Sample records for complex abcc8 dna

  1. Mutational analysis of ABCC8, KCNJ11, GLUD1, HNF4A and GCK genes in 30 Chinese patients with congenital hyperinsulinism.

    PubMed

    Sang, Yanmei; Xu, Zidi; Liu, Min; Yan, Jie; Wu, Yujun; Zhu, Cheng; Ni, Guichen

    2014-01-01

    We conducted a cohort study to elucidate the molecular spectrum of congenital hyperinsulinism (CHI) in Chinese pediatric patients. Thirty Chinese children with CHI were chosen as research subjects, 16 of whom were responsive to diazoxide and 13 of whom were not (1 patient was not given the drug for medical reasons). All exons of the adenosine triphosphate (ATP)-sensitive potassium channel (KATP channel) genes KCNJ11 and ABCC8, the hepatocyte nuclear factor 4 α (HNF4A) gene, and the Glucokinase (GCK) gene as well as exons 6 and 7 and 10-12 of the glutamate dehydrogenase 1 (GLUD1) gene were amplified from genomic DNA and directly sequenced. Mutations were identified in 14 of 30 patients (47%): 3 in GLUD1 (10%) and 11 in the KATP channel genes (37%). Six patients had paternally derived monoallelic KATP channel mutations predictive of the focal CHI form. We found a novel de novo ABCC8 mutation, p. C1000*, a novel paternally inherited ABCC8 mutation, D1505H, and a dominantly inherited ABCC8 mutation, R1217K. The GLUD1 activating mutation R269H was found in 2 patients: 1 de novo and the other paternally inherited. A de novo S445L mutation was found in 1 patient. No significant HNF4A or GCK mutations were found. CHI has complex genetic onset mechanisms. Paternally inherited monoallelic mutations of ABCC8 and KCNJ11 are likely the main causes of KATP-CHI in Chinese patients. Glutamate dehydrogenase-CHI is the second most common cause of CHI, while HNF4A and GCK are rare types of CHI in Chinese patients.

  2. Reversal of platinum drug resistance by the histone deacetylase inhibitor belinostat.

    PubMed

    To, Kenneth Kin-Wah; Tong, Wing-Sum; Fu, Li-Wu

    2017-01-01

    To investigate and elucidate the mechanism for the potentiation of cisplatin anticancer activity by belinostat in platinum (Pt)-resistant lung cancer cells. Combination of cisplatin and belinostat was investigated in two pairs of parental and cisplatin-resistant non-small cell lung cancer (NSCLC) cell lines. The Pt-resistant cell models exhibited overexpression of the efflux transporter ABCC2 and enhanced DNA repair capacity. Cellular accumulation of cisplatin and extent of DNA platination were measured by inductively coupled plasma optical emission spectrometer. Expression of Pt transporters and DNA repair gene were determined by quantitative real-time PCR. Inhibition of ABCC2 transport activity was examined by flow cytometric assay. Regulation of ABCC2 at the promoter level was studied by chromatin immunoprecipitation assay. In Pt-resistant lung cancer cells, belinostat apparently circumvent the resistance through inhibition of both ABCC2 and DNA repair-mediated mechanisms. The combination of belinostat and cisplatin were found to display synergistic cytotoxic effect in cisplatin-resistant lung cancer cell lines when the two drugs were added concomitantly or when belinostat was given before cisplatin. Upon the concomitant administration of belinostat, cellular accumulation of cisplatin and formation of DNA-Pt adducts were found to be increased whereas expression levels of the efflux transporter ABCC2 and the DNA repair gene ERCC1 were inhibited in Pt-resistant cells. Belinostat-mediated downregulation of ABCC2 was associated with an increase association of a transcriptional repressor (negative cofactor 2) but reduced association of a transcriptional activator (TFIIB) to the ABCC2 promoter. The data advocates the use of belinostat as a novel drug resistance reversal agent for use in combination cancer chemotherapeutic regimens. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Human multidrug resistance protein 8 (MRP8/ABCC11), an apical efflux pump for steroid sulfates, is an axonal protein of the CNS and peripheral nervous system.

    PubMed

    Bortfeld, M; Rius, M; König, J; Herold-Mende, C; Nies, A T; Keppler, D

    2006-01-01

    Dehydroepiandrosterone 3-sulfate and other neurosteroids are synthesized in the CNS and peripheral nervous system where they may modulate neuronal excitability by interacting with ligand-gated ion channels. For this modulatory activity, neurosteroids have to be locally released from either neurons or glial cells. We here identify the integral membrane protein ABCC11 (multidrug resistance protein 8) as an ATP-dependent efflux pump for steroid sulfates, including dehydroepiandrosterone 3-sulfate, and localize it to axons of the human CNS and peripheral nervous system. ABCC11 mRNA was detected in human brain by real-time polymerase chain reaction. Antibodies raised against ABCC11 served to detect the protein in brain by immunoblotting and immunofluorescence microscopy. ABCC11 was preferentially found in the white matter of the brain and co-localized with neurofilaments indicating that it is an axonal protein. Additionally, ABCC11 was localized to axons of the peripheral nervous system. For functional studies, ABCC11 was expressed in polarized Madin-Darby canine kidney cells where it was sorted to the apical membrane. This apical sorting is in accordance with the localization of ABCC11 to the axonal membrane of neurons. Inside-out plasma membrane vesicles containing recombinant ABCC11 mediated ATP-dependent transport of dehydroepiandrosterone 3-sulfate with a Km value of 21 microM. This transport function together with the localization of the ABCC11 protein in vicinity to GABAA receptors is consistent with a role of ABCC11 in dehydroepiandrosterone 3-sulfate release from neurons to sites of dehydroepiandrosterone 3-sulfate-mediated receptor modulation. Our findings may provide a basis for the characterization of mutations in the human ABCC11 gene and their linkage with neurological disorders.

  4. Targeted Ablation of the Abcc6 Gene Results in Ectopic Mineralization of Connective Tissues

    PubMed Central

    Klement, John F.; Matsuzaki, Yasushi; Jiang, Qiu-Jie; Terlizzi, Joseph; Choi, Hae Young; Fujimoto, Norihiro; Li, Kehua; Pulkkinen, Leena; Birk, David E.; Sundberg, John P.; Uitto, Jouni

    2005-01-01

    Pseudoxanthoma elasticum (PXE), characterized by connective tissue mineralization of the skin, eyes, and cardiovascular system, is caused by mutations in the ABCC6 gene. ABCC6 encodes multidrug resistance-associated protein 6 (MRP6), which is expressed primarily in the liver and kidneys. Mechanisms producing ectopic mineralization as a result of these mutations remain unclear. To elucidate this complex disease, a transgenic mouse was generated by targeted ablation of the mouse Abcc6 gene. Abcc6 null mice were negative for Mrp6 expression in the liver, and complete necropsies revealed profound mineralization of several tissues, including skin, arterial blood vessels, and retina, while heterozygous animals were indistinguishable from the wild-type mice. Particularly striking was the mineralization of vibrissae, as confirmed by von Kossa and alizarin red stains. Electron microscopy revealed mineralization affecting both elastic structures and collagen fibers. Mineralization of vibrissae was noted as early as 5 weeks of age and was progressive with age in Abcc6−/− mice but was not observed in Abcc6+/− or Abcc6+/+ mice up to 2 years of age. A total body computerized tomography scan of Abcc6−/− mice revealed mineralization in skin and subcutaneous tissue as well as in the kidneys. These data demonstrate aberrant mineralization of soft tissues in PXE-affected organs, and, consequently, these mice recapitulate features of this complex disease. PMID:16135817

  5. Genotype and phenotype correlations in Iranian patients with hyperinsulinaemic hypoglycaemia.

    PubMed

    Senniappan, Senthil; Sadeghizadeh, Atefeh; Flanagan, Sarah E; Ellard, Sian; Hashemipour, Mahin; Hosseinzadeh, Majid; Salehi, Mansour; Hussain, Khalid

    2015-08-13

    Hyperinsulinaemic hypoglycaemia (HH) is a group of clinically and genetically heterogeneous disorders characterized by unregulated insulin secretion. Abnormalities in nine different genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A, UCP2 and HNF1A) have been reported in HH, the most common being ABCC8 and KCNJ11. We describe the genetic aetiology and phenotype of Iranian patients with HH. Retrospective clinical, biochemical and genetic information was collected on 23 patients with biochemically confirmed HH. Mutation analysis was carried out for the ATP-sensitive potassium (K(ATP)) channel genes (ABCC8 and KCNJ11), GLUD1, GCK, HADH and HNF4A. 78% of the patients were identified to have a genetic cause for HH. 48% of patients had mutation in HADH, whilst ABCC8/KCNJ11 mutations were identified in 30% of patients. Among the diazoxide-responsive patients (18/23), mutations were identified in 72%. These include two novel homozygous ABCC8 mutations. Of the five patients with diazoxide-unresponsive HH, three had homozygous ABCC8 mutation, one had heterozygous ABCC8 mutation inherited from an unaffected father and one had homozygous KCNJ11 mutation. 52% of children in our cohort were born to consanguineous parents. Patients with ABCC8/KCNJ11 mutations were noted to be significantly heavier than those with HADH mutation (p = 0.002). Our results revealed neurodevelopmental deficits in 30% and epilepsy in 52% of all patients. To the best of our knowledge, this is the first study of its kind in Iran. We found disease-causing mutations in 78% of HH patients. The predominance of HADH mutation might be due to a high incidence of consanguineous marriage in this population. Further research involving a larger cohort of HH patients is required in Iranian population.

  6. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat.

    PubMed

    Bhati, Kaushal K; Sharma, Shivani; Aggarwal, Sipla; Kaur, Mandeep; Shukla, Vishnu; Kaur, Jagdeep; Mantri, Shrikant; Pandey, Ajay K

    2015-01-01

    The ABCC multidrug resistance associated proteins (ABCC-MRP), a subclass of ABC transporters are involved in multiple physiological processes that include cellular homeostasis, metal detoxification, and transport of glutathione-conjugates. Although they are well-studied in humans, yeast, and Arabidopsis, limited efforts have been made to address their possible role in crop like wheat. In the present work, 18 wheat ABCC-MRP proteins were identified that showed the uniform distribution with sub-families from rice and Arabidopsis. Organ-specific quantitative expression analysis of wheat ABCC genes indicated significantly higher accumulation in roots (TaABCC2, TaABCC3, and TaABCC11 and TaABCC12), stem (TaABCC1), leaves (TaABCC16 and TaABCC17), flag leaf (TaABCC14 and TaABCC15), and seeds (TaABCC6, TaABCC8, TaABCC12, TaABCC13, and TaABCC17) implicating their role in the respective tissues. Differential transcript expression patterns were observed for TaABCC genes during grain maturation speculating their role during seed development. Hormone treatment experiments indicated that some of the ABCC genes could be transcriptionally regulated during seed development. In the presence of Cd or hydrogen peroxide, distinct molecular expression of wheat ABCC genes was observed in the wheat seedlings, suggesting their possible role during heavy metal generated oxidative stress. Functional characterization of the wheat transporter, TaABCC13 a homolog of maize LPA1 confirms its role in glutathione-mediated detoxification pathway and is able to utilize adenine biosynthetic intermediates as a substrate. This is the first comprehensive inventory of wheat ABCC-MRP gene subfamily.

  7. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat

    PubMed Central

    Bhati, Kaushal K.; Sharma, Shivani; Aggarwal, Sipla; Kaur, Mandeep; Shukla, Vishnu; Kaur, Jagdeep; Mantri, Shrikant; Pandey, Ajay K.

    2015-01-01

    The ABCC multidrug resistance associated proteins (ABCC-MRP), a subclass of ABC transporters are involved in multiple physiological processes that include cellular homeostasis, metal detoxification, and transport of glutathione-conjugates. Although they are well-studied in humans, yeast, and Arabidopsis, limited efforts have been made to address their possible role in crop like wheat. In the present work, 18 wheat ABCC-MRP proteins were identified that showed the uniform distribution with sub-families from rice and Arabidopsis. Organ-specific quantitative expression analysis of wheat ABCC genes indicated significantly higher accumulation in roots (TaABCC2, TaABCC3, and TaABCC11 and TaABCC12), stem (TaABCC1), leaves (TaABCC16 and TaABCC17), flag leaf (TaABCC14 and TaABCC15), and seeds (TaABCC6, TaABCC8, TaABCC12, TaABCC13, and TaABCC17) implicating their role in the respective tissues. Differential transcript expression patterns were observed for TaABCC genes during grain maturation speculating their role during seed development. Hormone treatment experiments indicated that some of the ABCC genes could be transcriptionally regulated during seed development. In the presence of Cd or hydrogen peroxide, distinct molecular expression of wheat ABCC genes was observed in the wheat seedlings, suggesting their possible role during heavy metal generated oxidative stress. Functional characterization of the wheat transporter, TaABCC13 a homolog of maize LPA1 confirms its role in glutathione-mediated detoxification pathway and is able to utilize adenine biosynthetic intermediates as a substrate. This is the first comprehensive inventory of wheat ABCC-MRP gene subfamily. PMID:26191068

  8. MDR-1 and MRP2 Gene Polymorphisms in Mexican Epileptic Pediatric Patients with Complex Partial Seizures.

    PubMed

    Escalante-Santiago, David; Feria-Romero, Iris Angélica; Ribas-Aparicio, Rosa María; Rayo-Mares, Dario; Fagiolino, Pietro; Vázquez, Marta; Escamilla-Núñez, Consuelo; Grijalva-Otero, Israel; López-García, Miguel Angel; Orozco-Suárez, Sandra

    2014-01-01

    Although the Pgp efflux transport protein is overexpressed in resected tissue of patients with epilepsy, the presence of polymorphisms in MDR1/ABCB1 and MRP2/ABCC2 in patients with antiepileptic-drugs resistant epilepsy (ADR) is controversial. The aim of this study was to perform an exploratory study to identify nucleotide changes and search new and reported mutations in patients with ADR and patients with good response (CTR) to antiepileptic drugs (AEDs) in a rigorously selected population. We analyzed 22 samples In Material and Methods, from drug-resistant patients with epilepsy and 7 samples from patients with good response to AEDs. Genomic DNA was obtained from leukocytes. Eleven exons in both genes were genotyped. The concentration of drugs in saliva and plasma was determined. The concentration of valproic acid in saliva was lower in ADR than in CRT. In ABCB1, five reported SNPs and five unreported nucleotide changes were identified; rs2229109 (GA) and rs2032582 (AT and AG) were found only in the ADR. Of six SNPs associated with the ABCC2 that were found in the study population, rs3740066 (TT) and 66744T > A (TG) were found only in the ADR. The strongest risk factor in the ABCB1 gene was identified as the TA genotype of rs2032582, whereas for the ABCC2 gene the strongest risk factor was the T allele of rs3740066. The screening of SNPs in ACBC1 and ABCC2 indicates that the Mexican patients with epilepsy in this study display frequently reported ABCC1 polymorphisms; however, in the study subjects with a higher risk factor for drug resistance, new nucleotide changes were found in the ABCC2 gene. Thus, the population of Mexican patients with AED-resistant epilepsy (ADR) used in this study exhibits genetic variability with respect to those reported in other study populations; however, it is necessary to explore this polymorphism in a larger population of patients with ADR.

  9. MDR-1 and MRP2 Gene Polymorphisms in Mexican Epileptic Pediatric Patients with Complex Partial Seizures

    PubMed Central

    Escalante-Santiago, David; Feria-Romero, Iris Angélica; Ribas-Aparicio, Rosa María; Rayo-Mares, Dario; Fagiolino, Pietro; Vázquez, Marta; Escamilla-Núñez, Consuelo; Grijalva-Otero, Israel; López-García, Miguel Angel; Orozco-Suárez, Sandra

    2014-01-01

    Although the Pgp efflux transport protein is overexpressed in resected tissue of patients with epilepsy, the presence of polymorphisms in MDR1/ABCB1 and MRP2/ABCC2 in patients with antiepileptic-drugs resistant epilepsy (ADR) is controversial. The aim of this study was to perform an exploratory study to identify nucleotide changes and search new and reported mutations in patients with ADR and patients with good response (CTR) to antiepileptic drugs (AEDs) in a rigorously selected population. We analyzed 22 samples In Material and Methods, from drug-resistant patients with epilepsy and 7 samples from patients with good response to AEDs. Genomic DNA was obtained from leukocytes. Eleven exons in both genes were genotyped. The concentration of drugs in saliva and plasma was determined. The concentration of valproic acid in saliva was lower in ADR than in CRT. In ABCB1, five reported SNPs and five unreported nucleotide changes were identified; rs2229109 (GA) and rs2032582 (AT and AG) were found only in the ADR. Of six SNPs associated with the ABCC2 that were found in the study population, rs3740066 (TT) and 66744T > A (TG) were found only in the ADR. The strongest risk factor in the ABCB1 gene was identified as the TA genotype of rs2032582, whereas for the ABCC2 gene the strongest risk factor was the T allele of rs3740066. The screening of SNPs in ACBC1 and ABCC2 indicates that the Mexican patients with epilepsy in this study display frequently reported ABCC1 polymorphisms; however, in the study subjects with a higher risk factor for drug resistance, new nucleotide changes were found in the ABCC2 gene. Thus, the population of Mexican patients with AED-resistant epilepsy (ADR) used in this study exhibits genetic variability with respect to those reported in other study populations; however, it is necessary to explore this polymorphism in a larger population of patients with ADR. PMID:25346718

  10. Regionally clustered ABCC8 polymorphisms in a prospective cohort predict cerebral oedema and outcome in severe traumatic brain injury.

    PubMed

    Jha, Ruchira Menka; Koleck, Theresa A; Puccio, Ava M; Okonkwo, David O; Park, Seo-Young; Zusman, Benjamin E; Clark, Robert S B; Shutter, Lori A; Wallisch, Jessica S; Empey, Philip E; Kochanek, Patrick M; Conley, Yvette P

    2018-04-19

    ABCC8 encodes sulfonylurea receptor 1, a key regulatory protein of cerebral oedema in many neurological disorders including traumatic brain injury (TBI). Sulfonylurea-receptor-1 inhibition has been promising in ameliorating cerebral oedema in clinical trials. We evaluated whether ABCC8 tag single-nucleotide polymorphisms predicted oedema and outcome in TBI. DNA was extracted from 485 prospectively enrolled patients with severe TBI. 410 were analysed after quality control. ABCC8 tag single-nucleotide polymorphisms (SNPs) were identified (Hapmap, r 2 >0.8, minor-allele frequency >0.20) and sequenced (iPlex-Gold, MassArray). Outcomes included radiographic oedema, intracranial pressure (ICP) and 3-month Glasgow Outcome Scale (GOS) score. Proxy SNPs, spatial modelling, amino acid topology and functional predictions were determined using established software programs. Wild-type rs7105832 and rs2237982 alleles and genotypes were associated with lower average ICP (β=-2.91, p=0.001; β=-2.28, p=0.003) and decreased radiographic oedema (OR 0.42, p=0.012; OR 0.52, p=0.017). Wild-type rs2237982 also increased favourable 3-month GOS (OR 2.45, p=0.006); this was partially mediated by oedema (p=0.03). Different polymorphisms predicted 3-month outcome: variant rs11024286 increased (OR 1.84, p=0.006) and wild-type rs4148622 decreased (OR 0.40, p=0.01) the odds of favourable outcome. Significant tag and concordant proxy SNPs regionally span introns/exons 2-15 of the 39-exon gene. This study identifies four ABCC8 tag SNPs associated with cerebral oedema and/or outcome in TBI, tagging a region including 33 polymorphisms. In polymorphisms predictive of oedema, variant alleles/genotypes confer increased risk. Different variant polymorphisms were associated with favourable outcome, potentially suggesting distinct mechanisms. Significant polymorphisms spatially clustered flanking exons encoding the sulfonylurea receptor site and transmembrane domain 0/loop 0 (juxtaposing the channel pore/binding site). This, if validated, may help build a foundation for developing future strategies that may guide individualised care, treatment response, prognosis and patient selection for clinical trials. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Heterozygous ABCC8 mutations are a cause of MODY.

    PubMed

    Bowman, P; Flanagan, S E; Edghill, E L; Damhuis, A; Shepherd, M H; Paisey, R; Hattersley, A T; Ellard, S

    2012-01-01

    The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1) subunit of the pancreatic beta cell ATP-sensitive potassium (K(ATP)) channel. Inactivating mutations cause congenital hyperinsulinism (CHI) and activating mutations cause transient neonatal diabetes (TNDM) or permanent neonatal diabetes (PNDM) that can usually be treated with sulfonylureas. Sulfonylurea sensitivity is also a feature of HNF1A and HNF4A MODY, but patients referred for genetic testing with clinical features of these types of diabetes do not always have mutations in the HNF1A/4A genes. Our aim was to establish whether mutations in the ABCC8 gene cause MODY that is responsive to sulfonylurea therapy. We sequenced the ABCC8 gene in 85 patients with a BMI <30 kg/m², no family history of neonatal diabetes and who were deemed sensitive to sulfonylureas by the referring clinician or were sulfonylurea-treated. All had tested negative for mutations in the HNF1A and HNF4A genes. ABCC8 mutations were found in seven of the 85 (8%) probands. Four patients were heterozygous for previously reported mutations and four novel mutations, E100K, G214R, Q485R and N1245D, were identified. Only four probands fulfilled MODY criteria, with two diagnosed after 25 years and one patient, who had no family history of diabetes, as a result of a proven de novo mutation. ABCC8 mutations can cause MODY in patients whose clinical features are similar to those with HNF1A/4A MODY. Therefore, sequencing of ABCC8 in addition to the known MODY genes should be considered if such features are present, to facilitate optimal clinical management of these patients.

  12. ABCC3 as a marker for multidrug resistance in non-small cell lung cancer

    PubMed Central

    Zhao, Yanbin; Lu, Hailing; Yan, An; Yang, Yanmei; Meng, Qingwei; Sun, Lichun; Pang, Hui; Li, Chunhong; Dong, Xiaoqun; Cai, Li

    2013-01-01

    Multidrug resistance (MDR) contributes to the failure of chemotherapy and high mortality in non-small cell lung cancer (NSCLC). We aim to identify MDR genes that predict tumor response to chemotherapy. 199 NSCLC fresh tissue samples were tested for chemosensitivity by MTT assay. cDNA microarray was done with 5 samples with highest resistance and 6 samples with highest sensitivity. Expression of ABCC3 mRNA and protein was detected by real-time PCR and immunohistochemisty, respectively. The association between gene expression and overall survival (OS) was examined using Cox proportional hazard regression. 44 genes were upregulated and 168 downregulated in the chemotherapy-resistant group. ABCC3 was one of the most up-regulated genes in the resistant group. ABCC3-positive expression correlated with lymph node involvement, advanced TNM stage, more malignant histological type, multiple-resistance to anti-cancer drugs, and reduced OS. ABCC3 expression may serve as a marker for MDR and predictor for poor clinical outcome of NSCLC. PMID:24176985

  13. Clinical and molecular characterisation of 300 patients with congenital hyperinsulinism

    PubMed Central

    Kapoor, Ritika R; Flanagan, Sarah E; Arya, Ved Bhushan; Shield, Julian P; Ellard, Sian; Hussain, Khalid

    2013-01-01

    Background Congenital hyperinsulinism (CHI) is a clinically heterogeneous condition. Mutations in eight genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A and HNF1A) are known to cause CHI. Aim To characterise the clinical and molecular aspects of a large cohort of patients with CHI. Methodology Three hundred patients were recruited and clinical information was collected before genotyping. ABCC8 and KCNJ11 genes were analysed in all patients. Mutations in GLUD1, HADH, GCK and HNF4A genes were sought in patients with diazoxide-responsive CHI with hyperammonaemia (GLUD1), raised 3-hydroxybutyrylcarnitine and/or consanguinity (HADH), positive family history (GCK) or when CHI was diagnosed within the first week of life (HNF4A). Results Mutations were identified in 136/300 patients (45.3%). Mutations in ABCC8/KCNJ11 were the commonest genetic cause identified (n=109, 36.3%). Among diazoxide-unresponsive patients (n=105), mutations in ABCC8/KCNJ11 were identified in 92 (87.6%) patients, of whom 63 patients had recessively inherited mutations while four patients had dominantly inherited mutations. A paternal mutation in the ABCC8/KCNJ11 genes was identified in 23 diazoxide-unresponsive patients, of whom six had diffuse disease. Among the diazoxide-responsive patients (n=183), mutations were identified in 41 patients (22.4%). These include mutations in ABCC8/KCNJ11 (n=15), HNF4A (n=7), GLUD1 (n=16) and HADH (n=3). Conclusions A genetic diagnosis was made for 45.3% of patients in this large series. Mutations in the ABCC8 gene were the commonest identifiable cause. The vast majority of patients with diazoxide-responsive CHI (77.6%) had no identifiable mutations, suggesting other genetic and/or environmental mechanisms. PMID:23345197

  14. ABCC6 knockdown in HepG2 cells induces a senescent-like cell phenotype.

    PubMed

    Miglionico, Rocchina; Ostuni, Angela; Armentano, Maria Francesca; Milella, Luigi; Crescenzi, Elvira; Carmosino, Monica; Bisaccia, Faustino

    2017-01-01

    Pseudoxanthoma elasticum (PXE) is characterized by progressive ectopic mineralization of elastic fibers in dermal, ocular and vascular tissues. No effective treatment exists. It is caused by inactivating mutations in the gene encoding for the ATP-binding cassette, sub-family C member 6 transporter (ABCC6), which is mainly expressed in the liver. The ABCC6 substrate (s) and the PXE pathomechanism remain unknown. Recent studies have shown that overexpression of ABCC6 in HEK293 cells results in efflux of ATP, which is rapidly converted into nucleoside monophosphates and pyrophosphate (PPi). Since the latter inhibits mineralization, it was proposed that the absence of circulating PPi in PXE patients results in the characteristic ectopic mineralization. These studies also demonstrated that the presence of ABCC6 modifies cell secretory activity and suggested that ABCC6 can change the cell phenotype. Stable ABCC6 knockdown HepG2 clones were generated using small hairpin RNA (shRNA) technology. The intracellular glutathione and ROS levels were determined. Experiments using cell cycle analysis, real-time PCR and western blot were performed on genes involved in the senescence phenotype. To shed light on the physiological role of ABCC6, we focused on the phenotype of HepG2 cells that lack ABCC6 activity. Interestingly, we found that ABCC6 knockdown HepG2 cells show: 1) intracellular reductive stress; 2) cell cycle arrest in G1 phase; 3) upregulation of p21 Cip p53 independent; and 4) downregulation of lamin A/C. These findings show that the absence of ABCC6 profoundly changes the HepG2 phenotype, suggesting that the PXE syndrome is a complex metabolic disease that is not exclusively related to the absence of pyrophosphate in the bloodstream.

  15. KATP Channel Expression and Genetic Polymorphisms Associated with Progression and Survival in Amyotrophic Lateral Sclerosis.

    PubMed

    Vidal-Taboada, José M; Pugliese, Marco; Salvadó, Maria; Gámez, Josep; Mahy, Nicole; Rodríguez, Manuel J

    2018-02-28

    The ATP-sensitive potassium (K ATP ) channel directly regulates the microglia-mediated inflammatory response following CNS injury. To determine the putative role of the K ATP channel in amyotrophic lateral sclerosis (ALS) pathology, we investigated whether ALS induces changes in K ATP channel expression in the spinal cord and motor cortex. We also characterized new functional variants of human ABCC8, ABCC9, KCNJ8, and KCNJ11 genes encoding for the K ATP channel and analyzed their association with ALS risk, rate of progression, and survival in a Spanish ALS cohort. The expression of ABCC8 and KCNJ8 genes was enhanced in the spinal cord of ALS samples, and KCNJ11 increased in motor cortex of ALS samples, as determined by real-time polymerase chain reaction. We then sequenced the exons and regulatory regions of K ATP channel genes from a subset of 28 ALS patients and identified 50 new genetic variants. For the case-control association analysis, we genotyped five selected polymorphisms with predicted functional relevance in 185 Spanish ALS (134 spinal ALS and 51 bulbar ALS) patients and 493 controls. We found that bulbar ALS patients presenting the G/G genotype of the rs4148646 variant of ABCC8 and the T/T genotype of the rs5219 variant of KCNJ11 survived longer than other ALS patients presenting other genotypes. Also, the C/C genotype of the rs4148642 variant of ABCC8 and the T/C genotype of the rs148416760 variant of ABCC9 modified the progression rate in spinal ALS patients. Our results suggest that the K ATP channel plays a role in the pathophysiological mechanisms of ALS.

  16. Increased Expression of Plasma-Induced ABCC1 mRNA in Cystic Fibrosis.

    PubMed

    Ideozu, Justin E; Zhang, Xi; Pan, Amy; Ashrafi, Zainub; Woods, Katherine J; Hessner, Martin J; Simpson, Pippa; Levy, Hara

    2017-08-11

    The ABCC1 gene is structurally and functionally related to the cystic fibrosis transmembrane conductance regulator gene ( CFTR ). Upregulation of ABCC1 is thought to improve lung function in patients with cystic fibrosis (CF); the mechanism underlying this effect is unknown. We analyzed the ABCC1 promoter single nucleotide polymorphism (SNP rs504348), plasma-induced ABCC1 mRNA expression levels, and ABCC1 methylation status and their correlation with clinical variables among CF subjects with differing CFTR mutations. We assigned 93 CF subjects into disease severity groups and genotyped SNP rs504348. For 23 CF subjects and 7 healthy controls, donor peripheral blood mononuclear cells (PBMCs) stimulated with plasma underwent gene expression analysis via qRT-PCR. ABCC1 promoter methylation was analyzed in the same 23 CF subjects. No significant correlation was observed between rs504348 genotypes and CF disease severity, but pancreatic insufficient CF subjects showed increased colonization with any form of Pseudomonas aeruginosa (OR = 3.125, 95% CI: 1.192-8.190) and mucoid P. aeruginosa (OR = 5.075, 95% CI: 1.307-28.620) compared to the pancreatic sufficient group. A significantly higher expression of ABCC1 mRNA was induced by CF plasma compared to healthy control plasma ( p < 0.001). CF subjects with rs504348 (CC/CG) also had higher mRNA expression compared to those with the ancestral GG genotype ( p < 0.005). ABCC1 promoter was completely unmethylated; therefore, we did not detect any association between methylation and CF disease severity. In silico predictions suggested that histone modifications are crucial for regulating ABCC1 expression in PBMCs. Our results suggest that ABCC1 expression has a role in CFTR activity thereby increasing our understanding of the molecular underpinnings of the clinical heterogeneity in CF.

  17. Hyperinsulinemic hypoglycemia evolving to gestational diabetes and diabetes mellitus in a family carrying the inactivating ABCC8 E1506K mutation.

    PubMed

    Vieira, Teresa C; Bergamin, Carla S; Gurgel, Lucimary C; Moisés, Regina S

    2010-11-01

    Congenital hyperinsulinism of infancy (CHI) is the most common cause of hypoglycemia in newborns and infants. Several molecular mechanisms are involved in the development of CHI, but the most common genetic defects are inactivating mutations of the ABCC8 or KCNJ11 genes. The classical treatment for CHI has been pancreatectomy that eventually leads to diabetes. More recently, conservative treatment has been attempted in some cases, with encouraging results. Whether or not the patients with heterozygous ABCC8 mutations submitted to conservative treatment may spontaneously develop type 2 diabetes in the long run, is a controversial issue. Here, we report a family carrying the dominant heterozygous germ line E1506K mutation in ABCC8 associated with persistent hypoglycemia in the newborn period and diabetes in adulthood. The mutation occurred as a de novo germ line mutation in the mother of the index patient. Her hypoglycemic symptoms as a child occurred after the fourth year of life and were very mild, but she developed glucose metabolism impairment in adulthood. On the other hand, in her daughter, the clinical manifestations of the disease occurred in the neonatal period and were more severe, leading to episodes of tonic-clonic seizures that were well controlled with octreotide or diazoxide. Our data corroborate the hypothesis that the dominant E1506K ABCC8 mutation, responsible for CHI, predisposes to the development of glucose intolerance and diabetes later in life. © 2009 John Wiley & Sons A/S.

  18. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury.

