Pseudomonas (sensu stricto) group. However, analysis of 16S rDNA sequences proved more efficient than Biolog for characterising TSA isolates due to limitations of the Microlog database for identifying environmental bacteria. In general, 16S rDNA sequences from TSA isolates showed high similarities to cultured species represented in sequence databases, although TSA-8 showed only 92.5% similarity to the nearest relative, Bacillus insolitus. In general, there was very little overlap between the culturable and uncultured bacterial communities, although two sequences, PIA-2 and TSA-13, showed >99% similarity to soil clones. A cloning step was included prior to sequence analysis of two isolates, TSA-5 and TSA-14, and analysis of several clones confirmed that these cultures comprised at least four and three sequence types, respectively. All isolate clones were most closely related to uncultured bacteria, with clone TSA-5.1 showing 99.8% similarity to a sequence amplified directly from the same soil sample. Interestingly, one clone, TSA-5.4, clustered within a novel group comprising only uncultured sequences. This group, which is associated with the novel, deep-branching Acidobacterium capsulatum lineage, also included clones isolated during direct analysis of the same soil and from a wide range of other sample types studied elsewhere. The study demonstrates the value of fine-scale molecular analysis for identification of laboratory isolates and indicates the culturability of approximately 1% of the total population but under a restricted range of media and cultivation conditions.

  9. Transforming clinical microbiology with bacterial genome sequencing.

    PubMed

    Didelot, Xavier; Bowden, Rory; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W

    2012-09-01

    Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.

  10. Transforming clinical microbiology with bacterial genome sequencing

    PubMed Central

    2016-01-01

    Whole genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here we review the current status of clinical microbiology and how it has already begun to be transformed by the use of next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. The application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow. PMID:22868263

  11. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum ATCC 49418(T.).

    PubMed

    Wu, Anson Kk; Kropinski, Andrew M; Lumsden, John S; Dixon, Brian; MacInnes, Janet I

    2015-01-01

    Flavobacterium psychrophilum is the causative agent of bacterial cold water disease and rainbow trout fry mortality syndrome in salmonid fishes and is associated with significant losses in the aquaculture industry. The virulence factors and molecular mechanisms of pathogenesis of F. psychrophilum are poorly understood. Moreover, at the present time, there are no effective vaccines and control using antimicrobial agents is problematic due to growing antimicrobial resistance and the fact that sick fish don't eat. In the hopes of identifying vaccine and therapeutic targets, we sequenced the genome of the type strain ATCC 49418 which was isolated from the kidney of a Coho salmon (Oncorhychus kisutch) in Washington State (U.S.A.) in 1989. The genome is 2,715,909 bp with a G+C content of 32.75%. It contains 6 rRNA operons, 49 tRNA genes, and is predicted to encode 2,329 proteins.

  12. Complete genome sequence of the fish pathogen Flavobacterium psychrophilum ATCC 49418T

    PubMed Central

    2015-01-01

    Flavobacterium psychrophilum is the causative agent of bacterial cold water disease and rainbow trout fry mortality syndrome in salmonid fishes and is associated with significant losses in the aquaculture industry. The virulence factors and molecular mechanisms of pathogenesis of F. psychrophilum are poorly understood. Moreover, at the present time, there are no effective vaccines and control using antimicrobial agents is problematic due to growing antimicrobial resistance and the fact that sick fish don’t eat. In the hopes of identifying vaccine and therapeutic targets, we sequenced the genome of the type strain ATCC 49418 which was isolated from the kidney of a Coho salmon (Oncorhychus kisutch) in Washington State (U.S.A.) in 1989. The genome is 2,715,909 bp with a G+C content of 32.75%. It contains 6 rRNA operons, 49 tRNA genes, and is predicted to encode 2,329 proteins. PMID:25685258

  13. Insights into mechanisms of bacterial antigenic variation derived from the complete genome sequence of Anaplasma marginale.

    PubMed

    Palmer, Guy H; Futse, James E; Knowles, Donald P; Brayton, Kelly A

    2006-10-01

    Persistence of Anaplasma spp. in the animal reservoir host is required for efficient tick-borne transmission of these pathogens to animals and humans. Using A. marginale infection of its natural reservoir host as a model, persistent infection has been shown to reflect sequential cycles in which antigenic variants emerge, replicate, and are controlled by the immune system. Variation in the immunodominant outer-membrane protein MSP2 is generated by a process of gene conversion, in which unique hypervariable region sequences (HVRs) located in pseudogenes are recombined into a single operon-linked msp2 expression site. Although organisms expressing whole HVRs derived from pseudogenes emerge early in infection, long-term persistent infection is dependent on the generation of complex mosaics in which segments from different HVRs recombine into the expression site. The resulting combinatorial diversity generates the number of variants both predicted and shown to emerge during persistence.

  14. The construction of a synthetic Escherichia coli trp promoter and its use in the expression of a synthetic interferon gene.

    PubMed Central

    Windass, J D; Newton, C R; De Maeyer-Guignard, J; Moore, V E; Markham, A F; Edge, M D

    1982-01-01

    An 82 base pair DNA fragment has been synthesised which contains the E. coli trp promoter and operator sequences and also encodes the first Shine Dalgarno sequence of the trp operon. This DNA fragment is flanked by EcoRI and ClaI/TaqI cohesive ends and is thus easy to clone, transfer between vector systems and couple to genes to drive their expression. It has been cloned into plasmid pAT153, producing a convenient trp promoter vector. We have also joined the fragment to a synthetic IFN-alpha 1 gene, using synthetic oligonucleotides to generate a completely natural, highly efficient bacterial translation initiation signal on the promoter proximal side of the IFN gene. Plasmids carrying this construction enable E. coli cells to express IFN-alpha 1 almost constitutively and with significantly higher efficiency than from a lacUV5 promoter based system. Images PMID:6184675

  15. Draft Genome Sequence of Two Strains of Xanthomonas arboricola Isolated from Prunus persica Which Are Dissimilar to Strains That Cause Bacterial Spot Disease on Prunus spp.

    PubMed Central

    Garita-Cambronero, Jerson; Palacio-Bielsa, Ana; López, María M.

    2016-01-01

    The draft genome sequences of two strains of Xanthomonas arboricola, isolated from asymptomatic peach trees in Spain, are reported here. These strains are avirulent and do not belong to the same phylogroup as X. arboricola pv. pruni, a causal agent of bacterial spot disease of stone fruits and almonds. PMID:27609931

  16. Rubrobacter-related bacteria associated with rosy discolouration of masonry and lime wall paintings.

    PubMed

    Schabereiter-Gurtner, C; Piñar, G; Vybiral, D; Lubitz, W; Rölleke, S

    2001-11-01

    A molecular approach was chosen to analyse the correlation between bacterial colonisation and rosy discolouration of masonry and lime wall paintings of two historically important buildings in Austria and Germany. The applied molecular method included PCR amplification of genes encoding the small subunit rRNA of bacteria (16S rDNA), genetic fingerprinting by denaturing gradient gel electrophoresis (DGGE), construction of 16S rDNA clone libraries, and comparative phylogenetic sequence analyses. The bacterial community of one red-pigmented biofilm sampled in Herberstein (Austria) contained bacteria phylogenetically related to the genera Saccharopolyspora, Nocardioides, Pseudonocardia, Rubrobacter, and to a Kineococcus-like bacterium. The bacterial community of the second red-pigmented biofilm sampled in Herberstein contained bacteria related to Arthrobacter, Comamonas, and to Rubrobacter. Rubrobacter-related 16S rDNA sequences were the most abundant. In the red-pigmented biofilm sampled in Burggen (Germany), only Rubrobacter-related bacteria were identified. No Rubrobacter-related bacteria were detected in non-rosy biofilms. The majority of sequences (70%) obtained from the bacterial communities of the three investigated rosy biofilms were related to sequences of the genus Rubrobacter (red-pigmented bacteria), demonstrating a correlation between Rubrobacter-related bacteria and the phenomenon of rosy discolouration of masonry and lime wall paintings.

  17. [Bacterial diversity in sequencing batch biofilm reactor (SBBR) for landfill leachate treatment using PCR-DGGE].

    PubMed

    Xiao, Yong; Yang, Zhao-hui; Zeng, Guang-ming; Ma, Yan-he; Liu, You-sheng; Wang, Rong-juan; Xu, Zheng-yong

    2007-05-01

    For studying the bacterial diversity and the mechanism of denitrification in sequencing bath biofilm reactor (SBBR) treating landfill leachate to provide microbial evidence for technique improvements, total microbial DNA was extracted from samples which were collected from natural landfill leachate and biofilm of a SBBR that could efficiently remove NH4+ -N and COD of high concentration. 16S rDNA fragments were amplified from the total DNA successfully using a pair of universal bacterial 16S rDNA primer, GC341F and 907R, and then were used for denaturing gradient gel electrophoresis (DGGE) analysis. The bands in the gel were analyzed by statistical methods and excided from the gel for sequencing, and the sequences were used for homology analysis and then two phylogenetic trees were constructed using DNAStar software. Results indicated that the bacterial diversity of the biofilm in SBBR and the landfill leachate was abundant, and no obvious change of community structure happened during running in the biofilm, in which most bacteria came from the landfill leachate. There may be three different modes of denitrification in the reactor because several different nitrifying bacteria, denitrifying bacteria and anaerobic ammonia oxidation bacteria coexisted in it. The results provided some valuable references for studying microbiological mechanism of denitrification in SBBR.

  18. Microbial communities and their predicted metabolic characteristics in deep fracture groundwaters of the crystalline bedrock at Olkiluoto, Finland

    NASA Astrophysics Data System (ADS)

    Bomberg, Malin; Lamminmäki, Tiina; Itävaara, Merja

    2016-11-01

    The microbial diversity in oligotrophic isolated crystalline Fennoscandian Shield bedrock fracture groundwaters is high, but the core community has not been identified. Here we characterized the bacterial and archaeal communities in 12 water conductive fractures situated at depths between 296 and 798 m by high throughput amplicon sequencing using the Illumina HiSeq platform. Between 1.7 × 104 and 1.2 × 106 bacterial or archaeal sequence reads per sample were obtained. These sequences revealed that up to 95 and 99 % of the bacterial and archaeal sequences obtained from the 12 samples, respectively, belonged to only a few common species, i.e. the core microbiome. However, the remaining rare microbiome contained over 3- and 6-fold more bacterial and archaeal taxa. The metabolic properties of the microbial communities were predicted using PICRUSt. The approximate estimation showed that the metabolic pathways commonly included fermentation, fatty acid oxidation, glycolysis/gluconeogenesis, oxidative phosphorylation, and methanogenesis/anaerobic methane oxidation, but carbon fixation through the Calvin cycle, reductive TCA cycle, and the Wood-Ljungdahl pathway was also predicted. The rare microbiome is an unlimited source of genomic functionality in all ecosystems. It may consist of remnants of microbial communities prevailing in earlier environmental conditions, but could also be induced again if changes in their living conditions occur.

  19. Complete Sequence of Four Multidrug-Resistant MOBQ1 Plasmids Harboring blaGES-5 Isolated from Escherichia coli and Serratia marcescens Persisting in a Hospital in Canada.

    PubMed

    Boyd, David; Taylor, Geoffrey; Fuller, Jeff; Bryce, Elizabeth; Embree, Joanne; Gravel, Denise; Katz, Kevin; Kibsey, Pamela; Kuhn, Magdalena; Langley, Joanne; Mataseje, Laura; Mitchell, Robyn; Roscoe, Diane; Simor, Andrew; Thomas, Eva; Turgeon, Nathalie; Mulvey, Michael

    2015-06-01

    The usefulness of carbapenems for gram-negative infections is becoming compromised by organisms harboring carbapenemases, enzymes which can hydrolyze the drug. Currently KPC (class A), NDM (class B), and OXA-48 types (class D) are the most globally widespread carbapenemases. However, among the GES-type class A extended-spectrum β-lactamases (ESBLs) there are variants that hydrolyze carbapenems, with blaGES-5 being the most common. Two Escherichia coli and two Serratia marcescens harboring blaGES-5 on plasmids were isolated by the Canadian Nosocomial Infection Surveillance Program (CNISP) from four different patients in a single hospital over a 2-year period. Complete sequencing of the blaGES-5 plasmids indicated that all four had nearly identical backbones consisting of genes for replication, partitioning, and stability, but contained variant accessory regions consisting of mobile elements and antimicrobial resistance genes. The plasmids were of a novel replicon type, but belonged to the MOBQ1 group based on relaxase sequences, and appeared to be mobilizable, but not self-transmissible. Considering the time periods of bacterial isolation, it would appear the blaGES-5 plasmid has persisted in an environmental niche for at least 2 years in the hospital. This has implications for infection control and clinical care when it is transferred to clinically relevant gram-negative organisms.

  20. Dictionary-driven prokaryotic gene finding.

    PubMed

    Shibuya, Tetsuo; Rigoutsos, Isidore

    2002-06-15

    Gene identification, also known as gene finding or gene recognition, is among the important problems of molecular biology that have been receiving increasing attention with the advent of large scale sequencing projects. Previous strategies for solving this problem can be categorized into essentially two schools of thought: one school employs sequence composition statistics, whereas the other relies on database similarity searches. In this paper, we propose a new gene identification scheme that combines the best characteristics from each of these two schools. In particular, our method determines gene candidates among the ORFs that can be identified in a given DNA strand through the use of the Bio-Dictionary, a database of patterns that covers essentially all of the currently available sample of the natural protein sequence space. Our approach relies entirely on the use of redundant patterns as the agents on which the presence or absence of genes is predicated and does not employ any additional evidence, e.g. ribosome-binding site signals. The Bio-Dictionary Gene Finder (BDGF), the algorithm's implementation, is a single computational engine able to handle the gene identification task across distinct archaeal and bacterial genomes. The engine exhibits performance that is characterized by simultaneous very high values of sensitivity and specificity, and a high percentage of correctly predicted start sites. Using a collection of patterns derived from an old (June 2000) release of the Swiss-Prot/TrEMBL database that contained 451 602 proteins and fragments, we demonstrate our method's generality and capabilities through an extensive analysis of 17 complete archaeal and bacterial genomes. Examples of previously unreported genes are also shown and discussed in detail.

  1. Small-Scale Vertical Distribution of Bacterial Biomass and Diversity in Biological Soil Crusts from Arid Lands in the Colorado Plateau

    USGS Publications Warehouse

    Garcia-Pichel, F.; Johnson, S.L.; Youngkin, D.; Belnap, J.

    2003-01-01

    We characterized, at millimeter resolution, bacterial biomass, diversity, and vertical stratification of biological soil crusts in arid lands from the Colorado Plateau. Microscopic counts, extractable DNA, and plate counts of viable aerobic copiotrophs (VAC) revealed that the top centimeter of crusted soils contained atypically large bacterial populations, tenfold larger than those in uncrusted, deeper soils. The plate counts were not always consistent with more direct estimates of microbial biomass. Bacterial populations peaked at the immediate subsurface (1-2 mm) in light-appearing, young crusts, and at the surface (0-1 mm) in well-developed, dark crusts, which corresponds to the location of cyanobacterial populations. Bacterial abundance decreased with depth below these horizons. Spatially resolved DGGE fingerprints of Bacterial 16S rRNA genes demonstrated the presence of highly diverse natural communities, but we could detect neither trends with depth in bacterial richness or diversity, nor a difference in diversity indices between crust types. Fingerprints, however, revealed the presence of marked stratification in the structure of the microbial communities, probably a result of vertical gradients in physicochemical parameters. Sequencing and phylogenetic analyses indicated that most of the naturally occurring bacteria are novel types, with low sequence similarity (83-93%) to those available in public databases. DGGE analyses of the VAC populations indicated communities of lower diversity, with most types having sequences more than 94% similar to those in public databases. Our study indicates that soil crusts represent small-scale mantles of fertility in arid ecosystems, harboring vertically structured, little-known bacterial populations that are not well represented by standard cultivation methods.

