Sample records for completeness theorem relative

  1. The Holographic Electron Density Theorem, de-quantization, re-quantization, and nuclear charge space extrapolations of the Universal Molecule Model

    NASA Astrophysics Data System (ADS)

    Mezey, Paul G.

    2017-11-01

    Two strongly related theorems on non-degenerate ground state electron densities serve as the basis of "Molecular Informatics". The Hohenberg-Kohn theorem is a statement on global molecular information, ensuring that the complete electron density contains the complete molecular information. However, the Holographic Electron Density Theorem states more: the local information present in each and every positive volume density fragment is already complete: the information in the fragment is equivalent to the complete molecular information. In other words, the complete molecular information provided by the Hohenberg-Kohn Theorem is already provided, in full, by any positive volume, otherwise arbitrarily small electron density fragment. In this contribution some of the consequences of the Holographic Electron Density Theorem are discussed within the framework of the "Nuclear Charge Space" and the Universal Molecule Model. In the Nuclear Charge Space" the nuclear charges are regarded as continuous variables, and in the more general Universal Molecule Model some other quantized parameteres are also allowed to become "de-quantized and then re-quantized, leading to interrelations among real molecules through abstract molecules. Here the specific role of the Holographic Electron Density Theorem is discussed within the above context.

  2. A Complete Set for the Maass Laplacians on the Pseudosphere

    NASA Astrophysics Data System (ADS)

    Oshima, K.

    1989-02-01

    We obtain a completeness relation from eigenfunctions of the Maass laplacians in terms of the pseudospherical polar coordinates. We derive addition theorems of ``generalized'' associated Legendre functions. With the help of the addition theorems, we get a simple path integral picture for a charged particle on the Poincaré upper half plane with a constant magnetic field.

  3. From Einstein's theorem to Bell's theorem: a history of quantum non-locality

    NASA Astrophysics Data System (ADS)

    Wiseman, H. M.

    2006-04-01

    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.

  4. Analytical study of bound states in graphene nanoribbons and carbon nanotubes: The variable phase method and the relativistic Levinson theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miserev, D. S., E-mail: d.miserev@student.unsw.edu.au, E-mail: erazorheader@gmail.com

    2016-06-15

    The problem of localized states in 1D systems with a relativistic spectrum, namely, graphene stripes and carbon nanotubes, is studied analytically. The bound state as a superposition of two chiral states is completely described by their relative phase, which is the foundation of the variable phase method (VPM) developed herein. Based on our VPM, we formulate and prove the relativistic Levinson theorem. The problem of bound states can be reduced to the analysis of closed trajectories of some vector field. Remarkably, the Levinson theorem appears as the Poincaré index theorem for these closed trajectories. The VPM equation is also reducedmore » to the nonrelativistic and semiclassical limits. The limit of a small momentum p{sub y} of transverse quantization is applicable to an arbitrary integrable potential. In this case, a single confined mode is predicted.« less

  5. Slowly changing potential problems in Quantum Mechanics: Adiabatic theorems, ergodic theorems, and scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fishman, S., E-mail: fishman@physics.technion.ac.il; Soffer, A., E-mail: soffer@math.rutgers.edu

    2016-07-15

    We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the adiabatic theorem in the gapless case. We prove a new uniform ergodic theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and asymptotic completeness.

  6. Transient quantum fluctuation theorems and generalized measurements

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter

    2014-01-01

    The transient quantum fluctuation theorems of Crooks and Jarzynski restrict and relate the statistics of work performed in forward and backward forcing protocols. So far, these theorems have been obtained under the assumption that the work is determined by two projective energy measurements, one at the end, and the other one at the beginning of each run of the protocol. We found that one can replace these two projective measurements only by special error-free generalized energy measurements with pairs of tailored, protocol-dependent post-measurement states that satisfy detailed balance-like relations. For other generalized measurements, the Crooks relation is typically not satisfied. For the validity of the Jarzynski equality, it is sufficient that the first energy measurements are error-free and the post-measurement states form a complete orthonormal set of elements in the Hilbert space of the considered system. Additionally, the effects of the second energy measurements must have unit trace. We illustrate our results by an example of a two-level system for different generalized measurements.

  7. Transient quantum fluctuation theorems and generalized measurements

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter

    2014-05-01

    The transient quantum fluctuation theorems of Crooks and Jarzynski restrict and relate the statistics of work performed in forward and backward forcing protocols. So far, these theorems have been obtained under the assumption that the work is determined by two projective energy measurements, one at the end, and the other one at the beginning of each run of the protocol.We found that one can replace these two projective measurements only by special error-free generalized energy measurements with pairs of tailored, protocol-dependent post-measurement states that satisfy detailed balance-like relations. For other generalized measurements, the Crooks relation is typically not satisfied. For the validity of the Jarzynski equality, it is sufficient that the first energy measurements are error-free and the post-measurement states form a complete orthonormal set of elements in the Hilbert space of the considered system. Additionally, the effects of the second energy measurements must have unit trace. We illustrate our results by an example of a two-level system for different generalized measurements.

  8. An introduction to chaotic and random time series analysis

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1989-01-01

    The origin of chaotic behavior and the relation of chaos to randomness are explained. Two mathematical results are described: (1) a representation theorem guarantees the existence of a specific time-domain model for chaos and addresses the relation between chaotic, random, and strictly deterministic processes; (2) a theorem assures that information on the behavior of a physical system in its complete state space can be extracted from time-series data on a single observable. Focus is placed on an important connection between the dynamical state space and an observable time series. These two results lead to a practical deconvolution technique combining standard random process modeling methods with new embedded techniques.

  9. The Parity Theorem Shuffle

    ERIC Educational Resources Information Center

    Smith, Michael D.

    2016-01-01

    The Parity Theorem states that any permutation can be written as a product of transpositions, but no permutation can be written as a product of both an even number and an odd number of transpositions. Most proofs of the Parity Theorem take several pages of mathematical formalism to complete. This article presents an alternative but equivalent…

  10. Lichnerowicz-type equations with sign-changing nonlinearities on complete manifolds with boundary

    NASA Astrophysics Data System (ADS)

    Albanese, Guglielmo; Rigoli, Marco

    2017-12-01

    We prove an existence theorem for positive solutions to Lichnerowicz-type equations on complete manifolds with boundary (M , ∂ M , 〈 , 〉) and nonlinear Neumann conditions. This kind of nonlinear problems arise quite naturally in the study of solutions for the Einstein-scalar field equations of General Relativity in the framework of the so called Conformal Method.

  11. Common fixed point theorems for maps under a contractive condition of integral type

    NASA Astrophysics Data System (ADS)

    Djoudi, A.; Merghadi, F.

    2008-05-01

    Two common fixed point theorems for mapping of complete metric space under a general contractive inequality of integral type and satisfying minimal commutativity conditions are proved. These results extend and improve several previous results, particularly Theorem 4 of Rhoades [B.E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003) 4007-4013] and Theorem 4 of Sessa [S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. (Beograd) (N.S.) 32 (46) (1982) 149-153].

  12. Computability, Gödel's incompleteness theorem, and an inherent limit on the predictability of evolution

    PubMed Central

    Day, Troy

    2012-01-01

    The process of evolutionary diversification unfolds in a vast genotypic space of potential outcomes. During the past century, there have been remarkable advances in the development of theory for this diversification, and the theory's success rests, in part, on the scope of its applicability. A great deal of this theory focuses on a relatively small subset of the space of potential genotypes, chosen largely based on historical or contemporary patterns, and then predicts the evolutionary dynamics within this pre-defined set. To what extent can such an approach be pushed to a broader perspective that accounts for the potential open-endedness of evolutionary diversification? There have been a number of significant theoretical developments along these lines but the question of how far such theory can be pushed has not been addressed. Here a theorem is proven demonstrating that, because of the digital nature of inheritance, there are inherent limits on the kinds of questions that can be answered using such an approach. In particular, even in extremely simple evolutionary systems, a complete theory accounting for the potential open-endedness of evolution is unattainable unless evolution is progressive. The theorem is closely related to Gödel's incompleteness theorem, and to the halting problem from computability theory. PMID:21849390

  13. Unified quantum no-go theorems and transforming of quantum pure states in a restricted set

    NASA Astrophysics Data System (ADS)

    Luo, Ming-Xing; Li, Hui-Ran; Lai, Hong; Wang, Xiaojun

    2017-12-01

    The linear superposition principle in quantum mechanics is essential for several no-go theorems such as the no-cloning theorem, the no-deleting theorem and the no-superposing theorem. In this paper, we investigate general quantum transformations forbidden or permitted by the superposition principle for various goals. First, we prove a no-encoding theorem that forbids linearly superposing of an unknown pure state and a fixed pure state in Hilbert space of a finite dimension. The new theorem is further extended for multiple copies of an unknown state as input states. These generalized results of the no-encoding theorem include the no-cloning theorem, the no-deleting theorem and the no-superposing theorem as special cases. Second, we provide a unified scheme for presenting perfect and imperfect quantum tasks (cloning and deleting) in a one-shot manner. This scheme may lead to fruitful results that are completely characterized with the linear independence of the representative vectors of input pure states. The upper bounds of the efficiency are also proved. Third, we generalize a recent superposing scheme of unknown states with a fixed overlap into new schemes when multiple copies of an unknown state are as input states.

  14. Non-algebraic integrability of the Chew-Low reversible dynamical system of the Cremona type and the relation with the 7th Hilbert problem (non-resonant case)

    NASA Astrophysics Data System (ADS)

    Rerikh, K. V.

    A smooth reversible dynamical system (SRDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions (the Chew-Low equations for p- wave πN- scattering) are considered. This SRDS is splitted into 1- and 2-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous 3-point functional equation. Non-algebraic integrability of SRDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a non-resonant fixed point. The proof is based on the classical Feldman-Baker theorem on linear forms of logarithms of algebraic numbers, which, in turn, relies upon solving the 7th Hilbert problem by A.I. Gel'fond and T. Schneider and new powerful methods of A. Baker in the theory of transcendental numbers. The general theorem, following from the Feldman-Baker theorem, on applicability of the Siegel theorem to the set of the eigenvalues λ ɛ Cn of a mapping at a non-resonant fixed point which belong to the algebraic number field A is formulated and proved. The main results are presented in Theorems 1-3, 5, 7, 8 and Remarks 3, 7.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Leo C.; Yagi, Kent; Yunes, Nicolás, E-mail: leostein@astro.cornell.edu

    The gravitational field outside of astrophysical black holes is completely described by their mass and spin frequency, as expressed by the no-hair theorems. These theorems assume vacuum spacetimes, and thus they apply only to black holes and not to stars. Despite this, we analytically find that the gravitational potential of arbitrarily rapid, rigidly rotating stars can still be described completely by only their mass, spin angular momentum, and quadrupole moment. Although these results are obtained in the nonrelativistic limit (to leading order in a weak-field expansion of general relativity, GR), they are also consistent with fully relativistic numerical calculations ofmore » rotating neutron stars. This description of the gravitational potential outside the source in terms of just three quantities is approximately universal (independent of equation of state). Such universality may be used to break degeneracies in pulsar and future gravitational wave observations to extract more physics and test GR in the strong-field regime.« less

  16. Trace theorem for quasi-Fuchsian groups

    NASA Astrophysics Data System (ADS)

    Connes, A.; Sukochev, F. A.; Zanin, D. V.

    2017-10-01

    We complete the proof of the Trace Theorem in the quantized calculus for quasi-Fuchsian groups which was stated and sketched, but not fully proved, on pp. 322-325 of the book Noncommutative geometry of the first author. Bibliography: 34 titles.

  17. The Cr dependence problem of eigenvalues of the Laplace operator on domains in the plane

    NASA Astrophysics Data System (ADS)

    Haddad, Julian; Montenegro, Marcos

    2018-03-01

    The Cr dependence problem of multiple Dirichlet eigenvalues on domains is discussed for elliptic operators by regarding C r + 1-smooth one-parameter families of C1 perturbations of domains in Rn. As applications of our main theorem (Theorem 1), we provide a fairly complete description for all eigenvalues of the Laplace operator on disks and squares in R2 and also for its second eigenvalue on balls in Rn for any n ≥ 3. The central tool used in our proof is a degenerate implicit function theorem on Banach spaces (Theorem 2) of independent interest.

  18. A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics

    NASA Technical Reports Server (NTRS)

    Gingold, H.

    1991-01-01

    A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.

  19. Geography and the Properties of Surfaces. The Sandwich Theorem - A Basic One for Geography.

    DTIC Science & Technology

    the nature of the Sandwich Theorem and its relationship to Geography and provides an algorithm and a complete program to achieve ’solutions.’ Also included is a translation of one work of Hugo Steinhaus . (Author)

  20. Steady States, Fluctuation-Dissipation Theorems and Homogenization for Reversible Diffusions in a Random Environment

    NASA Astrophysics Data System (ADS)

    Mathieu, P.; Piatnitski, A.

    2018-04-01

    Prolongating our previous paper on the Einstein relation, we study the motion of a particle diffusing in a random reversible environment when subject to a small external forcing. In order to describe the long time behavior of the particle, we introduce the notions of steady state and weak steady state. We establish the continuity of weak steady states for an ergodic and uniformly elliptic environment. When the environment has finite range of dependence, we prove the existence of the steady state and weak steady state and compute its derivative at a vanishing force. Thus we obtain a complete `fluctuation-dissipation Theorem' in this context as well as the continuity of the effective variance.

  1. Entanglement conservation, ER=EPR, and a new classical area theorem for wormholes

    DOE PAGES

    Remmen, Grant N.; Bao, Ning; Pollack, Jason

    2016-07-11

    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throatmore » separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. In conclusion, this theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.« less

  2. Entanglement conservation, ER=EPR, and a new classical area theorem for wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remmen, Grant N.; Bao, Ning; Pollack, Jason

    We consider the question of entanglement conservation in the context of the ER=EPR correspondence equating quantum entanglement with wormholes. In quantum mechanics, the entanglement between a system and its complement is conserved under unitary operations that act independently on each; ER=EPR suggests that an analogous statement should hold for wormholes. We accordingly prove a new area theorem in general relativity: for a collection of dynamical wormholes and black holes in a spacetime satisfying the null curvature condition, the maximin area for a subset of the horizons (giving the largest area attained by the minimal cross section of the multi-wormhole throatmore » separating the subset from its complement) is invariant under classical time evolution along the outermost apparent horizons. The evolution can be completely general, including horizon mergers and the addition of classical matter satisfying the null energy condition. In conclusion, this theorem is the gravitational dual of entanglement conservation and thus constitutes an explicit characterization of the ER=EPR duality in the classical limit.« less

  3. Some limit theorems for ratios of order statistics from uniform random variables.

    PubMed

    Xu, Shou-Fang; Miao, Yu

    2017-01-01

    In this paper, we study the ratios of order statistics based on samples drawn from uniform distribution and establish some limit properties such as the almost sure central limit theorem, the large deviation principle, the Marcinkiewicz-Zygmund law of large numbers and complete convergence.

  4. One-range addition theorems for derivatives of Slater-type orbitals.

    PubMed

    Guseinov, Israfil

    2004-06-01

    Using addition theorems for STOs introduced by the author with the help of complete orthonormal sets of psi(alpha)-ETOs (Guseinov II (2003) J Mol Model 9:190-194), where alpha=1, 0, -1, -2, ..., a large number of one-range addition theorems for first and second derivatives of STOs are established. These addition theorems are especially useful for computation of multicenter-multielectron integrals over STOs that arise in the Hartree-Fock-Roothaan approximation and also in the Hylleraas function method, which play a significant role for the study of electronic structure and electron-nuclei interaction properties of atoms, molecules, and solids. The relationships obtained are valid for arbitrary quantum numbers, screening constants and location of STOs.

  5. Kostant polynomials and the cohomology ring for G/B

    PubMed Central

    Billey, Sara C.

    1997-01-01

    The Schubert calculus for G/B can be completely determined by a certain matrix related to the Kostant polynomials introduced in section 5 of Bernstein, Gelfand, and Gelfand [Bernstein, I., Gelfand, I. & Gelfand, S. (1973) Russ. Math. Surv. 28, 1–26]. The polynomials are defined by vanishing properties on the orbit of a regular point under the action of the Weyl group. For each element w in the Weyl group the polynomials also have nonzero values on the orbit points corresponding to elements which are larger in the Bruhat order than w. The main theorem given here is an explicit formula for these values. The matrix of orbit values can be used to determine the cup product for the cohomology ring for G/B, using only linear algebra or as described by Lascoux and Schützenberger [Lascoux, A. & Schützenberger, M.-P. (1982) C. R. Seances Acad. Sci. Ser. A 294, 447–450]. Complete proofs of all the theorems will appear in a forthcoming paper. PMID:11038536

  6. The spectral theorem for quaternionic unbounded normal operators based on the S-spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alpay, Daniel, E-mail: dany@math.bgu.ac.il; Kimsey, David P., E-mail: dpkimsey@gmail.com; Colombo, Fabrizio, E-mail: fabrizio.colombo@polimi.it

    In this paper we prove the spectral theorem for quaternionic unbounded normal operators using the notion of S-spectrum. The proof technique consists of first establishing a spectral theorem for quaternionic bounded normal operators and then using a transformation which maps a quaternionic unbounded normal operator to a quaternionic bounded normal operator. With this paper we complete the foundation of spectral analysis of quaternionic operators. The S-spectrum has been introduced to define the quaternionic functional calculus but it turns out to be the correct object also for the spectral theorem for quaternionic normal operators. The lack of a suitable notion ofmore » spectrum was a major obstruction to fully understand the spectral theorem for quaternionic normal operators. A prime motivation for studying the spectral theorem for quaternionic unbounded normal operators is given by the subclass of unbounded anti-self adjoint quaternionic operators which play a crucial role in the quaternionic quantum mechanics.« less

  7. Limits of predictions in thermodynamic systems: a review

    NASA Astrophysics Data System (ADS)

    Marsland, Robert, III; England, Jeremy

    2018-01-01

    The past twenty years have seen a resurgence of interest in nonequilibrium thermodynamics, thanks to advances in the theory of stochastic processes and in their thermodynamic interpretation. Fluctuation theorems provide fundamental constraints on the dynamics of systems arbitrarily far from thermal equilibrium. Thermodynamic uncertainty relations bound the dissipative cost of precision in a wide variety of processes. Concepts of excess work and excess heat provide the basis for a complete thermodynamics of nonequilibrium steady states, including generalized Clausius relations and thermodynamic potentials. But these general results carry their own limitations: fluctuation theorems involve exponential averages that can depend sensitively on unobservably rare trajectories; steady-state thermodynamics makes use of a dual dynamics that lacks any direct physical interpretation. This review aims to present these central results of contemporary nonequilibrium thermodynamics in such a way that the power of each claim for making physical predictions can be clearly assessed, using examples from current topics in soft matter and biophysics.

  8. Student Research Project: Goursat's Other Theorem

    ERIC Educational Resources Information Center

    Petrillo, Joseph

    2009-01-01

    In an elementary undergraduate abstract algebra or group theory course, a student is introduced to a variety of methods for constructing and deconstructing groups. What seems to be missing from contemporary texts and syllabi is a theorem, first proved by Edouard Jean-Baptiste Goursat (1858-1936) in 1889, which completely describes the subgroups of…

  9. Elementary solutions of coupled model equations in the kinetic theory of gases

    NASA Technical Reports Server (NTRS)

    Kriese, J. T.; Siewert, C. E.; Chang, T. S.

    1974-01-01

    The method of elementary solutions is employed to solve two coupled integrodifferential equations sufficient for determining temperature-density effects in a linearized BGK model in the kinetic theory of gases. Full-range completeness and orthogonality theorems are proved for the developed normal modes and the infinite-medium Green's function is constructed as an illustration of the full-range formalism. The appropriate homogeneous matrix Riemann problem is discussed, and half-range completeness and orthogonality theorems are proved for a certain subset of the normal modes. The required existence and uniqueness theorems relevant to the H matrix, basic to the half-range analysis, are proved, and an accurate and efficient computational method is discussed. The half-space temperature-slip problem is solved analytically, and a highly accurate value of the temperature-slip coefficient is reported.

  10. Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States

    NASA Astrophysics Data System (ADS)

    Hoang, Thai M.; Pan, Rui; Ahn, Jonghoon; Bang, Jaehoon; Quan, H. T.; Li, Tongcang

    2018-02-01

    Nonequilibrium processes of small systems such as molecular machines are ubiquitous in biology, chemistry, and physics but are often challenging to comprehend. In the past two decades, several exact thermodynamic relations of nonequilibrium processes, collectively known as fluctuation theorems, have been discovered and provided critical insights. These fluctuation theorems are generalizations of the second law and can be unified by a differential fluctuation theorem. Here we perform the first experimental test of the differential fluctuation theorem using an optically levitated nanosphere in both underdamped and overdamped regimes and in both spatial and velocity spaces. We also test several theorems that can be obtained from it directly, including a generalized Jarzynski equality that is valid for arbitrary initial states, and the Hummer-Szabo relation. Our study experimentally verifies these fundamental theorems and initiates the experimental study of stochastic energetics with the instantaneous velocity measurement.

  11. Unpacking Rouché's Theorem

    ERIC Educational Resources Information Center

    Howell, Russell W.; Schrohe, Elmar

    2017-01-01

    Rouché's Theorem is a standard topic in undergraduate complex analysis. It is usually covered near the end of the course with applications relating to pure mathematics only (e.g., using it to produce an alternate proof of the Fundamental Theorem of Algebra). The "winding number" provides a geometric interpretation relating to the…

  12. An efficient sampling technique for sums of bandpass functions

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.

    1982-01-01

    A well known sampling theorem states that a bandlimited function can be completely determined by its values at a uniformly placed set of points whose density is at least twice the highest frequency component of the function (Nyquist rate). A less familiar but important sampling theorem states that a bandlimited narrowband function can be completely determined by its values at a properly chosen, nonuniformly placed set of points whose density is at least twice the passband width. This allows for efficient digital demodulation of narrowband signals, which are common in sonar, radar and radio interferometry, without the side effect of signal group delay from an analog demodulator. This theorem was extended by developing a technique which allows a finite sum of bandlimited narrowband functions to be determined by its values at a properly chosen, nonuniformly placed set of points whose density can be made arbitrarily close to the sum of the passband widths.

  13. Logical errors on proving theorem

    NASA Astrophysics Data System (ADS)

    Sari, C. K.; Waluyo, M.; Ainur, C. M.; Darmaningsih, E. N.

    2018-01-01

    In tertiary level, students of mathematics education department attend some abstract courses, such as Introduction to Real Analysis which needs an ability to prove mathematical statements almost all the time. In fact, many students have not mastered this ability appropriately. In their Introduction to Real Analysis tests, even though they completed their proof of theorems, they achieved an unsatisfactory score. They thought that they succeeded, but their proof was not valid. In this study, a qualitative research was conducted to describe logical errors that students made in proving the theorem of cluster point. The theorem was given to 54 students. Misconceptions on understanding the definitions seem to occur within cluster point, limit of function, and limit of sequences. The habit of using routine symbol might cause these misconceptions. Suggestions to deal with this condition are described as well.

  14. The Great Emch Closure Theorem and a combinatorial proof of Poncelet's Theorem

    NASA Astrophysics Data System (ADS)

    Avksentyev, E. A.

    2015-11-01

    The relations between the classical closure theorems (Poncelet's, Steiner's, Emch's, and the zigzag theorems) and some of their generalizations are discussed. It is known that Emch's Theorem is the most general of these, while the others follow as special cases. A generalization of Emch's Theorem to pencils of circles is proved, which (by analogy with the Great Poncelet Theorem) can be called the Great Emch Theorem. It is shown that the Great Emch and Great Poncelet Theorems are equivalent and can be derived one from the other using elementary geometry, and also that both hold in the Lobachevsky plane as well. A new closure theorem is also obtained, in which the construction of closure is slightly more involved: closure occurs on a variable circle which is tangent to a fixed pair of circles. In conclusion, a combinatorial proof of Poncelet's Theorem is given, which deduces the closure principle for an arbitrary number of steps from the principle for three steps using combinatorics and number theory. Bibliography: 20 titles.

  15. Efficient Scores, Variance Decompositions and Monte Carlo Swindles.

    DTIC Science & Technology

    1984-08-28

    to ;r Then a version .of Pythagoras ’ theorem gives the variance decomposition (6.1) varT var S var o(T-S) P P0 0 0 One way to see this is to note...complete sufficient statistics for (B, a) , and that the standard- ized residuals a(y - XB) 6 are ancillary. Basu’s sufficiency- ancillarity theorem

  16. Guided Discovery of the Nine-Point Circle Theorem and Its Proof

    ERIC Educational Resources Information Center

    Buchbinder, Orly

    2018-01-01

    The nine-point circle theorem is one of the most beautiful and surprising theorems in Euclidean geometry. It establishes an existence of a circle passing through nine points, all of which are related to a single triangle. This paper describes a set of instructional activities that can help students discover the nine-point circle theorem through…

  17. A Formally-Verified Decision Procedure for Univariate Polynomial Computation Based on Sturm's Theorem

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony J.; Munoz, Cesar A.

    2014-01-01

    Sturm's Theorem is a well-known result in real algebraic geometry that provides a function that computes the number of roots of a univariate polynomial in a semiopen interval. This paper presents a formalization of this theorem in the PVS theorem prover, as well as a decision procedure that checks whether a polynomial is always positive, nonnegative, nonzero, negative, or nonpositive on any input interval. The soundness and completeness of the decision procedure is proven in PVS. The procedure and its correctness properties enable the implementation of a PVS strategy for automatically proving existential and universal univariate polynomial inequalities. Since the decision procedure is formally verified in PVS, the soundness of the strategy depends solely on the internal logic of PVS rather than on an external oracle. The procedure itself uses a combination of Sturm's Theorem, an interval bisection procedure, and the fact that a polynomial with exactly one root in a bounded interval is always nonnegative on that interval if and only if it is nonnegative at both endpoints.

  18. Non-linear programming in shakedown analysis with plasticity and friction

    NASA Astrophysics Data System (ADS)

    Spagnoli, A.; Terzano, M.; Barber, J. R.; Klarbring, A.

    2017-07-01

    Complete frictional contacts, when subjected to cyclic loading, may sometimes develop a favourable situation where slip ceases after a few cycles, an occurrence commonly known as frictional shakedown. Its resemblance to shakedown in plasticity has prompted scholars to apply direct methods, derived from the classical theorems of limit analysis, in order to assess a safe limit to the external loads applied on the system. In circumstances where zones of plastic deformation develop in the material (e.g., because of the large stress concentrations near the sharp edges of a complete contact), it is reasonable to expect an effect of mutual interaction of frictional slip and plastic strains on the load limit below which the global behaviour is non dissipative, i.e., both slip and plastic strains go to zero after some dissipative load cycles. In this paper, shakedown of general two-dimensional discrete systems, involving both friction and plasticity, is discussed and the shakedown limit load is calculated using a non-linear programming algorithm based on the static theorem of limit analysis. An illustrative example related to an elastic-plastic solid containing a frictional crack is provided.

  19. A hierarchical generalization of the acoustic reciprocity theorem involving higher-order derivatives and interaction quantities.

    PubMed

    Lin, Ju; Li, Jie; Li, Xiaolei; Wang, Ning

    2016-10-01

    An acoustic reciprocity theorem is generalized, for a smoothly varying perturbed medium, to a hierarchy of reciprocity theorems including higher-order derivatives of acoustic fields. The standard reciprocity theorem is the first member of the hierarchy. It is shown that the conservation of higher-order interaction quantities is related closely to higher-order derivative distributions of perturbed media. Then integral reciprocity theorems are obtained by applying Gauss's divergence theorem, which give explicit integral representations connecting higher-order interactions and higher-order derivative distributions of perturbed media. Some possible applications to an inverse problem are also discussed.

  20. Topology and the Lay of the Land: A Mathematician on the Topographer's Turf.

    ERIC Educational Resources Information Center

    Shubin, Mikhail

    1992-01-01

    Presents a proof of Euler's Theorem on polyhedra by relating the theorem to the field of modern topology, specifically to the topology of relief maps. An analogous theorem involving the features of mountain summits, basins, and passes on a terrain is proved and related to the faces, vertices, and edges on a convex polyhedron. (MDH)

  1. A Note on a Sampling Theorem for Functions over GF(q)n Domain

    NASA Astrophysics Data System (ADS)

    Ukita, Yoshifumi; Saito, Tomohiko; Matsushima, Toshiyasu; Hirasawa, Shigeichi

    In digital signal processing, the sampling theorem states that any real valued function ƒ can be reconstructed from a sequence of values of ƒ that are discretely sampled with a frequency at least twice as high as the maximum frequency of the spectrum of ƒ. This theorem can also be applied to functions over finite domain. Then, the range of frequencies of ƒ can be expressed in more detail by using a bounded set instead of the maximum frequency. A function whose range of frequencies is confined to a bounded set is referred to as bandlimited function. And a sampling theorem for bandlimited functions over Boolean domain has been obtained. Here, it is important to obtain a sampling theorem for bandlimited functions not only over Boolean domain (GF(q)n domain) but also over GF(q)n domain, where q is a prime power and GF(q) is Galois field of order q. For example, in experimental designs, although the model can be expressed as a linear combination of the Fourier basis functions and the levels of each factor can be represented by GF(q)n, the number of levels often take a value greater than two. However, the sampling theorem for bandlimited functions over GF(q)n domain has not been obtained. On the other hand, the sampling points are closely related to the codewords of a linear code. However, the relation between the parity check matrix of a linear code and any distinct error vectors has not been obtained, although it is necessary for understanding the meaning of the sampling theorem for bandlimited functions. In this paper, we generalize the sampling theorem for bandlimited functions over Boolean domain to a sampling theorem for bandlimited functions over GF(q)n domain. We also present a theorem for the relation between the parity check matrix of a linear code and any distinct error vectors. Lastly, we clarify the relation between the sampling theorem for functions over GF(q)n domain and linear codes.

  2. Surface loading of a viscoelastic earth-I. General theory

    NASA Astrophysics Data System (ADS)

    Tromp, Jeroen; Mitrovica, Jerry X.

    1999-06-01

    We present a new normal-mode formalism for computing the response of an aspherical, self-gravitating, linear viscoelastic earth model to an arbitrary surface load. The formalism makes use of recent advances in the theory of the Earth's free oscillations, and is based upon an eigenfunction expansion methodology, rather than the tradi-tional Love-number approach to surface-loading problems. We introduce a surface-load representation theorem analogous to Betti's reciprocity relation in seismology. Taking advantage of this theorem and the biorthogonality of the viscoelastic modes, we determine the complete response to a surface load in the form of a Green's function. We also demonstrate that each viscoelastic mode has its own unique energy partitioning, which can be used to characterize it. In subsequent papers, we apply the theory to spherically symmetric and aspherical earth models.

  3. Model Checking Failed Conjectures in Theorem Proving: A Case Study

    NASA Technical Reports Server (NTRS)

    Pike, Lee; Miner, Paul; Torres-Pomales, Wilfredo

    2004-01-01

    Interactive mechanical theorem proving can provide high assurance of correct design, but it can also be a slow iterative process. Much time is spent determining why a proof of a conjecture is not forthcoming. In some cases, the conjecture is false and in others, the attempted proof is insufficient. In this case study, we use the SAL family of model checkers to generate a concrete counterexample to an unproven conjecture specified in the mechanical theorem prover, PVS. The focus of our case study is the ROBUS Interactive Consistency Protocol. We combine the use of a mechanical theorem prover and a model checker to expose a subtle flaw in the protocol that occurs under a particular scenario of faults and processor states. Uncovering the flaw allows us to mend the protocol and complete its general verification in PVS.

  4. Verification of the FtCayuga fault-tolerant microprocessor system. Volume 2: Formal specification and correctness theorems

    NASA Technical Reports Server (NTRS)

    Bickford, Mark; Srivas, Mandayam

    1991-01-01

    Presented here is a formal specification and verification of a property of a quadruplicately redundant fault tolerant microprocessor system design. A complete listing of the formal specification of the system and the correctness theorems that are proved are given. The system performs the task of obtaining interactive consistency among the processors using a special instruction on the processors. The design is based on an algorithm proposed by Pease, Shostak, and Lamport. The property verified insures that an execution of the special instruction by the processors correctly accomplishes interactive consistency, providing certain preconditions hold, using a computer aided design verification tool, Spectool, and the theorem prover, Clio. A major contribution of the work is the demonstration of a significant fault tolerant hardware design that is mechanically verified by a theorem prover.

  5. Revisiting Ramakrishnan's approach to relatively. [Velocity addition theorem uniqueness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, K.K.; Shankara, T.S.

    The conditions under which the velocity addition theorem (VAT) is formulated by Ramakrishnan gave rise to doubts about the uniqueness of the theorem. These conditions are rediscussed with reference to their algebraic and experimental implications. 9 references.

  6. Generalization of the Ehrenfest theorem to quantum systems with periodical boundary conditions

    NASA Astrophysics Data System (ADS)

    Sanin, Andrey L.; Bagmanov, Andrey T.

    2005-04-01

    A generalization of Ehrenfest's theorem is discussed. For this purpose the quantum systems with periodical boundary conditions are being revised. The relations for time derivations of mean coordinate and momentum are derived once again. In comparison with Ehrenfest's theorem and its conventional quantities, the additional local terms occur which are caused boundaries. Because of this, the obtained new relations can be named as generalized. An example for using these relations is given.

  7. Understanding Rolle's Theorem

    ERIC Educational Resources Information Center

    Parameswaran, Revathy

    2009-01-01

    This paper reports on an experiment studying twelfth grade students' understanding of Rolle's Theorem. In particular, we study the influence of different concept images that students employ when solving reasoning tasks related to Rolle's Theorem. We argue that students' "container schema" and "motion schema" allow for rich…

  8. SU(p,q) coherent states and a Gaussian de Finetti theorem

    NASA Astrophysics Data System (ADS)

    Leverrier, Anthony

    2018-04-01

    We prove a generalization of the quantum de Finetti theorem when the local space is an infinite-dimensional Fock space. In particular, instead of considering the action of the permutation group on n copies of that space, we consider the action of the unitary group U(n) on the creation operators of the n modes and define a natural generalization of the symmetric subspace as the space of states invariant under unitaries in U(n). Our first result is a complete characterization of this subspace, which turns out to be spanned by a family of generalized coherent states related to the special unitary group SU(p, q) of signature (p, q). More precisely, this construction yields a unitary representation of the noncompact simple real Lie group SU(p, q). We therefore find a dual unitary representation of the pair of groups U(n) and SU(p, q) on an n(p + q)-mode Fock space. The (Gaussian) SU(p, q) coherent states resolve the identity on the symmetric subspace, which implies a Gaussian de Finetti theorem stating that tracing over a few modes of a unitary-invariant state yields a state close to a mixture of Gaussian states. As an application of this de Finetti theorem, we show that the n × n upper-left submatrix of an n × n Haar-invariant unitary matrix is close in total variation distance to a matrix of independent normal variables if n3 = O(m).

  9. On Euler's Theorem for Homogeneous Functions and Proofs Thereof.

    ERIC Educational Resources Information Center

    Tykodi, R. J.

    1982-01-01

    Euler's theorem for homogenous functions is useful when developing thermodynamic distinction between extensive and intensive variables of state and when deriving the Gibbs-Duhem relation. Discusses Euler's theorem and thermodynamic applications. Includes six-step instructional strategy for introducing the material to students. (Author/JN)

  10. A Maximal Element Theorem in FWC-Spaces and Its Applications

    PubMed Central

    Hu, Qingwen; Miao, Yulin

    2014-01-01

    A maximal element theorem is proved in finite weakly convex spaces (FWC-spaces, in short) which have no linear, convex, and topological structure. Using the maximal element theorem, we develop new existence theorems of solutions to variational relation problem, generalized equilibrium problem, equilibrium problem with lower and upper bounds, and minimax problem in FWC-spaces. The results represented in this paper unify and extend some known results in the literature. PMID:24782672

  11. Nonequilibrium thermodynamics of restricted Boltzmann machines.

    PubMed

    Salazar, Domingos S P

    2017-08-01

    In this work, we analyze the nonequilibrium thermodynamics of a class of neural networks known as restricted Boltzmann machines (RBMs) in the context of unsupervised learning. We show how the network is described as a discrete Markov process and how the detailed balance condition and the Maxwell-Boltzmann equilibrium distribution are sufficient conditions for a complete thermodynamics description, including nonequilibrium fluctuation theorems. Numerical simulations in a fully trained RBM are performed and the heat exchange fluctuation theorem is verified with excellent agreement to the theory. We observe how the contrastive divergence functional, mostly used in unsupervised learning of RBMs, is closely related to nonequilibrium thermodynamic quantities. We also use the framework to interpret the estimation of the partition function of RBMs with the annealed importance sampling method from a thermodynamics standpoint. Finally, we argue that unsupervised learning of RBMs is equivalent to a work protocol in a system driven by the laws of thermodynamics in the absence of labeled data.

  12. Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals

    DOE PAGES

    Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.; ...

    2017-11-15

    Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less

  13. Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.

    Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less

  14. Formalization of the Integral Calculus in the PVS Theorem Prover

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.

    2004-01-01

    The PVS Theorem prover is a widely used formal verification tool used for the analysis of safety-critical systems. The PVS prover, though fully equipped to support deduction in a very general logic framework, namely higher-order logic, it must nevertheless, be augmented with the definitions and associated theorems for every branch of mathematics and Computer Science that is used in a verification. This is a formidable task, ultimately requiring the contributions of researchers and developers all over the world. This paper reports on the formalization of the integral calculus in the PVS theorem prover. All of the basic definitions and theorems covered in a first course on integral calculus have been completed.The theory and proofs were based on Rosenlicht's classic text on real analysis and follow the traditional epsilon-delta method. The goal of this work was to provide a practical set of PVS theories that could be used for verification of hybrid systems that arise in air traffic management systems and other aerospace applications. All of the basic linearity, integrability, boundedness, and continuity properties of the integral calculus were proved. The work culminated in the proof of the Fundamental Theorem Of Calculus. There is a brief discussion about why mechanically checked proofs are so much longer than standard mathematics textbook proofs.

  15. Asynchronous networks: modularization of dynamics theorem

    NASA Astrophysics Data System (ADS)

    Bick, Christian; Field, Michael

    2017-02-01

    Building on the first part of this paper, we develop the theory of functional asynchronous networks. We show that a large class of functional asynchronous networks can be (uniquely) represented as feedforward networks connecting events or dynamical modules. For these networks we can give a complete description of the network function in terms of the function of the events comprising the network: the modularization of dynamics theorem. We give examples to illustrate the main results.

  16. Exploring soft constraints on effective actions

    NASA Astrophysics Data System (ADS)

    Bianchi, Massimo; Guerrieri, Andrea L.; Huang, Yu-tin; Lee, Chao-Jung; Wen, Congkao

    2016-10-01

    We study effective actions for simultaneous breaking of space-time and internal symmetries. Novel features arise due to the mixing of Goldstone modes under the broken symmetries which, in contrast to the usual Adler's zero, leads to non-vanishing soft limits. Such scenarios are common for spontaneously broken SCFT's. We explicitly test these soft theorems for N=4 sYM in the Coulomb branch both perturbatively and non-perturbatively. We explore the soft constraints systematically utilizing recursion relations. In the pure dilaton sector of a general CFT, we show that all amplitudes up to order s n ˜ ∂2 n are completely determined in terms of the k-point amplitudes at order s k with k ≤ n. Terms with at most one derivative acting on each dilaton insertion are completely fixed and coincide with those appearing in the conformal DBI, i.e. DBI in AdS. With maximal supersymmetry, the effective actions are further constrained, leading to new non-renormalization theorems. In particular, the effective action is fixed up to eight derivatives in terms of just one unknown four-point coefficient and one more coefficient for ten-derivative terms. Finally, we also study the interplay between scale and conformal invariance in this context.

  17. A new blackhole theorem and its applications to cosmology and astrophysics

    NASA Astrophysics Data System (ADS)

    Wang, Shouhong; Ma, Tian

    2015-04-01

    We shall present a blackhole theorem and a theorem on the structure of our Universe, proved in a recently published paper, based on 1) the Einstein general theory of relativity, and 2) the cosmological principle that the universe is homogeneous and isotropic. These two theorems are rigorously proved using astrophysical dynamical models coupling fluid dynamics and general relativity based on a symmetry-breaking principle. With the new blackhole theorem, we further demonstrate that both supernovae explosion and AGN jets, as well as many astronomical phenomena including e.g. the recent reported are due to combined relativistic, magnetic and thermal effects. The radial temperature gradient causes vertical Benard type convection cells, and the relativistic viscous force (via electromagnetic, the weak and the strong interactions) gives rise to a huge explosive radial force near the Schwarzschild radius, leading e.g. to supernovae explosion and AGN jets.

  18. Automating Access Control Logics in Simple Type Theory with LEO-II

    NASA Astrophysics Data System (ADS)

    Benzmüller, Christoph

    Garg and Abadi recently proved that prominent access control logics can be translated in a sound and complete way into modal logic S4. We have previously outlined how normal multimodal logics, including monomodal logics K and S4, can be embedded in simple type theory and we have demonstrated that the higher-order theorem prover LEO-II can automate reasoning in and about them. In this paper we combine these results and describe a sound (and complete) embedding of different access control logics in simple type theory. Employing this framework we show that the off the shelf theorem prover LEO-II can be applied to automate reasoning in and about prominent access control logics.

  19. A Generalization of the Prime Number Theorem

    ERIC Educational Resources Information Center

    Bruckman, Paul S.

    2008-01-01

    In this article, the author begins with the prime number theorem (PNT), and then develops this into a more general theorem, of which many well-known number theoretic results are special cases, including PNT. He arrives at an asymptotic relation that allows the replacement of certain discrete sums involving primes into corresponding differentiable…

  20. The Poincaré Half-Plane for Informationally-Complete POVMs

    NASA Astrophysics Data System (ADS)

    Planat, Michel

    2017-12-01

    It has been shown that classes of (minimal asymmetric) informationally complete POVMs in dimension d can be built using the multiparticle Pauli group acting on appropriate fiducial states [M. Planat and Z. Gedik, R. Soc. open sci. 4, 170387 (2017)]. The latter states may also be derived starting from the Poincar\\'e upper half-plane model H. For doing this, one translates the congruence (or non-congruence) subgroups of index d of the modular group into groups of permutation gates whose some of the eigenstates are the seeked fiducials. The structure of some IC-POVMs is found to be intimately related to the Kochen-Specker theorem.

  1. International Conference on Fixed Point Theory and Applications (Colloque International Theorie Du Point Fixe et Applications)

    DTIC Science & Technology

    1989-06-09

    Theorem and the Perron - Frobenius Theorem in matrix theory. We use the Hahn-Banach theorem and do not use any fixed-point related concepts. 179 A...games defined b’, tions 87 Isac G. Fixed point theorems on convex cones , generalized pseudo-contractive mappings and the omplementarity problem 89...and (II), af(x) ° denotes the negative polar cone ot of(x). This condition are respectively called "inward" and "outward". Indeed, when X is convex

  2. Research in advanced formal theorem-proving techniques. [design and implementation of computer languages

    NASA Technical Reports Server (NTRS)

    Raphael, B.; Fikes, R.; Waldinger, R.

    1973-01-01

    The results are summarised of a project aimed at the design and implementation of computer languages to aid in expressing problem solving procedures in several areas of artificial intelligence including automatic programming, theorem proving, and robot planning. The principal results of the project were the design and implementation of two complete systems, QA4 and QLISP, and their preliminary experimental use. The various applications of both QA4 and QLISP are given.

  3. RSA and its Correctness through Modular Arithmetic

    NASA Astrophysics Data System (ADS)

    Meelu, Punita; Malik, Sitender

    2010-11-01

    To ensure the security to the applications of business, the business sectors use Public Key Cryptographic Systems (PKCS). An RSA system generally belongs to the category of PKCS for both encryption and authentication. This paper describes an introduction to RSA through encryption and decryption schemes, mathematical background which includes theorems to combine modular equations and correctness of RSA. In short, this paper explains some of the maths concepts that RSA is based on, and then provides a complete proof that RSA works correctly. We can proof the correctness of RSA through combined process of encryption and decryption based on the Chinese Remainder Theorem (CRT) and Euler theorem. However, there is no mathematical proof that RSA is secure, everyone takes that on trust!.