    PubMed

    Park, Jiyoung; Song, Won-Yong; Ko, Donghwi; Eom, Yujin; Hansen, Thomas H; Schiller, Michaela; Lee, Tai Gyu; Martinoia, Enrico; Lee, Youngsook

    2012-01-01

    Heavy metals such as cadmium (Cd) and mercury (Hg) are toxic pollutants that are detrimental to living organisms. Plants employ a two-step mechanism to detoxify toxic ions. First, phytochelatins bind to the toxic ion, and then the metal-phytochelatin complex is sequestered in the vacuole. Two ABCC-type transporters, AtABCC1 and AtABCC2, that play a key role in arsenic detoxification, have recently been identified in Arabidopsis thaliana. However, it is unclear whether these transporters are also implicated in phytochelatin-dependent detoxification of other heavy metals such as Cd(II) and Hg(II). Here, we show that atabcc1 single or atabcc1 atabcc2 double knockout mutants exhibit a hypersensitive phenotype in the presence of Cd(II) and Hg(II). Microscopic analysis using a Cd-sensitive probe revealed that Cd is mostly located in the cytosol of protoplasts of the double mutant, whereas it occurs mainly in the vacuole of wild-type cells. This suggests that the two ABCC transporters are important for vacuolar sequestration of Cd. Heterologous expression of the transporters in Saccharomyces cerevisiae confirmed their role in heavy metal tolerance. Over-expression of AtABCC1 in Arabidopsis resulted in enhanced Cd(II) tolerance and accumulation. Together, these results demonstrate that AtABCC1 and AtABCC2 are important vacuolar transporters that confer tolerance to cadmium and mercury, in addition to their role in arsenic detoxification. These transporters provide useful tools for genetic engineering of plants with enhanced metal tolerance and accumulation, which are desirable characteristics for phytoremediation. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  19. Cantú Syndrome Resulting from Activating Mutation in the KCNJ8 Gene

    PubMed Central

    Cooper, Paige E.; Reutter, Heiko; Woelfle, Joachim; Engels, Hartmut; Grange, Dorothy K.; van Haaften, Gijs; van Bon, Bregje W.; Hoischen, Alexander; Nichols, Colin G.

    2014-01-01

    ATP-sensitive potassium (KATP) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome, a distinct multi-organ disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of Cantú syndrome (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether co-expressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in Cantú syndrome, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from Kir6-independent SUR2 function. PMID:24700710

  20. Cantú syndrome resulting from activating mutation in the KCNJ8 gene.

    PubMed

    Cooper, Paige E; Reutter, Heiko; Woelfle, Joachim; Engels, Hartmut; Grange, Dorothy K; van Haaften, Gijs; van Bon, Bregje W; Hoischen, Alexander; Nichols, Colin G

    2014-07-01

    ATP-sensitive potassium (KATP ) channels, composed of inward-rectifying potassium channel subunits (Kir6.1 and Kir6.2, encoded by KCNJ8 and KCNJ11, respectively) and regulatory sulfonylurea receptor (SUR1 and SUR2, encoded by ABCC8 and ABCC9, respectively), couple metabolism to excitability in multiple tissues. Mutations in ABCC9 cause Cantú syndrome (CS), a distinct multiorgan disease, potentially via enhanced KATP channel activity. We screened KCNJ8 in an ABCC9 mutation-negative patient who also exhibited clinical hallmarks of CS (hypertrichosis, macrosomia, macrocephaly, coarse facial appearance, cardiomegaly, and skeletal abnormalities). We identified a de novo missense mutation encoding Kir6.1[p.Cys176Ser] in the patient. Kir6.1[p.Cys176Ser] channels exhibited markedly higher activity than wild-type channels, as a result of reduced ATP sensitivity, whether coexpressed with SUR1 or SUR2A subunits. Our results identify a novel causal gene in CS, but also demonstrate that the cardinal features of the disease result from gain of KATP channel function, not from a Kir6-independent SUR2 function. © 2014 WILEY PERIODICALS, INC.

  1. Quantification and in situ localisation of abcb1 and abcc9genes in toxicant-exposed sea urchin embryos.

    PubMed

    Bošnjak, Ivana; Pleić, Ivana Lepen; Borra, Marco; Mladineo, Ivona

    2013-12-01

    A multixenobiotic resistance (MXR) mechanism mediated by ABC binding cassette (ABC) transport proteins is an efficient chemical defence mechanism in sea urchin embryos. The aim of our work was to evidence whether exposure to sub-lethal doses of specific contaminants (oxybenzone (OXI), mercuric chloride (HgCl2) and trybutiltin (TBT)) would induce MXR transporter activity during embryonic development (from zygote to blastula stage) in purple sea urchin (Paracentrotus lividus) embryos. Further, we present data on molecular identification, transport function, expression levels and gene localisation of two ABC efflux transporters-P-glycoprotein (ABCB1/P-gp) and sulfonylurea-receptor-like protein (ABCC9/SUR-like). Partial cDNA sequences of abcb1 and abcc9 were identified and quantitative PCR (qPCR) evidenced an increase in mRNA transcript levels of both ABC transporters during the two-cell, as well as an overall decrease during the blastulae stage. Calcein-AM efflux activity assay indicated the activation of multidrug resistance-associated protein/ABCC-like transport in the presence of HgCl2 and TBT in exposed blastulae. The in situ hybridisation of the two-cell and blastula stages showed ubiquitous localisation of both transcripts within cells, supporting qPCR data. In conclusion, ABCB1 and ABCC9 are constitutive, as are HgCl2, TBT and OXI-inducible ABC membrane transporters, coexpressed in the zygote, two-cell and blastula stages of the P. lividus. Their ubiquitous cell localisation further fortifies their protective role in early embryonic development.

  2. Use of a combined effect model approach for discriminating between ABCB1- and ABCC1-type efflux activities in native bivalve gill tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, Melissa; CESAM & Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro; Pavlichenko, Vasiliy

    Aquatic organisms, such as bivalves, employ ATP binding cassette (ABC) transporters for efflux of potentially toxic chemicals. Anthropogenic water contaminants can, as chemosensitizers, disrupt efflux transporter function enabling other, putatively toxic compounds to enter the organism. Applying rapid amplification of cDNA ends (RACE) PCR we identified complete cDNAs encoding ABCB1- and ABCC1-type transporter homologs from zebra mussel providing the molecular basis for expression of both transporter types in zebra mussel gills. Further, efflux activities of both transporter types in gills were indicated with dye accumulation assays where efflux of the dye calcein-am was sensitive to both ABCB1- (reversin 205, verapamil)more » and ABCC1- (MK571) type specific inhibitors. The assumption that different inhibitors targeted different efflux pump types was confirmed when comparing measured effects of binary inhibitor compound mixtures in dye accumulation assays with predictions from mixture effect models. Effects by the MK571/reversin 205 mixture corresponded better with independent action, whereas reversin 205/verapamil joint effects were better predicted by the concentration addition model indicating different and equal targets, respectively. The binary mixture approach was further applied to identify the efflux pump type targeted by environmentally relevant chemosensitizing compounds. Pentachlorophenol and musk ketone, which were selected after a pre-screen of twelve compounds that previously had been identified as chemosensitizers, showed mixture effects that corresponded better with concentration addition when combined with reversine 205 but with independent action predictions when combined with MK571 indicating targeting of an ABCB1-type efflux pump by these compounds. - Highlights: • Sequences and function of ABC efflux transporters in bivalve gills were explored. • Full length Dreissena polymorpha abcb1 and abcc1 cDNA sequences were identified. • A mixture effect design with inhibitors was applied in transporter activity assays. • ABCB1- and ABCC-type efflux activities were distinguished in native gill tissue. • Inhibitory action of environmental chemicals targeted ABCB1-type efflux activity.« less

  3. Cytotoxic chemotherapy and the evolution of cellular and viral resistance to antiretroviral therapy in HIV- infected individuals with lymphoma.

    PubMed

    McFaul, Katie; Liptrott, Neill; Cox, Alison; Martin, Phillip; Egan, Deirdre; Owen, Andrew; Kelly, Sarah; Karolia, Zeenat; Shaw, Kate; Bower, Mark; Boffito, Marta

    2016-09-01

    The use of combination antiretroviral therapy (cART) and cytotoxic chemotherapy for HIV-associated lymphoma runs the risks of inducing HIV drug resistance. This study examined two possible mechanisms: altered expression of membrane drug transporter protein (MTP) and acquisition of mutations in pro-viral DNA. Expression levels of MTP and pro-viral DNA resistance mutation analysis were performed on peripheral blood mononuclear cells (PBMC) before, during, and after chemotherapy. Twenty nine patients completed the three time point estimations. There were no significant variations before, during, and after chemotherapy in the expression of four MTPs: ABCB1, ABCC1, ABCC2, and SLCO3A1 (OATP3A1). Pro-viral DNA sequencing revealed that only one patient developed a new nucleos/tide reverse transcriptase inhibitor-associated mutation (184V) during the course of the study, giving a mutation rate of 0.0027 per person per year. In conclusion, concomitant administration of cytotoxic chemotherapy and cART does not induce expression of MTP. Furthermore, no significant changes in viral resistance were observed pre- and post-chemotherapy, suggesting mutagenic cytotoxic chemotherapy seems not to induce mutations in HIV pro-viral DNA.

  4. Characterization and analyses of multidrug resistance-associated protein 1 (MRP1/ABCC1) polymorphisms in Chinese population

    PubMed Central

    Yin, Ji-Ye; Huang, Qiong; Yang, Youyun; Zhang, Jian-Ting; Zhong, Mei-Zuo; Zhou, Hong-Hao; Liu, Zhao-Qian

    2009-01-01

    Multidrug resistance (MDR) is one of the major obstacles for successful cancer chemotherapy. Over-expression of ATP-binding cassette (ABC) transporters such as MRP1/ABCC1 has been suggested to cause MDR. In this study, we explored the distribution frequencies of four common single nucleotide polymorphisms (SNPs) of MRP1/ABCC1 in a mainland Chinese population and investigated whether these SNPs affect the expression and function of the MRP1/ABCC1. We found that the allelic frequencies of Cys43Ser (128G>C), Thr73Ile (218C>T), Arg723Gln (2168G>A) and Arg1058Gln (3173G>A) in mainland Chinese were 0.5%, 1.4%, 5.8% and 0.5%, respectively. These four SNPs were recreated by site-directed mutagenesis and tested for their effect on MRP1/ABCC1 expression and MDR function in HEK293 and CHO-K1 cells lines. We found that none of these mutations had any effect on MRP1/ABCC1 expression and trafficking, but that Arg723Gln mutation significantly reduced MRP1/ABCC1-mediated resistance to daunorubicin, doxorubicin, etoposide, vinblastine and vincristine. The Cys43Ser mutation did not affect all tested drugs resistance. On the other hand, the Thr73Ile mutation reduced resistance to methotrexate and etoposide while the Arg1058Gln mutation increased the response of two anthracycline drugs and etoposide in HEK293 and CHO-K1 cells as well as vinblastine and methotrexate in CHO-K1 cells. We conclude that the allelic frequency of the Arg723Gln mutation is relatively higher than other SNPs in mainland Chinese population and therefore this mutation significantly reduces MRP1/ABCC1 activity in MDR. PMID:19214144

  5. Gene-based association study of genes linked to hippocampal sclerosis of aging neuropathology: GRN, TMEM106B, ABCC9, and KCNMB2

    PubMed Central

    Katsumata, Yuriko; Nelson, Peter T.; Ellingson, Sally R.; Fardo, David W.

    2017-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common neurodegenerative condition associated with dementia. To learn more about genetic risk of HS-Aging pathology, we tested gene-based associations of the GRN, TMEM106B, ABCC9, and KCNMB2 genes, which were reported to be associated with HS-Aging pathology in previous studies. Genetic data were obtained from the Alzheimer’s Disease Genetics Consortium (ADGC), linked to autopsy-derived neuropathological outcomes from the National Alzheimer’s Coordinating Center (NACC). Of the 3,251 subjects included in the study, 271 (8.3%) were identified as an HS-Aging case. The significant gene-based association between the ABCC9 gene and HS-Aging appeared to be driven by a region in which a significant haplotype-based association was found. We tested this haplotype as an expression Quantitative Trait Locus (eQTL) using two different public-access brain gene expression databases. The HS-Aging pathology protective ABCC9 haplotype was associated with decreased ABCC9 expression, indicating a possible toxic gain of function. PMID:28131462

  6. N-Acetylcysteine-induced vasodilatation is modulated by KATP channels, Na+/K+-ATPase activity and intracellular calcium concentration: An in vitro study.

    PubMed

    Vezir, Özden; Çömelekoğlu, Ülkü; Sucu, Nehir; Yalın, Ali Erdinç; Yılmaz, Şakir Necat; Yalın, Serap; Söğüt, Fatma; Yaman, Selma; Kibar, Kezban; Akkapulu, Merih; Koç, Meryem İlkay; Seçer, Didem

    2017-08-01

    In this study, we aimed to investigate the role of ATP-sensitive potassium (K ATP ) channel, Na + /K + -ATPase activity, and intracellular calcium levels on the vasodilatory effect of N-acetylcysteine (NAC) in thoracic aorta by using electrophysiological and molecular techniques. Rat thoracic aorta ring preparations and cultured thoracic aorta cells were divided into four groups as control, 2mM NAC, 5mM NAC, and 10mM NAC. Thoracic aorta rings were isolated from rats for measurements of relaxation responses and Na + /K + -ATPase activity. In the cultured thoracic aorta cells, we measured the currents of K ATP channel, the concentration of intracellular calcium and mRNA expression level of K ATP channel subunits (KCNJ8, KCNJ11, ABCC8 and ABCC9). The relaxation rate significantly increased in all NAC groups compared to control. Similarly, Na + /K + - ATPase activity also significantly decreased in NAC groups. Outward K ATP channel current significantly increased in all NAC groups compared to the control group. Intracellular calcium concentration decreased significantly in all groups with compared control. mRNA expression level of ABCC8 subunit significantly increased in all NAC groups compared to the control group. Pearson correlation analysis showed that relaxation rate was significantly associated with K ATP current, intracellular calcium concentration, Na + /K + -ATPase activity and mRNA expression level of ABCC8 subunit. Our findings suggest that NAC relaxes vascular smooth muscle cells through a direct effect on K ATP channels, by increasing outward K+ flux, partly by increasing mRNA expression of K ATP subunit ABCC8, by decreasing in intracellular calcium and by decreasing in Na + /K + -ATPase activity. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Methyl-cyclopentadienyl Ruthenium Compounds with 2,2'-Bipyridine Derivatives Display Strong Anticancer Activity and Multidrug Resistance Potential.

    PubMed

    Côrte-Real, Leonor; Teixeira, Ricardo G; Gírio, Patrícia; Comsa, Elisabeta; Moreno, Alexis; Nasr, Rachad; Baubichon-Cortay, Hélène; Avecilla, Fernando; Marques, Fernanda; Robalo, M Paula; Mendes, Paulo; Ramalho, João P Prates; Garcia, M Helena; Falson, Pierre; Valente, Andreia

    2018-04-16

    New ruthenium methyl-cyclopentadienyl compounds bearing bipyridine derivatives with the general formula [Ru(η 5 -MeCp)(PPh 3 )(4,4'-R-2,2'-bpy)] + (Ru1, R = H; Ru2, R = CH 3 ; and Ru3, R = CH 2 OH) have been synthesized and characterized by spectroscopic and analytical techniques. Ru1 crystallized in the monoclinic P2 1 / c, Ru2 in the triclinic P1̅, and Ru3 in the monoclinic P2 1 / n space group. In all molecular structures, the ruthenium center adopts a "piano stool" distribution. Density functional theory calculations were performed for all complexes, and the results support spectroscopic data. Ru1 and Ru3 were poor substrates of the main multidrug resistance human pumps, ABCB1, ABCG2, ABCC1, and ABCC2, while Ru2 displayed inhibitory properties of ABCC1 and ABCC2 pumps. Importantly, all compounds displayed a very high cytotoxic profile for ovarian cancer cells (sensitive and resistant) that was much more pronounced than that observed with cisplatin, making them very promising anticancer agents.

  8. ABCC4 Is a Determinant of Cytarabine‐Induced Cytotoxicity and Myelosuppression

    PubMed Central

    Drenberg, CD; Hu, S; Li, L; Buelow, DR; Orwick, SJ; Gibson, AA; Schuetz, JD; Sparreboom, A

    2016-01-01

    Resistance to cytarabine remains a major challenge in the treatment of acute myeloid leukemia (AML). Based on previous studies implicating ABCC4/MRP4 in the transport of nucleosides, we hypothesized that cytarabine is sensitive to ABCC4‐mediated efflux, thereby decreasing its cytotoxic response against AML blasts. The uptake of cytarabine and its monophosphate metabolite was found to be facilitated in ABCC4‐expressing vesicles and intracellular retention was significantly impaired by overexpression of human ABCC4 or mouse Abcc4 (P < 0.05). ABCC4 was expressed highly in AML primary blasts and cell lines, and cytotoxicity of cytarabine in cells was increased in the presence of the ABCC4 inhibitors MK571 or sorafenib, as well as after ABCC4 siRNA. In Abcc4‐null mice, cytarabine‐induced hematological toxicity was enhanced and ex vivo colony‐forming assays showed that Abcc4‐deficiency sensitized myeloid progenitors to cytarabine. Collectively, these studies demonstrate that ABCC4 plays a protective role against cytarabine‐mediated insults in leukemic and host myeloid cells. PMID:26842729

  9. Role of the Drug Transporter ABCC3 in Breast Cancer Chemoresistance

    PubMed Central

    Balaji, Sai A.; Udupa, Nayanabhirama; Chamallamudi, Mallikarjuna Rao; Gupta, Vaijayanti; Rangarajan, Annapoorni

    2016-01-01

    Increased expression of ABC-family of transporters is associated with chemotherapy failure. Although the drug transporters ABCG2, ABCB1 and ABCC1 have been majorly implicated in cancer drug resistance, recent studies have associated ABCC3 with multi drug resistance and poor clinical response. In this study, we have examined the expression of ABCC3 in breast cancers and studied its role in drug resistance and stemness of breast cancer cells in comparison with the more studied ABCC1. We observed that similar to ABCC1, the transcripts levels of ABCC3 was significantly high in breast cancers compared to adjacent normal tissue. Importantly, expression of both transporters was further increased in chemotherapy treated patient samples. Consistent with this, we observed that treatment of breast cancer cell lines with anti-cancer agents increased their mRNA levels of both ABCC1 and ABCC3. Further, similar to knockdown of ABCC1, knockdown of ABCC3 also significantly increased the retention of chemotherapeutic drugs in breast cancer cells and rendered them more chemo-sensitive. Interestingly, ABCC1 and ABCC3 knockdown cells also showed reduction in the expression of stemness genes, while ABCC3 knockdown additionally led to a reduction in the CD44high/CD24low breast cancer stem-like subpopulation. Consistent with this, their ability to form primary tumours was compromised. Importantly, down-modulation of ABCC3 rendered these cells increasingly susceptible to doxorubicin in xenograft mice models in vivo. Thus, our study highlights the importance of ABCC3 transporters in drug resistance to chemotherapy in the context of breast cancer. Further, these results suggest that combinatorial inhibition of these transporters together with standard chemotherapy can reduce therapy-induced resistance in breast cancer. PMID:27171227

  10. ABCC4 Is a Determinant of Cytarabine-Induced Cytotoxicity and Myelosuppression.

    PubMed

    Drenberg, C D; Hu, S; Li, L; Buelow, D R; Orwick, S J; Gibson, A A; Schuetz, J D; Sparreboom, A; Baker, S D

    2016-02-01

    Resistance to cytarabine remains a major challenge in the treatment of acute myeloid leukemia (AML). Based on previous studies implicating ABCC4/MRP4 in the transport of nucleosides, we hypothesized that cytarabine is sensitive to ABCC4-mediated efflux, thereby decreasing its cytotoxic response against AML blasts. The uptake of cytarabine and its monophosphate metabolite was found to be facilitated in ABCC4-expressing vesicles and intracellular retention was significantly impaired by overexpression of human ABCC4 or mouse Abcc4 (P < 0.05). ABCC4 was expressed highly in AML primary blasts and cell lines, and cytotoxicity of cytarabine in cells was increased in the presence of the ABCC4 inhibitors MK571 or sorafenib, as well as after ABCC4 siRNA. In Abcc4-null mice, cytarabine-induced hematological toxicity was enhanced and ex vivo colony-forming assays showed that Abcc4-deficiency sensitized myeloid progenitors to cytarabine. Collectively, these studies demonstrate that ABCC4 plays a protective role against cytarabine-mediated insults in leukemic and host myeloid cells. © 2016 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  11. Linkage disequilibrium between polymorphisms of ABCB1 and ABCC2 to predict the treatment outcome of Malaysians with complex partial seizures on treatment with carbamazepine mono-therapy at the Kuala Lumpur Hospital.

    PubMed

    Subenthiran, Soobitha; Abdullah, Noor Rain; Joseph, Joyce Pauline; Muniandy, Prem Kumar; Mok, Boon Teck; Kee, Chee Cheong; Ismail, Zakiah; Mohamed, Zahurin

    2013-01-01

    Carbamazepine (CBZ) is used as the first line of treatment of Complex Partial Seizures (CPS) in the Epilepsy Clinic, Neurology Department of Kuala Lumpur Hospital (KLH). More than 30% of the patients remain drug resistant to CBZ mono-therapy. CBZ is transported by the P-glycoprotein (P-gp). The P-gp encoded by the ABCB1 and ABCC2 genes are expressed in drug resistant patients with epilepsy. A few studies have shown significant association between CBZ resistant epilepsy and Linkage Disequilibrium (LD) with adjacent polymorphisms of these genes. Our study is aimed at determining the correlation between patients' response to CBZ mono-therapy to Single Nucleotide Polymorphisms G2677T and C3435T of the ABCB1 gene as well as G1249A and -24C>T of the ABCC2 gene. 314 patients with CPS were recruited from the Neurology Department of the KLH based on stringent inclusion and exclusion criteria, of whom 152 were responders and the other 162 were non-responders. DNA was extracted from their blood samples and Taqman technology for allelic discrimination was performed. Results were described as genotype frequencies. The SHEsis analysis platform was used to calculate linkage disequilibrium index and infer haplotype frequencies. Haploview was used to do permutation test to obtain a corrected p-value. Resistance to treatment with CBZ mono-therapy was significantly associated with the 2677TT and the 3435TT genotypes while it was not significantly associated with the G1249A and -24C>T polymorphisms. The GCGC haplotype combination of the 2677G>T, 3435C>T, 1249G>A and -24C>T respectively was found to be extremely significant (p = 1.10e-20) with good drug response to CBZ mono-therapy. Linkage disequilibrium between the 2677G>T, 3435C>T, 1249G>A and -24C>T SNPs may be used as a reliable screening marker to determine the treatment outcome of CBZ mono-therapy with CPS irrespective of race or gender.

  12. Genetic variability in drug transport, metabolism or DNA repair affecting toxicity of chemotherapy in ovarian cancer.

    PubMed

    Lambrechts, Sandrina; Lambrechts, Diether; Despierre, Evelyn; Van Nieuwenhuysen, Els; Smeets, Dominiek; Debruyne, Philip R; Renard, Vincent; Vroman, Philippe; Luyten, Daisy; Neven, Patrick; Amant, Frédéric; Leunen, Karin; Vergote, Ignace

    2015-02-27

    This study aimed to determine whether single nucleotide polymorphisms (SNPs) in genes involved in DNA repair or metabolism of taxanes or platinum could predict toxicity or response to first-line chemotherapy in ovarian cancer. Twenty-six selected SNPs in 18 genes were genotyped in 322 patients treated with first-line paclitaxel-carboplatin or carboplatin mono-therapy. Genotypes were correlated with toxicity events (anemia, neutropenia, thrombocytopenia, febrile neutropenia, neurotoxicity), use of growth factors and survival. The risk of anemia was increased for variant alleles of rs1128503 (ABCB1, C > T; p = 0.023, OR = 1.71, 95% CI = 1.07-2.71), rs363717 (ABCA1, A > G; p = 0.002, OR = 2.08, 95% CI = 1.32-3.27) and rs11615 (ERCC1, T > C; p = 0.031, OR = 1.61, 95% CI = 1.04-2.50), while it was decreased for variant alleles of rs12762549 (ABCC2, C > G; p = 0.004, OR = 0.51, 95% CI = 0.33-0.81). Likewise, increased risk of thrombocytopenia was associated with rs4986910 (CYP3A4, T > C; p = 0.025, OR = 4.99, 95% CI = 1.22-20.31). No significant correlations were found for neurotoxicity. Variant alleles of rs2073337 (ABCC2, A > G; p = 0.039, OR = 0.60, 95% CI = 0.37-0.98), rs1695 (ABCC1, A > G; p = 0.017, OR = 0.55, 95% CI 0.33-0.90) and rs1799793 (ERCC2, G > A; p = 0.042, OR = 0.63, 95% CI 0.41-0.98) associated with the use of colony stimulating factors (CSF), while rs2074087 (ABCC1, G > C; p = 0.011, OR = 2.09, 95% CI 1.18-3.68) correlated with use of erythropoiesis stimulating agents (ESAs). Homozygous carriers of the rs1799793 (ERCC2, G > A) G-allele had a prolonged platinum-free interval (p = 0.016). Our data reveal significant correlations between genetic variants of transport, hepatic metabolism, platinum related detoxification or DNA damage repair and toxicity or outcome in ovarian cancer.

  13. Suppression of the ATP-binding cassette transporter ABCC4 impairs neuroblastoma tumour growth and sensitises to irinotecan in vivo.

    PubMed

    Murray, Jayne; Valli, Emanuele; Yu, Denise M T; Truong, Alan M; Gifford, Andrew J; Eden, Georgina L; Gamble, Laura D; Hanssen, Kimberley M; Flemming, Claudia L; Tan, Alvin; Tivnan, Amanda; Allan, Sophie; Saletta, Federica; Cheung, Leanna; Ruhle, Michelle; Schuetz, John D; Henderson, Michelle J; Byrne, Jennifer A; Norris, Murray D; Haber, Michelle; Fletcher, Jamie I

    2017-09-01

    The ATP-binding cassette transporter ABCC4 (multidrug resistance protein 4, MRP4) mRNA level is a strong predictor of poor clinical outcome in neuroblastoma which may relate to its export of endogenous signalling molecules and chemotherapeutic agents. We sought to determine whether ABCC4 contributes to development, growth and drug response in neuroblastoma in vivo. In neuroblastoma patients, high ABCC4 protein levels were associated with reduced overall survival. Inducible knockdown of ABCC4 strongly inhibited the growth of human neuroblastoma cells in vitro and impaired the growth of neuroblastoma xenografts. Loss of Abcc4 in the Th-MYCN transgenic neuroblastoma mouse model did not impact tumour formation; however, Abcc4-null neuroblastomas were strongly sensitised to the ABCC4 substrate drug irinotecan. Our findings demonstrate a role for ABCC4 in neuroblastoma cell proliferation and chemoresistance and provide rationale for a strategy where inhibition of ABCC4 should both attenuate the growth of neuroblastoma and sensitise tumours to ABCC4 chemotherapeutic substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. ABCC8 R1420H Loss-of-Function Variant in a Southwest American Indian Community: Association With Increased Birth Weight and Doubled Risk of Type 2 Diabetes.

    PubMed

    Baier, Leslie J; Muller, Yunhua Li; Remedi, Maria Sara; Traurig, Michael; Piaggi, Paolo; Wiessner, Gregory; Huang, Ke; Stacy, Alyssa; Kobes, Sayuko; Krakoff, Jonathan; Bennett, Peter H; Nelson, Robert G; Knowler, William C; Hanson, Robert L; Nichols, Colin G; Bogardus, Clifton

    2015-12-01

    Missense variants in KCNJ11 and ABCC8, which encode the KIR6.2 and SUR1 subunits of the β-cell KATP channel, have previously been implicated in type 2 diabetes, neonatal diabetes, and hyperinsulinemic hypoglycemia of infancy (HHI). To determine whether variation in these genes affects risk for type 2 diabetes or increased birth weight as a consequence of fetal hyperinsulinemia in Pima Indians, missense and common noncoding variants were analyzed in individuals living in the Gila River Indian Community. A R1420H variant in SUR1 (ABCC8) was identified in 3.3% of the population (N = 7,710). R1420H carriers had higher mean birth weights and a twofold increased risk for type 2 diabetes with a 7-year earlier onset age despite being leaner than noncarriers. One individual homozygous for R1420H was identified; retrospective review of his medical records was consistent with HHI and a diagnosis of diabetes at age 3.5 years. In vitro studies showed that the R1420H substitution decreases KATP channel activity. Identification of this loss-of-function variant in ABCC8 with a carrier frequency of 3.3% affects clinical care as homozygous inheritance and potential HHI will occur in 1/3,600 births in this American Indian population. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Affordable hands-on DNA sequencing and genotyping: an exercise for teaching DNA analysis to undergraduates.

    PubMed

    Shah, Kushani; Thomas, Shelby; Stein, Arnold

    2013-01-01

    In this report, we describe a 5-week laboratory exercise for undergraduate biology and biochemistry students in which students learn to sequence DNA and to genotype their DNA for selected single nucleotide polymorphisms (SNPs). Students use miniaturized DNA sequencing gels that require approximately 8 min to run. The students perform G, A, T, C Sanger sequencing reactions. They prepare and run the gels, perform Southern blots (which require only 10 min), and detect sequencing ladders using a colorimetric detection system. Students enlarge their sequencing ladders from digital images of their small nylon membranes, and read the sequence manually. They compare their reads with the actual DNA sequence using BLAST2. After mastering the DNA sequencing system, students prepare their own DNA from a cheek swab, polymerase chain reaction-amplify a region of their DNA that encompasses a SNP of interest, and perform sequencing to determine their genotype at the SNP position. A family pedigree can also be constructed. The SNP chosen by the instructor was rs17822931, which is in the ABCC11 gene and is the determinant of human earwax type. Genotypes at the rs178229931 site vary in different ethnic populations. © 2013 by The International Union of Biochemistry and Molecular Biology.

  16. Effect of GSTP1 and ABCC2 Polymorphisms on Treatment Response in Patients with Advanced Non-Small Cell Lung Cancer Undergoing Platinum-Based Chemotherapy: A Study in a Chinese Uygur Population.

    PubMed

    Han, Zhi-Gang; Tao, Jie; Yu, Ting-Ting; Shan, Li

    2017-04-26

    BACKGROUND Gene polymorphisms are associated with sensitivity to platinum drugs. This study aimed to investigate the polymorphisms of GSTP1 rs1695 locus and ABCC2 rs717620 locus, and the sensitivity of patients with advanced non-small cell lung cancer (NSCLC) to platinum drugs in a Xinjiang Uygur population. MATERIAL AND METHODS The gene polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 of Uygur NSCLC patients were assessed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The relationship between the prognosis of advanced NSCLC Uygur patients and the gene polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 was analyzed using progression-free survival (PFS) and overall survival (OS) as the major outcome indicators. RESULTS The median PFS of patients with advanced NSCLC was 6.9 months and the OS of Uygur patients with advanced NSCLC was 10.8 months. Kaplan-Meier survival analysis indicated that survival time of patients with GSTP1 AG + GG was significantly longer than in patients with AA gene (P<0.05), and survival time of patients with ABCC2 CT + TT was significantly longer than in patients with the CC gene (P<0.05). CONCLUSIONS Polymorphisms of GSTP1 rs1695 and ABCC2 rs717620 can be used to predict the outcomes of Uygur patients with advanced NSCLC who have received platinum-based chemotherapy. Additionally, this information could be used to guide the individualized treatment of Uygur patients with advanced NSCLC.

  17. Replication of TPMT and ABCC3 genetic variants highly associated with cisplatin-induced hearing loss in children.

    PubMed

    Pussegoda, K; Ross, C J; Visscher, H; Yazdanpanah, M; Brooks, B; Rassekh, S R; Zada, Y F; Dubé, M-P; Carleton, B C; Hayden, M R

    2013-08-01

    Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. A serious complication of cisplatin treatment is permanent hearing loss. The aim of this study was to replicate previous genetic findings in an independent cohort of 155 pediatric patients. Associations were replicated for genetic variants in TPMT (rs12201199, P = 0.0013, odds ratio (OR) 6.1) and ABCC3 (rs1051640, P = 0.036, OR 1.8). A predictive model combining variants in TPMT, ABCC3, and COMT with clinical variables (patient age, vincristine treatment, germ-cell tumor, and cranial irradiation) significantly improved the prediction of hearing-loss development as compared with using clinical risk factors alone (area under the curve (AUC) 0.786 vs. 0.708, P = 0.00048). The novel combination of genetic and clinical factors predicted the risk of hearing loss with a sensitivity of 50.3% and a specificity of 92.7%. These findings provide evidence to support the importance of TPMT, COMT, and ABCC3 in the prediction of cisplatin-induced hearing loss in children.