  2. Bacterial diversity at different stages of the composting process

    PubMed Central

    2010-01-01

    Background Composting is an aerobic microbiological process that is facilitated by bacteria and fungi. Composting is also a method to produce fertilizer or soil conditioner. Tightened EU legislation now requires treatment of the continuously growing quantities of organic municipal waste before final disposal. However, some full-scale composting plants experience difficulties with the efficiency of biowaste degradation and with the emission of noxious odours. In this study we examine the bacterial species richness and community structure of an optimally working pilot-scale compost plant, as well as a full-scale composting plant experiencing typical problems. Bacterial species composition was determined by isolating total DNA followed by amplifying and sequencing the gene encoding the 16S ribosomal RNA. Results Over 1500 almost full-length 16S rRNA gene sequences were analysed and of these, over 500 were present only as singletons. Most of the sequences observed in either one or both of the composting processes studied here were similar to the bacterial species reported earlier in composts, including bacteria from the phyla Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and Deinococcus-Thermus. In addition, a number of previously undetected bacterial phylotypes were observed. Statistical calculations estimated a total bacterial diversity of over 2000 different phylotypes in the studied composts. Conclusions Interestingly, locally enriched or evolved bacterial variants of familiar compost species were observed in both composts. A detailed comparison of the bacterial diversity revealed a large difference in composts at the species and strain level from the different composting plants. However, at the genus level, the difference was much smaller and illustrated a delay of the composting process in the full-scale, sub-optimally performing plants. PMID:20350306

  3. Sterol Synthesis in Diverse Bacteria.

    PubMed

    Wei, Jeremy H; Yin, Xinchi; Welander, Paula V

    2016-01-01

    Sterols are essential components of eukaryotic cells whose biosynthesis and function has been studied extensively. Sterols are also recognized as the diagenetic precursors of steranes preserved in sedimentary rocks where they can function as geological proxies for eukaryotic organisms and/or aerobic metabolisms and environments. However, production of these lipids is not restricted to the eukaryotic domain as a few bacterial species also synthesize sterols. Phylogenomic studies have identified genes encoding homologs of sterol biosynthesis proteins in the genomes of several additional species, indicating that sterol production may be more widespread in the bacterial domain than previously thought. Although the occurrence of sterol synthesis genes in a genome indicates the potential for sterol production, it provides neither conclusive evidence of sterol synthesis nor information about the composition and abundance of basic and modified sterols that are actually being produced. Here, we coupled bioinformatics with lipid analyses to investigate the scope of bacterial sterol production. We identified oxidosqualene cyclase (Osc), which catalyzes the initial cyclization of oxidosqualene to the basic sterol structure, in 34 bacterial genomes from five phyla (Bacteroidetes, Cyanobacteria, Planctomycetes, Proteobacteria, and Verrucomicrobia) and in 176 metagenomes. Our data indicate that bacterial sterol synthesis likely occurs in diverse organisms and environments and also provides evidence that there are as yet uncultured groups of bacterial sterol producers. Phylogenetic analysis of bacterial and eukaryotic Osc sequences confirmed a complex evolutionary history of sterol synthesis in this domain. Finally, we characterized the lipids produced by Osc-containing bacteria and found that we could generally predict the ability to synthesize sterols. However, predicting the final modified sterol based on our current knowledge of sterol synthesis was difficult. Some bacteria produced demethylated and saturated sterol products even though they lacked homologs of the eukaryotic proteins required for these modifications emphasizing that several aspects of bacterial sterol synthesis are still completely unknown.

  4. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts.

    PubMed

    Webster, Nicole S; Taylor, Michael W; Behnam, Faris; Lücker, Sebastian; Rattei, Thomas; Whalan, Stephen; Horn, Matthias; Wagner, Michael

    2010-08-01

    Marine sponges contain complex bacterial communities of considerable ecological and biotechnological importance, with many of these organisms postulated to be specific to sponge hosts. Testing this hypothesis in light of the recent discovery of the rare microbial biosphere, we investigated three Australian sponges by massively parallel 16S rRNA gene tag pyrosequencing. Here we show bacterial diversity that is unparalleled in an invertebrate host, with more than 250,000 sponge-derived sequence tags being assigned to 23 bacterial phyla and revealing up to 2996 operational taxonomic units (95% sequence similarity) per sponge species. Of the 33 previously described 'sponge-specific' clusters that were detected in this study, 48% were found exclusively in adults and larvae - implying vertical transmission of these groups. The remaining taxa, including 'Poribacteria', were also found at very low abundance among the 135,000 tags retrieved from surrounding seawater. Thus, members of the rare seawater biosphere may serve as seed organisms for widely occurring symbiont populations in sponges and their host association might have evolved much more recently than previously thought. © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts

    PubMed Central

    Webster, Nicole S; Taylor, Michael W; Behnam, Faris; Lücker, Sebastian; Rattei, Thomas; Whalan, Stephen; Horn, Matthias; Wagner, Michael

    2010-01-01

    Marine sponges contain complex bacterial communities of considerable ecological and biotechnological importance, with many of these organisms postulated to be specific to sponge hosts. Testing this hypothesis in light of the recent discovery of the rare microbial biosphere, we investigated three Australian sponges by massively parallel 16S rRNA gene tag pyrosequencing. Here we show bacterial diversity that is unparalleled in an invertebrate host, with more than 250 000 sponge-derived sequence tags being assigned to 23 bacterial phyla and revealing up to 2996 operational taxonomic units (95% sequence similarity) per sponge species. Of the 33 previously described ‘sponge-specific’ clusters that were detected in this study, 48% were found exclusively in adults and larvae – implying vertical transmission of these groups. The remaining taxa, including ‘Poribacteria’, were also found at very low abundance among the 135 000 tags retrieved from surrounding seawater. Thus, members of the rare seawater biosphere may serve as seed organisms for widely occurring symbiont populations in sponges and their host association might have evolved much more recently than previously thought. PMID:21966903

  6. Skipping of exon 27 in C3 gene compromises TED domain and results in complete human C3 deficiency.

    PubMed

    da Silva, Karina Ribeiro; Fraga, Tatiana Rodrigues; Lucatelli, Juliana Faggion; Grumach, Anete Sevciovic; Isaac, Lourdes

    2016-05-01

    Primary deficiency of complement C3 is rare and usually associated with increased susceptibility to bacterial infections. In this work, we investigated the molecular basis of complete C3 deficiency in a Brazilian 9-year old female patient with a family history of consanguinity. Hemolytic assays revealed complete lack of complement-mediated hemolytic activity in the patient's serum. While levels of the complement regulatory proteins Factor I, Factor H and Factor B were normal in the patient's and family members' sera, complement C3 levels were undetectable in the patient's serum and were reduced by at least 50% in the sera of the patient's parents and brother. Additionally, no C3 could be observed in the patient's plasma and cell culture supernatants by Western blot. We also observed that patient's skin fibroblasts stimulated with Escherichia coli LPS were unable to secrete C3, which might be accumulated within the cells before being intracellularly degraded. Sequencing analysis of the patient's C3 cDNA revealed a genetic mutation responsible for the complete skipping of exon 27, resulting in the loss of 99 nucleotides (3450-3549) located in the TED domain. Sequencing of the intronic region between the exons 26 and 27 of the C3 gene (nucleotides 6690313-6690961) showed a nucleotide exchange (T→C) at position 6690626 located in a splicing donor site, resulting in the complete skipping of exon 27 in the C3 mRNA. Copyright © 2016. Published by Elsevier GmbH.

  7. Virulence genes in a probiotic E. coli product with a recorded long history of safe use

    PubMed Central

    Zschüttig, Anke; Beimfohr, Claudia; Geske, Thomas; Auerbach, Christian; Cook, Helen; Zimmermann, Kurt; Gunzer, Florian

    2015-01-01

    The probiotic product Symbioflor2 (DSM 17252) is a bacterial concentrate of six different Escherichia coli genotypes, whose complete genome sequences are compared here, between each other as well as to other E. coli genomes. The genome sequences of Symbioflor2 E. coli components contained a number of virulence-associated genes. Their presence seems to be in conflict with a recorded history of safe use, and with the observed low frequency of adverse effects over a period of more than 6 years. The genome sequences were used to identify unique sequences for each component, for which strain-specific hybridization probes were designed. A colonization study was conducted whereby five volunteers were exposed to an exceptionally high single dose. The results showed that the probiotic E. coli could be detected for 3 months or longer in their stools, and this was in particular the case for those components containing higher numbers of virulence-associated genes. Adverse effects from this long-term colonization were absent. Thus, the presence of the identified virulence genes does not result in a pathogenic phenotype in the genetic background of these probiotic E. coli. PMID:25883796

  8. Characterization of acid-tolerant H/CO-utilizing methanogenic enrichment cultures from an acidic peat bog in New York State.

    PubMed

    Bräuer, Suzanna L; Yashiro, Erika; Ueno, Norikiyo G; Yavitt, Joseph B; Zinder, Stephen H

    2006-08-01

    Two methanogenic cultures were enriched from acidic peat soil using a growth medium buffered to c. pH 5. One culture, 6A, was obtained from peat after incubation with H(2)/CO(2), whereas culture NTA was derived from a 10(-4) dilution of untreated peat into a modified medium. 16S rRNA gene clone libraries from each culture contained one methanogen and two bacterial sequences. The methanogen 16S rRNA gene sequences were 99% identical with each other and belonged to the novel "R-10/Fen cluster" family of the Methanomicrobiales, whereas their mcrA sequences were 96% identical. One bacterial 16S rRNA gene sequence from culture 6A belonged to the Bacteroidetes and showed 99% identity with sequences from methanogenic enrichments from German and Russian bogs. The other sequence belonged to the Firmicutes and was identical to a thick rod-shaped citrate-utilizing organism isolated from culture 6A, the numbers of which decreased when the Ti (III) chelator was switched from citrate to nitrilotriacetate. Bacterial clones from the NTA culture clustered in the Delta- and Betaproteobacteria. Both cultures contained thin rods, presumably the methanogens, as the predominant morphotype, and represent a significant advance in characterization of the novel acidiphilic R-10 family methanogens.

  9. Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China

    PubMed Central

    2013-01-01

    Background Sika deer (Cervus nippon) have different dietary preferences to other ruminants and are tolerant to tannin-rich plants. Because the rumen bacteria in domestic Sika deer have not been comprehensively studied, it is important to investigate its rumen bacterial population in order to understand its gut health and to improve the productivity of domestic Sika deer. Results The rumen bacterial diversity in domestic Sika deer (Cervus nippon) fed oak leaves- (OL group) and corn stalks-based diets (CS group) were elucidated using 16S rRNA gene libraries and denaturing gradient gel electrophoresis (DGGE). Overall, 239 sequences were examined from the two groups, 139 clones from the OL group were assigned to 57 operational taxonomic units (OTUs) and 100 sequences from the CS group were divided into 50 OTUs. Prevotella-like sequences belonging to the phylum Bacteroidetes were the dominant bacteria in both groups (97.2% OL and 77% CS), and sequences related to Prevotella brevis were present in both groups. However, Prevotella shahii-like, Prevotella veroralis-like, Prevotella albensis-like, and Prevotella salivae-like sequences were abundant in the OL group compared to those in the CS group, while Succinivibrio dextrinosolvens-like and Prevotella ruminicola-like sequences were prevalent in the CS group. PCR-DGGE showed that bacterial communities clustered with respect to diets and the genus Prevotella was the dominant bacteria in the rumen of domestic Sika deer. However, the distribution of genus Prevotella from two groups was apparent. In addition, other fibrolytic bacteria, such as Clostridium populeti and Eubacterium cellulosolvens were found in the rumen of domestic Sika deer. Conclusions The rumen of domestic Sika deer harbored unique bacteria which may represent novel species. The bacterial composition appeared to be affected by diet, and sequences related to Prevotella spp. may represent new species that may be related to the degradation of fiber biomass or tannins. Moreover, the mechanism and biological functions of Prevotella spp. in the rumen ecosystem, and synergistic interactions with other microorganisms should be noticed. PMID:23834656

  10. Molecular diversity of rumen bacterial communities from tannin-rich and fiber-rich forage fed domestic Sika deer (Cervus nippon) in China.

    PubMed

    Li, Zhi Peng; Liu, Han Lu; Li, Guang Yu; Bao, Kun; Wang, Kai Ying; Xu, Chao; Yang, Yi Feng; Yang, Fu He; Wright, André-Denis G

    2013-07-08

    Sika deer (Cervus nippon) have different dietary preferences to other ruminants and are tolerant to tannin-rich plants. Because the rumen bacteria in domestic Sika deer have not been comprehensively studied, it is important to investigate its rumen bacterial population in order to understand its gut health and to improve the productivity of domestic Sika deer. The rumen bacterial diversity in domestic Sika deer (Cervus nippon) fed oak leaves- (OL group) and corn stalks-based diets (CS group) were elucidated using 16S rRNA gene libraries and denaturing gradient gel electrophoresis (DGGE). Overall, 239 sequences were examined from the two groups, 139 clones from the OL group were assigned to 57 operational taxonomic units (OTUs) and 100 sequences from the CS group were divided into 50 OTUs. Prevotella-like sequences belonging to the phylum Bacteroidetes were the dominant bacteria in both groups (97.2% OL and 77% CS), and sequences related to Prevotella brevis were present in both groups. However, Prevotella shahii-like, Prevotella veroralis-like, Prevotella albensis-like, and Prevotella salivae-like sequences were abundant in the OL group compared to those in the CS group, while Succinivibrio dextrinosolvens-like and Prevotella ruminicola-like sequences were prevalent in the CS group. PCR-DGGE showed that bacterial communities clustered with respect to diets and the genus Prevotella was the dominant bacteria in the rumen of domestic Sika deer. However, the distribution of genus Prevotella from two groups was apparent. In addition, other fibrolytic bacteria, such as Clostridium populeti and Eubacterium cellulosolvens were found in the rumen of domestic Sika deer. The rumen of domestic Sika deer harbored unique bacteria which may represent novel species. The bacterial composition appeared to be affected by diet, and sequences related to Prevotella spp. may represent new species that may be related to the degradation of fiber biomass or tannins. Moreover, the mechanism and biological functions of Prevotella spp. in the rumen ecosystem, and synergistic interactions with other microorganisms should be noticed.

  11. Molecular tools to track bacteria responsible for fuel deterioration and microbiologically influenced corrosion.

    PubMed

    Suflita, Joseph M; Aktas, Deniz F; Oldham, Athenia L; Perez-Ibarra, Beatriz Monica; Duncan, Kathleen

    2012-01-01

    Investigating the susceptibility of various fuels to anaerobic biodegradation has become complicated with the recognition that the fuels themselves are not sterile. Bacterial DNA could be obtained when various fuels were filtered through a hydrophobic teflon (0.22 μm) membrane filter. Bacterial 16S rRNA genes from these preparations were PCR amplified, cloned, and the resulting libraries sequenced to identify the fuel-borne bacterial communities. The most common sequence, found in algal- and camelina-based biofuels as well as in ultra-low sulfur diesel (ULSD) and F76 diesel, was similar to that of a Tumebacillus. The next most common sequence was similar to Methylobacterium and was found in the biofuels and ULSD. Higher level phylogenetic groups included representatives of the Firmicutes (Bacillus, Lactobacillus and Streptococcus), several Actinobacteria, Deinococcus-Thermus, Chloroflexi, Cyanobacteria, Bacteroidetes, Alphaproteobacteria (Methylobacterium and Sphingomonadales), Betaproteobacteria (Oxalobacteraceae and Burkholderiales) and Deltaproteobacteria. All of the fuel-associated bacterial sequences, except those obtained from a few facultative microorganisms, were from aerobes and only remotely affiliated with sequences that resulted from anaerobic successional events evident when ULSD was incubated with a coastal seawater and sediment inoculum. Thus, both traditional and alternate fuel formulations harbor a characteristic microflora, but these microorganisms contributed little to the successional patterns that ultimately resulted in fuel decomposition, sulfide formation and metal biocorrosion. The findings illustrate the value of molecular approaches to track the fate of bacteria that might come in contact with fuels and potentially contribute to corrosion problems throughout the energy value chain.

  12. Long-term storage and safe retrieval of DNA from microorganisms for molecular analysis using FTA matrix cards.

    PubMed

    Rajendram, D; Ayenza, R; Holder, F M; Moran, B; Long, T; Shah, H N

    2006-12-01

    We assessed the potential use of Whatman FTA paper as a device for archiving and long-term storage of bacterial cell suspensions of over 400 bacterial strains representing 61 genera, the molecular applications of immobilised DNA on FTA paper, and tested its microbial inactivation properties. The FTA paper extracted bacterial DNA is of sufficiently high quality to successfully carryout the molecular detection of several key genes including 16S rRNA, esp (Enterococcus surface protein), Bft (Bacteroides fragilis enterotoxin) and por (porin protein) by PCR and for DNA fingerprinting by random amplified polymorphic DNA-PCR (RAPD-PCR). To test the long-term stability of the FTA immobilised DNA, 100 of the 400 archived bacterial samples were randomly selected following 3 years of storage at ambient temperature and PCR amplification was used to monitor its success. All of the 100 samples were successfully amplified using the 16S rDNA gene as a target and confirmed by DNA sequencing. Furthermore, the DNA was eluted into solution from the FTA cards using a new alkaline elution procedure for evaluation by real-time PCR-based assays. The viability of cells retained on the FTA cards varied among broad groups of bacteria. For the more fragile gram-negative species, no viable cells were retained even at high cell densities of between 10(7) and 10(8) colony forming units (cfu) ml(-1), and for the most robust species such as spore-formers and acid-fast bacteria, complete inactivation was achieved at cell densities ranging between 10(1) and 10(4) cfu ml(-1). The inactivation of bacterial cells on FTA cards suggest that this is a safe medium for the storage and transport of bacterial nucleic acids.

  13. Long-Term Nitrogen Amendment Alters the Diversity and Assemblage of Soil Bacterial Communities in Tallgrass Prairie

    PubMed Central

    Todd, Timothy C.; Blair, John M.; Herman, Michael A.