  4. Quantum no-singularity theorem from geometric flows

    NASA Astrophysics Data System (ADS)

    Alsaleh, Salwa; Alasfar, Lina; Faizal, Mir; Ali, Ahmed Farag

    2018-04-01

    In this paper, we analyze the classical geometric flow as a dynamical system. We obtain an action for this system, such that its equation of motion is the Raychaudhuri equation. This action will be used to quantize this system. As the Raychaudhuri equation is the basis for deriving the singularity theorems, we will be able to understand the effects and such a quantization will have on the classical singularity theorems. Thus, quantizing the geometric flow, we can demonstrate that a quantum space-time is complete (nonsingular). This is because the existence of a conjugate point is a necessary condition for the occurrence of singularities, and we will be able to demonstrate that such conjugate points cannot occur due to such quantum effects.

  5. Decomposition of Fuzzy Soft Sets with Finite Value Spaces

    PubMed Central

    Jun, Young Bae

    2014-01-01

    The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter. PMID:24558342

  6. Decomposition of fuzzy soft sets with finite value spaces.

    PubMed

    Feng, Feng; Fujita, Hamido; Jun, Young Bae; Khan, Madad

    2014-01-01

    The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter.

  7. Generalization of Jacobi's Decomposition Theorem to the Rotation and Translation of a Solid in a Fluid.

    NASA Astrophysics Data System (ADS)

    Chiang, Rong-Chang

    Jacobi found that the rotation of a symmetrical heavy top about a fixed point is composed of the two torque -free rotations of two triaxial bodies about their centers of mass. His discovery rests on the fact that the orthogonal matrix which represents the rotation of a symmetrical heavy top is decomposed into a product of two orthogonal matrices, each of which represents the torque-free rotations of two triaxial bodies. This theorem is generalized to the Kirchhoff's case of the rotation and translation of a symmetrical solid in a fluid. This theorem requires the explicit computation, by means of theta functions, of the nine direction cosines between the rotating body axes and the fixed space axes. The addition theorem of theta functions makes it possible to decompose the rotational matrix into a product of similar matrices. This basic idea of utilizing the addition theorem is simple but the carry-through of the computation is quite involved and the full proof turns out to be a lengthy process of computing rather long and complex expressions. For the translational motion we give a new treatment. The position of the center of mass as a function of the time is found by a direct evaluation of the elliptic integral by means of a new theta interpretation of Legendre's reduction formula of the elliptic integral. For the complete solution of the problem we have added further the study of the physical aspects of the motion. Based on a complete examination of the all possible manifolds of the steady helical cases it is possible to obtain a full qualitative description of the motion. Many numerical examples and graphs are given to illustrate the rotation and translation of the solid in a fluid.

  8. Multi-Hamiltonian structure of Plebanski's second heavenly equation

    NASA Astrophysics Data System (ADS)

    Neyzi, F.; Nutku, Y.; Sheftel, M. B.

    2005-09-01

    We show that Plebanski's second heavenly equation, when written as a first-order nonlinear evolutionary system, admits multi-Hamiltonian structure. Therefore by Magri's theorem it is a completely integrable system. Thus it is an example of a completely integrable system in four dimensions.

  9. Making Sense of Bell's Theorem and Quantum Nonlocality

    NASA Astrophysics Data System (ADS)

    Boughn, Stephen

    2017-05-01

    Bell's theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell's theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system (one with which the original system has previously interacted). Einstein was repulsed by such "spooky action at a distance" and was led to question whether quantum mechanics could provide a complete description of physical reality. In this paper I argue that quantum mechanics does not require spooky action at a distance of any kind and yet it is entirely reasonable to question the assumption that quantum mechanics can provide a complete description of physical reality. The magic of entangled quantum states has little to do with entanglement and everything to do with superposition, a property of all quantum systems and a foundational tenet of quantum mechanics.

  10. Cook-Levin Theorem Algorithmic-Reducibility/Completeness = Wilson Renormalization-(Semi)-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') REPLACING CRUTCHES!!!: Models: Turing-machine, finite-state-models, finite-automata

    NASA Astrophysics Data System (ADS)

    Young, Frederic; Siegel, Edward

    Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!

  11. Matching factorization theorems with an inverse-error weighting

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; Pisano, Cristian; Signori, Andrea

    2018-06-01

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections to the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H0 boson and Drell-Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins-Soper-Sterman subtraction scheme. It is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.

  12. Matching factorization theorems with an inverse-error weighting

    DOE PAGES

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe; ...

    2018-04-03

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  13. Matching factorization theorems with an inverse-error weighting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Echevarria, Miguel G.; Kasemets, Tomas; Lansberg, Jean-Philippe

    We propose a new fast method to match factorization theorems applicable in different kinematical regions, such as the transverse-momentum-dependent and the collinear factorization theorems in Quantum Chromodynamics. At variance with well-known approaches relying on their simple addition and subsequent subtraction of double-counted contributions, ours simply builds on their weighting using the theory uncertainties deduced from the factorization theorems themselves. This allows us to estimate the unknown complete matched cross section from an inverse-error-weighted average. The method is simple and provides an evaluation of the theoretical uncertainty of the matched cross section associated with the uncertainties from the power corrections tomore » the factorization theorems (additional uncertainties, such as the nonperturbative ones, should be added for a proper comparison with experimental data). Its usage is illustrated with several basic examples, such as Z boson, W boson, H 0 boson and Drell–Yan lepton-pair production in hadronic collisions, and compared to the state-of-the-art Collins–Soper–Sterman subtraction scheme. In conclusion, it is also not limited to the transverse-momentum spectrum, and can straightforwardly be extended to match any (un)polarized cross section differential in other variables, including multi-differential measurements.« less

  14. Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolgar, Eric, E-mail: ewoolgar@ualberta.ca; Wylie, William, E-mail: wwylie@syr.edu

    We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the “pure Bakry-Émery” N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able tomore » extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (−∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (−∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.« less

  15. Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes

    NASA Astrophysics Data System (ADS)

    Woolgar, Eric; Wylie, William

    2016-02-01

    We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the "pure Bakry-Émery" N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able to extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (-∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (-∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.

  16. The Knaster-Kuratowski-Mazurkiewicz theorem and abstract convexities

    NASA Astrophysics Data System (ADS)

    Cain, George L., Jr.; González, Luis

    2008-02-01

    The Knaster-Kuratowski-Mazurkiewicz covering theorem (KKM), is the basic ingredient in the proofs of many so-called "intersection" theorems and related fixed point theorems (including the famous Brouwer fixed point theorem). The KKM theorem was extended from Rn to Hausdorff linear spaces by Ky Fan. There has subsequently been a plethora of attempts at extending the KKM type results to arbitrary topological spaces. Virtually all these involve the introduction of some sort of abstract convexity structure for a topological space, among others we could mention H-spaces and G-spaces. We have introduced a new abstract convexity structure that generalizes the concept of a metric space with a convex structure, introduced by E. Michael in [E. Michael, Convex structures and continuous selections, Canad. J. MathE 11 (1959) 556-575] and called a topological space endowed with this structure an M-space. In an article by Shie Park and Hoonjoo Kim [S. Park, H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197 (1996) 173-187], the concepts of G-spaces and metric spaces with Michael's convex structure, were mentioned together but no kind of relationship was shown. In this article, we prove that G-spaces and M-spaces are close related. We also introduce here the concept of an L-space, which is inspired in the MC-spaces of J.V. Llinares [J.V. Llinares, Unified treatment of the problem of existence of maximal elements in binary relations: A characterization, J. Math. Econom. 29 (1998) 285-302], and establish relationships between the convexities of these spaces with the spaces previously mentioned.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatesan, R.C., E-mail: ravi@systemsresearchcorp.com; Plastino, A., E-mail: plastino@fisica.unlp.edu.ar

    The (i) reciprocity relations for the relative Fisher information (RFI, hereafter) and (ii) a generalized RFI–Euler theorem are self-consistently derived from the Hellmann–Feynman theorem. These new reciprocity relations generalize the RFI–Euler theorem and constitute the basis for building up a mathematical Legendre transform structure (LTS, hereafter), akin to that of thermodynamics, that underlies the RFI scenario. This demonstrates the possibility of translating the entire mathematical structure of thermodynamics into a RFI-based theoretical framework. Virial theorems play a prominent role in this endeavor, as a Schrödinger-like equation can be associated to the RFI. Lagrange multipliers are determined invoking the RFI–LTS linkmore » and the quantum mechanical virial theorem. An appropriate ansatz allows for the inference of probability density functions (pdf’s, hereafter) and energy-eigenvalues of the above mentioned Schrödinger-like equation. The energy-eigenvalues obtained here via inference are benchmarked against established theoretical and numerical results. A principled theoretical basis to reconstruct the RFI-framework from the FIM framework is established. Numerical examples for exemplary cases are provided. - Highlights: • Legendre transform structure for the RFI is obtained with the Hellmann–Feynman theorem. • Inference of the energy-eigenvalues of the SWE-like equation for the RFI is accomplished. • Basis for reconstruction of the RFI framework from the FIM-case is established. • Substantial qualitative and quantitative distinctions with prior studies are discussed.« less

  18. A coupled mode formulation by reciprocity and a variational principle

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    A coupled mode formulation for parallel dielectric waveguides is presented via two methods: a reciprocity theorem and a variational principle. In the first method, a generalized reciprocity relation for two sets of field solutions satisfying Maxwell's equations and the boundary conditions in two different media, respectively, is derived. Based on the generalized reciprocity theorem, the coupled mode equations can then be formulated. The second method using a variational principle is also presented for a general waveguide system which can be lossy. The results of the variational principle can also be shown to be identical to those from the reciprocity theorem. The exact relations governing the 'conventional' and the new coupling coefficients are derived. It is shown analytically that the present formulation satisfies the reciprocity theorem and power conservation exactly, while the conventional theory violates the power conservation and reciprocity theorem by as much as 55 percent and the Hardy-Streifer (1985, 1986) theory by 0.033 percent, for example.

  19. Application of the Feynman-tree theorem together with BCFW recursion relations

    NASA Astrophysics Data System (ADS)

    Maniatis, M.

    2018-03-01

    Recently, it has been shown that on-shell scattering amplitudes can be constructed by the Feynman-tree theorem combined with the BCFW recursion relations. Since the BCFW relations are restricted to tree diagrams, the preceding application of the Feynman-tree theorem is essential. In this way, amplitudes can be constructed by on-shell and gauge-invariant tree amplitudes. Here, we want to apply this method to the electron-photon vertex correction. We present all the single, double, and triple phase-space tensor integrals explicitly and show that the sum of amplitudes coincides with the result of the conventional calculation of a virtual loop correction.

  20. Bounds and inequalities relating h-index, g-index, e-index and generalized impact factor: an improvement over existing models.

    PubMed

    Abbas, Ash Mohammad

    2012-01-01

    In this paper, we describe some bounds and inequalities relating h-index, g-index, e-index, and generalized impact factor. We derive the bounds and inequalities relating these indexing parameters from their basic definitions and without assuming any continuous model to be followed by any of them. We verify the theorems using citation data for five Price Medalists. We observe that the lower bound for h-index given by Theorem 2, [formula: see text], g ≥ 1, comes out to be more accurate as compared to Schubert-Glanzel relation h is proportional to C(2/3)P(-1/3) for a proportionality constant of 1, where C is the number of citations and P is the number of papers referenced. Also, the values of h-index obtained using Theorem 2 outperform those obtained using Egghe-Liang-Rousseau power law model for the given citation data of Price Medalists. Further, we computed the values of upper bound on g-index given by Theorem 3, g ≤ (h + e), where e denotes the value of e-index. We observe that the upper bound on g-index given by Theorem 3 is reasonably tight for the given citation record of Price Medalists.

  1. Individual and Collective Analyses of the Genesis of Student Reasoning Regarding the Invertible Matrix Theorem in Linear Algebra

    ERIC Educational Resources Information Center

    Wawro, Megan Jean

    2011-01-01

    In this study, I considered the development of mathematical meaning related to the Invertible Matrix Theorem (IMT) for both a classroom community and an individual student over time. In this particular linear algebra course, the IMT was a core theorem in that it connected many concepts fundamental to linear algebra through the notion of…

  2. Completeness of the Coulomb Wave Functions in Quantum Mechanics

    ERIC Educational Resources Information Center

    Mukunda, N.

    1978-01-01

    Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)

  3. Guided discovery of the nine-point circle theorem and its proof

    NASA Astrophysics Data System (ADS)

    Buchbinder, Orly

    2018-01-01

    The nine-point circle theorem is one of the most beautiful and surprising theorems in Euclidean geometry. It establishes an existence of a circle passing through nine points, all of which are related to a single triangle. This paper describes a set of instructional activities that can help students discover the nine-point circle theorem through investigation in a dynamic geometry environment, and consequently prove it using a method of guided discovery. The paper concludes with a variety of suggestions for the ways in which the whole set of activities can be implemented in geometry classrooms.

  4. On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms.

    PubMed

    Chen, Chunlei; He, Li; Zhang, Huixiang; Zheng, Hao; Wang, Lei

    2017-01-01

    Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions.

  5. Development of a Dependency Theory Toolbox for Database Design.

    DTIC Science & Technology

    1987-12-01

    published algorithms and theorems , and hand simulating these algorithms can be a tedious and error prone chore. Additionally, since the process of...to design and study relational databases exists in the form of published algorithms and theorems . However, hand simulating these algorithms can be a...published algorithms and theorems . Hand simulating these algorithms can be a tedious and error prone chore. Therefore, a toolbox of algorithms and

  6. A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Dragičević, D.; Froyland, G.; González-Tokman, C.; Vaienti, S.

    2018-06-01

    We prove quenched versions of (i) a large deviations principle (LDP), (ii) a central limit theorem (CLT), and (iii) a local central limit theorem for non-autonomous dynamical systems. A key advance is the extension of the spectral method, commonly used in limit laws for deterministic maps, to the general random setting. We achieve this via multiplicative ergodic theory and the development of a general framework to control the regularity of Lyapunov exponents of twisted transfer operator cocycles with respect to a twist parameter. While some versions of the LDP and CLT have previously been proved with other techniques, the local central limit theorem is, to our knowledge, a completely new result, and one that demonstrates the strength of our method. Applications include non-autonomous (piecewise) expanding maps, defined by random compositions of the form {T_{σ^{n-1} ω} circ\\cdotscirc T_{σω}circ T_ω}. An important aspect of our results is that we only assume ergodicity and invertibility of the random driving {σ:Ω\\toΩ} ; in particular no expansivity or mixing properties are required.

  7. Invertibility of retarded response functions for Laplace transformable potentials: Application to one-body reduced density matrix functional theory.

    PubMed

    Giesbertz, K J H

    2015-08-07

    A theorem for the invertibility of arbitrary response functions is presented under the following conditions: the time dependence of the potentials should be Laplace transformable and the initial state should be a ground state, though it might be degenerate. This theorem provides a rigorous foundation for all density-functional-like theories in the time-dependent linear response regime. Especially for time-dependent one-body reduced density matrix (1RDM) functional theory, this is an important step forward, since a solid foundation has currently been lacking. The theorem is equally valid for static response functions in the non-degenerate case, so can be used to characterize the uniqueness of the potential in the ground state version of the corresponding density-functional-like theory. Such a classification of the uniqueness of the non-local potential in ground state 1RDM functional theory has been lacking for decades. With the aid of presented invertibility theorem presented here, a complete classification of the non-uniqueness of the non-local potential in 1RDM functional theory can be given for the first time.

  8. A Spectral Approach for Quenched Limit Theorems for Random Expanding Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Dragičević, D.; Froyland, G.; González-Tokman, C.; Vaienti, S.

    2018-01-01

    We prove quenched versions of (i) a large deviations principle (LDP), (ii) a central limit theorem (CLT), and (iii) a local central limit theorem for non-autonomous dynamical systems. A key advance is the extension of the spectral method, commonly used in limit laws for deterministic maps, to the general random setting. We achieve this via multiplicative ergodic theory and the development of a general framework to control the regularity of Lyapunov exponents of twisted transfer operator cocycles with respect to a twist parameter. While some versions of the LDP and CLT have previously been proved with other techniques, the local central limit theorem is, to our knowledge, a completely new result, and one that demonstrates the strength of our method. Applications include non-autonomous (piecewise) expanding maps, defined by random compositions of the form {T_{σ^{n-1} ω} circ\\cdotscirc T_{σω}circ T_ω} . An important aspect of our results is that we only assume ergodicity and invertibility of the random driving {σ:Ω\\toΩ} ; in particular no expansivity or mixing properties are required.

  9. On the Uniqueness and Consistency of Scattering Amplitudes

    NASA Astrophysics Data System (ADS)

    Rodina, Laurentiu

    In this dissertation, we study constraints imposed by locality, unitarity, gauge invariance, the Adler zero, and constructability (scaling under BCFW shifts). In the first part we study scattering amplitudes as the unique mathematical objects which can satisfy various combinations of such principles. In all cases we find that locality and unitarity may be derived from gauge invariance (for Yang-Mills and General Relativity) or from the Adler zero (for the non-linear sigma model and the Dirac-Born-Infeld model), together with mild assumptions on the singularity structure and mass dimension. We also conjecture that constructability and locality together imply gauge invariance, hence also unitarity. All claims are proved through a soft expansion, and in the process we end re-deriving the well-known leading soft theorems for all four theories. Unlike other proofs of these theorems, we do not assume any form of factorization (unitarity). In the second part we show how tensions arising between gauge invariance (as encoded by spinor helicity variables in four dimensions), locality, unitarity and constructability give rise to various physical properties. These include high-spin no-go theorems, the equivalence principle, and the emergence of supersymmetry from spin 3/2 particles. We also complete the fully on-shell constructability proof of gravity amplitudes, by showing that the improved "bonus'' behavior of gravity under BCFW shifts is a simple consequence of Bose symmetry.

  10. What's New is What's Old: Use of Bode's Integral Theorem (circa 1945) to Provide Insight for 21st Century Spacecraft Attitude Control System Design Tuning

    NASA Technical Reports Server (NTRS)

    Ruth, Mike; Lebsock, Ken; Dennehy, Neil

    2010-01-01

    This paper revisits the Bode integral theorem, first described in 1945 for feedback amplifier design, in the context of modern satellite Attitude Control System (ACS) design tasks. Use of Bode's Integral clarifies in an elegant way the connection between open-loop stability margins and closed-loop bandwidth. More importantly it shows that there is a very strong tradeoff between disturbance rejection below the satellite controller design bandwidth, and disturbance amplification in the 'penalty region' just above the design bandwidth. This information has been successfully used to re-tune the control designs for several NASA science-mission satellites. The Appendix of this paper contains a complete summary of the relevant integral conservation theorems for stable, unstable, and non-minimum- phase plants.

  11. Optical theorem for acoustic non-diffracting beams and application to radiation force and torque

    PubMed Central

    Zhang, Likun; Marston, Philip L.

    2013-01-01

    Acoustical and optical non-diffracting beams are potentially useful for manipulating particles and larger objects. An extended optical theorem for a non-diffracting beam was given recently in the context of acoustics. The theorem relates the extinction by an object to the scattering at the forward direction of the beam’s plane wave components. Here we use this theorem to examine the extinction cross section of a sphere centered on the axis of the beam, with a non-diffracting Bessel beam as an example. The results are applied to recover the axial radiation force and torque on the sphere by the Bessel beam. PMID:24049681

  12. Republication of: A theorem on Petrov types

    NASA Astrophysics Data System (ADS)

    Goldberg, J. N.; Sachs, R. K.

    2009-02-01

    This is a republication of the paper “A Theorem on Petrov Types” by Goldberg and Sachs, Acta Phys. Pol. 22 (supplement), 13 (1962), in which they proved the Goldberg-Sachs theorem. The article has been selected for publication in the Golden Oldies series of General Relativity and Gravitation. Typographical errors of the original publication were corrected by the editor. The paper is accompanied by a Golden Oldie Editorial containing an editorial note written by Andrzej Krasiński and Maciej Przanowski and Goldberg’s brief autobiography. The editorial note explains some difficult parts of the proof of the theorem and discusses the influence of results of the paper on later research.

  13. Ergodic theorem, ergodic theory, and statistical mechanics

    PubMed Central

    Moore, Calvin C.

    2015-01-01

    This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundamental problem of the subject—namely, the rationale for the hypothesis that time averages can be set equal to phase averages. The evolution of this problem is traced from the origins of statistical mechanics and Boltzman's ergodic hypothesis to the Ehrenfests' quasi-ergodic hypothesis, and then to the ergodic theorems. We discuss communications between von Neumann and Birkhoff in the Fall of 1931 leading up to the publication of these papers and related issues of priority. These ergodic theorems initiated a new field of mathematical-research called ergodic theory that has thrived ever since, and we discuss some of recent developments in ergodic theory that are relevant for statistical mechanics. PMID:25691697

  14. Nonuniform sampling theorems for random signals in the linear canonical transform domain

    NASA Astrophysics Data System (ADS)

    Shuiqing, Xu; Congmei, Jiang; Yi, Chai; Youqiang, Hu; Lei, Huang

    2018-06-01

    Nonuniform sampling can be encountered in various practical processes because of random events or poor timebase. The analysis and applications of the nonuniform sampling for deterministic signals related to the linear canonical transform (LCT) have been well considered and researched, but up to now no papers have been published regarding the various nonuniform sampling theorems for random signals related to the LCT. The aim of this article is to explore the nonuniform sampling and reconstruction of random signals associated with the LCT. First, some special nonuniform sampling models are briefly introduced. Second, based on these models, some reconstruction theorems for random signals from various nonuniform samples associated with the LCT have been derived. Finally, the simulation results are made to prove the accuracy of the sampling theorems. In addition, the latent real practices of the nonuniform sampling for random signals have been also discussed.

  15. Two diverse models of embedding class one

    NASA Astrophysics Data System (ADS)

    Kuhfittig, Peter K. F.

    2018-05-01

    Embedding theorems have continued to be a topic of interest in the general theory of relativity since these help connect the classical theory to higher-dimensional manifolds. This paper deals with spacetimes of embedding class one, i.e., spacetimes that can be embedded in a five-dimensional flat spacetime. These ideas are applied to two diverse models, a complete solution for a charged wormhole admitting a one-parameter group of conformal motions and a new model to explain the flat rotation curves in spiral galaxies without the need for dark matter.

  16. Unary and binary multisystems; topologic classification of phase diagrams and relation to Euler's theorem on polyhedra.

    USGS Publications Warehouse

    Roseboom, E.H.; Zen, E.-A.

    1982-01-01

    A representation polyhedron summarizing the topology of a large number of possible nets previously devised by Zen (M.A. 18-167) is extended from n + 3 unary to n + 6 phase unary systems. A general way for constructing n + 4 phase nets is outlined. With the technique described, 62 multisystems are recognized, of which 26 contain all 16 possible divariant fields and represent the most nearly complete closed nets possible for a binary six-phase (n + 4) multisystem.-M.S.

  17. Tutorial on Fourier space coverage for scattering experiments, with application to SAR

    NASA Astrophysics Data System (ADS)

    Deming, Ross W.

    2010-04-01

    The Fourier Diffraction Theorem relates the data measured during electromagnetic, optical, or acoustic scattering experiments to the spatial Fourier transform of the object under test. The theorem is well-known, but since it is based on integral equations and complicated mathematical expansions, the typical derivation may be difficult for the non-specialist. In this paper, the theorem is derived and presented using simple geometry, plus undergraduatelevel physics and mathematics. For practitioners of synthetic aperture radar (SAR) imaging, the theorem is important to understand because it leads to a simple geometric and graphical understanding of image resolution and sampling requirements, and how they are affected by radar system parameters and experimental geometry. Also, the theorem can be used as a starting point for imaging algorithms and motion compensation methods. Several examples are given in this paper for realistic scenarios.

  18. On the Accuracy and Parallelism of GPGPU-Powered Incremental Clustering Algorithms

    PubMed Central

    He, Li; Zheng, Hao; Wang, Lei

    2017-01-01

    Incremental clustering algorithms play a vital role in various applications such as massive data analysis and real-time data processing. Typical application scenarios of incremental clustering raise high demand on computing power of the hardware platform. Parallel computing is a common solution to meet this demand. Moreover, General Purpose Graphic Processing Unit (GPGPU) is a promising parallel computing device. Nevertheless, the incremental clustering algorithm is facing a dilemma between clustering accuracy and parallelism when they are powered by GPGPU. We formally analyzed the cause of this dilemma. First, we formalized concepts relevant to incremental clustering like evolving granularity. Second, we formally proved two theorems. The first theorem proves the relation between clustering accuracy and evolving granularity. Additionally, this theorem analyzes the upper and lower bounds of different-to-same mis-affiliation. Fewer occurrences of such mis-affiliation mean higher accuracy. The second theorem reveals the relation between parallelism and evolving granularity. Smaller work-depth means superior parallelism. Through the proofs, we conclude that accuracy of an incremental clustering algorithm is negatively related to evolving granularity while parallelism is positively related to the granularity. Thus the contradictory relations cause the dilemma. Finally, we validated the relations through a demo algorithm. Experiment results verified theoretical conclusions. PMID:29123546

  19. Generalized Dandelin’s Theorem

    NASA Astrophysics Data System (ADS)

    Kheyfets, A. L.

    2017-11-01

    The paper gives a geometric proof of the theorem which states that in case of the plane section of a second-order surface of rotation (quadrics of rotation, QR), such conics as an ellipse, a hyperbola or a parabola (types of conic sections) are formed. The theorem supplements the well-known Dandelin’s theorem which gives the geometric proof only for a circular cone and applies the proof to all QR, namely an ellipsoid, a hyperboloid, a paraboloid and a cylinder. That’s why the considered theorem is known as the generalized Dandelin’s theorem (GDT). The GDT proof is based on a relatively unknown generalized directrix definition (GDD) of conics. The work outlines the GDD proof for all types of conics as their necessary and sufficient condition. Based on the GDD, the author proves the GDT for all QR in case of a random position of the cutting plane. The graphical stereometric structures necessary for the proof are given. The implementation of the structures by 3d computer methods is considered. The article shows the examples of the builds made in the AutoCAD package. The theorem is intended for the training course of theoretical training of elite student groups of architectural and construction specialties.

  20. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption.

    PubMed

    Yang, Xiuping; Min, Lequan; Wang, Xue

    2015-05-01

    This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2(1345). As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.

  1. A cubic map chaos criterion theorem with applications in generalized synchronization based pseudorandom number generator and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Xiuping; Min, Lequan; Wang, Xue

    2015-05-01

    This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% key streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 21345. As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flego, S.P.; Plastino, A.; Universitat de les Illes Balears and IFISC-CSIC, 07122 Palma de Mallorca

    We explore intriguing links connecting Hellmann-Feynman's theorem to a thermodynamics information-optimizing principle based on Fisher's information measure. - Highlights: > We link a purely quantum mechanical result, the Hellmann-Feynman theorem, with Jaynes' information theoretical reciprocity relations. > These relations involve the coefficients of a series expansion of the potential function. > We suggest the existence of a Legendre transform structure behind Schroedinger's equation, akin to the one characterizing thermodynamics.

  3. Generalization of the Bogoliubov-Zubarev Theorem for Dynamic Pressure to the Case of Compressibility

    NASA Astrophysics Data System (ADS)

    Rudoi, Yu. G.

    2018-01-01

    We present the motivation, formulation, and modified proof of the Bogoliubov-Zubarev theorem connecting the pressure of a dynamical object with its energy within the framework of a classical description and obtain a generalization of this theorem to the case of dynamical compressibility. In both cases, we introduce the volume of the object into consideration using a singular addition to the Hamiltonian function of the physical object, which allows using the concept of the Bogoliubov quasiaverage explicitly already on a dynamical level of description. We also discuss the relation to the same result known as the Hellmann-Feynman theorem in the framework of the quantum description of a physical object.

  4. Reciprocity relations in aerodynamics

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Spreiter, John R

    1953-01-01

    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  5. Fluctuation theorem for channel-facilitated membrane transport of interacting and noninteracting solutes.

    PubMed

    Berezhkovskii, Alexander M; Bezrukov, Sergey M

    2008-05-15

    In this paper, we discuss the fluctuation theorem for channel-facilitated transport of solutes through a membrane separating two reservoirs. The transport is characterized by the probability, P(n)(t), that n solute particles have been transported from one reservoir to the other in time t. The fluctuation theorem establishes a relation between P(n)(t) and P-(n)(t): The ratio P(n)(t)/P-(n)(t) is independent of time and equal to exp(nbetaA), where betaA is the affinity measured in the thermal energy units. We show that the same fluctuation theorem is true for both single- and multichannel transport of noninteracting particles and particles which strongly repel each other.

  6. Out-of-time-order fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Tsuji, Naoto; Shitara, Tomohiro; Ueda, Masahito

    2018-01-01

    We prove a generalized fluctuation-dissipation theorem for a certain class of out-of-time-ordered correlators (OTOCs) with a modified statistical average, which we call bipartite OTOCs, for general quantum systems in thermal equilibrium. The difference between the bipartite and physical OTOCs defined by the usual statistical average is quantified by a measure of quantum fluctuations known as the Wigner-Yanase skew information. Within this difference, the theorem describes a universal relation between chaotic behavior in quantum systems and a nonlinear-response function that involves a time-reversed process. We show that the theorem can be generalized to higher-order n -partite OTOCs as well as in the form of generalized covariance.

  7. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state.

    PubMed

    Gieseler, Jan; Quidant, Romain; Dellago, Christoph; Novotny, Lukas

    2014-05-01

    Fluctuation theorems are a generalization of thermodynamics on small scales and provide the tools to characterize the fluctuations of thermodynamic quantities in non-equilibrium nanoscale systems. They are particularly important for understanding irreversibility and the second law in fundamental chemical and biological processes that are actively driven, thus operating far from thermal equilibrium. Here, we apply the framework of fluctuation theorems to investigate the important case of a system relaxing from a non-equilibrium state towards equilibrium. Using a vacuum-trapped nanoparticle, we demonstrate experimentally the validity of a fluctuation theorem for the relative entropy change occurring during relaxation from a non-equilibrium steady state. The platform established here allows non-equilibrium fluctuation theorems to be studied experimentally for arbitrary steady states and can be extended to investigate quantum fluctuation theorems as well as systems that do not obey detailed balance.

  8. Generalized virial theorem and pressure relation for a strongly correlated Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina

    2008-12-15

    For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations.

  9. FLOWS WITH CROSS SECTIONS

    PubMed Central

    Verjovsky, Alberto

    1970-01-01

    Let M be a compact connected C∞-manifold, of dimension n, without boundary. Let ft: M → M be a Cr-flow with cross section. Let Dr(M) be the topological group of diffeomorphisms of M with Cr-topology (1 ≤ r ≤ ∞) and let Dor(M) be its connected component of the identity. Let [unk](M) be the group of I-cobordism classes in Dr(M) generated by orientation-preserving diffeomorphisms. For fεDr(M) denote by [f] its I-cobordism class. Theorem 1 deals with the dependence of M(f) on [f]. Theorem 2: S6 × S1 has at least 28 distinct differentiable structures. Let xoεS1 and let [unk]r be the set of Cr-flows (r ≥ 1) in M × S1 with cross section M × {xo} and inducing in it the identity. Theorem 3: Intuitively to a loop in Dor based at the identity there corresponds a flow in [unk]r, and to homotopic loops correspond isotopic flows. COROLLARY. complete analysis of [unk]r/ [unk] for dim M = 2. Theorems 4 and 5 refer to Anosov flows for dim M > 3. PMID:16591849

  10. Generalized reciprocity theorem for semiconductor devices

    NASA Technical Reports Server (NTRS)

    Misiakos, K.; Lindholm, F. A.

    1985-01-01

    A reciprocity theorem is presented that relates the short-circuit current of a device, induced by a carrier generation source, to the minority-carrier Fermi level in the dark. The basic relation is general under low injection. It holds for three-dimensional devices with position dependent parameters (energy gap, electron affinity, mobility, etc.), and for transient or steady-state conditions. This theorem allows calculation of the internal quantum efficiency of a solar cell by using the analysis of the device in the dark. Other applications could involve measurements of various device parameters, interfacial surface recombination velocity at a polcrystalline silicon emitter contact, for rexample, by using steady-state or transient photon or mass-particle radiation.

  11. The Non-Signalling theorem in generalizations of Bell's theorem

    NASA Astrophysics Data System (ADS)

    Walleczek, J.; Grössing, G.

    2014-04-01

    Does "epistemic non-signalling" ensure the peaceful coexistence of special relativity and quantum nonlocality? The possibility of an affirmative answer is of great importance to deterministic approaches to quantum mechanics given recent developments towards generalizations of Bell's theorem. By generalizations of Bell's theorem we here mean efforts that seek to demonstrate the impossibility of any deterministic theories to obey the predictions of Bell's theorem, including not only local hidden-variables theories (LHVTs) but, critically, of nonlocal hidden-variables theories (NHVTs) also, such as de Broglie-Bohm theory. Naturally, in light of the well-established experimental findings from quantum physics, whether or not a deterministic approach to quantum mechanics, including an emergent quantum mechanics, is logically possible, depends on compatibility with the predictions of Bell's theorem. With respect to deterministic NHVTs, recent attempts to generalize Bell's theorem have claimed the impossibility of any such approaches to quantum mechanics. The present work offers arguments showing why such efforts towards generalization may fall short of their stated goal. In particular, we challenge the validity of the use of the non-signalling theorem as a conclusive argument in favor of the existence of free randomness, and therefore reject the use of the non-signalling theorem as an argument against the logical possibility of deterministic approaches. We here offer two distinct counter-arguments in support of the possibility of deterministic NHVTs: one argument exposes the circularity of the reasoning which is employed in recent claims, and a second argument is based on the inconclusive metaphysical status of the non-signalling theorem itself. We proceed by presenting an entirely informal treatment of key physical and metaphysical assumptions, and of their interrelationship, in attempts seeking to generalize Bell's theorem on the basis of an ontic, foundational interpretation of the non-signalling theorem. We here argue that the non-signalling theorem must instead be viewed as an epistemic, operational theorem i.e. one that refers exclusively to what epistemic agents can, or rather cannot, do. That is, we emphasize that the non-signalling theorem is a theorem about the operational inability of epistemic agents to signal information. In other words, as a proper principle, the non-signalling theorem may only be employed as an epistemic, phenomenological, or operational principle. Critically, our argument emphasizes that the non-signalling principle must not be used as an ontic principle about physical reality as such, i.e. as a theorem about the nature of physical reality independently of epistemic agents e.g. human observers. One major reason in favor of our conclusion is that any definition of signalling or of non-signalling invariably requires a reference to epistemic agents, and what these agents can actually measure and report. Otherwise, the non-signalling theorem would equal a general "no-influence" theorem. In conclusion, under the assumption that the non-signalling theorem is epistemic (i.e. "epistemic non-signalling"), the search for deterministic approaches to quantum mechanics, including NHVTs and an emergent quantum mechanics, continues to be a viable research program towards disclosing the foundations of physical reality at its smallest dimensions.

  12. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    PubMed

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  13. Entropy Inequalities for Stable Densities and Strengthened Central Limit Theorems

    NASA Astrophysics Data System (ADS)

    Toscani, Giuseppe

    2016-10-01

    We consider the central limit theorem for stable laws in the case of the standardized sum of independent and identically distributed random variables with regular probability density function. By showing decay of different entropy functionals along the sequence we prove convergence with explicit rate in various norms to a Lévy centered density of parameter λ >1 . This introduces a new information-theoretic approach to the central limit theorem for stable laws, in which the main argument is shown to be the relative fractional Fisher information, recently introduced in Toscani (Ricerche Mat 65(1):71-91, 2016). In particular, it is proven that, with respect to the relative fractional Fisher information, the Lévy density satisfies an analogous of the logarithmic Sobolev inequality, which allows to pass from the monotonicity and decay to zero of the relative fractional Fisher information in the standardized sum to the decay to zero in relative entropy with an explicit decay rate.

  14. Fully Quantum Fluctuation Theorems

    NASA Astrophysics Data System (ADS)

    Åberg, Johan

    2018-02-01

    Systems that are driven out of thermal equilibrium typically dissipate random quantities of energy on microscopic scales. Crooks fluctuation theorem relates the distribution of these random work costs to the corresponding distribution for the reverse process. By an analysis that explicitly incorporates the energy reservoir that donates the energy and the control system that implements the dynamic, we obtain a quantum generalization of Crooks theorem that not only includes the energy changes in the reservoir but also the full description of its evolution, including coherences. Moreover, this approach opens up the possibility for generalizations of the concept of fluctuation relations. Here, we introduce "conditional" fluctuation relations that are applicable to nonequilibrium systems, as well as approximate fluctuation relations that allow for the analysis of autonomous evolution generated by global time-independent Hamiltonians. We furthermore extend these notions to Markovian master equations, implicitly modeling the influence of the heat bath.

  15. A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illarionov, A A

    2014-03-31

    Heilbronn's theorem on the average length of a finite continued fraction is generalized to the multidimensional case in terms of relative minima of the lattices which were introduced by Voronoy and Minkowski. Bibliography: 21 titles.

  16. The complete proof on the optimal ordering policy under cash discount and trade credit

    NASA Astrophysics Data System (ADS)

    Chung, Kun-Jen

    2010-04-01

    Huang ((2005), 'Buyer's Optimal Ordering Policy and Payment Policy under Supplier Credit', International Journal of Systems Science, 36, 801-807) investigates the buyer's optimal ordering policy and payment policy under supplier credit. His inventory model is correct and interesting. Basically, he uses an algebraic method to locate the optimal solution of the annual total relevant cost TRC(T) and ignores the role of the functional behaviour of TRC(T) in locating the optimal solution of it. However, as argued in this article, Huang needs to explore the functional behaviour of TRC(T) to justify his solution. So, from the viewpoint of logic, the proof about Theorem 1 in Huang has some shortcomings such that the validity of Theorem 1 in Huang is questionable. The main purpose of this article is to remove and correct those shortcomings in Huang and present the complete proofs for Huang.

  17. Fixed-point theorems for families of weakly non-expansive maps

    NASA Astrophysics Data System (ADS)

    Mai, Jie-Hua; Liu, Xin-He

    2007-10-01

    In this paper, we present some fixed-point theorems for families of weakly non-expansive maps under some relatively weaker and more general conditions. Our results generalize and improve several results due to Jungck [G. Jungck, Fixed points via a generalized local commutativity, Int. J. Math. Math. Sci. 25 (8) (2001) 497-507], Jachymski [J. Jachymski, A generalization of the theorem by Rhoades and Watson for contractive type mappings, Math. Japon. 38 (6) (1993) 1095-1102], Guo [C. Guo, An extension of fixed point theorem of Krasnoselski, Chinese J. Math. (P.O.C.) 21 (1) (1993) 13-20], Rhoades [B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977) 257-290], and others.

  18. Communication, Correlation and Complementarity

    NASA Astrophysics Data System (ADS)

    Schumacher, Benjamin Wade

    1990-01-01

    In quantum communication, a sender prepares a quantum system in a state corresponding to his message and conveys it to a receiver, who performs a measurement on it. The receiver acquires information about the message based on the outcome of his measurement. Since the state of a single quantum system is not always completely determinable from measurement, quantum mechanics limits the information capacity of such channels. According to a theorem of Kholevo, the amount of information conveyed by the channel can be no greater than the entropy of the ensemble of possible physical signals. The connection between information and entropy allows general theorems to be proved regarding the energy requirements of communication. For example, it can be shown that one particular quantum coding scheme, called thermal coding, uses energy with maximum efficiency. A close analogy between communication and quantum correlation can be made using Everett's notion of relative states. Kholevo's theorem can be used to prove that the mutual information of a pair of observables on different systems is bounded by the entropy of the state of each system. This confirms and extends an old conjecture of Everett. The complementarity of quantum observables can be described by information-theoretic uncertainty relations, several of which have been previously derived. These relations imply limits on the degree to which different messages can be coded in complementary observables of a single channel. Complementarity also restricts the amount of information that can be recovered from a given channel using a given decoding observable. Information inequalities can be derived which are analogous to the well-known Bell inequalities for correlated quantum systems. These inequalities are satisfied for local hidden variable theories but are violated by quantum systems, even where the correlation is weak. These information inequalities are metric inequalities for an "information distance", and their structure can be made exactly analogous to that of the familiar covariance Bell inequalities by introducing a "covariance distance". Similar inequalities derived for successive measurements on a single system are also violated in quantum mechanics.

  19. Secondary Mathematics Education in the Soviet Union, an Individual Study Project.

    DTIC Science & Technology

    1982-05-14

    Pythagoras and other well-known congruence theorems on angles and triangles. Concepts of set theory are developed in relation to the topics studied. Grades 6...geometry (areas, volumes, etc.). Geometric topics include: use of the ruler, protractor, and compasses in geometric constructions; Theorem of

  20. Pythagoras Theorem and Relativistic Kinematics

    NASA Astrophysics Data System (ADS)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  1. Optical theorem for two-dimensional (2D) scalar monochromatic acoustical beams in cylindrical coordinates.

    PubMed

    Mitri, F G

    2015-09-01

    The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Number of minimum-weight code words in a product code

    NASA Technical Reports Server (NTRS)

    Miller, R. L.

    1978-01-01

    Consideration is given to the number of minimum-weight code words in a product code. The code is considered as a tensor product of linear codes over a finite field. Complete theorems and proofs are presented.

  3. Central limit theorems under special relativity

    PubMed Central

    McKeague, Ian W.

    2015-01-01

    Several relativistic extensions of the Maxwell–Boltzmann distribution have been proposed, but they do not explain observed lognormal tail-behavior in the flux distribution of various astrophysical sources. Motivated by this question, extensions of classical central limit theorems are developed under the conditions of special relativity. The results are related to CLTs on locally compact Lie groups developed by Wehn, Stroock and Varadhan, but in this special case the asymptotic distribution has an explicit form that is readily seen to exhibit lognormal tail behavior. PMID:25798020

  4. Central limit theorems under special relativity.

    PubMed

    McKeague, Ian W

    2015-04-01

    Several relativistic extensions of the Maxwell-Boltzmann distribution have been proposed, but they do not explain observed lognormal tail-behavior in the flux distribution of various astrophysical sources. Motivated by this question, extensions of classical central limit theorems are developed under the conditions of special relativity. The results are related to CLTs on locally compact Lie groups developed by Wehn, Stroock and Varadhan, but in this special case the asymptotic distribution has an explicit form that is readily seen to exhibit lognormal tail behavior.

  5. Stochastic Navier-Stokes Equations in Unbounded Channel Domains (Open Source)

    DTIC Science & Technology

    2014-09-17

    0 (Θ) = The space of all infinitely differentiable vector fields with compact support in Θ, W0(Θ) = The completion of C∞0 (Θ) vector fields in the...us use the differentiability of K(y, t) in time t. For |h| < η, we have E [( w1(y, t+ h, ω)− w1(y, t, ω) h − w1t(y, t, ω) )2 ] = E [∫ t 0 ( K(y, t+ h...s, ω) → K(y, 0)f(t, ω) = f(t, ω). Thus by the Lebesgue’s differentiation theorem (Theorem 6, Appendix E.4 of Evans [21]), the last term of the right

  6. Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication

    NASA Astrophysics Data System (ADS)

    Walleczek, Jan; Grössing, Gerhard

    2016-09-01

    It is a frequent assumption that—via superluminal information transfers—superluminal signals capable of enabling communication are necessarily exchanged in any quantum theory that posits hidden superluminal influences. However, does the presence of hidden superluminal influences automatically imply superluminal signalling and communication? The non-signalling theorem mediates the apparent conflict between quantum mechanics and the theory of special relativity. However, as a `no-go' theorem there exist two opposing interpretations of the non-signalling constraint: foundational and operational. Concerning Bell's theorem, we argue that Bell employed both interpretations, and that he finally adopted the operational position which is associated often with ontological quantum theory, e.g., de Broglie-Bohm theory. This position we refer to as "effective non-signalling". By contrast, associated with orthodox quantum mechanics is the foundational position referred to here as "axiomatic non-signalling". In search of a decisive communication-theoretic criterion for differentiating between "axiomatic" and "effective" non-signalling, we employ the operational framework offered by Shannon's mathematical theory of communication, whereby we distinguish between Shannon signals and non-Shannon signals. We find that an effective non-signalling theorem represents two sub-theorems: (1) Non-transfer-control (NTC) theorem, and (2) Non-signification-control (NSC) theorem. Employing NTC and NSC theorems, we report that effective, instead of axiomatic, non-signalling is entirely sufficient for prohibiting nonlocal communication. Effective non-signalling prevents the instantaneous, i.e., superluminal, transfer of message-encoded information through the controlled use—by a sender-receiver pair —of informationally-correlated detection events, e.g., in EPR-type experiments. An effective non-signalling theorem allows for nonlocal quantum information transfer yet—at the same time—effectively denies superluminal signalling and communication.