  18. Replication of TPMT and ABCC3 Genetic Variants Highly Associated With Cisplatin-Induced Hearing Loss in Children

    PubMed Central

    Pussegoda, K; Ross, CJ; Visscher, H; Yazdanpanah, M; Brooks, B; Rassekh, SR; Zada, YF; Dubé, M-P; Carleton, BC; Hayden, MR

    2014-01-01

    Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. A serious complication of cisplatin treatment is permanent hearing loss. The aim of this study was to replicate previous genetic findings in an independent cohort of 155 pediatric patients. Associations were replicated for genetic variants in TPMT (rs12201199, P = 0.0013, odds ratio (OR) 6.1) and ABCC3 (rs1051640, P = 0.036, OR 1.8). A predictive model combining variants in TPMT, ABCC3, and COMT with clinical variables (patient age, vincristine treatment, germ-cell tumor, and cranial irradiation) significantly improved the prediction of hearing-loss development as compared with using clinical risk factors alone (area under the curve (AUC) 0.786 vs. 0.708, P = 0.00048). The novel combination of genetic and clinical factors predicted the risk of hearing loss with a sensitivity of 50.3% and a specificity of 92.7%. These findings provide evidence to support the importance of TPMT, COMT, and ABCC3 in the prediction of cisplatin-induced hearing loss in children. PMID:23588304

  19. Association of C49620T ABCC8 polymorphism with anthropometric and metabolic parameters in patients with autosomal dominant polycystic kidney disease: a preliminary study.

    PubMed

    Pietrzak-Nowacka, Maria; Safranow, Krzysztof; Bińczak-Kuleta, Agnieszka; Rózański, Jacek; Ciechanowski, Kazimierz; Ciechanowicz, Andrzej

    2012-01-01

    The aim of the study was to evaluate an association between the C49620T ABCC8 gene polymorphism and anthropometric, biochemical parameters, pancreatic β-cell function and insulin sensitivity among autosomal dominant polycystic kidney disease (ADPKD) patients. Forty-nine ADPKD patients (M/F: 19/30) and fifty healthy controls (M/F: 22/28) aged above 18 years, with normal kidney function and no diagnosis of diabetes, were enrolled into the study. The ABCC8 (SUR1) C49620T (IVS15-3C/T, rs1799854) genotypes were determined using a PCR-RFLP technique. In the ADPKD group among TT homozygous patients, total body fat content and percentage of fat in body weight were significantly lower than among C allele carriers (16.1 +/- 7.7 vs 22.9 +/- 7.1kg, p=0.04 and 22.8 +/- 6.5 vs 30.0 +/- 6.1%, p=0.001, respectively) while total body water was higher (58.4 +/- 4.3 vs 53.7 +/- 4.0kg, p=0.003). Among TT homozygous controls higher BMI values and LDL-cholesterol levels were observed if compared to C variant carriers (26.3 +/- 3.9 vs 23.8 +/3.4kg/m2 p=0.04 and 133.1 +/- 27.0 vs 114.3 +/- 35.2mg/dL, p=0.05, respectively), as well as higher area under curve of glucose concentrations (115.9 +/- 23.9 vs 102.7 +/- 25.2 mmol*h/L, p=0.046) during an oral glucose tolerance test. In the ADPKD group and among controls no association between the investigated polymorphism and secretory function of the pancreatic β-cells or insulin sensitivity was found. The C49620T ABCC8 polymorphism is associated with anthropometric risk factors for type 2 diabetes among ADPKD patients, with a protective effect of the TT genotype, but without influence on pancreatic β-cell secretory function or insulin sensitivity.

  20. Population-Specific Resequencing Associates the ATP-Binding Cassette Subfamily C Member 4 Gene With Gout in New Zealand Māori and Pacific Men.

    PubMed

    Tanner, Callum; Boocock, James; Stahl, Eli A; Dobbyn, Amanda; Mandal, Asim K; Cadzow, Murray; Phipps-Green, Amanda J; Topless, Ruth K; Hindmarsh, Jennie Harré; Stamp, Lisa K; Dalbeth, Nicola; Choi, Hyon K; Mount, David B; Merriman, Tony R

    2017-07-01

    There is no evidence for a genetic association between organic anion transporters 1-3 (SLC22A6, SLC22A7, and SLC22A8) and multidrug resistance protein 4 (MRP4; encoded by ABCC4) with the levels of serum urate or gout. The Māori and Pacific (Polynesian) population of New Zealand has the highest prevalence of gout worldwide. The aim of this study was to determine whether any Polynesian population-specific genetic variants in SLC22A6-8 and ABCC4 are associated with gout. All participants had ≥3 self-reported Māori and/or Pacific grandparents. Among the total sample set of 1,808 participants, 191 hyperuricemic and 202 normouricemic individuals were resequenced over the 4 genes, and the remaining 1,415 individuals were used for replication. Regression analyses were performed, adjusting for age, sex, and Polynesian ancestry. To study the functional effect of nonsynonymous variants of ABCC4, transport assays were performed in Xenopus laevis oocytes. A total of 39 common variants were detected, with an ABCC4 variant (rs4148500) significantly associated with hyperuricemia and gout. This variant was monomorphic for the urate-lowering allele in Europeans. There was evidence for an association of rs4148500 with gout in the resequenced samples (odds ratio [OR] 1.62 [P = 0.012]) that was replicated (OR 1.25 [P = 0.033]) and restricted to men (OR 1.43 [P = 0.001] versus OR 0.98 [P = 0.89] in women). The gout risk allele was associated with fractional excretion of uric acid in male individuals (β = -0.570 [P = 0.01]). A rare population-specific allele (P1036L) with predicted strong functional consequence reduced the uric acid transport activity of ABCC4 by 30%. An association between ABCC4 and gout and fractional excretion of uric acid is consistent with the established role of MRP4 as a unidirectional renal uric acid efflux pump. © 2017, American College of Rheumatology.

  1. ETHNIC/RACIAL AND GENETIC INFLUENCES ON CERUMEN ODOR PROFILES

    PubMed Central

    Mansfield, Corrine J.; Parker, M. Rockwell; Thaler, Erica; Grice, Elizabeth A.; Wysocki, Charles J.; Preti, George

    2014-01-01

    This report describes the volatile organic compounds (VOCs) associated with human cerumen (earwax) and the effects of ethnicity/race and variation on the ATP-binding cassette, sub-family C, member 11 gene (ABCC11). A single nucleotide polymorphism (SNP) in ABCC11 affects the cerumen VOC profiles of individuals from African, Caucasian, and Asian descent. Employing gas chromatography/mass spectrometry (GC/MS) we have identified the nature and relative abundance of cerumen VOCs from 32 male donors. Our results show that cerumen contains a complex mixture of VOCs and that the amounts of these compounds vary across individuals as well as across ethnic/racial groups. In six of the seven compounds whose detected concentrations were found to be statistically different across groups, individuals of African descent (AfD) > Caucasian descent (CaD) > Asians descent (AsD). Our findings also reveal that ABCC11 genotype alone does not predict the type and relative levels of volatiles found in human cerumen, and suggest that other biochemical pathways must be involved. Examination of the composition and diversity of external auditory canal microbiota in a small subset of our subject population revealed that the ear microbiota may not be directly correlated with either ethnic group membership or ABCC11 genotype. PMID:25501636

  2. The EPIYA-ABCC motif pattern in CagA of Helicobacter pylori is associated with peptic ulcer and gastric cancer in Mexican population.

    PubMed

    Beltrán-Anaya, Fredy Omar; Poblete, Tomás Manuel; Román-Román, Adolfo; Reyes, Salomón; de Sampedro, José; Peralta-Zaragoza, Oscar; Rodríguez, Miguel Ángel; del Moral-Hernández, Oscar; Illades-Aguiar, Berenice; Fernández-Tilapa, Gloria

    2014-12-24

    Helicobacter pylori chronic infection is associated with chronic gastritis, peptic ulcer, and gastric cancer. Cytotoxin-associated gene A (cagA)-positive H. pylori strains increase the risk of gastric pathology. The carcinogenic potential of CagA is linked to its polymorphic EPIYA motif variants. The goals of this study were to investigate the frequency of cagA-positive Helicobacter pylori in Mexican patients with gastric pathologies and to assess the association of cagA EPIYA motif patterns with peptic ulcer and gastric cancer. A total of 499 patients were studied; of these, 402 had chronic gastritis, 77 had peptic ulcer, and 20 had gastric cancer. H. pylori DNA, cagA, and the EPIYA motifs were detected in total DNA from gastric biopsies by PCR. The type and number of EPIYA segments were determined by the electrophoretic patterns. To confirm the PCR results, 20 amplicons of the cagA 3' variable region were sequenced, and analyzed in silico, and the amino acid sequence was predicted with MEGA software, version 5. The odds ratio (OR) was calculated to determine the associations between the EPIYA motif type and gastric pathology and between the number of EPIYA-C segments and peptic ulcers and gastric cancer. H. pylori DNA was found in 287 (57.5%) of the 499 patients, and 214 (74%) of these patients were cagA-positive. The frequency of cagA-positive H. pylori was 74.6% (164/220) in chronic gastritis patients, 73.6% (39/53) in peptic ulcer patients, and 78.6% (11/14) in gastric cancer patients. The EPIYA-ABC pattern was more frequently observed in chronic gastritis patients (79.3%, 130/164), while the EPIYA-ABCC sequence was more frequently observed in peptic ulcer (64.1%, 25/39) and gastric cancer patients (54.5%, 6/11). However, the risks of peptic ulcer (OR = 7.0, 95% CI = 3.3-15.1; p < 0.001) and gastric cancer (OR = 5.9, 95% CI = 1.5-22.1) were significantly increased in individuals who harbored the EPIYA-ABCC cagA gene pattern. cagA-positive H. pylori is highly prevalent in southern Mexico, and all CagA variants were of the western type. The cagA alleles that code for EPIYA-ABCC motif patterns are associated with peptic ulcers and gastric cancer.

  3. Dominant missense mutations in ABCC9 cause Cantú syndrome.

    PubMed

    Harakalova, Magdalena; van Harssel, Jeske J T; Terhal, Paulien A; van Lieshout, Stef; Duran, Karen; Renkens, Ivo; Amor, David J; Wilson, Louise C; Kirk, Edwin P; Turner, Claire L S; Shears, Debbie; Garcia-Minaur, Sixto; Lees, Melissa M; Ross, Alison; Venselaar, Hanka; Vriend, Gert; Takanari, Hiroki; Rook, Martin B; van der Heyden, Marcel A G; Asselbergs, Folkert W; Breur, Hans M; Swinkels, Marielle E; Scurr, Ingrid J; Smithson, Sarah F; Knoers, Nine V; van der Smagt, Jasper J; Nijman, Isaac J; Kloosterman, Wigard P; van Haelst, Mieke M; van Haaften, Gijs; Cuppen, Edwin

    2012-05-18

    Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.

  4. Genetic variations and patient-reported quality of life among patients with lung cancer.

    PubMed

    Sloan, Jeff A; de Andrade, Mariza; Decker, Paul; Wampfler, Jason; Oswold, Curtis; Clark, Matthew; Yang, Ping

    2012-05-10

    Recent evidence has suggested a relationship between the baseline quality of life (QOL) self-reported by patients with cancer and genetic disposition. We report an analysis exploring relationships among baseline QOL assessments and candidate genetic variations in a large cohort of patients with lung cancer. QOL data were provided by 1,299 patients with non-small-cell lung cancer observed at the Mayo Clinic between 1997 and 2007. Overall QOL and subdomains were assessed by either Lung Cancer Symptom Scale or Linear Analog Self Assessment measures; scores were transformed to a scale of 0 to 10, with higher scores representing better status. Baseline QOL scores assessed within 1 year of diagnosis were dichotomized as clinically deficient (CD) or not. A total of 470 single nucleotide polymorphisms (SNPs) in 56 genes of three biologic pathways were assessed for association with QOL measures. Logistic regression with training/validation samples was used to test the association of SNPs with CD QOL. Six SNPs on four genes were replicated using our split schemes. Three SNPs in the MGMT gene (adjusted analysis, rs3858300; unadjusted analysis, rs10741191 and rs3852507) from DNA repair pathway were associated with overall QOL. Two SNPs (rs2287396 [GSTZ1] and rs9524885 [ABCC4]) from glutathione metabolic pathway were associated with fatigue in unadjusted analysis. In adjusted analysis, two SNPs (rs2756109 [ABCC2] and rs9524885 [ABCC4]) from glutathione metabolic pathway were associated with pain. We identified three SNPs in three glutathione metabolic pathway genes and three SNPs in two DNA repair pathway genes associated with QOL measures in patients with non-small-cell lung cancer.

  5. ABCC5 Transporter is a Novel Type 2 Diabetes Susceptibility Gene in European and African American Populations

    PubMed Central

    Direk, Kenan; Lau, Winston; Small, Kerrin S; Maniatis, Nikolas; Andrew, Toby

    2014-01-01

    Numerous functional studies have implicated PARL in relation to type 2 diabetes (T2D). We hypothesised that conflicting human association studies may be due to neighbouring causal variants being in linkage disequilibrium (LD) with PARL. We conducted a comprehensive candidate gene study of the extended LD genomic region that includes PARL and transporter ABCC5 using three data sets (two European and one African American), in relation to healthy glycaemic variation, visceral fat accumulation and T2D disease. We observed no evidence for previously reported T2D association with Val262Leu or PARL using array and fine-map genomic and expression data. By contrast, we observed strong evidence of T2D association with ABCC5 (intron 26) for European and African American samples (P = 3E−07) and with ABCC5 adipose expression in Europeans [odds ratio (OR) = 3.8, P = 2E−04]. The genomic location estimate for the ABCC5 functional variant, associated with all phenotypes and expression data (P = 1E−11), was identical for all samples (at Chr3q 185,136 kb B36), indicating that the risk variant is an expression quantitative trait locus (eQTL) with increased expression conferring risk of disease. That the association with T2D is observed in populations of disparate ancestry suggests the variant is a ubiquitous risk factor for T2D. PMID:25117150

  6. Pyrophosphate Supplementation Prevents Chronic and Acute Calcification in ABCC6-Deficient Mice.

    PubMed

    Pomozi, Viola; Brampton, Christopher; van de Wetering, Koen; Zoll, Janna; Calio, Bianca; Pham, Kevin; Owens, Jesse B; Marh, Joel; Moisyadi, Stefan; Váradi, András; Martin, Ludovic; Bauer, Carolin; Erdmann, Jeanette; Aherrahrou, Zouhair; Le Saux, Olivier

    2017-06-01

    Soft tissue calcification occurs in several common acquired pathologies, such as diabetes and hypercholesterolemia, or can result from genetic disorders. ABCC6, a transmembrane transporter primarily expressed in liver and kidneys, initiates a molecular pathway inhibiting ectopic calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into pyrophosphate (PPi), a major calcification inhibitor. Heritable mutations in ABCC6 underlie the incurable calcification disorder pseudoxanthoma elasticum and some cases of generalized arterial calcification of infancy. Herein, we determined that the administration of PPi and the bisphosphonate etidronate to Abcc6 -/- mice fully inhibited the acute dystrophic cardiac calcification phenotype, whereas alendronate had no significant effect. We also found that daily injection of PPi to Abcc6 -/- mice over several months prevented the development of pseudoxanthoma elasticum-like spontaneous calcification, but failed to reverse already established lesions. Furthermore, we found that the expression of low amounts of the human ABCC6 in liver of transgenic Abcc6 -/- mice, resulting in only a 27% increase in plasma PPi levels, led to a major reduction in acute and chronic calcification phenotypes. This proof-of-concept study shows that the development of both acute and chronic calcification associated with ABCC6 deficiency can be prevented by compensating PPi deficits, even partially. Our work indicates that PPi substitution represents a promising strategy to treat ABCC6-dependent calcification disorders. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Association of KCNJ11 and ABCC8 genetic polymorphisms with response to repaglinide in Chinese diabetic patients.

    PubMed

    He, Ya-yi; Zhang, Rong; Shao, Xin-yu; Hu, Cheng; Wang, Cong-rong; Lu, Jun-xi; Bao, Yu-qian; Jia, Wei-ping; Xiang, Kun-san

    2008-08-01

    The aim of this study was to investigate the association of KCNJ11 E23K and ABCC8 exon16-3T/C with the therapeutic effect of repaglinide in patients with type 2 diabetes. A total of 100 Chinese patients with newly diagnosed type 2 diabetes were treated with repaglinide for 24 weeks. Arginine stimulation tests were performed to evaluate beta cell function. Gene variations were detected with PCR-restriction fragment length polymorphism. Responders were defined by a greater than 25% decrease in fasting plasma glucose or a greater than 20% decrease in hemoglobin A1c (HbA1c) values (or both) after the 24 week repaglinide treatment. Both baseline HbA1c and the decrease of HbA1c were significantly higher in patients with E/K and K/K genotypes of the KCNJ11 E23K variant when compared with E/E homozygotes (P=0.0103 and 0.0221, respectively). The decrease in 2 h postprandial plasma glucose (2hPG) was significantly greater in E/K heterozygotes than E/E homozygotes (P=0.0367). There was a significant difference in the response rate to repaglinide treatment between the E and K alleles (68% vs 82%, P=0.0324). The changes in fasting insulin and the homeostasis model assessment of insulin resistance were significantly greater in patients with ABCC8 exon16-3 C/C versus the T/C and T/T genotypes (P=0.0372 and 0.0274, respectively). The KCNJ11 E23K variant was associated with the therapeutic effect of repaglinide. In addition, The C/C homozygotes of the ABCC8 exon16-3T/C variant responded better to repaglinide in insulin sensitivity than the T/C and T/T genotypes.

  8. Characterization of Zebrafish Abcc4 as an Efflux Transporter of Organochlorine Pesticides

    PubMed Central

    Lu, Xing; Long, Yong; Lin, Li; Sun, Rongze; Zhong, Shan; Cui, Zongbin

    2014-01-01

    DDT and lindane are highly toxic organochlorine pesticides and posing adverse effects on the environment and public health due to their frequent usage in developing countries. ABCC4/MRP4 is an organic anion transporter that mediates cellular efflux of a wide range of exogenous and endogenous compounds such as cyclic nucleotides and anti-cancer drugs; however, it remains unclear whether ABCC4 and its orthologs function in the detoxification of organochlorine pesticides. Here, we demonstrated the roles of zebrafish Abcc4 in cellular efflux of DDT and lindane. Zebrafish abcc4 was maternally expressed in the oocytes and its transcripts were detected in the lens, pancreas, gills, liver, intestine and bladder of developing embryos and in adult tissues examined. DDT and lindane were able to induce the expression of abcc4 gene and overexpression of Abcc4 significantly decreased the cytotoxicity and accumulation of DDT and lindane in LLC-PK1 cells and developing embryos. In contrast, overexpression of an Abcc4-G1188D mutant abolished its transporter function without effects on its substrate binding activity, and sensitized LLC-PK1 cells and developing embryos to toxic pesticides. Moreover, glutathione (GSH) was involved in the efflux of cellular pesticides and ATPase activity in developing embryos can be induced by DDT or lindane. Thus, zebrafish Abcc4 plays crucial roles in cellular efflux of organochlorine pesticides and can be used a potential molecular marker for the monitor of DDT and lindane contamination in the aquatic environment. PMID:25478949

  9. ABCC6 does not transport vitamin K3-glutathione conjugate from the liver: relevance to pathomechanisms of pseudoxanthoma elasticum.

    PubMed

    Fülöp, Krisztina; Jiang, Qiujie; Wetering, Koen V D; Pomozi, Viola; Szabó, Pál T; Arányi, Tamás; Sarkadi, Balázs; Borst, Piet; Uitto, Jouni; Váradi, András

    2011-11-25

    Vitamin K is a cofactor required for gamma-glutamyl carboxylation of several proteins regulating blood clotting, bone formation and soft tissue mineralization. Vitamin K3 is an important intermediate during conversion of the dietary vitamin K1 to the most abundant vitamin K2 form. It has been suggested that ABCC6 may have a role in transporting vitamin K or its derivatives from the liver to the periphery. This activity is missing in pseudoxanthoma elasticum, a genetic disorder caused by mutations in ABCC6 characterized by abnormal soft tissue mineralization. Here we examined the efflux of the glutathione conjugate of vitamin K3 (VK3GS) from the liver in wild type and Abcc6(-/-) mice, and in transport assays in vitro. We found in liver perfusion experiments that VK3GS is secreted into the inferior vena cava, but we observed no significant difference between wild type and Abcc6(-/-) animals. We overexpressed the human ABCC6 transporter in Sf9 insect and MDCKII cells and assayed its vitamin K3-conjugate transport activity in vitro. We found no measurable transport of VK3GS by ABCC6, whereas ABCC1 transported this compound at high rate in these assays. These results show that VK3GS is not the essential metabolite transported by ABCC6 from the liver and preventing the symptoms of pseudoxanthoma elasticum. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Identification of genetic variants in pharmacogenetic genes associated with type 2 diabetes in a Mexican-Mestizo population

    PubMed Central

    Rodríguez-Rivera, Nidia Samara; Cuautle-Rodríguez, Patricia; Castillo-Nájera, Fernando; Molina-Guarneros, Juan Arcadio

    2017-01-01

    Type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic pathologies in the world. In developing countries, such as Mexico, its prevalence represents an important public health and research issue. Determining factors triggering T2DM are environmental and genetic. While diet, exercise and proper weight control are the first measures recommended to improve the quality of life and life expectancy of patients, pharmacological treatment is usually the next step. Within every population there are variations in interindividual drug response, which may be due to genetic background. Some of the most frequent first line T2DM treatments in developing countries are sulfonylureas (SU), whose targets are ATP-sensitive potassium channels (KATP). Single nucleotide polymorphisms (SNPs) of the KATP coding genes, potassium voltage-gated channel subfamily J member 11 (KCNJ11) and ATP binding cassette subfamily C member 8 (ABCC8) have been associated with SU response variability. To date, there is little information regarding the mechanism by which these SNPs work within Mexican populations. The present study describes the distribution of three SNPs [KCNJ11 rs5219 (E23K), ABCC8 rs757110 (S1369A) and rs1799854 (−3C/T)] among Mestizo Mexican (MM) T2DM patients, and compares it with published data on various healthy subjects and T2DM populations. Through this comparison, no difference in the KCNJ11 rs5219 and ABCC8 rs757110 allelic and genotypic frequencies in MM were observed compared with the majority of the reported populations of healthy and diabetic individuals among other ethnic groups; except for African and Colombian individuals. By contrast, ABCC8 rs1799854 genomic and allelic frequencies among MM were observed to be significantly different from those reported by the 1000 Genomes Project, and from diabetic patients within other populations reported in the literature, such as the European, Asian and Latin-American individuals [T=0.704, G=0.296; CC=0.506, CT=0.397, TT=0.097; 95% confidence interval (CI); P≤0.05]; except for South Asian and Iberian populations, which may reflect the admixture origins of the present Mexican population. This genetic similarity has not been observed in the other Latin-American groups. To the best of our knowledge, this is the first study of ABCC8 rs757110 and rs1799854 SNP frequencies in any Mexican population and, specifically with diabetic Mexicans. Knowledge of the genetic structure of different populations is key to understanding the interindividual responses to drugs, such as SU and whether genotypic differences affect clinical outcome. PMID:28685055

  11. Identification of genetic variants in pharmacogenetic genes associated with type 2 diabetes in a Mexican-Mestizo population.

    PubMed

    Rodríguez-Rivera, Nidia Samara; Cuautle-Rodríguez, Patricia; Castillo-Nájera, Fernando; Molina-Guarneros, Juan Arcadio

    2017-07-01

    Type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic pathologies in the world. In developing countries, such as Mexico, its prevalence represents an important public health and research issue. Determining factors triggering T2DM are environmental and genetic. While diet, exercise and proper weight control are the first measures recommended to improve the quality of life and life expectancy of patients, pharmacological treatment is usually the next step. Within every population there are variations in interindividual drug response, which may be due to genetic background. Some of the most frequent first line T2DM treatments in developing countries are sulfonylureas (SU), whose targets are ATP-sensitive potassium channels (K ATP ). Single nucleotide polymorphisms (SNPs) of the K ATP coding genes, potassium voltage-gated channel subfamily J member 11 ( KCNJ11 ) and ATP binding cassette subfamily C member 8 ( ABCC8 ) have been associated with SU response variability. To date, there is little information regarding the mechanism by which these SNPs work within Mexican populations. The present study describes the distribution of three SNPs [KCNJ11 rs5219 (E23K), ABCC8 rs757110 (S1369A) and rs1799854 (-3C/T)] among Mestizo Mexican (MM) T2DM patients, and compares it with published data on various healthy subjects and T2DM populations. Through this comparison, no difference in the KCNJ11 rs5219 and ABCC8 rs757110 allelic and genotypic frequencies in MM were observed compared with the majority of the reported populations of healthy and diabetic individuals among other ethnic groups; except for African and Colombian individuals. By contrast, ABCC8 rs1799854 genomic and allelic frequencies among MM were observed to be significantly different from those reported by the 1000 Genomes Project, and from diabetic patients within other populations reported in the literature, such as the European, Asian and Latin-American individuals [T=0.704, G=0.296; CC=0.506, CT=0.397, TT=0.097; 95% confidence interval (CI); P≤0.05]; except for South Asian and Iberian populations, which may reflect the admixture origins of the present Mexican population. This genetic similarity has not been observed in the other Latin-American groups. To the best of our knowledge, this is the first study of ABCC8 rs757110 and rs1799854 SNP frequencies in any Mexican population and, specifically with diabetic Mexicans. Knowledge of the genetic structure of different populations is key to understanding the interindividual responses to drugs, such as SU and whether genotypic differences affect clinical outcome.

  12. Sorafenib metabolism, transport, and enterohepatic recycling: physiologically based modeling and simulation in mice.

    PubMed

    Edginton, Andrea N; Zimmerman, Eric I; Vasilyeva, Aksana; Baker, Sharyn D; Panetta, John C

    2016-05-01

    This study used uncertainty and sensitivity analysis to evaluate a physiologically based pharmacokinetic (PBPK) model of the complex mechanisms of sorafenib and its two main metabolites, sorafenib glucuronide and sorafenib N-oxide in mice. A PBPK model for sorafenib and its two main metabolites was developed to explain disposition in mice. It included relevant influx (Oatp) and efflux (Abcc2 and Abcc3) transporters, hepatic metabolic enzymes (CYP3A4 and UGT1A9), and intestinal β-glucuronidase. Parameterization of drug-specific processes was based on in vitro, ex vivo, and in silico data along with plasma and liver pharmacokinetic data from single and multiple transporter knockout mice. Uncertainty analysis demonstrated that the model structure and parameter values could explain the observed variability in the pharmacokinetic data. Global sensitivity analysis demonstrated the global effects of metabolizing enzymes on sorafenib and metabolite disposition and the local effects of transporters on their respective substrate exposures. In addition, through hypothesis testing, the model supported that the influx transporter Oatp is a weak substrate for sorafenib and a strong substrate for sorafenib glucuronide and that the efflux transporter Abcc2 is not the only transporter affected in the Abcc2 knockout mouse. Translation of the mouse model to humans for the purpose of explaining exceptionally high human pharmacokinetic variability and its relationship with exposure-dependent dose-limiting toxicities will require delineation of the importance of these processes on disposition.

  13. ABCC1 is related to the protection of the distal nephron against hyperosmolality and high sodium environment: possible implications for cancer chemotherapy.

    PubMed

    Fonseca, Leonardo M; Alvarez, Adriana B; Rodrigues, Rachel C; Santos, Diego H F; Lopes, Anibal G; Capella, Marcia A M

    2013-01-01

    Glutathione (GSH) plays an important role in protecting cells against oxidative damage. ABCC1 protein transports GSH. Although this protein is largely studied in cancer, due to multidrug resistance phenotype, its role in the tubular cells of the kidney is unknown. The goal of this study was to find out whether ABCC1 has a role in protecting cells from the distal nephron against the stress caused by high medullar osmolality. MA104 cells were treated with high concentrations of sodium chloride, urea, or both to raise the osmolality of the culture medium. Cell viability was accessed by MTT and trypan blue assays. ABCC1 expression and extrusion of carboxi-fluorescein (CF), a fluorescent ABCC1 substrate, were measured by flow cytometry. Incubation of MA104 cells in a high sodium concentration medium resulted in changes in cell granularity and altered expression and activity of ABCC1. Urea did not alter ABCC1 expression or activity, but reversed the observed NaCl effects. High sodium concentrations also had a negative effect on cell viability and urea also protected cells against this effect. Our findings demonstrate that ABCC1 plays a significant role in the protection of kidney epithelial cells against the stress caused by high sodium environment present in renal medulla.

  14. Neonatal Diabetes: An Expanding List of Genes Allows for Improved Diagnosis and Treatment

    PubMed Central

    Naylor, Rochelle N.; Philipson, Louis H.; Bell, Graeme I.

    2011-01-01

    There has been major progress in recent years uncovering the genetic causes of diabetes presenting in the first year of life. Twenty genes have been identified to date. The most common causes accounting for the majority of cases are mutations in the genes encoding the two subunits of the ATP-sensitive potassium channel (KATP), KCNJ11 and ABCC8, and the insulin gene (INS), as well as abnormalities in chromosome 6q24. Patients with activating mutations in KCNJ11 and ABCC8 can be treated with oral sulfonylureas in lieu of insulin injections. This compelling example of personalized genetic medicine leading to improved glucose regulation and quality of life may—with continued research—be repeated for other forms of neonatal diabetes in the future. PMID:21993633

  15. Abcc9 is required for the transition to oxidative metabolism in the newborn heart.

    PubMed

    Fahrenbach, John P; Stoller, Douglas; Kim, Gene; Aggarwal, Nitin; Yerokun, Babatunde; Earley, Judy U; Hadhazy, Michele; Shi, Nian-Qing; Makielski, Jonathan C; McNally, Elizabeth M

    2014-07-01

    The newborn heart adapts to postnatal life by shifting from a fetal glycolytic metabolism to a mitochondrial oxidative metabolism. Abcc9, an ATP-binding cassette family member, increases expression concomitant with this metabolic shift. Abcc9 encodes a membrane-associated receptor that partners with a potassium channel to become the major potassium-sensitive ATP channel in the heart. Abcc9 also encodes a smaller protein enriched in the mitochondria. We now deleted exon 5 of Abcc9 to ablate expression of both plasma membrane and mitochondria-associated Abcc9-encoded proteins, and found that the myocardium failed to acquire normal mature metabolism, resulting in neonatal cardiomyopathy. Unlike wild-type neonatal cardiomyocytes, mitochondria from Ex5 cardiomyocytes were unresponsive to the KATP agonist diazoxide, consistent with loss of KATP activity. When exposed to hydrogen peroxide to induce cell stress, Ex5 neonatal cardiomyocytes displayed a rapid collapse of mitochondria membrane potential, distinct from wild-type cardiomyocytes. Ex5 cardiomyocytes had reduced fatty acid oxidation, reduced oxygen consumption and reserve. Morphologically, Ex5 cardiac mitochondria exhibited an immature pattern with reduced cross-sectional area and intermitochondrial contacts. In the absence of Abcc9, the newborn heart fails to transition normally from fetal to mature myocardial metabolism.-Fahrenbach, J. P., Stoller, D., Kim, G., Aggarwal, N., Yerokun, B., Earley, J. U., Hadhazy, M., Shi, N.-Q., Makielski, J. C., McNally, E. M. Abcc9 is required for the transition to oxidative metabolism in the newborn heart. © FASEB.