    2013-01-01

    Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires) and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs) experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion). The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have important implications for both managed and natural grassland ecosystems. PMID:23840782

  14. Seasonal changes in the digesta-adherent rumen bacterial communities of dairy cattle grazing pasture.

    PubMed

    Noel, Samantha J; Attwood, Graeme T; Rakonjac, Jasna; Moon, Christina D; Waghorn, Garry C; Janssen, Peter H

    2017-01-01

    The complex microbiota that resides within the rumen is responsible for the break-down of plant fibre. The bacteria that attach to ingested plant matter within the rumen are thought to be responsible for initial fibre degradation. Most studies examining the ecology of this important microbiome only offer a 'snapshot' in time. We monitored the diversity of rumen bacteria in four New Zealand dairy cows, grazing a rye-grass and clover pasture over five consecutive seasons, using high throughput pyrosequencing of bacterial 16S rRNA genes. We chose to focus on the digesta-adherent bacterial community to learn more about the stability of this community over time. 16S rRNA gene sequencing showed a high level of bacterial diversity, totalling 1539 operational taxonomic units (OTUs, grouped at 96% sequence similarity) across all samples, and ranging from 653 to 926 OTUs per individual sample. The nutritive composition of the pasture changed with the seasons as did the production phase of the animals. Sequence analysis showed that, overall, the bacterial communities were broadly similar between the individual animals. The adherent bacterial community was strongly dominated by members of Firmicutes (82.1%), followed by Bacteroidetes (11.8%). This community differed between the seasons, returning to close to that observed in the same season one year later. These seasonal differences were only small, but were statistically significant (p < 0.001), and were probably due to the seasonal differences in the diet. These results demonstrate a general invariability of the ruminal bacterial community structure in these grazing dairy cattle.

  15. Seasonal changes in the digesta-adherent rumen bacterial communities of dairy cattle grazing pasture

    PubMed Central

    Attwood, Graeme T.; Rakonjac, Jasna; Moon, Christina D.; Waghorn, Garry C.; Janssen, Peter H.

    2017-01-01

    The complex microbiota that resides within the rumen is responsible for the break-down of plant fibre. The bacteria that attach to ingested plant matter within the rumen are thought to be responsible for initial fibre degradation. Most studies examining the ecology of this important microbiome only offer a ‘snapshot’ in time. We monitored the diversity of rumen bacteria in four New Zealand dairy cows, grazing a rye-grass and clover pasture over five consecutive seasons, using high throughput pyrosequencing of bacterial 16S rRNA genes. We chose to focus on the digesta-adherent bacterial community to learn more about the stability of this community over time. 16S rRNA gene sequencing showed a high level of bacterial diversity, totalling 1539 operational taxonomic units (OTUs, grouped at 96% sequence similarity) across all samples, and ranging from 653 to 926 OTUs per individual sample. The nutritive composition of the pasture changed with the seasons as did the production phase of the animals. Sequence analysis showed that, overall, the bacterial communities were broadly similar between the individual animals. The adherent bacterial community was strongly dominated by members of Firmicutes (82.1%), followed by Bacteroidetes (11.8%). This community differed between the seasons, returning to close to that observed in the same season one year later. These seasonal differences were only small, but were statistically significant (p < 0.001), and were probably due to the seasonal differences in the diet. These results demonstrate a general invariability of the ruminal bacterial community structure in these grazing dairy cattle. PMID:28296930

  16. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants

    PubMed Central

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant’s growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species. PMID:26974817

  17. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    PubMed

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  18. The unusual S locus of Leavenworthia is composed of two sets of paralogous loci.

    PubMed

    Chantha, Sier-Ching; Herman, Adam C; Castric, Vincent; Vekemans, Xavier; Marande, William; Schoen, Daniel J

    2017-12-01

    The Leavenworthia self-incompatibility locus (S locus) consists of paralogs (Lal2, SCRL) of the canonical Brassicaceae S locus genes (SRK, SCR), and is situated in a genomic position that differs from the ancestral one in the Brassicaceae. Unexpectedly, in a small number of Leavenworthia alabamica plants examined, sequences closely resembling exon 1 of SRK have been found, but the function of these has remained unclear. BAC cloning and expression analyses were employed to characterize these SRK-like sequences. An SRK-positive Bacterial Artificial Chromosome clone was found to contain complete SRK and SCR sequences located close by one another in the derived genomic position of the Leavenworthia S locus, and in place of the more typical Lal2 and SCRL sequences. These sequences are expressed in stigmas and anthers, respectively, and crossing data show that the SRK/SCR haplotype is functional in self-incompatibility. Population surveys indicate that < 5% of Leavenworthia S loci possess such alleles. An ancestral translocation or recombination event involving SRK/SCR and Lal2/SCRL likely occurred, together with neofunctionalization of Lal2/SCRL, and both haplotype groups now function as Leavenworthia S locus alleles. These findings suggest that S locus alleles can have distinctly different evolutionary origins. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Assembly: a resource for assembled genomes at NCBI

    PubMed Central

    Kitts, Paul A.; Church, Deanna M.; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G.; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D.; Pruitt, Kim D.; Kimchi, Avi

    2016-01-01

    The NCBI Assembly database (www.ncbi.nlm.nih.gov/assembly/) provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  20. Culturable populations of Acinetobacter can promptly respond to contamination by alkanes in mangrove sediments.

    PubMed

    Rocha, Lidianne L; Colares, Geórgia B; Angelim, Alysson L; Grangeiro, Thalles B; Melo, Vânia M M

    2013-11-15

    This study evaluated the potential of bacterial isolates from mangrove sediments to degrade hexadecane, an paraffin hydrocarbon that is a large constituent of diesel and automobile lubricants. From a total of 18 oil-degrading isolates obtained by an enrichment technique, four isolates showed a great potential to degrade hexadecane. The strain MSIC01, which was identified by 16S rRNA gene sequencing as Acinetobacter sp., showed the best performance in degrading this hydrocarbon, being capable of completely degrading 1% (v/v) hexadecane within 48 h without releasing biosurfactants. Its hydrophobic surface probably justifies its potential to degrade high concentrations of hexadecane. Thus, the sediments from the studied mangrove harbour bacterial communities that are able to use oil as a carbon source, which is a particularly interesting feature due to the risk of oil spills in coastal areas. Moreover, Acinetobacter sp. MSIC01 emerged as a promising candidate for applications in bioremediation of contaminated mangrove sediments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Interaction of organic carbon, reduced sulphur and nitrate in anaerobic baffled reactor for fresh leachate treatment.

    PubMed

    Yin, Zhixuan; Xie, Li; Khanal, Samir Kumar; Zhou, Qi

    2016-01-01

    Interaction of organic carbon, reduced sulphur and nitrate was examined using anaerobic baffled reactor for fresh leachate treatment by supplementing nitrate and/or sulphide to compartment 3. Nitrate was removed completely throughout the study mostly via denitrification (>80%) without nitrite accumulation. Besides carbon source, various reduced sulphur (e.g. sulphide, elemental sulphur and organic sulphur) could be involved in the nitrate reduction process via sulphur-based autotrophic denitrification when dissolved organic carbon/nitrate ratio decreased below 1.6. High sulphide concentration not only stimulated autotrophic denitrification, but it also inhibited heterotrophic denitrification, resulting in a shift (11-20%) from heterotrophic denitrification to dissimilatory nitrate reduction to ammonia. High-throughput 16S rRNA gene sequencing analysis further confirmed that sulphur-oxidizing nitrate-reducing bacteria were stimulated with increase in the proportion of bacterial population from 18.6% to 27.2% by high sulphide concentration, meanwhile, heterotrophic nitrate-reducing bacteria and fermentative bacteria were inhibited with 25.5% and 66.6% decrease in the bacterial population.

  2. Impact of treated wastewater for irrigation on soil microbial communities.

    PubMed

    Ibekwe, A M; Gonzalez-Rubio, A; Suarez, D L

    2018-05-01

    The use of treated wastewater (TWW) for irrigation has been suggested as an alternative to use of fresh water because of the increasing scarcity of fresh water in arid and semiarid regions of the world. However, significant barriers exist to widespread adoption due to some potential contaminants that may have adverse effects on soil quality and or public health. In this study, we investigated the abundance and diversity of bacterial communities and the presence of potential pathogenic bacterial sequences in TWW in comparison to synthetic fresh water (SFW) using pyrosequencing. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity and abundance of different bacterial groups in TWW irrigated soils to soils treated with SFW. Shannon diversity index values (H') suggest that microbial diversity was not significantly different (P<0.086) between soils with TWW and SFW. Pyrosequencing detected sequences of 17 bacterial phyla with Proteobacteria (32.1%) followed by Firmicutes (26.5%) and Actinobacteria (14.3%). Most of the sequences associated with nitrifying bacteria, nitrogen-fixing bacteria, carbon degraders, denitrifying bacteria, potential pathogens, and fecal indicator bacteria were more abundant in TWW than in SFW. Therefore, TWW effluent may contain bacterial that may be very active in many soil functions as well as some potential pathogens. Published by Elsevier B.V.

  3. Potential use of bacterial community succession for estimating post-mortem interval as revealed by high-throughput sequencing

    PubMed Central

    Guo, Juanjuan; Fu, Xiaoliang; Liao, Huidan; Hu, Zhenyu; Long, Lingling; Yan, Weitao; Ding, Yanjun; Zha, Lagabaiyila; Guo, Yadong; Yan, Jie; Chang, Yunfeng; Cai, Jifeng

    2016-01-01

    Decomposition is a complex process involving the interaction of both biotic and abiotic factors. Microbes play a critical role in the process of carrion decomposition. In this study, we analysed bacterial communities from live rats and rat remains decomposed under natural conditions, or excluding sarcosaphagous insect interference, in China using Illumina MiSeq sequencing of 16S rRNA gene amplicons. A total of 1,394,842 high-quality sequences and 1,938 singleton operational taxonomic units were obtained. Bacterial communities showed notable variation in relative abundance and became more similar to each other across body sites during the decomposition process. As decomposition progressed, Proteobacteria (mostly Gammaproteobacteria) became the predominant phylum in both the buccal cavity and rectum, while Firmicutes and Bacteroidetes in the mouth and rectum, respectively, gradually decreased. In particular, the arrival and oviposition of sarcosaphagous insects had no obvious influence on bacterial taxa composition, but accelerated the loss of biomass. In contrast to the rectum, the microbial community structure in the buccal cavity of live rats differed considerably from that of rats immediately after death. Although this research indicates that bacterial communities can be used as a “microbial clock” for the estimation of post-mortem interval, further work is required to better understand this concept. PMID:27052375

  4. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables.

    PubMed

    Jackson, Colin R; Randolph, Kevin C; Osborn, Shelly L; Tyler, Heather L

    2013-12-01

    Plants harbor a diverse bacterial community, both as epiphytes on the plant surface and as endophytes within plant tissue. While some plant-associated bacteria act as plant pathogens or promote plant growth, others may be human pathogens. The aim of the current study was to determine the bacterial community composition of organic and conventionally grown leafy salad vegetables at the point of consumption using both culture-dependent and culture-independent methods. Total culturable bacteria on salad vegetables ranged from 8.0 × 10(3) to 5.5 × 10(8) CFU g(-1). The number of culturable endophytic bacteria from surface sterilized plants was significantly lower, ranging from 2.2 × 10(3) to 5.8 × 10(5) CFU g(-1). Cultured isolates belonged to six major bacterial phyla, and included representatives of Pseudomonas, Pantoea, Chryseobacterium, and Flavobacterium. Eleven different phyla and subphyla were identified by culture-independent pyrosequencing, with Gammaproteobacteria, Betaproteobacteria, and Bacteroidetes being the most dominant lineages. Other bacterial lineages identified (e.g. Firmicutes, Alphaproteobacteria, Acidobacteria, and Actinobacteria) typically represented less than 1% of sequences obtained. At the genus level, sequences classified as Pseudomonas were identified in all samples and this was often the most prevalent genus. Ralstonia sequences made up a greater portion of the community in surface sterilized than non-surface sterilized samples, indicating that it was largely endophytic, while Acinetobacter sequences appeared to be primarily associated with the leaf surface. Analysis of molecular variance indicated there were no significant differences in bacterial community composition between organic versus conventionally grown, or surface-sterilized versus non-sterilized leaf vegetables. While culture-independent pyrosequencing identified significantly more bacterial taxa, the dominant taxa from pyrosequence data were also detected by traditional culture-dependent methods. The use of pyrosequencing allowed for the identification of low abundance bacteria in leaf salad vegetables not detected by culture-dependent methods. The presence of a range of bacterial populations as endophytes presents an interesting phenomenon as these microorganisms cannot be removed by washing and are thus ingested during salad consumption.

  5. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables

    PubMed Central

    2013-01-01

    Background Plants harbor a diverse bacterial community, both as epiphytes on the plant surface and as endophytes within plant tissue. While some plant-associated bacteria act as plant pathogens or promote plant growth, others may be human pathogens. The aim of the current study was to determine the bacterial community composition of organic and conventionally grown leafy salad vegetables at the point of consumption using both culture-dependent and culture-independent methods. Results Total culturable bacteria on salad vegetables ranged from 8.0 × 103 to 5.5 × 108 CFU g-1. The number of culturable endophytic bacteria from surface sterilized plants was significantly lower, ranging from 2.2 × 103 to 5.8 × 105 CFU g-1. Cultured isolates belonged to six major bacterial phyla, and included representatives of Pseudomonas, Pantoea, Chryseobacterium, and Flavobacterium. Eleven different phyla and subphyla were identified by culture-independent pyrosequencing, with Gammaproteobacteria, Betaproteobacteria, and Bacteroidetes being the most dominant lineages. Other bacterial lineages identified (e.g. Firmicutes, Alphaproteobacteria, Acidobacteria, and Actinobacteria) typically represented less than 1% of sequences obtained. At the genus level, sequences classified as Pseudomonas were identified in all samples and this was often the most prevalent genus. Ralstonia sequences made up a greater portion of the community in surface sterilized than non-surface sterilized samples, indicating that it was largely endophytic, while Acinetobacter sequences appeared to be primarily associated with the leaf surface. Analysis of molecular variance indicated there were no significant differences in bacterial community composition between organic versus conventionally grown, or surface-sterilized versus non-sterilized leaf vegetables. While culture-independent pyrosequencing identified significantly more bacterial taxa, the dominant taxa from pyrosequence data were also detected by traditional culture-dependent methods. Conclusions The use of pyrosequencing allowed for the identification of low abundance bacteria in leaf salad vegetables not detected by culture-dependent methods. The presence of a range of bacterial populations as endophytes presents an interesting phenomenon as these microorganisms cannot be removed by washing and are thus ingested during salad consumption. PMID:24289725

  6. The Comprehensive Microbial Resource.

    PubMed

    Peterson, J D; Umayam, L A; Dickinson, T; Hickey, E K; White, O

    2001-01-01

    One challenge presented by large-scale genome sequencing efforts is effective display of uniform information to the scientific community. The Comprehensive Microbial Resource (CMR) contains robust annotation of all complete microbial genomes and allows for a wide variety of data retrievals. The bacterial information has been placed on the Web at http://www.tigr.org/CMR for retrieval using standard web browsing technology. Retrievals can be based on protein properties such as molecular weight or hydrophobicity, GC-content, functional role assignments and taxonomy. The CMR also has special web-based tools to allow data mining using pre-run homology searches, whole genome dot-plots, batch downloading and traversal across genomes using a variety of datatypes.

  7. The Human Microbiome and Understanding the 16S rRNA Gene in Translational Nursing Science.

    PubMed

    Ames, Nancy J; Ranucci, Alexandra; Moriyama, Brad; Wallen, Gwenyth R

    As more is understood regarding the human microbiome, it is increasingly important for nurse scientists and healthcare practitioners to analyze these microbial communities and their role in health and disease. 16S rRNA sequencing is a key methodology in identifying these bacterial populations that has recently transitioned from use primarily in research to having increased utility in clinical settings. The objectives of this review are to (a) describe 16S rRNA sequencing and its role in answering research questions important to nursing science; (b) provide an overview of the oral, lung, and gut microbiomes and relevant research; and (c) identify future implications for microbiome research and 16S sequencing in translational nursing science. Sequencing using the 16S rRNA gene has revolutionized research and allowed scientists to easily and reliably characterize complex bacterial communities. This type of research has recently entered the clinical setting, one of the best examples involving the use of 16S sequencing to identify resistant pathogens, thereby improving the accuracy of bacterial identification in infection control. Clinical microbiota research and related requisite methods are of particular relevance to nurse scientists-individuals uniquely positioned to utilize these techniques in future studies in clinical settings.

  8. Differences in community composition of bacteria in four glaciers in western China

    NASA Astrophysics Data System (ADS)

    An, L. Z.; Chen, Y.; Xiang, S.-R.; Shang, T.-C.; Tian, L.-D.