  7. Improving Conceptions in Analytical Chemistry: The Central Limit Theorem

    ERIC Educational Resources Information Center

    Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.

    2006-01-01

    This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)

  8. Autonomous quantum to classical transitions and the generalized imaging theorem

    NASA Astrophysics Data System (ADS)

    Briggs, John S.; Feagin, James M.

    2016-03-01

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. Here we prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Currently, the quantum to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.

  9. Autonomous quantum to classical transitions and the generalized imaging theorem

    DOE PAGES

    Briggs, John S.; Feagin, James M.

    2016-03-16

    The mechanism of the transition of a dynamical system from quantum to classical mechanics is of continuing interest. Practically it is of importance for the interpretation of multi-particle coincidence measurements performed at macroscopic distances from a microscopic reaction zone. We prove the generalized imaging theorem which shows that the spatial wave function of any multi-particle quantum system, propagating over distances and times large on an atomic scale but still microscopic, and subject to deterministic external fields and particle interactions, becomes proportional to the initial momentum wave function where the position and momentum coordinates define a classical trajectory. Now, the quantummore » to classical transition is considered to occur via decoherence caused by stochastic interaction with an environment. The imaging theorem arises from unitary Schrödinger propagation and so is valid without any environmental interaction. It implies that a simultaneous measurement of both position and momentum will define a unique classical trajectory, whereas a less complete measurement of say position alone can lead to quantum interference effects.« less

  10. A Fixed Point Theorem in Weak Topology for Successively Recurrent System of Set-Valued Mapping Equations and Its Applications

    NASA Astrophysics Data System (ADS)

    Horiuchi, Kazuo

    Let us introduce n (≥ 2) mappings fi(i = 1, …, n ≡ 0) defined on reflexive real Banach spaces Xi-1 and let fi : Xi-1 → Yi be completely continuous on bounded convex closed subsets X_{i-1}^{(0)} \\\\subset X_{i-1}. Moreover, let us introduce n set-valued mappings F_i : X_{i-1} \\\\times Y_i \\\\to {\\\\cal F}_c(X_i) (the family of all non-empty compact subsets of Xi), (i=1, …, n ≡ 0). Here, we have a fixed point theorem in weak topology on the successively recurrent system of set-valued mapping equations: xi ∈ Fi(xi-1, fi(xi-1)), (i=1, …, n ≡ 0). This theorem can be applied immediately to analysis of the availability of system of circular networks of channels undergone by uncertain fluctuations and to evaluation of the tolerability of behaviors of those systems.

  11. The Misapplication of Probability Theory in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Racicot, Ronald

    2014-03-01

    This article is a revision of two papers submitted to the APS in the past two and a half years. In these papers, arguments and proofs are summarized for the following: (1) The wrong conclusion by EPR that Quantum Mechanics is incomplete, perhaps requiring the addition of ``hidden variables'' for completion. Theorems that assume such ``hidden variables,'' such as Bell's theorem, are also wrong. (2) Quantum entanglement is not a realizable physical phenomenon and is based entirely on assuming a probability superposition model for quantum spin. Such a model directly violates conservation of angular momentum. (3) Simultaneous multiple-paths followed by a quantum particle traveling through space also cannot possibly exist. Besides violating Noether's theorem, the multiple-paths theory is based solely on probability calculations. Probability calculations by themselves cannot possibly represent simultaneous physically real events. None of the reviews of the submitted papers actually refuted the arguments and evidence that was presented. These analyses should therefore be carefully evaluated since the conclusions reached have such important impact in quantum mechanics and quantum information theory.

  12. Is there a relation between the 2D Causal Set action and the Lorentzian Gauss-Bonnet theorem?

    NASA Astrophysics Data System (ADS)

    Benincasa, Dionigi M. T.

    2011-07-01

    We investigate the relation between the two dimensional Causal Set action, Script S, and the Lorentzian Gauss-Bonnet theorem (LGBT). We give compelling reasons why the answer to the title's question is no. In support of this point of view we calculate the causal set inspired action of causal intervals in some two dimensional spacetimes: Minkowski, the flat cylinder and the flat trousers.

  13. Bell's theorem, the measurement problem, Newton's self-gravitation and its connections to violations of the discrete symmetries C, P, T

    NASA Astrophysics Data System (ADS)

    Hiesmayr, Beatrix C.

    2015-07-01

    About 50 years ago John St. Bell published his famous Bell theorem that initiated a new field in physics. This contribution discusses how discrete symmetries relate to the big open questions of quantum mechanics, in particular: (i) how correlations stronger than those predicted by theories sharing randomness (Bell's theorem) relate to the violation of the CP symmetry and the P symmetry; and its relation to the security of quantum cryptography, (ii) how the measurement problem (“why do we observe no tables in superposition?”) can be polled in weakly decaying systems, (iii) how strongly and weakly interacting quantum systems are affected by Newton's self gravitation. These presented preliminary results show that the meson-antimeson systems and the hyperon- antihyperon systems are a unique laboratory to tackle deep fundamental questions and to contribute to the understand what impact the violation of discrete symmetries has.

  14. Mixing rates and limit theorems for random intermittent maps

    NASA Astrophysics Data System (ADS)

    Bahsoun, Wael; Bose, Christopher

    2016-04-01

    We study random transformations built from intermittent maps on the unit interval that share a common neutral fixed point. We focus mainly on random selections of Pomeu-Manneville-type maps {{T}α} using the full parameter range 0<α <∞ , in general. We derive a number of results around a common theme that illustrates in detail how the constituent map that is fastest mixing (i.e. smallest α) combined with details of the randomizing process, determines the asymptotic properties of the random transformation. Our key result (theorem 1.1) establishes sharp estimates on the position of return time intervals for the quenched dynamics. The main applications of this estimate are to limit laws (in particular, CLT and stable laws, depending on the parameters chosen in the range 0<α <1 ) for the associated skew product; these are detailed in theorem 3.2. Since our estimates in theorem 1.1 also hold for 1≤slant α <∞ we study a second class of random transformations derived from piecewise affine Gaspard-Wang maps, prove existence of an infinite (σ-finite) invariant measure and study the corresponding correlation asymptotics. To the best of our knowledge, this latter kind of result is completely new in the setting of random transformations.

  15. Semiantichains and Unichain Coverings in Direct Products of Partial Orders.

    DTIC Science & Technology

    1980-09-01

    34 Discrete Math . 5 (1973), 305-337. 13) G. B. Dantsig and A. J. 11offman, "Dilworth’s theorem on partially ordered sets,* in Linear Inequalities and Related...Sperner theorem,* Discrete Math . 17 (1977), 281-289. 118) A. J. Hoffman, ’The role of unimodularity in applying linear inequalities to combinatorial

  16. The Two-Component Virial Theorem and the Physical Properties of Stellar Systems.

    PubMed

    Dantas; Ribeiro; Capelato; de Carvalho RR

    2000-01-01

    Motivated by present indirect evidence that galaxies are surrounded by dark matter halos, we investigate whether their physical properties can be described by a formulation of the virial theorem that explicitly takes into account the gravitational potential term representing the interaction of the dark halo with the baryonic or luminous component. Our analysis shows that the application of such a "two-component virial theorem" not only accounts for the scaling relations displayed by, in particular, elliptical galaxies, but also for the observed properties of all virialized stellar systems, ranging from globular clusters to galaxy clusters.

  17. Sgr A* and general relativity

    NASA Astrophysics Data System (ADS)

    Johannsen, Tim

    2016-06-01

    General relativity has been widely tested in weak gravitational fields but still stands largely untested in the strong-field regime. According to the no-hair theorem, black holes in general relativity depend only on their masses and spins and are described by the Kerr metric. Mass and spin are the first two multipole moments of the Kerr spacetime and completely determine all higher-order moments. The no-hair theorem and, hence, general relativity can be tested by measuring potential deviations from the Kerr metric affecting such higher-order moments. Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way, is a prime target for precision tests of general relativity with several experiments across the electromagnetic spectrum. First, near-infrared (NIR) monitoring of stars orbiting around Sgr A* with current and new instruments is expected to resolve their orbital precessions. Second, timing observations of radio pulsars near the Galactic center may detect characteristic residuals induced by the spin and quadrupole moment of Sgr A*. Third, the event horizon telescope, a global network of mm and sub-mm telescopes, aims to study Sgr A* on horizon scales and to image the silhouette of its shadow cast against the surrounding accretion flow using very-long baseline interferometric (VLBI) techniques. Both NIR and VLBI observations may also detect quasiperiodic variability of the emission from the accretion flow of Sgr A*. In this review, I discuss our current understanding of the spacetime of Sgr A* and the prospects of NIR, timing, and VLBI observations to test its Kerr nature in the near future.

  18. Special relativity theorem and Pythagoras’s magic

    NASA Astrophysics Data System (ADS)

    Korkmaz, S. D.; Aybek, E. C.; Örücü, M.

    2016-03-01

    In the modern physics unit included in the course curriculum of grade 10 physics introduced in the 2007-2008 education year, the aim is that students at this grade level are aware of any developments which constitute modern physics and may be considered new, and interpret whether mass, length and time values of the motions at any velocities close to the speed of light vary or not. One of the scientific concepts and subjects among the final ones to be learned in the unit of modern physics with 12 course hours includes the special relativity theorem and its results. The special relativity theorem, the foundation of which was laid by Einstein in 1905, has three significant predictions proven by experiments and observations: time extension, dimensional shortening and mass relativity. At the first stage of this study, a simple and fast solution that uses the Pythagorean relation for problems and must be treated by using the mathematical expressions of the predictions as specified above is given, and this way of solution was taught while the relativity subject was explained to the secondary education students who are fifteen years old from grade 10 in the 2013-2014 education year. At the second stage of the study, a qualitative study is released together with grade 11 students who are sixteen years old in 2014-2015, who learnt to solve any problems in both methods, while the special relativity subject is discussed in the physics course in grade 10. The findings of the study show that the students have a misconception on the relativity theorem and prefer to solve any relativity-related problems by using the Pythagorean method constituting the first stage of this study.

  19. Completely integrable 2D Lagrangian systems and related integrable geodesic flows on various manifolds

    NASA Astrophysics Data System (ADS)

    Yehia, Hamad M.

    2013-08-01

    In this study we have formulated a theorem that generates deformations of the natural integrable conservative systems in the plane into integrable systems on Riemannian and other manifolds by introducing additional parameters into their structures. The relation of explicit solutions of the new and the original dynamics to the corresponding Jacobi (Maupertuis) geodesic flow is clarified. For illustration, we apply the result to three concrete examples of the many available integrable systems in the literature. Complementary integrals in those systems are polynomial in velocity with degrees 3, 4 and 6, respectively. As a special case of the first deformed system, a new several-parameter family of integrable mechanical systems (and geodesic flows) on S2 is constructed.

  20. Generalized quantum no-go theorems of pure states

    NASA Astrophysics Data System (ADS)

    Li, Hui-Ran; Luo, Ming-Xing; Lai, Hong

    2018-07-01

    Various results of the no-cloning theorem, no-deleting theorem and no-superposing theorem in quantum mechanics have been proved using the superposition principle and the linearity of quantum operations. In this paper, we investigate general transformations forbidden by quantum mechanics in order to unify these theorems. First, we prove that any useful information cannot be created from an unknown pure state which is randomly chosen from a Hilbert space according to the Harr measure. And then, we propose a unified no-go theorem based on a generalized no-superposing result. The new theorem includes the no-cloning theorem, no-anticloning theorem, no-partial-erasure theorem, no-splitting theorem, no-superposing theorem or no-encoding theorem as a special case. Moreover, it implies various new results. Third, we extend the new theorem into another form that includes the no-deleting theorem as a special case.

  1. Kohn's theorem, Larmor's equivalence principle and the Newton-Hooke group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbons, G.W., E-mail: gwg1@amtp.cam.ac.uk; Pope, C.N.; George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242

    2011-07-15

    Highlights: > We show that non-relativistic electrons moving in a magnetic field with trapping potential admits as relativity group the Newton-Hooke group. > We use this fact to give a group theoretic interpretation of Kohn's theorem and to obtain the spectrum. > We obtain the lightlike lift of the system exhibiting showing it coincides with the Nappi-Witten spacetime. - Abstract: We consider non-relativistic electrons, each of the same charge to mass ratio, moving in an external magnetic field with an interaction potential depending only on the mutual separations, possibly confined by a harmonic trapping potential. We show that the systemmore » admits a 'relativity group' which is a one-parameter family of deformations of the standard Galilei group to the Newton-Hooke group which is a Wigner-Inoenue contraction of the de Sitter group. This allows a group-theoretic interpretation of Kohn's theorem and related results. Larmor's theorem is used to show that the one-parameter family of deformations are all isomorphic. We study the 'Eisenhart' or 'lightlike' lift of the system, exhibiting it as a pp-wave. In the planar case, the Eisenhart lift is the Brdicka-Eardley-Nappi-Witten pp-wave solution of Einstein-Maxwell theory, which may also be regarded as a bi-invariant metric on the Cangemi-Jackiw group.« less

  2. Complete spacelike hypersurfaces in orthogonally splitted spacetimes

    NASA Astrophysics Data System (ADS)

    Colombo, Giulio; Rigoli, Marco

    2017-10-01

    We provide some "half-space theorems" for spacelike complete non-compact hypersurfaces into orthogonally splitted spacetimes. In particular we generalize some recent work of Rubio and Salamanca on maximal spacelike compact hypersurfaces. Beside compactness, we also relax some of their curvature assumptions and even consider the case of nonconstant mean curvature bounded from above. The analytic tools used in various arguments are based on some forms of the weak maximum principle.

  3. Refining the boundaries of the classical de Sitter landscape

    NASA Astrophysics Data System (ADS)

    Andriot, David; Blåbäck, Johan

    2017-03-01

    We derive highly constraining no-go theorems for classical de Sitter backgrounds of string theory, with parallel sources; this should impact the embedding of cosmological models. We study ten-dimensional vacua of type II supergravities with parallel and backreacted orientifold O p -planes and D p -branes, on four-dimensional de Sitter spacetime times a compact manifold. Vacua for p = 3, 7 or 8 are completely excluded, and we obtain tight constraints for p = 4, 5, 6. This is achieved through the derivation of an enlightening expression for the four-dimensional Ricci scalar. Further interesting expressions and no-go theorems are obtained. The paper is self-contained so technical aspects, including conventions, might be of more general interest.

  4. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  5. Restoring the consistency with the contact density theorem of a classical density functional theory of ions at a planar electrical double layer.

    PubMed

    Gillespie, Dirk

    2014-11-01

    Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.

  6. Mechanistic slumber vs. statistical insomnia: the early history of Boltzmann's H-theorem (1868-1877)

    NASA Astrophysics Data System (ADS)

    Badino, M.

    2011-11-01

    An intricate, long, and occasionally heated debate surrounds Boltzmann's H-theorem (1872) and his combinatorial interpretation of the second law (1877). After almost a century of devoted and knowledgeable scholarship, there is still no agreement as to whether Boltzmann changed his view of the second law after Loschmidt's 1876 reversibility argument or whether he had already been holding a probabilistic conception for some years at that point. In this paper, I argue that there was no abrupt statistical turn. In the first part, I discuss the development of Boltzmann's research from 1868 to the formulation of the H-theorem. This reconstruction shows that Boltzmann adopted a pluralistic strategy based on the interplay between a kinetic and a combinatorial approach. Moreover, it shows that the extensive use of asymptotic conditions allowed Boltzmann to bracket the problem of exceptions. In the second part I suggest that both Loschmidt's challenge and Boltzmann's response to it did not concern the H-theorem. The close relation between the theorem and the reversibility argument is a consequence of later investigations on the subject.

  7. Long time existence from interior gluing

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.

    2017-07-01

    We prove completeness-to-the-future of null hypersurfaces emanating outwards from large spheres, in vacuum space-times evolving from general asymptotically flat data with well-defined energy-momentum. The proof uses scaling and a gluing construction to reduce the problem to Bieri’s stability theorem.

  8. Energy-balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1980-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  9. Energy balance climate models

    NASA Technical Reports Server (NTRS)

    North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.

    1981-01-01

    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.

  10. Generalized Optical Theorem Detection in Random and Complex Media

    NASA Astrophysics Data System (ADS)

    Tu, Jing

    The problem of detecting changes of a medium or environment based on active, transmit-plus-receive wave sensor data is at the heart of many important applications including radar, surveillance, remote sensing, nondestructive testing, and cancer detection. This is a challenging problem because both the change or target and the surrounding background medium are in general unknown and can be quite complex. This Ph.D. dissertation presents a new wave physics-based approach for the detection of targets or changes in rather arbitrary backgrounds. The proposed methodology is rooted on a fundamental result of wave theory called the optical theorem, which gives real physical energy meaning to the statistics used for detection. This dissertation is composed of two main parts. The first part significantly expands the theory and understanding of the optical theorem for arbitrary probing fields and arbitrary media including nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The proposed formalism addresses both scalar and full vector electromagnetic fields. The second contribution of this dissertation is the application of the optical theorem to change detection with particular emphasis on random, complex, and active media, including single frequency probing fields and broadband probing fields. The first part of this work focuses on the generalization of the existing theoretical repertoire and interpretation of the scalar and electromagnetic optical theorem. Several fundamental generalizations of the optical theorem are developed. A new theory is developed for the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. The bounded media context is essential for applications such as intrusion detection and surveillance in enclosed environments such as indoor facilities, caves, tunnels, as well as for nondestructive testing and communication systems based on wave-guiding structures. The developed scalar optical theorem theory applies to arbitrary lossless backgrounds and quite general probing fields including near fields which play a key role in super-resolution imaging. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. Furthermore, the generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks, invisible scatterers, and wireless communications. The latter developments have important military applications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a reactive optical theorem related to the reactive power changes. Meanwhile, the developed approach naturally leads to three optical theorem indicators or statistics, which can be used to detect changes or targets in unknown complex media. In addition, the optical theorem theory is generalized in the time domain so that it applies to arbitrary full vector fields, and arbitrary media including anisotropic media, nonreciprocal media, active media, as well as time-varying and nonlinear scatterers. The second component of this Ph.D. research program focuses on the application of the optical theorem to change detection. Three different forms of indicators or statistics are developed for change detection in unknown background media: a real power optical theorem detector, a reactive power optical theorem detector, and a total apparent power optical theorem detector. No prior knowledge is required of the background or the change or target. The performance of the three proposed optical theorem detectors is compared with the classical energy detector approach for change detection. The latter uses a mathematical or functional energy while the optical theorem detectors are based on real physical energy. For reference, the optical theorem detectors are also compared with the matched filter approach which (unlike the optical theorem detectors) assumes perfect target and medium information. The practical implementation of the optical theorem detectors is based for certain random and complex media on the exploitation of time reversal focusing ideas developed in the past 20 years in electromagnetics and acoustics. In the final part of the dissertation, we also discuss the implementation of the optical theorem sensors for one-dimensional propagation systems such as transmission lines. We also present a new generalized likelihood ratio test for detection that exploits a prior data constraint based on the optical theorem. Finally, we also address the practical implementation of the optical theorem sensors for optical imaging systems, by means of holography. The later is the first holographic implementation the optical theorem for arbitrary scenes and targets.

  11. H-theorem in quantum physics.

    PubMed

    Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.

  12. Applications of Perron-Frobenius theory to population dynamics.

    PubMed

    Li, Chi-Kwong; Schneider, Hans

    2002-05-01

    By the use of Perron-Frobenius theory, simple proofs are given of the Fundamental Theorem of Demography and of a theorem of Cushing and Yicang on the net reproductive rate occurring in matrix models of population dynamics. The latter result, which is closely related to the Stein-Rosenberg theorem in numerical linear algebra, is further refined with some additional nonnegative matrix theory. When the fertility matrix is scaled by the net reproductive rate, the growth rate of the model is $1$. More generally, we show how to achieve a given growth rate for the model by scaling the fertility matrix. Demographic interpretations of the results are given.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiuping, E-mail: yangxiuping-1990@163.com; Min, Lequan, E-mail: minlequan@sina.com; Wang, Xue, E-mail: wangxue-20130818@163.com

    This paper sets up a chaos criterion theorem on a kind of cubic polynomial discrete maps. Using this theorem, Zhou-Song's chaos criterion theorem on quadratic polynomial discrete maps and generalized synchronization (GS) theorem construct an eight-dimensional chaotic GS system. Numerical simulations have been carried out to verify the effectiveness of theoretical results. The chaotic GS system is used to design a chaos-based pseudorandom number generator (CPRNG). Using FIPS 140-2 test suit/Generalized FIPS 140-2, test suit tests the randomness of two 1000 key streams consisting of 20 000 bits generated by the CPRNG, respectively. The results show that there are 99.9%/98.5% keymore » streams to have passed the FIPS 140-2 test suit/Generalized FIPS 140-2 test. Numerical simulations show that the different keystreams have an average 50.001% same codes. The key space of the CPRNG is larger than 2{sup 1345}. As an application of the CPRNG, this study gives an image encryption example. Experimental results show that the linear coefficients between the plaintext and the ciphertext and the decrypted ciphertexts via the 100 key streams with perturbed keys are less than 0.00428. The result suggests that the decrypted texts via the keystreams generated via perturbed keys of the CPRNG are almost completely independent on the original image text, and brute attacks are needed to break the cryptographic system.« less

  14. Using Technology to Unify Geometric Theorems about the Power of a Point

    ERIC Educational Resources Information Center

    Contreras, Jose N.

    2011-01-01

    In this article, I describe a classroom investigation in which a group of prospective secondary mathematics teachers discovered theorems related to the power of a point using "The Geometer's Sketchpad" (GSP). The power of a point is defines as follows: Let "P" be a fixed point coplanar with a circle. If line "PA" is a secant line that intersects…

  15. Testing ground for fluctuation theorems: The one-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Lemos, C. G. O.; Santos, M.; Ferreira, A. L.; Figueiredo, W.

    2018-04-01

    In this paper we determine the nonequilibrium magnetic work performed on a Ising model and relate it to the fluctuation theorem derived some years ago by Jarzynski. The basic idea behind this theorem is the relationship connecting the free energy difference between two thermodynamic states of a system and the average work performed by an external agent, in a finite time, through nonequilibrium paths between the same thermodynamic states. We test the validity of this theorem by considering the one-dimensional Ising model where the free energy is exactly determined as a function of temperature and magnetic field. We have found that the Jarzynski theorem remains valid for all the values of the rate of variation of the magnetic field applied to the system. We have also determined the probability distribution function for the work performed on the system for the forward and reverse processes and verified that predictions based on the Crooks relation are equally correct. We also propose a method to calculate the lag between the current state of the system and that of the equilibrium based on macroscopic variables. We have shown that the lag increases with the sweeping rate of the field at its final value for the reverse process, while it decreases in the case of the forward process. The lag increases linearly with the size of the chain and with a slope decreasing with the inverse of the rate of variation of the field.

  16. Anomalies, renormalization group flows, and the a-theorem in six-dimensional (1, 0) theories

    DOE PAGES

    Córdova, Clay; Dumitrescu, Thomas T.; Intriligator, Kenneth

    2016-10-17

    We establish a linear relation between the a-type Weyl anomaly and the ’t Hooft anomaly coeffcients for the R-symmetry and gravitational anomalies in sixdimensional (1,0) superconformal field theories. For RG flows onto the tensor branch, where conformal symmetry is spontaneously broken, supersymmetry relates the anomaly mismatch Δa to the square of a four-derivative interaction for the dilaton. This establishes the a-theorem for all such flows. The four-derivative dilaton interaction is in turn related to the Green-Schwarz-like terms that are needed to match the ’t Hooft anomalies on the tensor branch, thus fixing their relation to Δa. We use our formulamore » to obtain exact expressions for the a-anomaly of N small E 8 instantons, as well as N M 5-branes probing an orbifold singularity, and verify the a-theorem for RG flows onto their Higgs branches. We also discuss aspects of supersymmetric RG flows that terminate in scale but not conformally invariant theories with massless gauge fields.« less

  17. Anomaly manifestation of Lieb-Schultz-Mattis theorem and topological phases

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Hsieh, Chang-Tse; Ryu, Shinsei

    2017-11-01

    The Lieb-Schultz-Mattis (LSM) theorem dictates that emergent low-energy states from a lattice model cannot be a trivial symmetric insulator if the filling per unit cell is not integral and if the lattice translation symmetry and particle number conservation are strictly imposed. In this paper, we compare the one-dimensional gapless states enforced by the LSM theorem and the boundaries of one-higher dimensional strong symmetry-protected topological (SPT) phases from the perspective of quantum anomalies. We first note that they can both be described by the same low-energy effective field theory with the same effective symmetry realizations on low-energy modes, wherein non-on-site lattice translation symmetry is encoded as if it were an internal symmetry. In spite of the identical form of the low-energy effective field theories, we show that the quantum anomalies of the theories play different roles in the two systems. In particular, we find that the chiral anomaly is equivalent to the LSM theorem, whereas there is another anomaly that is not related to the LSM theorem but is intrinsic to the SPT states. As an application, we extend the conventional LSM theorem to multiple-charge multiple-species problems and construct several exotic symmetric insulators. We also find that the (3+1)d chiral anomaly provides only the perturbative stability of the gaplessness local in the parameter space.

  18. Structure of rapidity divergences in multi-parton scattering soft factors

    NASA Astrophysics Data System (ADS)

    Vladimirov, Alexey

    2018-04-01

    We discuss the structure of rapidity divergences that are presented in the soft factors of transverse momentum dependent (TMD) factorization theorems. To provide the discussion on the most general level we consider soft factors for multi-parton scattering. We show that the rapidity divergences are result of the gluon exchanges with the distant transverse plane, and are structurally equivalent to the ultraviolet divergences. It allows to formulate and to prove the renormalization theorem for rapidity divergences. The proof is made with the help the conformal transformation which maps rapidity divergences to ultraviolet divergences. The theorem is the systematic form of the factorization of rapidity divergences, which is required for the definition of TMD parton distributions. In particular, the definition of multi parton distributions is presented. The equivalence of ultraviolet and rapidity divergences leads to the exact relation between soft and rapidity anomalous dimensions. Using this relation we derive the rapidity anomalous dimension at the three-loop order.

  19. Symmetries in Lagrangian Dynamics

    ERIC Educational Resources Information Center

    Ferrario, Carlo; Passerini, Arianna

    2007-01-01

    In the framework of Noether's theorem, a distinction between Lagrangian and dynamical symmetries is made, in order to clarify some aspects neglected by textbooks. An intuitive setting of the concept of invariance of differential equations is presented. The analysis is completed by deriving the symmetry properties in the motion of a charged…

  20. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.

  1. The Implicit Function Theorem and Non-Existence of Limit of Functions of Several Variables

    ERIC Educational Resources Information Center

    dos Santos, A. L. C.; da Silva, P. N.

    2008-01-01

    We use the Implicit Function Theorem to establish a result of non-existence of limit to a certain class of functions of several variables. We consider functions given by quotients such that both the numerator and denominator functions are null at the limit point. We show that the non-existence of the limit of such function is related with the…

  2. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    DOE PAGES

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    2016-06-08

    We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.

  3. Noncommutative gauge theories and Kontsevich's formality theorem

    NASA Astrophysics Data System (ADS)

    Jurčo, B.; Schupp, P.; Wess, J.

    2001-09-01

    The equivalence of star products that arise from the background field with and without fluctuations and Kontsevich's formality theorem allow an explicitly construction of a map that relates ordinary gauge theory and noncommutative gauge theory (Seiberg-Witten map.) Using noncommutative extra dimensions the construction is extended to noncommutative nonabelian gauge theory for arbitrary gauge groups; as a byproduct we obtain a "Mini Seiberg-Witten map" that explicitly relates ordinary abelian and nonabelian gauge fields. All constructions are also valid for non-constant B-field, and even more generally for any Poisson tensor.

  4. H-theorem in quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less

  5. H-theorem in quantum physics

    PubMed Central

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.

    2016-01-01

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy. PMID:27616571

  6. H-theorem in quantum physics

    DOE PAGES

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; ...

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less

  7. Einstein’s gravity from a polynomial affine model

    NASA Astrophysics Data System (ADS)

    Castillo-Felisola, Oscar; Skirzewski, Aureliano

    2018-03-01

    We show that the effective field equations for a recently formulated polynomial affine model of gravity, in the sector of a torsion-free connection, accept general Einstein manifolds—with or without cosmological constant—as solutions. Moreover, the effective field equations are partially those obtained from a gravitational Yang–Mills theory known as Stephenson–Kilmister–Yang theory. Additionally, we find a generalization of a minimally coupled massless scalar field in General Relativity within a ‘minimally’ coupled scalar field in this affine model. Finally, we present a brief (perturbative) analysis of the propagators of the gravitational theory, and count the degrees of freedom. For completeness, we prove that a Birkhoff-like theorem is valid for the analyzed sector.

  8. A new scheme of general hybrid projective complete dislocated synchronization

    NASA Astrophysics Data System (ADS)

    Chu, Yan-dong; Chang, Ying-Xiang; An, Xin-lei; Yu, Jian-Ning; Zhang, Jian-Gang

    2011-03-01

    Based on the Lyapunov stability theorem, a new type of chaos synchronization, general hybrid projective complete dislocated synchronization (GHPCDS), is proposed under the framework of drive-response systems. The difference between the GHPCDS and complete synchronization is that every state variable of drive system does not equal the corresponding state variable, but equal other ones of response system while evolving in time. The GHPCDS includes complete dislocated synchronization, dislocated anti-synchronization and projective dislocated synchronization as its special item. As examples, the Lorenz chaotic system, Rössler chaotic system, hyperchaotic Chen system and hyperchaotic Lü system are discussed. Numerical simulations are given to show the effectiveness of these methods.

  9. Photoelectric effect from observer's mathematics point of view

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2014-12-01

    When we consider and analyze physical events with the purpose of creating corresponding models we often assume that the mathematical apparatus used in modeling is infallible. In particular, this relates to the use of infinity in various aspects and the use of Newton's definition of a limit in analysis. We believe that is where the main problem lies in contemporary study of nature. This work considers Physical aspects in a setting of arithmetic, algebra, geometry, analysis, topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided. In particular, we prove the following Theorems, which give Observer's Mathematics point of view on Einstein photoelectric effect theory and Lamb-Scully and Hanbury-Brown-Twiss experiments: Theorem 1. There are some values of light intensity where anticorrelation parameter A ∈ [0,1). Theorem 2. There are some values of light intensity where anticorrelation parameter A = 1. Theorem 3. There are some values of light intensity where anticorrelation parameter A > 1.

  10. Generalized entropy production fluctuation theorems for quantum systems

    NASA Astrophysics Data System (ADS)

    Rana, Shubhashis; Lahiri, Sourabh; Jayannavar, A. M.

    2013-02-01

    Based on trajectory dependent path probability formalism in state space, we derive generalized entropy production fluctuation relations for a quantum system in the presence of measurement and feedback. We have obtained these results for three different cases: (i) the system is evolving in isolation from its surroundings; (ii) the system being weakly coupled to a heat bath; and (iii) system in contact with reservoir using quantum Crooks fluctuation theorem. In case (iii), we build on the treatment carried out in [H. T. Quan and H. Dong, arxiv/cond-mat: 0812.4955], where a quantum trajectory has been defined as a sequence of alternating work and heat steps. The obtained entropy production fluctuation theorems retain the same form as in the classical case. The inequality of second law of thermodynamics gets modified in the presence of information. These fluctuation theorems are robust against intermediate measurements of any observable performed with respect to von Neumann projective measurements as well as weak or positive operator valued measurements.

  11. Theorem Proving In Higher Order Logics

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A. (Editor); Munoz, Cesar A.; Tahar, Sofiene

    2002-01-01

    The TPHOLs International Conference serves as a venue for the presentation of work in theorem proving in higher-order logics and related areas in deduction, formal specification, software and hardware verification, and other applications. Fourteen papers were submitted to Track B (Work in Progress), which are included in this volume. Authors of Track B papers gave short introductory talks that were followed by an open poster session. The FCM 2002 Workshop aimed to bring together researchers working on the formalisation of continuous mathematics in theorem proving systems with those needing such libraries for their applications. Many of the major higher order theorem proving systems now have a formalisation of the real numbers and various levels of real analysis support. This work is of interest in a number of application areas, such as formal methods development for hardware and software application and computer supported mathematics. The FCM 2002 consisted of three papers, presented by their authors at the workshop venue, and one invited talk.

  12. A Generalization of Pythagoras's Theorem and Application to Explanations of Variance Contributions in Linear Models. Research Report. ETS RR-14-18

    ERIC Educational Resources Information Center

    Carlson, James E.

    2014-01-01

    Many aspects of the geometry of linear statistical models and least squares estimation are well known. Discussions of the geometry may be found in many sources. Some aspects of the geometry relating to the partitioning of variation that can be explained using a little-known theorem of Pappus and have not been discussed previously are the topic of…

  13. On Riemann solvers and kinetic relations for isothermal two-phase flows with surface tension

    NASA Astrophysics Data System (ADS)

    Rohde, Christian; Zeiler, Christoph

    2018-06-01

    We consider a sharp interface approach for the inviscid isothermal dynamics of compressible two-phase flow that accounts for phase transition and surface tension effects. Kinetic relations are frequently used to fix the mass exchange and entropy dissipation rate across the interface. The complete unidirectional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.

  14. Circles Inscribed in Rhombuses

    ERIC Educational Resources Information Center

    Srinivasan, V.K.

    2013-01-01

    In this teaching oriented article, I am introducing the concept of an equilateral rhombus, which is completely characterized. Three main theorems are given with proofs in Section 2. Most of the time, the rhombuses that are discussed are not squares. For a given circle of a specified radius sigma greater than?0, there is exactly one equilateral…

  15. Warped product space-times

    NASA Astrophysics Data System (ADS)

    An, Xinliang; Wong, Willie Wai Yeung

    2018-01-01

    Many classical results in relativity theory concerning spherically symmetric space-times have easy generalizations to warped product space-times, with a two-dimensional Lorentzian base and arbitrary dimensional Riemannian fibers. We first give a systematic presentation of the main geometric constructions, with emphasis on the Kodama vector field and the Hawking energy; the construction is signature independent. This leads to proofs of general Birkhoff-type theorems for warped product manifolds; our theorems in particular apply to situations where the warped product manifold is not necessarily Einstein, and thus can be applied to solutions with matter content in general relativity. Next we specialize to the Lorentzian case and study the propagation of null expansions under the assumption of the dominant energy condition. We prove several non-existence results relating to the Yamabe class of the fibers, in the spirit of the black-hole topology theorem of Hawking–Galloway–Schoen. Finally we discuss the effect of the warped product ansatz on matter models. In particular we construct several cosmological solutions to the Einstein–Euler equations whose spatial geometry is generally not isotropic.

  16. Entanglement bases and general structures of orthogonal complete bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Zaizhe

    2004-10-01

    In quantum mechanics and quantum information, to establish the orthogonal bases is a useful means. The existence of unextendible product bases impels us to study the 'entanglement bases' problems. In this paper, the concepts of entanglement bases and exact-entanglement bases are defined, and a theorem about exact-entanglement bases is given. We discuss the general structures of the orthogonal complete bases. Two examples of applications are given. At last, we discuss the problem of transformation of the general structure forms.

  17. Exploring the Tomlin-Varadarajan quantum constraints in U (1 )3 loop quantum gravity: Solutions and the Minkowski theorem

    NASA Astrophysics Data System (ADS)

    Lewandowski, Jerzy; Lin, Chun-Yen

    2017-03-01

    We explicitly solved the anomaly-free quantum constraints proposed by Tomlin and Varadarajan for the weak Euclidean model of canonical loop quantum gravity, in a large subspace of the model's kinematic Hilbert space, which is the space of the charge network states. In doing so, we first identified the subspace on which each of the constraints acts convergingly, and then by explicitly evaluating such actions we found the complete set of the solutions in the identified subspace. We showed that the space of solutions consists of two classes of states, with the first class having a property that involves the condition known from the Minkowski theorem on polyhedra, and the second class satisfying a weaker form of the spatial diffeomorphism invariance.

  18. An elementary tutorial on formal specification and verification using PVS

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.

    1993-01-01

    A tutorial on the development of a formal specification and its verification using the Prototype Verification System (PVS) is presented. The tutorial presents the formal specification and verification techniques by way of specific example - an airline reservation system. The airline reservation system is modeled as a simple state machine with two basic operations. These operations are shown to preserve a state invariant using the theorem proving capabilities of PVS. The technique of validating a specification via 'putative theorem proving' is also discussed and illustrated in detail. This paper is intended for the novice and assumes only some of the basic concepts of logic. A complete description of user inputs and the PVS output is provided and thus it can be effectively used while one is sitting at a computer terminal.

  19. Closed-form solutions and scaling laws for Kerr frequency combs

    PubMed Central

    Renninger, William H.; Rakich, Peter T.

    2016-01-01

    A single closed-form analytical solution of the driven nonlinear Schrödinger equation is developed, reproducing a large class of the behaviors in Kerr-comb systems, including bright-solitons, dark-solitons, and a large class of periodic wavetrains. From this analytical framework, a Kerr-comb area theorem and a pump-detuning relation are developed, providing new insights into soliton- and wavetrain-based combs along with concrete design guidelines for both. This new area theorem reveals significant deviation from the conventional soliton area theorem, which is crucial to understanding cavity solitons in certain limits. Moreover, these closed-form solutions represent the first step towards an analytical framework for wavetrain formation, and reveal new parameter regimes for enhanced Kerr-comb performance. PMID:27108810

  20. A Meinardus Theorem with Multiple Singularities

    NASA Astrophysics Data System (ADS)

    Granovsky, Boris L.; Stark, Dudley

    2012-09-01

    Meinardus proved a general theorem about the asymptotics of the number of weighted partitions, when the Dirichlet generating function for weights has a single pole on the positive real axis. Continuing (Granovsky et al., Adv. Appl. Math. 41:307-328, 2008), we derive asymptotics for the numbers of three basic types of decomposable combinatorial structures (or, equivalently, ideal gas models in statistical mechanics) of size n, when their Dirichlet generating functions have multiple simple poles on the positive real axis. Examples to which our theorem applies include ones related to vector partitions and quantum field theory. Our asymptotic formula for the number of weighted partitions disproves the belief accepted in the physics literature that the main term in the asymptotics is determined by the rightmost pole.

  1. A Bayesian perspective on Markovian dynamics and the fluctuation theorem

    NASA Astrophysics Data System (ADS)

    Virgo, Nathaniel

    2013-08-01

    One of E. T. Jaynes' most important achievements was to derive statistical mechanics from the maximum entropy (MaxEnt) method. I re-examine a relatively new result in statistical mechanics, the Evans-Searles fluctuation theorem, from a MaxEnt perspective. This is done in the belief that interpreting such results in Bayesian terms will lead to new advances in statistical physics. The version of the fluctuation theorem that I will discuss applies to discrete, stochastic systems that begin in a non-equilibrium state and relax toward equilibrium. I will show that for such systems the fluctuation theorem can be seen as a consequence of the fact that the equilibrium distribution must obey the property of detailed balance. Although the principle of detailed balance applies only to equilibrium ensembles, it puts constraints on the form of non-equilibrium trajectories. This will be made clear by taking a novel kind of Bayesian perspective, in which the equilibrium distribution is seen as a prior over the system's set of possible trajectories. Non-equilibrium ensembles are calculated from this prior using Bayes' theorem, with the initial conditions playing the role of the data. I will also comment on the implications of this perspective for the question of how to derive the second law.

  2. Cancellation of spurious arrivals in Green's function extraction and the generalized optical theorem

    USGS Publications Warehouse

    Snieder, R.; Van Wijk, K.; Haney, M.; Calvert, R.

    2008-01-01

    The extraction of the Green's function by cross correlation of waves recorded at two receivers nowadays finds much application. We show that for an arbitrary small scatterer, the cross terms of scattered waves give an unphysical wave with an arrival time that is independent of the source position. This constitutes an apparent inconsistency because theory predicts that such spurious arrivals do not arise, after integration over a complete source aperture. This puzzling inconsistency can be resolved for an arbitrary scatterer by integrating the contribution of all sources in the stationary phase approximation to show that the stationary phase contributions to the source integral cancel the spurious arrival by virtue of the generalized optical theorem. This work constitutes an alternative derivation of this theorem. When the source aperture is incomplete, the spurious arrival is not canceled and could be misinterpreted to be part of the Green's function. We give an example of how spurious arrivals provide information about the medium complementary to that given by the direct and scattered waves; the spurious waves can thus potentially be used to better constrain the medium. ?? 2008 The American Physical Society.

  3. Image Understanding and Information Extraction\\

    DTIC Science & Technology

    1977-11-01

    mentation and generalization of DeCarlo’s Nyquist-like stability test [15,161. The last step of the procedure is to check whether this zero ...Several general sta- bility theorems which relate stability to the zero set of B(w,z) have been presented. These theorems led to the conclusion that...Spatial Stochastic Model for Contextual Pattern Recognition . ° . .............. 88 T. S. Yu and K. S. Fu V. PREPROCESSING 1. Stability of General Two

  4. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  5. The s-Ordered Fock Space Projectors Gained by the General Ordering Theorem

    NASA Astrophysics Data System (ADS)

    Farid, Shähandeh; Mohammad, Reza Bazrafkan; Mahmoud, Ashrafi

    2012-09-01

    Employing the general ordering theorem (GOT), operational methods and incomplete 2-D Hermite polynomials, we derive the t-ordered expansion of Fock space projectors. Using the result, the general ordered form of the coherent state projectors is obtained. This indeed gives a new integration formula regarding incomplete 2-D Hermite polynomials. In addition, the orthogonality relation of the incomplete 2-D Hermite polynomials is derived to resolve Dattoli's failure.

  6. Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise.

    PubMed

    Leibovich, N; Dechant, A; Lutz, E; Barkai, E

    2016-11-01

    The power spectrum of a stationary process may be calculated in terms of the autocorrelation function using the Wiener-Khinchin theorem. We here generalize the Wiener-Khinchin theorem for nonstationary processes and introduce a time-dependent power spectrum 〈S_{t_{m}}(ω)〉 where t_{m} is the measurement time. For processes with an aging autocorrelation function of the form 〈I(t)I(t+τ)〉=t^{Υ}ϕ_{EA}(τ/t), where ϕ_{EA}(x) is a nonanalytic function when x is small, we find aging 1/f^{β} noise. Aging 1/f^{β} noise is characterized by five critical exponents. We derive the relations between the scaled autocorrelation function and these exponents. We show that our definition of the time-dependent spectrum retains its interpretation as a density of Fourier modes and discuss the relation to the apparent infrared divergence of 1/f^{β} noise. We illustrate our results for blinking-quantum-dot models, single-file diffusion, and Brownian motion in a logarithmic potential.

  7. Entropic no-disturbance as a physical principle

    NASA Astrophysics Data System (ADS)

    Jia, Zhih-Ahn; Zhai, Rui; Yu, Bai-Chu; Wu, Yu-Chun; Guo, Guang-Can

    2018-05-01

    The celebrated Bell-Kochen-Specker no-go theorem asserts that quantum mechanics does not present the property of realism; the essence of the theorem is the lack of a joint probability distribution for some experiment settings. We exploit the information theoretic form of the theorem using information measure instead of probabilistic measure and indicate that quantum mechanics does not present such kind of entropic realism either. The entropic form of Gleason's no-disturbance principle is developed and characterized by the intersection of several entropic cones. Entropic contextuality and entropic nonlocality are investigated in depth in this framework as well. We show how one can construct monogamy relations using entropic cone and basic Shannon-type inequalities. The general criterion for several entropic tests to be monogamous is also developed; using the criterion, we demonstrate that entropic nonlocal correlations, entropic contextuality tests, and entropic nonlocality and entropic contextuality are monogamous. Finally, we analyze the entropic monogamy relations for the multiparty and many-test case, which may play a crucial role in quantum network communication.