  16. Replication of KCNJ11 (p.E23K) and ABCC8 (p.S1369A) Association in Russian Diabetes Mellitus 2 Type Cohort and Meta-Analysis

    PubMed Central

    Sokolova, Ekaterina Alekseevna; Bondar, Irina Arkadievna; Shabelnikova, Olesya Yurievna; Pyankova, Olga Vladimirovna; Filipenko, Maxim Leonidovich

    2015-01-01

    The genes ABCC8 and KCNJ11 have received intense focus in type 2 diabetes mellitus (T2DM) research over the past two decades. It has been hypothesized that the p.E23K (KCNJ11) mutation in the 11p15.1 region may play an important role in the development of T2DM. In 2009, Hamming et al. found that the p.1369A (ABCC8) variant may be a causal factor in the disease; therefore, in this study we performed a meta-analysis to evaluate the association between these single nucleotide polymorphisms (SNPs), including our original data on the Siberian population (1384 T2DM and 414 controls). We found rs5219 and rs757110 were not associated with T2DM in this population, and that there was linkage disequilibrium in Siberians (D’=0.766, r2= 0.5633). In addition, the haplotype rs757110[T]-rs5219[C] (p.23K/p.S1369) was associated with T2DM (OR = 1.52, 95% CI: 1.04-2.24). We included 44 original studies published by June 2014 in a meta-analysis of the p.E23K association with T2DM. The total OR was 1.14 (95% CI: 1.11-1.17) for p.E23K for a total sample size of 137,298. For p.S1369A, a meta-analysis was conducted on a total of 10 studies with a total sample size of 14,136 and pooled OR of 1.14 [95% CI (1.08-1.19); p = 2 x 10-6]. Our calculations identified causal genetic variation within the ABCC8/KCNJ11 region for T2DM with an OR of approximately 1.15 in Caucasians and Asians. Moreover, the OR value was not dependent on the frequency of p.E23K or p.S1369A in the populations. PMID:25955821

  17. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance

    PubMed Central

    Walter, Stephanie; Kahla, Amal; Arunachalam, Chanemoughasoundharam; Perochon, Alexandre; Khan, Mojibur R.; Scofield, Steven R.; Doohan, Fiona M.

    2015-01-01

    The mycotoxin deoxynivalenol (DON) acts as a disease virulence factor for Fusarium fungi, and tolerance of DON enhances wheat resistance to Fusarium head blight (FHB) disease. Two variants of an ATP-binding cassette (ABC) family C transporter gene were cloned from DON-treated wheat mRNA, namely TaABCC3.1 and TaABCC3.2. These represent two of three putative genes identified on chromosomes 3A, 3B, and 3D of the wheat genome sequence. Variant TaABCC3.1 represents the DON-responsive transcript previously associated with DON resistance in wheat. PCR-based mapping and in silico sequence analyses located TaABCC3.1 to the short arm of wheat chromosome 3B (not within the FHB resistance quantitative trait locus Fhb1). In silico analyses of microarray data indicated that TaABCC3 genes are expressed in reproductive tissue and roots, and in response to the DON producer Fusarium graminearum. Gene expression studies showed that TaABCC3.1 is activated as part of the early host response to DON and in response to the FHB defence hormone jasmonic acid. Virus-induced gene silencing (VIGS) confirmed that TaABCC3 genes contributed to DON tolerance. VIGS was performed using two independent viral construct applications: one specifically targeted TaABCC3.1 for silencing, while the other targeted this gene and the chromosome 3A homeologue. In both instances, VIGS resulted in more toxin-induced discoloration of spikelets, compared with the DON effects in non-silenced spikelets at 14 d after toxin treatment (≥2.2-fold increase, P<0.05). Silencing by both VIGS constructs enhanced head ripening, and especially so in DON-treated heads. VIGS of TaABCC3 genes also reduced the grain number by more than 28% (P<0.05), both with and without DON treatment, and the effects were greater for the construct that targeted the two homeologues. Hence, DON-responsive TaABCC3 genes warrant further study to determine their potential as disease resistance breeding targets and their function in grain formation and ripening. PMID:25732534

  18. DS-8201a, a new HER2-targeting antibody-drug conjugate incorporating a novel DNA topoisomerase I inhibitor, overcomes HER2-positive gastric cancer T-DM1 resistance.

    PubMed

    Takegawa, Naoki; Nonagase, Yoshikane; Yonesaka, Kimio; Sakai, Kazuko; Maenishi, Osamu; Ogitani, Yusuke; Tamura, Takao; Nishio, Kazuto; Nakagawa, Kazuhiko; Tsurutani, Junji

    2017-10-15

    Anti-HER2 therapies are beneficial for patients with HER2-positive breast or gastric cancer. T-DM1 is a HER2-targeting antibody-drug conjugate (ADC) comprising the antibody trastuzumab, a linker, and the tubulin inhibitor DM1. Although effective in treating advanced breast cancer, all patients eventually develop T-DM1 resistance. DS-8201a is a new ADC incorporating an anti-HER2 antibody, a newly developed, enzymatically cleavable peptide linker, and a novel, potent, exatecan-derivative topoisomerase I inhibitor (DXd). DS-8201a has a drug-to-antibody-ratio (DAR) of 8, which is higher than that of T-DM1 (3.5). Owing to these unique characteristics and unlike T-DM1, DS-8201a is effective against cancers with low-HER2 expression. In the present work, T-DM1-resistant cells (N87-TDMR), established using the HER2-positive gastric cancer line NCI-N87 and continuous T-DM1 exposure, were shown to be susceptible to DS-8201a. The ATP-binding cassette (ABC) transporters ABCC2 and ABCG2 were upregulated in N87-TDMR cells, but HER2 overexpression was retained. Furthermore, inhibition of ABCC2 and ABCG2 by MK571 restored T-DM1 sensitivity. Therefore, resistance to T-DM1 is caused by efflux of its payload DM1, due to aberrant expression of ABC transporters. In contrast to DM1, DXd payload of DS-8201a inhibited the growth of N87-TDMR cells in vitro. This suggests that either DXd may be a poor substrate of ABCC2 and ABCG2 in comparison to DM1, or the high DAR of DS-8201a relative to T-DM1 compensates for increased efflux. Notably, N87-TDMR xenograft tumor growth was prevented by DS-8201a. In conclusion, the efficacy of DS-8201a as a treatment for patients with T-DM1-resistant breast or gastric cancer merits investigation. © 2017 UICC.

  19. Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin.

    PubMed

    Tanaka, Shiho; Endo, Haruka; Adegawa, Satomi; Iizuka, Ami; Imamura, Kazuhiro; Kikuta, Shingo; Sato, Ryoichi

    2017-12-01

    Because Bombyx mori ABC transporter C2 (BmABCC2) has 1000-fold higher potential than B. mori cadherin-like protein as a receptor for Bacillus thuringiensis Cry1Aa toxin (Tanaka et al., 2013), the gate-opening ability of the latent pore under six extracellular loops (ECLs) of BmABCC2 was expected to be the reason for its higher potential (Heckel, 2012). In this study, cell swelling assays in Sf9 cells showed that BmABCC2 mutants lacking substrate-excreting activity retained receptor activity, indicating that the gate-opening activity of BmABCC2 is not responsible for Cry1Aa toxicity. The analysis of 29 BmABCC2 mutants demonstrated that 770 DYWL 773 of ECL 4 comprise a putative binding site to Cry1Aa. This suggests that specific toxicity of Cry1Aa toxin to a restricted range of lepidopteran insects is dependent on conservation and variation in the amino acid residues around 770 DYWL 773 of ECL 4 in the ABCC2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Virtual screening of ABCC1 transporter nucleotidebinding domains as a therapeutic target in multidrug resistant cancer

    PubMed Central

    Rungsardthong, Kanin; Mares- Sámano, Sergio; Penny, Jeffrey

    2012-01-01

    ABCC1 is a member of the ATP-binding Cassette super family of transporters, actively effluxes xenobiotics from cells. Clinically, ABCC1 expression is linked to cancer multidrug resistance. Substrate efflux is energised by ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) and inhibition of these events may help combat drug resistance. The aim of this study is to identify potential inhibitors of ABCC1 through virtual screening of National Cancer Institute (NCI) compounds. A threedimensional model of ABCC1 NBD2 was generated using MODELLER whilst the X-ray crystal structure of ABCC1 NBD1 was retrieved from the Protein Data Bank. A pharmacophore hypothesis was generated based on flavonoids known to bind at the NBDs using PHASE, and used to screen the NCI database. GLIDE was employed in molecular docking studies for all hit compounds identified by pharmacophore screening. The best potential inhibitors were identified as compounds possessing predicted binding affinities greater than ATP. Approximately 5% (13/265) of the hit compounds possessed lower docking scores than ATP in ABCC1 NBD1 (NSC93033, NSC662377, NSC319661, NSC333748, NSC683893, NSC226639, NSC94231, NSC55979, NSC169121, NSC166574, NSC73380, NSC127738, NSC115534), whereas approximately 7% (7/104) of docked NCI compounds were predicted to possess lower docking scores than ATP in ABCC1 NBD2 (NSC91789, NSC529483, NSC211168, NSC318214, NSC116519, NSC372332, NSC526974). Analyses of docking orientations revealed P-loop residues of each NBD and the aromatic amino acids Trp653 (NBD1) and Tyr1302 (NBD2) were key in interacting with high-affinity compounds. On the basis of docked orientation and docking score the compounds identified may be potential inhibitors of ABCC1 and require further pharmacological analysis. Abbreviations ABC - ATP-binding cassette, DHS - dehydrosilybin, MDR - multidrug resistance, NBD - nucleotide-binding domain, PDB - protein data bank. PMID:23144549

  1. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters

    PubMed Central

    Song, Won-Yong; Park, Jiyoung; Mendoza-Cózatl, David G.; Suter-Grotemeyer, Marianne; Shim, Donghwan; Hörtensteiner, Stefan; Geisler, Markus; Weder, Barbara; Rea, Philip A.; Rentsch, Doris; Schroeder, Julian I.; Lee, Youngsook; Martinoia, Enrico

    2010-01-01

    Arsenic is an extremely toxic metalloid causing serious health problems. In Southeast Asia, aquifers providing drinking and agricultural water for tens of millions of people are contaminated with arsenic. To reduce nutritional arsenic intake through the consumption of contaminated plants, identification of the mechanisms for arsenic accumulation and detoxification in plants is a prerequisite. Phytochelatins (PCs) are glutathione-derived peptides that chelate heavy metals and metalloids such as arsenic, thereby functioning as the first step in their detoxification. Plant vacuoles act as final detoxification stores for heavy metals and arsenic. The essential PC–metal(loid) transporters that sequester toxic metal(loid)s in plant vacuoles have long been sought but remain unidentified in plants. Here we show that in the absence of two ABCC-type transporters, AtABCC1 and AtABCC2, Arabidopsis thaliana is extremely sensitive to arsenic and arsenic-based herbicides. Heterologous expression of these ABCC transporters in phytochelatin-producing Saccharomyces cerevisiae enhanced arsenic tolerance and accumulation. Furthermore, membrane vesicles isolated from these yeasts exhibited a pronounced arsenite [As(III)]–PC2 transport activity. Vacuoles isolated from atabcc1 atabcc2 double knockout plants exhibited a very low residual As(III)–PC2 transport activity, and interestingly, less PC was produced in mutant plants when exposed to arsenic. Overexpression of AtPCS1 and AtABCC1 resulted in plants exhibiting increased arsenic tolerance. Our findings demonstrate that AtABCC1 and AtABCC2 are the long-sought and major vacuolar PC transporters. Modulation of vacuolar PC transporters in other plants may allow engineering of plants suited either for phytoremediation or reduced accumulation of arsenic in edible organs. PMID:21078981

  2. Molecular model of the outward facing state of the human P-glycoprotein (ABCB1), and comparison to a model of the human MRP5 (ABCC5)

    PubMed Central

    Ravna, Aina W; Sylte, Ingebrigt; Sager, Georg

    2007-01-01

    Background Multidrug resistance is a particular limitation to cancer chemotherapy, antibiotic treatment and HIV medication. The ABC (ATP binding cassette) transporters human P-glycoprotein (ABCB1) and the human MRP5 (ABCC5) are involved in multidrug resistance. Results In order to elucidate structural and molecular concepts of multidrug resistance, we have constructed a molecular model of the ATP-bound outward facing conformation of the human multidrug resistance protein ABCB1 using the Sav1866 crystal structure as a template, and compared the ABCB1 model with a previous ABCC5 model. The electrostatic potential surface (EPS) of the ABCB1 substrate translocation chamber, which transports cationic amphiphilic and lipophilic substrates, was neutral with negative and weakly positive areas. In contrast, EPS of the ABCC5 substrate translocation chamber, which transports organic anions, was generally positive. Positive-negative ratios of amino acids in the TMDs of ABCB1 and ABCC5 were also analyzed, and the positive-negative ratio of charged amino acids was higher in the ABCC5 TMDs than in the ABCB1 TMDs. In the ABCB1 model residues Leu65 (transmembrane helix 1 (TMH1)), Ile306 (TMH5), Ile340 (TMH6) and Phe343 (TMH6) may form a binding site, and this is in accordance with previous site directed mutagenesis studies. Conclusion The Sav1866 X-ray structure may serve as a suitable template for the ABCB1 model, as it did with ABCC5. The EPS in the substrate translocation chambers and the positive-negative ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and lipophilic substrates by ABCB1, and the transport of organic anions by ABCC5. PMID:17803828

  3. Spectrum of genetic variation at the ABCC6 locus in South Africans: Pseudoxanthoma elasticum patients and healthy individuals.

    PubMed

    Ramsay, Michèle; Greenberg, Tarryn; Lombard, Zane; Labrum, Robyn; Lubbe, Steven; Aron, Shaun; Marais, Anna-Susan; Terry, Sharon; Bercovitch, Lionel; Viljoen, Denis

    2009-06-01

    Pseudoxanthoma elasticum (PXE) is an autosomal recessive metabolic disorder with ectopic mineralization in the skin, eyes and cardiovascular system. PXE is caused by mutations in ABCC6. To examine 54 unrelated South African PXE patients for ABCC6 PXE causing mutations. Patients were screened for mutations in ABCC6 using two strategies. The first involved a comprehensive screening of all the ABCC6 exons and flanking regions by dHPLC or sequencing whereas the second involved screening patients only for the common PXE mutations. The ABCC6 gene was screened in ten white and ten black healthy unrelated South Africans in order to examine the level of common non-PXE associated variation. The Afrikaner founder mutation, R1339C, was present in 0.41 of white ABCC6 PXE alleles, confirming the founder effect and its presence in both Afrikaans- (34/63 PXE alleles) and English-speakers (4/28). Eleven mutations were detected in the white patients (of European origin), including two nonsense mutations, 6 missense mutations, two frameshift mutations and a large deletion mutation. The five "Coloured" patients (of mixed Khoisan, Malay, European and African origin) included three compound heterozygotes with R1339C as one of the mutations. The three black patients (sub-Saharan African origin) were all apparent homozygotes for the R1314W mutation. Blacks showed a trend towards a higher degree of neurtral variation (18 variants) when compared to whites (12 variants). Delineation of the ABCC6 mutation profile in South African PXE patients will be used as a guide for molecular genetic testing in a clinical setting and for genetic counselling.

  4. Regulation of hepatic ABCC transporters by xenobiotics and in disease states

    PubMed Central

    Gu, Xinsheng; Manautou, Jose E.

    2015-01-01

    The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules. PMID:20233023

  5. Clinical and molecular characterisation of hyperinsulinaemic hypoglycaemia in infants born small-for-gestational age.

    PubMed

    Arya, Ved Bhushan; Flanagan, Sarah E; Kumaran, Anitha; Shield, Julian P; Ellard, Sian; Hussain, Khalid; Kapoor, Ritika R

    2013-07-01

    To characterise the phenotype and genotype of neonates born small-for-gestational age (SGA; birth weight <10th centile) who developed hyperinsulinaemic hypoglycaemia (HH). Clinical information was prospectively collected on 27 SGA neonates with HH, followed by sequencing of KCNJ11 and ABCC8. There was no correlation between the maximum glucose requirement and serum insulin levels. Serum insulin level was undetectable in five infants (19%) during hypoglycaemia. Six infants (22%) required diazoxide treatment >6 months. Normoglycaemia on diazoxide <5 mg/kg/day was a safe predictor of resolved HH. Sequencing of KCNJ11/ABCC8 did not identify any mutations. Serum insulin levels during hypoglycaemia taken in isolation can miss the diagnosis of HH. SGA infants may continue to have hypofattyacidaemic hypoketotic HH beyond the first few weeks of life. Recognition and treatment of this group of patients are important and may have important implications for neurodevelopmental outcome of these patients.

  6. The pharmacogenetics of body odor: as easy as ABCC?

    PubMed

    Brown, Sara

    2013-07-01

    ABCC11 genotype affects apocrine secretory cell function and determines individual body odor phenotype. Rodriguez et al. have applied genetic epidemiology using predetermined phenotype data to demonstrate an association between a single-nucleotide polymorphism (rs17822931) and the human behavior of deodorant application. Individuals with the ABCC11 genotype predicting a nonodorous phenotype report a significantly lower frequency of deodorant use.

  7. Masitinib Antagonizes ATP-Binding Cassette Subfamily C Member 10-Mediated Paclitaxel Resistance: A Preclinical Study

    PubMed Central

    Kathawala, Rishil J.; Sodani, Kamlesh; Chen, Kang; Patel, Atish; Abuznait, Alaa H.; Anreddy, Nagaraju; Sun, Yue-Li; Kaddoumi, Amal; Ashby, Charles R.; Chen, Zhe-Sheng

    2014-01-01

    Paclitaxel displays clinical activity against a wide variety of solid tumors. However, resistance to paclitaxel significantly attenuates the response to chemotherapy. The ABC transporter subfamily C member 10 (ABCC10), also known as multi-drug resistance protein 7 (MRP7) efflux transporter, is a major mediator of paclitaxel resistance. In this study, we show that masitinib, a small molecule stem-cell growth factor receptor (c-Kit) tyrosine kinase inhibitor, at non-toxic concentrations, significantly attenuates paclitaxel resistance in HEK293 cells transfected with ABCC10. Our in vitro studies indicated that masitinib (2.5 μM) enhanced the intracellular accumulation and decreased the efflux of paclitaxel by inhibiting the ABCC10 transport activity without altering the expression level of ABCC10 protein. Furthermore, masitinib, in combination with paclitaxel, significantly inhibited the growth of ABCC10-expressing tumors in nude athymic mice in vivo. Masitinib administration also resulted in a significant increase in the levels of paclitaxel in the plasma, tumors and lungs compared to paclitaxel alone. In conclusion, the combination of paclitaxel and masitinib could serve as a novel and useful therapeutic strategy to reverse paclitaxel resistance mediated by ABCC10. PMID:24431074

  8. Single amino acid insertions in extracellular loop 2 of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa toxins.

    PubMed

    Tanaka, Shiho; Miyamoto, Kazuhisa; Noda, Hiroaki; Endo, Haruka; Kikuta, Shingo; Sato, Ryoichi

    2016-04-01

    In a previous report, seven Cry1Ab-resistant strains were identified in the silkworm, Bombyx mori; these strains were shown to have a tyrosine insertion at position 234 in extracellular loop 2 of the ABC transporter C2 (BmABCC2). This insertion was confirmed to destroy the receptor function of BmABCC2 and confer the strains resistance against Cry1Ab and Cry1Ac. However, these strains were susceptible to Cry1Aa. In this report, we examined the mechanisms of the loss of receptor function of the transporter by expressing mutations in Sf9 cells. After replacement of one or two of the five amino acid residues in loop 2 of the susceptible BmABCC2 gene [BmABCC2_S] with alanine, cells still showed susceptibility, retaining the receptor function. Five mutants with single amino acid insertions at position 234 in BmABCC2 were also generated, resulting in loop 2 having six amino acids, which corresponds to replacing the tyrosine insertion in the resistant BmABCC2 gene [BmABCC2_R(+(234)Y)] with another amino acid. All five mutants exhibited loss of function against Cry1Ab and Cry1Ac. These results suggest that the amino acid sequence in loop 2 is less important than the loop size (five vs. six amino acids) or loop structure for Cry1Ab and Cry1Ac activity. Several domain-swapped mutant toxins were then generated among Cry1Aa, Cry1Ab, and Cry1Ac, which are composed of three domains. Swapped mutants containing domain II of Cry1Ab or Cry1Ac did not kill Sf9 cells expressing BmABCC2_R(+(234)Y), suggesting that domain II of the Cry toxin is related to the interaction with the receptor function of BmABCC2. This also suggests that different reactions against Bt-toxins in some B. mori strains, that is, Cry1Ab resistance or Cry1Aa susceptibility, are attributable to structural differences in domain II of Cry1A toxins. Copyright © 2016. Published by Elsevier Inc.

  9. Whole Genome SNP Genotyping and Exome Sequencing Reveal Novel Genetic Variants and Putative Causative Genes in Congenital Hyperinsulinism

    PubMed Central

    Proverbio, Maria Carla; Mangano, Eleonora; Gessi, Alessandra; Bordoni, Roberta; Spinelli, Roberta; Asselta, Rosanna; Valin, Paola Sogno; Di Candia, Stefania; Zamproni, Ilaria; Diceglie, Cecilia; Mora, Stefano; Caruso-Nicoletti, Manuela; Salvatoni, Alessandro; De Bellis, Gianluca; Battaglia, Cristina

    2013-01-01

    Congenital hyperinsulinism of infancy (CHI) is a rare disorder characterized by severe hypoglycemia due to inappropriate insulin secretion. The genetic causes of CHI have been found in genes regulating insulin secretion from pancreatic β-cells; recessive inactivating mutations in the ABCC8 and KCNJ11 genes represent the most common events. Despite the advances in understanding the molecular pathogenesis of CHI, specific genetic determinants in about 50 % of the CHI patients remain unknown, suggesting additional locus heterogeneity. In order to search for novel loci contributing to the pathogenesis of CHI, we combined a family-based association study, using the transmission disequilibrium test on 17 CHI patients lacking mutations in ABCC8/KCNJ11, with a whole-exome sequencing analysis performed on 10 probands. This strategy allowed the identification of the potential causative mutations in genes implicated in the regulation of insulin secretion such as transmembrane proteins (CACNA1A, KCNH6, KCNJ10, NOTCH2, RYR3, SCN8A, TRPV3, TRPC5), cytosolic (ACACB, CAMK2D, CDKAL1, GNAS, NOS2, PDE4C, PIK3R3) and mitochondrial enzymes (PC, SLC24A6), and in four genes (CSMD1, SLC37A3, SULF1, TLL1) suggested by TDT family-based association study. Moreover, the exome-sequencing approach resulted to be an efficient diagnostic tool for CHI, allowing the identification of mutations in three causative CHI genes (ABCC8, GLUD1, and HNF1A) in four out of 10 patients. Overall, the present study should be considered as a starting point to design further investigations: our results might indeed contribute to meta-analysis studies, aimed at the identification/confirmation of novel causative or modifier genes. PMID:23869231

  10. Genetic heterogeneity of pseudoxanthoma elasticum: the Chinese signature profile of ABCC6 and ENPP1 mutations.

    PubMed

    Jin, Liang; Jiang, Qiujie; Wu, Zhengsheng; Shao, Changxia; Zhou, Yong; Yang, Luting; Uitto, Jouni; Wang, Gang

    2015-05-01

    Pseudoxanthoma elasticum (PXE), an autosomal recessive disorder characterized by ectopic mineralization, is caused by mutations in the ABCC6 gene. We examined clinically 29 Chinese PXE patients from unrelated families, so far the largest cohort of Asian PXE patients. In a subset of 22 patients, we sequenced ABCC6 and another candidate gene, ENPP1, and conducted pathogenicity analyses for each variant. We identified a total of 17 distinct mutations in ABCC6, 15 of them being, to our knowledge, previously unreported, including 5 frameshift and 10 missense variants. In addition, a missense mutation in combination with a recurrent nonsense mutation in ENPP1 was discovered in a pediatric PXE case. No cases with p.R1141X or del23-29 mutations, common in Caucasian patient populations, were identified. The 10 missense mutations in ABCC6 were expressed in the mouse liver via hydrodynamic tail-vein injections. One mutant protein showed cytoplasmic accumulation indicating abnormal subcellular trafficking, while the other nine mutants showed correct plasma membrane location. These nine mutations were further investigated for their pathogenicity using a recently developed zebrafish mRNA rescue assay. Minimal rescue of the morpholino-induced phenotype was achieved with eight of the nine mutant human ABCC6 mRNAs tested, implying pathogenicity. This study demonstrates that the Chinese PXE population harbors unique ABCC6 mutations. These genetic data have implications for allele-specific therapy currently being developed for PXE.

  11. A Novel Animal Model for Pseudoxanthoma Elasticum

    PubMed Central

    Li, Qiaoli; Berndt, Annerose; Guo, Haitao; Sundberg, John P.; Uitto, Jouni

    2013-01-01

    Pseudoxanthoma elasticum is a multisystem ectopic mineralization disorder caused by mutations in the ABCC6 gene. A mouse model with targeted ablation of the corresponding gene (Abcc6tm1JfK) develops ectopic mineralization on the dermal sheath of vibrissae as biomarker of the progressive mineralization disorder. Survey of 31 mouse strains in a longitudinal aging study has identified three mouse strains with similar ectopic mineralization of the vibrissae, particularly the KK/HlJ strain. We report here that this mouse strain depicts, in addition to ectopic mineralization of the dermal sheath of vibrissae, mineral deposits in a number of internal organs. Energy dispersive X-ray analysis and topographic mapping found the presence of calcium and phosphate as the principal ions in the mineral deposits, similar to that in Abcc6tm1JfK mice, suggesting the presence of calcium hydroxyapatite. The mineralization was associated with a splice junction mutation at the 3′ end of exon 14 of the Abcc6 gene, resulting in a 5-bp deletion from the coding region and causing frame-shift of translation. As a consequence, essentially no Abcc6 protein was detected in the liver of the KK/HlJ mice, similar to that in Abcc6tm1JfK mice. Collectively, our studies found that the KK/HlJ mouse strain is characterized by ectopic mineralization due to a mutation in the Abcc6 gene and therefore provides a novel model system to study pseudoxanthoma elasticum. PMID:22846719

  12. Type 2 Diabetes–Associated Missense Polymorphisms KCNJ11 E23K and ABCC8 A1369S Influence Progression to Diabetes and Response to Interventions in the Diabetes Prevention Program

    PubMed Central

    Florez, Jose C.; Jablonski, Kathleen A.; Kahn, Steven E.; Franks, Paul W.; Dabelea, Dana; Hamman, Richard F.; Knowler, William C.; Nathan, David M.; Altshuler, David

    2008-01-01

    The common polymorphisms KCNJ11 E23K and ABCC8 A1369S have been consistently associated with type 2 diabetes. We examined whether these variants are also associated with progression from impaired glucose tolerance (IGT) to diabetes and responses to preventive interventions in the Diabetes Prevention Program. We genotyped both variants in 3,534 participants and performed Cox regression analysis using genotype, intervention, and their interactions as predictors of diabetes incidence over ~3 years. We also assessed the effect of genotype on insulin secretion and insulin sensitivity at 1 year. As previously shown in other studies, lysine carriers at KCNJ11 E23K had reduced insulin secretion at baseline; however, they were less likely to develop diabetes than E/E homozygotes. Lysine carriers were less protected by 1-year metformin treatment than E/E homozygotes (P < 0.02). Results for ABCC8 A1369S were essentially identical to those for KCNJ11 E23K. We conclude that the lysine variant in KCNJ11 E23K leads to diminished insulin secretion in individuals with IGT. Given our contrasting results compared with case-control analyses, we hypothesize that its effect on diabetes risk may occur before the IGT-to-diabetes transition. We further hypothesize that the diabetes-preventive effect of metformin may interact with the impact of these variants on insulin regulation. Diabetes 56: 531–536, 2007 PMID:17259403

  13. Double-blind, placebo-controlled trial of risperidone plus topiramate in children with autistic disorder.

    PubMed

    Rezaei, Vala; Mohammadi, Mohammad-Reza; Ghanizadeh, Ahmad; Sahraian, Ali; Tabrizi, Mina; Rezazadeh, Shams-Ali; Akhondzadeh, Shahin

    2010-10-01

    Autism is a complex neurodevelopmental disorder that forms part of a spectrum of related disorders referred to as Autism Spectrum Disorders. The present study assessed the effects of topiramate plus risperidone in the treatment of autistic disorder. Forty children between the ages of 4 and 12 years with a DSM IV clinical diagnosis of autism who were outpatients from a specialty clinic for children were recruited. The children presented with a chief complaint of severely disruptive symptoms related to autistic disorder. Patients were randomly allocated to topiramate+risperidone (Group A) or placebo+risperidone (Group B) for an 8-week, double-blind, placebo-controlled study. The dose of risperidone was titrated up to 2 mg/day for children between 10 and 40 kg and 3 mg/day for children weighting above 40 kg. The dose of topiramate was titrated up to 200 mg/day depending on weight (100 mg/day for <30 kg and 200 mg/day for >30 kg). Patients were assessed at baseline and after 2, 4, 6 and 8 weeks after starting medication. Measure of outcome was the Aberrant Behavior Checklist-Community (ABC-C) Rating Scale. Difference between the two protocols was significant as the group that received topiramate had a greater reduction in ABC-C subscale scores for irritability, stereotypic behavior and hyperactivity/noncompliance. The results suggest that the combination of topiramate with risperidone may be superior to risperidone monotherapy for children with autistic disorder. However the results need to be further confirmed by a larger randomized controlled trial. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. miR-133b down-regulates ABCC1 and enhances the sensitivity of CRC to anti-tumor drugs.

    PubMed

    Chen, Miao; Li, Daojiang; Gong, Ni; Wu, Hao; Su, Chen; Xie, Canbin; Xiang, Hong; Lin, Changwei; Li, Xiaorong

    2017-08-08

    Multidrug resistance (MDR) is the main cause of failed chemotherapy treatments. Therefore, preventing MDR is pivotal in treating colorectal cancer (CRC). In a previous study miR-133b was shown to be a tumor suppressor. Additionally, in CRC cells transfected with miR-133b, ATP-binding cassette (ABC) subfamily C member 1(ABCC1) was shown to be significantly down regulated. Whether miR-133b also enhances the chemosensitivity of drugs used to treat CRC by targeting ABCC1 is still unclear. Here, we utilized flow cytometry and high-performance liquid chromatography (HPLC) analysis to identify the ability of miR-133b to reserve MDR in CRC. We then used a dual-luciferase reporter assay to validate that miR-133b targets ABCC1. Further in vivo experiments were designed to validate the method in which miR-133b reversed MDR in CRC cells. The results demonstrated that the level of miR-133b was down-regulated and the expression of ABCC1 was up-regulated in drug-resistant CRC cells compared to non-drug-resistant CRC cells. The restoration of miR-133b expression in CRC drug-resistant cells in vitro resulted in reduced IC50s to chemotherapeutic drugs, significantly induced G1 accumulation, inhibited growth and promoted necrosis in combination with either 5-fluorouracil (5-FU) or vincristine (VCR), and decreased the expression of ABCC1. The dual-luciferase assay demonstrated that miR-133b directly targets ABCC1. The combination of agomiRNA-133b with chemotherapeutic drugs in vivo inhibited tumor growth induced by CRC drug-resistant cells. A xenograft from the in vivo model resulted in up-regulated levels of miR-133b and down-regulated levels of ABCC1. Therefore, miR-133b enhances the chemosensitivity of CRC cells to anti-tumor drugs by directly down-regulating ABCC1. This discovery provides a therapeutic strategy in which miR-133b is used as a potential sensitizer for drug-resistant CRC.