    2010-06-01

    Microbial community patterns vary in glaciers worldwide, presenting unique responses to global climatic and environmental changes. Four bacterial clone libraries were established by 16S rRNA gene amplification from four ice layers along the 42-m-long ice core MuztB drilled from the Muztag Ata Glacier. A total of 151 bacterial sequences obtained from the ice core MuztB were phylogenetically compared with the 71 previously reported sequences from three ice cores extracted from ice caps Malan, Dunde, and Puruogangri. Six phylogenetic clusters Flavisolibacter, Flexibacter (Bacteroidetes), Acinetobacter, Enterobacter (Gammaproteobacteria), Planococcus/Anoxybacillus (Firmicutes), and Propionibacter/Luteococcus (Actinobacteria) frequently occurred along the Muztag Ata Glacier profile, and their proportion varied by seasons. Sequence analysis showed that most of the sequences from the ice core clustered with those from cold environments, and the sequence clusters from the same glacier more closely grouped together than those from the geographically isolated glaciers. Moreover, bacterial communities from the same location or similarly aged ice formed a cluster, and were clearly separate from those from other geographically isolated glaciers. In summary, the findings provide preliminary evidence of zonal distribution of microbial community, and suggest biogeography of microorganisms in glacier ice.

  9. Differences in community composition of bacteria in four deep ice sheets in western China

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, Y.; Xiang, S.-R.; Shang, T.-C.; Tian, L.-De

    2010-02-01

    Microbial community patterns vary in glaciers world wide, presenting unique responses to global climatic and environmental changes. Four bacterial clone libraries were established by 16S rRNA gene amplification from four ice layers along the 42-m-long ice core MuztB drilled from the Muztag Ata Glacier. A total of 152 bacterial sequences obtained from the ice core MuztB were phylogenetically compared with the 71 previously reported sequences from three ice cores extracted from ice caps Malan, Dunde, and Puruoganri. The six functional clusters Flavisolibacter, Flexibacter (Bacteroidetes), Acinetobacter, Enterobacter (Gammaproteobacteria), Planococcus/Anoxybacillus (Firmicutes), and Propionibacter/Luteococcus (Actinobacteria) frequently occurred along the Muztag Ata Glacier profile. Sequence analysis showed that most of the sequences from the ice core clustered with those from cold environments, and the sequences from the same glacier formed a distinct cluster. Moreover, bacterial communities from the same location or similarly aged ice formed a cluster, and were clearly separate from those from other geographically isolated glaciers. In a summary, the findings provide preliminary evidence of zone distribution of microbial community, support our hypothesis of the spatial and temporal biogeography of microorganisms in glacial ice.

  10. Microbial Characterization of Qatari Barchan Sand Dunes

    PubMed Central

    Chatziefthimiou, Aspassia D.; Nguyen, Hanh; Richer, Renee; Louge, Michel; Sultan, Ali A.; Schloss, Patrick; Hay, Anthony G.

    2016-01-01

    This study represents the first characterization of sand microbiota in migrating barchan sand dunes. Bacterial communities were studied through direct counts and cultivation, as well as 16S rRNA gene and metagenomic sequence analysis to gain an understanding of microbial abundance, diversity, and potential metabolic capabilities. Direct on-grain cell counts gave an average of 5.3 ± 0.4 x 105 cells g-1 of sand. Cultured isolates (N = 64) selected for 16S rRNA gene sequencing belonged to the phyla Actinobacteria (58%), Firmicutes (27%) and Proteobacteria (15%). Deep-sequencing of 16S rRNA gene amplicons from 18 dunes demonstrated a high relative abundance of Proteobacteria, particularly enteric bacteria, and a dune-specific-pattern of bacterial community composition that correlated with dune size. Shotgun metagenome sequences of two representative dunes were analyzed and found to have similar relative bacterial abundance, though the relative abundances of eukaryotic, viral and enterobacterial sequences were greater in sand from the dune closer to a camel-pen. Functional analysis revealed patterns similar to those observed in desert soils; however, the increased relative abundance of genes encoding sporulation and dormancy are consistent with the dune microbiome being well-adapted to the exceptionally hyper-arid Qatari desert. PMID:27655399

  11. FrameD: A flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequences.

    PubMed

    Schiex, Thomas; Gouzy, Jérôme; Moisan, Annick; de Oliveira, Yannick

    2003-07-01

    We describe FrameD, a program that predicts coding regions in prokaryotic and matured eukaryotic sequences. Initially targeted at gene prediction in bacterial GC rich genomes, the gene model used in FrameD also allows to predict genes in the presence of frameshifts and partially undetermined sequences which makes it also very suitable for gene prediction and frameshift correction in unfinished sequences such as EST and EST cluster sequences. Like recent eukaryotic gene prediction programs, FrameD also includes the ability to take into account protein similarity information both in its prediction and its graphical output. Its performances are evaluated on different bacterial genomes. The web site (http://genopole.toulouse.inra.fr/bioinfo/FrameD/FD) allows direct prediction, sequence correction and translation and the ability to learn new models for new organisms.

  12. Detection of Low-Copy-Number Genomic DNA Sequences in Individual Bacterial Cells by Using Peptide Nucleic Acid-Assisted Rolling-Circle Amplification and Fluorescence In Situ Hybridization▿ †

    PubMed Central

    Smolina, Irina; Lee, Charles; Frank-Kamenetskii, Maxim

    2007-01-01

    An approach is proposed for in situ detection of short signature DNA sequences present in single copies per bacterial genome. The site is locally opened by peptide nucleic acids, and a circular oligonucleotide is assembled. The amplicon generated by rolling circle amplification is detected by hybridization with fluorescently labeled decorator probes. PMID:17293504

  13. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus.

    PubMed

    Kellogg, Christina A; Ross, Steve W; Brooke, Sandra D

    2016-01-01

    Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus . Samples from five colonies of P. placomus were collected from Baltimore Canyon (379-382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68-90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas , which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  14. Characterisation of the bacterial community structures in the intestine of Lampetra morii.

    PubMed

    Li, Yingying; Xie, Wenfang; Li, Qingwei

    2016-07-01

    The metagenomic analysis and 16S rDNA sequencing method were used to investigate the bacterial community in the intestines of Lampetra morii. The bacterial community structure in L. morii intestine was relatively simple. Eight different operational taxonomic units were observed. Chitinophagaceae_unclassified (26.5 %) and Aeromonas spp. (69.6 %) were detected as dominant members at the genus level. The non-dominant genera were as follows: Acinetobacter spp. (1.4 %), Candidatus Bacilloplasma (2.5 %), Enterobacteria spp. (1.5 %), Shewanella spp. (0.04 %), Vibrio spp. (0.09 %), and Yersinia spp. (1.8 %). The Shannon-Wiener (H) and Simpson (1-D) indexes were 0.782339 and 0.5546, respectively. The rarefaction curve representing the bacterial community richness and Shannon-Wiener curve representing the bacterial community diversity reached asymptote, which indicated that the sequence depth were sufficient to represent the majority of species richness and bacterial community diversity. The number of Aeromonas in lamprey intestine was two times higher after stimulation by lipopolysaccharide than PBS. This study provides data for understanding the bacterial community harboured in lamprey intestines and exploring potential key intestinal symbiotic bacteria essential for the L. morii immune response.

  15. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    USGS Publications Warehouse

    Kellogg, Christina A.; Ross, Steve W.; Brooke, Sandra D.

    2016-01-01

    Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth) in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each) and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomuscolonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomusdoes not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  16. New Paenibacillus larvae bacterial isolates from honey bee colonies infected with American foulbrood disease in Egypt.

    PubMed

    Masry, Saad Hamdy Daif; Kabeil, Sanaa Soliman; Hafez, Elsayed Elsayed

    2014-03-04

    The American foulbrood disease is widely distributed all over the world and causes a serious problem for the honeybee industry. Different infected larvae were collected from different apiaries, ground in phosphate saline buffer (PSB) and bacterial isolation was carried out on nutrient agar medium. Different colonies were observed and were characterized biologically. Two bacterial isolates (SH11 and SH33) were subjected to molecular identification using 16S rRNA gene and the sequence analysis revealed that the two isolates are Paenibacillus larvae with identity not exceeding 83%. The DNA sequence alignment between the other P. larvae bacterial strains and the two identified bacterial isolates showed that all the examined bacterial strains have the same ancestor, i.e. they have the same origin. The SH33 isolate was closely related to the P. larvae isolated from Germany, whereas the isolate SH11 was close to the P. larvae isolated from India. The phylogenetic tree constructed for 20 different Bacillus sp. and the two isolates SH11 and SH33 demonstrated that the two isolates are Bacillus sp. and they are new isolates. The bacterial isolates will be subjected to more tests for more confirmations.

  17. Code-assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene

    USDA-ARS?s Scientific Manuscript database

    Transcription activator-like (TAL) effectors found in Xanthomonas spp. promote bacterial growth and plant susceptibility by binding specific DNA sequences or, effector-binding elements (EBEs), and inducing host gene expression. In this study, we have found substantially different transcriptional pro...

  18. Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area

    NASA Astrophysics Data System (ADS)

    Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua

    2017-10-01

    Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.

  19. Crossroads between Bacterial and Mammalian Glycosyltransferases

    PubMed Central

    Brockhausen, Inka

    2014-01-01

    Bacterial glycosyltransferases (GT) often synthesize the same glycan linkages as mammalian GT; yet, they usually have very little sequence identity. Nevertheless, enzymatic properties, folding, substrate specificities, and catalytic mechanisms of these enzyme proteins may have significant similarity. Thus, bacterial GT can be utilized for the enzymatic synthesis of both bacterial and mammalian types of complex glycan structures. A comparison is made here between mammalian and bacterial enzymes that synthesize epitopes found in mammalian glycoproteins, and those found in the O antigens of Gram-negative bacteria. These epitopes include Thomsen–Friedenreich (TF or T) antigen, blood group O, A, and B, type 1 and 2 chains, Lewis antigens, sialylated and fucosylated structures, and polysialic acids. Many different approaches can be taken to investigate the substrate binding and catalytic mechanisms of GT, including crystal structure analyses, mutations, comparison of amino acid sequences, NMR, and mass spectrometry. Knowledge of the protein structures and functions helps to design GT for specific glycan synthesis and to develop inhibitors. The goals are to develop new strategies to reduce bacterial virulence and to synthesize vaccines and other biologically active glycan structures. PMID:25368613

  20. Serendipitous discovery of Wolbachia genomes in multiple Drosophila species.

    PubMed

    Salzberg, Steven L; Dunning Hotopp, Julie C; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C

    2005-01-01

    The Trace Archive is a repository for the raw, unanalyzed data generated by large-scale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank.

  1. Characterization of sams genes of Amoeba proteus and the endosymbiotic X-bacteria.

    PubMed

    Jeon, Taeck J; Jeon, Kwang W

    2003-01-01

    As a result of harboring obligatory bacterial endosymbionts, the xD strain of Amoeba proteus no longer produces its own S-adenosylmethionine synthetase (SAMS). When symbiont-free D amoebae are infected with symbionts (X-bacteria), the amount of amoeba SAMS decreases to a negligible level within four weeks, but about 47% of the SAMS activity, which apparently comes from another source, is still detected. Complete nucleotide sequences of sams genes of D and xD amoebae are presented and show that there are no differences between the two. Long-established xD amoebae contain an intact sams gene and thus the loss of xD amoeba's SAMS is not due to the loss of the gene itself. The open reading frame of the amoeba's sams gene has 1,281 nucleotides, encoding SAMS of 426 amino acids with a mass of 48 kDa and pI of 6.5. The amino acid sequence of amoeba SAMS is longer than the SAMS of other organisms by having an extra internal stretch of 28 amino acids. The 5'-flanking region of amoeba sams contains consensus-binding sites for several transcription factors that are related to the regulation of sams genes in E. coli and yeast. The complete nucleotide sequence of the symbiont's sams gene is also presented. The open reading frame of X-bacteria sams is 1,146 nucleotides long, encoding SAMS of 381 amino acids with a mass of 41 kDa and pI of 6.0. The X-bacteria SAMS has 45% sequence identity with that of A. proteus.

  2. An accurate bacterial DNA quantification assay for HTS library preparation of human biological samples.

    PubMed

    Seashols-Williams, Sarah; Green, Raquel; Wohlfahrt, Denise; Brand, Angela; Tan-Torres, Antonio Limjuco; Nogales, Francy; Brooks, J Paul; Singh, Baneshwar

    2018-05-17

    Sequencing and classification of microbial taxa within forensically relevant biological fluids has the potential for applications in the forensic science and biomedical fields. The quantity of bacterial DNA from human samples is currently estimated based on quantity of total DNA isolated. This method can miscalculate bacterial DNA quantity due to the mixed nature of the sample, and consequently library preparation is often unreliable. We developed an assay that can accurately and specifically quantify bacterial DNA within a mixed sample for reliable 16S ribosomal DNA (16S rDNA) library preparation and high throughput sequencing (HTS). A qPCR method was optimized using universal 16S rDNA primers, and a commercially available bacterial community DNA standard was used to develop a precise standard curve. Following qPCR optimization, 16S rDNA libraries from saliva, vaginal and menstrual secretions, urine, and fecal matter were amplified and evaluated at various DNA concentrations; successful HTS data were generated with as low as 20 pg of bacterial DNA. Changes in bacterial DNA quantity did not impact observed relative abundances of major bacterial taxa, but relative abundance changes of minor taxa were observed. Accurate quantification of microbial DNA resulted in consistent, successful library preparations for HTS analysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Coral-Associated Bacterial Diversity Is Conserved across Two Deep-Sea Anthothela Species

    PubMed Central

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C.; Clostio, Rachel W.; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4–V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont. PMID:27092120

  4. Coral-associated bacterial diversity is conserved across two deep-sea Anthothela species

    USGS Publications Warehouse

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C; Clostio, Rachel W; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

  5. Narrow-Host-Range Bacteriophages That Infect Rhizobium etli Associate with Distinct Genomic Types

    PubMed Central

    Santamaría, Rosa Isela; Bustos, Patricia; Sepúlveda-Robles, Omar; Lozano, Luis; Rodríguez, César; Fernández, José Luis; Juárez, Soledad; Kameyama, Luis; Guarneros, Gabriel; Dávila, Guillermo

    2014-01-01

    In this work, we isolated and characterized 14 bacteriophages that infect Rhizobium etli. They were obtained from rhizosphere soil of bean plants from agricultural lands in Mexico using an enrichment method. The host range of these phages was narrow but variable within a collection of 48 R. etli strains. We obtained the complete genome sequence of nine phages. Four phages were resistant to several restriction enzymes and in vivo cloning, probably due to nucleotide modifications. The genome size of the sequenced phages varied from 43 kb to 115 kb, with a median size of ∼45 to 50 kb. A large proportion of open reading frames of these phage genomes (65 to 70%) consisted of hypothetical and orphan genes. The remainder encoded proteins needed for phage morphogenesis and DNA synthesis and processing, among other functions, and a minor percentage represented genes of bacterial origin. We classified these phages into four genomic types on the basis of their genomic similarity, gene content, and host range. Since there are no reports of similar sequences, we propose that these bacteriophages correspond to novel species. PMID:24185856

  6. Evolution of Sphingomonad Gene Clusters Related to Pesticide Catabolism Revealed by Genome Sequence and Mobilomics of Sphingobium herbicidovorans MH

    PubMed Central

    Nielsen, Tue Kjærgaard; Rasmussen, Morten; Demanèche, Sandrine; Cecillon, Sébastien; Vogel, Timothy M.

    2017-01-01

    Abstract Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology. PMID:28961970

  7. Genome Calligrapher: A Web Tool for Refactoring Bacterial Genome Sequences for de Novo DNA Synthesis.

    PubMed

    Christen, Matthias; Deutsch, Samuel; Christen, Beat

    2015-08-21

    Recent advances in synthetic biology have resulted in an increasing demand for the de novo synthesis of large-scale DNA constructs. Any process improvement that enables fast and cost-effective streamlining of digitized genetic information into fabricable DNA sequences holds great promise to study, mine, and engineer genomes. Here, we present Genome Calligrapher, a computer-aided design web tool intended for whole genome refactoring of bacterial chromosomes for de novo DNA synthesis. By applying a neutral recoding algorithm, Genome Calligrapher optimizes GC content and removes obstructive DNA features known to interfere with the synthesis of double-stranded DNA and the higher order assembly into large DNA constructs. Subsequent bioinformatics analysis revealed that synthesis constraints are prevalent among bacterial genomes. However, a low level of codon replacement is sufficient for refactoring bacterial genomes into easy-to-synthesize DNA sequences. To test the algorithm, 168 kb of synthetic DNA comprising approximately 20 percent of the synthetic essential genome of the cell-cycle bacterium Caulobacter crescentus was streamlined and then ordered from a commercial supplier of low-cost de novo DNA synthesis. The successful assembly into eight 20 kb segments indicates that Genome Calligrapher algorithm can be efficiently used to refactor difficult-to-synthesize DNA. Genome Calligrapher is broadly applicable to recode biosynthetic pathways, DNA sequences, and whole bacterial genomes, thus offering new opportunities to use synthetic biology tools to explore the functionality of microbial diversity. The Genome Calligrapher web tool can be accessed at https://christenlab.ethz.ch/GenomeCalligrapher  .

  8. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries.