  8. No-Hair Theorem for Black Holes in Astrophysical Environments

    NASA Astrophysics Data System (ADS)

    Gürlebeck, Norman

    2015-04-01

    According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical realistic scenarios often violated, e.g., if the black hole is part of a binary system or if it is surrounded by an accretion disk. In these cases, the black hole is distorted due to tidal forces. Nonetheless, the subsequent formulation of the no-hair theorem holds: The contribution of the distorted black hole to the multipole moments that describe the gravitational field close to infinity and, thus, all sources is that of a Schwarzschild black hole. It still has no hair. This implies that there is no multipole moment induced in the black hole and that its second Love numbers, which measure some aspects of the distortion, vanish as was already shown in approximations to general relativity. But here we prove this property for astrophysical relevant black holes in full general relativity.

  9. No-hair theorem for black holes in astrophysical environments.

    PubMed

    Gürlebeck, Norman

    2015-04-17

    According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical realistic scenarios often violated, e.g., if the black hole is part of a binary system or if it is surrounded by an accretion disk. In these cases, the black hole is distorted due to tidal forces. Nonetheless, the subsequent formulation of the no-hair theorem holds: The contribution of the distorted black hole to the multipole moments that describe the gravitational field close to infinity and, thus, all sources is that of a Schwarzschild black hole. It still has no hair. This implies that there is no multipole moment induced in the black hole and that its second Love numbers, which measure some aspects of the distortion, vanish as was already shown in approximations to general relativity. But here we prove this property for astrophysical relevant black holes in full general relativity.

  10. A coupled-mode theory for multiwaveguide systems satisfying the reciprocity theorem and power conservation

    NASA Technical Reports Server (NTRS)

    Chuang, Shun-Lien

    1987-01-01

    Two sets of coupled-mode equations for multiwaveguide systems are derived using a generalized reciprocity relation; one set for a lossless system, and the other for a general lossy or lossless system. The second set of equations also reduces to those of the first set in the lossless case under the condition that the transverse field components are chosen to be real. Analytical relations between the coupling coefficients are shown and applied to the coupling of mode equations. It is shown analytically that these results satisfy exactly both the reciprocity theorem and power conservation. New orthogonal relations between the supermodes are derived in matrix form, with the overlap integrals taken into account.

  11. From Loops to Trees By-passing Feynman's Theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catani, Stefano; Gleisberg, Tanju; Krauss, Frank

    2008-04-22

    We derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary + i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. It is suitable for applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluationmore » of cross-sections at next-to-leading order.« less

  12. Scaling and scale invariance of conservation laws in Reynolds transport theorem framework

    NASA Astrophysics Data System (ADS)

    Haltas, Ismail; Ulusoy, Suleyman

    2015-07-01

    Scale invariance is the case where the solution of a physical process at a specified time-space scale can be linearly related to the solution of the processes at another time-space scale. Recent studies investigated the scale invariance conditions of hydrodynamic processes by applying the one-parameter Lie scaling transformations to the governing equations of the processes. Scale invariance of a physical process is usually achieved under certain conditions on the scaling ratios of the variables and parameters involved in the process. The foundational axioms of hydrodynamics are the conservation laws, namely, conservation of mass, conservation of linear momentum, and conservation of energy from continuum mechanics. They are formulated using the Reynolds transport theorem. Conventionally, Reynolds transport theorem formulates the conservation equations in integral form. Yet, differential form of the conservation equations can also be derived for an infinitesimal control volume. In the formulation of the governing equation of a process, one or more than one of the conservation laws and, some times, a constitutive relation are combined together. Differential forms of the conservation equations are used in the governing partial differential equation of the processes. Therefore, differential conservation equations constitute the fundamentals of the governing equations of the hydrodynamic processes. Applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework instead of applying to the governing partial differential equations may lead to more fundamental conclusions on the scaling and scale invariance of the hydrodynamic processes. This study will investigate the scaling behavior and scale invariance conditions of the hydrodynamic processes by applying the one-parameter Lie scaling transformation to the conservation laws in the Reynolds transport theorem framework.

  13. Secondary School Advanced Mathematics, Chapter 3, Formal Geometry. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the second of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. This volume is devoted to a rigorous development of theorems in plane geometry from 22…

  14. Teaching Semantic Tableaux Method for Propositional Classical Logic with a CAS

    ERIC Educational Resources Information Center

    Aguilera-Venegas, Gabriel; Galán-García, José Luis; Galán-García, María Ángeles; Rodríguez-Cielos, Pedro

    2015-01-01

    Automated theorem proving (ATP) for Propositional Classical Logic is an algorithm to check the validity of a formula. It is a very well-known problem which is decidable but co-NP-complete. There are many algorithms for this problem. In this paper, an educationally oriented implementation of Semantic Tableaux method is described. The program has…

  15. ON THE STRONG EXTREMUM PRINCIPLE FOR A \\mathrm{D}-(\\Pi, \\Omega)-ELLIPTICALLY CONNECTED OPERATOR OF SECOND ORDER

    NASA Astrophysics Data System (ADS)

    Kamynin, L. I.; Himčenko, B. N.

    1981-02-01

    In this paper the strong extremum principle is proved for a certain new class of second order operators with nonnegative characteristic form, without requiring the smoothness of their coefficients, which is essential in the converse of Raševskiĭ's theorem on completely nonholonomic systems. Bibliography: 19 titles.

  16. Applications of square-related theorems

    NASA Astrophysics Data System (ADS)

    Srinivasan, V. K.

    2014-04-01

    The square centre of a given square is the point of intersection of its two diagonals. When two squares of different side lengths share the same square centre, there are in general four diagonals that go through the same square centre. The Two Squares Theorem developed in this paper summarizes some nice theoretical conclusions that can be obtained when two squares of different side lengths share the same square centre. These results provide the theoretical basis for two of the constructions given in the book of H.S. Hall and F.H. Stevens , 'A Shorter School Geometry, Part 1, Metric Edition'. In page 134 of this book, the authors present, in exercise 4, a practical construction which leads to a verification of the Pythagorean theorem. Subsequently in Theorems 29 and 30, the authors present the standard proofs of the Pythagorean theorem and its converse. In page 140, the authors present, in exercise 15, what amounts to a geometric construction, whose verification involves a simple algebraic identity. Both the constructions are of great importance and can be replicated by using the standard equipment provided in a 'geometry toolbox' carried by students in high schools. The author hopes that the results proved in this paper, in conjunction with the two constructions from the above-mentioned book, would provide high school students an appreciation of the celebrated theorem of Pythagoras. The diagrams that accompany this document are based on the free software GeoGebra. The author formally acknowledges his indebtedness to the creators of this free software at the end of this document.

  17. [ ] or SUCCESS is Not Enough: Current Technology and Future Directions in Proof Presentation

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Robinson, Peter; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Automated theorem provers for first order logic are now around for several decades. Over the last few years, their deductive power to solve hard problems has increased tremendously. The annual CASC system competitions [Se97] give a clear picture of this situation. However, today's automated theorem provers are restricted "more by general usability than by raw deductive power." As a result of this, there are only very few serious applications of automated theorem provers. There are numerous features which a theorem prover lacks for real-world applicability. An automated theorem prover (as it is currently seen) is nothing more than a fast and elaborate search procedure. In that sense, an ATP can compared to a formulated race car, cool and fast, but virtually unusable for shopping groceries around the corner. Many important features are missing, or are optimized for speed rather than for applicability. [Schol] identifies important features which are needed for practical usability like detection of non-theorems, handling of modal/inductive proof tasks, control of the prover, and proof output. In this paper, we will focus solely on the last point, the presentation of the ATP's result to the user. In the rest of this paper, we will first discuss the general importance of providing feedback to the user, then we will describe the system ExplainIt!, a part of the deductive synthesis system AMPHION/NAV. In the conclusions we will relate proof presentation to other ways of post-processing a proof found by an ATP and stress their role in the future of automated deduction.

  18. Illustrating the Central Limit Theorem through Microsoft Excel Simulations

    ERIC Educational Resources Information Center

    Moen, David H.; Powell, John E.

    2005-01-01

    Using Microsoft Excel, several interactive, computerized learning modules are developed to demonstrate the Central Limit Theorem. These modules are used in the classroom to enhance the comprehension of this theorem. The Central Limit Theorem is a very important theorem in statistics, and yet because it is not intuitively obvious, statistics…

  19. Black holes, information, and the universal coefficient theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrascu, Andrei T.

    2016-07-15

    General relativity is based on the diffeomorphism covariant formulation of the laws of physics while quantum mechanics is based on the principle of unitary evolution. In this article, I provide a possible answer to the black hole information paradox by means of homological algebra and pairings generated by the universal coefficient theorem. The unitarity of processes involving black holes is restored by the demanding invariance of the laws of physics to the change of coefficient structures in cohomology.

  20. Entropy-variation with resistance in a quantized RLC circuit derived by the generalized Hellmann-Feynman theorem

    NASA Astrophysics Data System (ADS)

    Fan, Hong-Yi; Xu, Xue-Xiang; Hu, Li-Yun

    2010-06-01

    By virtue of the generalized Hellmann-Feynman theorem for the ensemble average, we obtain the internal energy and average energy consumed by the resistance R in a quantized resistance-inductance-capacitance (RLC) electric circuit. We also calculate the entropy-variation with R. The relation between entropy and R is also derived. By the use of figures we indeed see that the entropy increases with the increment of R.

  1. The generalized Lyapunov theorem and its application to quantum channels

    NASA Astrophysics Data System (ADS)

    Burgarth, Daniel; Giovannetti, Vittorio

    2007-05-01

    We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the 'Lyapunov direct method'. First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in open quantum systems and quantum information, namely quantum channels. In this context, we also discuss the relations between mixing and ergodicity (i.e. the property that there exists only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.

  2. Implicit Contractive Mappings in Modular Metric and Fuzzy Metric Spaces

    PubMed Central

    Hussain, N.; Salimi, P.

    2014-01-01

    The notion of modular metric spaces being a natural generalization of classical modulars over linear spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-Lorentz, and Calderon-Lozanovskii spaces was recently introduced. In this paper we investigate the existence of fixed points of generalized α-admissible modular contractive mappings in modular metric spaces. As applications, we derive some new fixed point theorems in partially ordered modular metric spaces, Suzuki type fixed point theorems in modular metric spaces and new fixed point theorems for integral contractions. In last section, we develop an important relation between fuzzy metric and modular metric and deduce certain new fixed point results in triangular fuzzy metric spaces. Moreover, some examples are provided here to illustrate the usability of the obtained results. PMID:25003157

  3. Novel Soft-Pion Theorem for Long-Range Nuclear Parity Violation.

    PubMed

    Feng, Xu; Guo, Feng-Kun; Seng, Chien-Yeah

    2018-05-04

    The parity-odd effect in the standard model weak neutral current reveals itself in the long-range parity-violating nuclear potential generated by the pion exchanges in the ΔI=1 channel with the parity-odd pion-nucleon coupling constant h_{π}^{1}. Despite decades of experimental and theoretical efforts, the size of this coupling constant is still not well understood. In this Letter, we derive a soft-pion theorem relating h_{π}^{1} and the neutron-proton mass splitting induced by an artificial parity-even counterpart of the ΔI=1 weak Lagrangian and demonstrate that the theorem still holds exact at the next-to-leading order in the chiral perturbation theory. A considerable amount of simplification is expected in the study of h_{π}^{1} by using either lattice or other QCD models following its reduction from a parity-odd proton-neutron-pion matrix element to a simpler spectroscopic quantity. The theorem paves the way to much more precise calculations of h_{π}^{1}, and thus a quantitative test of the strangeness-conserving neutral current interaction of the standard model is foreseen.

  4. Differentiability of correlations in realistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabrera, Alejandro; Faria, Edson de; Pujals, Enrique

    2015-09-15

    We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumedmore » to be twice differentiable at the origin, then we arrive at a version of Bell’s theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.« less

  5. Limit Theory for Panel Data Models with Cross Sectional Dependence and Sequential Exogeneity.

    PubMed

    Kuersteiner, Guido M; Prucha, Ingmar R

    2013-06-01

    The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample moments related to panel data models with large n . The results allow for the data to be cross sectionally dependent, while at the same time allowing the regressors to be only sequentially rather than strictly exogenous. The setup is sufficiently general to accommodate situations where cross sectional dependence stems from spatial interactions and/or from the presence of common factors. The latter leads to the need for random norming. The limit theorem for sample moments is derived by showing that the moment conditions can be recast such that a martingale difference array central limit theorem can be applied. We prove such a central limit theorem by first extending results for stable convergence in Hall and Hedye (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML) estimators that can be analyzed using our CLT.

  6. Novel Soft-Pion Theorem for Long-Range Nuclear Parity Violation

    NASA Astrophysics Data System (ADS)

    Feng, Xu; Guo, Feng-Kun; Seng, Chien-Yeah

    2018-05-01

    The parity-odd effect in the standard model weak neutral current reveals itself in the long-range parity-violating nuclear potential generated by the pion exchanges in the Δ I =1 channel with the parity-odd pion-nucleon coupling constant hπ1 . Despite decades of experimental and theoretical efforts, the size of this coupling constant is still not well understood. In this Letter, we derive a soft-pion theorem relating hπ1 and the neutron-proton mass splitting induced by an artificial parity-even counterpart of the Δ I =1 weak Lagrangian and demonstrate that the theorem still holds exact at the next-to-leading order in the chiral perturbation theory. A considerable amount of simplification is expected in the study of hπ1 by using either lattice or other QCD models following its reduction from a parity-odd proton-neutron-pion matrix element to a simpler spectroscopic quantity. The theorem paves the way to much more precise calculations of hπ1, and thus a quantitative test of the strangeness-conserving neutral current interaction of the standard model is foreseen.

  7. Quantum regression theorem and non-Markovianity of quantum dynamics

    NASA Astrophysics Data System (ADS)

    Guarnieri, Giacomo; Smirne, Andrea; Vacchini, Bassano

    2014-08-01

    We explore the connection between two recently introduced notions of non-Markovian quantum dynamics and the validity of the so-called quantum regression theorem. While non-Markovianity of a quantum dynamics has been defined looking at the behavior in time of the statistical operator, which determines the evolution of mean values, the quantum regression theorem makes statements about the behavior of system correlation functions of order two and higher. The comparison relies on an estimate of the validity of the quantum regression hypothesis, which can be obtained exactly evaluating two-point correlation functions. To this aim we consider a qubit undergoing dephasing due to interaction with a bosonic bath, comparing the exact evaluation of the non-Markovianity measures with the violation of the quantum regression theorem for a class of spectral densities. We further study a photonic dephasing model, recently exploited for the experimental measurement of non-Markovianity. It appears that while a non-Markovian dynamics according to either definition brings with itself violation of the regression hypothesis, even Markovian dynamics can lead to a failure of the regression relation.

  8. Poynting Theorem, Relativistic Transformation of Total Energy-Momentum and Electromagnetic Energy-Momentum Tensor

    NASA Astrophysics Data System (ADS)

    Kholmetskii, Alexander; Missevitch, Oleg; Yarman, Tolga

    2016-02-01

    We address to the Poynting theorem for the bound (velocity-dependent) electromagnetic field, and demonstrate that the standard expressions for the electromagnetic energy flux and related field momentum, in general, come into the contradiction with the relativistic transformation of four-vector of total energy-momentum. We show that this inconsistency stems from the incorrect application of Poynting theorem to a system of discrete point-like charges, when the terms of self-interaction in the product {\\varvec{j}} \\cdot {\\varvec{E}} (where the current density {\\varvec{j}} and bound electric field {\\varvec{E}} are generated by the same source charge) are exogenously omitted. Implementing a transformation of the Poynting theorem to the form, where the terms of self-interaction are eliminated via Maxwell equations and vector calculus in a mathematically rigorous way (Kholmetskii et al., Phys Scr 83:055406, 2011), we obtained a novel expression for field momentum, which is fully compatible with the Lorentz transformation for total energy-momentum. The results obtained are discussed along with the novel expression for the electromagnetic energy-momentum tensor.

  9. Almost periodic solutions to difference equations

    NASA Technical Reports Server (NTRS)

    Bayliss, A.

    1975-01-01

    The theory of Massera and Schaeffer relating the existence of unique almost periodic solutions of an inhomogeneous linear equation to an exponential dichotomy for the homogeneous equation was completely extended to discretizations by a strongly stable difference scheme. In addition it is shown that the almost periodic sequence solution will converge to the differential equation solution. The preceding theory was applied to a class of exponentially stable partial differential equations to which one can apply the Hille-Yoshida theorem. It is possible to prove the existence of unique almost periodic solutions of the inhomogeneous equation (which can be approximated by almost periodic sequences) which are the solutions to appropriate discretizations. Two methods of discretizations are discussed: the strongly stable scheme and the Lax-Wendroff scheme.

  10. Metastable Distributions of Markov Chains with Rare Transitions

    NASA Astrophysics Data System (ADS)

    Freidlin, M.; Koralov, L.

    2017-06-01

    In this paper we consider Markov chains X^\\varepsilon _t with transition rates that depend on a small parameter \\varepsilon . We are interested in the long time behavior of X^\\varepsilon _t at various \\varepsilon -dependent time scales t = t(\\varepsilon ). The asymptotic behavior depends on how the point (1/\\varepsilon , t(\\varepsilon )) approaches infinity. We introduce a general notion of complete asymptotic regularity (a certain asymptotic relation between the ratios of transition rates), which ensures the existence of the metastable distribution for each initial point and a given time scale t(\\varepsilon ). The technique of i-graphs allows one to describe the metastable distribution explicitly. The result may be viewed as a generalization of the ergodic theorem to the case of parameter-dependent Markov chains.

  11. Inferring energy dissipation from violation of the fluctuation-dissipation theorem

    NASA Astrophysics Data System (ADS)

    Wang, Shou-Wen

    2018-05-01

    The Harada-Sasa equality elegantly connects the energy dissipation rate of a moving object with its measurable violation of the Fluctuation-Dissipation Theorem (FDT). Although proven for Langevin processes, its validity remains unclear for discrete Markov systems whose forward and backward transition rates respond asymmetrically to external perturbation. A typical example is a motor protein called kinesin. Here we show generally that the FDT violation persists surprisingly in the high-frequency limit due to the asymmetry, resulting in a divergent FDT violation integral and thus a complete breakdown of the Harada-Sasa equality. A renormalized FDT violation integral still well predicts the dissipation rate when each discrete transition produces a small entropy in the environment. Our study also suggests a way to infer this perturbation asymmetry based on the measurable high-frequency-limit FDT violation.

  12. Understanding density functional theory (DFT) and completing it in practice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagayoko, Diola

    2014-12-15

    We review some salient points in the derivation of density functional theory (DFT) and of the local density approximation (LDA) of it. We then articulate an understanding of DFT and LDA that seems to be ignored in the literature. We note the well-established failures of many DFT and LDA calculations to reproduce the measured energy gaps of finite systems and band gaps of semiconductors and insulators. We then illustrate significant differences between the results from self consistent calculations using single trial basis sets and those from computations following the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma andmore » Franklin (BZW-EF). Unlike the former, the latter calculations verifiably attain the absolute minima of the occupied energies, as required by DFT. These minima are one of the reasons for the agreement between their results and corresponding, experimental ones for the band gap and a host of other properties. Further, we note predictions of DFT BZW-EF calculations that have been confirmed by experiment. Our subsequent description of the BZW-EF method ends with the application of the Rayleigh theorem in the selection, among the several calculations the method requires, of the one whose results have a full, physics content ascribed to DFT. This application of the Rayleigh theorem adds to or completes DFT, in practice, to preserve the physical content of unoccupied, low energy levels. Discussions, including implications of the method, and a short conclusion follow the description of the method. The successive augmentation of the basis set in the BZW-EF method, needed for the application of the Rayleigh theorem, is also necessary in the search for the absolute minima of the occupied energies, in practice.« less

  13. Relation between ``no broadcasting'' for noncommuting states and ``no local broadcasting'' for quantum correlations

    NASA Astrophysics Data System (ADS)

    Luo, Shunlong; Li, Nan; Cao, Xuelian

    2009-05-01

    The no-broadcasting theorem, first established by Barnum [Phys. Rev. Lett. 76, 2818 (1996)], states that a set of quantum states can be broadcast if and only if it constitutes a commuting family. Quite recently, Piani [Phys. Rev. Lett. 100, 090502 (2008)] showed, by using an ingenious and sophisticated method, that the correlations in a single bipartite state can be locally broadcast if and only if the state is effectively a classical one (i.e., the correlations therein are classical). In this Brief Report, under the condition of nondegenerate spectrum, we provide an alternative and significantly simpler proof of the latter result based on the original no-broadcasting theorem and the monotonicity of the quantum relative entropy. This derivation motivates us to conjecture the equivalence between these two elegant yet formally different no-broadcasting theorems and indicates a subtle and fundamental issue concerning spectral degeneracy which also lies at the heart of the conflict between the von Neumann projection postulate and the Lüders ansatz for quantum measurements. This relation not only offers operational interpretations for commutativity and classicality but also illustrates the basic significance of noncommutativity in characterizing quantumness from the informational perspective.

  14. Unifying relations for scattering amplitudes

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Shen, Chia-Hsien; Wen, Congkao

    2018-02-01

    We derive new amplitudes relations revealing a hidden unity among a wideranging variety of theories in arbitrary spacetime dimensions. Our results rely on a set of Lorentz invariant differential operators which transmute physical tree-level scattering amplitudes into new ones. By transmuting the amplitudes of gravity coupled to a dilaton and two-form, we generate all the amplitudes of Einstein-Yang-Mills theory, Dirac-Born-Infield theory, special Galileon, nonlinear sigma model, and biadjoint scalar theory. Transmutation also relates amplitudes in string theory and its variants. As a corollary, celebrated aspects of gluon and graviton scattering like color-kinematics duality, the KLT relations, and the CHY construction are inherited traits of the transmuted amplitudes. Transmutation recasts the Adler zero as a trivial consequence of the Weinberg soft theorem and implies new subleading soft theorems for certain scalar theories.

  15. A Decomposition Theorem for Finite Automata.

    ERIC Educational Resources Information Center

    Santa Coloma, Teresa L.; Tucci, Ralph P.

    1990-01-01

    Described is automata theory which is a branch of theoretical computer science. A decomposition theorem is presented that is easier than the Krohn-Rhodes theorem. Included are the definitions, the theorem, and a proof. (KR)

  16. Missile Interceptor Guidance System Technology (La Technologie Pour Les Systemes De Guidage Des Missiles Intercepteurs (DE Missiles Ou D’Aeronefs)

    DTIC Science & Technology

    1990-01-01

    robustness of feedback systems with structured uncertainty. Theorem: Robust Stability Fu(G,A) stable V AA iff suP (Gll(JW))Sl. Theorem: Robust ...through a gain KR. The addition of other dynamics and feedback paths creates stabilization problems for this simple roll attitude feedback control...characteristics are most useful to the designer when examined in the frequency domain. Both relative stability and robustness can be determined from an

  17. Aspects of Galileon non-renormalization

    DOE PAGES

    Goon, Garrett; Hinterbichler, Kurt; Joyce, Austin; ...

    2016-11-18

    We discuss non-renormalization theorems applying to galileon field theories and their generalizations. Galileon theories are similar in many respects to other derivatively coupled effective field theories, including general relativity and P ( X) theories. In particular, these other theories also enjoy versions of non-renormalization theorems that protect certain operators against corrections from self-loops. Furthermore, we argue that the galileons are distinguished by the fact that they are not renormalized even by loops of other heavy fields whose couplings respect the galileon symmetry.

  18. Cosmological singularities in Bakry-Émery spacetimes

    NASA Astrophysics Data System (ADS)

    Galloway, Gregory J.; Woolgar, Eric

    2014-12-01

    We consider spacetimes consisting of a manifold with Lorentzian metric and a weight function or scalar field. These spacetimes admit a Bakry-Émery-Ricci tensor which is a natural generalization of the Ricci tensor. We impose an energy condition on the Bakry-Émery-Ricci tensor and obtain singularity theorems of a cosmological type, both for zero and for positive cosmological constant. That is, we find conditions under which every timelike geodesic is incomplete. These conditions are given by 'open' inequalities, so we examine the borderline (equality) cases and show that certain singularities are avoided in these cases only if the geometry is rigid; i.e., if it splits as a Lorentzian product or, for a positive cosmological constant, a warped product, and the weight function is constant along the time direction. Then the product case is future timelike geodesically complete while, in the warped product case, worldlines of certain conformally static observers are complete. Our results answer a question posed by J Case. We then apply our results to the cosmology of scalar-tensor gravitation theories. We focus on the Brans-Dicke family of theories in 4 spacetime dimensions, where we obtain 'Jordan frame' singularity theorems for big bang singularities.

  19. Strong converse theorems using Rényi entropies

    NASA Astrophysics Data System (ADS)

    Leditzky, Felix; Wilde, Mark M.; Datta, Nilanjana

    2016-08-01

    We use a Rényi entropy method to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, measurement compression with quantum side information, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [preprint arXiv:1404.5940 [quant-ph] (2014)], which he used to give a new proof of the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for the boundary of the entire achievable rate region in the (e, q)-plane, where e and q denote the entanglement cost and quantum communication cost, respectively. In the case of measurement compression with quantum side information, we prove a strong converse theorem for the classical communication cost, which is a new result extending the previously known weak converse. For the remaining tasks, we provide new proofs for strong converse theorems previously established using smooth entropies. For each task, we obtain the strong converse theorem from explicit bounds on the figure of merit of the task in terms of a Rényi generalization of the optimal rate. Hence, we identify candidates for the strong converse exponents for each task discussed in this paper. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched Rényi divergence. In particular, we obtain novel bounds relating these quantities, as well as the Rényi conditional mutual information, to the fidelity of two quantum states.

  20. Strong converse theorems using Rényi entropies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leditzky, Felix; Datta, Nilanjana; Wilde, Mark M.

    We use a Rényi entropy method to prove strong converse theorems for certain information-theoretic tasks which involve local operations and quantum (or classical) communication between two parties. These include state redistribution, coherent state merging, quantum state splitting, measurement compression with quantum side information, randomness extraction against quantum side information, and data compression with quantum side information. The method we employ in proving these results extends ideas developed by Sharma [preprint http://arxiv.org/abs/1404.5940 [quant-ph] (2014)], which he used to give a new proof of the strong converse theorem for state merging. For state redistribution, we prove the strong converse property for themore » boundary of the entire achievable rate region in the (e, q)-plane, where e and q denote the entanglement cost and quantum communication cost, respectively. In the case of measurement compression with quantum side information, we prove a strong converse theorem for the classical communication cost, which is a new result extending the previously known weak converse. For the remaining tasks, we provide new proofs for strong converse theorems previously established using smooth entropies. For each task, we obtain the strong converse theorem from explicit bounds on the figure of merit of the task in terms of a Rényi generalization of the optimal rate. Hence, we identify candidates for the strong converse exponents for each task discussed in this paper. To prove our results, we establish various new entropic inequalities, which might be of independent interest. These involve conditional entropies and mutual information derived from the sandwiched Rényi divergence. In particular, we obtain novel bounds relating these quantities, as well as the Rényi conditional mutual information, to the fidelity of two quantum states.« less

  1. The Law of Self-Acting Machines and Irreversible Processes with Reversible Replicas

    NASA Astrophysics Data System (ADS)

    Valev, Pentcho

    2002-11-01

    Clausius and Kelvin saved Carnot theorem and developed the second law by assuming that Carnot machines can work in the absence of an operator and that all the irreversible processes have reversible replicas. The former assumption restored Carnot theorem as an experience of mankind whereas the latter generated "the law of ever increasing entropy". Both assumptions are wrong so it makes sense to return to Carnot theorem (or some equivalent) and test it experimentally. Two testable paradigms - the system performing two types of reversible work and the system in dynamical equilibrium - suggest that perpetuum mobile of the second kind in the presence of an operator is possible. The deviation from the second law prediction, expressed as difference between partial derivatives in a Maxwell relation, measures the degree of structural-functional evolution for the respective system.

  2. The precautionary principle is incoherent.

    PubMed

    Peterson, Martin

    2006-06-01

    This article argues that no version of the precautionary principle can be reasonably applied to decisions that may lead to fatal outcomes. In support of this strong claim, a number of desiderata are proposed, which reasonable rules for rational decision making ought to satisfy. Thereafter, two impossibility theorems are proved, showing that no version of the precautionary principle can satisfy the proposed desiderata. These theorems are directly applicable to recent discussions of the precautionary principle in medicine, biotechnology, environmental management, and related fields. The impossibility theorems do not imply, however, that the precautionary principle is of no relevance at all in policy discussions. Even if it is not a reasonable rule for rational decision making, it is possible to interpret the precautionary principle in other ways, e.g., as an argumentative tool or as an epistemic principle favoring a reversed burden of proof.

  3. Consistency of the adiabatic theorem.

    PubMed

    Amin, M H S

    2009-06-05

    The adiabatic theorem provides the basis for the adiabatic model of quantum computation. Recently the conditions required for the adiabatic theorem to hold have become a subject of some controversy. Here we show that the reported violations of the adiabatic theorem all arise from resonant transitions between energy levels. In the absence of fast driven oscillations the traditional adiabatic theorem holds. Implications for adiabatic quantum computation are discussed.

  4. Optimal no-go theorem on hidden-variable predictions of effect expectations

    NASA Astrophysics Data System (ADS)

    Blass, Andreas; Gurevich, Yuri

    2018-03-01

    No-go theorems prove that, under reasonable assumptions, classical hidden-variable theories cannot reproduce the predictions of quantum mechanics. Traditional no-go theorems proved that hidden-variable theories cannot predict correctly the values of observables. Recent expectation no-go theorems prove that hidden-variable theories cannot predict the expectations of observables. We prove the strongest expectation-focused no-go theorem to date. It is optimal in the sense that the natural weakenings of the assumptions and the natural strengthenings of the conclusion make the theorem fail. The literature on expectation no-go theorems strongly suggests that the expectation-focused approach is more general than the value-focused one. We establish that the expectation approach is not more general.

  5. Using Pictures to Enhance Students' Understanding of Bayes' Theorem

    ERIC Educational Resources Information Center

    Trafimow, David

    2011-01-01

    Students often have difficulty understanding algebraic proofs of statistics theorems. However, it sometimes is possible to prove statistical theorems with pictures in which case students can gain understanding more easily. I provide examples for two versions of Bayes' theorem.

  6. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem.

    PubMed

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-11-28

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N2, O2, and the polyyne C10H2) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions.

  7. Mathematical and physical meaning of the Bell inequalities

    NASA Astrophysics Data System (ADS)

    Santos, Emilio

    2016-09-01

    It is shown that the Bell inequalities are closely related to the triangle inequalities involving distance functions amongst pairs of random variables with values \\{0,1\\}. A hidden variables model may be defined as a mapping between a set of quantum projection operators and a set of random variables. The model is noncontextual if there is a joint probability distribution. The Bell inequalities are necessary conditions for its existence. The inequalities are most relevant when measurements are performed at space-like separation, thus showing a conflict between quantum mechanics and local realism (Bell's theorem). The relations of the Bell inequalities with contextuality, the Kochen-Specker theorem, and quantum entanglement are briefly discussed.

  8. Limit Theory for Panel Data Models with Cross Sectional Dependence and Sequential Exogeneity

    PubMed Central

    Kuersteiner, Guido M.; Prucha, Ingmar R.

    2013-01-01

    The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample moments related to panel data models with large n. The results allow for the data to be cross sectionally dependent, while at the same time allowing the regressors to be only sequentially rather than strictly exogenous. The setup is sufficiently general to accommodate situations where cross sectional dependence stems from spatial interactions and/or from the presence of common factors. The latter leads to the need for random norming. The limit theorem for sample moments is derived by showing that the moment conditions can be recast such that a martingale difference array central limit theorem can be applied. We prove such a central limit theorem by first extending results for stable convergence in Hall and Hedye (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML) estimators that can be analyzed using our CLT. PMID:23794781

  9. On the symmetry foundation of double soft theorems

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Zhong; Lin, Hung-Hwa; Zhang, Shun-Qing

    2017-12-01

    Double-soft theorems, like its single-soft counterparts, arises from the underlying symmetry principles that constrain the interactions of massless particles. While single soft theorems can be derived in a non-perturbative fashion by employing current algebras, recent attempts of extending such an approach to known double soft theorems has been met with difficulties. In this work, we have traced the difficulty to two inequivalent expansion schemes, depending on whether the soft limit is taken asymmetrically or symmetrically, which we denote as type A and B respectively. The soft-behaviour for type A scheme can simply be derived from single soft theorems, and are thus non-perturbatively protected. For type B, the information of the four-point vertex is required to determine the corresponding soft theorems, and thus are in general not protected. This argument can be readily extended to general multi-soft theorems. We also ask whether unitarity can be emergent from locality together with the two kinds of soft theorems, which has not been fully investigated before.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Michael A.; School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland 4072; Dawson, Christopher M.

    The one-way quantum computing model introduced by Raussendorf and Briegel [Phys. Rev. Lett. 86, 5188 (2001)] shows that it is possible to quantum compute using only a fixed entangled resource known as a cluster state, and adaptive single-qubit measurements. This model is the basis for several practical proposals for quantum computation, including a promising proposal for optical quantum computation based on cluster states [M. A. Nielsen, Phys. Rev. Lett. (to be published), quant-ph/0402005]. A significant open question is whether such proposals are scalable in the presence of physically realistic noise. In this paper we prove two threshold theorems which showmore » that scalable fault-tolerant quantum computation may be achieved in implementations based on cluster states, provided the noise in the implementations is below some constant threshold value. Our first threshold theorem applies to a class of implementations in which entangling gates are applied deterministically, but with a small amount of noise. We expect this threshold to be applicable in a wide variety of physical systems. Our second threshold theorem is specifically adapted to proposals such as the optical cluster-state proposal, in which nondeterministic entangling gates are used. A critical technical component of our proofs is two powerful theorems which relate the properties of noisy unitary operations restricted to act on a subspace of state space to extensions of those operations acting on the entire state space. We expect these theorems to have a variety of applications in other areas of quantum-information science.« less

  11. Philosophical Concepts in Physics

    NASA Astrophysics Data System (ADS)

    Cushing, James T.

    1998-01-01

    Preface; Part I. The Scientific Enterprise: 1. Ways of knowing; 2. Aristotle and Francis Bacon; 3. Science and metaphysics; Part II. Ancient and Modern Models of the Universe: 4. Observational astronomy and the Ptolemaic model; 5. The Copernican model and Kepler's laws; 6. Galileo on motion; Part III. The Newtonian Universe: 7. Newton's Principia; 8. Newton's law of universal gravitation; 9. Some old questions revisited; Part IV. A Perspective: 10. Galileo's Letter to the Grand Duchess; 11. An overarching Newtonian framework; 12. A view of the world based on science: determinism; Part V. Mechanical Versus Electrodynamical World Views: 13. Models of the aether; 14. Maxwell's theory; 15. The Kaufmann experiments; Part VI. The Theory of Relativity: 16. The background to and essentials of special relativity; 17. Further logical consequences of Einstein's postulates; 18. General relativity and the expanding universe; Part VII. The Quantum World and the Completeness of Quantum Mechanics: 19. The road to quantum mechanics; 20. 'Copenhage' quantum mechanics; 21. Is quantum mechanics complete?; Part VIII. Some Philosophical Lessons from Quantum Mechanics: 22. The EPR paper and Bell's theorem; 23. An alternative version of quantum mechanics; 24. An essential role for historical contingency?; Part IX. A Retrospective: 25. The goals of science and the status of its knowledge; Notes; General references; Bibliography; Author index; Subject index.

  12. Householder transformations and optimal linear combinations

    NASA Technical Reports Server (NTRS)

    Decell, H. P., Jr.; Smiley, W., III

    1974-01-01

    Several theorems related to the Householder transformation and separability criteria are proven. Orthogonal transformations, topology, divergence, mathematical matrices, and group theory are discussed.

  13. Classical-Quantum Correspondence by Means of Probability Densities

    NASA Technical Reports Server (NTRS)

    Vegas, Gabino Torres; Morales-Guzman, J. D.

    1996-01-01

    Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications.

  14. Chemical Equilibrium and Polynomial Equations: Beware of Roots.

    ERIC Educational Resources Information Center

    Smith, William R.; Missen, Ronald W.

    1989-01-01

    Describes two easily applied mathematical theorems, Budan's rule and Rolle's theorem, that in addition to Descartes's rule of signs and intermediate-value theorem, are useful in chemical equilibrium. Provides examples that illustrate the use of all four theorems. Discusses limitations of the polynomial equation representation of chemical…

  15. Approaching Cauchy's Theorem

    ERIC Educational Resources Information Center

    Garcia, Stephan Ramon; Ross, William T.

    2017-01-01

    We hope to initiate a discussion about various methods for introducing Cauchy's Theorem. Although Cauchy's Theorem is the fundamental theorem upon which complex analysis is based, there is no "standard approach." The appropriate choice depends upon the prerequisites for the course and the level of rigor intended. Common methods include…

  16. Circuit filling factor (CFF) for multiply tuned probes, revisited

    NASA Astrophysics Data System (ADS)

    Conradi, Mark S.; Zens, Albert P.

    2018-07-01

    The concept of circuit filling factor (CFF) is re-examined for multi-tuned, multi-inductor probe circuits. The CFF is the fraction of magnetic stored energy residing in the NMR coil. The CFF theorem states that the CFF sums to unity across all the resonant normal modes. It dictates that improved performance from a large CFF in one mode comes at the expense of CFF (and performance) at the other mode(s). Simple analytical calculations of two-mode circuits are used to demonstrate and confirm the CFF theorem. A triple-resonance circuit is calculated to show the large trade-offs involved there. The theorem can provide guidance for choosing the best circuit and relative inductances in multi-nuclear probes. The CFF is directly accessible from ball frequency-shift measurements. We give experimental measures of the CFF from ball shifts and compare to calculated values of the CFF, with good agreement.

  17. Entropic nonadditivity, H theorem, and nonlinear Klein-Kramers equations.

    PubMed

    Dos Santos, M A F; Lenzi, E K

    2017-11-01

    We use the H theorem to establish the entropy and the entropic additivity law for a system composed of subsystems, with the dynamics governed by the Klein-Kramers equations, by considering relations among the dynamics of these subsystems and their entropies. We start considering the subsystems governed by linear Klein-Kramers equations and verify that the Boltzmann-Gibbs entropy is appropriated to this dynamics, leading us to the standard entropic additivity, S_{BG}^{(1∪2)}=S_{BG}^{1}+S_{BG}^{2}, consistent with the fact that the distributions of the subsystem are independent. We then extend the dynamics of these subsystems to independent nonlinear Klein-Kramers equations. For this case, the results show that the H theorem is verified for a generalized entropy, which does not preserve the standard entropic additivity for independent distributions. In this scenario, consistent results are obtained when a suitable coupling among the nonlinear Klein-Kramers equations is considered, in which each subsystem modifies the other until an equilibrium state is reached. This dynamics, for the subsystems, results in the Tsallis entropy for the system and, consequently, verifies the relation S_{q}^{(1∪2)}=S_{q}^{1}+S_{q}^{2}+(1-q)S_{q}^{1}S_{q}^{2}/k, which is a nonadditive entropic relation.

  18. The scalar glueball operator, the a-theorem, and the onset of conformality

    NASA Astrophysics Data System (ADS)

    Nunes da Silva, T.; Pallante, E.; Robroek, L.

    2018-03-01

    We show that the anomalous dimension γG of the scalar glueball operator contains information on the mechanism that leads to the onset of conformality at the lower edge of the conformal window in a non-Abelian gauge theory. In particular, it distinguishes whether the merging of an UV and an IR fixed point - the simplest mechanism associated to a conformal phase transition and preconformal scaling - does or does not occur. At the same time, we shed light on new analogies between QCD and its supersymmetric version. In SQCD, we derive an exact relation between γG and the mass anomalous dimension γm, and we prove that the SQCD exact beta function is incompatible with merging as a consequence of the a-theorem; we also derive the general conditions that the latter imposes on the existence of fixed points, and prove the absence of an UV fixed point at nonzero coupling above the conformal window of SQCD. Perhaps not surprisingly, we then show that an exact relation between γG and γm, fully analogous to SQCD, holds for the massless Veneziano limit of large-N QCD. We argue, based on the latter relation, the a-theorem, perturbation theory and physical arguments, that the incompatibility with merging may extend to QCD.

  19. Unsteady free surface flow in porous media: One-dimensional model equations including vertical effects and seepage face

    NASA Astrophysics Data System (ADS)

    Di Nucci, Carmine

    2018-05-01

    This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.

  20. Study on the threshold of a stochastic SIR epidemic model and its extensions

    NASA Astrophysics Data System (ADS)

    Zhao, Dianli

    2016-09-01

    This paper provides a simple but effective method for estimating the threshold of a class of the stochastic epidemic models by use of the nonnegative semimartingale convergence theorem. Firstly, the threshold R0SIR is obtained for the stochastic SIR model with a saturated incidence rate, whose value is below 1 or above 1 will completely determine the disease to go extinct or prevail for any size of the white noise. Besides, when R0SIR > 1 , the system is proved to be convergent in time mean. Then, the threshold of the stochastic SIVS models with or without saturated incidence rate are also established by the same method. Comparing with the previously-known literatures, the related results are improved, and the method is simpler than before.

  1. Early Vector Calculus: A Path through Multivariable Calculus

    ERIC Educational Resources Information Center

    Robertson, Robert L.

    2013-01-01

    The divergence theorem, Stokes' theorem, and Green's theorem appear near the end of calculus texts. These are important results, but many instructors struggle to reach them. We describe a pathway through a standard calculus text that allows instructors to emphasize these theorems. (Contains 2 figures.)

  2. Pick's Theorem: What a Lemon!

    ERIC Educational Resources Information Center

    Russell, Alan R.

    2004-01-01

    Pick's theorem can be used in various ways just like a lemon. This theorem generally finds its way in the syllabus approximately at the middle school level and in fact at times students have even calculated the area of a state considering its outline with the help of the above theorem.

  3. Quantum stochastic thermodynamic on harmonic networks

    DOE PAGES

    Deffner, Sebastian

    2016-01-04

    Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Furthermore, their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.

  4. Compact exponential product formulas and operator functional derivative

    NASA Astrophysics Data System (ADS)

    Suzuki, Masuo

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin-Specht-Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians.

  5. Quantum stochastic thermodynamic on harmonic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deffner, Sebastian

    Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Furthermore, their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.

  6. Comment on 'All quantum observables in a hidden-variable model must commute simultaneously'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Koji

    Malley discussed [Phys. Rev. A 69, 022118 (2004)] that all quantum observables in a hidden-variable model for quantum events must commute simultaneously. In this comment, we discuss that Malley's theorem is indeed valid for the hidden-variable theoretical assumptions, which were introduced by Kochen and Specker. However, we give an example that the local hidden-variable (LHV) model for quantum events preserves noncommutativity of quantum observables. It turns out that Malley's theorem is not related to the LHV model for quantum events, in general.

  7. The virtual-casing principle and Helmholtz's theorem

    DOE PAGES

    Hanson, J. D.

    2015-09-10

    The virtual-casing principle is used in plasma physics to convert a Biot–Savart integration over a current distribution into a surface integral over a surface that encloses the current. In many circumstances, use of virtual casing can significantly speed up the computation of magnetic fields. In this paper, a virtual-casing principle is derived for a general vector field with arbitrary divergence and curl. This form of the virtual-casing principle is thus applicable to both magnetostatic fields and electrostatic fields. The result is then related to Helmholtz's theorem.

  8. The virtual-casing principle and Helmholtz’s theorem

    DOE PAGES

    Hanson, J. D.

    2015-09-10

    The virtual-casing principle is used in plasma physics to convert a Biot–Savart integration over a current distribution into a surface integral over a surface that encloses the current. In many circumstances, use of virtual casing can significantly speed up the computation of magnetic fields. In this paper, a virtual-casing principle is derived for a general vector field with arbitrary divergence and curl. This form of the virtual-casing principle is thus applicable to both magnetostatic fields and electrostatic fields. The result is then related to Helmholtz’s theorem.

  9. Generalized virial theorem for massless electrons in graphene and other Dirac materials

    NASA Astrophysics Data System (ADS)

    Sokolik, A. A.; Zabolotskiy, A. D.; Lozovik, Yu. E.