  15. Thiopurine pharmacogenomics: association of SNPs with clinical response and functional validation of candidate genes

    PubMed Central

    Matimba, Alice; Li, Fang; Livshits, Alina; Cartwright, Cher S; Scully, Stephen; Fridley, Brooke L; Jenkins, Gregory; Batzler, Anthony; Wang, Liewei; Weinshilboum, Richard; Lennard, Lynne

    2014-01-01

    Aim We investigated candidate genes associated with thiopurine metabolism and clinical response in childhood acute lymphoblastic leukemia. Materials & methods We performed genome-wide SNP association studies of 6-thioguanine and 6-mercaptopurine cytotoxicity using lymphoblastoid cell lines. We then genotyped the top SNPs associated with lymphoblastoid cell line cytotoxicity, together with tagSNPs for genes in the ‘thiopurine pathway’ (686 total SNPs), in DNA from 589 Caucasian UK ALL97 patients. Functional validation studies were performed by siRNA knockdown in cancer cell lines. Results SNPs in the thiopurine pathway genes ABCC4, ABCC5, IMPDH1, ITPA, SLC28A3 and XDH, and SNPs located within or near ATP6AP2, FRMD4B, GNG2, KCNMA1 and NME1, were associated with clinical response and measures of thiopurine metabolism. Functional validation showed shifts in cytotoxicity for these genes. Conclusion The clinical response to thiopurines may be regulated by variation in known thiopurine pathway genes and additional novel genes outside of the thiopurine pathway. PMID:24624911

  16. ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3-O-Glucosides[W][OA

    PubMed Central

    Francisco, Rita Maria; Regalado, Ana; Ageorges, Agnès; Burla, Bo J.; Bassin, Barbara; Eisenach, Cornelia; Zarrouk, Olfa; Vialet, Sandrine; Marlin, Thérèse; Chaves, Maria Manuela; Martinoia, Enrico; Nagy, Réka

    2013-01-01

    Accumulation of anthocyanins in the exocarp of red grapevine (Vitis vinifera) cultivars is one of several events that characterize the onset of grape berry ripening (véraison). Despite our thorough understanding of anthocyanin biosynthesis and regulation, little is known about the molecular aspects of their transport. The participation of ATP binding cassette (ABC) proteins in vacuolar anthocyanin transport has long been a matter of debate. Here, we present biochemical evidence that an ABC protein, ABCC1, localizes to the tonoplast and is involved in the transport of glucosylated anthocyanidins. ABCC1 is expressed in the exocarp throughout berry development and ripening, with a significant increase at véraison (i.e., the onset of ripening). Transport experiments using microsomes isolated from ABCC1-expressing yeast cells showed that ABCC1 transports malvidin 3-O-glucoside. The transport strictly depends on the presence of GSH, which is cotransported with the anthocyanins and is sensitive to inhibitors of ABC proteins. By exposing anthocyanin-producing grapevine root cultures to buthionine sulphoximine, which reduced GSH levels, a decrease in anthocyanin concentration is observed. In conclusion, we provide evidence that ABCC1 acts as an anthocyanin transporter that depends on GSH without the formation of an anthocyanin-GSH conjugate. PMID:23723325

  17. MAPK Signaling Pathway Alters Expression of Midgut ALP and ABCC Genes and Causes Resistance to Bacillus thuringiensis Cry1Ac Toxin in Diamondback Moth

    PubMed Central

    Wu, Qingjun; Wang, Shaoli; Xie, Wen; Zhu, Xun; Baxter, Simon W.; Zhou, Xuguo; Jurat-Fuentes, Juan Luis; Zhang, Youjun

    2015-01-01

    Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella. PMID:25875245

  18. DNA-Binding Interaction Studies of Microwave Assisted Synthesized Sulfonamide Substituted 8-Hydroxyquinoline Derivatives.

    PubMed

    Dixit, Ritu B; Patel, Tarosh S; Vanparia, Satish F; Kunjadiya, Anju P; Keharia, Harish R; Dixit, Bharat C

    2011-01-01

    Sulfonamide substituted 8-hydroxyquinoline derivatives were prepared using a microwave synthesizer. The interaction of sulfonamide substituted 8-hydroxyquinoline derivatives and their transition metal complexes with Plasmid (pUC 19) DNA and Calf Thymus DNA were investigated by UV spectroscopic studies and gel electrophoresis measurements. The interaction between ligand/metal complexes and DNA was carried out by increasing the concentration of DNA from 0 to 12 μl in UV spectroscopic study, while the concentration of DNA in gel electrophoresis remained constant at 10 μl. These studies supported the fact that, the complex binds to DNA by intercalation via ligand into the base pairs of DNA. The relative binding efficacy of the complexes to DNA was much higher than the binding efficacy of ligands, especially the complex of Cu-AHQMBSH had the highest binding ability to DNA. The mobility of the bands decreased as the concentration of the complex was increased, indicating that there was increase in the interaction between the metal ion and DNA. Complexes of AHQMBSH were excellent for DNA binding as compared to HQMABS.

  19. ABCC6 Gene Analysis in 20 Japanese Patients with Angioid Streaks Revealing Four Frequent and Two Novel Variants and Pseudodominant Inheritance

    PubMed Central

    Negishi, Yuya; Mizobuchi, Kei; Urashima, Mitsuyoshi; Nakano, Tadashi

    2017-01-01

    Purpose To report the spectrum of ABCC6 variants in Japanese patients with angioid streaks (AS). Patients and Methods This was a single-center cohort study. The medical records of 20 patients with AS from 18 unrelated Japanese families were retrospectively reviewed. Screening of the ABCC6 gene (exons 1 to 31) was performed using PCR-based Sanger sequencing. Results Eight ABCC6 variants were identified as candidate disease-causing variants. These eight variants included five known variants (p.Q378X, p.R419Q, p.V848CfsX83, p.R1114C, and p.R1357W), one previously reported variant (p.N428S) of unknown significance, and two novel variants (c.1939C>T [p.H647Y] and c.3374C>T [p.S1125F]); the three latter variants were determined to be variants of significance. The following four variants were frequently identified: p.V848CfsX83 (14/40 alleles, 35.0%), p.Q378X (7/40 alleles, 17.5%), p.R1357W (6/40 alleles, 15.0%), and p.R419Q (4/40 alleles, 10.0%). The ABCC6 variants were identified in compound heterozygous or homozygous states in 13 of 18 probands. Two families showed a pseudodominant inheritance pattern. Pseudoxanthoma elasticum was seen in 15 of 17 patients (88.2%) who underwent dermatological examination. Conclusions We identified disease-causing ABCC6 variants that were in homozygous or compound heterozygous states in 13 of 18 families (72.2%). Our results indicated that ABCC6 variants play a significant role in patients with AS in the Japanese population. PMID:28912966

  20. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation.

    PubMed

    Bhati, Kaushal Kumar; Alok, Anshu; Kumar, Anil; Kaur, Jagdeep; Tiwari, Siddharth; Pandey, Ajay Kumar

    2016-07-01

    Low phytic acid is a trait desired in cereal crops and can be achieved by manipulating the genes involved either in its biosynthesis or its transport in the vacuoles. Previously, we have demonstrated that the wheat TaABCC13 protein is a functional transporter, primarily involved in heavy metal tolerance, and a probable candidate gene to achieve low phytate wheat. In the current study, RNA silencing was used to knockdown the expression of TaABCC13 in order to evaluate its functional importance in wheat. Transgenic plants with significantly reduced TaABCC13 transcripts in either seeds or roots were selected for further studies. Homozygous RNAi lines K1B4 and K4G7 exhibited 34-22% reduction of the phytic acid content in the mature grains (T4 seeds). These transgenic lines were defective for spike development, as characterized by reduced grain filling and numbers of spikelets. The seeds of transgenic wheat had delayed germination, but the viability of the seedlings was unaffected. Interestingly, early emergence of lateral roots was observed in TaABCC13-silenced lines as compared to non-transgenic lines. In addition, these lines also had defects in metal uptake and development of lateral roots in the presence of cadmium stress. Our results suggest roles of TaABCC13 in lateral root initiation and enhanced sensitivity towards heavy metals. Taken together, these data demonstrate that wheat ABCC13 is functionally important for grain development and plays an important role during detoxification of heavy metals. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Vitamin K supplementation increases vitamin K tissue levels but fails to counteract ectopic calcification in a mouse model for pseudoxanthoma elasticum.

    PubMed

    Gorgels, Theo G M F; Waarsing, Jan H; Herfs, Marjolein; Versteeg, Daniëlle; Schoensiegel, Frank; Sato, Toshiro; Schlingemann, Reinier O; Ivandic, Boris; Vermeer, Cees; Schurgers, Leon J; Bergen, Arthur A B

    2011-11-01

    Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder in which calcification of connective tissue leads to pathology in skin, eye and blood vessels. PXE is caused by mutations in ABCC6. High expression of this transporter in the basolateral hepatocyte membrane suggests that it secretes an as-yet elusive factor into the circulation which prevents ectopic calcification. Utilizing our Abcc6 (-/-) mouse model for PXE, we tested the hypothesis that this factor is vitamin K (precursor) (Borst et al. 2008, Cell Cycle). For 3 months, Abcc6 (-/-) and wild-type mice were put on diets containing either the minimum dose of vitamin K required for normal blood coagulation or a dose that was 100 times higher. Vitamin K was supplied as menaquinone-7 (MK-7). Ectopic calcification was monitored in vivo by monthly micro-CT scans of the snout, as the PXE mouse model develops a characteristic connective tissue mineralization at the base of the whiskers. In addition, calcification of kidney arteries was measured by histology. Results show that supplemental MK-7 had no effect on ectopic calcification in Abcc6 ( -/- ) mice. MK-7 supplementation increased vitamin K levels (in skin, heart and brain) in wild-type and in Abcc6 (-/-) mice. Vitamin K tissue levels did not depend on Abcc6 genotype. In conclusion, dietary MK-7 supplementation increased vitamin K tissue levels in the PXE mouse model but failed to counteract ectopic calcification. Hence, we obtained no support for the hypothesis that Abcc6 transports vitamin K and that PXE can be cured by increasing tissue levels of vitamin K.

  2. Detoxification of ivermectin by ATP binding cassette transporter C4 and cytochrome P450 monooxygenase 6CJ1 in the human body louse, Pediculus humanus humanus.

    PubMed

    Kim, J H; Gellatly, K J; Lueke, B; Kohler, M; Nauen, R; Murenzi, E; Yoon, K S; Clark, J M

    2018-02-01

    We previously observed that ivermectin-induced detoxification genes, including ATP binding cassette transporter C4 (PhABCC4) and cytochrome P450 6CJ1 (CYP6CJ1) were identified from body lice following a brief exposure to a sublethal dose of ivermectin using a non-invasive induction assay. In this current study, the functional properties of PhABCC4 and CYP6CJ1 were investigated after expression in either X. laevis oocytes or using a baculovirus expression system, respectively. Efflux of [ 3 H]-9-(2-phosphonomethoxyethyl) adenine ([ 3 H]-PMEA), a known ABCC4 substrate in humans, was detected from PhABCC4 cRNA-injected oocytes by liquid scintillation spectrophotometric analysis and PhABCC4 expression in oocytes was confirmed using ABC transporter inhibitors. Efflux was also determined to be ATP-dependent. Using a variety of insecticides in a competition assay, only co-injection of ivermectin and dichlorodiphenyltrichloroethane led to decreased efflux of [ 3 H]-PMEA. PhABCC4-expressing oocytes also directly effluxed [ 3 H]-ivermectin, which increased over time. In addition, ivermectin appeared to be oxidatively metabolized and/or sequestered, although at low levels, following functional expression of CYP6CJ1 along with cytochrome P450 reductase in Sf9 cells. Our study suggests that PhABCC4 and perhaps CYP6CJ1 are involved in the Phase III and Phase I xenobiotic metabolism of ivermectin, respectively, and may play an important role in the evolution of ivermectin resistance in lice and other insects as field selection occurs. © 2017 The Royal Entomological Society.

  3. In Silico and in Vitro Modeling of Hepatocyte Drug Transport Processes: Importance of ABCC2 Expression Levels in the Disposition of CarboxydichloroflurosceinS⃞

    PubMed Central

    Howe, Katharine; Gibson, G. Gordon; Coleman, Tanya; Plant, Nick

    2009-01-01

    The impact of transport proteins in the disposition of chemicals is becoming increasingly evident. Alteration in disposition can cause altered pharmacokinetic and pharmacodynamic parameters, potentially leading to reduced efficacy or overt toxicity. We have developed a quantitative in silico model, based upon literature and experimentally derived data, to model the disposition of carboxydichlorofluroscein (CDF), a substrate for the SLCO1A/B and ABCC subfamilies of transporters. Kinetic parameters generated by the in silico model closely match both literature and experimentally derived kinetic values, allowing this model to be used for the examination of transporter action in primary rat hepatocytes. In particular, we show that the in silico model is suited to the rapid, accurate determination of Ki values, using 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571) as a prototypical pan-ABCC inhibitor. In vitro-derived data are often used to predict in vivo response, and we have examined how differences in protein expression levels between these systems may affect chemical disposition. We show that ABCC2 and ABCC3 are overexpressed in sandwich culture hepatocytes by 3.5- and 2.3-fold, respectively, at the protein level. Correction for this in markedly different disposition of CDF, with the area under the concentration versus time curve and Cmax of intracellular CDF increasing by 365 and 160%, respectively. Finally, using kinetic simulations we show that ABCC2 represents a fragile node within this pathway, with alterations in ABCC2 having the most prominent effects on both the Km and Vmax through the pathway. This is the first demonstration of the utility of modeling approaches to estimate the impact of drug transport processes on chemical disposition. PMID:19022944

  4. Permanent Neonatal Diabetes Caused by Dominant, Recessive, or Compound Heterozygous SUR1 Mutations with Opposite Functional Effects

    PubMed Central

    Ellard, Sian ; Flanagan, Sarah E. ; Girard, Christophe A. ; Patch, Ann-Marie ; Harries, Lorna W. ; Parrish, Andrew ; Edghill, Emma L. ; Mackay, Deborah J. G. ; Proks, Peter ; Shimomura, Kenju ; Haberland, Holger ; Carson, Dennis J. ; Shield, Julian P. H. ; Hattersley, Andrew T. ; Ashcroft, Frances M. 

    2007-01-01

    Heterozygous activating mutations in the KCNJ11 gene encoding the pore-forming Kir6.2 subunit of the pancreatic beta cell KATP channel are the most common cause of permanent neonatal diabetes (PNDM). Patients with PNDM due to a heterozygous activating mutation in the ABCC8 gene encoding the SUR1 regulatory subunit of the KATP channel have recently been reported. We studied a cohort of 59 patients with permanent diabetes who received a diagnosis before 6 mo of age and who did not have a KCNJ11 mutation. ABCC8 gene mutations were identified in 16 of 59 patients and included 8 patients with heterozygous de novo mutations. A recessive mode of inheritance was observed in eight patients with homozygous, mosaic, or compound heterozygous mutations. Functional studies of selected mutations showed a reduced response to ATP consistent with an activating mutation that results in reduced insulin secretion. A novel mutational mechanism was observed in which a heterozygous activating mutation resulted in PNDM only when a second, loss-of-function mutation was also present. PMID:17668386

  5. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing.

    PubMed

    Gökirmak, Tufan; Campanale, Joseph P; Reitzel, Adam M; Shipp, Lauren E; Moy, Gary W; Hamdoun, Amro

    2016-06-01

    The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals. Copyright © 2016 the American Physiological Society.

  6. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing

    PubMed Central

    Gökirmak, Tufan; Campanale, Joseph P.; Reitzel, Adam M.; Shipp, Lauren E.; Moy, Gary W.

    2016-01-01

    The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals. PMID:27053522

  7. Novel mutation in ABCC6 gene in a Japanese pedigree with pseudoxanthoma elasticum and retinitis pigmentosa.

    PubMed

    Yoshida, S; Honda, M; Yoshida, A; Nakao, S; Goto, Y; Nakamura, T; Fujisawa, K; Ishibashi, T

    2005-02-01

    To report a novel mutation of the ABCC6 gene in a Japanese family that had a case of pseudoxanthoma elasticum (PXE) another with PXE and retinitis pigmentosa. Ophthalmologic examinations were performed, and the ABCC6 gene was analysed by direct genomic sequencing. Fundus examinations of the 48-year-old proband disclosed angioid streaks and a peud'orange appearance of the retina of the both eyes, whereas both of his 25- and 20-year-old daughters had pigmentary degeneration and angioid streaks. In the sibilings, the mixed cone-rod ERG was almost nondetectable, whereas that of the proband was well-preserved. Molecular genetic analysis revealed that the proband has a homozygous nonsense mutation at the 595 bp in the ABCC6, and the siblings were heterozygous for the same mutation. This mutation was not detected in Japanese subjects in the JSNP database (http://snp.ims.u-tokyo.ac.jp/). Our results demonstrated an association between a novel mutation in the ABCC6 gene and PXE in a Japanese family.

  8. Clinical and molecular characterisation of hyperinsulinaemic hypoglycaemia in infants born small-for-gestational age

    PubMed Central

    Arya, Ved Bhushan; Flanagan, Sarah E; Kumaran, Anitha; Shield, Julian P; Ellard, Sian; Hussain, Khalid; Kapoor, Ritika R

    2013-01-01

    Objective To characterise the phenotype and genotype of neonates born small-for-gestational age (SGA; birth weight <10th centile) who developed hyperinsulinaemic hypoglycaemia (HH). Methods Clinical information was prospectively collected on 27 SGA neonates with HH, followed by sequencing of KCNJ11 and ABCC8. Results There was no correlation between the maximum glucose requirement and serum insulin levels. Serum insulin level was undetectable in five infants (19%) during hypoglycaemia. Six infants (22%) required diazoxide treatment >6 months. Normoglycaemia on diazoxide <5 mg/kg/day was a safe predictor of resolved HH. Sequencing of KCNJ11/ABCC8 did not identify any mutations. Conclusions Serum insulin levels during hypoglycaemia taken in isolation can miss the diagnosis of HH. SGA infants may continue to have hypofattyacidaemic hypoketotic HH beyond the first few weeks of life. Recognition and treatment of this group of patients are important and may have important implications for neurodevelopmental outcome of these patients. PMID:23362136

  9. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools.

    PubMed

    Cer, Regina Z; Donohue, Duncan E; Mudunuri, Uma S; Temiz, Nuri A; Loss, Michael A; Starner, Nathan J; Halusa, Goran N; Volfovsky, Natalia; Yi, Ming; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2013-01-01

    The non-B DB, available at http://nonb.abcc.ncifcrf.gov, catalogs predicted non-B DNA-forming sequence motifs, including Z-DNA, G-quadruplex, A-phased repeats, inverted repeats, mirror repeats, direct repeats and their corresponding subsets: cruciforms, triplexes and slipped structures, in several genomes. Version 2.0 of the database revises and re-implements the motif discovery algorithms to better align with accepted definitions and thresholds for motifs, expands the non-B DNA-forming motifs coverage by including short tandem repeats and adds key visualization tools to compare motif locations relative to other genomic annotations. Non-B DB v2.0 extends the ability for comparative genomics by including re-annotation of the five organisms reported in non-B DB v1.0, human, chimpanzee, dog, macaque and mouse, and adds seven additional organisms: orangutan, rat, cow, pig, horse, platypus and Arabidopsis thaliana. Additionally, the non-B DB v2.0 provides an overall improved graphical user interface and faster query performance.

  10. Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar.

    PubMed

    Sun, Liping; Ma, Yifeng; Wang, Huihong; Huang, Weipeng; Wang, Xiaozhu; Han, Li; Sun, Wanmei; Han, Erqin; Wang, Bangjun

    2018-03-18

    Mercury (Hg) is a highly biotoxic heavy metal that contaminates the environment. Phytoremediation is a green technology for environmental remediation and is used to clean up Hg contaminated soil in recent years. In this study, we isolated an ATP-binding cassette (ABC) transporter gene PtABCC1 from Populus trichocarpa and overexpressed it in Arabidopsis and poplar. The transgenic plants conferred higher Hg tolerance than wild type (WT) plants, and overexpression of PtABCC1 could lead to 26-72% or 7-160% increase of Hg accumulation in Arabidopsis or poplar plants, respectively. These results demonstrated that PtABCC1 plays a crucial role in enhancing tolerance and accumulation to Hg in plants, which provides a promising way for phytoremediation of Hg contamination. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. The BTK Inhibitor Ibrutinib (PCI-32765) Overcomes Paclitaxel Resistance in ABCB1- and ABCC10-Overexpressing Cells and Tumors.

    PubMed

    Zhang, Hui; Patel, Atish; Wang, Yi-Jun; Zhang, Yun-Kai; Kathawala, Rishil J; Qiu, Long-Hui; Patel, Bhargav A; Huang, Li-Hua; Shukla, Suneet; Yang, Dong-Hua; Ambudkar, Suresh V; Fu, Li-Wu; Chen, Zhe-Sheng

    2017-06-01

    Paclitaxel is one of the most widely used antineoplastic drugs in the clinic. Unfortunately, the occurrence of cellular resistance has limited its efficacy and application. The ATP-binding cassette subfamily B member 1 (ABCB1/P-glycoprotein) and subfamily C member 10 (ABCC10/MRP7) are the major membrane protein transporters responsible for the efflux of paclitaxel, constituting one of the most important mechanisms of paclitaxel resistance. Here, we demonstrated that the Bruton tyrosine kinase inhibitor, ibrutinib, significantly enhanced the antitumor activity of paclitaxel by antagonizing the efflux function of ABCB1 and ABCC10 in cells overexpressing these transporters. Furthermore, we demonstrated that the ABCB1 or ABCC10 protein expression was not altered after treatment with ibrutinib for up to 72 hours using Western blot analysis. However, the ATPase activity of ABCB1 was significantly stimulated by treatment with ibrutinib. Molecular docking analysis suggested the binding conformation of ibrutinib within the large cavity of the transmembrane region of ABCB1. Importantly, ibrutinib could effectively enhance paclitaxel-induced inhibition on the growth of ABCB1- and ABCC10-overexpressing tumors in nude athymic mice. These results demonstrate that the combination of ibrutinib and paclitaxel can effectively antagonize ABCB1- or ABCC10-mediated paclitaxel resistance that could be of great clinical interest. Mol Cancer Ther; 16(6); 1021-30. ©2017 AACR . ©2017 American Association for Cancer Research.

  12. A role for calcium in the regulation of ATP-binding cassette, sub-family C, member 3 (ABCC3) gene expression in a model of epidermal growth factor-mediated breast cancer epithelial-mesenchymal transition.

    PubMed

    Stewart, Teneale A; Azimi, Iman; Thompson, Erik W; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2015-03-13

    Epithelial-mesenchymal transition (EMT), a process implicated in cancer metastasis, is associated with the transcriptional regulation of members of the ATP-binding cassette superfamily of efflux pumps, and drug resistance in breast cancer cells. Epidermal growth factor (EGF)-induced EMT in MDA-MB-468 breast cancer cells is calcium signal dependent. In this study induction of EMT was shown to result in the transcriptional up-regulation of ATP-binding cassette, subfamily C, member 3 (ABCC3), a member of the ABC transporter superfamily, which has a recognized role in multidrug resistance. Buffering of cytosolic free calcium inhibited EGF-mediated ABCC3 increases, indicating a calcium-dependent mode of regulation. Silencing of TRPM7 (an ion channel involved in EMT associated vimentin induction) did not inhibit ABCC3 up-regulation. Silencing of the store operated calcium entry (SOCE) pathway components ORAI1 and STIM1 also did not alter ABCC3 induction by EGF. However, the calcium permeable ion channel transient receptor potential cation channel, subfamily C, member 1 (TRPC1) appears to contribute to the regulation of both basal and EGF-induced ABCC3 mRNA. Improved understanding of the relationship between calcium signaling, EMT and the regulation of genes important in therapeutic resistance may help identify novel therapeutic targets for breast cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Interaction study of some macrocyclic inorganic schiff base complexes with calf thymus DNA using spectroscopic and voltammetric methods

    NASA Astrophysics Data System (ADS)

    Bordbar, Maryam; Tavoosi, Fariba; Yeganeh-Faal, Ali; Zebarjadian, Mohammad Hasan

    2018-01-01

    The interaction of Cd(II), Zn(II) and Mn(II)-L (4,8-bis(2-pyridylmethyl)-4,8-diazaundecane-1,11-diamine) transition metal complexes with calf thymus DNA (CT-DNA) has been investigated using electronic, fluorescence and circular dichroism (CD) spectroscopy, thermal denaturation and cyclic voltammetry (CV). Based on the UV-Vis study, binding constants of the complexes with CT-DNA were calculated. Changes in the band of the CD spectrum, DNA melting temperature and in the ipa and ipc of the complexes in the presenceCT-DNA, overall, showed that the studied complex exhibited good DNA interaction ability with partial intercalation mode.

  14. What determines human body odour?

    PubMed

    Hamada, Kaoru; Haruyama, Sanehito; Yamaguchi, Takashi; Yamamoto, Kayo; Hiromasa, Kana; Yoshioka, Manabu; Nishio, Daisuke; Nakamura, Motonobu

    2014-05-01

    Human body odour and earwax type are genetically dependent on a single-nucleotide polymorphism (SNP) located in the ABCC11 gene. So far, it still remains to be clear how SNP in the ABCC11 gene is associated with human malodour. In a recent issue of Experimental Dermatology, Baumann et al. propose one of the underlying molecular pathways. Although one of the amino acid conjugated of the odorants, Cys-Gly-3-methyl-3-sulfanylhexanol (3M3SH), was not taken up by the transporter ABCC11, glutathione conjugate of 3MSH (SG-3MSH) was transported by ABCC11. Moreover, SG-3MSH was processed to 3M3SH by γ-glutamyl-transferase 1 (GGT1), which was abundantly expressed in apocrine sweat glands. These findings may pave a way for the pharmacogenetics of human body odour and the development of innovative deodorant products. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Karanjin interferes with ABCB1, ABCC1, and ABCG2.

    PubMed

    Michaelis, Martin; Rothweiler, Florian; Nerreter, Thomas; Sharifi, Mohsen; Ghafourian, Taravat; Cinatl, Jindrich

    2014-01-01

    The prominent ATP-binding cassette (ABC) transporters ABCB1, ABCC1, and ABCG2 are involved in substance transport across physiological barriers and therefore in drug absorption, distribution, and elimination. They also mediate multi-drug resistance in cancer cells. Different flavonoids are known to interfere with different ABC transporters. Here, the effect of the furanoflavonol karanjin, a potential drug with antiglycaemic, gastroprotective, antifungal, and antibacterial effects, was investigated on ABCB1, ABCC1, and ABCG2-mediated drug transport in comparison to the flavonoids apigenin, genistein, and naringenin. Cells expressing the relevant transporters (ABCB1: UKF-NB-3(ABCB1), UKF-NB-3(r)VCR¹⁰; ABCC1: G62, PC-3(r)VCR²⁰; ABCG2: UKF-NB-3(ABCG2)) were used in combination with specific fluorescent and cytotoxic ABC transporter substrates and ABC transporter inhibitors to study ABC transporter function. Moreover, the effects of the investigated flavonoids were determined on the ABC transporter ATPase activities. Karanjin interfered with drug efflux mediated by ABCB1, ABCC1, and ABCG2 and enhanced the ATPase activity of all three transporters. Moreover, karanjin exerted more pronounced effects than the control flavonoids apigenin, genistein, and naringenin on all three transporters. Most notably, karanjin interfered with ABCB1 at low concentrations being about 1 µM. Taken together, these findings should be taken into account during further consideration of karanjin as a potential drug for different therapeutic indications. The effects on ABCB1, ABCC1, and ABCG2 may affect the pharmacokinetics of co-administered drugs.

  16. Metallothionein blocks oxidative DNA damage induced by acute inorganic arsenic exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Wei, E-mail: qu@niehs.nih.gov; Waalkes, Michael P.

    We studied how protein metallothionein (MT) impacts arsenic-induced oxidative DNA damage (ODD) using cells that poorly express MT (MT-I/II double knockout embryonic cells; called MT-null cells) and wild-type (WT) MT competent cells. Arsenic (as NaAsO{sub 2}) was less cytolethal over 24 h in WT cells (LC{sub 50} = 11.0 ± 1.3 μM; mean ± SEM) than in MT-null cells (LC{sub 50} = 5.6 ± 1.2 μM). ODD was measured by the immuno-spin trapping method. Arsenic (1 or 5 μM; 24 h) induced much less ODD in WT cells (121% and 141% of control, respectively) than in MT-null cells (202% andmore » 260%). In WT cells arsenic caused concentration-dependent increases in MT expression (transcript and protein), and in the metal-responsive transcription factor-1 (MTF-1), which is required to induce the MT gene. In contrast, basal MT levels were not detectable in MT-null cells and unaltered by arsenic exposure. Transfection of MT-I gene into the MT-null cells markedly reduced arsenic-induced ODD levels. The transport genes, Abcc1 and Abcc2 were increased by arsenic in WT cells but either showed no or very limited increases in MT-null cells. Arsenic caused increases in oxidant stress defense genes HO-1 and GSTα2 in both WT and MT-null cells, but to much higher levels in WT cells. WT cells appear more adept at activating metal transport systems and oxidant response genes, although the role of MT in these responses is unclear. Overall, MT protects against arsenic-induced ODD in MT competent cells by potential sequestration of scavenging oxidant radicals and/or arsenic. - Highlights: • Metallothionein blocks arsenic toxicity. • Metallothionein reduces arsenic-induced DNA damage. • Metallothionein may bind arsenic or radicals produced by arsenic.« less

  17. Chromosome 6q24 transient neonatal diabetes mellitus and protein sensitive hyperinsulinaemic hypoglycaemia.

    PubMed

    Kalaivanan, Prabhakaran; Arya, Ved Bhushan; Shah, Pratik; Datta, Vipan; Flanagan, Sarah E; Mackay, Deborah J G; Ellard, Sian; Senniappan, Senthil; Hussain, Khalid

    2014-11-01

    We describe the novel clinical observation of protein induced hyperinsulinaemic hypoglycaemia following remission of transient neonatal diabetes mellitus (TNDM) in a patient with 6q24 methylation defect. A male infant of non-consanguineous Caucasian parents, born at 40 weeks of gestation with a birth weight of 3330 g (-0.55 standard deviation score) presented with hyperglycaemia in the first week of life and was diagnosed with 6q24 TNDM. At 22 months of age, he developed recurrent hypoglycaemic episodes. Controlled diagnostic fast, oral glucose tolerance test, protein loading test and mixed meal tolerance test were undertaken. Sequencing of ABCC8, KCNJ11, GLUD1 and HADH were performed. Investigations suggested a diagnosis of protein sensitive hyperinsulinaemic hypoglycaemia with normal serum ammonia, acylcarnitine profile and urine organic acids. Sequencing of ABCC8, KCNJ11, GLUD1 and HADH did not identify a pathogenic mutation to explain his hyperinsulinaemic hypoglycaemia. This clinical case demonstrates the novel observation of protein sensitive hyperinsulinaemic hypoglycaemia in a patient with 6q24 TNDM. Long-term follow-up of patients with chromosome 6q24 TNDM is warranted following remission.

  18. Selected ABCB1, ABCB4 and ABCC2 polymorphisms do not enhance the risk of drug-induced hepatotoxicity in a Spanish cohort.

    PubMed

    Ulzurrun, Eugenia; Stephens, Camilla; Ruiz-Cabello, Francisco; Robles-Diaz, Mercedes; Saenz-López, Pablo; Hallal, Hacibe; Soriano, German; Roman, Eva; Fernandez, M Carmen; Lucena, M Isabel; Andrade, Raúl J

    2014-01-01

    Flawed ABC transporter functions may contribute to increased risk of drug-induced liver injury (DILI). We aimed to analyse the influence of genetic variations in ABC transporters on the risk of DILI development and clinical presentations in a large Spanish DILI cohort. A total of ten polymorphisms in ABCB1 (1236T>C, 2677G>T,A, 3435T>C), ABCB4 (1954A>G) and ABCC2 (-1774G>del, -1549A>G, -24C>T, 1249G>A, 3972C>T and 4544G>A) were genotyped using Taqman 5' allelic discrimination assays or sequencing in 141 Spanish DILI patients and 161 controls. The influence of specific genotypes, alleles and haplotypes on the risk of DILI development and clinical presentations was analysed. None of the individual polymorphisms or haplotypes was found to be associated with DILI development. Carriers homozygous for the ABCC2 -1774del allele were however only found in DILI patients. Hence, this genotype could potentially be associated with increased risk, though its low frequency in our Spanish cohort prevented a final conclusion. Furthermore, carriers homozygous for the ABCC2 -1774G/-1549A/-24T/1249G/3972T/4544G haplotype were found to have a higher propensity for total bilirubin elevations when developing DILI. Our findings do not support a role for the analysed polymorphisms in the ABCB1, ABCB4 and ABCC2 transporter genes in DILI development in Spanish patients. The ABCC2 -1774deldel genotype was however restricted to DILI cases and could potentially contribute to enhanced DILI susceptibility.