    PubMed

    Polymenakou, Paraskevi N; Bertilsson, Stefan; Tselepides, Anastasios; Stephanou, Euripides G

    2005-10-01

    The regional variability of sediment bacterial community composition and diversity was studied by comparative analysis of four large 16S ribosomal DNA (rDNA) clone libraries from sediments in different regions of the Eastern Mediterranean Sea (Thermaikos Gulf, Cretan Sea, and South lonian Sea). Amplified rDNA restriction analysis of 664 clones from the libraries indicate that the rDNA richness and evenness was high: for example, a near-1:1 relationship among screened clones and number of unique restriction patterns when up to 190 clones were screened for each library. Phylogenetic analysis of 207 bacterial 16S rDNA sequences from the sediment libraries demonstrated that Gamma-, Delta-, and Alphaproteobacteria, Holophaga/Acidobacteria, Planctomycetales, Actinobacteria, Bacteroidetes, and Verrucomicrobia were represented in all four libraries. A few clones also grouped with the Betaproteobacteria, Nitrospirae, Spirochaetales, Chlamydiae, Firmicutes, and candidate division OPl 1. The abundance of sequences affiliated with Gammaproteobacteria was higher in libraries from shallow sediments in the Thermaikos Gulf (30 m) and the Cretan Sea (100 m) compared to the deeper South Ionian station (2790 m). Most sequences in the four sediment libraries clustered with uncultured 16S rDNA phylotypes from marine habitats, and many of the closest matches were clones from hydrocarbon seeps, benzene-mineralizing consortia, sulfate reducers, sulk oxidizers, and ammonia oxidizers. LIBSHUFF statistics of 16S rDNA gene sequences from the four libraries revealed major differences, indicating either a very high richness in the sediment bacterial communities or considerable variability in bacterial community composition among regions, or both.

  9. A Primer on Infectious Disease Bacterial Genomics

    PubMed Central

    Petkau, Aaron; Knox, Natalie; Graham, Morag; Van Domselaar, Gary

    2016-01-01

    SUMMARY The number of large-scale genomics projects is increasing due to the availability of affordable high-throughput sequencing (HTS) technologies. The use of HTS for bacterial infectious disease research is attractive because one whole-genome sequencing (WGS) run can replace multiple assays for bacterial typing, molecular epidemiology investigations, and more in-depth pathogenomic studies. The computational resources and bioinformatics expertise required to accommodate and analyze the large amounts of data pose new challenges for researchers embarking on genomics projects for the first time. Here, we present a comprehensive overview of a bacterial genomics projects from beginning to end, with a particular focus on the planning and computational requirements for HTS data, and provide a general understanding of the analytical concepts to develop a workflow that will meet the objectives and goals of HTS projects. PMID:28590251

  10. Changes in bacterial and archaeal communities during the concentration of brine at the graduation towers in Ciechocinek spa (Poland).

    PubMed

    Kalwasińska, Agnieszka; Deja-Sikora, Edyta; Burkowska-But, Aleksandra; Szabó, Attila; Felföldi, Támas; Kosobucki, Przemysław; Krawiec, Arkadiusz; Walczak, Maciej

    2018-03-01

    This study evaluates the changes in bacterial and archaeal community structure during the gradual evaporation of water from the brine (extracted from subsurface Jurassic deposits) in the system of graduation towers located in Ciechocinek spa, Poland. The communities were assessed with 16S rRNA gene sequencing (MiSeq, Illumina) and microscopic methods. The microbial cell density determined by direct cell count was at the order of magnitude of 10 7 cells/mL. It was found that increasing salt concentration was positively correlated with both the cell counts, and species-level diversity of bacterial and archaeal communities. The archaeal community was mostly constituted by members of the phylum Euryarchaeota, class Halobacteria and was dominated by Halorubrum-related sequences. The bacterial community was more diverse, with representatives of the phyla Proteobacteria and Bacteroidetes as the most abundant. The proportion of Proteobacteria decreased with increasing salt concentration, while the proportion of Bacteroidetes increased significantly in the more concentrated samples. Representatives of the genera Idiomarina, Psychroflexus, Roseovarius, and Marinobacter appeared to be tolerant to changes of salinity. During the brine concentration, the relative abundances of Sphingobium and Sphingomonas were significantly decreased and the raised contributions of genera Fabibacter and Fodinibius were observed. The high proportion of novel (not identified at 97% similarity level) bacterial reads (up to 42%) in the 16S rRNA gene sequences indicated that potentially new bacterial taxa inhabit this unique environment.

  11. Response of Intestinal Bacterial Flora to the Long-term Feeding of Aflatoxin B1 (AFB1) in Mice.

    PubMed

    Yang, Xiai; Liu, Liangliang; Chen, Jing; Xiao, Aiping

    2017-10-12

    In order to investigate the influence of aflatoxin B1 (AFB1) on intestinal bacterial flora, 24 Kunming mice (KM mice) were randomly placed into four groups, which were labeled as control, low-dose, medium-dose, and high-dose groups. They were fed intragastrically with 0.4 mL of 0 mg/L, 2.5 mg/L, 4 mg/L, or 10 mg/L of AFB1 solutions, twice a day for 2 months. The hypervariable region V3 + V4 on 16S rDNA of intestinal bacterial flora was sequenced by the use of a high-flux sequencing system on a Miseq Illumina platform; then, the obtained sequences were analyzed. The results showed that, when compared with the control group, both genera and phyla of intestinal bacteria in the three treatment groups decreased. About one third of the total genera and one half of the total phyla remained in the high-dose group. The dominant flora were Lactobacillus and Bacteroides in all groups. There were significant differences in the relative abundance of intestinal bacterial flora among groups. Most bacteria decreased as a whole from the control to the high-dose groups, but several beneficial and pathogenic bacterial species increased significantly with increasing dose of AFB1. Thus, the conclusion was that intragastric feeding with 2.5~10 mg/mL AFB1 for 2 months could decrease the majority of intestinal bacterial flora and induce the proliferation of some intestinal bacteria flora.

  12. Diversity of Bacterial Communities in Container Habitats of Mosquitoes

    PubMed Central

    Ponnusamy, Loganathan; Xu, Ning; Stav, Gil; Wesson, Dawn M.; Schal, Coby

    2010-01-01

    We investigated the bacterial diversity of microbial communities in water-filled, human-made and natural container habitats of the mosquitoes Aedes aegypti and Aedes albopictus in suburban landscapes of New Orleans, Louisiana in 2003. We collected water samples from three classes of containers, including tires (n=12), cemetery urns (n=23), and miscellaneous containers that included two tree holes (n=19). Total genomic DNA was extracted from water samples, and 16S ribosomal DNA fragments (operational taxonomic units, OTUs) were amplified by PCR and separated by denaturing gradient gel electrophoresis (DGGE). The bacterial communities in containers represented diverse DGGE-DNA banding patterns that were not related to the class of container or to the local spatial distribution of containers. Mean richness and evenness of OTUs were highest in water samples from tires. Bacterial phylotypes were identified by comparative sequence analysis of 90 16S rDNA DGGE band amplicons. The majority of sequences were placed in five major taxa: Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and an unclassified group; Proteobacteria and Bacteroidetes were the predominant heterotrophic bacteria in containers. The bacterial communities in human-made containers consisted mainly of undescribed species, and a phylogenetic analysis based on 16S rRNA sequences suggested that species composition was independent of both container type and the spatial distribution of containers. Comparative PCR-based, cultivation-independent rRNA surveys of microbial communities associated with mosquito habitats can provide significant insight into community organization and dynamics of bacterial species. PMID:18373113

  13. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs

    PubMed Central

    de Oliveira, Valéria Maia; Sette, Lara Durães; Simioni, Karen Christina Marques; dos Santos Neto, Eugênio Vaz

    2008-01-01

    This study aimed at evaluating potential differences among the bacterial communities from formation water and oil samples originated from biodegraded and non-biodegraded Brazilian petroleum reservoirs by using a PCR-DGGE based approach. Environmental DNA was isolated and used in PCR reactions with bacterial primers, followed by separation of 16S rDNA fragments in the DGGE. PCR products were also cloned and sequenced, aiming at the taxonomic affiliation of the community members. The fingerprints obtained allowed the direct comparison among the bacterial communities from oil samples presenting distinct degrees of biodegradation, as well as between the communities of formation water and oil sample from the non-biodegraded reservoir. Very similar DGGE band profiles were observed for all samples, and the diversity of the predominant bacterial phylotypes was shown to be low. Cloning and sequencing results revealed major differences between formation water and oil samples from the non-biodegraded reservoir. Bacillus sp. and Halanaerobium sp. were shown to be the predominant components of the bacterial community from the formation water sample, whereas the oil sample also included Alicyclobacillus acidoterrestris, Rhodococcus sp., Streptomyces sp. and Acidithiobacillus ferrooxidans. The PCR-DGGE technique, combined with cloning and sequencing of PCR products, revealed the presence of taxonomic groups not found previously in these samples when using cultivation-based methods and 16S rRNA gene library assembly, confirming the need of a polyphasic study in order to improve the knowledge of the extent of microbial diversity in such extreme environments. PMID:24031244

  14. Diversity and Functional Analysis of Bacterial Communities Associated with Natural Hydrocarbon Seeps in Acidic Soils at Rainbow Springs, Yellowstone National Park

    PubMed Central

    Hamamura, Natsuko; Olson, Sarah H.; Ward, David M.; Inskeep, William P.

    2005-01-01

    In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the α-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils. PMID:16204508

  15. A Year of Infection in the Intensive Care Unit: Prospective Whole Genome Sequencing of Bacterial Clinical Isolates Reveals Cryptic Transmissions and Novel Microbiota

    PubMed Central

    Roach, David J.; Burton, Joshua N.; Lee, Choli; Stackhouse, Bethany; Butler-Wu, Susan M.; Cookson, Brad T.

    2015-01-01

    Bacterial whole genome sequencing holds promise as a disruptive technology in clinical microbiology, but it has not yet been applied systematically or comprehensively within a clinical context. Here, over the course of one year, we performed prospective collection and whole genome sequencing of nearly all bacterial isolates obtained from a tertiary care hospital’s intensive care units (ICUs). This unbiased collection of 1,229 bacterial genomes from 391 patients enables detailed exploration of several features of clinical pathogens. A sizable fraction of isolates identified as clinically relevant corresponded to previously undescribed species: 12% of isolates assigned a species-level classification by conventional methods actually qualified as distinct, novel genomospecies on the basis of genomic similarity. Pan-genome analysis of the most frequently encountered pathogens in the collection revealed substantial variation in pan-genome size (1,420 to 20,432 genes) and the rate of gene discovery (1 to 152 genes per isolate sequenced). Surprisingly, although potential nosocomial transmission of actively surveilled pathogens was rare, 8.7% of isolates belonged to genomically related clonal lineages that were present among multiple patients, usually with overlapping hospital admissions, and were associated with clinically significant infection in 62% of patients from which they were recovered. Multi-patient clonal lineages were particularly evident in the neonatal care unit, where seven separate Staphylococcus epidermidis clonal lineages were identified, including one lineage associated with bacteremia in 5/9 neonates. Our study highlights key differences in the information made available by conventional microbiological practices versus whole genome sequencing, and motivates the further integration of microbial genome sequencing into routine clinical care. PMID:26230489

  16. Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park.

    PubMed

    Hamamura, Natsuko; Olson, Sarah H; Ward, David M; Inskeep, William P

    2005-10-01

    In this paper we describe the bacterial communities associated with natural hydrocarbon seeps in nonthermal soils at Rainbow Springs, Yellowstone National Park. Soil chemical analysis revealed high sulfate concentrations and low pH values (pH 2.8 to 3.8), which are characteristic of acid-sulfate geothermal activity. The hydrocarbon composition of the seep soils consisted almost entirely of saturated, acyclic alkanes (e.g., n-alkanes with chain lengths of C15 to C30, as well as branched alkanes, predominately pristane and phytane). Bacterial populations present in the seep soils were phylogenetically characterized by 16S rRNA gene clone library analysis. The majority of the sequences recovered (>75%) were related to sequences of heterotrophic acidophilic bacteria, including Acidisphaera spp. and Acidiphilium spp. of the alpha-Proteobacteria. Clones related to the iron- and sulfur-oxidizing chemolithotroph Acidithiobacillus spp. were also recovered from one of the seep soils. Hydrocarbon-amended soil-sand mixtures were established to examine [14C]hexadecane mineralization and corresponding changes in the bacterial populations using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments. Approximately 50% of the [14C]hexadecane added was recovered as 14CO2 during an 80-day incubation, and this was accompanied by detection of heterotrophic acidophile-related sequences as dominant DGGE bands. An alkane-degrading isolate was cultivated, whose 16S rRNA gene sequence was identical to the sequence of a dominant DGGE band in the soil-sand mixture, as well as the clone sequence recovered most frequently from the original soil. This and the presence of an alkB gene homolog in this isolate confirmed the alkane degradation capability of one population indigenous to acidic hydrocarbon seep soils.

  17. Bacterial communities in Great Barrier Reef calcareous sediments: Contrasting 16S rDNA libraries from nearshore and outer shelf reefs

    NASA Astrophysics Data System (ADS)

    Uthicke, S.; McGuire, K.

    2007-03-01

    Bacterial communities in eight 16S rDNA clone libraries from calcareous sediments were investigated to provide an assessment of the bacterial diversity on sediments of the Great Barrier Reef (GBR) and to investigate differences due to decreased water quality. Sample effort was spread across two locations on each of four coral reefs, with two reefs located nearshore and two reefs on the outer shelf to allow robust statistical comparison of nearshore reefs (subjected to enhanced runoff) and outer shelf reefs (pristine conditions). Out of 221 non-chimeric sequences, 189 (85.5%) were unique and only one sequence occurred in more than one library. Rarefaction analyses and coverage calculations indicated that only a small fraction of the diversity was sampled. Cluster analyses and comparison to published sequences indicated that sequences retrieved belonged to the α, γ and δ subdivision of the Proteobacteria (6.8, 29.4 and 13.6% of the total, respectively), Cytophaga-Flavobacteria-Bacteroidetes (CFB) group (20.4%), Cyanobacteria (5.4%), Planctomycetaceae (7.7%), Verrucomicrobiaceae (6.8%), Acidobacteriaceae (2.7%). Analysis of Similarity (ANOSIM, based on grouping all retrieved sequences into 9 phylogenetic groups) indicated that subtle differences do exist in the community composition between nearshore and outer shelf reefs. Similarity percentage analysis (SIMPER) indicated that Acidobacteriaceae and Cyanobacteriaceae were the main contributors to the dissimilarity. A significant difference between bacteria on nearshore and outer shelf reefs also existed on the molecular level ( FST = 0.008, p = 0.007 for all samples, 0.006, p = 0.022 when repeated sequences within libraries were removed). Thus, bacterial communities on carbonate sediments investigated were highly diverse and differences in community composition may provide important leads for the search for indicator species or communities for water quality differences.

  18. Amplification and sequence analysis of partial bacterial 16S ribosomal RNA gene in gallbladder bile from patients with primary biliary cirrhosis.

    PubMed

    Hiramatsu, K; Harada, K; Tsuneyama, K; Sasaki, M; Fujita, S; Hashimoto, T; Kaneko, S; Kobayashi, K; Nakanuma, Y

    2000-07-01

    The etiopathogenesis of bile duct lesion in primary biliary cirrhosis is unknown, though the participation of bacteria and/or their components and products is suspected. In this study, we tried to detect and identify bacteria in the bile of patients with primary biliary cirrhosis by polymerase chain reaction using universal bacterial primers of the 16S ribosomal RNA gene. Gallbladder bile samples from 15 patients with primary biliary cirrhosis, 5 with primary sclerosing cholangitis, 5 with hepatitis C virus-related liver cirrhosis, 11 with cholecystolithiasis, and from 12 normal adult gallbladders were used. In addition to the culture study, partial bacterial 16S ribosomal RNA gene was amplified by polymerase chain reaction (PCR) taking advantage of universal primers that can amplify the gene of almost all bacterial species, and the amplicons were cloned and sequenced. Sequence homology with specific bacterial species was analyzed by database research. Bacterial contamination at every step of the bile sampling, DNA extraction and PCR study was avoided. Furthermore, to confirm whether bacterial DNA is detectable in liver explants, the same analysis was performed using 10 liver explants of patients with primary biliary cirrhosis. In primary biliary cirrhosis, 75% (p<0.0001) of 100 clones were identified as so-called gram-positive cocci while these cocci were positive in only 5% in cholecystolithiasis (p<0.0001). In cholecystolithiasis gram-negative rods were predominant instead. One bacterial species detected in a normal adult was not related to those detected in primary biliary cirrhosis and cholecystolithiasis patients. No bacterial DNA was detected by PCR amplification in 10 liver explants of patients with primary biliary cirrhosis. The present results raise several possible roles of gram-positive bacteria in bile in the etiopathogenesis of primary biliary cirrhosis. However, these results could also reflect an epiphenomenon due to decreased bile flow in the patients with primary biliary cirrhosis at an advanced stage.