    2016-05-01

    The virial theorem for a system of interacting electrons in a crystal, which is described within the framework of the tight-binding model, is derived. We show that, in the particular case of interacting massless electrons in graphene and other Dirac materials, the conventional virial theorem is violated. Starting from the tight-binding model, we derive the generalized virial theorem for Dirac electron systems, which contains an additional term associated with a momentum cutoff at the bottom of the energy band. Additionally, we derive the generalized virial theorem within the Dirac model using the minimization of the variational energy. The obtained theorem is illustrated by many-body calculations of the ground-state energy of an electron gas in graphene carried out in Hartree-Fock and self-consistent random-phase approximations. Experimental verification of the theorem in the case of graphene is discussed.

  10. The geometric Mean Value Theorem

    NASA Astrophysics Data System (ADS)

    de Camargo, André Pierro

    2018-05-01

    In a previous article published in the American Mathematical Monthly, Tucker (Amer Math Monthly. 1997; 104(3): 231-240) made severe criticism on the Mean Value Theorem and, unfortunately, the majority of calculus textbooks also do not help to improve its reputation. The standard argument for proving it seems to be applying Rolle's theorem to a function like Although short and effective, such reasoning is not intuitive. Perhaps for this reason, Tucker classified the Mean Value Theorem as a technical existence theorem used to prove intuitively obvious statements. Moreover, he argued that there is nothing obvious about the Mean Value Theorem without the continuity of the derivative. Under so unfair discrimination, we felt the need to come to the defense of this beautiful theorem in order to clear up these misunderstandings.

  11. A note on generalized Weyl's theorem

    NASA Astrophysics Data System (ADS)

    Zguitti, H.

    2006-04-01

    We prove that if either T or T* has the single-valued extension property, then the spectral mapping theorem holds for B-Weyl spectrum. If, moreover T is isoloid, and generalized Weyl's theorem holds for T, then generalized Weyl's theorem holds for f(T) for every . An application is given for algebraically paranormal operators.

  12. On the addition theorem of spherical functions

    NASA Astrophysics Data System (ADS)

    Shkodrov, V. G.

    The addition theorem of spherical functions is expressed in two reference systems, viz., an inertial system and a system rigidly fixed to a planet. A generalized addition theorem of spherical functions and a particular addition theorem for the rigidly fixed system are derived. The results are applied to the theory of a planetary potential.

  13. Universal ideal behavior and macroscopic work relation of linear irreversible stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Ma, Yi-An; Qian, Hong

    2015-06-01

    We revisit the Ornstein-Uhlenbeck (OU) process as the fundamental mathematical description of linear irreversible phenomena, with fluctuations, near an equilibrium. By identifying the underlying circulating dynamics in a stationary process as the natural generalization of classical conservative mechanics, a bridge between a family of OU processes with equilibrium fluctuations and thermodynamics is established through the celebrated Helmholtz theorem. The Helmholtz theorem provides an emergent macroscopic ‘equation of state’ of the entire system, which exhibits a universal ideal thermodynamic behavior. Fluctuating macroscopic quantities are studied from the stochastic thermodynamic point of view and a non-equilibrium work relation is obtained in the macroscopic picture, which may facilitate experimental study and application of the equalities due to Jarzynski, Crooks, and Hatano and Sasa.

  14. Discovering the Theorem of Pythagoras

    NASA Technical Reports Server (NTRS)

    Lattanzio, Robert (Editor)

    1988-01-01

    In this 'Project Mathematics! series, sponsored by the California Institute of Technology, Pythagoraus' theorem a(exp 2) + b(exp 2) = c(exp 2) is discussed and the history behind this theorem is explained. hrough live film footage and computer animation, applications in real life are presented and the significance of and uses for this theorem are put into practice.

  15. Bertrand's theorem and virial theorem in fractional classical mechanics

    NASA Astrophysics Data System (ADS)

    Yu, Rui-Yan; Wang, Towe

    2017-09-01

    Fractional classical mechanics is the classical counterpart of fractional quantum mechanics. The central force problem in this theory is investigated. Bertrand's theorem is generalized, and virial theorem is revisited, both in three spatial dimensions. In order to produce stable, closed, non-circular orbits, the inverse-square law and the Hooke's law should be modified in fractional classical mechanics.

  16. Evolution in Stage-Structured Populations

    PubMed Central

    Barfield, Michael; Holt, Robert D.; Gomulkiewicz, Richard

    2016-01-01

    For many organisms, stage is a better predictor of demographic rates than age. Yet no general theoretical framework exists for understanding or predicting evolution in stage-structured populations. Here, we provide a general modeling approach that can be used to predict evolution and demography of stage-structured populations. This advances our ability to understand evolution in stage-structured populations to a level previously available only for populations structured by age. We use this framework to provide the first rigorous proof that Lande’s theorem, which relates adaptive evolution to population growth, applies to stage-classified populations, assuming only normality and that evolution is slow relative to population dynamics. We extend this theorem to allow for different means or variances among stages. Our next major result is the formulation of Price’s theorem, a fundamental law of evolution, for stage-structured populations. In addition, we use data from Trillium grandiflorum to demonstrate how our models can be applied to a real-world population and thereby show their practical potential to generate accurate projections of evolutionary and population dynamics. Finally, we use our framework to compare rates of evolution in age- versus stage-structured populations, which shows how our methods can yield biological insights about evolution in stage-structured populations. PMID:21460563

  17. Continuous-time quantum walks on star graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salimi, S.

    2009-06-15

    In this paper, we investigate continuous-time quantum walk on star graphs. It is shown that quantum central limit theorem for a continuous-time quantum walk on star graphs for N-fold star power graph, which are invariant under the quantum component of adjacency matrix, converges to continuous-time quantum walk on K{sub 2} graphs (complete graph with two vertices) and the probability of observing walk tends to the uniform distribution.

  18. Studies of perturbed three vortex dynamics

    NASA Astrophysics Data System (ADS)

    Blackmore, Denis; Ting, Lu; Knio, Omar

    2007-06-01

    It is well known that the dynamics of three point vortices moving in an ideal fluid in the plane can be expressed in Hamiltonian form, where the resulting equations of motion are completely integrable in the sense of Liouville and Arnold. The focus of this investigation is on the persistence of regular behavior (especially periodic motion) associated with completely integrable systems for certain (admissible) kinds of Hamiltonian perturbations of the three vortex system in a plane. After a brief survey of the dynamics of the integrable planar three vortex system, it is shown that the admissible class of perturbed systems is broad enough to include three vortices in a half plane, three coaxial slender vortex rings in three space, and "restricted" four vortex dynamics in a plane. Included are two basic categories of results for admissible perturbations: (i) general theorems for the persistence of invariant tori and periodic orbits using Kolmogorov-Arnold-Moser- and Poincaré-Birkhoff-type arguments and (ii) more specific and quantitative conclusions of a classical perturbation theory nature guaranteeing the existence of periodic orbits of the perturbed system close to cycles of the unperturbed system, which occur in abundance near centers. In addition, several numerical simulations are provided to illustrate the validity of the theorems as well as indicating their limitations as manifested by transitions to chaotic dynamics.

  19. Quantum Experimental Data in Psychology and Economics

    NASA Astrophysics Data System (ADS)

    Aerts, Diederik; D'Hooghe, Bart; Haven, Emmanuel

    2010-12-01

    We prove a theorem which shows that a collection of experimental data of probabilistic weights related to decisions with respect to situations and their disjunction cannot be modeled within a classical probabilistic weight structure in case the experimental data contain the effect referred to as the ‘disjunction effect’ in psychology. We identify different experimental situations in psychology, more specifically in concept theory and in decision theory, and in economics (namely situations where Savage’s Sure-Thing Principle is violated) where the disjunction effect appears and we point out the common nature of the effect. We analyze how our theorem constitutes a no-go theorem for classical probabilistic weight structures for common experimental data when the disjunction effect is affecting the values of these data. We put forward a simple geometric criterion that reveals the non classicality of the considered probabilistic weights and we illustrate our geometrical criterion by means of experimentally measured membership weights of items with respect to pairs of concepts and their disjunctions. The violation of the classical probabilistic weight structure is very analogous to the violation of the well-known Bell inequalities studied in quantum mechanics. The no-go theorem we prove in the present article with respect to the collection of experimental data we consider has a status analogous to the well known no-go theorems for hidden variable theories in quantum mechanics with respect to experimental data obtained in quantum laboratories. Our analysis puts forward a strong argument in favor of the validity of using the quantum formalism for modeling the considered psychological experimental data as considered in this paper.

  20. Quantum Nonlocality and Reality

    NASA Astrophysics Data System (ADS)

    Bell, Mary; Gao, Shan

    2016-09-01

    Preface; Part I. John Stewart Bell: The Physicist: 1. John Bell: the Irish connection Andrew Whitaker; 2. Recollections of John Bell Michael Nauenberg; 3. John Bell: recollections of a great scientist and a great man Gian-Carlo Ghirardi; Part II. Bell's Theorem: 4. What did Bell really prove? Jean Bricmont; 5. The assumptions of Bell's proof Roderich Tumulka; 6. Bell on Bell's theorem: the changing face of nonlocality Harvey R. Brown and Christopher G. Timpson; 7. Experimental tests of Bell inequalities Marco Genovese; 8. Bell's theorem without inequalities: on the inception and scope of the GHZ theorem Olival Freire, Jr and Osvaldo Pessoa, Jr; 9. Strengthening Bell's theorem: removing the hidden-variable assumption Henry P. Stapp; Part III. Nonlocality: Illusions or Reality?: 10. Is any theory compatible with the quantum predictions necessarily nonlocal? Bernard d'Espagnat; 11. Local causality, probability and explanation Richard A. Healey; 12. Bell inequality and many-worlds interpretation Lev Vaidman; 13. Quantum solipsism and non-locality Travis Norsen; 14. Lessons of Bell's theorem: nonlocality, yes; action at a distance, not necessarily Wayne C. Myrvold; 15. Bell non-locality, Hardy's paradox and hyperplane dependence Gordon N. Fleming; 16. Some thoughts on quantum nonlocality and its apparent incompatibility with relativity Shan Gao; 17. A reasonable thing that just might work Daniel Rohrlich; 18. Weak values and quantum nonlocality Yakir Aharonov and Eliahu Cohen; Part IV. Nonlocal Realistic Theories: 19. Local beables and the foundations of physics Tim Maudlin; 20. John Bell's varying interpretations of quantum mechanics: memories and comments H. Dieter Zeh; 21. Some personal reflections on quantum non-locality and the contributions of John Bell Basil J. Hiley; 22. Bell on Bohm Sheldon Goldstein; 23. Interactions and inequality Philip Pearle; 24. Gravitation and the noise needed in objective reduction models Stephen L. Adler; 25. Towards an objective physics of Bell non-locality: palatial twistor theory Roger Penrose; 26. Measurement and macroscopicity: overcoming conceptual imprecision in quantum measurement theory Gregg Jaeger; Index.

  1. Validity of black hole complementarity in the BTZ black hole

    NASA Astrophysics Data System (ADS)

    Gim, Yongwan; Kim, Wontae

    2018-01-01

    Based on the gedanken experiment for black hole complementarity in the Schwarzschild black hole, we calculate the energy required to duplicate information in the BTZ black hole under the assumption of absorbing boundary condition and its dual solution of the black string, respectively, in order to justify the validity of the no-cloning theorem in quantum mechanics. For the BTZ black hole, the required energy for the duplication of information can be made fairly small, whereas for the black string it exceeds the total mass of the black string, although they are related to each other under the dual transformation. So, the duplication of information might be possible in the BTZ black hole in contrast to the case of the black string, so that the no-cloning theorem could be violated for the former case. To save the duplication of information for the BTZ black hole, we perform an improved gedanken experiment by using the local thermodynamic quantities near the horizon rather than those defined at infinity, and show that the no-cloning theorem could be made valid even in the BTZ black hole. We also discuss how this local treatment for the no-cloning theorem can be applied to the black string as well as the Schwarzschild black hole innocuously.

  2. On the Chern-Gauss-Bonnet Theorem and Conformally Twisted Spectral Triples for C*-Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Fathizadeh, Farzad; Gabriel, Olivier

    2016-02-01

    The analog of the Chern-Gauss-Bonnet theorem is studied for a C^*-dynamical system consisting of a C^*-algebra A equipped with an ergodic action of a compact Lie group G. The structure of the Lie algebra g of G is used to interpret the Chevalley-Eilenberg complex with coefficients in the smooth subalgebra A subset A as noncommutative differential forms on the dynamical system. We conformally perturb the standard metric, which is associated with the unique G-invariant state on A, by means of a Weyl conformal factor given by a positive invertible element of the algebra, and consider the Hermitian structure that it induces on the complex. A Hodge decomposition theorem is proved, which allows us to relate the Euler characteristic of the complex to the index properties of a Hodge-de Rham operator for the perturbed metric. This operator, which is shown to be selfadjoint, is a key ingredient in our construction of a spectral triple on A and a twisted spectral triple on its opposite algebra. The conformal invariance of the Euler characteristic is interpreted as an indication of the Chern-Gauss-Bonnet theorem in this setting. The spectral triples encoding the conformally perturbed metrics are shown to enjoy the same spectral summability properties as the unperturbed case.

  3. From the necessary to the possible: the genesis of the spin-statistics theorem

    NASA Astrophysics Data System (ADS)

    Blum, Alexander

    2014-12-01

    The spin-statistics theorem, which relates the intrinsic angular momentum of a single particle to the type of quantum statistics obeyed by a system of many such particles, is one of the central theorems in quantum field theory and the physics of elementary particles. It was first formulated in 1939/40 by Wolfgang Pauli and his assistant Markus Fierz. This paper discusses the developments that led up to this first formulation, starting from early attempts in the late 1920s to explain why charged matter particles obey Fermi-Dirac statistics, while photons obey Bose-Einstein statistics. It is demonstrated how several important developments paved the way from such general philosophical musings to a general (and provable) theorem, most notably the use of quantum field theory, the discovery of new elementary particles, and the generalization of the notion of spin. It is also discussed how the attempts to prove a spin-statistics connection were driven by Pauli from formal to more physical arguments, culminating in Pauli's 1940 proof. This proof was a major success for the beleaguered theory of quantum field theory and the methods Pauli employed proved essential for the renaissance of quantum field theory and the development of renormalization techniques in the late 1940s.

  4. Characterization of Generalized Young Measures Generated by Symmetric Gradients

    NASA Astrophysics Data System (ADS)

    De Philippis, Guido; Rindler, Filip

    2017-06-01

    This work establishes a characterization theorem for (generalized) Young measures generated by symmetric derivatives of functions of bounded deformation (BD) in the spirit of the classical Kinderlehrer-Pedregal theorem. Our result places such Young measures in duality with symmetric-quasiconvex functions with linear growth. The "local" proof strategy combines blow-up arguments with the singular structure theorem in BD (the analogue of Alberti's rank-one theorem in BV), which was recently proved by the authors. As an application of our characterization theorem we show how an atomic part in a BD-Young measure can be split off in generating sequences.

  5. The Poincaré-Hopf Theorem for line fields revisited

    NASA Astrophysics Data System (ADS)

    Crowley, Diarmuid; Grant, Mark

    2017-07-01

    A Poincaré-Hopf Theorem for line fields with point singularities on orientable surfaces can be found in Hopf's 1956 Lecture Notes on Differential Geometry. In 1955 Markus presented such a theorem in all dimensions, but Markus' statement only holds in even dimensions 2 k ≥ 4. In 1984 Jänich presented a Poincaré-Hopf theorem for line fields with more complicated singularities and focussed on the complexities arising in the generalized setting. In this expository note we review the Poincaré-Hopf Theorem for line fields with point singularities, presenting a careful proof which is valid in all dimensions.

  6. Nonextensive kinetic theory and H-theorem in general relativity

    NASA Astrophysics Data System (ADS)

    Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.

    2017-11-01

    The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.

  7. Study on Physical Mechanism of the Magnus Effect

    NASA Astrophysics Data System (ADS)

    Maruyama, Yuichi

    Two kinds of methods of explaining the physical mechanism of the Magnus effect are compared with each other and fully discussed. The first method uses Bernoulli's theorem and the fluid velocity difference between both sides of the body. The second one is based on the momentum theorem which relates the lift force with the fluid acceleration perpendicular to the uniform flow direction, which is caused by the asymmetry of separation points. It is shown that the latter method is preferable because it can be strictly applied to the real flow field containing both the rotational and the irrotational flow regions.

  8. Compact exponential product formulas and operator functional derivative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, M.

    1997-02-01

    A new scheme for deriving compact expressions of the logarithm of the exponential product is proposed and it is applied to several exponential product formulas. A generalization of the Dynkin{endash}Specht{endash}Wever (DSW) theorem on free Lie elements is given, and it is used to study the relation between the traditional method (based on the DSW theorem) and the present new scheme. The concept of the operator functional derivative is also proposed, and it is applied to ordered exponentials, such as time-evolution operators for time-dependent Hamiltonians. {copyright} {ital 1997 American Institute of Physics.}

  9. Soft theorems for shift-symmetric cosmologies

    NASA Astrophysics Data System (ADS)

    Finelli, Bernardo; Goon, Garrett; Pajer, Enrico; Santoni, Luca

    2018-03-01

    We derive soft theorems for single-clock cosmologies that enjoy a shift symmetry. These so-called consistency conditions arise from a combination of a large diffeomorphism and the internal shift symmetry and fix the squeezed limit of all correlators with a soft scalar mode. As an application, we show that our results reproduce the squeezed bispectrum for ultra-slow-roll inflation, a particular shift-symmetric, nonattractor model which is known to violate Maldacena's consistency relation. Similar results have been previously obtained by Mooij and Palma using background-wave methods. Our results shed new light on the infrared structure of single-clock cosmological spacetimes.

  10. A Converse of the Mean Value Theorem Made Easy

    ERIC Educational Resources Information Center

    Mortici, Cristinel

    2011-01-01

    The aim of this article is to discuss some results about the converse mean value theorem stated by Tong and Braza [J. Tong and P. Braza, "A converse of the mean value theorem", Amer. Math. Monthly 104(10), (1997), pp. 939-942] and Almeida [R. Almeida, "An elementary proof of a converse mean-value theorem", Internat. J. Math. Ed. Sci. Tech. 39(8)…

  11. Recurrence theorems: A unified account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, David, E-mail: david.wallace@balliol.ox.ac.uk

    I discuss classical and quantum recurrence theorems in a unified manner, treating both as generalisations of the fact that a system with a finite state space only has so many places to go. Along the way, I prove versions of the recurrence theorem applicable to dynamics on linear and metric spaces and make some comments about applications of the classical recurrence theorem in the foundations of statistical mechanics.

  12. A variational theorem for creep with applications to plates and columns

    NASA Technical Reports Server (NTRS)

    Sanders, J Lyell, Jr; Mccomb, Harvey G , Jr; Schlechte, Floyd R

    1958-01-01

    A variational theorem is presented for a body undergoing creep. Solutions to problems of the creep behavior of plates, columns, beams, and shells can be obtained by means of the direct methods of the calculus of variations in conjunction with the stated theorem. The application of the theorem is illustrated for plates and columns by the solution of two sample problems.

  13. Zero-Bounded Limits as a Special Case of the Squeeze Theorem for Evaluating Single-Variable and Multivariable Limits

    ERIC Educational Resources Information Center

    Gkioulekas, Eleftherios

    2013-01-01

    Many limits, typically taught as examples of applying the "squeeze" theorem, can be evaluated more easily using the proposed zero-bounded limit theorem. The theorem applies to functions defined as a product of a factor going to zero and a factor that remains bounded in some neighborhood of the limit. This technique is immensely useful…

  14. Correcting Duporcq's theorem☆

    PubMed Central

    Nawratil, Georg

    2014-01-01

    In 1898, Ernest Duporcq stated a famous theorem about rigid-body motions with spherical trajectories, without giving a rigorous proof. Today, this theorem is again of interest, as it is strongly connected with the topic of self-motions of planar Stewart–Gough platforms. We discuss Duporcq's theorem from this point of view and demonstrate that it is not correct. Moreover, we also present a revised version of this theorem. PMID:25540467

  15. Topics in black holes and quantum cosmology

    NASA Astrophysics Data System (ADS)

    Campiglia, Miguel

    2012-06-01

    Black holes and the big bang beginning of the universe are among the most spectacular predictions of general relativity, having a broad impact that ranges from observational astronomy to quantum gravity. In this thesis we will focus on classical and quantum aspects of these subjects: In the first part we present a coordinate-free way of describing the approach to equilibrium of black holes within the framework of dynamical and isolated horizons. In the second part we focus on loop quantum cosmology. We present a uniqueness theorem of its kinematics, and explore the possible ways to implement its dynamics via path integrals.¹ ¹The topics presented here form part of the research done during my PhD studies. See the Vita at the end of the Thesis for a complete list of my work during this period.

  16. Voronovskaja's theorem revisited

    NASA Astrophysics Data System (ADS)

    Tachev, Gancho T.

    2008-07-01

    We represent a new quantitative variant of Voronovskaja's theorem for Bernstein operator. This estimate improves the recent quantitative versions of Voronovskaja's theorem for certain Bernstein-type operators, obtained by H. Gonska, P. Pitul and I. Rasa in 2006.

  17. Riemannian and Lorentzian flow-cut theorems

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew; Hubeny, Veronika E.

    2018-05-01

    We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.

  18. Random Walks on Cartesian Products of Certain Nonamenable Groups and Integer Lattices

    NASA Astrophysics Data System (ADS)

    Vishnepolsky, Rachel

    A random walk on a discrete group satisfies a local limit theorem with power law exponent \\alpha if the return probabilities follow the asymptotic law. P{ return to starting point after n steps } ˜ Crhonn-alpha.. A group has a universal local limit theorem if all random walks on the group with finitely supported step distributions obey a local limit theorem with the same power law exponent. Given two groups that obey universal local limit theorems, it is not known whether their cartesian product also has a universal local limit theorem. We settle the question affirmatively in one case, by considering a random walk on the cartesian product of a nonamenable group whose Cayley graph is a tree, and the integer lattice. As corollaries, we derive large deviations estimates and a central limit theorem.

  19. An Introduction to Kristof's Theorem for Solving Least-Square Optimization Problems Without Calculus.

    PubMed

    Waller, Niels

    2018-01-01

    Kristof's Theorem (Kristof, 1970 ) describes a matrix trace inequality that can be used to solve a wide-class of least-square optimization problems without calculus. Considering its generality, it is surprising that Kristof's Theorem is rarely used in statistics and psychometric applications. The underutilization of this method likely stems, in part, from the mathematical complexity of Kristof's ( 1964 , 1970 ) writings. In this article, I describe the underlying logic of Kristof's Theorem in simple terms by reviewing four key mathematical ideas that are used in the theorem's proof. I then show how Kristof's Theorem can be used to provide novel derivations to two cognate models from statistics and psychometrics. This tutorial includes a glossary of technical terms and an online supplement with R (R Core Team, 2017 ) code to perform the calculations described in the text.

  20. New dimensions for wound strings: The modular transformation of geometry to topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGreevy, John; Silverstein, Eva; Starr, David

    2007-02-15

    We show, using a theorem of Milnor and Margulis, that string theory on compact negatively curved spaces grows new effective dimensions as the space shrinks, generalizing and contextualizing the results in E. Silverstein, Phys. Rev. D 73, 086004 (2006).. Milnor's theorem relates negative sectional curvature on a compact Riemannian manifold to exponential growth of its fundamental group, which translates in string theory to a higher effective central charge arising from winding strings. This exponential density of winding modes is related by modular invariance to the infrared small perturbation spectrum. Using self-consistent approximations valid at large radius, we analyze this correspondencemore » explicitly in a broad set of time-dependent solutions, finding precise agreement between the effective central charge and the corresponding infrared small perturbation spectrum. This indicates a basic relation between geometry, topology, and dimensionality in string theory.« less

  1. Maximum one-shot dissipated work from Rényi divergences

    NASA Astrophysics Data System (ADS)

    Yunger Halpern, Nicole; Garner, Andrew J. P.; Dahlsten, Oscar C. O.; Vedral, Vlatko

    2018-05-01

    Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.

  2. Maximum one-shot dissipated work from Rényi divergences.

    PubMed

    Yunger Halpern, Nicole; Garner, Andrew J P; Dahlsten, Oscar C O; Vedral, Vlatko

    2018-05-01

    Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.

  3. Sanov and central limit theorems for output statistics of quantum Markov chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horssen, Merlijn van, E-mail: merlijn.vanhorssen@nottingham.ac.uk; Guţă, Mădălin, E-mail: madalin.guta@nottingham.ac.uk

    2015-02-15

    In this paper, we consider the statistics of repeated measurements on the output of a quantum Markov chain. We establish a large deviations result analogous to Sanov’s theorem for the multi-site empirical measure associated to finite sequences of consecutive outcomes of a classical stochastic process. Our result relies on the construction of an extended quantum transition operator (which keeps track of previous outcomes) in terms of which we compute moment generating functions, and whose spectral radius is related to the large deviations rate function. As a corollary to this, we obtain a central limit theorem for the empirical measure. Suchmore » higher level statistics may be used to uncover critical behaviour such as dynamical phase transitions, which are not captured by lower level statistics such as the sample mean. As a step in this direction, we give an example of a finite system whose level-1 (empirical mean) rate function is independent of a model parameter while the level-2 (empirical measure) rate is not.« less

  4. Understanding band gaps of solids in generalized Kohn-Sham theory.

    PubMed

    Perdew, John P; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-03-14

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.

  5. Understanding band gaps of solids in generalized Kohn–Sham theory

    PubMed Central

    Perdew, John P.; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K. U.; Scheffler, Matthias; Scuseria, Gustavo E.; Henderson, Thomas M.; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-01-01

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn–Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations. PMID:28265085

  6. Post-Lie algebras and factorization theorems

    NASA Astrophysics Data System (ADS)

    Ebrahimi-Fard, Kurusch; Mencattini, Igor; Munthe-Kaas, Hans

    2017-09-01

    In this note we further explore the properties of universal enveloping algebras associated to a post-Lie algebra. Emphasizing the role of the Magnus expansion, we analyze the properties of group like-elements belonging to (suitable completions of) those Hopf algebras. Of particular interest is the case of post-Lie algebras defined in terms of solutions of modified classical Yang-Baxter equations. In this setting we will study factorization properties of the aforementioned group-like elements.

  7. Chicano Educational Achievement: Comparing Escuela Tlatelolco, a Chicanocentric School, and a Public High School. Latino Communities: Emerging Voices--Political, Social, Cultural, and Legal Issues--A Garland Series.

    ERIC Educational Resources Information Center

    McKissack, Elena Aragon de

    Building on the theorem that a positive self-identity is fundamental to completion of an education, a study was conducted to learn how schools with differing backgrounds affected the ethnic identity of students. Two schools in Denver (Colorado) were selected for this case study. "Broderick High School" is a large public school whose…

  8. Bell's theorem and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rosen, Nathan

    1994-02-01

    Bell showed that assuming locality leads to a disagreement with quantum mechanics. Here the nature of the nonlocality that follows from quantum mechanics is investigated. Note by the Editor—Readers will recognize Professor Rosen, author of this paper, as one of the co-authors of the famous EPR paper, Albert Einstein, Boris Podolsky, and Nathan Rosen, ``Can Quantum-Mechanical Description of Physical Reality be considered Complete?'', Phys. Rev. 47, 770-780 (1935). Robert H. Romer, Editor

  9. Probabilistic Modeling and Simulation of Metal Fatigue Life Prediction

    DTIC Science & Technology

    2002-09-01

    distribution demonstrate the central limit theorem? Obviously not! This is much the same as materials testing. If only NBA basketball stars are...60 near the exit of a NBA locker room. There would obviously be some pseudo-normal distribution with a very small standard deviation. The mean...completed, the investigators must understand how the midgets and the NBA stars will affect the total solution. D. IT IS MUCH SIMPLER TO MODEL THE

  10. General invertible transformation and physical degrees of freedom

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Motohashi, Hayato; Suyama, Teruaki; Kobayashi, Tsutomu

    2017-04-01

    An invertible field transformation is such that the old field variables correspond one-to-one to the new variables. As such, one may think that two systems that are related by an invertible transformation are physically equivalent. However, if the transformation depends on field derivatives, the equivalence between the two systems is nontrivial due to the appearance of higher derivative terms in the equations of motion. To address this problem, we prove the following theorem on the relation between an invertible transformation and Euler-Lagrange equations: If the field transformation is invertible, then any solution of the original set of Euler-Lagrange equations is mapped to a solution of the new set of Euler-Lagrange equations, and vice versa. We also present applications of the theorem to scalar-tensor theories.

  11. Double soft graviton theorems and Bondi-Metzner-Sachs symmetries

    NASA Astrophysics Data System (ADS)

    Anupam, A. H.; Kundu, Arpan; Ray, Krishnendu

    2018-05-01

    It is now well understood that Ward identities associated with the (extended) BMS algebra are equivalent to single soft graviton theorems. In this work, we show that if we consider nested Ward identities constructed out of two BMS charges, a class of double soft factorization theorems can be recovered. By making connections with earlier works in the literature, we argue that at the subleading order, these double soft graviton theorems are the so-called consecutive double soft graviton theorems. We also show how these nested Ward identities can be understood as Ward identities associated with BMS symmetries in scattering states defined around (non-Fock) vacua parametrized by supertranslations or superrotations.

  12. Lumley's PODT definition of large eddies and a trio of numerical procedures. [Proper Orthogonal Decomposition Theorem

    NASA Technical Reports Server (NTRS)

    Payne, Fred R.

    1992-01-01

    Lumley's 1967 Moscow paper provided, for the first time, a completely rational definition of the physically-useful term 'large eddy', popular for a half-century. The numerical procedures based upon his results are: (1) PODT (Proper Orthogonal Decomposition Theorem), which extracts the Large Eddy structure of stochastic processes from physical or computer simulation two-point covariances, and 2) LEIM (Large-Eddy Interaction Model), a predictive scheme for the dynamical large eddies based upon higher order turbulence modeling. Earlier Lumley's work (1964) forms the basis for the final member of the triad of numerical procedures: this predicts the global neutral modes of turbulence which have surprising agreement with both structural eigenmodes and those obtained from the dynamical equations. The ultimate goal of improved engineering design tools for turbulence may be near at hand, partly due to the power and storage of 'supermicrocomputer' workstations finally becoming adequate for the demanding numerics of these procedures.

  13. Quantum Groups, Property (T), and Weak Mixing

    NASA Astrophysics Data System (ADS)

    Brannan, Michael; Kerr, David

    2018-06-01

    For second countable discrete quantum groups, and more generally second countable locally compact quantum groups with trivial scaling group, we show that property (T) is equivalent to every weakly mixing unitary representation not having almost invariant vectors. This is a generalization of a theorem of Bekka and Valette from the group setting and was previously established in the case of low dual by Daws, Skalski, and Viselter. Our approach uses spectral techniques and is completely different from those of Bekka-Valette and Daws-Skalski-Viselter. By a separate argument we furthermore extend the result to second countable nonunimodular locally compact quantum groups, which are shown in particular not to have property (T), generalizing a theorem of Fima from the discrete setting. We also obtain quantum group versions of characterizations of property (T) of Kerr and Pichot in terms of the Baire category theory of weak mixing representations and of Connes and Weiss in terms of the prevalence of strongly ergodic actions.

  14. A fermionic de Finetti theorem

    NASA Astrophysics Data System (ADS)

    Krumnow, Christian; Zimborás, Zoltán; Eisert, Jens

    2017-12-01

    Quantum versions of de Finetti's theorem are powerful tools, yielding conceptually important insights into the security of key distribution protocols or tomography schemes and allowing one to bound the error made by mean-field approaches. Such theorems link the symmetry of a quantum state under the exchange of subsystems to negligible quantum correlations and are well understood and established in the context of distinguishable particles. In this work, we derive a de Finetti theorem for finite sized Majorana fermionic systems. It is shown, much reflecting the spirit of other quantum de Finetti theorems, that a state which is invariant under certain permutations of modes loses most of its anti-symmetric character and is locally well described by a mode separable state. We discuss the structure of the resulting mode separable states and establish in specific instances a quantitative link to the quality of the Hartree-Fock approximation of quantum systems. We hint at a link to generalized Pauli principles for one-body reduced density operators. Finally, building upon the obtained de Finetti theorem, we generalize and extend the applicability of Hudson's fermionic central limit theorem.

  15. Visual Theorems.

    ERIC Educational Resources Information Center

    Davis, Philip J.

    1993-01-01

    Argues for a mathematics education that interprets the word "theorem" in a sense that is wide enough to include the visual aspects of mathematical intuition and reasoning. Defines the term "visual theorems" and illustrates the concept using the Marigold of Theodorus. (Author/MDH)

  16. Note on the theorems of Bjerknes and Crocco

    NASA Technical Reports Server (NTRS)

    Theodorsen, Theodore

    1946-01-01

    The theorems of Bjerknes and Crocco are of great interest in the theory of flow around airfoils at Mach numbers near and above unity. A brief note shows how both theorems are developed by short vector transformations.

  17. Analysis of non locality proofs in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    2012-02-01

    Two kinds of non-locality theorems in Quantum Mechanics are taken into account: the theorems based on the criterion of reality and the quite different theorem proposed by Stapp. In the present work the analyses of the theorem due to Greenberger, Horne, Shimony and Zeilinger, based on the criterion of reality, and of Stapp's argument are shown. The results of these analyses show that the alleged violations of locality cannot be considered definitive.

  18. PYGMALION: A Creative Programming Environment

    DTIC Science & Technology

    1975-06-01

    iiiiiimimmmimm wm^m^mmm’ wi-i ,»■»’■’.■- v* 26 Examples of Purely Iconic Reasoning 1-H Pythagoras ’ original proof of the Pythagorean Theorem ... Theorem Proving Machine񓟋. His program employed properties of the representation to guide the proof of theorems . His simple heruristic "Reject...one theorem the square of the hypotenuse. "Every proposition is presented as a self-contained fact relying on its own intrinsic evidence. Instead

  19. Generalized Bloch theorem and topological characterization

    NASA Astrophysics Data System (ADS)

    Dobardžić, E.; Dimitrijević, M.; Milovanović, M. V.

    2015-03-01

    The Bloch theorem enables reduction of the eigenvalue problem of the single-particle Hamiltonian that commutes with the translational group. Based on a group theory analysis we present a generalization of the Bloch theorem that incorporates all additional symmetries of a crystal. The generalized Bloch theorem constrains the form of the Hamiltonian which becomes manifestly invariant under additional symmetries. In the case of isotropic interactions the generalized Bloch theorem gives a unique Hamiltonian. This Hamiltonian coincides with the Hamiltonian in the periodic gauge. In the case of anisotropic interactions the generalized Bloch theorem allows a family of Hamiltonians. Due to the continuity argument we expect that even in this case the Hamiltonian in the periodic gauge defines observables, such as Berry curvature, in the inverse space. For both cases we present examples and demonstrate that the average of the Berry curvatures of all possible Hamiltonians in the Bloch gauge is the Berry curvature in the periodic gauge.

  20. Cosmic time and reduced phase space of general relativity

    NASA Astrophysics Data System (ADS)

    Ita, Eyo Eyo; Soo, Chopin; Yu, Hoi-Lai

    2018-05-01

    In an ever-expanding spatially closed universe, the fractional change of the volume is the preeminent intrinsic time interval to describe evolution in general relativity. The expansion of the universe serves as a subsidiary condition which transforms Einstein's theory from a first class to a second class constrained system when the physical degrees of freedom (d.o.f.) are identified with transverse traceless excitations. The super-Hamiltonian constraint is solved by eliminating the trace of the momentum in terms of the other variables, and spatial diffeomorphism symmetry is tackled explicitly by imposing transversality. The theorems of Maskawa-Nishijima appositely relate the reduced phase space to the physical variables in canonical functional integral and Dirac's criterion for second class constraints to nonvanishing Faddeev-Popov determinants in the phase space measures. A reduced physical Hamiltonian for intrinsic time evolution of the two physical d.o.f. emerges. Freed from the first class Dirac algebra, deformation of the Hamiltonian constraint is permitted, and natural extension of the Hamiltonian while maintaining spatial diffeomorphism invariance leads to a theory with Cotton-York term as the ultraviolet completion of Einstein's theory.

  1. Preserving the Helmholtz dispersion relation: One-way acoustic wave propagation using matrix square roots

    NASA Astrophysics Data System (ADS)

    Keefe, Laurence

    2016-11-01

    Parabolized acoustic propagation in transversely inhomogeneous media is described by the operator update equation U (x , y , z + Δz) =eik0 (- 1 +√{ 1 + Z }) U (x , y , z) for evolution of the envelope of a wavetrain solution to the original Helmholtz equation. Here the operator, Z =∇T2 + (n2 - 1) , involves the transverse Laplacian and the refractive index distribution. Standard expansion techniques (on the assumption Z << 1)) produce pdes that approximate, to greater or lesser extent, the full dispersion relation of the original Helmholtz equation, except that none of them describe evanescent/damped waves without special modifications to the expansion coefficients. Alternatively, a discretization of both the envelope and the operator converts the operator update equation into a matrix multiply, and existing theorems on matrix functions demonstrate that the complete (discrete) Helmholtz dispersion relation, including evanescent/damped waves, is preserved by this discretization. Propagation-constant/damping-rates contour comparisons for the operator equation and various approximations demonstrate this point, and how poorly the lowest-order, textbook, parabolized equation describes propagation in lined ducts.

  2. TESTING THE BLACK HOLE NO-HAIR THEOREM WITH OJ287

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valtonen, M. J.; Mikkola, S.; Lehto, H. J.

    2011-11-20

    We examine the ability to test the black hole no-hair theorem at the 10% level in this decade using the binary black hole in OJ287. In the test we constrain the value of the dimensionless parameter q that relates the scaled quadrupole moment and spin of the primary black hole: q{sub 2} = -q {chi}{sup 2}. At the present we can say that q = 1 {+-} 0.3 (1{sigma}), in agreement with general relativity and the no-hair theorems. We demonstrate that this result can be improved if more observational data are found in historical plate archives for the 1959 andmore » 1971 outbursts. We also show that the predicted 2015 and 2019 outbursts will be crucial in improving the accuracy of the test. Space-based photometry is required in 2019 July due the proximity of OJ287 to the Sun at the time of the outburst. The best situation would be to carry out the photometry far from the Earth, from quite a different vantage point, in order to avoid the influence of the nearby Sun. We have considered in particular the STEREO space mission, which would be ideal if it has a continuation in 2019, or the Long Range Reconnaissance Imager on board the New Horizons mission to Pluto.« less

  3. General Theorems about Homogeneous Ellipsoidal Inclusions

    ERIC Educational Resources Information Center

    Korringa, J.; And Others

    1978-01-01

    Mathematical theorems about the properties of ellipsoids are developed. Included are Poisson's theorem concerning the magnetization of a homogeneous body of ellipsoidal shape, the polarization of a dielectric, the transport of heat or electricity through an ellipsoid, and other problems. (BB)

  4. A no-hair theorem for black holes in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Cañate, Pedro

    2018-01-01

    In this work we present a no-hair theorem which discards the existence of four-dimensional asymptotically flat, static and spherically symmetric or stationary axisymmetric, non-trivial black holes in the frame of f(R) gravity under metric formalism. Here we show that our no-hair theorem also can discard asymptotic de Sitter stationary and axisymmetric non-trivial black holes. The novelty is that this no-hair theorem is built without resorting to known mapping between f(R) gravity and scalar–tensor theory. Thus, an advantage will be that our no-hair theorem applies as well to metric f(R) models that cannot be mapped to scalar–tensor theory.

  5. Generalized Browder's and Weyl's theorems for Banach space operators

    NASA Astrophysics Data System (ADS)

    Curto, Raúl E.; Han, Young Min

    2007-12-01

    We find necessary and sufficient conditions for a Banach space operator T to satisfy the generalized Browder's theorem. We also prove that the spectral mapping theorem holds for the Drazin spectrum and for analytic functions on an open neighborhood of [sigma](T). As applications, we show that if T is algebraically M-hyponormal, or if T is algebraically paranormal, then the generalized Weyl's theorem holds for f(T), where f[set membership, variant]H((T)), the space of functions analytic on an open neighborhood of [sigma](T). We also show that if T is reduced by each of its eigenspaces, then the generalized Browder's theorem holds for f(T), for each f[set membership, variant]H([sigma](T)).

  6. Lanchester-Type Models of Warfare. Volume II

    DTIC Science & Technology

    1980-10-01

    the so-called PERRON - FROBENIUS theorem50 for nonnegative matrices that one can guarantee that (without any further assumptions about A and B) there...always exists a vector of nonnegative values such that, for example, (7.18.6) holds. Before we state the PERRON - FROBENIUS theorem for nonnegative...a proof of this important theorem). THEOREM .5.-1.1 ( PERRON [121] and FROBENIUS [60]): Let C z 0 be an n x n matrix. Then, 1. C has a nonnegative real

  7. A remark on the energy conditions for Hawking's area theorem

    NASA Astrophysics Data System (ADS)

    Lesourd, Martin

    2018-06-01

    Hawking's area theorem is a fundamental result in black hole theory that is universally associated with the null energy condition. That this condition can be weakened is illustrated by the formulation of a strengthened version of the theorem based on an energy condition that allows for violations of the null energy condition. With the semi-classical context in mind, some brief remarks pertaining to the suitability of the area theorem and its energy condition are made.

  8. Gibbs-Curie-Wulff Theorem in Organic Materials: A Case Study on the Relationship between Surface Energy and Crystal Growth.

    PubMed

    Li, Rongjin; Zhang, Xiaotao; Dong, Huanli; Li, Qikai; Shuai, Zhigang; Hu, Wenping

    2016-02-24

    The equilibrium crystal shape and shape evolution of organic crystals are found to follow the Gibbs-Curie-Wulff theorem. Organic crystals are grown by the physical vapor transport technique and exhibit exactly the same shape as predicted by the Gibbs-Curie-Wulff theorem under optimal conditions. This accordance provides concrete proof for the theorem. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Projection-slice theorem based 2D-3D registration

    NASA Astrophysics Data System (ADS)

    van der Bom, M. J.; Pluim, J. P. W.; Homan, R.; Timmer, J.; Bartels, L. W.

    2007-03-01

    In X-ray guided procedures, the surgeon or interventionalist is dependent on his or her knowledge of the patient's specific anatomy and the projection images acquired during the procedure by a rotational X-ray source. Unfortunately, these X-ray projections fail to give information on the patient's anatomy in the dimension along the projection axis. It would be very profitable to provide the surgeon or interventionalist with a 3D insight of the patient's anatomy that is directly linked to the X-ray images acquired during the procedure. In this paper we present a new robust 2D-3D registration method based on the Projection-Slice Theorem. This theorem gives us a relation between the pre-operative 3D data set and the interventional projection images. Registration is performed by minimizing a translation invariant similarity measure that is applied to the Fourier transforms of the images. The method was tested by performing multiple exhaustive searches on phantom data of the Circle of Willis and on a post-mortem human skull. Validation was performed visually by comparing the test projections to the ones that corresponded to the minimal value of the similarity measure. The Projection-Slice Theorem Based method was shown to be very effective and robust, and provides capture ranges up to 62 degrees. Experiments have shown that the method is capable of retrieving similar results when translations are applied to the projection images.

  10. Shrunk loop theorem for the topology probabilities of closed Brownian (or Feynman) paths on the twice punctured plane

    NASA Astrophysics Data System (ADS)

    Giraud, O.; Thain, A.; Hannay, J. H.

    2004-02-01

    The shrunk loop theorem proved here is an integral identity which facilitates the calculation of the relative probability (or probability amplitude) of any given topology that a free, closed Brownian (or Feynman) path of a given 'duration' might have on the twice punctured plane (plane with two marked points). The result is expressed as a 'scattering' series of integrals of increasing dimensionality based on the maximally shrunk version of the path. Physically, this applies in different contexts: (i) the topology probability of a closed ideal polymer chain on a plane with two impassable points, (ii) the trace of the Schrödinger Green function, and thence spectral information, in the presence of two Aharonov-Bohm fluxes and (iii) the same with two branch points of a Riemann surface instead of fluxes. Our theorem starts from the Stovicek scattering expansion for the Green function in the presence of two Aharonov-Bohm flux lines, which itself is based on the famous Sommerfeld one puncture point solution of 1896 (the one puncture case has much easier topology, just one winding number). Stovicek's expansion itself can supply the results at the expense of choosing a base point on the loop and then integrating it away. The shrunk loop theorem eliminates this extra two-dimensional integration, distilling the topology from the geometry.