  19. Selected ABCB1, ABCB4 and ABCC2 Polymorphisms Do Not Enhance the Risk of Drug-Induced Hepatotoxicity in a Spanish Cohort

    PubMed Central

    Ulzurrun, Eugenia; Stephens, Camilla; Ruiz-Cabello, Francisco; Robles-Diaz, Mercedes; Saenz-López, Pablo; Hallal, Hacibe; Soriano, German; Roman, Eva; Fernandez, M. Carmen; Lucena, M. Isabel; Andrade, Raúl J.

    2014-01-01

    Background and Aims Flawed ABC transporter functions may contribute to increased risk of drug-induced liver injury (DILI). We aimed to analyse the influence of genetic variations in ABC transporters on the risk of DILI development and clinical presentations in a large Spanish DILI cohort. Methods A total of ten polymorphisms in ABCB1 (1236T>C, 2677G>T,A, 3435T>C), ABCB4 (1954A>G) and ABCC2 (−1774G>del, −1549A>G, −24C>T, 1249G>A, 3972C>T and 4544G>A) were genotyped using Taqman 5′ allelic discrimination assays or sequencing in 141 Spanish DILI patients and 161 controls. The influence of specific genotypes, alleles and haplotypes on the risk of DILI development and clinical presentations was analysed. Results None of the individual polymorphisms or haplotypes was found to be associated with DILI development. Carriers homozygous for the ABCC2 −1774del allele were however only found in DILI patients. Hence, this genotype could potentially be associated with increased risk, though its low frequency in our Spanish cohort prevented a final conclusion. Furthermore, carriers homozygous for the ABCC2 −1774G/−1549A/−24T/1249G/3972T/4544G haplotype were found to have a higher propensity for total bilirubin elevations when developing DILI. Conclusions Our findings do not support a role for the analysed polymorphisms in the ABCB1, ABCB4 and ABCC2 transporter genes in DILI development in Spanish patients. The ABCC2 −1774deldel genotype was however restricted to DILI cases and could potentially contribute to enhanced DILI susceptibility. PMID:24732756

  20. SCN1A, ABCC2 and UGT2B7 gene polymorphisms in association with individualized oxcarbazepine therapy.

    PubMed

    Ma, Chun-Lai; Wu, Xun-Yi; Jiao, Zheng; Hong, Zhen; Wu, Zhi-Yuan; Zhong, Ming-Kang

    2015-01-01

    Associations between the effects of SCN1A, SCN2A, ABCC2 and UGT2B7 genetic polymorphisms and oxcarbazepine (OXC) maintenance doses in Han Chinese epileptic patients were investigated. Genetic polymorphisms were detected in 184 epileptic patients receiving OXC monotherapy by high-resolution melting curve and TaqMan method. Carriers of the SCN1A IVS5-91G>A, UGT2B7 c.802T>C and ABCC2 c.1249G>A variant alleles required significantly higher OXC maintenance doses than noncarriers (p < 0.05). Corresponding relative ln (concentration-dose ratios) values for SCN1A IVS5-91 variants differed by the genotypic order GG > GA > AA. SCN1A, UGT2B7 and ABCC2 genetic polymorphisms are associated with OXC maintenance doses and may be useful for the personalization of OXC therapy in epileptic patients. Further studies are needed. Original submitted 6 June 2014; Revision submitted 5 September 2014.

  1. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir.

    PubMed

    Neumanova, Zuzana; Cerveny, Lukas; Greenwood, Susan L; Ceckova, Martina; Staud, Frantisek

    2015-11-01

    Abacavir is as a frequent part of combination antiretroviral therapy used in pregnant women. The aim of this study was to investigate, using in vitro, in situ and ex vivo experimental approaches, whether the transplacental pharmacokinetics of abacavir is affected by ATP-binding cassette (ABC) efflux transporters functionally expressed in the placenta: P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), multidrug resistance-associated protein 2 (ABCC2) and multidrug resistance-associated protein 5 (ABCC5). In vitro transport assays revealed that abacavir is a substrate of human ABCB1 and ABCG2 transporters but not of ABCC2 or ABCC5. In addition, in situ experiments using dually perfused rat term placenta confirmed interactions of abacavir with placental Abcb1/Abcg2. In contrast, uptake studies in human placental villous fragments did not reveal any interaction of abacavir with efflux transporters suggesting a large contribution of passive diffusion and/or influx mechanisms to net transplacental abacavir transfer. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Solution Structures of 2 : 1 And 1 : 1 DNA Polymerase - DNA Complexes Probed By Ultracentrifugation And Small-Angle X-Ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, K.H.; /Ohio State U.; Niebuhr, M.

    2009-04-30

    We report small-angle X-ray scattering (SAXS) and sedimentation velocity (SV) studies on the enzyme-DNA complexes of rat DNA polymerase {beta} (Pol {beta}) and African swine fever virus DNA polymerase X (ASFV Pol X) with one-nucleotide gapped DNA. The results indicated formation of a 2 : 1 Pol {beta}-DNA complex, whereas only 1 : 1 Pol X-DNA complex was observed. Three-dimensional structural models for the 2 : 1 Pol {beta}-DNA and 1 : 1 Pol X-DNA complexes were generated from the SAXS experimental data to correlate with the functions of the DNA polymerases. The former indicates interactions of the 8 kDamore » 5{prime}-dRP lyase domain of the second Pol {beta} molecule with the active site of the 1 : 1 Pol {beta}-DNA complex, while the latter demonstrates how ASFV Pol X binds DNA in the absence of DNA-binding motif(s). As ASFV Pol X has no 5{prime}-dRP lyase domain, it is reasonable not to form a 2 : 1 complex. Based on the enhanced activities of the 2 : 1 complex and the observation that the 8 kDa domain is not in an optimal configuration for the 5{prime}-dRP lyase reaction in the crystal structures of the closed ternary enzyme-DNA-dNTP complexes, we propose that the asymmetric 2 : 1 Pol {beta}-DNA complex enhances the function of Pol {beta}.« less

  3. Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome.

    PubMed

    Berry-Kravis, Elizabeth; Sumis, Allison; Hervey, Crystal; Nelson, Michael; Porges, Stephen W; Weng, Ning; Weiler, Ivan Jeanne; Greenough, William T

    2008-08-01

    In fragile X syndrome (FXS), it is hypothesized that absence of the fragile X mental retardation protein (FMRP) disrupts regulation of group 1 metabotropic glutamate receptor (mGluR and mGluR5)-dependent translation in dendrites. Lithium reduces mGluR-activated translation and reverses phenotypes in the dfxr mutant fly and fmr1 knockout mouse. This pilot add-on trial was conducted to evaluate safety and efficacy of lithium in humans with FXS. Fifteen individuals with FXS, ages 6-23, received lithium titrated to levels of 0.8-1.2 mEq/L. The primary outcome measure, the Aberrant Behavior Checklist --Community Edition (ABC-C) Irritability Subscale, secondary outcome measures (other ABC-C subscales, clinical global improvement scale (CGI), visual analog scale for behavior (VAS), Vineland Adaptive Behavior Scale (VABS)), exploratory cognitive and psychophysiological measures and an extracellular signal-regulated kinase (ERK) activation assay were administered at baseline and 2 months of treatment. Side effects were quantified with a standardized checklist and lithium level, complete blood count (CBC), thyroid stimulating hormone (TSH), and chemistry screen were done at baseline, 2 weeks, 4 weeks and 2 months. The only significant treatment-related side effects were polyuria/polydipsia (n = 7) and elevated TSH (n = 4). Although the ABC-C Irritability Subscale showed only a trend toward improvement, there was significant improvement in the Total ABC-C score (p = 0.005), VAS (p = 0.003), CGI (p = 0.002), VABS Maladaptive Behavior Subscale (p = 0.007), and RBANS List Learning (p = 0.03) and an enhanced ERK activation rate (p = 0.007). Several exploratory tasks proved too difficult for lower-functioning FXS subjects. Results from this study are consistent with results in mouse and fly models of FXS, and suggest that lithium is well-tolerated and provides functional benefits in FXS, possibly by modifying the underlying neural defect. A placebo-controlled trial of lithium in FXS is warranted.

  4. Multidrug Resistance Proteins (MRPs/ABCCs) in Cancer Chemotherapy and Genetic Diseases

    PubMed Central

    Chen, Zhe-Sheng; Tiwari, Amit K.

    2011-01-01

    The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the ‘C’ subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so-called Multidrug Resistance Proteins (MRPs) 1-9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C4 and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this review article, the current biochemical and physiological knowledge of MRP1-MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin-Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed. PMID:21740521

  5. Pharmacogenomics of Methotrexate Membrane Transport Pathway: Can Clinical Response to Methotrexate in Rheumatoid Arthritis Be Predicted?

    PubMed Central

    Lima, Aurea; Bernardes, Miguel; Azevedo, Rita; Medeiros, Rui; Seabra, Vitor

    2015-01-01

    Background: Methotrexate (MTX) is widely used for rheumatoid arthritis (RA) treatment. Single nucleotide polymorphisms (SNPs) could be used as predictors of patients’ therapeutic outcome variability. Therefore, this study aims to evaluate the influence of SNPs in genes encoding for MTX membrane transport proteins in order to predict clinical response to MTX. Methods: Clinicopathological data from 233 RA patients treated with MTX were collected, clinical response defined, and patients genotyped for 23 SNPs. Genotype and haplotype analyses were performed using multivariate methods and a genetic risk index (GRI) for non-response was created. Results: Increased risk for non-response was associated to SLC22A11 rs11231809 T carriers; ABCC1 rs246240 G carriers; ABCC1 rs3784864 G carriers; CGG haplotype for ABCC1 rs35592, rs2074087 and rs3784864; and CGG haplotype for ABCC1 rs35592, rs246240 and rs3784864. GRI demonstrated that patients with Index 3 were 16-fold more likely to be non-responders than those with Index 1. Conclusions: This study revealed that SLC22A11 and ABCC1 may be important to identify those patients who will not benefit from MTX treatment, highlighting the relevance in translating these results to clinical practice. However, further validation by independent studies is needed to develop the field of personalized medicine to predict clinical response to MTX treatment. PMID:26086825

  6. Pharmacogenomics of Methotrexate Membrane Transport Pathway: Can Clinical Response to Methotrexate in Rheumatoid Arthritis Be Predicted?

    PubMed

    Lima, Aurea; Bernardes, Miguel; Azevedo, Rita; Medeiros, Rui; Seabra, Vítor

    2015-06-16

    Methotrexate (MTX) is widely used for rheumatoid arthritis (RA) treatment. Single nucleotide polymorphisms (SNPs) could be used as predictors of patients' therapeutic outcome variability. Therefore, this study aims to evaluate the influence of SNPs in genes encoding for MTX membrane transport proteins in order to predict clinical response to MTX. Clinicopathological data from 233 RA patients treated with MTX were collected, clinical response defined, and patients genotyped for 23 SNPs. Genotype and haplotype analyses were performed using multivariate methods and a genetic risk index (GRI) for non-response was created. Increased risk for non-response was associated to SLC22A11 rs11231809 T carriers; ABCC1 rs246240 G carriers; ABCC1 rs3784864 G carriers; CGG haplotype for ABCC1 rs35592, rs2074087 and rs3784864; and CGG haplotype for ABCC1 rs35592, rs246240 and rs3784864. GRI demonstrated that patients with Index 3 were 16-fold more likely to be non-responders than those with Index 1. This study revealed that SLC22A11 and ABCC1 may be important to identify those patients who will not benefit from MTX treatment, highlighting the relevance in translating these results to clinical practice. However, further validation by independent studies is needed to develop the field of personalized medicine to predict clinical response to MTX treatment.

  7. Advanced Biomedical Computing Center (ABCC) | DSITP

    Cancer.gov

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  8. Structural studies on Pax-8 Prd domain/DNA complex.

    PubMed

    Campagnolo, M; Pesaresi, A; Zelezetsky, I; Geremia, S; Randaccio, L; Bisca, A; Tell, G

    2007-04-01

    Pax-8 is a member of the Pax family of transcription factors and is essential in the development of thyroid follicular cells. Pax-8 has two DNA-binding domains: the paired domain and the homeo domain. In this study, a preliminary X-ray diffraction analysis of the mammalian Pax-8 paired domain in complex with the C-site of the thyroglobulin promoter was achieved. The Pax-8 paired domain was crystallized by the hanging-drop vapor-diffusion method in complex with both a blunt-ended 26 bp DNA fragment and with a sticky-ended 24 bp DNA fragment with two additional overhanging bases. Crystallization experiments make clear that the growth of transparent crystals with large dimensions and regular shape is particularly influenced by ionic strength. The crystals of Pax-8 complex with blunt-ended and sticky-ended DNA, diffracted synchrotron radiation to 6.0 and 8.0 A resolution and belongs both to the C centered monoclinic system with cell dimensions: a = 89.88 A, b = 80.05 A, c = 67.73 A, and beta = 124.3 degrees and a = 256.56, b = 69.07, c = 99.32 A, and beta = 98.1 degrees , respectively. Fluorescence experiments suggest that the crystalline disorder, deduced by the poor diffraction, can be attributed to the low homogeneity of the protein-DNA sample. The theoretical comparative model of the Pax-8 paired domain complexed with the C-site of the thyroglobulin promoter shows the probable presence of some specific protein-DNA interactions already observed in other Pax proteins and the important role of the cysteine residues of PAI subdomain in the redox control of the DNA recognition.

  9. Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport.

    PubMed

    Jin, Daqing; Ni, Terri T; Sun, Jianjian; Wan, Haiyan; Amack, Jeffrey D; Yu, Guangju; Fleming, Jonathan; Chiang, Chin; Li, Wenyan; Papierniak, Anna; Cheepala, Satish; Conseil, Gwenaëlle; Cole, Susan P C; Zhou, Bin; Drummond, Iain A; Schuetz, John D; Malicki, Jarema; Zhong, Tao P

    2014-09-01

    Cilia are microtubule-based organelles that mediate signal transduction in a variety of tissues. Despite their importance, the signalling cascades that regulate cilium formation remain incompletely understood. Here we report that prostaglandin signalling affects ciliogenesis by regulating anterograde intraflagellar transport (IFT). Zebrafish leakytail (lkt) mutants show ciliogenesis defects, and the lkt locus encodes an ATP-binding cassette transporter (ABCC4). We show that Lkt/ABCC4 localizes to the cell membrane and exports prostaglandin E2 (PGE2), a function that is abrogated by the Lkt/ABCC4(T804M) mutant. PGE2 synthesis enzyme cyclooxygenase-1 and its receptor, EP4, which localizes to the cilium and activates the cyclic-AMP-mediated signalling cascade, are required for cilium formation and elongation. Importantly, PGE2 signalling increases anterograde but not retrograde velocity of IFT and promotes ciliogenesis in mammalian cells. These findings lead us to propose that Lkt/ABCC4-mediated PGE2 signalling acts through a ciliary G-protein-coupled receptor, EP4, to upregulate cAMP synthesis and increase anterograde IFT, thereby promoting ciliogenesis.

  10. ABCC6 and Pseudoxanthoma Elasticum: The Face of a Rare Disease from Genetics to Advocacy

    PubMed Central

    Moitra, Karobi; Garcia, Sonia; Etoundi, Clementine; Cooper, Donna; Roland, Anna; Dixon, Patrice; Reyes, Sandra; Turan, Sevilay; Dean, Michael

    2017-01-01

    Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder characterized by the mineralization of connective tissues in the body. Primary manifestation of PXE occurs in the tissues of the skin, eyes, and cardiovascular system. PXE is primarily caused by mutations in the ABCC6 gene. The ABCC6 gene encodes the trans-membrane protein ABCC6, which is highly expressed in the kidneys and liver. PXE has high phenotypic variability, which may possibly be affected by several modifier genes. Disease advocacy organizations have had a pivotal role in bringing rare disease research to the forefront and in helping to sustain research funding for rare genetic diseases in order to help find a treatment for these diseases, pseudoxanthoma elasticum included. Because of these initiatives, individuals affected by these conditions benefit by being scientifically informed about their condition, having an effective support mechanism, and also by contributing to scientific research efforts and banking of biological samples. This rapid progress would not have been possible without the aid of disease advocacy organizations such as PXE International. PMID:28696355

  11. Burden and treatment patterns of advanced basal cell carcinoma among commercially insured patients in a United States database from 2010 to 2014.

    PubMed

    Migden, Michael; Xie, Jipan; Wei, Jin; Tang, Wenxi; Herrera, Vivian; Palmer, Jacqueline B

    2017-07-01

    The burden of advanced basal cell carcinoma (aBCC) is not fully understood. To compare BCC disease burden and treatment patterns for aBCC with those for non-aBCC. A retrospective, insurance claims-based study design was used. Adults with ≥2 claims associated with a BCC diagnosis (ICD-9-CM 173.x1) separated by ≥30 days on or after October 1, 2011, were classified as aBCC or non-aBCC by using an algorithm based on metastasis diagnosis, radiation therapy use, and medical oncologist/other specialist use. Non-aBCC and aBCC patients were matched 1:1 on the basis of age, sex, and region, and assigned the same index date (date of first qualifying diagnosis or event). Comparisons were made using Wilcoxon signed-rank (continuous variables) and McNemar's (categorical variables) tests. In total, 847 matched aBCC/non-aBCC patient pairs were selected (mean age 75 years; 57% men; locally advanced BCC, n = 826; metastatic BCC, n = 21). During the 12-month study period following the index date, aBCC patients had a significantly higher mean Charlson Comorbidity Index (P = .0023), significantly higher mean numbers of outpatient/dermatologist/medical oncologist visits (all P < .0001), and significantly higher mean total/medical/inpatient/outpatient/BCC treatment costs (all P < .05). This study only included information from a database on commercial insurance and Medicare claims. The algorithm criteria might have restricted patient numbers; data were not fully reflective of targeted therapy era. aBCC patients had a higher disease burden than non-aBCC patients. Cost differences were largely driven by higher BCC treatment costs, specifically radiation therapy. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  12. Concentration of the macrolide antibiotic tulathromycin in broncho-alveolar cells is influenced by comedication of rifampicin in foals.

    PubMed

    Venner, Monica; Peters, Jette; Höhensteiger, Nina; Schock, Birthe; Bornhorst, Alexa; Grube, Markus; Adam, Ulrike; Scheuch, Eberhard; Weitschies, Werner; Rosskopf, Dieter; Kroemer, Heyo K; Siegmund, Werner

    2010-02-01

    Macrolide antibiotics penetrate in the lung against steep concentration gradients into the epithelial lining fluid (ELF) and broncho-alveolar cells (BAC). Since they interact with ABCB1, ABCC2, and organic anion transporting proteins (OATPs), which are localized to lung tissue, pulmonary concentration may be influenced by rifampicin (RIF), an inducer and modulator of efflux and uptake transporters. We measured concentrations of tulathromycin (TM) in plasma, ELF and BAC in 21 warm-blooded foals 24 and 192 h after first and last intramuscular injection of 2.5 mg/kg TM once weekly for 6 weeks. In 11 foals, TM was combined with RIF (10 mg/kg twice daily), and mRNA expression of ABCB1 and ABCC2 in BAC was assessed before and after RIF. Affinity of TM to ABCB1 and ABCC2 was measured by transport assays using cell monolayers and membrane vesicles of MDCKII and 2008 cells transfected with ABCB1 and ABCC2, respectively. At steady state, TM concentrated manifold in ELF and BAC. Comedication of RIF significantly decreased the AUC of TM (18.5 +/- 4.0 versus 24.4 +/- 3.7 microg x h/ml, p < 0.05) and lowered its concentrations in plasma (24 h, 0.17 +/- 0.05 versus 0.24 +/- 0.05 microg/ml; 192 h, 0.05 +/- 0.01 versus 0.06 +/- 0.01 microg/ml) and BAC (24 h, 0.84 +/- 0.36 versus 1.56 +/- 1.02 microg/ml; 192 h, 0.60 +/- 0.23 versus 1.23 +/- 0.90 microg/ml, all p < 0.05). Treatment with rifampicin did not markedly induce ABCB1 and ABCC2 expression. TM had no affinity to ABCB1 and ABCC2 in vitro. Concentration of TM in the lung of foals was significantly lowered by comedication of rifampicin most likely caused by extrapulmonary mechanisms leading to lower plasma concentrations.

  13. A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene.

    PubMed

    Bitner-Glindzicz, M; Lindley, K J; Rutland, P; Blaydon, D; Smith, V V; Milla, P J; Hussain, K; Furth-Lavi, J; Cosgrove, K E; Shepherd, R M; Barnes, P D; O'Brien, R E; Farndon, P A; Sowden, J; Liu, X Z; Scanlan, M J; Malcolm, S; Dunne, M J; Aynsley-Green, A; Glaser, B

    2000-09-01

    Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E. Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14-15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18. The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.

  14. Polymorphisms and allele frequencies of the ABO blood group gene among the Jomon, Epi-Jomon and Okhotsk people in Hokkaido, northern Japan, revealed by ancient DNA analysis.

    PubMed

    Sato, Takehiro; Kazuta, Hisako; Amano, Tetsuya; Ono, Hiroko; Ishida, Hajime; Kodera, Haruto; Matsumura, Hirofumi; Yoneda, Minoru; Dodo, Yukio; Masuda, Ryuichi

    2010-10-01

    To investigate the genetic characteristics of the ancient populations of Hokkaido, northern Japan, polymorphisms of the ABO blood group gene were analyzed for 17 Jomon/Epi-Jomon specimens and 15 Okhotsk specimens using amplified product-length polymorphism and restriction fragment length polymorphism analyses. Five ABO alleles were identified from the Jomon/ Epi-Jomon and Okhotsk people. Allele frequencies of the Jomon/Epi-Jomon and Okhotsk people were compared with those of the modern Asian, European and Oceanic populations. The genetic relationships inferred from principal component analyses indicated that both Jomon/Epi-Jomon and Okhotsk people are included in the same group as modern Asian populations. However, the genetic characteristics of these ancient populations in Hokkaido were significantly different from each other, which is in agreement with the conclusions from mitochondrial DNA and ABCC11 gene analyses that were previously reported.

  15. The Attitudes & Beliefs on Classroom Control Inventory-Revised and Revisited: A Continuation of Construct Validation

    ERIC Educational Resources Information Center

    Martin, Nancy K.; Yin, Zenong; Mayall, Hayley

    2008-01-01

    The purpose of this study was to report the psychometric properties of the revised Attitudes and Beliefs of Classroom Control Inventory (ABCC-R). Data were collected from 489 participants via the ABCC-R, Teacher Efficacy Scale, Problems in School Questionnaire, and a demographic questionnaire. Results were in keeping with the construct. The…

  16. Longitudinal Trajectories of Aberrant Behavior in Fragile X Syndrome

    PubMed Central

    Hustyi, Kristin M.; Hall, Scott S.; Jo, Booil; Lightbody, Amy A.; Reiss, Allan L.

    2016-01-01

    The Aberrant Behavior Checklist—Community (ABC-C; Aman, Burrow, & Wolford, 1995) has been increasingly adopted as a primary tool for measuring behavioral change in clinical trials for individuals with fragile X syndrome (FXS). To our knowledge, however, no study has documented the longitudinal trajectory of aberrant behaviors in individuals with FXS using the ABC-C. As part of a larger longitudinal study, we examined scores obtained on the ABC-C subscales for 124 children and adolescents (64 males, 60 females) with FXS who had two or more assessments (average interval between assessments was approximately 4 years). Concomitant changes in age-equivalent scores on the Vineland Adaptive Behavior Scales (VABS) were also examined. As expected for an X-linked genetic disorder, males with FXS obtained significantly higher scores on all subscales of the ABC-C and significantly lower age-equivalent scores on the VABS than females with FXS. In both males and females with FXS, scores on the Irritability/Agitation and Hyperactivity/Noncompliance subscales of the ABC-C decreased significantly with age, with little to no change occurring over time on the Lethargy/Social Withdrawal, Stereotypic Behavior, and Inappropriate Speech subscales. The decrease in scores on the Hyperactivity/Noncompliance domain was significantly greater for males than for females. In both males and females, age-equivalent scores on the VABS increased significantly over this developmental period. These results establish a basis upon which to evaluate long-term outcomes from intervention-based research. However, longitudinal direct observational studies are needed to establish whether the severity of problem behavior actually decreases over time in this population. PMID:25129200

  17. The systems biology of uric acid transporters: the role of remote sensing and signaling.

    PubMed

    Nigam, Sanjay K; Bhatnagar, Vibha

    2018-07-01

    Uric acid homeostasis in the body is mediated by a number of SLC and ABC transporters in the kidney and intestine, including several multispecific 'drug' transporters (e.g., OAT1, OAT3, and ABCG2). Optimization of uric acid levels can be viewed as a 'systems biology' problem. Here, we consider uric acid transporters from a systems physiology perspective using the framework of the 'Remote Sensing and Signaling Hypothesis.' This hypothesis explains how SLC and ABC 'drug' and other transporters mediate interorgan and interorganismal communication (e.g., gut microbiome and host) via small molecules (e.g., metabolites, antioxidants signaling molecules) through transporters expressed in tissues lining body fluid compartments (e.g., blood, urine, cerebrospinal fluid). The list of uric acid transporters includes: SLC2A9, ABCG2, URAT1 (SLC22A12), OAT1 (SLC22A6), OAT3 (SLC22A8), OAT4 (SLC22A11), OAT10 (SLC22A13), NPT1 (SLC17A1), NPT4 (SLC17A3), MRP2 (ABCC2), MRP4 (ABCC4). Normally, SLC2A9, - along with URAT1, OAT1 and OAT3, - appear to be the main transporters regulating renal urate handling, while ABCG2 appears to regulate intestinal transport. In chronic kidney disease (CKD), intestinal ABCG2 becomes much more important, suggesting remote organ communication between the injured kidney and the intestine. The remote sensing and signaling hypothesis provides a useful systems-level framework for understanding the complex interplay of uric acid transporters expressed in different tissues involved in optimizing uric acid levels under normal and diseased (e.g., CKD, gut microflora dysbiosis) conditions.

  18. Psychometric Study of the Aberrant Behavior Checklist in Fragile X Syndrome and Implications for Targeted Treatment

    ERIC Educational Resources Information Center

    Sansone, Stephanie M.; Widaman, Keith F.; Hall, Scott S.; Reiss, Allan L.; Lightbody, Amy; Kaufmann, Walter E.; Berry-Kravis, Elizabeth; Lachiewicz, Ave; Brown, Elaine C.; Hessl, David

    2012-01-01

    Animal studies elucidating the neurobiology of fragile X syndrome (FXS) have led to multiple controlled trials in humans, with the Aberrant Behavior Checklist-Community (ABC-C) commonly adopted as a primary outcome measure. A multi-site collaboration examined the psychometric properties of the ABC-C in 630 individuals (ages 3-25) with FXS using…

  19. A Confirmatory Factor Analysis of Preservice Teachers' Responses to the Attitudes and Beliefs on Classroom Control Inventory.

    ERIC Educational Resources Information Center

    Henson, Robin K.; Roberts, J. Kyle

    This study examined the factorial invariance of scores from the Attitudes and Beliefs on Classroom Control Inventory (ABCC) (Martin and others, 1998) for 243 undergraduate preservice teachers. Although the original ABCC was developed with inservice teachers, use of the instrument to study the classroom beliefs of preservice teachers had not been…

  20. Urinary elimination of coproporphyrins is dependent on ABCC2 polymorphisms and represents a potential biomarker of MRP2 activity in humans.

    PubMed

    Benz-de Bretagne, Isabelle; Respaud, Renaud; Vourc'h, Patrick; Halimi, Jean-Michel; Caille, Agnès; Hulot, Jean-Sébastien; Andres, Christian R; Le Guellec, Chantal

    2011-01-01

    MRP2 encoded by ABCC2 gene is involved in the secretion of numerous drugs and endogenous substrates. Patients with Dubin-Johnson syndrome due to mutation in ABCC2 gene have elevated urinary coproporphyrin ratio (UCP I/(I + III)). Here we investigated whether this ratio could serve as a biomarker of MRP2 function. Phenotype-genotype relationships were studied in 74 healthy subjects by measuring individual UCP I/(I + III) ratio obtained on 24-hour urine and by analyzing five common SNPs in ABCC2 gene. The UCP I/(I + III) ratio varied from 14.7% to 46.0% in our population. Subjects with 3972TT genotype had a higher ratio (P = .04) than those carrying the C allele. This higher UCP I/(I + III) ratio was correlated with a higher level of isomer I excretion. This study provides a proof of concept that UCP I/(I + III) ratio can be used as a biomarker of MRP2 function in clinical studies as it provides quantitative information about the in vivo activity of MRP2 in a given patient.

  1. Urinary Elimination of Coproporphyrins Is Dependent on ABCC2 Polymorphisms and Represents a Potential Biomarker of MRP2 Activity in Humans

    PubMed Central

    Benz-de Bretagne, Isabelle; Respaud, Renaud; Vourc'h, Patrick; Halimi, Jean-Michel; Caille, Agnès; Hulot, Jean-Sébastien; Andres, Christian R.; Le Guellec, Chantal

    2011-01-01

    MRP2 encoded by ABCC2 gene is involved in the secretion of numerous drugs and endogenous substrates. Patients with Dubin-Johnson syndrome due to mutation in ABCC2 gene have elevated urinary coproporphyrin ratio (UCP I/(I + III)). Here we investigated whether this ratio could serve as a biomarker of MRP2 function. Phenotype-genotype relationships were studied in 74 healthy subjects by measuring individual UCP I/(I + III) ratio obtained on 24-hour urine and by analyzing five common SNPs in ABCC2 gene. The UCP I/(I + III) ratio varied from 14.7% to 46.0% in our population. Subjects with 3972TT genotype had a higher ratio (P = .04) than those carrying the C allele. This higher UCP I/(I + III) ratio was correlated with a higher level of isomer I excretion. This study provides a proof of concept that UCP I/(I + III) ratio can be used as a biomarker of MRP2 function in clinical studies as it provides quantitative information about the in vivo activity of MRP2 in a given patient. PMID:21541183

  2. The Atomic Bomb Casualty Commission in retrospect

    PubMed Central

    Putnam, Frank W.

    1998-01-01

    For 50 years, the Atomic Bomb Casualty Commission (ABCC) and its successor, the Radiation Effects Research Foundation (RERF), have conducted epidemiological and genetic studies of the survivors of the atomic bombs and of their children. This research program has provided the primary basis for radiation health standards. Both ABCC (1947–1975) and RERF (1975 to date) have been a joint enterprise of the United States (through the National Academy of Sciences) and of Japan. ABCC began in devastated, occupied Japan. Its mission had to be defined and refined. Early research revealed the urgent need for long term study. In 1946, a Directive of President Truman enjoined the National Research Council of the National Academy of Sciences to develop the program. By 1950, ABCC staff exceeded 1,000, and clinical and genetic studies were underway. Budgetary difficulties and other problems almost forced closure in 1953. In 1955, the Francis Report led to a unified epidemiological study. Much progress was made in the next decade, but changing times required founding of a binational nonprofit organization (RERF) with equal participation by Japan and the United States. New programs have been developed and existing ones have been extended in what is the longest continuing health survey ever undertaken. PMID:9576898

  3. Synthesis and characterization of nitrile functionalized silver(I)-N-heterocyclic carbene complexes: DNA binding, cleavage studies, antibacterial properties and mosquitocidal activity against the dengue vector, Aedes albopictus.

    PubMed

    Asekunowo, Patrick O; Haque, Rosenani A; Razali, Mohd R; Avicor, Silas W; Wajidi, Mustafa F F

    2018-04-25

    A series of four benzimidazolium based nitrile-functionalized mononuclear-Ag(I)-N-heterocyclic carbene and binuclear-Ag(I)-N-heterocyclic carbene (Ag(I)-NHC) hexafluorophosphate complexes (5b-8b) were synthesized by reacting the corresponding hexafluorophosphate salts (1b-4b) with Ag 2 O in acetonitrile, respectively. These compounds were characterized by 1 H NMR, 13 C NMR, IR, UV-visible spectroscopic techniques, elemental analyses and molar conductivity. Additionally, 8b was structurally characterized by single crystal X-ray diffraction technique. Preliminary in vitro antibacterial evaluation was conducted for all the compounds against two standard bacteria; gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacterial strains. Most of the Ag(I)-NHC complexes (5b-8b) showed moderate to good antibacterial activity with MIC values in the range of 12.5-100 μg/mL. Especially, compound 8b exhibited promising anti-Staphylococcus aureus activity with a low MIC value (12.5 μg/mL). However, all the hexafluorophosphate salts (1b-4b) were inactive against the bacteria strains. The preliminary interactive investigation revealed that the most active compound, 8b, could effectively intercalate into DNA to form 8b-DNA complex which shows a better binding ability for DNA (K b  = 3.627 × 10 6 ) than the complexes 5b-7b (2.177 × 10 6 , 8.672 × 10 5 and 6.665 × 10 5 , respectively). Nuclease activity of the complexes on plasmid DNA and Aedes albopictus genomic DNA was time-dependent, although minimal. The complexes were larvicidal to the mosquito, with 5b, 6b and 8b being highly active. Developmental progression from the larval to the adult stage was affected by the complexes, progressively being toxic to the insect's development with increasing concentration. These indicate the potential use of these complexes as control agents against bacteria and the dengue mosquito Ae. albopictus. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Two residues in the basic region of the yeast transcription factor Yap8 are crucial for its DNA-binding specificity.