  19. Bacterial Communities Associated with Host-Adapted Populations of Pea Aphids Revealed by Deep Sequencing of 16S Ribosomal DNA

    PubMed Central

    Gauthier, Jean-Pierre; Outreman, Yannick; Mieuzet, Lucie; Simon, Jean-Christophe

    2015-01-01

    Associations between microbes and animals are ubiquitous and hosts may benefit from harbouring microbial communities through improved resource exploitation or resistance to environmental stress. The pea aphid, Acyrthosiphon pisum, is the host of heritable bacterial symbionts, including the obligate endosymbiont Buchnera aphidicola and several facultative symbionts. While obligate symbionts supply aphids with key nutrients, facultative symbionts influence their hosts in many ways such as protection against natural enemies, heat tolerance, color change and reproduction alteration. The pea aphid also encompasses multiple plant-specialized biotypes, each adapted to one or a few legume species. Facultative symbiont communities differ strongly between biotypes, although bacterial involvement in plant specialization is uncertain. Here, we analyse the diversity of bacterial communities associated with nine biotypes of the pea aphid complex using amplicon pyrosequencing of 16S rRNA genes. Combined clustering and phylogenetic analyses of 16S sequences allowed identifying 21 bacterial OTUs (Operational Taxonomic Unit). More than 98% of the sequencing reads were assigned to known pea aphid symbionts. The presence of Wolbachia was confirmed in A. pisum while Erwinia and Pantoea, two gut associates, were detected in multiple samples. The diversity of bacterial communities harboured by pea aphid biotypes was very low, ranging from 3 to 11 OTUs across samples. Bacterial communities differed more between than within biotypes but this difference did not correlate with the genetic divergence between biotypes. Altogether, these results confirm that the aphid microbiota is dominated by a few heritable symbionts and that plant specialization is an important structuring factor of bacterial communities associated with the pea aphid complex. However, since we examined the microbiota of aphid samples kept a few generations in controlled conditions, it may be that bacterial diversity was underestimated due to the possible loss of environmental or transient taxa. PMID:25807173

  20. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    EPA Science Inventory

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  1. Evaluation of 16S Rrna amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...

  2. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplificatio...

  3. Isolation and identification of efficient Egyptian malathion-degrading bacterial isolates.

    PubMed

    Hamouda, S A; Marzouk, M A; Abbassy, M A; Abd-El-Haleem, D A; Shamseldin, Abdelaal

    2015-03-01

    Bacterial isolates degrading malathion were isolated from the soil and agricultural waste water due to their ability to grow on minimal salt media amended with malathion as a sole carbon source. Efficiencies of native Egyptian bacterial malathion-degrading isolates were investigated and the study generated nine highly effective malathion-degrading bacterial strains among 40. Strains were identified by partial sequencing of 16S rDNA analysis. Comparative analysis of 16S rDNA sequences revealed that these bacteria are similar with the genus Acinetobacter and Bacillus spp. and RFLP based PCR of 16S rDNA gave four different RFLP patterns among strains with enzyme HinfI while with enzyme HaeI they gave two RFLP profiles. The degradation rate of malathion in liquid culture was estimated using gas chromatography. Bacterial strains could degrade more than 90% of the initial malathion concentration (1000 ppm) within 4 days. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Microbial Community Profiling of Human Saliva Using Shotgun Metagenomic Sequencing

    PubMed Central

    Hasan, Nur A.; Young, Brian A.; Minard-Smith, Angela T.; Saeed, Kelly; Li, Huai; Heizer, Esley M.; McMillan, Nancy J.; Isom, Richard; Abdullah, Abdul Shakur; Bornman, Daniel M.; Faith, Seth A.; Choi, Seon Young; Dickens, Michael L.; Cebula, Thomas A.; Colwell, Rita R.

    2014-01-01

    Human saliva is clinically informative of both oral and general health. Since next generation shotgun sequencing (NGS) is now widely used to identify and quantify bacteria, we investigated the bacterial flora of saliva microbiomes of two healthy volunteers and five datasets from the Human Microbiome Project, along with a control dataset containing short NGS reads from bacterial species representative of the bacterial flora of human saliva. GENIUS, a system designed to identify and quantify bacterial species using unassembled short NGS reads was used to identify the bacterial species comprising the microbiomes of the saliva samples and datasets. Results, achieved within minutes and at greater than 90% accuracy, showed more than 175 bacterial species comprised the bacterial flora of human saliva, including bacteria known to be commensal human flora but also Haemophilus influenzae, Neisseria meningitidis, Streptococcus pneumoniae, and Gamma proteobacteria. Basic Local Alignment Search Tool (BLASTn) analysis in parallel, reported ca. five times more species than those actually comprising the in silico sample. Both GENIUSand BLAST analyses of saliva samples identified major genera comprising the bacterial flora of saliva, but GENIUS provided a more precise description of species composition, identifying to strain in most cases and delivered results at least 10,000 times faster. Therefore, GENIUS offers a facile and accurate system for identification and quantification of bacterial species and/or strains in metagenomic samples. PMID:24846174

  5. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium.

    PubMed

    Pereira, Arthur Prudêncio de Araujo; Andrade, Pedro Avelino Maia de; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil.

  6. The feline skin microbiota: The bacteria inhabiting the skin of healthy and allergic cats

    PubMed Central

    Diesel, Alison; Patterson, Adam P.; Meason-Smith, Courtney; Johnson, Timothy J.; Mansell, Joanne; Suchodolski, Jan S.; Rodrigues Hoffmann, Aline

    2017-01-01

    Background The skin is inhabited by a multitude of microorganisms. An imbalance of these microorganisms is associated with disease, however, the causal relationship between skin microbiota and disease remains unknown. To describe the cutaneous bacterial microbiota of cats and determine whether bacterial dysbiosis occurs on the skin of allergic cats, the skin surfaces on various regions of 11 healthy cats and 10 allergic cats were sampled. Methodology/Principal findings Genomic DNA was extracted from skin swabs and sequenced using primers that target the V4 region of the bacterial 16S rRNA. The bacterial sequences from healthy cats revealed that there are differences in species diversity and richness between body sites and different epithelial surfaces. Bacterial communities preferred body site niches in the healthy cats, however, the bacterial communities on allergic cat skin tended to be more unique to the individual cat. Overall, the number of bacterial species was not significantly different between the two health status groups, however, the abundances of these bacterial species were different between healthy and allergic skin. Staphylococcus, in addition to other taxa, was more abundant on allergic skin. Conclusions/Significance This study reveals that there are more bacterial species inhabiting the skin of cats than previously thought and provide some evidence of an association between dysbiosis and skin disease. PMID:28575016

  7. Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes.

    PubMed

    Sánchez-Castro, Iván; Amador-García, Ahinara; Moreno-Romero, Cristina; López-Fernández, Margarita; Phrommavanh, Vannapha; Nos, Jeremy; Descostes, Michael; Merroun, Mohamed L

    2017-01-01

    The present work characterizes at different levels a number of bacterial strains isolated from porewaters sampled in the vicinity of two French uranium tailing repositories. The 16S rRNA gene from 33 bacterial isolates, corresponding to the different morphotypes recovered, was almost fully sequenced. The resulting sequences belonged to 13 bacterial genera comprised in the phyla Firmicutes, Actinobacteria and Proteobacteria. Further characterization at physiological level and metals/metalloid tolerance provided evidences for an appropriate selection of bacterial strains potentially useful for immobilization of uranium and other common contaminants. By using High Resolution Transmission Electron Microscope (HRTEM), this potential ability to immobilize uranium as U phosphate mineral phases was confirmed for the bacterial strains Br3 and Br5 corresponding to Arthrobacter sp. and Microbacterium oxydans, respectively. Scanning Transmission Electron Microscope- High-Angle Annular Dark-Field (STEM-HAADF) analysis showed U accumulates on the surface and within bacterial cytoplasm, in addition to the extracellular space. Energy Dispersive X-ray (EDX) element-distribution maps demonstrated the presence of U and P within these accumulates. These results indicate the potential of certain bacterial strains isolated from porewaters of U mill tailings for immobilizing uranium, likely as uranium phosphates. Some of these bacterial isolates might be considered as promising candidates in the design of uranium bioremediation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium

    PubMed Central

    de Andrade, Pedro Avelino Maia; Bini, Daniel; Durrer, Ademir; Robin, Agnès; Bouillet, Jean Pierre; Andreote, Fernando Dini; Cardoso, Elke Jurandy Bran Nogueira

    2017-01-01

    Our knowledge of the rhizosphere bacterial communities in deep soils and the role of Eucalyptus and Acacia on the structure of these communities remains very limited. In this study, we targeted the bacterial community along a depth profile (0 to 800 cm) and compared community structure in monospecific or mixed plantations of Acacia mangium and Eucalyptus grandis. We applied quantitative PCR (qPCR) and sequence the V6 region of the 16S rRNA gene to characterize composition of bacterial communities. We identified a decrease in bacterial abundance with soil depth, and differences in community patterns between monospecific and mixed cultivations. Sequence analysis indicated a prevalent effect of soil depth on bacterial communities in the mixed plant cultivation system, and a remarkable differentiation of bacterial communities in areas solely cultivated with Eucalyptus. The groups most influenced by soil depth were Proteobacteria and Acidobacteria (more frequent in samples between 0 and 300 cm). The predominant bacterial groups differentially displayed in the monospecific stands of Eucalyptus were Firmicutes and Proteobacteria. Our results suggest that the addition of an N2-fixing tree in a monospecific cultivation system modulates bacterial community composition even at a great depth. We conclude that co-cultivation systems may represent a key strategy to improve soil resources and to establish more sustainable cultivation of Eucalyptus in Brazil. PMID:28686690

  9. Identification and Characterization of Domesticated Bacterial Transposases

    PubMed Central

    Gallie, Jenna; Rainey, Paul B.

    2017-01-01

    Abstract Selfish genetic elements, such as insertion sequences and transposons are found in most genomes. Transposons are usually identifiable by their high copy number within genomes. In contrast, REP-associated tyrosine transposases (RAYTs), a recently described class of bacterial transposase, are typically present at just one copy per genome. This suggests that RAYTs no longer copy themselves and thus they no longer function as a typical transposase. Motivated by this possibility we interrogated thousands of fully sequenced bacterial genomes in order to determine patterns of RAYT diversity, their distribution across chromosomes and accessory elements, and rate of duplication. RAYTs encompass exceptional diversity and are divisible into at least five distinct groups. They possess features more similar to housekeeping genes than insertion sequences, are predominantly vertically transmitted and have persisted through evolutionary time to the point where they are now found in 24% of all species for which at least one fully sequenced genome is available. Overall, the genomic distribution of RAYTs suggests that they have been coopted by host genomes to perform a function that benefits the host cell. PMID:28910967

  10. Resources for Genetic and Genomic Analysis of Emerging Pathogen Acinetobacter baumannii

    PubMed Central

    Ramage, Elizabeth; Weiss, Eli J.; Radey, Matthew; Hayden, Hillary S.; Held, Kiara G.; Huse, Holly K.; Zurawski, Daniel V.; Brittnacher, Mitchell J.; Manoil, Colin

    2015-01-01

    ABSTRACT Acinetobacter baumannii is a Gram-negative bacterial pathogen notorious for causing serious nosocomial infections that resist antibiotic therapy. Research to identify factors responsible for the pathogen's success has been limited by the resources available for genome-scale experimental studies. This report describes the development of several such resources for A. baumannii strain AB5075, a recently characterized wound isolate that is multidrug resistant and displays robust virulence in animal models. We report the completion and annotation of the genome sequence, the construction of a comprehensive ordered transposon mutant library, the extension of high-coverage transposon mutant pool sequencing (Tn-seq) to the strain, and the identification of the genes essential for growth on nutrient-rich agar. These resources should facilitate large-scale genetic analysis of virulence, resistance, and other clinically relevant traits that make A. baumannii a formidable public health threat. IMPORTANCE Acinetobacter baumannii is one of six bacterial pathogens primarily responsible for antibiotic-resistant infections that have become the scourge of health care facilities worldwide. Eliminating such infections requires a deeper understanding of the factors that enable the pathogen to persist in hospital environments, establish infections, and resist antibiotics. We present a set of resources that should accelerate genome-scale genetic characterization of these traits for a reference isolate of A. baumannii that is highly virulent and representative of current outbreak strains. PMID:25845845

  11. Ecology of the microbiome of the infected root canal system: a comparison between apical and coronal root segments

    PubMed Central

    Özok, A.R.; Persoon, I.F.; Huse, S.M.; Keijser, B.J.F.; Wesselink, P.R.; Crielaard, W.; Zaura, E.

    2016-01-01

    Aim To evaluate the microbial ecology of the coronal and apical segments of infected root canal systems using a complete sampling technique and next-generation sequencing. Methodology The roots of 23 extracted teeth with apical periodontitis were sectioned in half, horizontally, and cryo-pulverized. Bacterial communities were profiled using tagged 454 pyrosequencing of the 16S rDNA hypervariable V5–V6 region. Results The sequences were classified into 606 taxa (species or higher taxon), representing 24 bacterial phyla or candidate divisions and one archaeal phylum. Proteobacteria were more abundant in the apical samples (p<0.05), while Actinobacteria were in significantly higher proportions in the coronal samples. The apical samples harbored statistically significantly more taxa than the coronal samples (p=0.01), and showed a higher microbial diversity. Several taxa belonging to fastidious obligate anaerobes were significantly more abundant in the apical segments of the roots compared to their coronal counterparts. Conclusions Endodontic infections are more complex than reported previously. The apical part of the root canal system drives the selection of a more diverse and more anaerobe community than the coronal part. The presence of a distinct ecological niche in the apical region explains the difficulty of eradication of the infection, and emphasizes the need that new treatment approaches should be developed. PMID:22251411

  12. Evidence for photolytic and microbial degradation processes in the dissipation of leptospermone, a natural β-triketone herbicide.

    PubMed

    Romdhane, Sana; Devers-Lamrani, Marion; Martin-Laurent, Fabrice; Jrad, Amani Ben; Raviglione, Delphine; Salvia, Marie-Virginie; Besse-Hoggan, Pascale; Dayan, Franck E; Bertrand, Cédric; Barthelmebs, Lise

    2017-07-17

    Bioherbicides appear as an ecofriendly alternative to synthetic herbicides, generally used for weed management, because they are supposed to have low side on human health and ecosystems. In this context, our work aims to study abiotic (i.e., photolysis) and biotic (i.e,. biodegradation) processes involved in the fate of leptospermone, a natural β-triketone herbicide, by combining chemical and microbiological approaches. Under controlled conditions, the photolysis of leptospermone was sensitive to pH. Leptospermone has a half-life of 72 h under simulated solar light irradiations. Several transformation products, including hydroxy-leptospermone, were identified. For the first time, a bacterial strain able to degrade leptospermone was isolated from an arable soil. Based on its 16S ribosomal RNA (rRNA) gene sequence, it was affiliated to the Methylophilus group and was accordingly named as Methylophilus sp. LS1. Interestingly, we report that the abundance of OTUs, similar to the 16S rRNA gene sequence of Methylophilus sp. LS1, was strongly increased in soil treated with leptospermone. The leptospermone was completely dissipated by this bacteria, with a half-life time of 6 days, allowing concomitantly its growth. Hydroxy-leptospermone was identified in the bacterial culture as a major transformation product, allowing us to propose a pathway of transformation of leptospermone including both abiotic and biotic processes.

  13. PASTA in Penicillin Binding Proteins and Serine/Threonine Kinases: A Recipe of Structural, Dynamic and Binding Properties.

    PubMed

    Calvanese, Luisa; Falcigno, Lucia; Squeglia, Flavia; D'Auria, Gabriella; Berisio, Rita

    2017-11-24

    Penicillin binding proteins (PBPs) and Serine Threonine kinases (STPKs) are two classes of bacterial enzymes whose involvement in a series of vital processes in bacterial growth and division is well assessed. Many PBPs and STPKs show linked an ancillary domain named PASTA, whose functional role is not completely deciphered so far. It has been proposed that PASTAs are sensor modules that by binding opportune ligands (i.e. muropeptides) activate the cognate proteins to their functions. However, based on recent data, the sensor annotation sounds true for PASTA from STPKs, and false for PASTA from PBPs. Different PASTA domains, belonging or not to different protein classes, sharing or not appreciable sequence identities, always show identical folds. This survey of the structural, binding and dynamic properties of PASTA domains pursues the reasons why identical topologies may turn in different roles. Amino acid compositions, total charges and distribution of the hydrophobic/hydrophilic patches on the surface, significantly vary among PASTAs from STPKs and PBPs and appear to correlate with different functions. A possible criterion to discriminate between PASTA modules of STPKs or PBPs solely based on their sequences is proposed. Possibly reflecting different species as well as functional roles and evolutionary profile, our routine represents a fast even though approximate method to distinguish between PASTA belonging to different classes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Molecular Technique to Understand Deep Microbial Diversity

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

    2012-01-01

    Current sequencing-based and DNA microarray techniques to study microbial diversity are based on an initial PCR (polymerase chain reaction) amplification step. However, a number of factors are known to bias PCR amplification and jeopardize the true representation of bacterial diversity. PCR amplification of the minor template appears to be suppressed by the exponential amplification of the more abundant template. It is widely acknowledged among environmental molecular microbiologists that genetic biosignatures identified from an environment only represent the most dominant populations. The technological bottleneck has overlooked the presence of the less abundant minority population, and underestimated their role in the ecosystem maintenance. To generate PCR amplicons for subsequent diversity analysis, bacterial l6S rRNA genes are amplified by PCR using universal primers. Two distinct PCR regimes are employed in parallel: one using normal and the other using biotinlabeled universal primers. PCR products obtained with biotin-labeled primers are mixed with streptavidin-labeled magnetic beads and selectively captured in the presence of a magnetic field. Less-abundant DNA templates that fail to amplify in this first round of PCR amplification are subjected to a second round of PCR using normal universal primers. These PCR products are then subjected to downstream diversity analyses such as conventional cloning and sequencing. A second round of PCR amplified the minority population and completed the deep diversity picture of the environmental sample.