  11. A different method for calculation of the deflection angle of light passing close to a massive object by Fermat’s principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkus, Harun, E-mail: physicisthakkus@gmail.com

    2013-12-15

    We introduce a method for calculating the amount of deflection angle of light passing close to a massive object. It is based on Fermat’s principle. The varying refractive index of medium around the massive object is obtained from the Buckingham pi-theorem. Highlights: •A different and simpler method for the calculation of deflection angle of light. •Not a curved space, only 2-D Euclidean space. •Getting a varying refractive index from the Buckingham pi-theorem. •Obtaining the some results of general relativity from Fermat’s principle.

  12. A quantum framework for likelihood ratios

    NASA Astrophysics Data System (ADS)

    Bond, Rachael L.; He, Yang-Hui; Ormerod, Thomas C.

    The ability to calculate precise likelihood ratios is fundamental to science, from Quantum Information Theory through to Quantum State Estimation. However, there is no assumption-free statistical methodology to achieve this. For instance, in the absence of data relating to covariate overlap, the widely used Bayes’ theorem either defaults to the marginal probability driven “naive Bayes’ classifier”, or requires the use of compensatory expectation-maximization techniques. This paper takes an information-theoretic approach in developing a new statistical formula for the calculation of likelihood ratios based on the principles of quantum entanglement, and demonstrates that Bayes’ theorem is a special case of a more general quantum mechanical expression.

  13. Microscope Resolution.

    ERIC Educational Resources Information Center

    Higbie, J.

    1981-01-01

    Describes problems using the Jenkins and White approach and standard diffraction theory when dealing with the topic of finite conjugate, point-source resolution and how they may be resolved using the relatively obscure Abbe's sine theorem. (JN)

  14. Automata learning algorithms and processes for providing more complete systems requirements specification by scenario generation, CSP-based syntax-oriented model construction, and R2D2C system requirements transformation

    NASA Technical Reports Server (NTRS)

    Margaria, Tiziana (Inventor); Hinchey, Michael G. (Inventor); Rouff, Christopher A. (Inventor); Rash, James L. (Inventor); Steffen, Bernard (Inventor)

    2010-01-01

    Systems, methods and apparatus are provided through which in some embodiments, automata learning algorithms and techniques are implemented to generate a more complete set of scenarios for requirements based programming. More specifically, a CSP-based, syntax-oriented model construction, which requires the support of a theorem prover, is complemented by model extrapolation, via automata learning. This may support the systematic completion of the requirements, the nature of the requirement being partial, which provides focus on the most prominent scenarios. This may generalize requirement skeletons by extrapolation and may indicate by way of automatically generated traces where the requirement specification is too loose and additional information is required.

  15. The B-field soft theorem and its unification with the graviton and dilaton

    NASA Astrophysics Data System (ADS)

    Di Vecchia, Paolo; Marotta, Raffaele; Mojaza, Matin

    2017-10-01

    In theories of Einstein gravity coupled with a dilaton and a two-form, a soft theorem for the two-form, known as the Kalb-Ramond B-field, has so far been missing. In this work we fill the gap, and in turn formulate a unified soft theorem valid for gravitons, dilatons and B-fields in any tree-level scattering amplitude involving the three massless states. The new soft theorem is fixed by means of on-shell gauge invariance and enters at the subleading order of the graviton's soft theorem. In contrast to the subsubleading soft behavior of gravitons and dilatons, we show that the soft behavior of B-fields at this order cannot be fully fixed by gauge invariance. Nevertheless, we show that it is possible to establish a gauge invariant decomposition of the amplitudes to any order in the soft expansion. We check explicitly the new soft theorem in the bosonic string and in Type II superstring theories, and furthermore demonstrate that, at the next order in the soft expansion, totally gauge invariant terms appear in both string theories which cannot be factorized into a soft theorem.

  16. Probabilistic Relational Structures and Their Applications

    ERIC Educational Resources Information Center

    Domotor, Zoltan

    The principal objects of the investigation reported were, first, to study qualitative probability relations on Boolean algebras, and secondly, to describe applications in the theories of probability logic, information, automata, and probabilistic measurement. The main contribution of this work is stated in 10 definitions and 20 theorems. The basic…

  17. Abel's theorem in the noncommutative case

    NASA Astrophysics Data System (ADS)

    Leitenberger, Frank

    2004-03-01

    We define noncommutative binary forms. Using the typical representation of Hermite we prove the fundamental theorem of algebra and we derive a noncommutative Cardano formula for cubic forms. We define quantized elliptic and hyperelliptic differentials of the first kind. Following Abel we prove Abel's theorem.

  18. Impossible colorings and Bell's theorem

    NASA Astrophysics Data System (ADS)

    Aravind, P. K.

    1999-11-01

    An argument due to Zimba and Penrose is generalized to show how all known non-coloring proofs of the Bell-Kochen-Specker (BKS) theorem can be converted into inequality-free proofs of Bell's nonlocality theorem. A compilation of many such inequality-free proofs is given.

  19. An Application of the Perron-Frobenius Theorem to a Damage Model Problem.

    DTIC Science & Technology

    1985-04-01

    RO-RI6I 20B AN APPLICATION OF THE PERRON - FROBENIUS THEOREM TO A ill I DAMAGOE MODEL PR BLEM.. (U) PITTSBURGH UNIV PA CENTER FOR I MULTIYARIATE...any copyright notation herein. * . .r * j * :h ~ ** . . .~. ~ % *~’ :. ~ ~ v 4 .% % %~ AN APPLICATION OF THE PERRON - FROBENIUS THEOREM TO A DAMAGE...University of Sheffield, U.K. S ~ Summry Using the Perron - Frobenius theorem, it is established that if’ (X,Y) is a random vector of non-negative

  20. Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem.

    PubMed

    Altürk, Ahmet

    2016-01-01

    Mean value theorems for both derivatives and integrals are very useful tools in mathematics. They can be used to obtain very important inequalities and to prove basic theorems of mathematical analysis. In this article, a semi-analytical method that is based on weighted mean-value theorem for obtaining solutions for a wide class of Fredholm integral equations of the second kind is introduced. Illustrative examples are provided to show the significant advantage of the proposed method over some existing techniques.

  1. Markov Property of the Conformal Field Theory Vacuum and the a Theorem.

    PubMed

    Casini, Horacio; Testé, Eduardo; Torroba, Gonzalo

    2017-06-30

    We use strong subadditivity of entanglement entropy, Lorentz invariance, and the Markov property of the vacuum state of a conformal field theory to give new proof of the irreversibility of the renormalization group in d=4 space-time dimensions-the a theorem. This extends the proofs of the c and F theorems in dimensions d=2 and d=3 based on vacuum entanglement entropy, and gives a unified picture of all known irreversibility theorems in relativistic quantum field theory.

  2. A Polarimetric Extension of the van Cittert-Zernike Theorem for Use with Microwave Interferometers

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Simon, N. K.

    2004-01-01

    The van Cittert-Zernike theorem describes the Fourier-transform relationship between an extended source and its visibility function. Developments in classical optics texts use scalar field formulations for the theorem. Here, we develop a polarimetric extension to the van Cittert-Zernike theorem with applications to passive microwave Earth remote sensing. The development provides insight into the mechanics of two-dimensional interferometric imaging, particularly the effects of polarization basis differences between the scene and the observer.

  3. Statistical mechanics of the international trade network.

    PubMed

    Fronczak, Agata; Fronczak, Piotr

    2012-05-01

    Analyzing real data on international trade covering the time interval 1950-2000, we show that in each year over the analyzed period the network is a typical representative of the ensemble of maximally random weighted networks, whose directed connections (bilateral trade volumes) are only characterized by the product of the trading countries' GDPs. It means that time evolution of this network may be considered as a continuous sequence of equilibrium states, i.e., a quasistatic process. This, in turn, allows one to apply the linear response theory to make (and also verify) simple predictions about the network. In particular, we show that bilateral trade fulfills a fluctuation-response theorem, which states that the average relative change in imports (exports) between two countries is a sum of the relative changes in their GDPs. Yearly changes in trade volumes prove that the theorem is valid.

  4. Statistical mechanics of the international trade network

    NASA Astrophysics Data System (ADS)

    Fronczak, Agata; Fronczak, Piotr

    2012-05-01

    Analyzing real data on international trade covering the time interval 1950-2000, we show that in each year over the analyzed period the network is a typical representative of the ensemble of maximally random weighted networks, whose directed connections (bilateral trade volumes) are only characterized by the product of the trading countries' GDPs. It means that time evolution of this network may be considered as a continuous sequence of equilibrium states, i.e., a quasistatic process. This, in turn, allows one to apply the linear response theory to make (and also verify) simple predictions about the network. In particular, we show that bilateral trade fulfills a fluctuation-response theorem, which states that the average relative change in imports (exports) between two countries is a sum of the relative changes in their GDPs. Yearly changes in trade volumes prove that the theorem is valid.

  5. Elephant random walks and their connection to Pólya-type urns

    NASA Astrophysics Data System (ADS)

    Baur, Erich; Bertoin, Jean

    2016-11-01

    In this paper, we explain the connection between the elephant random walk (ERW) and an urn model à la Pólya and derive functional limit theorems for the former. The ERW model was introduced in [Phys. Rev. E 70, 045101 (2004), 10.1103/PhysRevE.70.045101] to study memory effects in a highly non-Markovian setting. More specifically, the ERW is a one-dimensional discrete-time random walk with a complete memory of its past. The influence of the memory is measured in terms of a memory parameter p between zero and one. In the past years, a considerable effort has been undertaken to understand the large-scale behavior of the ERW, depending on the choice of p . Here, we use known results on urns to explicitly solve the ERW in all memory regimes. The method works as well for ERWs in higher dimensions and is widely applicable to related models.

  6. Pulsation of black holes

    NASA Astrophysics Data System (ADS)

    Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio

    2018-01-01

    The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

  7. On an example of a system of differential equations that are integrated in Abelian functions

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Sevastianov, L. A.

    2017-12-01

    The short review of the theory of Abelian functions and its applications in mechanics and analytical theory of differential equations is given. We think that Abelian functions are the natural generalization of commonly used functions because if the general solution of the 2nd order differential equation depends algebraically on the constants of integration, then integrating this equation does not lead out of the realm of commonly used functions complemented by the Abelian functions (Painlevé theorem). We present a relatively simple example of a dynamical system that is integrated in Abelian integrals by “pairing” two copies of a hyperelliptic curve. Unfortunately, initially simple formulas unfold into very long ones. Apparently the theory of Abelian functions hasn’t been finished in the last century because without computer algebra systems it was impossible to complete the calculations to the end. All calculations presented in our report are performed in Sage.

  8. Cutting solid figures by plane - analytical solution and spreadsheet implementation

    NASA Astrophysics Data System (ADS)

    Benacka, Jan

    2012-07-01

    In some secondary mathematics curricula, there is a topic called Stereometry that deals with investigating the position and finding the intersection, angle, and distance of lines and planes defined within a prism or pyramid. Coordinate system is not used. The metric tasks are solved using Pythagoras' theorem, trigonometric functions, and sine and cosine rules. The basic problem is to find the section of the figure by a plane that is defined by three points related to the figure. In this article, a formula is derived that gives the positions of the intersection points of such a plane and the figure edges, that is, the vertices of the section polygon. Spreadsheet implementations of the formula for cuboid and right rectangular pyramids are presented. The user can check his/her graphical solution, or proceed if he/she is not able to complete the section.

  9. Gravitational Mechanisms to Self-Tune the Cosmological Constant: Obstructions and Ways Forward

    NASA Astrophysics Data System (ADS)

    Niedermann, Florian; Padilla, Antonio

    2017-12-01

    Gravitational models of self-tuning are those in which vacuum energy has no observable effect on spacetime curvature, even though it is a priori unsuppressed below the cutoff. We complement Weinberg's no-go theorem by studying field-theoretic completions of self-adjustment allowing for broken translations as well as other generalizations, and identify new obstructions. Our analysis uses a very general Källén-Lehmann spectral representation of the exchange amplitude for conserved sources of energy-momentum and exploits unitarity and Lorentz invariance to show that a transition from self-tuning of long wavelength sources to near general relativity (GR) on shorter scales is generically not possible. We search for novel ways around our obstructions and highlight two interesting possibilities. The first is an example of a unitary field configuration on anti-de Sitter space with the desired transition from self-tuning to GR. A second example is motivated by vacuum energy sequestering.

  10. Galilean Relativity and the Work-Kinetic Energy Theorem

    ERIC Educational Resources Information Center

    Tefft, Brandon J.; Tefft, James A.

    2007-01-01

    As the topic of relativity is developed in a first-year physics class, there seems to be a tendency to move as quickly as possible to the fascinating ideas set forth in Einstein's special theory of relativity. In this paper we linger a little with the Galilean side of relativity and discuss an intriguing problem and its solution to illustrate a…

  11. Bring the Pythagorean Theorem "Full Circle"

    ERIC Educational Resources Information Center

    Benson, Christine C.; Malm, Cheryl G.

    2011-01-01

    Middle school mathematics generally explores applications of the Pythagorean theorem and lays the foundation for working with linear equations. The Grade 8 Curriculum Focal Points recommend that students "apply the Pythagorean theorem to find distances between points in the Cartesian coordinate plane to measure lengths and analyze polygons and…

  12. The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project

    ERIC Educational Resources Information Center

    Robiette, Alan G.

    1975-01-01

    Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)

  13. Using Discovery in the Calculus Class

    ERIC Educational Resources Information Center

    Shilgalis, Thomas W.

    1975-01-01

    This article shows how two discoverable theorems from elementary calculus can be presented to students in a manner that assists them in making the generalizations themselves. The theorems are the mean value theorems for derivatives and for integrals. A conjecture is suggested by pictures and then refined. (Author/KM)

  14. Three Lectures on Theorem-proving and Program Verification

    NASA Technical Reports Server (NTRS)

    Moore, J. S.

    1983-01-01

    Topics concerning theorem proving and program verification are discussed with particlar emphasis on the Boyer/Moore theorem prover, and approaches to program verification such as the functional and interpreter methods and the inductive assertion approach. A history of the discipline and specific program examples are included.

  15. A Limit Theorem on the Cores of Large Standard Exchange Economies

    PubMed Central

    Brown, Donald J.; Robinson, Abraham

    1972-01-01

    This note introduces a new mathematical tool, nonstandard analysis, for the analysis of an important class of problems in mathematical economics—the relation between bargaining and the competitive price system. PMID:16591988

  16. Generalized chaos synchronization theorems for bidirectional differential equations and discrete systems with applications

    NASA Astrophysics Data System (ADS)

    Ji, Ye; Liu, Ting; Min, Lequan

    2008-05-01

    Two constructive generalized chaos synchronization (GCS) theorems for bidirectional differential equations and discrete systems are introduced. Using the two theorems, one can construct new chaos systems to make the system variables be in GCS. Five examples are presented to illustrate the effectiveness of the theoretical results.

  17. The Law of Cosines for an "n"-Dimensional Simplex

    ERIC Educational Resources Information Center

    Ding, Yiren

    2008-01-01

    Using the divergence theorem technique of L. Eifler and N.H. Rhee, "The n-dimensional Pythagorean Theorem via the Divergence Theorem" (to appear: Amer. Math. Monthly), we extend the law of cosines for a triangle in a plane to an "n"-dimensional simplex in an "n"-dimensional space.

  18. When 95% Accurate Isn't: Exploring Bayes's Theorem

    ERIC Educational Resources Information Center

    CadwalladerOlsker, Todd D.

    2011-01-01

    Bayes's theorem is notorious for being a difficult topic to learn and to teach. Problems involving Bayes's theorem (either implicitly or explicitly) generally involve calculations based on two or more given probabilities and their complements. Further, a correct solution depends on students' ability to interpret the problem correctly. Most people…

  19. Optimal Keno Strategies and the Central Limit Theorem

    ERIC Educational Resources Information Center

    Johnson, Roger W.

    2006-01-01

    For the casino game Keno we determine optimal playing strategies. To decide such optimal strategies, both exact (hypergeometric) and approximate probability calculations are used. The approximate calculations are obtained via the Central Limit Theorem and simulation, and an important lesson about the application of the Central Limit Theorem is…

  20. Computer Algebra Systems and Theorems on Real Roots of Polynomials

    ERIC Educational Resources Information Center

    Aidoo, Anthony Y.; Manthey, Joseph L.; Ward, Kim Y.

    2010-01-01

    A computer algebra system is used to derive a theorem on the existence of roots of a quadratic equation on any bounded real interval. This is extended to a cubic polynomial. We discuss how students could be led to derive and prove these theorems. (Contains 1 figure.)

  1. Fluctuation theorem for Hamiltonian Systems: Le Chatelier's principle

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Searles, Debra J.; Mittag, Emil

    2001-05-01

    For thermostated dissipative systems, the fluctuation theorem gives an analytical expression for the ratio of probabilities that the time-averaged entropy production in a finite system observed for a finite time takes on a specified value compared to the negative of that value. In the past, it has been generally thought that the presence of some thermostating mechanism was an essential component of any system that satisfies a fluctuation theorem. In the present paper, we point out that a fluctuation theorem can be derived for purely Hamiltonian systems, with or without applied dissipative fields.

  2. Nambu-Goldstone theorem and spin-statistics theorem

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    On December 19-21 in 2001, we organized a yearly workshop at Yukawa Institute for Theoretical Physics in Kyoto on the subject of "Fundamental Problems in Field Theory and their Implications". Prof. Yoichiro Nambu attended this workshop and explained a necessary modification of the Nambu-Goldstone theorem when applied to nonrelativistic systems. At the same workshop, I talked on a path integral formulation of the spin-statistics theorem. The present essay is on this memorable workshop, where I really enjoyed the discussions with Nambu, together with a short comment on the color freedom of quarks.

  3. Counting Heron Triangles with Constraints

    DTIC Science & Technology

    2013-01-25

    Heron triangle is an integer, then b is even, say b = 2b1. By Pythagoras ’ theorem , a4 = h2 +4b21, and since in a Heron triangle, the heights are always...our first result, which follows an idea of [10, Theorem 2.3]. Theorem 4. Let a, b be two fixed integers, and let ab be factored as in (1). Then H(a, b...which we derive the result. Theorem 4 immediately offers us an interesting observation regarding a special class of fixed sides (a, b). Corollary 5. If

  4. On Pythagoras Theorem for Products of Spectral Triples

    NASA Astrophysics Data System (ADS)

    D'Andrea, Francesco; Martinetti, Pierre

    2013-05-01

    We discuss a version of Pythagoras theorem in noncommutative geometry. Usual Pythagoras theorem can be formulated in terms of Connes' distance, between pure states, in the product of commutative spectral triples. We investigate the generalization to both non-pure states and arbitrary spectral triples. We show that Pythagoras theorem is replaced by some Pythagoras inequalities, that we prove for the product of arbitrary (i.e. non-necessarily commutative) spectral triples, assuming only some unitality condition. We show that these inequalities are optimal, and we provide non-unital counter-examples inspired by K-homology.

  5. Which symmetry? Noether, Weyl, and conservation of electric charge

    NASA Astrophysics Data System (ADS)

    Brading, Katherine A.

    In 1918, Emmy Noether published a (now famous) theorem establishing a general connection between continuous 'global' symmetries and conserved quantities. In fact, Noether's paper contains two theorems, and the second of these deals with 'local' symmetries; prima facie, this second theorem has nothing to do with conserved quantities. In the same year, Hermann Weyl independently made the first attempt to derive conservation of electric charge from a postulated gauge symmetry. In the light of Noether's work, it is puzzling that Weyl's argument uses local gauge symmetry. This paper explores the relationships between Weyl's work, Noether's two theorems, and the modern connection between gauge symmetry and conservation of electric charge. This includes showing that Weyl's connection is essentially an application of Noether's second theorem, with a novel twist.

  6. The Einstein-Vlasov System/Kinetic Theory.

    PubMed

    Andréasson, Håkan

    2005-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e. to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e. fluid models). This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  7. The Einstein-Vlasov System/Kinetic Theory.

    PubMed

    Andréasson, Håkan

    2002-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e. to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e. fluid models). This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  8. Quantum mechanics problems in observer's mathematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Boris; Khots, Dmitriy; iMath Consulting LLC, Omaha, Nebraska

    2012-11-06

    This work considers the ontology, guiding equation, Schrodinger's equation, relation to the Born Rule, the conditional wave function of a subsystem in a setting of arithmetic, algebra and topology provided by Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. Certain results and communications pertaining to solutions of these problems are provided. In particular, we prove the following theorems: Theorem I (Two-slit interference). Let {Psi}{sub 1} be a wave from slit 1, {Psi}{sub 2} - from slit 2, andmore » {Psi} = {Psi}{sub 1}+{Psi}{sub 2}. Then the probability of {Psi} being a wave equals to 0.5. Theorem II (k-bodies solution). For W{sub n} from m-observer point of view with m>log{sub 10}((2 Multiplication-Sign 10{sup 2n}-1){sup 2k}+1), the probability of standard expression of Hamiltonian variation is less than 1 and depends on n,m,k.« less

  9. The distribution of the zeros of the Hermite-Padé polynomials for a pair of functions forming a Nikishin system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakhmanov, E A; Suetin, S P

    2013-09-30

    The distribution of the zeros of the Hermite-Padé polynomials of the first kind for a pair of functions with an arbitrary even number of common branch points lying on the real axis is investigated under the assumption that this pair of functions forms a generalized complex Nikishin system. It is proved (Theorem 1) that the zeros have a limiting distribution, which coincides with the equilibrium measure of a certain compact set having the S-property in a harmonic external field. The existence problem for S-compact sets is solved in Theorem 2. The main idea of the proof of Theorem 1 consists in replacing a vector equilibrium problem in potentialmore » theory by a scalar problem with an external field and then using the general Gonchar-Rakhmanov method, which was worked out in the solution of the '1/9'-conjecture. The relation of the result obtained here to some results and conjectures due to Nuttall is discussed. Bibliography: 51 titles.« less

  10. Prediction of HR/BP response to the spontaneous breathing trial by fluctuation dissipation theory

    NASA Astrophysics Data System (ADS)

    Chen, Man

    2014-03-01

    We applied the non-equilibrium fluctuation dissipation theorem to predict how critically-ill patients respond to treatment, based on both heart rate data and blood pressure data collected by standard hospital monitoring devices. The non-equilibrium fluctuation dissipation theorem relates the response of a system to a perturbation to the fluctuations in the stationary state of the system. It is shown that the response of patients to a standard procedure performed on patients, the spontaneous breathing trial (SBT), can be predicted by the non-equilibrium fluctuation dissipation approach. We classify patients into different groups according to the patients' characteristics. For each patient group, we extend the fluctuation dissipation theorem to predict interactions between blood pressure and beat-to-beat dynamics of heart rate in response to a perturbation (SBT), We also extract the form of the perturbation function directly from the physiological data, which may help to reduce the prediction error. We note this method is not limited to the analysis of the heart rate dynamics, but also can be applied to analyze the response of other physiological signals to other clinical interventions.

  11. Implications of the Corotation Theorem on the MRI in Axial Symmetry

    NASA Astrophysics Data System (ADS)

    Montani, G.; Cianfrani, F.; Pugliese, D.

    2016-08-01

    We analyze the linear stability of an axially symmetric ideal plasma disk, embedded in a magnetic field and endowed with a differential rotation. This study is performed by adopting the magnetic flux function as the fundamental dynamical variable, in order to outline the role played by the corotation theorem on the linear mode structure. Using some specific assumptions (e.g., plasma incompressibility and propagation of the perturbations along the background magnetic field), we select the Alfvénic nature of the magnetorotational instability, and, in the geometric optics limit, we determine the dispersion relation describing the linear spectrum. We show how the implementation of the corotation theorem (valid for the background configuration) on the linear dynamics produces the cancellation of the vertical derivative of the disk angular velocity (we check such a feature also in the standard vector formalism to facilitate comparison with previous literature, in both the axisymmetric and three-dimensional cases). As a result, we clarify that the unstable modes have, for a stratified disk, the same morphology, proper of a thin-disk profile, and the z-dependence has a simple parametric role.

  12. Bivariate tensor product [Formula: see text]-analogue of Kantorovich-type Bernstein-Stancu-Schurer operators.

    PubMed

    Cai, Qing-Bo; Xu, Xiao-Wei; Zhou, Guorong

    2017-01-01

    In this paper, we construct a bivariate tensor product generalization of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of [Formula: see text]-integers. We obtain moments and central moments of these operators, give the rate of convergence by using the complete modulus of continuity for the bivariate case and estimate a convergence theorem for the Lipschitz continuous functions. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.

  13. Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback.

    PubMed

    Freire, Joana G; Gallas, Jason A C

    2010-09-01

    Incomplete homoclinic scenarios were recently measured in a semiconductor laser with optoelectronic feedback. We show here that such a laser contains cascades of spirals of periodic oscillations and hubs which look identical to the familiar ones observed in complete homoclinic scenarios. This means that hubs are far more general than presumed so far, being not limited by Shilnikov's theorem. Laser hubs open the possibility of measuring complex distributions of non-Shilnikov laser oscillations, and we briefly discuss how to do it.

  14. Noncommutative Quantum Mechanics based on Representations of Exotic Galilei Group

    NASA Astrophysics Data System (ADS)

    Amorim, R. G. G.; Ulhoa, S. C.

    2018-02-01

    Using elements of symmetry, we constructed the Noncommutative Schrödinger Equation from a representation of Exotic Galilei Group. As a consequence, we derive the Ehrenfest theorem using noncommutative coordinates. We also have showed others features of quantum mechanics in such a manifold. As an important result, we find out that a linear potential in the noncommutative Schrödinger equation is completely analogous to the ordinary case. We also worked with harmonic and anharmonic oscillators, giving corrections in the energy for each one.

  15. Banach Synaptic Algebras

    NASA Astrophysics Data System (ADS)

    Foulis, David J.; Pulmannov, Sylvia

    2018-04-01

    Using a representation theorem of Erik Alfsen, Frederic Schultz, and Erling Størmer for special JB-algebras, we prove that a synaptic algebra is norm complete (i.e., Banach) if and only if it is isomorphic to the self-adjoint part of a Rickart C∗-algebra. Also, we give conditions on a Banach synaptic algebra that are equivalent to the condition that it is isomorphic to the self-adjoint part of an AW∗-algebra. Moreover, we study some relationships between synaptic algebras and so-called generalized Hermitian algebras.

  16. Area-angular-momentum inequality for axisymmetric black holes.

    PubMed

    Dain, Sergio; Reiris, Martin

    2011-07-29

    We prove the local inequality A≥8π|J|, where A and J are the area and angular momentum of any axially symmetric closed stable minimal surface in an axially symmetric maximal initial data. From this theorem it is proved that the inequality is satisfied for any surface on complete asymptotically flat maximal axisymmetric data. In particular it holds for marginal or event horizons of black holes. Hence, we prove the validity of this inequality for all dynamical (not necessarily near equilibrium) axially symmetric black holes.

  17. Calculation of multicenter electric field gradient integrals over Slater-type orbitals using unsymmetrical one-range addition theorems.

    PubMed

    Guseinov, Israfil I; Görgün, Nurşen Seçkin

    2011-06-01

    The electric field induced within a molecule by its electrons determines a whole series of important physical properties of the molecule. In particular, the values of the gradient of this field at the nuclei determine the interaction of their quadrupole moments with the electrons. Using unsymmetrical one-range addition theorems introduced by one of the authors, the sets of series expansion relations for multicenter electric field gradient integrals over Slater-type orbitals in terms of multicenter charge density expansion coefficients and two-center basic integrals are presented. The convergence of the series is tested by calculating concrete cases for different values of quantum numbers, parameters and locations of orbitals.

  18. Calculational Schemes in GUTs

    NASA Astrophysics Data System (ADS)

    Kounnas, Costas

    The following sections are included: * Introduction * Mass Spectrum in a Spontaneously Broken-Theory SU(5) - Minimal Model * Renormalization and Renormalization Group Equation (R.G.E.) * Step Approximation and Decoupling Theorem * Notion of the Effective Coupling Constant * First Estimation of MX, α(MX) and sin2θ(MW) * Renormalization Properties and Photon-Z Mixing * β-Function Definitions * Threshold Functions and Decoupling Theorem * MX-Determination * Proton Lifetime * sin2θ(μ)-Determination * Quark-Lepton Mass Relations (mb/mτ) * Overview of the Conventional GUTs - Hierarchy Problem * Stability of Hierarchy - Supersymmetric GUTS * Cosmologically Acceptable SUSY GUT Models * Radiative Breaking of SU(2) × U(1) — MW/MX Hierarchy Generation * No Scale Supergravity Models^{56,57} Dynamical Determination of M_{B}-M_{F} * Conclusion * References

  19. Extended optical theorem in isotropic solids and its application to the elastic radiation force

    NASA Astrophysics Data System (ADS)

    Leão-Neto, J. P.; Lopes, J. H.; Silva, G. T.

    2017-04-01

    In this article, we derive the extended optical theorem for the elastic-wave scattering by a spherical inclusion (with and without absorption) in a solid matrix. This theorem expresses the extinction cross-section, i.e., the time-averaged power extracted from the incoming beam per its intensity, regarding the partial-wave expansion coefficients of the incident and scattered waves. We also establish the connection between the optical theorem and the elastic radiation force by a plane wave in a linear and isotropic solid. We obtain the absorption, scattering, and extinction efficiencies (the corresponding power per characteristic incident intensity per sphere cross-section area) for a plane wave and a spherically focused beam. We discuss to which extent the radiation force theory for plane waves can be used to the focused beam case. Considering an iron sphere embedded in an aluminum matrix, we numerically compute the scattering and elastic radiation force efficiencies. The radiation force on a stainless steel sphere embedded in a tissue-like medium (soft solid) is also computed. In this case, resonances are observed in the force as a function of the sphere size parameter (the wavenumber times the sphere radius). Remarkably, the relative difference between our findings and previous lossless liquid models is about 100% in the long-wavelength limit. Regarding some applications, the obtained results have a direct impact on ultrasound-based elastography techniques and ultrasonic nondestructive testing, as well as implantable devices activated by ultrasound.

  20. Time Evolution of the Dynamical Variables of a Stochastic System.

    ERIC Educational Resources Information Center

    de la Pena, L.

    1980-01-01

    By using the method of moments, it is shown that several important and apparently unrelated theorems describing average properties of stochastic systems are in fact particular cases of a general law; this method is applied to generalize the virial theorem and the fluctuation-dissipation theorem to the time-dependent case. (Author/SK)

  1. A Fascinating Application of Steiner's Theorem for Trapezium: Geometric Constructions Using Straightedge Alone

    ERIC Educational Resources Information Center

    Stupel, Moshe; Ben-Chaim, David

    2013-01-01

    Based on Steiner's fascinating theorem for trapezium, seven geometrical constructions using straight-edge alone are described. These constructions provide an excellent base for teaching theorems and the properties of geometrical shapes, as well as challenging thought and inspiring deeper insight into the world of geometry. In particular, this…

  2. Leaning on Socrates to Derive the Pythagorean Theorem

    ERIC Educational Resources Information Center

    Percy, Andrew; Carr, Alistair

    2010-01-01

    The one theorem just about every student remembers from school is the theorem about the side lengths of a right angled triangle which Euclid attributed to Pythagoras when writing Proposition 47 of "The Elements". Usually first met in middle school, the student will be continually exposed throughout their mathematical education to the…

  3. Geometry of the Adiabatic Theorem

    ERIC Educational Resources Information Center

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  4. The Classical Version of Stokes' Theorem Revisited

    ERIC Educational Resources Information Center

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations--essentially from first year undergraduate mathematics--we show how the classical Stokes' theorem for any given surface and vector field in R[superscript 3] follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the…

  5. Visualizing the Central Limit Theorem through Simulation

    ERIC Educational Resources Information Center

    Ruggieri, Eric

    2016-01-01

    The Central Limit Theorem is one of the most important concepts taught in an introductory statistics course, however, it may be the least understood by students. Sure, students can plug numbers into a formula and solve problems, but conceptually, do they really understand what the Central Limit Theorem is saying? This paper describes a simulation…

  6. Virtual continuity of measurable functions and its applications

    NASA Astrophysics Data System (ADS)

    Vershik, A. M.; Zatitskii, P. B.; Petrov, F. V.

    2014-12-01

    A classical theorem of Luzin states that a measurable function of one real variable is `almost' continuous. For measurable functions of several variables the analogous statement (continuity on a product of sets having almost full measure) does not hold in general. The search for a correct analogue of Luzin's theorem leads to a notion of virtually continuous functions of several variables. This apparently new notion implicitly appears in the statements of embedding theorems and trace theorems for Sobolev spaces. In fact it reveals the nature of such theorems as statements about virtual continuity. The authors' results imply that under the conditions of Sobolev theorems there is a well-defined integration of a function with respect to a wide class of singular measures, including measures concentrated on submanifolds. The notion of virtual continuity is also used for the classification of measurable functions of several variables and in some questions on dynamical systems, the theory of polymorphisms, and bistochastic measures. In this paper the necessary definitions and properties of admissible metrics are recalled, several definitions of virtual continuity are given, and some applications are discussed. Bibliography: 24 titles.

  7. Quantum properties of supersymmetric theories regularized by higher covariant derivatives

    NASA Astrophysics Data System (ADS)

    Stepanyantz, Konstantin

    2018-02-01

    We investigate quantum corrections in \\mathscr{N} = 1 non-Abelian supersymmetric gauge theories, regularized by higher covariant derivatives. In particular, by the help of the Slavnov-Taylor identities we prove that the vertices with two ghost legs and one leg of the quantum gauge superfield are finite in all orders. This non-renormalization theorem is confirmed by an explicit one-loop calculation. By the help of this theorem we rewrite the exact NSVZ β-function in the form of the relation between the β-function and the anomalous dimensions of the matter superfields, of the quantum gauge superfield, and of the Faddeev-Popov ghosts. Such a relation has simple qualitative interpretation and allows suggesting a prescription producing the NSVZ scheme in all loops for the theories regularized by higher derivatives. This prescription is verified by the explicit three-loop calculation for the terms quartic in the Yukawa couplings.

  8. Generating perfect fluid spheres in general relativity

    NASA Astrophysics Data System (ADS)

    Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke

    2005-06-01

    Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.

  9. General hybrid projective complete dislocated synchronization with non-derivative and derivative coupling based on parameter identification in several chaotic and hyperchaotic systems

    NASA Astrophysics Data System (ADS)

    Sun, Jun-Wei; Shen, Yi; Zhang, Guo-Dong; Wang, Yan-Feng; Cui, Guang-Zhao

    2013-04-01

    According to the Lyapunov stability theorem, a new general hybrid projective complete dislocated synchronization scheme with non-derivative and derivative coupling based on parameter identification is proposed under the framework of drive-response systems. Every state variable of the response system equals the summation of the hybrid drive systems in the previous hybrid synchronization. However, every state variable of the drive system equals the summation of the hybrid response systems while evolving with time in our method. Complete synchronization, hybrid dislocated synchronization, projective synchronization, non-derivative and derivative coupling, and parameter identification are included as its special item. The Lorenz chaotic system, Rössler chaotic system, memristor chaotic oscillator system, and hyperchaotic Lü system are discussed to show the effectiveness of the proposed methods.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koenig, Robert; Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125; Mitchison, Graeme

    In its most basic form, the finite quantum de Finetti theorem states that the reduced k-partite density operator of an n-partite symmetric state can be approximated by a convex combination of k-fold product states. Variations of this result include Renner's 'exponential' approximation by 'almost-product' states, a theorem which deals with certain triples of representations of the unitary group, and the result of D'Cruz et al. [e-print quant-ph/0606139;Phys. Rev. Lett. 98, 160406 (2007)] for infinite-dimensional systems. We show how these theorems follow from a single, general de Finetti theorem for representations of symmetry groups, each instance corresponding to a particular choicemore » of symmetry group and representation of that group. This gives some insight into the nature of the set of approximating states and leads to some new results, including an exponential theorem for infinite-dimensional systems.« less

  11. The Levy sections theorem revisited

    NASA Astrophysics Data System (ADS)

    Figueiredo, Annibal; Gleria, Iram; Matsushita, Raul; Da Silva, Sergio

    2007-06-01

    This paper revisits the Levy sections theorem. We extend the scope of the theorem to time series and apply it to historical daily returns of selected dollar exchange rates. The elevated kurtosis usually observed in such series is then explained by their volatility patterns. And the duration of exchange rate pegs explains the extra elevated kurtosis in the exchange rates of emerging markets. In the end, our extension of the theorem provides an approach that is simpler than the more common explicit modelling of fat tails and dependence. Our main purpose is to build up a technique based on the sections that allows one to artificially remove the fat tails and dependence present in a data set. By analysing data through the lenses of the Levy sections theorem one can find common patterns in otherwise very different data sets.

  12. Cellular compartmentation follows rules: The Schnepf theorem, its consequences and exceptions: A biological membrane separates a plasmatic from a non-plasmatic phase.

    PubMed

    Moog, Daniel; Maier, Uwe G

    2017-08-01

    Is the spatial organization of membranes and compartments within cells subjected to any rules? Cellular compartmentation differs between prokaryotic and eukaryotic life, because it is present to a high degree only in eukaryotes. In 1964, Prof. Eberhard Schnepf formulated the compartmentation rule (Schnepf theorem), which posits that a biological membrane, the main physical structure responsible for cellular compartmentation, usually separates a plasmatic form a non-plasmatic phase. Here we review and re-investigate the Schnepf theorem by applying the theorem to different cellular structures, from bacterial cells to eukaryotes with their organelles and compartments. In conclusion, we can confirm the general correctness of the Schnepf theorem, noting explicit exceptions only in special cases such as endosymbiosis and parasitism. © 2017 WILEY Periodicals, Inc.

  13. Kato type operators and Weyl's theorem

    NASA Astrophysics Data System (ADS)

    Duggal, B. P.; Djordjevic, S. V.; Kubrusly, Carlos

    2005-09-01

    A Banach space operator T satisfies Weyl's theorem if and only if T or T* has SVEP at all complex numbers [lambda] in the complement of the Weyl spectrum of T and T is Kato type at all [lambda] which are isolated eigenvalues of T of finite algebraic multiplicity. If T* (respectively, T) has SVEP and T is Kato type at all [lambda] which are isolated eigenvalues of T of finite algebraic multiplicity (respectively, T is Kato type at all [lambda][set membership, variant]iso[sigma](T)), then T satisfies a-Weyl's theorem (respectively, T* satisfies a-Weyl's theorem).

  14. Cooperation Among Theorem Provers

    NASA Technical Reports Server (NTRS)

    Waldinger, Richard J.

    1998-01-01

    In many years of research, a number of powerful theorem-proving systems have arisen with differing capabilities and strengths. Resolution theorem provers (such as Kestrel's KITP or SRI's SNARK) deal with first-order logic with equality but not the principle of mathematical induction. The Boyer-Moore theorem prover excels at proof by induction but cannot deal with full first-order logic. Both are highly automated but cannot accept user guidance easily. The purpose of this project, and the companion project at Kestrel, has been to use the category-theoretic notion of logic morphism to combine systems with different logics and languages.

  15. Fluctuation theorem: A critical review

    NASA Astrophysics Data System (ADS)

    Malek Mansour, M.; Baras, F.

    2017-10-01

    Fluctuation theorem for entropy production is revisited in the framework of stochastic processes. The applicability of the fluctuation theorem to physico-chemical systems and the resulting stochastic thermodynamics were analyzed. Some unexpected limitations are highlighted in the context of jump Markov processes. We have shown that these limitations handicap the ability of the resulting stochastic thermodynamics to correctly describe the state of non-equilibrium systems in terms of the thermodynamic properties of individual processes therein. Finally, we considered the case of diffusion processes and proved that the fluctuation theorem for entropy production becomes irrelevant at the stationary state in the case of one variable systems.

  16. Nambu-Goldstone theorem and spin-statistics theorem

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    2016-05-01

    On December 19-21 in 2001, we organized a yearly workshop at Yukawa Institute for Theoretical Physics in Kyoto on the subject of “Fundamental Problems in Field Theory and their Implications”. Prof. Yoichiro Nambu attended this workshop and explained a necessary modification of the Nambu-Goldstone theorem when applied to non-relativistic systems. At the same workshop, I talked on a path integral formulation of the spin-statistics theorem. The present essay is on this memorable workshop, where I really enjoyed the discussions with Nambu, together with a short comment on the color freedom of quarks.

  17. Solving a Class of Spatial Reasoning Problems: Minimal-Cost Path Planning in the Cartesian Plane.

    DTIC Science & Technology

    1987-06-01

    as in Figure 72. By the Theorem of Pythagoras : Z1 <a z 2 < C Yl(bl+b 2)uI, the cost of going along (a,b,c) is greater that the...preceding lemmas to an indefinite number of boundary-crossing episodes is accomplished by the following theorems . Theorem 1 extends the result of Lemma 1... Theorem 1: Any two Snell’s-law paths within a K-explored wedge defined by Snell’s-law paths RL and R. do not intersect within the K-explored portion of

  18. Spacetime and Euclidean geometry

    NASA Astrophysics Data System (ADS)

    Brill, Dieter; Jacobson, Ted

    2006-04-01

    Using only the principle of relativity and Euclidean geometry we show in this pedagogical article that the square of proper time or length in a two-dimensional spacetime diagram is proportional to the Euclidean area of the corresponding causal domain. We use this relation to derive the Minkowski line element by two geometric proofs of the spacetime Pythagoras theorem.

  19. Entropy for quantum pure states and quantum H theorem

    NASA Astrophysics Data System (ADS)

    Han, Xizhi; Wu, Biao

    2015-06-01

    We construct a complete set of Wannier functions that are localized at both given positions and momenta. This allows us to introduce the quantum phase space, onto which a quantum pure state can be mapped unitarily. Using its probability distribution in quantum phase space, we define an entropy for a quantum pure state. We prove an inequality regarding the long-time behavior of our entropy's fluctuation. For a typical initial state, this inequality indicates that our entropy can relax dynamically to a maximized value and stay there most of time with small fluctuations. This result echoes the quantum H theorem proved by von Neumann [Zeitschrift für Physik 57, 30 (1929), 10.1007/BF01339852]. Our entropy is different from the standard von Neumann entropy, which is always zero for quantum pure states. According to our definition, a system always has bigger entropy than its subsystem even when the system is described by a pure state. As the construction of the Wannier basis can be implemented numerically, the dynamical evolution of our entropy is illustrated with an example.

  20. The dynamics of a harvested predator-prey system with Holling type IV functional response.

    PubMed

    Liu, Xinxin; Huang, Qingdao

    2018-05-31

    The paper aims to investigate the dynamical behavior of a predator-prey system with Holling type IV functional response in which both the species are subject to capturing. We mainly consider how the harvesting affects equilibria, stability, limit cycles and bifurcations in this system. We adopt the method of qualitative and quantitative analysis, which is based on the dynamical theory, bifurcation theory and numerical simulation. The boundedness of solutions, the existence and stability of equilibrium points of the system are further studied. Based on the Sotomayor's theorem, the existence of transcritical bifurcation and saddle-node bifurcation are derived. We use the normal form theorem to analyze the Hopf bifurcation. Simulation results show that the first Lyapunov coefficient is negative and a stable limit cycle may bifurcate. Numerical simulations are performed to make analytical studies more complete. This work illustrates that using the harvesting effort as control parameter can change the behaviors of the system, which may be useful for the biological management. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Superconducting transitions in flat-band systems

    DOE PAGES

    Iglovikov, V. I.; Hébert, F.; Grémaud, B.; ...

    2014-09-11

    The physics of strongly correlated quantum particles within a flat band was originally explored as a route to itinerant ferromagnetism and, indeed, a celebrated theorem by Lieb rigorously establishes that the ground state of the repulsive Hubbard model on a bipartite lattice with unequal number of sites in each sublattice must have nonzero spin S at half-filling. Recently, there has been interest in Lieb geometries due to the possibility of novel topological insulator, nematic, and Bose-Einstein condensed (BEC) phases. In this paper, we extend the understanding of the attractive Hubbard model on the Lieb lattice by using Determinant Quantum Montemore » Carlo to study real space charge and pair correlation functions not addressed by the Lieb theorems. Specifically, our results show unusual charge and charge transfer signatures within the flat band, and a reduction in pairing order at ρ = 2/3 and ρ = 4/3, the points at which the flat band is first occupied and then completely filled. Lastly, we compare our results to the case of flat bands in the Kagome lattice and demonstrate that the behavior observed in the two cases is rather different.« less

  2. Discovering Theorems in Abstract Algebra Using the Software "GAP"

    ERIC Educational Resources Information Center

    Blyth, Russell D.; Rainbolt, Julianne G.