    PubMed

    Amaral, Catarina; Pimentel, Catarina; Matos, Rute G; Arraiano, Cecília M; Matzapetakis, Manolis; Rodrigues-Pousada, Claudina

    2013-01-01

    In Saccharomyces cerevisiae, the transcription factor Yap8 is a key determinant in arsenic stress response. Contrary to Yap1, another basic region-leucine zipper (bZIP) yeast regulator, Yap8 has a very restricted DNA-binding specificity and only orchestrates the expression of ACR2 and ACR3 genes. In the DNA-binding basic region, Yap8 has three distinct amino acids residues, Leu26, Ser29 and Asn31, at sites of highly conserved positions in the other Yap family of transcriptional regulators and Pap1 of Schizosaccharomyces pombe. To evaluate whether these residues are relevant to Yap8 specificity, we first built a homology model of the complex Yap8bZIP-DNA based on Pap1-DNA crystal structure. Several Yap8 mutants were then generated in order to confirm the contribution of the residues predicted to interact with DNA. Using bioinformatics analysis together with in vivo and in vitro approaches, we have identified several conserved residues critical for Yap8-DNA binding. Moreover, our data suggest that Leu26 is required for Yap8 binding to DNA and that this residue together with Asn31, hinder Yap1 response element recognition by Yap8, thus narrowing its DNA-binding specificity. Furthermore our results point to a role of these two amino acids in the stability of the Yap8-DNA complex.

  5. Open-label add-on treatment trial of minocycline in fragile X syndrome.

    PubMed

    Paribello, Carlo; Tao, Leeping; Folino, Anthony; Berry-Kravis, Elizabeth; Tranfaglia, Michael; Ethell, Iryna M; Ethell, Douglas W

    2010-10-11

    Fragile X syndrome (FXS) is a disorder characterized by a variety of disabilities, including cognitive deficits, attention-deficit/hyperactivity disorder, autism, and other socio-emotional problems. It is hypothesized that the absence of the fragile X mental retardation protein (FMRP) leads to higher levels of matrix metallo-proteinase-9 activity (MMP-9) in the brain. Minocycline inhibits MMP-9 activity, and alleviates behavioural and synapse abnormalities in fmr1 knockout mice, an established model for FXS. This open-label add-on pilot trial was conducted to evaluate safety and efficacy of minocycline in treating behavioural abnormalities that occur in humans with FXS. Twenty individuals with FXS, ages 13-32, were randomly assigned to receive 100 mg or 200 mg of minocycline daily. Behavioural evaluations were made prior to treatment (baseline) and again 8 weeks after daily minocycline treatment. The primary outcome measure was the Aberrant Behaviour Checklist-Community Edition (ABC-C) Irritability Subscale, and the secondary outcome measures were the other ABC-C subscales, clinical global improvement scale (CGI), and the visual analog scale for behaviour (VAS). Side effects were assessed using an adverse events checklist, a complete blood count (CBC), hepatic and renal function tests, and antinuclear antibody screen (ANA), done at baseline and at 8 weeks. The ABC-C Irritability Subscale scores showed significant improvement (p < 0.001), as did the VAS (p = 0.003) and the CGI (p < 0.001). The only significant treatment-related side effects were minor diarrhea (n = 3) and seroconversion to a positive ANA (n = 2). Results from this study demonstrate that minocycline provides significant functional benefits to FXS patients and that it is well-tolerated. These findings are consistent with the fmr1 knockout mouse model results, suggesting that minocycline modifies underlying neural defects that account for behavioural abnormalities. A placebo-controlled trial of minocycline in FXS is warranted. ClinicalTrials.gov Open-Label Trial NCT00858689.

  6. Spacer length controlled lamello-columnar to oblique-columnar mesophase transition in liquid crystalline DNA - discotic cationic lipid complexes

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Cui, Li; Miao, Jianjun

    2006-03-01

    A series of asymmetric triphenylene imidazolium salts with different spacer lengths (C5, C8, and C11) were synthesized and their ionic complexes with double-strand DNA were prepared in aqueous solution. The molecular composition of the complexes was determined by FTIR analysis. The liquid crystalline morphology was characterized by polarized light microscopy, X-ray diffraction (XRD), and transmission electron microscope. 2D XRD results indicated an oblique columnar phase for the complex with a short spacer length of C5, while lamello-columnar phases for those with longer spacer lengths (C8 and C11). Thin film circular dichroism results showed the disappearing of any helical conformation in the DNA in all the complexes. Instead, the complexation between single-strand RNA and discotic cationic lipids did not show columnar morphology; therefore, the columnar liquid crystalline morphology in the DNA-discotic cationic lipid complexes was attributed to the DNA double-strand chain rigidity.

  7. ABCB1 and ABCC1-like transporters in immune system cells from sea urchins Echinometra lucunter and Echinus esculentus and oysters Crassostrea gasar and Crassostrea gigas.

    PubMed

    Marques-Santos, Luis Fernando; Hégaret, Hélène; Lima-Santos, Leonardo; Queiroga, Fernando Ramos; da Silva, Patricia Mirella

    2017-11-01

    ABC transporters activity and expression have been associated with the multixenobiotic resistance phenotype (MXR). The activity of these proteins leads to a reduction in the intracellular concentration of several xenobiotics, thus reducing their toxicity. However, little attention has been given to the expression of ABC transporters in marine invertebrates and few studies have investigated their role in immune system cells of sea urchins and shellfish bivalves. The aim of the present study was to investigate the activity of the ABC transporters ABCB1 and ABCC1 in immune system cells of sea urchins (coelomocytes) and oysters (hemocytes) from different climatic regions (Brazil and France). Sea urchins and oysters were collected at Paraíba coast; Brazil (Echinometra lucunter and Crassostrea gasar) and Rade of Brest; France (Echinus esculentus and Crassostrea gigas). Coelomocytes and hemocytes were stained with the ABC transporter substrate calcein-AM and dye accumulation analyzed under flow cytometry. Reversin 205 (ABCB1 transporter blocker) and MK571 (ABCC1 transporter blocker) were used as pharmacological tools to investigate ABC transporter activity. A different pattern of calcein accumulation was observed in coelomocytes: phagocytes > colorless spherulocytes > vibrate cells > red spherulocytes. The treatment with MK571 increased calcein fluorescence levels in coelomocytes from both species. However, reversin 205 treatment was not able to increase calcein fluorescence in E. esculentus coelomocytes. These data suggest that ABCC1-like transporter activity is present in both sea urchin species, but ABCB1-like transporter activity might only be present in E. lucunter coelomocytes. The activity of ABCC1-like transporter was observed in all cell types from both bivalve species. However, reversin 205 only increased calcein accumulation in hyalinocytes of the oyster C. gasar, suggesting the absence of ABCB1-like transporter activity in all other cell types, including hyalinocytes from the oyster C. gigas. Additionally, our results showed that C. gigas exhibited higher activity of ABCC1-like transporter in all hemocyte types than C. gasar. The present work is the first to characterize ABCB1 and ABCC1-like transporter activity in the immune system cells of sea urchins E. lucunter and E. esculentus and oysters. Our findings encourage the performing studies regarding ABC transporters activity/expression in immune system cells form marine invertebrates under stress conditions and the possible use of ABC transporters as biomarkers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The role of Cas8 in type I CRISPR interference.

    PubMed

    Cass, Simon D B; Haas, Karina A; Stoll, Britta; Alkhnbashi, Omer S; Sharma, Kundan; Urlaub, Henning; Backofen, Rolf; Marchfelder, Anita; Bolt, Edward L

    2015-05-05

    CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use 'cascade' [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5-Cas7-crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA. © 2015 Authors.

  9. Crystallization and preliminary X-ray analysis of a complex formed between the antibiotic simocyclinone D8 and the DNA breakage–reunion domain of Escherichia coli DNA gyrase

    PubMed Central

    Edwards, Marcus J.; Flatman, Ruth H.; Mitchenall, Lesley A.; Stevenson, Clare E. M.; Maxwell, Anthony; Lawson, David M.

    2009-01-01

    Crystals of a complex formed between the 59 kDa N-terminal fragment of the Escherichia coli DNA gyrase A subunit (also known as the breakage–reunion domain) and the antibiotic simocyclinone D8 were grown by vapour diffusion. The complex crystallized with I-centred orthorhombic symmetry and X-ray data were recorded to a resolution of 2.75 Å from a single crystal at the synchrotron. DNA gyrase is an essential bacterial enzyme and thus represents an attractive target for drug development. PMID:19652356

  10. Non-B DB: a database of predicted non-B DNA-forming motifs in mammalian genomes.

    PubMed

    Cer, Regina Z; Bruce, Kevin H; Mudunuri, Uma S; Yi, Ming; Volfovsky, Natalia; Luke, Brian T; Bacolla, Albino; Collins, Jack R; Stephens, Robert M

    2011-01-01

    Although the capability of DNA to form a variety of non-canonical (non-B) structures has long been recognized, the overall significance of these alternate conformations in biology has only recently become accepted en masse. In order to provide access to genome-wide locations of these classes of predicted structures, we have developed non-B DB, a database integrating annotations and analysis of non-B DNA-forming sequence motifs. The database provides the most complete list of alternative DNA structure predictions available, including Z-DNA motifs, quadruplex-forming motifs, inverted repeats, mirror repeats and direct repeats and their associated subsets of cruciforms, triplex and slipped structures, respectively. The database also contains motifs predicted to form static DNA bends, short tandem repeats and homo(purine•pyrimidine) tracts that have been associated with disease. The database has been built using the latest releases of the human, chimp, dog, macaque and mouse genomes, so that the results can be compared directly with other data sources. In order to make the data interpretable in a genomic context, features such as genes, single-nucleotide polymorphisms and repetitive elements (SINE, LINE, etc.) have also been incorporated. The database is accessed through query pages that produce results with links to the UCSC browser and a GBrowse-based genomic viewer. It is freely accessible at http://nonb.abcc.ncifcrf.gov.

  11. Sleep Problems and Their Relationship to Maladaptive Behavior Severity in Psychiatrically Hospitalized Children with Autism Spectrum Disorder (ASD).

    PubMed

    Sannar, Elise M; Palka, Tamara; Beresford, Carol; Peura, Christine; Kaplan, Desmond; Verdi, Mary; Siegel, Matthew; Kaplan, Shir; Grados, Marco

    2017-10-30

    We examined the relationship between sleep duration and awakenings to Aberrant Behavior Checklist-Community (ABC-C) and Autism Diagnostic Observation Schedule (ADOS-2) scores in hospitalized youth with ASD and behavioral disturbance. Participants included 106 patients with a stay of at least 10 nights. Sleep in the hospital was recorded by staff observation. Higher scores on the ABC-C (irritability, stereotypy, and hyperactivity subscales) at admission were significantly associated with fewer minutes slept during the last five nights of hospitalization. There was no association between total awakenings and ABC-C scores or ADOS-2 comparison scores. Improved understanding of the relationship between sleep quality and maladaptive behavior in this challenging cohort of patients with ASD is vital to the definition and design of future effective interventions.

  12. Potential use of glucuronylglucosyl-β-cyclodextrin/dendrimer conjugate (G2) as a DNA carrier in vitro and in vivo.

    PubMed

    Anno, Takayuki; Higashi, Taishi; Motoyama, Keiichi; Hirayama, Fumitoshi; Uekama, Kaneto; Arima, Hidetoshi

    2012-04-01

    In this study, we evaluated the polyamidoamine starburst dendrimer (dendrimer, generation 2: G2) conjugate with 6-O-α-(4-O-α-D-glucuronyl)-D-glucosyl-β-cyclodextrin (GUG-β-CDE (G2)) as a gene transfer carrier. The in vitro gene transfer activity of GUG-β-CDE (G2, degree of substitution (DS) of cyclodextrin (CyD) 1.8) was remarkably higher than that of dendrimer (G2) conjugate with α-CyD (α-CDE (G2, DS 1.2)) and that with β-CyD(β-CDE (G2, DS 1.3)) in A549 and RAW264.7 cells. The particle size, ζ-potential, DNase I-catalyzed degradation, and cellular association of plasmid DNA (pDNA) complex with GUG-β-CDE (G2, DS 1.8) were almost the same as those of the other CDEs. Fluorescent-labeled GUG-β-CDE (G2, DS 1.8) localized in the nucleus 6 h after transfection of its pDNA complex in A549 cells, suggesting that nuclear localization of pDNA complex with GUG-β-CDE (G2, DS 1.8), at least in part, contributes to its high gene transfer activity. GUG-β-CDE (G2, DS 1.8) provided higher gene transfer activity than α-CDE (G2, DS 1.2) and β-CDE (G2, DS 1.3) in kidney with negligible changes in blood chemistry values 12 h after intravenous injection of pDNA complexes with GUG-β-CDE (G2, DS 1.8) in mice. In conclusion, the present findings suggest that GUG-β-CDE (G2, DS 1.8) has the potential for a novel polymeric pDNA carrier in vitro and in vivo.

  13. Deferasirox associated with liver failure and death in a sickle cell anemia patient homozygous for the -1774delG polymorphism in the Abcc2 gene.

    PubMed

    Braga, Caroline C B; Benites, Bruno Deltreggia; de Albuquerque, Dulcineia M; Alvarez, Marisa C; Seva-Pereira, Tiago; Duarte, Bruno K L; Costa, Fernando F; Gilli, Simone C O; Saad, Sara T O

    2017-08-01

    This manuscript describes the case of a patient with sickle cell anemia who died of fulminant hepatitis after therapy with the iron chelator Deferasirox. The patient was homozygous for the -1774delG polymorphism in the Abcc2 gene, which raises the concern about the use of hepatotoxic drugs in this specific context.

  14. ATP-binding cassette (ABC) transporters in caprine preantral follicles: gene and protein expression.

    PubMed

    Guerreiro, Denise Damasceno; de Lima, Laritza Ferreira; Mbemya, Gildas Tetaping; Maside, Carolina Mielgo; Miranda, André Marrocos; Tavares, Kaio César Simiano; Alves, Benner Geraldo; Faustino, Luciana Rocha; Smitz, Johan; de Figueiredo, José Ricardo; Rodrigues, Ana Paula Ribeiro

    2018-06-01

    The multidrug resistance proteins ABCB1, ABCC2 and ABCG2 are an energy-dependent efflux pump that functions in systemic detoxification processes. Physiologically expressed in a variety of tissues, most abundantly in the liver and intestinal epithelia, placenta, blood-brain barrier and various stem cells, until now, these pumps were not identified in goat ovarian tissue. Therefore, the aim of this study is to analyze ABCB1, ABCC2, and ABCG2 mRNA and protein expression in goat preantral follicles. Fragments (3 × 3 × 1 mm) from five pairs of ovary (n = 10) obtained from five goat were collected and immediately submitted to qPCR, Western blot, and immunofluorescence assay for mRNA detection and identification and localization of the ABC transporters, respectively. mRNA for ABCB1, ABCC2, and ABCG2 and the presence of their proteins were observed on ovarian tissue samples. Positive marks were observed for the three transport proteins in all follicular categories studied. However, the marks were primarily localized in the oocyte of primordial, transition and primary follicle categories. In conclusion, goat ovarian tissue expresses mRNA for the ABCB1, ABCC2 and ABCG2 transporters and the expression of these proteins in the preantral follicles is a follicle-dependent stage.

  15. Curcumin stably interacts with DNA hairpin through minor groove binding and demonstrates enhanced cytotoxicity in combination with FdU nucleotides.

    PubMed

    Ghosh, Supratim; Mallick, Sumana; Das, Upasana; Verma, Ajay; Pal, Uttam; Chatterjee, Sabyasachi; Nandy, Abhishek; Saha, Krishna D; Maiti, Nakul Chandra; Baishya, Bikash; Suresh Kumar, G; Gmeiner, William H

    2018-03-01

    We report, based on biophysical studies and molecular mechanical calculations that curcumin binds DNA hairpin in the minor groove adjacent to the loop region forming a stable complex. UV-Vis and fluorescence spectroscopy indicated interaction of curcumin with DNA hairpin. In this novel binding motif, two ɣ H of curcumin heptadiene chain are closely positioned to the A 16 -H8 and A 17 -H8, while G 12 -H8 is located in the close proximity of curcumin α H. Molecular dynamics (MD) simulations suggest, the complex is stabilized by noncovalent forces including; π-π stacking, H-bonding and hydrophobic interactions. Nuclear magnetic resonance (NMR) spectroscopy in combination with molecular dynamics simulations indicated curcumin is bound in the minor groove, while circular dichroism (CD) spectra suggested minute enhancement in base stacking and a little change in DNA helicity, without significant conformational change of DNA hairpin structure. The DNA:curcumin complex formed with FdU nucleotides rather than Thymidine, demonstrated enhanced cytotoxicity towards oral cancer cells relative to the only FdU substituted hairpin. Fluorescence co-localization demonstrated stability of the complex in biologically relevant conditions, including its cellular uptake. Acridine orange/EtBr staining further confirmed the enhanced cytotoxic effects of the complex, suggesting apoptosis as mode of cell death. Thus, curcumin can be noncovalently complexed to small DNA hairpin for cellular delivery and the complex showed increased cytotoxicity in combination with FdU nucleotides, demonstrating its potential for advanced cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Crystal Structure of PF-8, the DNA Polymerase Accessory Subunit from Kaposi's Sarcoma-Associated Herpesvirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baltz, Jennifer L.; Filman, David J.; Ciustea, Mihai

    2009-12-01

    Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 {angstrom}. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predictedmore » to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.« less

  17. Investigating the compatibility of the biocontrol agent Clonostachys rosea IK726 with prodigiosin-producing Serratia rubidaea S55 and phenazine-producing Pseudomonas chlororaphis ToZa7.

    PubMed

    Kamou, Nathalie N; Dubey, Mukesh; Tzelepis, Georgios; Menexes, Georgios; Papadakis, Emmanouil N; Karlsson, Magnus; Lagopodi, Anastasia L; Jensen, Dan Funck

    2016-05-01

    This study was carried out to assess the compatibility of the biocontrol fungus Clonostachys rosea IK726 with the phenazine-producing Pseudomonas chlororaphis ToZa7 or with the prodigiosin-producing Serratia rubidaea S55 against Fusarium oxysporum f. sp. radicis-lycopersici. The pathogen was inhibited by both strains in vitro, whereas C. rosea displayed high tolerance to S. rubidaea but not to P. chlororaphis. We hypothesized that this could be attributed to the ATP-binding cassette (ABC) proteins. The results of the reverse transcription quantitative PCR showed an induction of seven genes (abcB1, abcB20, abcB26, abcC12, abcC12, abcG8 and abcG25) from subfamilies B, C and G. In planta experiments showed a significant reduction in foot and root rot on tomato plants inoculated with C. rosea and P. chlororaphis. This study demonstrates the potential for combining different biocontrol agents and suggests an involvement of ABC transporters in secondary metabolite tolerance in C. rosea.

  18. The relationship of polymorphisms in ABCC2 and SLCO1B3 with docetaxel pharmacokinetics and neutropenia: CALGB 60805 (Alliance).

    PubMed

    Lewis, Lionel D; Miller, Antonius A; Owzar, Kouros; Bies, Robert R; Markova, Svetlana; Jiang, Chen; Kroetz, Deanna L; Egorin, Merrill J; McLeod, Howard L; Ratain, Mark J

    2013-01-01

    Docetaxel-related neutropenia was associated with polymorphisms in the drug transporters ABCC2 and SLCO1B3 in Japanese cancer patients. We hypothesized that this association is because of reduced docetaxel clearance, associated with polymorphisms in those genes. We studied 64 US cancer patients who received a single cycle of 75 mg/m of docetaxel monotherapy. We found that the ABCC2 polymorphism at rs-12762549 trended to show a relationship with reduced docetaxel clearance (P=0.048), but not with neutropenia. There was no significant association of the SLCO1B3 polymorphisms with docetaxel clearance or neutropenia. We conclude that the relationship between docetaxel-associated neutropenia and polymorphisms in drug transporters identified in Japanese patients was not confirmed in this cohort of US cancer patients. © 2012 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  19. Transcription initiation complex structures elucidate DNA opening.

    PubMed

    Plaschka, C; Hantsche, M; Dienemann, C; Burzinski, C; Plitzko, J; Cramer, P

    2016-05-19

    Transcription of eukaryotic protein-coding genes begins with assembly of the RNA polymerase (Pol) II initiation complex and promoter DNA opening. Here we report cryo-electron microscopy (cryo-EM) structures of yeast initiation complexes containing closed and open DNA at resolutions of 8.8 Å and 3.6 Å, respectively. DNA is positioned and retained over the Pol II cleft by a network of interactions between the TATA-box-binding protein TBP and transcription factors TFIIA, TFIIB, TFIIE, and TFIIF. DNA opening occurs around the tip of the Pol II clamp and the TFIIE 'extended winged helix' domain, and can occur in the absence of TFIIH. Loading of the DNA template strand into the active centre may be facilitated by movements of obstructing protein elements triggered by allosteric binding of the TFIIE 'E-ribbon' domain. The results suggest a unified model for transcription initiation with a key event, the trapping of open promoter DNA by extended protein-protein and protein-DNA contacts.

  20. Atomic Simulation of Complex DNA DSBs and the Interactions with the Ku70/80 Heterodimer

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2011-01-01

    DNA double strand breaks (DSBs) induced by ionizing radiation (IR) usually contain modified bases such as 8-oxo-7,8-dihydroguanine (8-oxoG) and thymine glycol, apurinic/apyrimidinic (AP) sites, 2-deoxyribonolactone, or single-strand breaks (SSBs). The presence of such lesions in close proximity to the DSB terminus makes the DNA nicks more difficult to repair and rejoin than endogenously induced simple DSBs, and as such a major determinant of the biological effects of high linear energy transfer (LET) radiation as encountered in space travel. In this study we conducted molecular dynamics simulations on a series of DNA duplexes with various complex lesions of 8-oxoG and AP sites, in an effort to investigate the effects of such lesions to the structural integrity and stability of DNA after insulted by IR. We also simulated the interaction of such complex DSBs with the Ku70/80 heterodimer, the first protein in mammalian cells to embark the non-homologous end joining (NHEJ) DNA repair pathway. The results indicate, compared to DNA with simple DSBs, the complex lesions can enhance the hydrogen bonds opening rate at the DNA terminus, and increase the mobility of the whole duplex, thus they present more deleterious effects to the genome integrity if not captured and repaired promptly in cells. Simulations also demonstrate the binding of Ku drastically reduces structural disruption and flexibility caused by the complex lesions, and the interactions of Ku with complex DSBs have a different potential energy landscape from the bound structure with simple DSB. In all complex DSBs systems, the binding of DSB terminus with Ku70 is softened while the binding of the middle duplex with Ku80 is tightened. This energy shift may help the Ku protein to secure at the DSB terminus for a longer time, so that other end processing factors or repair pathways can proceed at the lesions before NHEJ repair process starts. These atomic simulations may provide valuable new insight into the selective action of repair proteins on damaged DNA.

  1. Structures of RNA Polymerase Closed and Intermediate Complexes Reveal Mechanisms of DNA Opening and Transcription Initiation.

    PubMed

    Glyde, Robert; Ye, Fuzhou; Darbari, Vidya Chandran; Zhang, Nan; Buck, Martin; Zhang, Xiaodong

    2017-07-06

    Gene transcription is carried out by RNA polymerases (RNAPs). For transcription to occur, the closed promoter complex (RPc), where DNA is double stranded, must isomerize into an open promoter complex (RPo), where the DNA is melted out into a transcription bubble and the single-stranded template DNA is delivered to the RNAP active site. Using a bacterial RNAP containing the alternative σ 54 factor and cryoelectron microscopy, we determined structures of RPc and the activator-bound intermediate complex en route to RPo at 3.8 and 5.8 Å. Our structures show how RNAP-σ 54 interacts with promoter DNA to initiate the DNA distortions required for transcription bubble formation, and how the activator interacts with RPc, leading to significant conformational changes in RNAP and σ 54 that promote RPo formation. We propose that DNA melting is an active process initiated in RPc and that the RNAP conformations of intermediates are significantly different from that of RPc and RPo. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Single nucleotide polymorphisms of ABCC2 modulate renal secretion of endogenous organic anions.

    PubMed

    Muhrez, Kienana; Largeau, Bérenger; Emond, Patrick; Montigny, Frédéric; Halimi, Jean-Michel; Trouillas, Patrick; Barin-Le Guellec, Chantal

    2017-09-15

    The ATP-binding cassette family transporter MRP2 (multidrug resistance-associated protein 2), encoded by the ABCC2 gene, is involved in the renal excretion of numerous xenobiotics and it is likely that it also transports many endogenous molecules arising from not only normal essential metabolic processes but also from environmental toxins or food intake. We used a targeted gas chromatography-mass spectrometry metabolomics analysis to study whether endogenous organic anions are differentially excreted in urines of healthy volunteers according to their genotype for three functional single nucleotide polymorphisms (SNPs) in ABCC2. This was the case for 35 of the 108 metabolites analyzed. Eight of them are most likely substrates of MRP2 since they are the most contributive to the difference between carriers of a decreasing function allele vs those carrying an increasing function one. Seven out of 8 metabolites are fatty acids (dodecanoic acid; 3-hydroxypropanoic acid) or metabolites of polyphenols (caffeine; resorcinol; caffeic acid; 2-(3,4-dihydroxyphenyl) acetic acid; and 4-hydroxyhippuric acid). Most of them were structurally similar to a series of substances previously shown to interact with MRP2 function in vitro. Interestingly, coproporphyrin isomer I, a prototypical substrate of MRP2, also belonged to our final list although it was not significantly discriminant on its own. This suggests that the simultaneous measurement of a set of endogenous metabolites in urine, rather than that of unique metabolites, has the potential to provide a phenotypic measure of MRP2 function in vivo. This would represent an innovative tool to study the variability of the transport activity of MRP2 under a physiological or pathological condition, especially in pharmacokinetic studies of its substrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Constitutive mRNA expression and protein activity levels of nine ABC efflux transporters in seven permanent cell lines derived from different tissues of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Fischer, Stephan; Loncar, Jovica; Zaja, Roko; Schnell, Sabine; Schirmer, Kristin; Smital, Tvrtko; Luckenbach, Till

    2011-01-25

    Permanent fish cell lines have become common model systems for determining ecotoxicological effects of pollutants. For these cell lines little is known on the cellular active transport mechanisms that control the amount of a compound entering the cell, such as the MXR (multixenobiotic resistance) system mediated by ATP binding cassette (ABC) transport proteins. Therefore, for toxic evaluation of chemicals with those cells information on MXR is important. We here present data on constitutive mRNA expression and protein activity levels of a series of ABC efflux transporters in seven permanent cell lines derived from liver (RTL-W1; R1) and liver hepatoma (RTH-149), gill (RTgill-W1), gonad (RTG-2), gut (RTgutGC) and brain (RTbrain) of rainbow trout (Oncorhynchus mykiss). In addition to known transporters abcb1 (designated here abcb1a), abcb11, abcc1-3, abcc5 and abcg2, we quantified expression levels of a newly identified abcb1 isoform (abcb1b) and abcc4, previously unknown in trout. Quantitative real time PCR (qPCR) indicated that mRNA of the examined ABC transporters was constitutively expressed in all cell lines. Transporter mRNA expression patterns were similar in all cell lines, with expression levels of abcc transporters being 80 to over 1000 fold higher than for abcg2, abcb1a/b and abcb11 (abcc1-5>abcg2>abcb1a/b, 11). Transporter activity in the cell lines was determined by measuring uptake of transporter type specific fluorescent substrates in the presence of activity inhibitors. The combination of the ABCB1 and ABCC transporter substrate calcein-AM with inhibitors cyclosporine A, PSC833 and MK571 resulted in a concentration-dependent fluorescence increase of up to 3-fold, whereas reversin 205 caused a slight, but not concentration-dependent fluorescence increase. Accumulation of the dyes Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate was basically unchanged in the presence of Ko134 and taurocholate, respectively, indicating low Abcg2 and Abcb11 activities, in accordance with low abcg2 and abcb11 transcript levels. Our data indicate that transporter expression and activity patterns in the different trout cell lines are irrespective of the tissue of origin, but are determined by factors of cell cultivation. 2010 Elsevier B.V. All rights reserved.

  4. Administration of bone marrow derived mesenchymal stem cells into the liver: potential to rescue pseudoxanthoma elasticum in a mouse model (Abcc6-/-).

    PubMed

    Jiang, Qiujie; Takahagi, Shunsuke; Uitto, Jouni

    2012-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable ectopic mineralization disorder caused by loss-of-function mutations in the ABCC6 gene which is primarily expressed in the liver. There is currently no effective treatment for PXE. In this study, we characterized bone marrow derived mesenchymal stem cells (MSCs) and evaluated their ability to contribute to liver regeneration, with the aim to rescue PXE phenotype. The MSCs, isolated from GFP-transgenic mice by magnetic cell sorting, were shown to have high potential for hepatic differentiation, with expression of Abcc6, in culture. These cells were transplanted into the livers of 4-week-old immunodeficient Abcc6⁻/⁻ mice by intrasplenic injection one day after partial hepatectomy, when peak expression of the stromal cell derived factor-1 (SDF-1) in the liver was observed. Fluorescent bioimaging analyses indicated that transplanted MSCs homed into liver between day 1 and 7, and significant numbers of GFP-positive cells were confirmed in the liver by immunofluorescence. Moreover, enhanced engraftment efficiency was observed with MSCs with high expression levels of the chemokine receptor Cxcr4, a receptor for SDF-1. These data suggest that purified MSCs have the capability of differentiating into hepatic lineages relevant to PXE pathogenesis and may contribute to partial correction of the PXE phenotype.

  5. Mutational disruption of the ABCC2 gene in fall armyworm, Spodoptera frugiperda, confers resistance to the Cry1Fa and Cry1A.105 insecticidal proteins.

    PubMed

    Flagel, Lex; Lee, Young Wha; Wanjugi, Humphrey; Swarup, Shilpa; Brown, Alana; Wang, Jinling; Kraft, Edward; Greenplate, John; Simmons, Jeni; Adams, Nancy; Wang, Yanfei; Martinelli, Samuel; Haas, Jeffrey A; Gowda, Anilkumar; Head, Graham

    2018-05-08

    The use of Bt proteins in crops has revolutionized insect pest management by offering effective season-long control. However, field-evolved resistance to Bt proteins threatens their utility and durability. A recent example is field-evolved resistance to Cry1Fa and Cry1A.105 in fall armyworm (Spodoptera frugiperda). This resistance has been detected in Puerto Rico, mainland USA, and Brazil. A S. frugiperda population with suspected resistance to Cry1Fa was sampled from a maize field in Puerto Rico and used to develop a resistant lab colony. The colony demonstrated resistance to Cry1Fa and partial cross-resistance to Cry1A.105 in diet bioassays. Using genetic crosses and proteomics, we show that this resistance is due to loss-of-function mutations in the ABCC2 gene. We characterize two novel mutant alleles from Puerto Rico. We also find that these alleles are absent in a broad screen of partially resistant Brazilian populations. These findings confirm that ABCC2 is a receptor for Cry1Fa and Cry1A.105 in S. frugiperda, and lay the groundwork for genetically enabled resistance management in this species, with the caution that there may be several distinct ABCC2 resistances alleles in nature.