  15. The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var 'Ridge Pineapple': organization and phylogenetic relationships to other angiosperms

    PubMed Central

    Bausher, Michael G; Singh, Nameirakpam D; Lee, Seung-Bum; Jansen, Robert K; Daniell, Henry

    2006-01-01

    Background The production of Citrus, the largest fruit crop of international economic value, has recently been imperiled due to the introduction of the bacterial disease Citrus canker. No significant improvements have been made to combat this disease by plant breeding and nuclear transgenic approaches. Chloroplast genetic engineering has a number of advantages over nuclear transformation; it not only increases transgene expression but also facilitates transgene containment, which is one of the major impediments for development of transgenic trees. We have sequenced the Citrus chloroplast genome to facilitate genetic improvement of this crop and to assess phylogenetic relationships among major lineages of angiosperms. Results The complete chloroplast genome sequence of Citrus sinensis is 160,129 bp in length, and contains 133 genes (89 protein-coding, 4 rRNAs and 30 distinct tRNAs). Genome organization is very similar to the inferred ancestral angiosperm chloroplast genome. However, in Citrus the infA gene is absent. The inverted repeat region has expanded to duplicate rps19 and the first 84 amino acids of rpl22. The rpl22 gene in the IRb region has a nonsense mutation resulting in 9 stop codons. This was confirmed by PCR amplification and sequencing using primers that flank the IR/LSC boundaries. Repeat analysis identified 29 direct and inverted repeats 30 bp or longer with a sequence identity ≥ 90%. Comparison of protein-coding sequences with expressed sequence tags revealed six putative RNA edits, five of which resulted in non-synonymous modifications in petL, psbH, ycf2 and ndhA. Phylogenetic analyses using maximum parsimony (MP) and maximum likelihood (ML) methods of a dataset composed of 61 protein-coding genes for 30 taxa provide strong support for the monophyly of several major clades of angiosperms, including monocots, eudicots, rosids and asterids. The MP and ML trees are incongruent in three areas: the position of Amborella and Nymphaeales, relationship of the magnoliid genus Calycanthus, and the monophyly of the eurosid I clade. Both MP and ML trees provide strong support for the monophyly of eurosids II and for the placement of Citrus (Sapindales) sister to a clade including the Malvales/Brassicales. Conclusion This is the first complete chloroplast genome sequence for a member of the Rutaceae and Sapindales. Expansion of the inverted repeat region to include rps19 and part of rpl22 and presence of two truncated copies of rpl22 is unusual among sequenced chloroplast genomes. Availability of a complete Citrus chloroplast genome sequence provides valuable information on intergenic spacer regions and endogenous regulatory sequences for chloroplast genetic engineering. Phylogenetic analyses resolve relationships among several major clades of angiosperms and provide strong support for the monophyly of the eurosid II clade and the position of the Sapindales sister to the Brassicales/Malvales. PMID:17010212

  16. An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri

    PubMed Central

    Chun, Carlene K; Scheetz, Todd E; Bonaldo, Maria de Fatima; Brown, Bartley; Clemens, Anik; Crookes-Goodson, Wendy J; Crouch, Keith; DeMartini, Tad; Eyestone, Mari; Goodson, Michael S; Janssens, Bernadette; Kimbell, Jennifer L; Koropatnick, Tanya A; Kucaba, Tamara; Smith, Christina; Stewart, Jennifer J; Tong, Deyan; Troll, Joshua V; Webster, Sarahrose; Winhall-Rice, Jane; Yap, Cory; Casavant, Thomas L; McFall-Ngai, Margaret J; Soares, M Bento

    2006-01-01

    Background Biologists are becoming increasingly aware that the interaction of animals, including humans, with their coevolved bacterial partners is essential for health. This growing awareness has been a driving force for the development of models for the study of beneficial animal-bacterial interactions. In the squid-vibrio model, symbiotic Vibrio fischeri induce dramatic developmental changes in the light organ of host Euprymna scolopes over the first hours to days of their partnership. We report here the creation of a juvenile light-organ specific EST database. Results We generated eleven cDNA libraries from the light organ of E. scolopes at developmentally significant time points with and without colonization by V. fischeri. Single pass 3' sequencing efforts generated 42,564 expressed sequence tags (ESTs) of which 35,421 passed our quality criteria and were then clustered via the UIcluster program into 13,962 nonredundant sequences. The cDNA clones representing these nonredundant sequences were sequenced from the 5' end of the vector and 58% of these resulting sequences overlapped significantly with the associated 3' sequence to generate 8,067 contigs with an average sequence length of 1,065 bp. All sequences were annotated with BLASTX (E-value < -03) and Gene Ontology (GO). Conclusion Both the number of ESTs generated from each library and GO categorizations are reflective of the activity state of the light organ during these early stages of symbiosis. Future analyses of the sequences identified in these libraries promise to provide valuable information not only about pathways involved in colonization and early development of the squid light organ, but also about pathways conserved in response to bacterial colonization across the animal kingdom. PMID:16780587

  17. Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events.

    PubMed

    Wolf, Y I; Aravind, L; Grishin, N V; Koonin, E V

    1999-08-01

    Phylogenetic analysis of aminoacyl-tRNA synthetases (aaRSs) of all 20 specificities from completely sequenced bacterial, archaeal, and eukaryotic genomes reveals a complex evolutionary picture. Detailed examination of the domain architecture of aaRSs using sequence profile searches delineated a network of partially conserved domains that is even more elaborate than previously suspected. Several unexpected evolutionary connections were identified, including the apparent origin of the beta-subunit of bacterial GlyRS from the HD superfamily of hydrolases, a domain shared by bacterial AspRS and the B subunit of archaeal glutamyl-tRNA amidotransferases, and another previously undetected domain that is conserved in a subset of ThrRS, guanosine polyphosphate hydrolases and synthetases, and a family of GTPases. Comparison of domain architectures and multiple alignments resulted in the delineation of synapomorphies-shared derived characters, such as extra domains or inserts-for most of the aaRSs specificities. These synapomorphies partition sets of aaRSs with the same specificity into two or more distinct and apparently monophyletic groups. In conjunction with cluster analysis and a modification of the midpoint-rooting procedure, this partitioning was used to infer the likely root position in phylogenetic trees. The topologies of the resulting rooted trees for most of the aaRSs specificities are compatible with the evolutionary "standard model" whereby the earliest radiation event separated bacteria from the common ancestor of archaea and eukaryotes as opposed to the two other possible evolutionary scenarios for the three major divisions of life. For almost all aaRSs specificities, however, this simple scheme is confounded by displacement of some of the bacterial aaRSs by their eukaryotic or, less frequently, archaeal counterparts. Displacement of ancestral eukaryotic aaRS genes by bacterial ones, presumably of mitochondrial origin, was observed for three aaRSs. In contrast, there was no convincing evidence of displacement of archaeal aaRSs by bacterial ones. Displacement of aaRS genes by eukaryotic counterparts is most common among parasitic and symbiotic bacteria, particularly the spirochaetes, in which 10 of the 19 aaRSs seem to have been displaced by the respective eukaryotic genes and two by the archaeal counterpart. Unlike the primary radiation events between the three main divisions of life, that were readily traceable through the phylogenetic analysis of aaRSs, no consistent large-scale bacterial phylogeny could be established. In part, this may be due to additional gene displacement events among bacterial lineages. Argument is presented that, although lineage-specific gene loss might have contributed to the evolution of some of the aaRSs, this is not a viable alternative to horizontal gene transfer as the principal evolutionary phenomenon in this gene class.

  18. Bacterial community composition of chronic periodontitis and novel oral sampling sites for detecting disease indicators

    PubMed Central

    2014-01-01

    Background Periodontitis is an infectious and inflammatory disease of polymicrobial etiology that can lead to the destruction of bones and tissues that support the teeth. The management of chronic periodontitis (CP) relies heavily on elimination or at least control of known pathogenic consortia associated with the disease. Until now, microbial plaque obtained from the subgingival (SubG) sites has been the primary focus for bacterial community analysis using deep sequencing. In addition to the use of SubG plaque, here, we investigated whether plaque obtained from supragingival (SupG) and tongue dorsum sites can serve as alternatives for monitoring CP-associated bacterial biomarkers. Results Using SubG, SupG, and tongue plaque DNA from 11 healthy and 13 diseased subjects, we sequenced V3 regions (approximately 200 bases) of the 16S rRNA gene using Illumina sequencing. After quality filtering, approximately 4.1 million sequences were collapsed into operational taxonomic units (OTUs; sequence identity cutoff of >97%) that were classified to a total of 19 phyla spanning 114 genera. Bacterial community diversity and overall composition was not affected by health or disease, and multiresponse permutation procedure (MRPP) on Bray-Curtis distance measures only supported weakly distinct bacterial communities in SubG and tongue plaque depending on health or disease status (P < 0.05). Nonetheless, in SubG and tongue sites, the relative abundance of Firmicutes was increased significantly from health to disease and members of Synergistetes were found in higher abundance across all sites in disease. Taxa indicative of CP were identified in all three locations (for example, Treponema denticola, Porphyromonas gingivalis, Synergistes oral taxa 362 and 363). Conclusions For the first time, this study demonstrates that SupG and tongue dorsum plaque can serve as alternative sources for detecting and enumerating known and novel bacterial biomarkers of CP. This finding is clinically important because, in contrast with SubG sampling that requires trained professionals, obtaining plaque from SupG and tongue sites is convenient and minimally-invasive and offers a novel means to track CP-biomarker organisms during treatment outcome monitoring. PMID:25225610

  19. Use of Optical Mapping in Bacterial Genome Finishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Dibyendu

    2010-06-03

    Dibyendu Kumar from the University of Florida discusses whole-genome optical mapping to help validate bacterial genome assemblies on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.

  20. Bacterial diversity in different regions of gastrointestinal tract of Giant African snail (Achatina fulica).

    PubMed

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-12-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. © 2012 The Authors. Published by Blackwell Publishing Ltd.

  1. Bacterial diversity in different regions of gastrointestinal tract of Giant African Snail (Achatina fulica)

    PubMed Central

    Pawar, Kiran D; Banskar, Sunil; Rane, Shailendra D; Charan, Shakti S; Kulkarni, Girish J; Sawant, Shailesh S; Ghate, Hemant V; Patole, Milind S; Shouche, Yogesh S

    2012-01-01

    The gastrointestinal (GI) tract of invasive land snail Achatina fulica is known to harbor metabolically active bacterial communities. In this study, we assessed the bacterial diversity in the different regions of GI tract of Giant African snail, A. fulica by culture-independent and culture-dependent methods. Five 16S rRNA gene libraries from different regions of GI tract of active snails indicated that sequences affiliated to phylum γ-Proteobacteria dominated the esophagus, crop, intestine, and rectum libraries, whereas sequences affiliated to Tenericutes dominated the stomach library. On phylogenetic analysis, 30, 27, 9, 27, and 25 operational taxonomic units (OTUs) from esophagus, crop, stomach, intestine, and rectum libraries were identified, respectively. Estimations of the total bacterial diversity covered along with environmental cluster analysis showed highest bacterial diversity in the esophagus and lowest in the stomach. Thirty-three distinct bacterial isolates were obtained, which belonged to 12 genera of two major bacterial phyla namely γ-Proteobacteria and Firmicutes. Among these, Lactococcus lactis and Kurthia gibsonii were the dominant bacteria present in all GI tract regions. Quantitative real-time polymerase chain reaction (qPCR) analysis indicated significant differences in bacterial load in different GI tract regions of active and estivating snails. The difference in the bacterial load between the intestines of active and estivating snail was maximum. Principal component analysis (PCA) of terminal restriction fragment length polymorphism suggested that bacterial community structure changes only in intestine when snail enters estivation state. PMID:23233413

  2. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China

    PubMed Central

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Li, Guangliang; Xue, Yadong; Deng, Ye; Li, Hui; Zhou, Jizhong; Li, Diqiang

    2015-01-01

    Understanding biological diversity elevational pattern and the driver factors are indispensable to develop the ecological theories. Elevational gradient may minimize the impact of environmental factors and is the ideal places to study soil microbial elevational patterns. In this study, we selected four typical vegetation types from 1000 to 2800 m above the sea level on the northern slope of Shennongjia Mountain in central China, and analysed the soil bacterial community composition, elevational patterns and the relationship between soil bacterial diversity and environmental factors by using the 16S rRNA Illumina sequencing and multivariate statistical analysis. The results revealed that the dominant bacterial phyla were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Verrucomicrobia, which accounted for over 75% of the bacterial sequences obtained from tested samples, and the soil bacterial operational taxonomic unit (OTU) richness was a significant monotonous decreasing (P < 0.01) trend with the elevational increasing. The similarity of soil bacterial population composition decreased significantly (P < 0.01) with elevational distance increased as measured by the Jaccard and Bray–Curtis index. Canonical correspondence analysis and Mantel test analysis indicated that plant diversity and soil pH were significantly correlated (P < 0.01) with the soil bacterial community. Therefore, the soil bacterial diversity on Shennongjia Mountain had a significant and different elevational pattern, and plant diversity and soil pH may be the key factors in shaping the soil bacterial spatial pattern. PMID:26032124

  3. Correcting Inconsistencies and Errors in Bacterial Genome Metadata Using an Automated Curation Tool in Excel (AutoCurE).

    PubMed

    Schmedes, Sarah E; King, Jonathan L; Budowle, Bruce

    2015-01-01

    Whole-genome data are invaluable for large-scale comparative genomic studies. Current sequencing technologies have made it feasible to sequence entire bacterial genomes with relative ease and time with a substantially reduced cost per nucleotide, hence cost per genome. More than 3,000 bacterial genomes have been sequenced and are available at the finished status. Publically available genomes can be readily downloaded; however, there are challenges to verify the specific supporting data contained within the download and to identify errors and inconsistencies that may be present within the organizational data content and metadata. AutoCurE, an automated tool for bacterial genome database curation in Excel, was developed to facilitate local database curation of supporting data that accompany downloaded genomes from the National Center for Biotechnology Information. AutoCurE provides an automated approach to curate local genomic databases by flagging inconsistencies or errors by comparing the downloaded supporting data to the genome reports to verify genome name, RefSeq accession numbers, the presence of archaea, BioProject/UIDs, and sequence file descriptions. Flags are generated for nine metadata fields if there are inconsistencies between the downloaded genomes and genomes reports and if erroneous or missing data are evident. AutoCurE is an easy-to-use tool for local database curation for large-scale genome data prior to downstream analyses.

  4. The effect of silver nanoparticles on seasonal change in arctic tundra bacterial and fungal assemblages.

    PubMed

    Kumar, Niraj; Palmer, Gerald R; Shah, Vishal; Walker, Virginia K

    2014-01-01

    The impact of silver nanoparticles (NPs) and microparticles (MPs) on bacterial and fungal assemblages was studied in soils collected from a low arctic site. Two different concentrations (0.066% and 6.6%) of Ag NPs and Ag MPs were tested in microcosms that were exposed to temperatures mimicking a winter to summer transition. Toxicity was monitored by differential respiration, phospholipid fatty acid analysis, polymerase chain reaction-denaturing gradient gel electrophoresis and DNA sequencing. Notwithstanding the effect of Ag MPs, nanosilver had an obvious, additional impact on the microbial community, underscoring the importance of particle size in toxicity. This impact was evidenced by levels of differential respiration in 0.066% Ag NP-treated soil that were only half that of control soils, a decrease in signature bacterial fatty acids, and changes in both richness and evenness in bacterial and fungal DNA sequence assemblages. Prominent after Ag NP-treatment were Hypocreales fungi, which increased to 70%, from only 1% of fungal sequences under control conditions. Genera within this Order known for their antioxidant properties (Cordyceps/Isaria) dominated the fungal assemblage after NP addition. In contrast, sequences attributed to the nitrogen-fixing Rhizobiales bacteria appeared vulnerable to Ag NP-mediated toxicity. This combination of physiological, biochemical and molecular studies clearly demonstrate that Ag NPs can severely disrupt the natural seasonal progression of tundra assemblages.

  5. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds.

    PubMed

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-04-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99-100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. © 2014 AAFC. New Phytologist © 2014 New Phytologist Trust.