    2010-01-01

    A traditional abstract algebra course typically consists of the professor stating and then proving a sequence of theorems. As an alternative to this classical structure, the students could be expected to discover some of the theorems even before they are motivated by classroom examples. This can be done by using a software system to explore a…

  3. Bell's Theorem and Einstein's "Spooky Actions" from a Simple Thought Experiment

    ERIC Educational Resources Information Center

    Kuttner, Fred; Rosenblum, Bruce

    2010-01-01

    In 1964 John Bell proved a theorem allowing the experimental test of whether what Einstein derided as "spooky actions at a distance" actually exist. We will see that they "do". Bell's theorem can be displayed with a simple, nonmathematical thought experiment suitable for a physics course at "any" level. And a simple, semi-classical derivation of…

  4. Unique Factorization and the Fundamental Theorem of Arithmetic

    ERIC Educational Resources Information Center

    Sprows, David

    2017-01-01

    The fundamental theorem of arithmetic is one of those topics in mathematics that somehow "falls through the cracks" in a student's education. When asked to state this theorem, those few students who are willing to give it a try (most have no idea of its content) will say something like "every natural number can be broken down into a…

  5. Viète's Formula and an Error Bound without Taylor's Theorem

    ERIC Educational Resources Information Center

    Boucher, Chris

    2018-01-01

    This note presents a derivation of Viète's classic product approximation of pi that relies on only the Pythagorean Theorem. We also give a simple error bound for the approximation that, while not optimal, still reveals the exponential convergence of the approximation and whose derivation does not require Taylor's Theorem.

  6. A Physical Proof of the Pythagorean Theorem

    ERIC Educational Resources Information Center

    Treeby, David

    2017-01-01

    What proof of the Pythagorean theorem might appeal to a physics teacher? A proof that involved the notion of mass would surely be of interest. While various proofs of the Pythagorean theorem employ the circumcenter and incenter of a right-angled triangle, we are not aware of any proof that uses the triangle's center of mass. This note details one…

  7. Triangular Nests!

    ERIC Educational Resources Information Center

    Powell, R. I.

    2002-01-01

    Shows how integer-sided triangles can be nested, each nest having a single enclosing isosceles triangle. Brings to light what can be seen as a relatively simple generalization of Pythagoras' theorem, a result that should be readily accessible to many secondary school pupils. (Author/KHR)

  8. Quantum Field Theory on Spacetimes with a Compactly Generated Cauchy Horizon

    NASA Astrophysics Data System (ADS)

    Kay, Bernard S.; Radzikowski, Marek J.; Wald, Robert M.

    1997-02-01

    We prove two theorems which concern difficulties in the formulation of the quantum theory of a linear scalar field on a spacetime, (M,g_{ab}), with a compactly generated Cauchy horizon. These theorems demonstrate the breakdown of the theory at certain base points of the Cauchy horizon, which are defined as 'past terminal accumulation points' of the horizon generators. Thus, the theorems may be interpreted as giving support to Hawking's 'Chronology Protection Conjecture', according to which the laws of physics prevent one from manufacturing a 'time machine'. Specifically, we prove: Theorem 1. There is no extension to (M,g_{ab}) of the usual field algebra on the initial globally hyperbolic region which satisfies the condition of F-locality at any base point. In other words, any extension of the field algebra must, in any globally hyperbolic neighbourhood of any base point, differ from the algebra one would define on that neighbourhood according to the rules for globally hyperbolic spacetimes. Theorem 2. The two-point distribution for any Hadamard state defined on the initial globally hyperbolic region must (when extended to a distributional bisolution of the covariant Klein-Gordon equation on the full spacetime) be singular at every base point x in the sense that the difference between this two point distribution and a local Hadamard distribution cannot be given by a bounded function in any neighbourhood (in M 2 M) of (x,x). In consequence of Theorem 2, quantities such as the renormalized expectation value of J2 or of the stress-energy tensor are necessarily ill-defined or singular at any base point. The proof of these theorems relies on the 'Propagation of Singularities' theorems of Duistermaat and Hörmander.

  9. Enter the reverend: introduction to and application of Bayes' theorem in clinical ophthalmology.

    PubMed

    Thomas, Ravi; Mengersen, Kerrie; Parikh, Rajul S; Walland, Mark J; Muliyil, Jayprakash

    2011-12-01

    Ophthalmic practice utilizes numerous diagnostic tests, some of which are used to screen for disease. Interpretation of test results and many clinical management issues are actually problems in inverse probability that can be solved using Bayes' theorem. Use two-by-two tables to understand Bayes' theorem and apply it to clinical examples. Specific examples of the utility of Bayes' theorem in diagnosis and management. Two-by-two tables are used to introduce concepts and understand the theorem. The application in interpretation of diagnostic tests is explained. Clinical examples demonstrate its potential use in making management decisions. Positive predictive value and conditional probability. The theorem demonstrates the futility of testing when prior probability of disease is low. Application to untreated ocular hypertension demonstrates that the estimate of glaucomatous optic neuropathy is similar to that obtained from the Ocular Hypertension Treatment Study. Similar calculations are used to predict the risk of acute angle closure in a primary angle closure suspect, the risk of pupillary block in a diabetic undergoing cataract surgery, and the probability that an observed decrease in intraocular pressure is due to the medication that has been started. The examples demonstrate how data required for management can at times be easily obtained from available information. Knowledge of Bayes' theorem helps in interpreting test results and supports the clinical teaching that testing for conditions with a low prevalence has a poor predictive value. In some clinical situations Bayes' theorem can be used to calculate vital data required for patient management. © 2011 The Authors. Clinical and Experimental Ophthalmology © 2011 Royal Australian and New Zealand College of Ophthalmologists.

  10. Communication. Kinetics of scavenging of small, nucleating clusters. First nucleation theorem and sum rules

    DOE PAGES

    Malila, Jussi; McGraw, Robert; Laaksonen, Ari; ...

    2015-01-07

    Despite recent advances in monitoring nucleation from a vapor at close-to-molecular resolution, the identity of the critical cluster, forming the bottleneck for the nucleation process, remains elusive. During past twenty years, the first nucleation theorem has been often used to extract the size of the critical cluster from nucleation rate measurements. However, derivations of the first nucleation theorem invoke certain questionable assumptions that may fail, e.g., in the case of atmospheric new particle formation, including absence of subcritical cluster losses and heterogeneous nucleation on pre-existing nanoparticles. Here we extend the kinetic derivation of the first nucleation theorem to give amore » general framework to include such processes, yielding sum rules connecting the size dependent particle formation and loss rates to the corresponding loss-free nucleation rate and the apparent critical size from a naïve application of the first nucleation theorem that neglects them.« less

  11. Atiyah-Patodi-Singer index theorem for domain-wall fermion Dirac operator

    NASA Astrophysics Data System (ADS)

    Fukaya, Hidenori; Onogi, Tetsuya; Yamaguchi, Satoshi

    2018-03-01

    Recently, the Atiyah-Patodi-Singer(APS) index theorem attracts attention for understanding physics on the surface of materials in topological phases. Although it is widely applied to physics, the mathematical set-up in the original APS index theorem is too abstract and general (allowing non-trivial metric and so on) and also the connection between the APS boundary condition and the physical boundary condition on the surface of topological material is unclear. For this reason, in contrast to the Atiyah-Singer index theorem, derivation of the APS index theorem in physics language is still missing. In this talk, we attempt to reformulate the APS index in a "physicist-friendly" way, similar to the Fujikawa method on closed manifolds, for our familiar domain-wall fermion Dirac operator in a flat Euclidean space. We find that the APS index is naturally embedded in the determinant of domain-wall fermions, representing the so-called anomaly descent equations.

  12. The detailed balance principle and the reciprocity theorem between photocarrier collection and dark carrier distribution in solar cells

    NASA Astrophysics Data System (ADS)

    Rau, Uwe; Brendel, Rolf

    1998-12-01

    It is shown that a recently described general relationship between the local collection efficiency of solar cells and the dark carrier concentration (reciprocity theorem) directly follows from the principle of detailed balance. We derive the relationship for situations where transport of charge carriers occurs between discrete states as well as for the situation where electronic transport is described in terms of continuous functions. Combining both situations allows to extend the range of applicability of the reciprocity theorem to all types of solar cells, including, e.g., metal-insulator-semiconductor-type, electrochemical solar cells, as well as the inclusion of the impurity photovoltaic effect. We generalize the theorem further to situations where the occupation probability of electronic states is governed by Fermi-Dirac statistics instead of Boltzmann statistics as underlying preceding work. In such a situation the reciprocity theorem is restricted to small departures from equilibrium.

  13. Exploiting structure: Introduction and motivation

    NASA Technical Reports Server (NTRS)

    Xu, Zhong Ling

    1994-01-01

    This annual report summarizes the research activities that were performed from 26 Jun. 1993 to 28 Feb. 1994. We continued to investigate the Robust Stability of Systems where transfer functions or characteristic polynomials are affine multilinear functions of parameters. An approach that differs from 'Stability by Linear Process' and that reduces the computational burden of checking the robust stability of the system with multilinear uncertainty was found for low order, 2-order, and 3-order cases. We proved a crucial theorem, the so-called Face Theorem. Previously, we have proven Kharitonov's Vertex Theorem and the Edge Theorem by Bartlett. The detail of this proof is contained in the Appendix. This Theorem provides a tool to describe the boundary of the image of the affine multilinear function. For SPR design, we have developed some new results. The third objective for this period is to design a controller for IHM by the H-infinity optimization technique. The details are presented in the Appendix.

  14. Orbit-averaged quantities, the classical Hellmann-Feynman theorem, and the magnetic flux enclosed by gyro-motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, R. J., E-mail: rperkins@pppl.gov; Bellan, P. M.

    Action integrals are often used to average a system over fast oscillations and obtain reduced dynamics. It is not surprising, then, that action integrals play a central role in the Hellmann-Feynman theorem of classical mechanics, which furnishes the values of certain quantities averaged over one period of rapid oscillation. This paper revisits the classical Hellmann-Feynman theorem, rederiving it in connection to an analogous theorem involving the time-averaged evolution of canonical coordinates. We then apply a modified version of the Hellmann-Feynman theorem to obtain a new result: the magnetic flux enclosed by one period of gyro-motion of a charged particle inmore » a non-uniform magnetic field. These results further demonstrate the utility of the action integral in regards to obtaining orbit-averaged quantities and the usefulness of this formalism in characterizing charged particle motion.« less

  15. An Integrated Environment for Efficient Formal Design and Verification

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The general goal of this project was to improve the practicality of formal methods by combining techniques from model checking and theorem proving. At the time the project was proposed, the model checking and theorem proving communities were applying different tools to similar problems, but there was not much cross-fertilization. This project involved a group from SRI that had substantial experience in the development and application of theorem-proving technology, and a group at Stanford that specialized in model checking techniques. Now, over five years after the proposal was submitted, there are many research groups working on combining theorem-proving and model checking techniques, and much more communication between the model checking and theorem proving research communities. This project contributed significantly to this research trend. The research work under this project covered a variety of topics: new theory and algorithms; prototype tools; verification methodology; and applications to problems in particular domains.

  16. Aspects of AdS/CFT: Conformal Deformations and the Goldstone Equivalence Theorem

    NASA Astrophysics Data System (ADS)

    Cantrell, Sean Andrew

    The AdS/CFT correspondence provides a map from the states of theories situated in AdSd+1 to those in dual conformal theories in a d-dimensional space. The correspondence can be used to establish certain universal properties of some theories in one space by examining the behave of general objects in the other. In this thesis, we develop various formal aspects of AdS/CFT. Conformal deformations manifest in the AdS/CFT correspondence as boundary conditions on the AdS field. Heretofore, double-trace deformations have been the primary focus in this context. To better understand multitrace deformations, we revisit the relationship between the generating AdS partition function for a free bulk theory and the boundary CFT partition function subject to arbitrary conformal deformations. The procedure leads us to a formalism that constructs bulk fields from boundary operators. We independently replicate the holographic RG flow narrative to go on to interpret the brane used to regulate the AdS theory as a renormalization scale. The scale-dependence of the dilatation spectrum of a boundary theory in the presence of general deformations can be thus understood on the AdS side using this formalism. The Goldstone equivalence theorem allows one to relate scattering amplitudes of massive gauge fields to those of scalar fields in the limit of large scattering energies. We generalize this theorem under the framework of the AdS/CFT correspondence. First, we obtain an expression of the equivalence theorem in terms of correlation functions of creation and annihilation operators by using an AdS wave function approach to the AdS/CFT dictionary. It is shown that the divergence of the non-conserved conformal current dual to the bulk gauge field is approximately primary when computing correlators for theories in which the masses of all the exchanged particles are sufficiently large. The results are then generalized to higher spin fields. We then go on to generalize the theorem using conformal blocks in two and four-dimensional CFTs. We show that when the scaling dimensions of the exchanged operators are large compared to both their spins and the dimension of the current, the conformal blocks satisfy an equivalence theorem.

  17. Systematic Approaches to Experimentation: The Case of Pick's Theorem

    ERIC Educational Resources Information Center

    Papadopoulos, Ioannis; Iatridou, Maria

    2010-01-01

    In this paper two 10th graders having an accumulated experience on problem-solving ancillary to the concept of area confronted the task to find Pick's formula for a lattice polygon's area. The formula was omitted from the theorem in order for the students to read the theorem as a problem to be solved. Their working is examined and emphasis is…

  18. Weak Compactness and Control Measures in the Space of Unbounded Measures

    PubMed Central

    Brooks, James K.; Dinculeanu, Nicolae

    1972-01-01

    We present a synthesis theorem for a family of locally equivalent measures defined on a ring of sets. This theorem is then used to exhibit a control measure for weakly compact sets of unbounded measures. In addition, the existence of a local control measure for locally strongly bounded vector measures is proved by means of the synthesis theorem. PMID:16591980

  19. A Layer Framework to Investigate Student Understanding and Application of the Existence and Uniqueness Theorems of Differential Equations

    ERIC Educational Resources Information Center

    Raychaudhuri, D.

    2007-01-01

    The focus of this paper is on student interpretation and usage of the existence and uniqueness theorems for first-order ordinary differential equations. The inherent structure of the theorems is made explicit by the introduction of a framework of layers concepts-conditions-connectives-conclusions, and we discuss the manners in which students'…

  20. Erratum: Correction to: Information Transmission and Criticality in the Contact Process

    NASA Astrophysics Data System (ADS)

    Cassandro, M.; Galves, A.; Löcherbach, E.

    2018-01-01

    The original publication of the article unfortunately contained a mistake in the first sentence of Theorem 1 and in the second part of the proof of Theorem 1. The corrected statement of Theorem as well as the corrected proof are given below. The full text of the corrected version is available at http://arxiv.org/abs/1705.11150.

  1. A general Kastler-Kalau-Walze type theorem for manifolds with boundary

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wang, Yong

    2016-11-01

    In this paper, we establish a general Kastler-Kalau-Walze type theorem for any dimensional manifolds with boundary which generalizes the results in [Y. Wang, Lower-dimensional volumes and Kastler-Kalau-Walze type theorem for manifolds with boundary, Commun. Theor. Phys. 54 (2010) 38-42]. This solves a problem of the referee of [J. Wang and Y. Wang, A Kastler-Kalau-Walze type theorem for five-dimensional manifolds with boundary, Int. J. Geom. Meth. Mod. Phys. 12(5) (2015), Article ID: 1550064, 34 pp.], which is a general expression of the lower dimensional volumes in terms of the geometric data on the manifold.

  2. Electrostatic Hellmann-Feynman theorem applied to long-range interatomic forces - The hydrogen molecule.

    NASA Technical Reports Server (NTRS)

    Steiner, E.

    1973-01-01

    The use of the electrostatic Hellmann-Feynman theorem for the calculation of the leading term in the 1/R expansion of the force of interaction between two well-separated hydrogen atoms is discussed. Previous work has suggested that whereas this term is determined wholly by the first-order wavefunction when calculated by perturbation theory, the use of the Hellmann-Feynman theorem apparently requires the wavefunction through second order. It is shown how the two results may be reconciled and that the Hellmann-Feynman theorem may be reformulated in such a way that only the first-order wavefunction is required.

  3. A Benes-like theorem for the shuffle-exchange graph

    NASA Technical Reports Server (NTRS)

    Schwabe, Eric J.

    1992-01-01

    One of the first theorems on permutation routing, proved by V. E. Beness (1965), shows that given a set of source-destination pairs in an N-node butterfly network with at most a constant number of sources or destinations in each column of the butterfly, there exists a set of paths of lengths O(log N) connecting each pair such that the total congestion is constant. An analogous theorem yielding constant-congestion paths for off-line routing in the shuffle-exchange graph is proved here. The necklaces of the shuffle-exchange graph play the same structural role as the columns of the butterfly in Beness' theorem.

  4. Tree-manipulating systems and Church-Rosser theorems.

    NASA Technical Reports Server (NTRS)

    Rosen, B. K.

    1973-01-01

    Study of a broad class of tree-manipulating systems called subtree replacement systems. The use of this framework is illustrated by general theorems analogous to the Church-Rosser theorem and by applications of these theorems. Sufficient conditions are derived for the Church-Rosser property, and their applications to recursive definitions, the lambda calculus, and parallel programming are discussed. McCarthy's (1963) recursive calculus is extended by allowing a choice between call-by-value and call-by-name. It is shown that recursively defined functions are single-valued despite the nondeterminism of the evaluation algorithm. It is also shown that these functions solve their defining equations in a 'canonical' manner.

  5. Quantum voting and violation of Arrow's impossibility theorem

    NASA Astrophysics Data System (ADS)

    Bao, Ning; Yunger Halpern, Nicole

    2017-06-01

    We propose a quantum voting system in the spirit of quantum games such as the quantum prisoner's dilemma. Our scheme enables a constitution to violate a quantum analog of Arrow's impossibility theorem. Arrow's theorem is a claim proved deductively in economics: Every (classical) constitution endowed with three innocuous-seeming properties is a dictatorship. We construct quantum analogs of constitutions, of the properties, and of Arrow's theorem. A quantum version of majority rule, we show, violates this quantum Arrow conjecture. Our voting system allows for tactical-voting strategies reliant on entanglement, interference, and superpositions. This contribution to quantum game theory helps elucidate how quantum phenomena can be harnessed for strategic advantage.

  6. Common fixed points in best approximation for Banach operator pairs with Ciric type I-contractions

    NASA Astrophysics Data System (ADS)

    Hussain, N.

    2008-02-01

    The common fixed point theorems, similar to those of Ciric [Lj.B. Ciric, On a common fixed point theorem of a Gregus type, Publ. Inst. Math. (Beograd) (N.S.) 49 (1991) 174-178; Lj.B. Ciric, On Diviccaro, Fisher and Sessa open questions, Arch. Math. (Brno) 29 (1993) 145-152; Lj.B. Ciric, On a generalization of Gregus fixed point theorem, Czechoslovak Math. J. 50 (2000) 449-458], Fisher and Sessa [B. Fisher, S. Sessa, On a fixed point theorem of Gregus, Internat. J. Math. Math. Sci. 9 (1986) 23-28], Jungck [G. Jungck, On a fixed point theorem of Fisher and Sessa, Internat. J. Math. Math. Sci. 13 (1990) 497-500] and Mukherjee and Verma [R.N. Mukherjee, V. Verma, A note on fixed point theorem of Gregus, Math. Japon. 33 (1988) 745-749], are proved for a Banach operator pair. As applications, common fixed point and approximation results for Banach operator pair satisfying Ciric type contractive conditions are obtained without the assumption of linearity or affinity of either T or I. Our results unify and generalize various known results to a more general class of noncommuting mappings.

  7. Generalized energy measurements and modified transient quantum fluctuation theorems

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Venkatesh, B. Prasanna; Talkner, Peter

    2014-05-01

    Determining the work which is supplied to a system by an external agent provides a crucial step in any experimental realization of transient fluctuation relations. This, however, poses a problem for quantum systems, where the standard procedure requires the projective measurement of energy at the beginning and the end of the protocol. Unfortunately, projective measurements, which are preferable from the point of view of theory, seem to be difficult to implement experimentally. We demonstrate that, when using a particular type of generalized energy measurements, the resulting work statistics is simply related to that of projective measurements. This relation between the two work statistics entails the existence of modified transient fluctuation relations. The modifications are exclusively determined by the errors incurred in the generalized energy measurements. They are universal in the sense that they do not depend on the force protocol. Particularly simple expressions for the modified Crooks relation and Jarzynski equality are found for Gaussian energy measurements. These can be obtained by a sequence of sufficiently many generalized measurements which need not be Gaussian. In accordance with the central limit theorem, this leads to an effective error reduction in the individual measurements and even yields a projective measurement in the limit of infinite repetitions.

  8. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  9. A Physical Interpretation of the Titius-Bode Rule and Its Connection to the Closed Orbits of Bertrand's Theorem

    NASA Technical Reports Server (NTRS)

    Christodoulou, Dimitris M.; Kazanas, Demosthenes

    2017-01-01

    We consider the geometric Titius-Bode rule for the semimajor axes of planetary orbits. We derive an equivalent rule for the midpoints of the segments between consecutive orbits along the radial direction and we interpret it physically in terms of the work done in the gravitational field of the Sun by particles whose orbits are perturbed around each planetary orbit. On such energetic grounds, it is not surprising that some exoplanets in multiple-planet extrasolar systems obey the same relation. However, it is surprising that this simple interpretation of the Titius-Bode rule also reveals new properties of the bound closed orbits predicted by Bertrand's theorem, which has been known since 1873.

  10. A physical interpretation of the Titius-Bode rule and its connection to the closed orbits of Bertrandʼs theorem

    NASA Astrophysics Data System (ADS)

    Christodoulou, Dimitris M.; Kazanas, Demosthenes

    2017-12-01

    We consider the geometric Titius-Bode rule for the semimajor axes of planetary orbits. We derive an equivalent rule for the midpoints of the segments between consecutive orbits along the radial direction and we interpret it physically in terms of the work done in the gravitational field of the Sun by particles whose orbits are perturbed around each planetary orbit. On such energetic grounds, it is not surprising that some exoplanets in multiple-planet extrasolar systems obey the same relation. However, it is surprising that this simple interpretation of the Titius-Bode rule also reveals new properties of the bound closed orbits predicted by Bertrand’s theorem, which has been known since 1873.

  11. The usefulness of Poynting's theorem in magnetic turbulence

    NASA Astrophysics Data System (ADS)

    Treumann, Rudolf A.; Baumjohann, Wolfgang

    2017-12-01

    We rewrite Poynting's theorem, already used in a previous publication Treumann and Baumjohann (2017a) to derive relations between the turbulent magnetic and electric power spectral densities, to make explicit where the mechanical contributions enter. We then make explicit use of the relativistic transformation of the turbulent electric fluctuations to obtain expressions which depend only on the magnetic and velocity fluctuations. Any electric fluctuations play just an intermediate role. Equations are constructed for the turbulent conductivity spectrum in Alfvénic and non-Alfvénic turbulence in extension of the results in the above citation. An observation-based discussion of their use in application to solar wind turbulence is given. The inertial range solar wind turbulence exhibits signs of chaos and self-organization.

  12. A Generalization of the Karush-Kuhn-Tucker Theorem for Approximate Solutions of Mathematical Programming Problems Based on Quadratic Approximation

    NASA Astrophysics Data System (ADS)

    Voloshinov, V. V.

    2018-03-01

    In computations related to mathematical programming problems, one often has to consider approximate, rather than exact, solutions satisfying the constraints of the problem and the optimality criterion with a certain error. For determining stopping rules for iterative procedures, in the stability analysis of solutions with respect to errors in the initial data, etc., a justified characteristic of such solutions that is independent of the numerical method used to obtain them is needed. A necessary δ-optimality condition in the smooth mathematical programming problem that generalizes the Karush-Kuhn-Tucker theorem for the case of approximate solutions is obtained. The Lagrange multipliers corresponding to the approximate solution are determined by solving an approximating quadratic programming problem.

  13. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    NASA Astrophysics Data System (ADS)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  14. A Proposal for Testing Local Realism Without Using Assumptions Related to Hidden Variable States

    NASA Technical Reports Server (NTRS)

    Ryff, Luiz Carlos

    1996-01-01

    A feasible experiment is discussed which allows us to prove a Bell's theorem for two particles without using an inequality. The experiment could be used to test local realism against quantum mechanics without the introduction of additional assumptions related to hidden variables states. Only assumptions based on direct experimental observation are needed.

  15. Computing relative plate velocities: a primer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevis, M.

    1987-08-01

    Standard models of present-day plate motions are framed in terms of rates and poles of rotation, in accordance with the well-known theorem due to Euler. This article shows how computation of relative plate velocities from such models can be viewed as a simple problem in spherical trigonometry. A FORTRAN subroutine is provided to perform the necessary computations.

  16. Possible violation of the optical theorem in LHC experiments

    NASA Astrophysics Data System (ADS)

    Kupczynski, M.

    2014-12-01

    The optical theorem (OT), allowing the determination of the total cross section for a hadron-hadron scattering from the imaginary part of the forward elastic scattering amplitude, is believed to be an unavoidable consequence of the conservation of probability and of the unitary S matrix. This is a fundamental theorem which contains an imaginary part of the forward elastic scattering amplitude that is not directly measurable. The impossibility of scattering phenomena without the elastic channel is considered to be a part of the quantum magic. However, if one takes seriously the idea that the hadrons are extended particles, one may define a unitary S matrix such that one cannot prove the OT. Moreover, data violating the OT do exist, but they are not conclusive due to the uncertainties related to the extrapolation of the differential elastic cross-section to the forward direction. These results were published several years ago, but they were forgotten. In this paper we will recall these results in an understandable way, and we will give the additional arguments why the OT can be violated in high energy strong interaction scattering and why it should be tested and not simply used as a tool in LHC experiments.

  17. The new electromagnetic tetrads, infinite tetrad nesting and the non-trivial emergence of complex numbers in real theories of gravitation

    NASA Astrophysics Data System (ADS)

    Garat, Alcides

    How complex numbers get into play in a non-trivial way in real theories of gravitation is relevant since in a unified structure they should be able to relate in a natural way with quantum theories. For a long time this issue has been lingering on both relativistic formulations and quantum theories. We will analyze this fundamental subject under the light of new group isomorphism theorems linking local internal groups of transformations and local groups of spacetime transformations. The bridge between these two kinds of transformations is represented by new tetrads introduced previously. It is precisely through these local tetrad structures that we will provide a non-trivial answer to this old issue. These new tetrads have two fundamental building components, the skeletons and the gauge vectors. It is these constructive elements that provide the mathematical support that allows to prove group isomorphism theorems. In addition to this, we will prove a unique new property, the infinite tetrad nesting, alternating the nesting with non-Abelian tetrads in the construction of the tetrad gauge vectors. As an application we will demonstrate an alternative proof of a new group isomorphism theorem.

  18. Crystallization in Two Dimensions and a Discrete Gauss-Bonnet Theorem

    NASA Astrophysics Data System (ADS)

    De Luca, L.; Friesecke, G.

    2018-02-01

    We show that the emerging field of discrete differential geometry can be usefully brought to bear on crystallization problems. In particular, we give a simplified proof of the Heitmann-Radin crystallization theorem (Heitmann and Radin in J Stat Phys 22(3):281-287, 1980), which concerns a system of N identical atoms in two dimensions interacting via the idealized pair potential V(r)=+∞ if r<1, -1 if r=1, 0 if r>1. This is done by endowing the bond graph of a general particle configuration with a suitable notion of discrete curvature, and appealing to a discrete Gauss-Bonnet theorem (Knill in Elem Math 67:1-7, 2012) which, as its continuous cousins, relates the sum/integral of the curvature to topological invariants. This leads to an exact geometric decomposition of the Heitmann-Radin energy into (i) a combinatorial bulk term, (ii) a combinatorial perimeter, (iii) a multiple of the Euler characteristic, and (iv) a natural topological energy contribution due to defects. An analogous exact geometric decomposition is also established for soft potentials such as the Lennard-Jones potential V(r)=r^{-6}-2r^{-12}, where two additional contributions arise, (v) elastic energy and (vi) energy due to non-bonded interactions.

  19. The generalized second law implies a quantum singularity theorem

    NASA Astrophysics Data System (ADS)

    Wall, Aron C.

    2013-08-01

    The generalized second law can be used to prove a singularity theorem, by generalizing the notion of a trapped surface to quantum situations. Like Penrose’s original singularity theorem, it implies that spacetime is null-geodesically incomplete inside black holes, and to the past of spatially infinite Friedmann-Robertson-Walker cosmologies. If space is finite instead, the generalized second law requires that there only be a finite amount of entropy producing processes in the past, unless there is a reversal of the arrow of time. In asymptotically flat spacetime, the generalized second law also rules out traversable wormholes, negative masses, and other forms of faster-than-light travel between asymptotic regions, as well as closed timelike curves. Furthermore it is impossible to form baby universes which eventually become independent of the mother universe, or to restart inflation. Since the semiclassical approximation is used only in regions with low curvature, it is argued that the results may hold in full quantum gravity. The introduction describes the second law and its time-reverse, in ordinary and generalized thermodynamics, using either the fine-grained or the coarse-grained entropy. (The fine-grained version is used in all results except those relating to the arrow of time.)

  20. Estimation of the neural drive to the muscle from surface electromyograms

    NASA Astrophysics Data System (ADS)

    Hofmann, David

    Muscle force is highly correlated with the standard deviation of the surface electromyogram (sEMG) produced by the active muscle. Correctly estimating this quantity of non-stationary sEMG and understanding its relation to neural drive and muscle force is of paramount importance. The single constituents of the sEMG are called motor unit action potentials whose biphasic amplitude can interfere (named amplitude cancellation), potentially affecting the standard deviation (Keenan etal. 2005). However, when certain conditions are met the Campbell-Hardy theorem suggests that amplitude cancellation does not affect the standard deviation. By simulation of the sEMG, we verify the applicability of this theorem to myoelectric signals and investigate deviations from its conditions to obtain a more realistic setting. We find no difference in estimated standard deviation with and without interference, standing in stark contrast to previous results (Keenan etal. 2008, Farina etal. 2010). Furthermore, since the theorem provides us with the functional relationship between standard deviation and neural drive we conclude that complex methods based on high density electrode arrays and blind source separation might not bear substantial advantages for neural drive estimation (Farina and Holobar 2016). Funded by NIH Grant Number 1 R01 EB022872 and NSF Grant Number 1208126.

  1. A Microsoft® Excel Simulation Illustrating the Central Limit Theorem's Appropriateness for Comparing the Difference between the Means of Any Two Populations

    ERIC Educational Resources Information Center

    Moen, David H.; Powell, John E.

    2008-01-01

    Using Microsoft® Excel, several interactive, computerized learning modules are developed to illustrate the Central Limit Theorem's appropriateness for comparing the difference between the means of any two populations. These modules are used in the classroom to enhance the comprehension of this theorem as well as the concepts that provide the…

  2. Optimal Repairman Allocation Models

    DTIC Science & Technology

    1976-03-01

    state X under policy ir. Then lim {k1’ lC0 (^)I) e.(X,k) - 0 k*0 *’-’ (3.1.1) Proof; The result is proven by induction on |CQ(X...following theorem. Theorem 3.1 D. Under the conditions of theorem 3.1 A, define g1[ 1) (X) - g^U), then lim k- lC0 W l-mle (XHkl00^ Ig*11 (X

  3. A Converse of Fermat's Little Theorem

    ERIC Educational Resources Information Center

    Bruckman, P. S.

    2007-01-01

    As the name of the paper implies, a converse of Fermat's Little Theorem (FLT) is stated and proved. FLT states the following: if p is any prime, and x any integer, then x[superscript p] [equivalent to] x (mod p). There is already a well-known converse of FLT, known as Lehmer's Theorem, which is as follows: if x is an integer coprime with m, such…

  4. Bayes' Theorem: An Old Tool Applicable to Today's Classroom Measurement Needs. ERIC/AE Digest.

    ERIC Educational Resources Information Center

    Rudner, Lawrence M.

    This digest introduces ways of responding to the call for criterion-referenced information using Bayes' Theorem, a method that was coupled with criterion-referenced testing in the early 1970s (see R. Hambleton and M. Novick, 1973). To illustrate Bayes' Theorem, an example is given in which the goal is to classify an examinee as being a master or…

  5. CONTRIBUTIONS TO RATIONAL APPROXIMATION,

    DTIC Science & Technology

    Some of the key results of linear Chebyshev approximation theory are extended to generalized rational functions. Prominent among these is Haar’s...linear theorem which yields necessary and sufficient conditions for uniqueness. Some new results in the classic field of rational function Chebyshev...Furthermore a Weierstrass type theorem is proven for rational Chebyshev approximation. A characterization theorem for rational trigonometric Chebyshev approximation in terms of sign alternation is developed. (Author)

  6. Some constructions of biharmonic maps and Chen’s conjecture on biharmonic hypersurfaces

    NASA Astrophysics Data System (ADS)

    Ou, Ye-Lin

    2012-04-01

    We give several construction methods and use them to produce many examples of proper biharmonic maps including biharmonic tori of any dimension in Euclidean spheres (Theorem 2.2, Corollaries 2.3, 2.4 and 2.6), biharmonic maps between spheres (Theorem 2.9) and into spheres (Theorem 2.10) via orthogonal multiplications and eigenmaps. We also study biharmonic graphs of maps, derive the equation for a function whose graph is a biharmonic hypersurface in a Euclidean space, and give an equivalent formulation of Chen's conjecture on biharmonic hypersurfaces by using the biharmonic graph equation (Theorem 4.1) which paves a way for the analytic study of the conjecture.

  7. Some theorems and properties of multi-dimensional fractional Laplace transforms

    NASA Astrophysics Data System (ADS)

    Ahmood, Wasan Ajeel; Kiliçman, Adem

    2016-06-01

    The aim of this work is to study theorems and properties for the one-dimensional fractional Laplace transform, generalize some properties for the one-dimensional fractional Lapalce transform to be valid for the multi-dimensional fractional Lapalce transform and is to give the definition of the multi-dimensional fractional Lapalce transform. This study includes: dedicate the one-dimensional fractional Laplace transform for functions of only one independent variable with some of important theorems and properties and develop of some properties for the one-dimensional fractional Laplace transform to multi-dimensional fractional Laplace transform. Also, we obtain a fractional Laplace inversion theorem after a short survey on fractional analysis based on the modified Riemann-Liouville derivative.

  8. Templates in Action

    ERIC Educational Resources Information Center

    Serow, Penelope; Inglis, Michaela

    2010-01-01

    Circle Geometry, a senior mathematics topic, is often regarded as time-consuming and associated relational concepts difficult for students to grasp. Units of work that introduce students to circle geometry theorems are frequently described as a string of tedious constructions. This article explores teacher-designed dynamic geometry software…

  9. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    NASA Astrophysics Data System (ADS)

    de Paor, A. M.

    Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.

  10. Density in a Planetary Exosphere

    NASA Technical Reports Server (NTRS)

    Herring, Jackson; Kyle, Herbert L.

    1961-01-01

    A discussion of the Opik-Singer theory of the density of a planetary exosphere is presented. Their density formula permits the calculation of the depth of the exosphere. Since the correctness of their derivation of the basic formula for the density distribution has been questioned, an alternate method based directly on Liouville's theorem is given. It is concluded that the Opik-Singer formula seems valid for the ballistic component of the exosphere; but for a complete description of the planetary exosphere, the ionized and bound-orbit components must also be included.

  11. Conservation laws and symmetries of a generalized Kawahara equation

    NASA Astrophysics Data System (ADS)

    Gandarias, Maria Luz; Rosa, Maria; Recio, Elena; Anco, Stephen

    2017-06-01

    The generalized Kawahara equation ut = a(t)uxxxxx + b(t)uxxx + c(t) f (u)ux appears in many physical applications. A complete classification of low-order conservation laws and point symmetries is obtained for this equation, which includes as a special case the usual Kawahara equation ut = αuux + βu2ux + γuxxx + μuxxxxx. A general connection between conservation laws and symmetries for the generalized Kawahara equation is derived through the Hamiltonian structure of this equation and its relationship to Noether's theorem using a potential formulation.

  12. Identifying and addressing specific student difficulties in advanced thermal physics

    NASA Astrophysics Data System (ADS)

    Smith, Trevor I.

    As part of an ongoing multi-university research study on student understanding of concepts in thermal physics at the upper division, I identified several student difficulties with topics related to heat engines (especially the Carnot cycle), as well as difficulties related to the Boltzmann factor. In an effort to address these difficulties, I developed two guided-inquiry worksheet activities (a.k.a. tutorials) for use in advanced undergraduate thermal physics courses. Both tutorials seek to improve student understanding of the utility and physical background of a particular mathematical expression. One tutorial focuses on a derivation of Carnot's theorem regarding the limit on thermodynamic efficiency, starting from the Second Law of Thermodynamics. The other tutorial helps students gain an appreciation for the origin of the Boltzmann factor and when it is applicable; focusing on the physical justification of its mathematical derivation, with emphasis on the connections between probability, multiplicity, entropy, and energy. Student understanding of the use and physical implications of Carnot's theorem and the Boltzmann factor was assessed using written surveys both before and after tutorial instruction within the advanced thermal physics courses at the University of Maine and at other institutions. Classroom tutorial sessions at the University of Maine were videotaped to allow in-depth scrutiny of student successes and failures following tutorial prompts. I also interviewed students on various topics related to the Boltzmann factor to gain a more complete picture of their understanding and inform tutorial revisions. Results from several implementations of my tutorials at the University of Maine indicate that students did not have a robust understanding of these physical principles after lectures alone, and that they gain a better understanding of relevant topics after tutorial instruction; Fisher's exact tests yield statistically significant improvement at the alpha = 0.05 level. Results from other schools indicate that difficulties observed before tutorial instruction in our classes (for both tutorials) are not unique, and that the Boltzmann factor tutorial can be an effective replacement for lecture instruction. Additional research is suggested that would further examine these difficulties and inform instructional strategies to help students overcome them.

  13. Does the Coase theorem hold in real markets? An application to the negotiations between waterworks and farmers in Denmark.

    PubMed

    Abildtrup, Jens; Jensen, Frank; Dubgaard, Alex

    2012-01-01

    The Coase theorem depends on a number of assumptions, among others, perfect information about each other's payoff function, maximising behaviour and zero transaction costs. An important question is whether the Coase theorem holds for real market transactions when these assumptions are violated. This is the question examined in this paper. We consider the results of Danish waterworks' attempts to establish voluntary cultivation agreements with Danish farmers. A survey of these negotiations shows that the Coase theorem is not robust in the presence of imperfect information, non-maximising behaviour and transaction costs. Thus, negotiations between Danish waterworks and farmers may not be a suitable mechanism to achieve efficiency in the protection of groundwater quality due to violations of the assumptions of the Coase theorem. The use of standard schemes or government intervention (e.g. expropriation) may, under some conditions, be a more effective and cost efficient approach for the protection of vulnerable groundwater resources in Denmark. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Universal relations for spin-orbit-coupled Fermi gas near an s -wave resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Sun, Ning

    2018-04-01

    Synthetic spin-orbit-coupled quantum gases have been widely studied both experimentally and theoretically in the past decade. As shown in previous studies, this modification of single-body dispersion will in general couple different partial waves of the two-body scattering and thus distort the wave function of few-body bound states which determines the short-distance behavior of many-body wave function. In this work, we focus on the two-component Fermi gas with one-dimensional or three-dimensional spin-orbit coupling (SOC) near an s -wave resonance. Using the method of effective field theory and the operator product expansion, we derive universal relations for both systems, including the adiabatic theorem, viral theorem, and pressure relation, and obtain the momentum distribution matrix 〈ψa†(q ) ψb(q ) 〉 at large q (a ,b are spin indices). The momentum distribution matrix shows both spin-dependent and spatial anisotropic features. And the large momentum tail is modified at the subleading order thanks to the SOC. We also discuss the experimental implication of these results depending on the realization of the SOC.

  15. Some functional limit theorems for compound Cox processes

    NASA Astrophysics Data System (ADS)

    Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.

    2016-06-01

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  16. Quantum Mechanics, Can It Be Consistent with Locality?

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Sestito, Angela

    2011-07-01

    We single out an alternative, strict interpretation of the Einstein-Podolsky-Rosen criterion of reality, and identify the implied extensions of quantum correlations. Then we prove that the theorem of Bell, and the non-locality theorems without inequalities, fail if the new extensions are adopted. Therefore, these theorems can be interpreted as arguments against the wide interpretation of the criterion of reality rather than as a violation of locality.

  17. Specification Improvement Through Analysis of Proof Structure (SITAPS): High Assurance Software Development

    DTIC Science & Technology

    2016-02-01

    proof in mathematics. For example, consider the proof of the Pythagorean Theorem illustrated at: http://www.cut-the-knot.org/ pythagoras / where 112...methods and tools have made significant progress in their ability to model software designs and prove correctness theorems about the systems modeled...assumption criticality” or “ theorem root set size” SITAPS detects potentially brittle verification cases. SITAPS provides tools and techniques that

  18. Delaunay Refinement Mesh Generation

    DTIC Science & Technology

    1997-05-18

    edge is locally Delaunay; thus, by Lemma 3, every edge is Delaunay. Theorem 5 Let V be a set of three or more vertices in the plane that are not all...this document. Delaunay triangulations are valuable in part because they have the following optimality properties. Theorem 6 Among all triangulations of...no locally Delaunay edges. By Theorem 5, a triangulation with no locally Delaunay edges is the Delaunay triangulation. The property of max-min

  19. Field Computation and Nonpropositional Knowledge.

    DTIC Science & Technology

    1987-09-01

    field computer It is based on xeneralization of Taylor’s theorem to continuous dimensional vector spaces. 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21...generalization of Taylor’s theorem to continuous dimensional vector -5paces A number of field computations are illustrated, including several Lransforma...paradigm. The "old" Al has been quite successful in performing a number of difficult tasks, such as theorem prov- ing, chess playing, medical diagnosis and

  20. Ignoring the Innocent: Non-combatants in Urban Operations and in Military Models and Simulations

    DTIC Science & Technology

    2006-01-01

    such a model yields is a sufficiency theorem , a single run does not provide any information on the robustness of such theorems . That is, given that...often formally resolvable via inspection, simple differentiation, the implicit function theorem , comparative statistics, and so on. The only way to... Pythagoras , and Bactowars. For each, Grieger discusses model parameters, data collection, terrain, and other features. Grieger also discusses

  1. Some functional limit theorems for compound Cox processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korolev, Victor Yu.; Institute of Informatics Problems FRC CSC RAS; Chertok, A. V.

    2016-06-08

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  2. Mean energy of some interacting bosonic systems derived by virtue of the generalized Hellmann-Feynman theorem

    NASA Astrophysics Data System (ADS)

    Fan, Hong-yi; Xu, Xue-xiang

    2009-06-01

    By virtue of the generalized Hellmann-Feynman theorem [H. Y. Fan and B. Z. Chen, Phys. Lett. A 203, 95 (1995)], we derive the mean energy of some interacting bosonic systems for some Hamiltonian models without proceeding with diagonalizing the Hamiltonians. Our work extends the field of applications of the Hellmann-Feynman theorem and may enrich the theory of quantum statistics.

  3. Reduction theorems for optimal unambiguous state discrimination of density matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raynal, Philippe; Luetkenhaus, Norbert; Enk, Steven J. van

    2003-08-01

    We present reduction theorems for the problem of optimal unambiguous state discrimination of two general density matrices. We show that this problem can be reduced to that of two density matrices that have the same rank n and are described in a Hilbert space of dimensions 2n. We also show how to use the reduction theorems to discriminate unambiguously between N mixed states (N{>=}2)

  4. Proof of factorization using background field method of QCD

    NASA Astrophysics Data System (ADS)

    Nayak, Gouranga C.

    2010-02-01

    Factorization theorem plays the central role at high energy colliders to study standard model and beyond standard model physics. The proof of factorization theorem is given by Collins, Soper and Sterman to all orders in perturbation theory by using diagrammatic approach. One might wonder if one can obtain the proof of factorization theorem through symmetry considerations at the lagrangian level. In this paper we provide such a proof.

  5. Proof of factorization using background field method of QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, Gouranga C.

    Factorization theorem plays the central role at high energy colliders to study standard model and beyond standard model physics. The proof of factorization theorem is given by Collins, Soper and Sterman to all orders in perturbation theory by using diagrammatic approach. One might wonder if one can obtain the proof of factorization theorem through symmetry considerations at the lagrangian level. In this paper we provide such a proof.

  6. Identification of Hot Moments and Hot Spots for Real-Time Adaptive Control of Multi-scale Environmental Sensor Networks

    NASA Astrophysics Data System (ADS)

    Wietsma, T.; Minsker, B. S.

    2012-12-01

    Increased sensor throughput combined with decreasing hardware costs has led to a disruptive growth in data volume. This disruption, popularly termed "the data deluge," has placed new demands for cyberinfrastructure and information technology skills among researchers in many academic fields, including the environmental sciences. Adaptive sampling has been well established as an effective means of improving network resource efficiency (energy, bandwidth) without sacrificing sample set quality relative to traditional uniform sampling. However, using adaptive sampling for the explicit purpose of improving resolution over events -- situations displaying intermittent dynamics and unique hydrogeological signatures -- is relatively new. In this paper, we define hot spots and hot moments in terms of sensor signal activity as measured through discrete Fourier analysis. Following this frequency-based approach, we apply the Nyquist-Shannon sampling theorem, a fundamental contribution from signal processing that led to the field of information theory, for analysis of uni- and multivariate environmental signal data. In the scope of multi-scale environmental sensor networks, we present several sampling control algorithms, derived from the Nyquist-Shannon theorem, that operate at local (field sensor), regional (base station for aggregation of field sensor data), and global (Cloud-based, computationally intensive models) scales. Evaluated over soil moisture data, results indicate significantly greater sample density during precipitation events while reducing overall sample volume. Using these algorithms as indicators rather than control mechanisms, we also discuss opportunities for spatio-temporal modeling as a tool for planning/modifying sensor network deployments. Locally adaptive model based on Nyquist-Shannon sampling theorem Pareto frontiers for local, regional, and global models relative to uniform sampling. Objectives are (1) overall sampling efficiency and (2) sampling efficiency during hot moments as identified using heuristic approach.

  7. A generalized measurement equation and van Cittert-Zernike theorem for wide-field radio astronomical interferometry

    NASA Astrophysics Data System (ADS)

    Carozzi, T. D.; Woan, G.

    2009-05-01

    We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard `Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.

  8. An analysis of the convergence of Newton iterations for solving elliptic Kepler's equation

    NASA Astrophysics Data System (ADS)

    Elipe, A.; Montijano, J. I.; Rández, L.; Calvo, M.

    2017-12-01

    In this note a study of the convergence properties of some starters E_0 = E_0(e,M) in the eccentricity-mean anomaly variables for solving the elliptic Kepler's equation (KE) by Newton's method is presented. By using a Wang Xinghua's theorem (Xinghua in Math Comput 68(225):169-186, 1999) on best possible error bounds in the solution of nonlinear equations by Newton's method, we obtain for each starter E_0(e,M) a set of values (e,M) \\in [0, 1) × [0, π ] that lead to the q-convergence in the sense that Newton's sequence (E_n)_{n ≥ 0} generated from E_0 = E_0(e,M) is well defined, converges to the exact solution E^* = E^*(e,M) of KE and further \\vert E_n - E^* \\vert ≤ q^{2^n -1} \\vert E_0 - E^* \\vert holds for all n ≥ 0. This study completes in some sense the results derived by Avendaño et al. (Celest Mech Dyn Astron 119:27-44, 2014) by using Smale's α -test with q=1/2. Also since in KE the convergence rate of Newton's method tends to zero as e → 0, we show that the error estimates given in the Wang Xinghua's theorem for KE can also be used to determine sets of q-convergence with q = e^k \\widetilde{q} for all e \\in [0,1) and a fixed \\widetilde{q} ≤ 1. Some remarks on the use of this theorem to derive a priori estimates of the error \\vert E_n - E^* \\vert after n Kepler's iterations are given. Finally, a posteriori bounds of this error that can be used to a dynamical estimation of the error are also obtained.

  9. Some Geometric Inequalities Relating to an Interior Point in Triangle

    ERIC Educational Resources Information Center

    Wu, Yu-Dong; Zhang, Zhi-Hua; Liang, Chun-Lei

    2010-01-01

    In this short note, by using one of Li and Liu's theorems [K.-H. Li, "The solution of CIQ. 39," "Commun. Stud. Inequal." 11(1) (2004), p. 162 (in Chinese)], "s-R-r" method, Cauchy's inequality and the theory of convex function, we solve some geometric inequalities conjectures relating to an interior point in triangle. (Contains 1 figure.)

  10. Fuchsian triangle groups and Grothendieck dessins. Variations on a theme of Belyi

    NASA Astrophysics Data System (ADS)

    Cohen, Paula Beazley; Itzykson, Claude; Wolfart, Jürgen

    1994-07-01

    According to a theorem of Belyi, a smooth projective algebraic curve is defined over a number field if and only if there exists a non-constant element of its function field ramified only over 0, 1 and . The existence of such a Belyi function is equivalent to that of a representation of the curve as a possibly compactified quotient space of the Poincaré upper half plane by a subgroup of finite index in a Fuchsian triangle group. On the other hand, Fuchsian triangle groups arise in many contexts, such as in the theory of hypergeometric functions and certain triangular billiard problems, which would appear at first sight to have no relation to the Galois problems that motivated the above discovery of Belyi. In this note we review several results related to Belyi's theorem and we develop certain aspects giving examples. For preliminary accounts, see the preprint [Wo1], the conference proceedings article [BauItz] and the Comptes Rendus note [CoWo2].

  11. Infinite Set of Soft Theorems in Gauge-Gravity Theories as Ward-Takahashi Identities

    NASA Astrophysics Data System (ADS)

    Hamada, Yuta; Shiu, Gary

    2018-05-01

    We show that the soft photon, gluon, and graviton theorems can be understood as the Ward-Takahashi identities of large gauge transformation, i.e., diffeomorphism that does not fall off at spatial infinity. We found infinitely many new identities which constrain the higher order soft behavior of the gauge bosons and gravitons in scattering amplitudes of gauge and gravity theories. Diagrammatic representations of these soft theorems are presented.

  12. Teaching the Jahn-Teller Theorem: A Simple Exercise That Illustrates How the Magnitude of Distortion Depends on the Number of Electrons and Their Occupation of the Degenerate Energy Level

    ERIC Educational Resources Information Center

    Johansson, Adam Johannes

    2013-01-01

    Teaching the Jahn-Teller theorem offers several challenges. For many students, the first encounter comes in coordination chemistry, which can be difficult due to the already complicated nature of transition-metal complexes. Moreover, a deep understanding of the Jahn-Teller theorem requires that one is well acquainted with quantum mechanics and…

  13. Research on Quantum Algorithms at the Institute for Quantum Information

    DTIC Science & Technology

    2009-10-17

    accuracy threshold theorem for the one-way quantum computer. Their proof is based on a novel scheme, in which a noisy cluster state in three spatial...detected. The proof applies to independent stochastic noise but (in contrast to proofs of the quantum accuracy threshold theorem based on concatenated...proved quantum threshold theorems for long-range correlated non-Markovian noise, for leakage faults, for the one-way quantum computer, for postselected

  14. Deductive Synthesis of the Unification Algorithm,

    DTIC Science & Technology

    1981-06-01

    DEDUCTIVE SYNTHESIS OF THE I - UNIFICATION ALGORITHM Zohar Manna Richard Waldinger I F? Computer Science Department Artificial Intelligence Center...theorem proving," Artificial Intelligence Journal, Vol. 9, No. 1, pp. 1-35. Boyer, R. S. and J S. Moore [Jan. 19751, "Proving theorems about LISP...d’Intelligence Artificielle , U.E.R. de Luminy, Universit6 d’ Aix-Marseille II. Green, C. C. [May 1969], "Application of theorem proving to problem

  15. Generalized Synchronization in AN Array of Nonlinear Dynamic Systems with Applications to Chaotic Cnn

    NASA Astrophysics Data System (ADS)

    Min, Lequan; Chen, Guanrong

    This paper establishes some generalized synchronization (GS) theorems for a coupled discrete array of difference systems (CDADS) and a coupled continuous array of differential systems (CCADS). These constructive theorems provide general representations of GS in CDADS and CCADS. Based on these theorems, one can design GS-driven CDADS and CCADS via appropriate (invertible) transformations. As applications, the results are applied to autonomous and nonautonomous coupled Chen cellular neural network (CNN) CDADS and CCADS, discrete bidirectional Lorenz CNN CDADS, nonautonomous bidirectional Chua CNN CCADS, and nonautonomously bidirectional Chen CNN CDADS and CCADS, respectively. Extensive numerical simulations show their complex dynamic behaviors. These theorems provide new means for understanding the GS phenomena of complex discrete and continuously differentiable networks.

  16. Common Coupled Fixed Point Theorems for Two Hybrid Pairs of Mappings under φ-ψ Contraction

    PubMed Central

    Handa, Amrish

    2014-01-01

    We introduce the concept of (EA) property and occasional w-compatibility for hybrid pair F : X × X → 2X and f : X → X. We also introduce common (EA) property for two hybrid pairs F, G : X → 2X and f, g : X → X. We establish some common coupled fixed point theorems for two hybrid pairs of mappings under φ-ψ contraction on noncomplete metric spaces. An example is also given to validate our results. We improve, extend and generalize several known results. The results of this paper generalize the common fixed point theorems for hybrid pairs of mappings and essentially contain fixed point theorems for hybrid pair of mappings. PMID:27340688

  17. Transactions of the Conference of Army Mathematicians (25th).

    DTIC Science & Technology

    1980-01-01

    pothesis (see description of H in Theorem 1). It follows from (4.16) and (4.17) that CT v Hv(4.18) CFT < MCT V V and, since the greatest eigenvalue of H is...0 (3.15)’ 𔃺 2 (ar) = 0 -138- Tr1W 𔃾A WlO (0,T) = a + 2 t1 W ( , T) = - - 2 r H* f* (3.16)� 2 W12 ( CfT ) = f 2 O T at + (a212) Hi - 2 If* 12 3 W2...Theorem 8.10 and Theorem 8.11. For these tables, use of (8.36) to get bounds for I aml is not possible. It will be noted that Theorems 8.10 and 8.11 give

  18. Lindeberg theorem for Gibbs-Markov dynamics

    NASA Astrophysics Data System (ADS)

    Denker, Manfred; Senti, Samuel; Zhang, Xuan

    2017-12-01

    A dynamical array consists of a family of functions \\{ fn, i: 1≤slant i≤slant k_n, n≥slant 1\\} and a family of initial times \\{τn, i: 1≤slant i≤slant k_n, n≥slant 1\\} . For a dynamical system (X, T) we identify distributional limits for sums of the form for suitable (non-random) constants s_n>0 and an, i\\in { R} . We derive a Lindeberg-type central limit theorem for dynamical arrays. Applications include new central limit theorems for functions which are not locally Lipschitz continuous and central limit theorems for statistical functions of time series obtained from Gibbs-Markov systems. Our results, which hold for more general dynamics, are stated in the context of Gibbs-Markov dynamical systems for convenience.

  19. A reciprocal theorem for a mixture theory. [development of linearized theory of interacting media

    NASA Technical Reports Server (NTRS)

    Martin, C. J.; Lee, Y. M.

    1972-01-01

    A dynamic reciprocal theorem for a linearized theory of interacting media is developed. The constituents of the mixture are a linear elastic solid and a linearly viscous fluid. In addition to Steel's field equations, boundary conditions and inequalities on the material constants that have been shown by Atkin, Chadwick and Steel to be sufficient to guarantee uniqueness of solution to initial-boundary value problems are used. The elements of the theory are given and two different boundary value problems are considered. The reciprocal theorem is derived with the aid of the Laplace transform and the divergence theorem and this section is concluded with a discussion of the special cases which arise when one of the constituents of the mixture is absent.

  20. A Theorem on the Rank of a Product of Matrices with Illustration of Its Use in Goodness of Fit Testing.

    PubMed

    Satorra, Albert; Neudecker, Heinz

    2015-12-01

    This paper develops a theorem that facilitates computing the degrees of freedom of Wald-type chi-square tests for moment restrictions when there is rank deficiency of key matrices involved in the definition of the test. An if and only if (iff) condition is developed for a simple rule of difference of ranks to be used when computing the desired degrees of freedom of the test. The theorem is developed exploiting basics tools of matrix algebra. The theorem is shown to play a key role in proving the asymptotic chi-squaredness of a goodness of fit test in moment structure analysis, and in finding the degrees of freedom of this chi-square statistic.

  1. Making Temporal Logic Calculational: A Tool for Unification and Discovery

    NASA Astrophysics Data System (ADS)

    Boute, Raymond

    In temporal logic, calculational proofs beyond simple cases are often seen as challenging. The situation is reversed by making temporal logic calculational, yielding shorter and clearer proofs than traditional ones, and serving as a (mental) tool for unification and discovery. A side-effect of unifying theories is easier access by practicians. The starting point is a simple generic (software tool independent) Functional Temporal Calculus (FTC). Specific temporal logics are then captured via endosemantic functions. This concept reflects tacit conventions throughout mathematics and, once identified, is general and useful. FTC also yields a reasoning style that helps discovering theorems by calculation rather than just proving given facts. This is illustrated by deriving various theorems, most related to liveness issues in TLA+, and finding strengthenings of known results. Educational issues are addressed in passing.

  2. On the Lagrangian description of dissipative systems

    NASA Astrophysics Data System (ADS)

    Martínez-Pérez, N. E.; Ramírez, C.

    2018-03-01

    We consider the Lagrangian formulation with duplicated variables of dissipative mechanical systems. The application of Noether theorem leads to physical observable quantities which are not conserved, like energy and angular momentum, and conserved quantities, like the Hamiltonian, that generate symmetry transformations and do not correspond to observables. We show that there are simple relations among the equations satisfied by these two types of quantities. In the case of the damped harmonic oscillator, from the quantities obtained by the Noether theorem follows the algebra of Feshbach and Tikochinsky. Furthermore, if we consider the whole dynamics, the degrees of freedom separate into a physical and an unphysical sector. We analyze several cases, with linear and nonlinear dissipative forces; the physical consistency of the solutions is ensured, observing that the unphysical sector has always the trivial solution.

  3. Spheres, charges, instantons, and bootstrap: A five-dimensional odyssey

    NASA Astrophysics Data System (ADS)

    Chang, Chi-Ming; Fluder, Martin; Lin, Ying-Hsuan; Wang, Yifan

    2018-03-01

    We combine supersymmetric localization and the conformal bootstrap to study five-dimensional superconformal field theories. To begin, we classify the admissible counter-terms and derive a general relation between the five-sphere partition function and the conformal and flavor central charges. Along the way, we discover a new superconformal anomaly in five dimensions. We then propose a precise triple factorization formula for the five-sphere partition function, that incorporates instantons and is consistent with flavor symmetry enhancement. We numerically evaluate the central charges for the rank-one Seiberg and Morrison-Seiberg theories, and find strong evidence for their saturation of bootstrap bounds, thereby determining the spectra of long multiplets in these theories. Lastly, our results provide new evidence for the F-theorem and possibly a C-theorem in five-dimensional superconformal theories.

  4. Adaptive Fuzzy Control Design for Stochastic Nonlinear Switched Systems With Arbitrary Switchings and Unmodeled Dynamics.

    PubMed

    Li, Yongming; Sui, Shuai; Tong, Shaocheng

    2017-02-01

    This paper deals with the problem of adaptive fuzzy output feedback control for a class of stochastic nonlinear switched systems. The controlled system in this paper possesses unmeasured states, completely unknown nonlinear system functions, unmodeled dynamics, and arbitrary switchings. A state observer which does not depend on the switching signal is constructed to tackle the unmeasured states. Fuzzy logic systems are employed to identify the completely unknown nonlinear system functions. Based on the common Lyapunov stability theory and stochastic small-gain theorem, a new robust adaptive fuzzy backstepping stabilization control strategy is developed. The stability of the closed-loop system on input-state-practically stable in probability is proved. The simulation results are given to verify the efficiency of the proposed fuzzy adaptive control scheme.

  5. The range and valence of a real Smirnov function

    NASA Astrophysics Data System (ADS)

    Ferguson, Timothy; Ross, William T.

    2018-02-01

    We give a complete description of the possible ranges of real Smirnov functions (quotients of two bounded analytic functions on the open unit disk where the denominator is outer and such that the radial boundary values are real almost everywhere on the unit circle). Our techniques use the theory of unbounded symmetric Toeplitz operators, some general theory of unbounded symmetric operators, classical Hardy spaces, and an application of the uniformization theorem. In addition, we completely characterize the possible valences for these real Smirnov functions when the valence is finite. To do so we construct Riemann surfaces we call disk trees by welding together copies of the unit disk and its complement in the Riemann sphere. We also make use of certain trees we call valence trees that mirror the structure of disk trees.

  6. Boundary Regularity for the Porous Medium Equation

    NASA Astrophysics Data System (ADS)

    Björn, Anders; Björn, Jana; Gianazza, Ugo; Siljander, Juhana

    2018-05-01

    We study the boundary regularity of solutions to the porous medium equation {u_t = Δ u^m} in the degenerate range {m > 1} . In particular, we show that in cylinders the Dirichlet problem with positive continuous boundary data on the parabolic boundary has a solution which attains the boundary values, provided that the spatial domain satisfies the elliptic Wiener criterion. This condition is known to be optimal, and it is a consequence of our main theorem which establishes a barrier characterization of regular boundary points for general—not necessarily cylindrical—domains in {{R}^{n+1}} . One of our fundamental tools is a new strict comparison principle between sub- and superparabolic functions, which makes it essential for us to study both nonstrict and strict Perron solutions to be able to develop a fruitful boundary regularity theory. Several other comparison principles and pasting lemmas are also obtained. In the process we obtain a rather complete picture of the relation between sub/superparabolic functions and weak sub/supersolutions.

  7. Generalized Entanglement Entropies of Quantum Designs.

    PubMed

    Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun

    2018-03-30

    The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.

  8. At the dawn of geodesy

    NASA Astrophysics Data System (ADS)

    Fischer, Irene K.

    1981-06-01

    The first land surveyors were rope stretchers and rope knotters, remembered in ancient documents and tomb paintings and also in some terminology. The L-shaped carpenter’s square, one of the earliest and most versatile basic tools, represents the observed direction of the plumb line versus the water level and appears as the shadow-casting gnomon and also as the geometrical gnomon in magically-restricted enlargements of altars. The related “Pythagorean” theorem was known in antiquity centuries before Pythagoras, with algebraic proofs in Babylonia and China. The spherical shape of the earth, deduced from the observation of circumpolar stars, was part of a complete equatorial astronomical system in ancient China. But although shadow measurements were generally used to establish north-south distances, only the Greeks derived from them the size of the earth. The striking difference between the abstract, geometric approach of Greece and the concrete, algebraic approach of Babylonia and China represents not a difference in talents but a difference in culture-bound interests.

  9. Generalized Entanglement Entropies of Quantum Designs

    NASA Astrophysics Data System (ADS)

    Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun

    2018-03-01

    The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.

  10. The embedding problem in topological dynamics and Takens’ theorem

    NASA Astrophysics Data System (ADS)

    Gutman, Yonatan; Qiao, Yixiao; Szabó, Gábor

    2018-02-01

    We prove that every {Z}k -action (X, {Z}k, T) of mean dimension less than D/2 admitting a factor (Y, {Z}k, S) of Rokhlin dimension not greater than L embeds in (([0, 1](L+1)D){\\hspace{0pt}}{Zk}× Y, σ× S) , where D\\in{N} , L\\in{N}\\cup\\{0\\} and σ is the shift on the Hilbert cube ([0, 1](L+1)D){\\hspace{0pt}}{Zk} ; in particular, when (Y, {Z}k, S) is an irrational {Z}k -rotation on the k-torus, (X, {Z}k, T) embeds in (([0, 1]2^kD+1){\\hspace{0pt}}{Z^k}, σ) , which is compared to a previous result in Gutman, Lindenstrauss and Tsukamoto (2016 Geom. Funct. Anal. 3 778-817). Moreover, we give a complete and detailed proof of Takens’ embedding theorem with a continuous observable for {Z} -actions and deduce the analogous result for {Z}k -actions. Lastly, we show that the Lindenstrauss-Tsukamoto conjecture for {Z} -actions holds generically, discuss an analogous conjecture for {Z}k -actions in Gutman, Qiao and Tsukamoto (2017 arXiv:1709.00125) and verify it for {Z}k -actions on finite dimensional spaces.

  11. Lift and drag in three-dimensional steady viscous and compressible flow

    NASA Astrophysics Data System (ADS)

    Liu, L. Q.; Wu, J. Z.; Su, W. D.; Kang, L. L.

    2017-11-01

    In a recent paper, Liu, Zhu, and Wu ["Lift and drag in two-dimensional steady viscous and compressible flow," J. Fluid Mech. 784, 304-341 (2015)] present a force theory for a body in a two-dimensional, viscous, compressible, and steady flow. In this companion paper, we do the same for three-dimensional flows. Using the fundamental solution of the linearized Navier-Stokes equations, we improve the force formula for incompressible flows originally derived by Goldstein in 1931 and summarized by Milne-Thomson in 1968, both being far from complete, to its perfect final form, which is further proved to be universally true from subsonic to supersonic flows. We call this result the unified force theorem, which states that the forces are always determined by the vector circulation Γϕ of longitudinal velocity and the scalar inflow Qψ of transverse velocity. Since this theorem is not directly observable either experimentally or computationally, a testable version is also derived, which, however, holds only in the linear far field. We name this version the testable unified force formula. After that, a general principle to increase the lift-drag ratio is proposed.

  12. Vague Congruences and Quotient Lattice Implication Algebras

    PubMed Central

    Qin, Xiaoyan; Xu, Yang

    2014-01-01

    The aim of this paper is to further develop the congruence theory on lattice implication algebras. Firstly, we introduce the notions of vague similarity relations based on vague relations and vague congruence relations. Secondly, the equivalent characterizations of vague congruence relations are investigated. Thirdly, the relation between the set of vague filters and the set of vague congruences is studied. Finally, we construct a new lattice implication algebra induced by a vague congruence, and the homomorphism theorem is given. PMID:25133207

  13. Stochastic thermodynamics, fluctuation theorems and molecular machines.

    PubMed

    Seifert, Udo

    2012-12-01

    Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation-dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production.

  14. Pythagoras and Four Colours

    ERIC Educational Resources Information Center

    Unal, Hasan

    2008-01-01

    One way to teach Pythagoras' Theorem is through use of puzzles. Marshall (2004:1) points out that, "in creating their individual solutions to puzzles, students may reveal mathematical thinking on which approaches to the standard curriculum could be based." This article describes a puzzle-like spatial structuring activity related to…

  15. Tomographic Processing of Synthetic Aperture Radar Signals for Enhanced Resolution

    DTIC Science & Technology

    1989-11-01

    to image 3 larger scenes, this problem becomes more important. A byproduct of this investigation is a duality theorem which is a generalization of the...well-known Projection-Slice Theorem . The second prob- - lem proposed is that of imaging a rapidly-spinning object, for example in inverse SAR mode...slices is absent. There is a possible connection of the word to the Projection-Slice Theorem , but, as seen in Chapter 4, even this is absent in the

  16. Existence and discrete approximation for optimization problems governed by fractional differential equations

    NASA Astrophysics Data System (ADS)

    Bai, Yunru; Baleanu, Dumitru; Wu, Guo-Cheng

    2018-06-01

    We investigate a class of generalized differential optimization problems driven by the Caputo derivative. Existence of weak Carathe ´odory solution is proved by using Weierstrass existence theorem, fixed point theorem and Filippov implicit function lemma etc. Then a numerical approximation algorithm is introduced, and a convergence theorem is established. Finally, a nonlinear programming problem constrained by the fractional differential equation is illustrated and the results verify the validity of the algorithm.

  17. Generalized Fourier slice theorem for cone-beam image reconstruction.

    PubMed

    Zhao, Shuang-Ren; Jiang, Dazong; Yang, Kevin; Yang, Kang

    2015-01-01

    The cone-beam reconstruction theory has been proposed by Kirillov in 1961, Tuy in 1983, Feldkamp in 1984, Smith in 1985, Pierre Grangeat in 1990. The Fourier slice theorem is proposed by Bracewell 1956, which leads to the Fourier image reconstruction method for parallel-beam geometry. The Fourier slice theorem is extended to fan-beam geometry by Zhao in 1993 and 1995. By combining the above mentioned cone-beam image reconstruction theory and the above mentioned Fourier slice theory of fan-beam geometry, the Fourier slice theorem in cone-beam geometry is proposed by Zhao 1995 in short conference publication. This article offers the details of the derivation and implementation of this Fourier slice theorem for cone-beam geometry. Especially the problem of the reconstruction from Fourier domain has been overcome, which is that the value of in the origin of Fourier space is 0/0. The 0/0 type of limit is proper handled. As examples, the implementation results for the single circle and two perpendicular circle source orbits are shown. In the cone-beam reconstruction if a interpolation process is considered, the number of the calculations for the generalized Fourier slice theorem algorithm is O(N^4), which is close to the filtered back-projection method, here N is the image size of 1-dimension. However the interpolation process can be avoid, in that case the number of the calculations is O(N5).

  18. Stable sequential Kuhn-Tucker theorem in iterative form or a regularized Uzawa algorithm in a regular nonlinear programming problem

    NASA Astrophysics Data System (ADS)

    Sumin, M. I.

    2015-06-01

    A parametric nonlinear programming problem in a metric space with an operator equality constraint in a Hilbert space is studied assuming that its lower semicontinuous value function at a chosen individual parameter value has certain subdifferentiability properties in the sense of nonlinear (nonsmooth) analysis. Such subdifferentiability can be understood as the existence of a proximal subgradient or a Fréchet subdifferential. In other words, an individual problem has a corresponding generalized Kuhn-Tucker vector. Under this assumption, a stable sequential Kuhn-Tucker theorem in nondifferential iterative form is proved and discussed in terms of minimizing sequences on the basis of the dual regularization method. This theorem provides necessary and sufficient conditions for the stable construction of a minimizing approximate solution in the sense of Warga in the considered problem, whose initial data can be approximately specified. A substantial difference of the proved theorem from its classical same-named analogue is that the former takes into account the possible instability of the problem in the case of perturbed initial data and, as a consequence, allows for the inherited instability of classical optimality conditions. This theorem can be treated as a regularized generalization of the classical Uzawa algorithm to nonlinear programming problems. Finally, the theorem is applied to the "simplest" nonlinear optimal control problem, namely, to a time-optimal control problem.

  19. Quality correction factors of composite IMRT beam deliveries: theoretical considerations.

    PubMed

    Bouchard, Hugo

    2012-11-01

    In the scope of intensity modulated radiation therapy (IMRT) dosimetry using ionization chambers, quality correction factors of plan-class-specific reference (PCSR) fields are theoretically investigated. The symmetry of the problem is studied to provide recommendable criteria for composite beam deliveries where correction factors are minimal and also to establish a theoretical limit for PCSR delivery k(Q) factors. The concept of virtual symmetric collapsed (VSC) beam, being associated to a given modulated composite delivery, is defined in the scope of this investigation. Under symmetrical measurement conditions, any composite delivery has the property of having a k(Q) factor identical to its associated VSC beam. Using this concept of VSC, a fundamental property of IMRT k(Q) factors is demonstrated in the form of a theorem. The sensitivity to the conditions required by the theorem is thoroughly examined. The theorem states that if a composite modulated beam delivery produces a uniform dose distribution in a volume V(cyl) which is symmetric with the cylindrical delivery and all beams fulfills two conditions in V(cyl): (1) the dose modulation function is unchanged along the beam axis, and (2) the dose gradient in the beam direction is constant for a given lateral position; then its associated VSC beam produces no lateral dose gradient in V(cyl), no matter what beam modulation or gantry angles are being used. The examination of the conditions required by the theorem lead to the following results. The effect of the depth-dose gradient not being perfectly constant with depth on the VSC beam lateral dose gradient is found negligible. The effect of the dose modulation function being degraded with depth on the VSC beam lateral dose gradient is found to be only related to scatter and beam hardening, as the theorem holds also for diverging beams. The use of the symmetry of the problem in the present paper leads to a valuable theorem showing that k(Q) factors of composite IMRT beam deliveries are close to unity under specific conditions. The theoretical limit k(Q(pcsr),Q(msr) ) (f(pcsr),f(msr) )=1 is determined based on the property of PCSR deliveries to provide a uniform dose in the target volume. The present approach explains recent experimental observations and proposes ideal conditions for IMRT reference dosimetry. The result of this study could potentially serve as a theoretical basis for reference dosimetry of composite IMRT beam deliveries or for routine IMRT quality assurance.

  20. Special ergodic theorems and dynamical large deviations

    NASA Astrophysics Data System (ADS)

    Kleptsyn, Victor; Ryzhov, Dmitry; Minkov, Stanislav

    2012-11-01

    Let f : M → M be a self-map of a compact Riemannian manifold M, admitting a global SRB measure μ. For a continuous test function \\varphi\\colon M\\to R and a constant α > 0, consider the set Kφ,α of the initial points for which the Birkhoff time averages of the function φ differ from its μ-space average by at least α. As the measure μ is a global SRB one, the set Kφ,α should have zero Lebesgue measure. The special ergodic theorem, whenever it holds, claims that, moreover, this set has a Hausdorff dimension less than the dimension of M. We prove that for Lipschitz maps, the special ergodic theorem follows from the dynamical large deviations principle. We also define and prove analogous result for flows. Applying the theorems of Young and of Araújo and Pacifico, we conclude that the special ergodic theorem holds for transitive hyperbolic attractors of C2-diffeomorphisms, as well as for some other known classes of maps (including the one of partially hyperbolic non-uniformly expanding maps) and flows.

  1. Heuristic analogy in Ars Conjectandi: From Archimedes' De Circuli Dimensione to Bernoulli's theorem.

    PubMed

    Campos, Daniel G

    2018-02-01

    This article investigates the way in which Jacob Bernoulli proved the main mathematical theorem that undergirds his art of conjecturing-the theorem that founded, historically, the field of mathematical probability. It aims to contribute a perspective into the question of problem-solving methods in mathematics while also contributing to the comprehension of the historical development of mathematical probability. It argues that Bernoulli proved his theorem by a process of mathematical experimentation in which the central heuristic strategy was analogy. In this context, the analogy functioned as an experimental hypothesis. The article expounds, first, Bernoulli's reasoning for proving his theorem, describing it as a process of experimentation in which hypothesis-making is crucial. Next, it investigates the analogy between his reasoning and Archimedes' approximation of the value of π, by clarifying both Archimedes' own experimental approach to the said approximation and its heuristic influence on Bernoulli's problem-solving strategy. The discussion includes some general considerations about analogy as a heuristic technique to make experimental hypotheses in mathematics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A Stochastic Version of the Noether Theorem

    NASA Astrophysics Data System (ADS)

    González Lezcano, Alfredo; Cabo Montes de Oca, Alejandro

    2018-06-01

    A stochastic version of the Noether theorem is derived for systems under the action of external random forces. The concept of moment generating functional is employed to describe the symmetry of the stochastic forces. The theorem is applied to two kinds of random covariant forces. One of them generated in an electrodynamic way and the other is defined in the rest frame of the particle as a function of the proper time. For both of them, it is shown the conservation of the mean value of a random drift momentum. The validity of the theorem makes clear that random systems can produce causal stochastic correlations between two faraway separated systems, that had interacted in the past. In addition possible connections of the discussion with the Ives Couder's experimental results are remarked.

  3. Noether’s second theorem and Ward identities for gauge symmetries

    DOE PAGES

    Avery, Steven G.; Schwab, Burkhard U. W.

    2016-02-04

    Recently, a number of new Ward identities for large gauge transformations and large diffeomorphisms have been discovered. Some of the identities are reinterpretations of previously known statements, while some appear to be genuinely new. We present and use Noether’s second theorem with the path integral as a powerful way of generating these kinds of Ward identities. We reintroduce Noether’s second theorem and discuss how to work with the physical remnant of gauge symmetry in gauge fixed systems. We illustrate our mechanism in Maxwell theory, Yang-Mills theory, p-form field theory, and Einstein-Hilbert gravity. We comment on multiple connections between Noether’s secondmore » theorem and known results in the recent literature. Finally, our approach suggests a novel point of view with important physical consequences.« less

  4. A mathematical proof and example that Bayes's Theorem is fundamental to actuarial estimates of sexual recidivism risk.

    PubMed

    Donaldson, Theodore; Wollert, Richard

    2008-06-01

    Expert witnesses in sexually violent predator (SVP) cases often rely on actuarial instruments to make risk determinations. Many questions surround their use, however. Bayes's Theorem holds much promise for addressing these questions. Some experts nonetheless claim that Bayesian analyses are inadmissible in SVP cases because they are not accepted by the relevant scientific community. This position is illogical because Bayes's Theorem is simply a probabilistic restatement of the way that frequency data are combined to arrive at whatever recidivism rates are paired with each test score in an actuarial table. This article presents a mathematical proof and example validating this assertion. The advantages and implications of a logic model that combines Bayes's Theorem and the null hypothesis are also discussed.

  5. Sharp comparison theorems for the Klein-Gordon equation in d dimensions

    NASA Astrophysics Data System (ADS)

    Hall, Richard L.; Zorin, Petr

    2016-06-01

    We establish sharp (or ’refined’) comparison theorems for the Klein-Gordon equation. We show that the condition Va ≤ Vb, which leads to Ea ≤ Eb, can be replaced by the weaker assumption Ua ≤ Ub which still implies the spectral ordering Ea ≤ Eb. In the simplest case, for d = 1, Ui(x) =∫0xV i(t)dt, i = a or b and for d > 1, Ui(r) =∫0rV i(t)td-1dt, i = a or b. We also consider sharp comparison theorems in the presence of a scalar potential S (a ‘variable mass’) in addition to the vector term V (the time component of a four-vector). The theorems are illustrated by a variety of explicit detailed examples.

  6. Large deviation theory for the kinetics and energetics of turnover of enzyme catalysis in a chemiostatic flow.

    PubMed

    Das, Biswajit; Gangopadhyay, Gautam

    2018-05-07

    In the framework of large deviation theory, we have characterized nonequilibrium turnover statistics of enzyme catalysis in a chemiostatic flow with externally controllable parameters, like substrate injection rate and mechanical force. In the kinetics of the process, we have shown the fluctuation theorems in terms of the symmetry of the scaled cumulant generating function (SCGF) in the transient and steady state regime and a similar symmetry rule is reflected in a large deviation rate function (LDRF) as a property of the dissipation rate through boundaries. Large deviation theory also gives the thermodynamic force of a nonequilibrium steady state, as is usually recorded experimentally by a single molecule technique, which plays a key role responsible for the dynamical symmetry of the SCGF and LDRF. Using some special properties of the Legendre transformation, here, we have provided a relation between the fluctuations of fluxes and dissipation rates, and among them, the fluctuation of the turnover rate is routinely estimated but the fluctuation in the dissipation rate is yet to be characterized for small systems. Such an enzymatic reaction flow system can be a very good testing ground to systematically understand the rare events from the large deviation theory which is beyond fluctuation theorem and central limit theorem.

  7. Large deviation theory for the kinetics and energetics of turnover of enzyme catalysis in a chemiostatic flow

    NASA Astrophysics Data System (ADS)

    Das, Biswajit; Gangopadhyay, Gautam

    2018-05-01

    In the framework of large deviation theory, we have characterized nonequilibrium turnover statistics of enzyme catalysis in a chemiostatic flow with externally controllable parameters, like substrate injection rate and mechanical force. In the kinetics of the process, we have shown the fluctuation theorems in terms of the symmetry of the scaled cumulant generating function (SCGF) in the transient and steady state regime and a similar symmetry rule is reflected in a large deviation rate function (LDRF) as a property of the dissipation rate through boundaries. Large deviation theory also gives the thermodynamic force of a nonequilibrium steady state, as is usually recorded experimentally by a single molecule technique, which plays a key role responsible for the dynamical symmetry of the SCGF and LDRF. Using some special properties of the Legendre transformation, here, we have provided a relation between the fluctuations of fluxes and dissipation rates, and among them, the fluctuation of the turnover rate is routinely estimated but the fluctuation in the dissipation rate is yet to be characterized for small systems. Such an enzymatic reaction flow system can be a very good testing ground to systematically understand the rare events from the large deviation theory which is beyond fluctuation theorem and central limit theorem.

  8. Modeling scattering enhancements at isolated resonances using energy conservation, reciprocity, symmetry, and the optical theorem

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.; Osterhoudt, Curtis F.

    2003-04-01

    Sound scattered by some objects in water exhibits isolated narrow resonances that are sufficiently large in amplitude to dominate the low-frequency scattering. Examples include the quadrupole mode of thin spherical shells and of solid plastic spheres [B. T. Hefner and P. L. Marston, J. Acoust. Soc. Am. 107, 1930-1936 (2000)] and organ-pipe modes of water-filled pipes [C. F. Osterhoudt and P. L. Marston, J. Acoust. Soc. Am. 110, 2773 (2001)]. This presentation concerns simple methods for approximating the scattering. In the case of spheres, ray theory for the backscattering reduces to a simple form for high-Q modes: Eq. (58) of Marston [J. Acoust. Soc. Am. 83, 25-37 (1988)]. This result gives the backscattering form function at resonance (in the usual normalization) to have the magnitude 2(2n+1)/ka. Here n is the partial wave index associated with the mode of the sphere and ka is the product of the wave number and the sphere radius. This result may also be derived directly from energy conservation and the optical theorem. Scattering amplitudes associated with high-Q organ pipe resonances of open cylindrical pipes are also derived here by a related method using the energy conservation, reciprocity, symmetry, and the optical theorem.

  9. Necessary and sufficient conditions for the stability of a sleeping top described by three forms of dynamic equations

    NASA Astrophysics Data System (ADS)

    Ge, Zheng-Ming

    2008-04-01

    Necessary and sufficient conditions for the stability of a sleeping top described by dynamic equations of six state variables, Euler equations, and Poisson equations, by a two-degree-of-freedom system, Krylov equations, and by a one-degree-of-freedom system, nutation angle equation, is obtained by the Lyapunov direct method, Ge-Liu second instability theorem, an instability theorem, and a Ge-Yao-Chen partial region stability theorem without using the first approximation theory altogether.

  10. Twelve years before the quantum no-cloning theorem

    NASA Astrophysics Data System (ADS)

    Ortigoso, Juan

    2018-03-01

    The celebrated quantum no-cloning theorem establishes the impossibility of making a perfect copy of an unknown quantum state. The discovery of this important theorem for the field of quantum information is currently dated 1982. I show here that an article published in 1970 [J. L. Park, Found. Phys. 1, 23-33 (1970)] contained an explicit mathematical proof of the impossibility of cloning quantum states. I analyze Park's demonstration in the light of published explanations concerning the genesis of the better-known papers on no-cloning.

  11. Analytic solution and pulse area theorem for three-level atoms

    NASA Astrophysics Data System (ADS)

    Shchedrin, Gavriil; O'Brien, Chris; Rostovtsev, Yuri; Scully, Marlan O.

    2015-12-01

    We report an analytic solution for a three-level atom driven by arbitrary time-dependent electromagnetic pulses. In particular, we consider far-detuned driving pulses and show an excellent match between our analytic result and the numerical simulations. We use our solution to derive a pulse area theorem for three-level V and Λ systems without making the rotating wave approximation. Formulated as an energy conservation law, this pulse area theorem can be used to understand pulse propagation through three-level media.

  12. A Pseudo-Reversing Theorem for Rotation and its Application to Orientation Theory

    DTIC Science & Technology

    2012-03-01

    approach to the task of constructing the appropriate course a ship must steer in order for the wind to appear to come from some given direction with some...axes, although the theorem doesn’t actually require such axes. The Pseudo-Reversing Theorem can often be invoked to give a different pedagogical basis to...of validity will quickly become obvious when it’s implemented on a computer. It does not seem to me that a great deal of pedagogical effort has found

  13. Naval Research Logistics Quarterly. Volume 28. Number 1,

    DTIC Science & Technology

    1981-03-01

    doing %%e forfeit the contraction property and must base our analysis on other procedures t)ualit. theor. and the Perron - Frobenius theorem are the main...and the Perron - Frobenius theorem (see Varga [16] or Seneta 1141). 2. NOTATION AND PRELIMINARY RESULTS Let v and v be two vectors. Write x > .j...x). If P is a square matrix, p(P) will denote the spectral radius of P. If P > 0 and square then the Perron - Frobenius theorem gives us that Pv = p(P)x

  14. Quantum Theory of Jaynes' Principle, Bayes' Theorem, and Information

    NASA Astrophysics Data System (ADS)

    Haken, Hermann

    2014-12-01

    After a reminder of Jaynes' maximum entropy principle and of my quantum theoretical extension, I consider two coupled quantum systems A,B and formulate a quantum version of Bayes' theorem. The application of Feynman's disentangling theorem allows me to calculate the conditional density matrix ρ (A|B) , if system A is an oscillator (or a set of them), linearly coupled to an arbitrary quantum system B. Expectation values can simply be calculated by means of the normalization factor of ρ (A|B) that is derived.

  15. Advanced Wireless Integrated Navy Network

    DTIC Science & Technology

    2005-03-01

    transmitter and the receiver (do), the height of the setup above the floor can be estimated using Pythagoras ’ theorem : 4 The destination’s deck can also...single-unit resource model. Theorem I (RUA’s Blocking Time) Under RUA with the single-unit resource model, a task T, can be blocked for at most the...wait-free objects. Theorem 2 (Comparison of RUA’s Sojourn Times) Under RUA, as the critical section tac: of a task T, becomes longer, the difference

  16. Event Oriented Design and Adaptive Multiprocessing

    DTIC Science & Technology

    1991-08-31

    System 5 2.3 The Classification 5 2.4 Real-Time Systems 7 2.5 Non Real-Time Systems 10 2.6 Common Characterizations of all Software Systems 10 2.7... Non -Optimal Guarantee Test Theorem 37 6.3.2 Chetto’s Optimal Guarantee Test Theorem 37 6.3.3 Multistate Case: An Extended Guarantee 39 Test Theorem...which subdivides all software systems according to the way in which they operate, such as interactive, non interactive, real-time, etc. Having defined

  17. Hiproofs

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Power, John

    2003-01-01

    We introduce a hierarchical notion of formal proof, useful in the implementation of theorem provers, which we call highproofs. Two alternative definitions are given, motivated by existing notations used in theorem proving research. We define transformations between these two forms of hiproof, develop notions of underlying proof, and give a suitable definition of refinement in order to model incremental proof development. We show that our transformations preserve both underlying proofs and refinement. The relationship of our theory to existing theorem proving systems is discussed, as is its future extension.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yong, E-mail: 83229994@qq.com; Ge, Hao, E-mail: haoge@pku.edu.cn; Xiong, Jie, E-mail: jiexiong@umac.mo

    Fluctuation theorem is one of the major achievements in the field of nonequilibrium statistical mechanics during the past two decades. There exist very few results for steady-state fluctuation theorem of sample entropy production rate in terms of large deviation principle for diffusion processes due to the technical difficulties. Here we give a proof for the steady-state fluctuation theorem of a diffusion process in magnetic fields, with explicit expressions of the free energy function and rate function. The proof is based on the Karhunen-Loève expansion of complex-valued Ornstein-Uhlenbeck process.

  19. Introduction to Electrodynamics

    NASA Astrophysics Data System (ADS)

    Griffiths, David J.

    2017-06-01

    1. Vector analysis; 2. Electrostatics; 3. Potentials; 4. Electric fields in matter; 5. Magnetostatics; 6. Magnetic fields in matter; 7. Electrodynamics; 8. Conservation laws; 9. Electromagnetic waves; 10. Potentials and fields; 11. Radiation; 12. Electrodynamics and relativity; Appendix A. Vector calculus in curvilinear coordinates; Appendix B. The Helmholtz theorem; Appendix C. Units; Index.

  20. CALCULATION OF ELECTRON AFFINITIES OF POLYCYCLIC AROMATIC HYDROCARBONS AND SOVATION ENERGIES OF THEIR ANIONS

    EPA Science Inventory

    Electron affinities (EAs) and free energies for electron attachment have been calculated for 42 polynuclear aromatic hydrocarbons and related molecules by a variety of theoretical models, including Koopmans' theorem methods and the L1E method from differences in energy between th...

Top