  6. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds

    PubMed Central

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-01-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99–100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera. PMID:24444052

  7. El Verde Ridge, El Verde Valley, and Rio Icacos root phosphatase and bacterial community composition (December 2015)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabugao, Kristine; Timm, Collin; Carrell, Alyssa

    Raw data of resin P values, root phosphatase, bacterial community 16S rRNA gene sequences, and bacterial isolate phosphatase and P solubilization in Rio Icacos, El Verde Ridge and El Verde Valley. Contact cabugaokm@ornl.gov if you need to use this dataset for additional information.

  8. Benthic bacterial diversity in submerged sinkhole ecosystems.

    PubMed

    Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A

    2010-01-01

    Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.

  9. Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific.

    PubMed

    Stevens, Heike; Ulloa, Osvaldo

    2008-05-01

    The structure and diversity of bacterial communities associated with the oxygen minimum zone (OMZ) of the eastern tropical South Pacific was studied through phylogenetic analysis. Clone libraries of 16S rRNA gene fragments were constructed using environmental DNA collected from the OMZ (60 m and 200 m), the sea surface (10 m), and the deep oxycline (450 m). At the class level, the majority of sequences affiliated to the gamma- (53.7%) and alpha-Proteobacteria (19.7%), and to the Bacteroidetes (11.2%). A vertical partitioning of the bacterial communities was observed, with main differences between the suboxic OMZ and the more oxygenated surface and deep oxycline waters. At the surface, the microbial community was predominantly characterized by SAR86, Loktanella and unclassified Flavobacteriaceae, whereas the deeper layer was dominated by Sulfitobacter and unclassified Alteromonadaceae. In the OMZ, major constituents affiliated to the marine SAR11 clade and to thiotrophic gamma-symbionts (25% of all sequences), a group not commonly found in pelagic waters. Sequences affiliating to the phylum Chloroflexi, to the AGG47 and SAR202 clades, to the delta-Proteobacteria, to the Acidobacteria, and to the 'anammox group' of the Planctomycetes were found exclusively in the OMZ. The bacterial richness in the OMZ was higher than in the oxic surface and deeper oxycline, as revealed by rarefaction analysis and the Chao1 richness estimator (surface: 45 +/- 8, deeper oxycline: 76 +/- 26; OMZ (60 m): 97 +/- 33, OMZ (200 m): 109 +/- 31). OMZ bacterial diversity indices (Fisher's: approximately 30 +/- 5, Shannon's: approximately 3.31, inverse Simpson's: approximately 20) were similar to those found in other pelagic marine environments. Thus, our results indicate a distinct and diverse bacterial community within the OMZ, with presumably novel and yet uncultivated bacterial lineages.

  10. Mitochondrial genes in the colourless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns.

    PubMed Central

    Wolff, G; Burger, G; Lang, B F; Kück, U

    1993-01-01

    The mitochondrial DNA from the colourless alga Prototheca wickerhamii contains two mosaic genes as was revealed from complete sequencing of the circular extranuclear genome. The genes for the large subunit of the ribosomal RNA (LSUrRNA) as well as for subunit I of the cytochrome oxidase (coxI) carry two and three intronic sequences respectively. On the basis of their canonical nucleotide sequences they can be classified as group I introns. Phylogenetic comparisons of the coxI protein sequences allow us to conclude that the P.wickerhamii mtDNA is much closer related to higher plant mtDNAs than to those of the chlorophyte alga C.reinhardtii. The comparison of the intron sequences revealed several unusual features: (1) The P.wickerhamii introns are structurally related to mitochondrial introns from various ascomycetous fungi. (2) Phylogenetic analyses indicate a close relationship between fungal and algal intronic sequences. (3) The P. wickerhamii introns are located at positions within the structural genes which can be considered as preferred intron insertion sites in homologous mitochondrial genes from fungi or liverwort. In all cases, the sequences adjacent to the insertion sites are very well conserved over large evolutionary distances. Our finding of highly similar introns in fungi and algae is consistent with the idea that introns have already been present in the bacterial ancestors of present day mitochondria and evolved concomitantly with the organelles. PMID:7680126

  11. Intestinal flora of FAP patients containing APC-like sequences.

    PubMed

    Hainova, K; Adamcikova, Z; Ciernikova, S; Stevurkova, V; Tyciakova, S; Zajac, V

    2014-01-01

    Colorectal cancer mortality is one of the most common cause of cancer-related mortality. A multiple risk factors are associated with colorectal cancer, including hereditary, enviromental and inflammatory syndromes affecting the gastrointestinal tract. Familial adenomatous polyposis (FAP) is characterized by the emergence of hundreds to thousands of colorectal adenomatous polyps and FAP syndrome is caused by mutations within the adenomatous polyposis coli (APC) tumor suppressor gene. We analyzed 21 rectal bacterial subclones isolated from FAP patient 41-1 with confirmed 5bp ACAAA deletion within codons 1060-1063 for the presence of APC-like sequences in longest exon 15. The studied section was defined by primers 15Efor-15Erev, what correlates with mutation cluster region (MCR) in which the 75% of all APC germline mutations were detected. More than 90% homology was showed by sequencing and subsequent software comparison. The expression of APC-like sequences was demostrated by Western blot analysis using monoclonal and polyclonal antibodies against APC protein. To study missing link between the DNA analysis (PCR, DNA sequencing) and protein expresion experiments (Western blotting) we analyzed bacterial transcripts containing the 15Efor-15Erev sequence of APC gene by reverse transcription-PCR, what indicated that an APC gene derived fragment may be produced. We observed 97-100 % homology after computer comparison of cDNA PCR products. Our results suggest that presence of APC-like sequences in intestinal/rectal bacteria is enrichment of bacterial genetic information in which horizontal gene transfer between humans and microflora play an important role.

  12. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery.

    PubMed

    Namouchi, Amine; Cimino, Mena; Favre-Rochex, Sandrine; Charles, Patricia; Gicquel, Brigitte

    2017-07-13

    Tuberculosis (TB) is caused by Mycobacterium tuberculosis and represents one of the major challenges facing drug discovery initiatives worldwide. The considerable rise in bacterial drug resistance in recent years has led to the need of new drugs and drug regimens. Model systems are regularly used to speed-up the drug discovery process and circumvent biosafety issues associated with manipulating M. tuberculosis. These include the use of strains such as Mycobacterium smegmatis and Mycobacterium marinum that can be handled in biosafety level 2 facilities, making high-throughput screening feasible. However, each of these model species have their own limitations. We report and describe the first complete genome sequence of Mycobacterium aurum ATCC23366, an environmental mycobacterium that can also grow in the gut of humans and animals as part of the microbiota. This species shows a comparable resistance profile to that of M. tuberculosis for several anti-TB drugs. The aims of this study were to (i) determine the drug resistance profile of a recently proposed model species, Mycobacterium aurum, strain ATCC23366, for anti-TB drug discovery as well as Mycobacterium smegmatis and Mycobacterium marinum (ii) sequence and annotate the complete genome sequence of this species obtained using Pacific Bioscience technology (iii) perform comparative genomics analyses of the various surrogate strains with M. tuberculosis (iv) discuss how the choice of the surrogate model used for drug screening can affect the drug discovery process. We describe the complete genome sequence of M. aurum, a surrogate model for anti-tuberculosis drug discovery. Most of the genes already reported to be associated with drug resistance are shared between all the surrogate strains and M. tuberculosis. We consider that M. aurum might be used in high-throughput screening for tuberculosis drug discovery. We also highly recommend the use of different model species during the drug discovery screening process.

  13. Towards long-read metagenomics: complete assembly of three novel genomes from bacteria dependent on a diazotrophic cyanobacterium in a freshwater lake co-culture.

    PubMed

    Driscoll, Connor B; Otten, Timothy G; Brown, Nathan M; Dreher, Theo W

    2017-01-01

    Here we report three complete bacterial genome assemblies from a PacBio shotgun metagenome of a co-culture from Upper Klamath Lake, OR. Genome annotations and culture conditions indicate these bacteria are dependent on carbon and nitrogen fixation from the cyanobacterium Aphanizomenon flos-aquae, whose genome was assembled to draft-quality . Due to their taxonomic novelty relative to previously sequenced bacteria, we have temporarily designated these bacteria as incertae sedis Hyphomonadaceae strain UKL13-1 (3,501,508 bp and 56.12% GC), incertae sedis Betaproteobacterium strain UKL13-2 (3,387,087 bp and 54.98% GC), and incertae sedis Bacteroidetes strain UKL13-3 (3,236,529 bp and 37.33% GC). Each genome consists of a single circular chromosome with no identified plasmids. When compared with binned Illumina assemblies of the same three genomes, there was ~7% discrepancy in total genome length. Gaps where Illumina assemblies broke were often due to repetitive elements. Within these missing sequences were essential genes and genes associated with a variety of functional categories. Annotated gene content reveals that both Proteobacteria are aerobic anoxygenic phototrophs, with Betaproteobacterium UKL13-2 potentially capable of phototrophic oxidation of sulfur compounds. Both proteobacterial genomes contain transporters suggesting they are scavenging fixed nitrogen from A. flos-aquae in the form of ammonium. Bacteroidetes UKL13-3 has few completely annotated biosynthetic pathways, and has a comparatively higher proportion of unannotated genes. The genomes were detected in only a few other freshwater metagenomes, suggesting that these bacteria are not ubiquitous in freshwater systems. Our results indicate that long-read sequencing is a viable method for sequencing dominant members from low-diversity microbial communities, and should be considered for environmental metagenomics when conditions meet these requirements.

  14. Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.

    PubMed

    Peichel, Catherine L; Sullivan, Shawn T; Liachko, Ivan; White, Michael A

    2017-09-01

    Scaffolding genomes into complete chromosome assemblies remains challenging even with the rapidly increasing sequence coverage generated by current next-generation sequence technologies. Even with scaffolding information, many genome assemblies remain incomplete. The genome of the threespine stickleback (Gasterosteus aculeatus), a fish model system in evolutionary genetics and genomics, is not completely assembled despite scaffolding with high-density linkage maps. Here, we first test the ability of a Hi-C based proximity-guided assembly (PGA) to perform a de novo genome assembly from relatively short contigs. Using Hi-C based PGA, we generated complete chromosome assemblies from a distribution of short contigs (20-100 kb). We found that 96.40% of contigs were correctly assigned to linkage groups (LGs), with ordering nearly identical to the previous genome assembly. Using available bacterial artificial chromosome (BAC) end sequences, we provide evidence that some of the few discrepancies between the Hi-C assembly and the existing assembly are due to structural variation between the populations used for the 2 assemblies or errors in the existing assembly. This Hi-C assembly also allowed us to improve the existing assembly, assigning over 60% (13.35 Mb) of the previously unassigned (~21.7 Mb) contigs to LGs. Together, our results highlight the potential of the Hi-C based PGA method to be used in combination with short read data to perform relatively inexpensive de novo genome assemblies. This approach will be particularly useful in organisms in which it is difficult to perform linkage mapping or to obtain high molecular weight DNA required for other scaffolding methods. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. An implementation of next generation sequencing for prevention and diagnosis of urinary tract infection in urology.

    PubMed

    Mouraviev, Vladimir; McDonald, Michael

    2018-06-01

    The changing face of current infection phenotypes from planktonic to biofilm type has been developed implicating bacterial biofilms in recurrent infection. To date, no specific medical treatment exists to specifically target biofilms in the human host. Similarly, the identification of a biofilm has relied upon the analysis of tissue samples with electron microscopy or DNA identification with polymerase chain reaction (PCR) and sequencing. Standard culture and sensitivity test is not able to detect a presence of biofilms. Two types of molecular microbial diagnostic testing 'levels' are performed as noted below. In both types of analysis, the microbial DNA is extracted from the patient's sample. The patient report contains information about the pathogenic bacterial and fungal microorganisms detected, bacterial load and resistance genes to different antibiotics. Once the bacteria have been identified antibiotic recommendations are made based on research confirming the effectiveness of treatment. The technique was tested in 112 patients in different areas of urology for prevention and treatment purpose. The clinical application of next generation sequence in different clinical phase I-II trials (acute cystitis in 56 patients, rectal swabs before transrectal prostate biopsy in 32 men, neurogenic bladder in 13 patients, chronic bacterial prostatitis in 17 men) demonstrated that this novel approach extends our knowledge about the microbiome of the urogenital tract in both men and women. DNA sequence has a high sensitivity to detect a bacterial and fungal association with resistant genes to antibiotics revealed allowing to implement a targeted and individual prevention and treatment of urinary tract infection (UTI) with improved efficacy compared to standard culture and sensitivity technique. The next generation DNA sequence technology enables the discovery of new concepts regarding the role of microorganisms in diseases of the urinary tract with an individualized approach for a more accurate diagnosis, prevention, prophylaxis and treatment of UTI.

  16. Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics

    PubMed Central

    Jovel, Juan; Patterson, Jordan; Wang, Weiwei; Hotte, Naomi; O'Keefe, Sandra; Mitchel, Troy; Perry, Troy; Kao, Dina; Mason, Andrew L.; Madsen, Karen L.; Wong, Gane K.-S.

    2016-01-01

    The advent of next generation sequencing (NGS) has enabled investigations of the gut microbiome with unprecedented resolution and throughput. This has stimulated the development of sophisticated bioinformatics tools to analyze the massive amounts of data generated. Researchers therefore need a clear understanding of the key concepts required for the design, execution and interpretation of NGS experiments on microbiomes. We conducted a literature review and used our own data to determine which approaches work best. The two main approaches for analyzing the microbiome, 16S ribosomal RNA (rRNA) gene amplicons and shotgun metagenomics, are illustrated with analyses of libraries designed to highlight their strengths and weaknesses. Several methods for taxonomic classification of bacterial sequences are discussed. We present simulations to assess the number of sequences that are required to perform reliable appraisals of bacterial community structure. To the extent that fluctuations in the diversity of gut bacterial populations correlate with health and disease, we emphasize various techniques for the analysis of bacterial communities within samples (α-diversity) and between samples (β-diversity). Finally, we demonstrate techniques to infer the metabolic capabilities of a bacteria community from these 16S and shotgun data. PMID:27148170

  17. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China

    PubMed Central

    Shao, Ming-Wei; Lu, Yi-Hui; Miao, Shuang; Zhang, Yun; Chen, Ting-Ting; Zhang, Ying-Lao

    2015-01-01

    The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds. PMID:26221957

  18. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China.

    PubMed

    Shao, Ming-Wei; Lu, Yi-Hui; Miao, Shuang; Zhang, Yun; Chen, Ting-Ting; Zhang, Ying-Lao

    2015-01-01

    The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds.

  19. High-Resolution Melt Analysis for Rapid Comparison of Bacterial Community Compositions

    PubMed Central

    Hjelmsø, Mathis Hjort; Hansen, Lars Hestbjerg; Bælum, Jacob; Feld, Louise; Holben, William E.

    2014-01-01

    In the study of bacterial community composition, 16S rRNA gene amplicon sequencing is today among the preferred methods of analysis. The cost of nucleotide sequence analysis, including requisite computational and bioinformatic steps, however, takes up a large part of many research budgets. High-resolution melt (HRM) analysis is the study of the melt behavior of specific PCR products. Here we describe a novel high-throughput approach in which we used HRM analysis targeting the 16S rRNA gene to rapidly screen multiple complex samples for differences in bacterial community composition. We hypothesized that HRM analysis of amplified 16S rRNA genes from a soil ecosystem could be used as a screening tool to identify changes in bacterial community structure. This hypothesis was tested using a soil microcosm setup exposed to a total of six treatments representing different combinations of pesticide and fertilization treatments. The HRM analysis identified a shift in the bacterial community composition in two of the treatments, both including the soil fumigant Basamid GR. These results were confirmed with both denaturing gradient gel electrophoresis (DGGE) analysis and 454-based 16S rRNA gene amplicon sequencing. HRM analysis was shown to be a fast, high-throughput technique that can serve as an effective alternative to gel-based screening methods to monitor microbial community composition. PMID:24610853

  20. Lucinidae/sulfur-oxidizing bacteria: ancestral heritage or opportunistic association? Further insights from the Bohol Sea (the Philippines).

    PubMed

    Brissac, Terry; Merçot, Hervé; Gros, Olivier

    2011-01-01

    The first studies of the 16S rRNA gene diversity of the bacterial symbionts found in lucinid clams did not clarify how symbiotic associations had evolved in this group. Indeed, although species-specific associations deriving from a putative ancestral symbiotic association have been described (coevolution scenario), associations between the same bacterial species and various host species (opportunistic scenario) have also been described. Here, we carried out a comparative molecular analysis of hosts, based on 18S and 28S rRNA gene sequences, and of symbionts, based on 16S rRNA gene sequences, to determine as to which evolutionary scenario led to modern lucinid/symbiont associations. For all sequences analyzed, we found only three bacterial symbiont species, two of which are harbored by lucinids colonizing mangrove swamps. The last symbiont is the most common and was found to be independent of biotope or depth. Another interesting feature is the similarity of ctenidial organization of lucinids from the Philippines to those described previously, with the exception that two bacterial morphotypes were observed in two different species (Gloverina rectangularis and Myrtea flabelliformis). Thus, there is apparently no specific association between Lucinidae and their symbionts, the association taking place according to which bacterial species is present in the environment. FEMS Microbiology Ecology © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original French government works.

Top