  6. Effect of Caloric Restriction and AMPK Activation on Hepatic Nuclear Receptor, Biotransformation Enzyme, and Transporter Expression in Lean and Obese Mice

    PubMed Central

    Kulkarni, Supriya R.; Xu, Jialin; Donepudi, Ajay C.; Wei, Wei

    2014-01-01

    Purpose Fatty liver alters liver transporter expression. Caloric restriction (CR), the recommended therapy to reverse fatty liver, increases Sirtuin1 deacetylase activity in liver. This study evaluated whether CR and CR mimetics reversed obesity-induced transporter expression in liver and hepatocytes. Methods mRNA and protein expression was determined in adult lean (lean) and leptin-deficient obese (OB) mice fed ad libitum or placed on 40% (kCal) reduced diet. Hepatocytes were isolated from lean and OB mice, treated with AMP Kinase activators, and gene expression was determined. Results CR decreased Oatp1a1, Oatp1b2, and Abcb11 mRNA expression in lean, but not OB mice. CR increased Abcc2 mRNA OB livers, whereas protein expression increased in both genotypes. CR increased Abcc3 protein expression increased in OB livers. CR did not alter Abcc1, 4 and 5 mRNA expression in lean mice but decreased expression in livers of OB mice. CR increased Abcc4 protein in lean, but not OB mice. Conclusions CR restriction reversed the expression of some, but not all transporters in livers of OB mice. Overall, these data indicate a potential for CR to restore some hepatic transporter changes in OB mice, but suggest a functional leptin axis is needed for reversal of expression for some transporters. PMID:23949303

  7. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development

    PubMed Central

    Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia ur; Liu, Liping; Qin, Yuan

    2017-01-01

    Pineapple (Ananas comosus L.) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs, 20 ABCBs, 16 ABCCs, 2 ABCDs, one ABCEs, 5 ABCFs, 42 ABCGs and 9 ABCIs). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4, AcABCC7, AcABCC9, AcABCG26, AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production. PMID:29312399

  8. Genome-Wide Identification and Expression Profiling of ATP-Binding Cassette (ABC) Transporter Gene Family in Pineapple (Ananas comosus (L.) Merr.) Reveal the Role of AcABCG38 in Pollen Development.

    PubMed

    Chen, Piaojuan; Li, Yi; Zhao, Lihua; Hou, Zhimin; Yan, Maokai; Hu, Bingyan; Liu, Yanhui; Azam, Syed Muhammad; Zhang, Ziyan; Rahman, Zia Ur; Liu, Liping; Qin, Yuan

    2017-01-01

    Pineapple ( Ananas comosus L .) cultivation commonly relies on asexual reproduction which is easily impeded by many factors in agriculture production. Sexual reproduction might be a novel approach to improve the pineapple planting. However, genes controlling pineapple sexual reproduction are still remain elusive. In different organisms a conserved superfamily proteins known as ATP binding cassette (ABC) participate in various biological processes. Whereas, till today the ABC gene family has not been identified in pineapple. Here 100 ABC genes were identified in the pineapple genome and grouped into eight subfamilies (5 ABCAs , 20 ABCB s, 16 ABCCs , 2 ABCDs , one ABCEs , 5 ABCFs , 42 ABCGs and 9 ABCIs ). Gene expression profiling revealed the dynamic expression pattern of ABC gene family in various tissues and different developmental stages. AcABCA5, AcABCB6, AcABCC4 , AcABCC7 , AcABCC9 , AcABCG26 , AcABCG38 and AcABCG42 exhibited preferential expression in ovule and stamen. Over-expression of AcABCG38 in the Arabidopsis double mutant abcg1-2abcg16-2 partially restored its pollen abortion defects, indicating that AcABCG38 plays important roles in pollen development. Our study on ABC gene family in pineapple provides useful information for developing sexual pineapple plantation which could be utilized to improve pineapple agricultural production.

  9. Complexes of DNA bases and Watson-Crick base pairs interaction with neutral silver Agn (n = 8, 10, 12) clusters: a DFT and TDDFT study.

    PubMed

    Srivastava, Ruby

    2018-03-01

    We study the binding of the neutral Ag n (n = 8, 10, 12) to the DNA base-adenine (A), guanine (G) and Watson-Crick -adenine-thymine, guanine-cytosine pairs. Geometries of complexes were optimized at the DFT level using the hybrid B3LYP functional. LANL2DZ effective core potential was used for silver and 6-31 + G ** was used for all other atoms. NBO charges were analyzed using the Natural population analysis. The absorption properties of Ag n -A,G/WC complexes were also studied using time-dependent density functional theory. The absorption spectra for these complexes show wavelength in the visible region. It was revealed that silver clusters interact more strongly with WC pairs than with isolated DNA complexes. Furthermore, it was found that the electronic charge transferred from silver to isolated DNA clusters are less than the electronic charge transferred from silver to the Ag n -WC complexes. The vertical ionization potential, vertical electron affinity, hardness, and electrophilicity index of Ag n -DNA/WC complexes have also been discussed.

  10. Intercalation of a Zn(II) complex containing ciprofloxacin drug between DNA base pairs.

    PubMed

    Shahabadi, Nahid; Asadian, Ali Ashraf; Mahdavi, Mryam

    2017-11-02

    In this study, an attempt has been made to study the interaction of a Zn(II) complex containing an antibiotic drug, ciprofloxacin, with calf thymus DNA using spectroscopic methods. It was found that Zn(II) complex could bind with DNA via intercalation mode as evidenced by: hyperchromism in UV-Vis spectrum; these spectral characteristics suggest that the Zn(II) complex interacts with DNA most likely through a mode that involves a stacking interaction between the aromatic chromophore and the base pairs of DNA. DNA binding constant (K b = 1.4 × 10 4 M -1 ) from spectrophotometric studies of the interaction of Zn(II) complex with DNA is comparable to those of some DNA intercalative polypyridyl Ru(II) complexes 1.0 -4.8 × 10 4 M -1 . CD study showed stabilization of the right-handed B form of DNA in the presence of Zn(II) complex as observed for the classical intercalator methylene blue. Thermodynamic parameters (ΔH < 0 and ΔS < 0) indicated that hydrogen bond and Van der Waals play main roles in this binding prose. Competitive fluorimetric studies with methylene blue (MB) dye have shown that Zn(II) complex exhibits the ability of this complex to displace with DNA-MB, indicating that it binds to DNA in strong competition with MB for the intercalation.

  11. Neutral Porphyrin Derivative Exerts Anticancer Activity by Targeting Cellular Topoisomerase I (Top1) and Promotes Apoptotic Cell Death without Stabilizing Top1-DNA Cleavage Complexes

    PubMed Central

    2017-01-01

    Camptothecin (CPT) selectively traps topoisomerase 1-DNA cleavable complexes (Top1cc) to promote anticancer activity. Here, we report the design and synthesis of a new class of neutral porphyrin derivative 5,10-bis(4-carboxyphenyl)-15, 20-bis(4-dimethylaminophenyl)porphyrin (compound 8) as a potent catalytic inhibitor of human Top1. In contrast to CPT, compound 8 reversibly binds with the free enzyme and inhibits the formation of Top1cc and promotes reversal of the preformed Top1cc with CPT. Compound 8 induced inhibition of Top1cc formation in live cells was substantiated by fluorescence recovery after photobleaching (FRAP) assays. We established that MCF7 cells treated with compound 8 trigger proteasome-mediated Top1 degradation, accumulate higher levels of reactive oxygen species (ROS), PARP1 cleavage, oxidative DNA fragmentation, and stimulate apoptotic cell death without stabilizing apoptotic Top1-DNA cleavage complexes. Finally, compound 8 shows anticancer activity by targeting cellular Top1 and preventing the enzyme from directly participating in the apoptotic process. PMID:29290109

  12. Polymorphisms in ATP-binding cassette transporters associated with maternal methylmercury disposition and infant neurodevelopment in mother-infant pairs in the Seychelles Child Development Study

    PubMed Central

    Engström, Karin; Love, Tanzy M; Watson, Gene E; Zareba, Grazyna; Yeates, Alison; Wahlberg, Karin; Alhamdow, Ayman; Thurston, Sally W; Mulhern, Maria; McSorley, Emeir M; Strain, JJ; Davidson, Philip W; Shamlaye, Conrad F; Myers, GJ; Rand, Matthew D; van Wijngaarden, Edwin; Broberg, Karin

    2016-01-01

    Background ATP-binding cassette (ABC) transporters have been associated with methylmercury (MeHg) toxicity in experimental animal models. Aims To evaluate the association of single nucleotide polymorphisms (SNPs) in maternal ABC transporter genes with 1) maternal hair MeHg concentrations during pregnancy and 2) child neurodevelopmental outcomes. Materials and methods Nutrition Cohort 2 (NC2) is an observational mother-child cohort recruited in the Republic of Seychelles from 2008–2011. Total mercury (Hg) was measured in maternal hair growing during pregnancy as a biomarker for prenatal MeHg exposure (N=1313) (mean 3.9 ppm). Infants completed developmental assessments by Bayley Scales of Infant Development II (BSID-II) at 20 months of age (N=1331). Genotyping for fifteen SNPs in ABCC1, ABCC2 and ABCB1 was performed for the mothers. Results Seven of fifteen ABC SNPs (ABCC1 rs11075290, rs212093, and rs215088; ABCC2 rs717620; ABCB1 rs10276499, rs1202169, and rs2032582) were associated with concentrations of maternal hair Hg (p<0.001 to 0.013). One SNP (ABCC1 rs11075290) was also significantly associated with neurodevelopment; children born to mothers with rs11075290 CC genotype (mean hair Hg 3.6 ppm) scored on average 2 points lower on the Mental Development Index (MDI) and 3 points lower on the Psychomotor Development Index (PDI) than children born to mothers with TT genotype (mean hair Hg 4.7 ppm) while children with the CT genotype (mean hair Hg 4.0 ppm) had intermediate BSID scores. Discussion Genetic variation in ABC transporter genes was associated with maternal hair Hg concentrations. The implications for MeHg dose in the developing child and neurodevelopmental outcomes need to be further investigated. PMID:27262785

  13. Polymorphisms in ATP-binding cassette transporters associated with maternal methylmercury disposition and infant neurodevelopment in mother-infant pairs in the Seychelles Child Development Study.

    PubMed

    Engström, Karin; Love, Tanzy M; Watson, Gene E; Zareba, Grazyna; Yeates, Alison; Wahlberg, Karin; Alhamdow, Ayman; Thurston, Sally W; Mulhern, Maria; McSorley, Emeir M; Strain, J J; Davidson, Philip W; Shamlaye, Conrad F; Myers, G J; Rand, Matthew D; van Wijngaarden, Edwin; Broberg, Karin

    2016-09-01

    ATP-binding cassette (ABC) transporters have been associated with methylmercury (MeHg) toxicity in experimental animal models. To evaluate the association of single nucleotide polymorphisms (SNPs) in maternal ABC transporter genes with 1) maternal hair MeHg concentrations during pregnancy and 2) child neurodevelopmental outcomes. Nutrition Cohort 2 (NC2) is an observational mother-child cohort recruited in the Republic of Seychelles from 2008-2011. Total mercury (Hg) was measured in maternal hair growing during pregnancy as a biomarker for prenatal MeHg exposure (N=1313) (mean 3.9ppm). Infants completed developmental assessments by Bayley Scales of Infant Development II (BSID-II) at 20months of age (N=1331). Genotyping for fifteen SNPs in ABCC1, ABCC2 and ABCB1 was performed for the mothers. Seven of fifteen ABC SNPs (ABCC1 rs11075290, rs212093, and rs215088; ABCC2 rs717620; ABCB1 rs10276499, rs1202169, and rs2032582) were associated with concentrations of maternal hair Hg (p<0.001 to 0.013). One SNP (ABCC1 rs11075290) was also significantly associated with neurodevelopment; children born to mothers with rs11075290 CC genotype (mean hair Hg 3.6ppm) scored on average 2 points lower on the Mental Development Index (MDI) and 3 points lower on the Psychomotor Development Index (PDI) than children born to mothers with TT genotype (mean hair Hg 4.7ppm) while children with the CT genotype (mean hair Hg 4.0ppm) had intermediate BSID scores. Genetic variation in ABC transporter genes was associated with maternal hair Hg concentrations. The implications for MeHg dose in the developing child and neurodevelopmental outcomes need to be further investigated. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Molecular and structural characteristics of multidrug resistance-associated protein 7 in Chinese liver fluke Clonorchis sinensis.

    PubMed

    Dai, Fuhong; Yoo, Won Gi; Lee, Ji-Yun; Lu, Yanyan; Pak, Jhang Ho; Sohn, Woon-Mok; Hong, Sung-Jong

    2017-03-01

    Multidrug resistance-associated protein 7 (MRP7, ABCC10) is a C subfamily member of the ATP-binding cassette (ABC) superfamily. MRP7 is a lipophilic anion transporter that pumps endogenous and xenobiotic substrates from the cytoplasm to the extracellular milieu. Here, we cloned and characterized CsMRP7 as a novel ABC transporter from the Chinese liver fluke, Clonorchis sinensis. Full-length cDNA of CsMRP7 was 5174 nt, encoded 1636 amino acids (aa), and harbored a 147-bp 5'-untranslated region (5'-UTR) and 116-bp 3'-UTR. Phylogenetic analysis confirmed that CsMRP7 was closer to the ABCC subfamily than the ABCB subfamily. Tertiary structures of the N-terminal region (1-322 aa) and core region (323-1621 aa) of CsMRP7 were generated by homology modeling using glucagon receptor (PDB ID: 5ee7_A) and P-glycoprotein (PDB ID: 4f4c_A) as templates, respectively. CsMRP7 nucleotide-binding domain 2 (NBD2) was conserved more than NBD1, which was the sites of ATP binding and hydrolysis. Like typical long MRPs, CsMRP7 has an additional membrane-spanning domain 0 (MSD0) and cytoplasmic loop, along with a common structural fold consisting of MSD1-NBD1-MSD2-NBD2 as a single polypeptide assembly. MSD0, MSD1, and MSD2 consisted of TM1-7, TM8-13, and TM14-19, respectively. The CsMRP7 transcript was more abundant in the metacercariae than in the adult worms. Truncated NBD1 (39 kDa) and NBD2 (44 kDa) were produced in bacteria and mouse immune sera were raised. CsMRP7 was localized in the apical side of the intestinal epithelium, sperm in the testes and seminal receptacle, receptacle membrane, and mesenchymal tissue around intestine in the adult worm. These results provide molecular information and insights into structural and functional characteristics of CsMRP7 and homologs of flukes.

  15. Peptides containing antigenic and cationic domains have enhanced, multivalent immunogenicity when bound to DNA vaccines.

    PubMed

    Riedl, Petra; Reimann, Jörg; Schirmbeck, Reinhold

    2004-02-01

    We explored strategies to codeliver DNA- and peptide-based vaccines in a way that enhances the immunogenicity of both components of the combination vaccine for T cells. Specific CD8(+) T cell responses to an antigenic peptide are primed when the peptide is fused to a cationic peptide domain that is bound to plasmid DNA or oligonucleotides (ODN; with or without CpG motifs). Plasmid DNA mixed with antigenic/cationic peptides or histones forms large complexes with different biological properties depending on the molar ratios of peptide/protein and polynucleotide. Complexes containing high (but not low) molar ratios of cationic peptide to DNA facilitate transfection (DNA uptake and expression of the plasmid-encoded product) of cells. In contrast, complexes containing low (but not high) molar ratios of cationic peptide to DNA prime potent multispecific T cell responses after a single intramuscular injection of the complexes. The general validity of this observation was confirmed mixing different antigenic/cationic peptides with different DNA vaccines. In these vaccine formulations, multispecific CD8(+) T cell responses specific for epitopes of the peptide- as well as the DNA-based vaccine were efficiently coprimed, together with humoral antibody responses to conformational determinants of large viral antigens encoded by the DNA vaccine. The data indicate that mixtures of DNA vaccines with antigenic, cationic peptides are immunogenic vaccine formulations particularly suited for the induction of multispecific T cell responses.

  16. Pharmacological rescue of trafficking-impaired ATP-sensitive potassium channels

    PubMed Central

    Martin, Gregory M.; Chen, Pei-Chun; Devaraneni, Prasanna; Shyng, Show-Ling

    2013-01-01

    ATP-sensitive potassium (KATP) channels link cell metabolism to membrane excitability and are involved in a wide range of physiological processes including hormone secretion, control of vascular tone, and protection of cardiac and neuronal cells against ischemic injuries. In pancreatic β-cells, KATP channels play a key role in glucose-stimulated insulin secretion, and gain or loss of channel function results in neonatal diabetes or congenital hyperinsulinism, respectively. The β-cell KATP channel is formed by co-assembly of four Kir6.2 inwardly rectifying potassium channel subunits encoded by KCNJ11 and four sulfonylurea receptor 1 subunits encoded by ABCC8. Many mutations in ABCC8 or KCNJ11 cause loss of channel function, thus, congenital hyperinsulinism by hampering channel biogenesis and hence trafficking to the cell surface. The trafficking defects caused by a subset of these mutations can be corrected by sulfonylureas, KATP channel antagonists that have long been used to treat type 2 diabetes. More recently, carbamazepine, an anticonvulsant that is thought to target primarily voltage-gated sodium channels has been shown to correct KATP channel trafficking defects. This article reviews studies to date aimed at understanding the mechanisms by which mutations impair channel biogenesis and trafficking and the mechanisms by which pharmacological ligands overcome channel trafficking defects. Insight into channel structure-function relationships and therapeutic implications from these studies are discussed. PMID:24399968

  17. Comprehensive genomic analysis identifies pathogenic variants in maturity-onset diabetes of the young (MODY) patients in South India.

    PubMed

    Mohan, Viswanathan; Radha, Venkatesan; Nguyen, Thong T; Stawiski, Eric W; Pahuja, Kanika Bajaj; Goldstein, Leonard D; Tom, Jennifer; Anjana, Ranjit Mohan; Kong-Beltran, Monica; Bhangale, Tushar; Jahnavi, Suresh; Chandni, Radhakrishnan; Gayathri, Vijay; George, Paul; Zhang, Na; Murugan, Sakthivel; Phalke, Sameer; Chaudhuri, Subhra; Gupta, Ravi; Zhang, Jingli; Santhosh, Sam; Stinson, Jeremy; Modrusan, Zora; Ramprasad, V L; Seshagiri, Somasekar; Peterson, Andrew S

    2018-02-13

    Maturity-onset diabetes of the young (MODY) is an early-onset, autosomal dominant form of non-insulin dependent diabetes. Genetic diagnosis of MODY can transform patient management. Earlier data on the genetic predisposition to MODY have come primarily from familial studies in populations of European origin. In this study, we carried out a comprehensive genomic analysis of 289 individuals from India that included 152 clinically diagnosed MODY cases to identify variants in known MODY genes. Further, we have analyzed exome data to identify putative MODY relevant variants in genes previously not implicated in MODY. Functional validation of MODY relevant variants was also performed. We found MODY 3 (HNF1A; 7.2%) to be most frequently mutated followed by MODY 12 (ABCC8; 3.3%). They together account for ~ 11% of the cases. In addition to known MODY genes, we report the identification of variants in RFX6, WFS1, AKT2, NKX6-1 that may contribute to development of MODY. Functional assessment of the NKX6-1 variants showed that they are functionally impaired. Our findings showed HNF1A and ABCC8 to be the most frequently mutated MODY genes in south India. Further we provide evidence for additional MODY relevant genes, such as NKX6-1, and these require further validation.

  18. Polyelectrolyte Complexes of Low Molecular Weight PEI and Citric Acid as Efficient and Nontoxic Vectors for in Vitro and in Vivo Gene Delivery.

    PubMed

    Giron-Gonzalez, M Dolores; Salto-Gonzalez, Rafael; Lopez-Jaramillo, F Javier; Salinas-Castillo, Alfonso; Jodar-Reyes, Ana Belen; Ortega-Muñoz, Mariano; Hernandez-Mateo, Fernando; Santoyo-Gonzalez, Francisco

    2016-03-16

    Gene transfection mediated by the cationic polymer polyethylenimine (PEI) is considered a standard methodology. However, while highly branched PEIs form smaller polyplexes with DNA that exhibit high transfection efficiencies, they have significant cell toxicity. Conversely, low molecular weight PEIs (LMW-PEIs) with favorable cytotoxicity profiles display minimum transfection activities as a result of inadequate DNA complexation and protection. To solve this paradox, a novel polyelectrolyte complex was prepared by the ionic cross-linking of branched 1.8 kDa PEI with citric acid (CA). This system synergistically exploits the good cytotoxicity profile exhibited by LMW-PEI with the high transfection efficiencies shown by highly branched and high molecular weight PEIs. The polyectrolyte complex (1.8 kDa-PEI@CA) was obtained by a simple synthetic protocol based on the microwave irradiation of a solution of 1.8 kDa PEI and CA. Upon complexation with DNA, intrinsic properties of the resulting particles (size and surface charge) were measured and their ability to form stable polyplexes was determined. Compared with unmodified PEIs the new complexes behave as efficient gene vectors and showed enhanced DNA binding capability associated with facilitated intracellular DNA release and enhanced DNA protection from endonuclease degradation. In addition, while transfection values for LMW-PEIs are almost null, transfection efficiencies of the new reagent range from 2.5- to 3.8-fold to those of Lipofectamine 2000 and 25 kDa PEI in several cell lines in culture such as CHO-k1, FTO2B hepatomas, L6 myoblasts, or NRK cells, simultaneously showing a negligible toxicity. Furthermore, the 1.8 kDa-PEI@CA polyelectrolyte complexes retained the capability to transfect eukaryotic cells in the presence of serum and exhibited the capability to promote in vivo transfection in mouse (as an animal model) with an enhanced efficiency compared to 25 kDa PEI. Results support the polyelectrolyte complex of LMW-PEI and CA as promising generic nonviral gene carriers.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faucher, Frédérick; Robey-Bond, Susan M.; Wallace, Susan S.

    DNA is subject to a multitude of oxidative damages generated by oxidizing agents from metabolism and exogenous sources and by ionizing radiation. Guanine is particularly vulnerable to oxidation, and the most common oxidative product 8-oxoguanine (8-oxoG) is the most prevalent lesion observed in DNA molecules. 8-OxoG can form a normal Watson-Crick pair with cytosine (8-oxoG:C), but it can also form a stable Hoogsteen pair with adenine (8-oxoG:A), leading to a G:C {yields} T:A transversion after replication. Fortunately, 8-oxoG is recognized and excised by either of two DNA glycosylases of the base excision repair pathway: formamidopyrimidine-DNA glycosylase and 8-oxoguanine DNA glycosylasemore » (Ogg). While Clostridium acetobutylicum Ogg (CacOgg) DNA glycosylase can specifically recognize and remove 8-oxoG, it displays little preference for the base opposite the lesion, which is unusual for a member of the Ogg1 family. This work describes the crystal structures of CacOgg in its apo form and in complex with 8-oxo-2'-deoxyguanosine. A structural comparison between the apo form and the liganded form of the enzyme reveals a structural reorganization of the C-terminal domain upon binding of 8-oxoG, similar to that reported for human OGG1. A structural comparison of CacOgg with human OGG1, in complex with 8-oxoG containing DNA, provides a structural rationale for the lack of opposite base specificity displayed by CacOgg.« less

  20. Rapid screening for nuclear genes mutations in isolated respiratory chain complex I defects.

    PubMed

    Pagniez-Mammeri, Hélène; Lombes, Anne; Brivet, Michèle; Ogier-de Baulny, Hélène; Landrieu, Pierre; Legrand, Alain; Slama, Abdelhamid

    2009-04-01

    Complex I or reduced nicotinamide adenine dinucleotide (NADH): ubiquinone oxydoreductase deficiency is the most common cause of respiratory chain defects. Molecular bases of complex I deficiencies are rarely identified because of the dual genetic origin of this multi-enzymatic complex (nuclear DNA and mitochondrial DNA) and the lack of phenotype-genotype correlation. We used a rapid method to screen patients with isolated complex I deficiencies for nuclear genes mutations by Surveyor nuclease digestion of cDNAs. Eight complex I nuclear genes, among the most frequently mutated (NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2), were studied in 22 cDNA fragments spanning their coding sequences in 8 patients with a biochemically proved complex I deficiency. Single nucleotide polymorphisms and missense mutations were detected in 18.7% of the cDNA fragments by Surveyor nuclease treatment. Molecular defects were detected in 3 patients. Surveyor nuclease screening is a reliable method for genotyping nuclear complex I deficiencies, easy to interpret, and limits the number of sequence reactions. Its use will enhance the possibility of prenatal diagnosis and help us for a better understanding of complex I molecular defects.

  1. Impact of Single Nucleotide Polymorphisms (SNPs) on Immunosuppressive Therapy in Lung Transplantation

    PubMed Central

    Ruiz, Jesus; Herrero, María José; Bosó, Virginia; Megías, Juan Eduardo; Hervás, David; Poveda, Jose Luis; Escrivá, Juan; Pastor, Amparo; Solé, Amparo; Aliño, Salvador Francisco

    2015-01-01

    Lung transplant patients present important variability in immunosuppressant blood concentrations during the first months after transplantation. Pharmacogenetics could explain part of this interindividual variability. We evaluated SNPs in genes that have previously shown correlations in other kinds of solid organ transplantation, namely ABCB1 and CYP3A5 genes with tacrolimus (Tac) and ABCC2, UGT1A9 and SLCO1B1 genes with mycophenolic acid (MPA), during the first six months after lung transplantation (51 patients). The genotype was correlated to the trough blood drug concentrations corrected for dose and body weight (C0/Dc). The ABCB1 variant in rs1045642 was associated with significantly higher Tac concentration, at six months post-transplantation (CT vs. CC). In the MPA analysis, CT patients in ABCC2 rs3740066 presented significantly lower blood concentrations than CC or TT, three months after transplantation. Other tendencies, confirming previously expected results, were found associated with the rest of studied SNPs. An interesting trend was recorded for the incidence of acute rejection according to NOD2/CARD15 rs2066844 (CT: 27.9%; CC: 12.5%). Relevant SNPs related to Tac and MPA in other solid organ transplants also seem to be related to the efficacy and safety of treatment in the complex setting of lung transplantation. PMID:26307985

  2. Effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on oxcarbazepine concentrations and therapeutic efficacy in patients with epilepsy.

    PubMed

    Shen, Chunhong; Zhang, Bijun; Liu, Zhirong; Tang, Yelei; Zhang, Yinxi; Wang, Shan; Guo, Yi; Ding, Yao; Wang, Shuang; Ding, Meiping

    2017-10-01

    The aim of the study is to investigate the effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on plasma oxcarbazepine (OXC) concentrations and therapeutic efficacy in Han Chinese patients with epilepsy. We recruited 116 Han Chinese patients with epilepsy who were receiving OXC monotherapy. Blood samples were taken and OXC levels were measured. The polymorphisms of ABCB1 rs1045642, ABCC2 rs2273697, UGT2B7 rs7439366, and HNF4α rs2071197 were determined. The therapeutic efficacy of OXC at the 1-year time-point was assessed. Data analysis was performed using IBM SPSS Statistics 22.0. The genetic polymorphism of ABCB1 rs1045642 was found to be associated with normalized OXC concentration and therapeutic efficacy in patients with epilepsy (P<0.05). As for UGT2B7 rs7439366, the allele polymorphism exhibited a correlation with treatment outcome, but not OXC concentration. The polymorphisms of ABCC2 rs2273697 and HNF4α rs2071197 was not associated with OXC concentrations and therapeutic efficacy. These results suggested that ABCB1 rs1045642 and UGT2B7 rs7439366 may affect OXC pharmacokinetics and therapeutic efficacy in Han Chinese patients with epilepsy. However, further studies in larger populations and other ethnic groups are required. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  3. Cdc45-induced loading of human RPA onto single-stranded DNA

    PubMed Central

    Tessmer, Ingrid; Prus, Piotr; Schlott, Bernhard; Pospiech, Helmut

    2017-01-01

    Abstract Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8–10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork. PMID:28100698

  4. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joo, Woo; Xu, Guozhou; Persky, Nicole S.

    2011-08-29

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each proteinmore » has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.« less

  5. Structure of the FANCI-FANCD2 Complex: Insights into the Fanconi Anemia DNA Repair Pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W Joo; G Xu; n Persky

    2011-12-31

    Fanconi anemia is a cancer predisposition syndrome caused by defects in the repair of DNA interstrand cross-links (ICLs). Central to this pathway is the Fanconi anemia I-Fanconi anemia D2 (FANCI-FANCD2) (ID) complex, which is activated by DNA damage-induced phosphorylation and monoubiquitination. The 3.4 angstrom crystal structure of the {approx}300 kilodalton ID complex reveals that monoubiquitination and regulatory phosphorylation sites map to the I-D interface, suggesting that they occur on monomeric proteins or an opened-up complex and that they may serve to stabilize I-D heterodimerization. The 7.8 angstrom electron-density map of FANCI-DNA crystals and in vitro data show that each proteinmore » has binding sites for both single- and double-stranded DNA, suggesting that the ID complex recognizes DNA structures that result from the encounter of replication forks with an ICL.« less

  6. Synthesis, interaction with DNA and bovine serum albumin of the transition metal complexes of demethylcantharate and 2-aminobenzothiazole

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Qiu-Yue; Li, Shi-Kun; Zhao, Yu-Ling; Wang, Peng-Peng; Chen, Miao-Miao

    2012-12-01

    Four new transition metal complexes (Habtz)2[M(DCA)2]·6H2O (M = Co(II) (1), Ni(II) (2), Cu(II) (3), Zn(II) (4); DCA = demethylcantharate, 7-oxabicyclo [2.2.1]heptane-2,3-dicarboxylate, C8H8O5; Habtz = 2-aminobenzothiazole acid, C7H7N2S) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra and thermogravimetric analysis. The coordination number of complex was six. The X-ray diffraction analysis indicated that complex 3 crystallized in the triclinic crystal system with P1¯ space group. The DNA-binding properties of the complexes were investigated by electronic absorption spectra, fluorescence spectra, viscosity measurements. Title complexes could bind to DNA via partial intercalative mode. The Kb of the complexes were 5.33 × 104 (1), 7.04 × 104 (2), 9.91 × 104 (3) and 5.03 × 104 L mol-1 (4). The results of agarose gel electrophoresis showed that Cu(II) complex could cleave pBR322 plasmid DNA via radical-based mechanism. The complexes could quench the intrinsic fluorescence of bovine serum albumin (BSA) through a static quenching with the binding constants Ka of 1.11 × 104 (1), 1.24 × 106 (2), 8.42 × 105 (3) and 1.75 × 104 L mol-1 (4). The complexes had intense antiproliferative activities against human hepatoma cell lines (SMMC7721) and human gastric cancer cells (MGC80-3) lines in vitro. Cu(II) complex had the strongest activity against human gastric cancer cells.

  7. Determinants for Tight and Selective Binding of a Medicinal Dicarbene Gold(I) Complex to a Telomeric DNA G-Quadruplex: a Joint ESI MS and XRD Investigation.

    PubMed

    Bazzicalupi, Carla; Ferraroni, Marta; Papi, Francesco; Massai, Lara; Bertrand, Benoît; Messori, Luigi; Gratteri, Paola; Casini, Angela

    2016-03-18

    The dicarbene gold(I) complex [Au(9-methylcaffein-8-ylidene)2 ]BF4 is an exceptional organometallic compound of profound interest as a prospective anticancer agent. This gold(I) complex was previously reported to be highly cytotoxic toward various cancer cell lines in vitro and behaves as a selective G-quadruplex stabilizer. Interactions of the gold complex with various telomeric DNA models have been analyzed by a combined ESI MS and X-ray diffraction (XRD) approach. ESI MS measurements confirmed formation of stable adducts between the intact gold(I) complex and Tel 23 DNA sequence. The crystal structure of the adduct formed between [Au(9-methylcaffein-8-ylidene)2 ](+) and Tel 23 DNA G-quadruplex was solved. Tel 23 maintains a characteristic propeller conformation while binding three gold(I) dicarbene moieties at two distinct sites. Stacking interactions appear to drive noncovalent binding of the gold(I) complex. The structural basis for tight gold(I) complex/G-quadruplex recognition and its selectivity are described. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanistic Basis for the Bypass of a Bulky DNA Adduct Catalyzed by a Y-Family DNA Polymerase

    PubMed Central

    Vyas, Rajan; Efthimiopoulos, Georgia; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2015-01-01

    1-Nitropyrene (1-NP), an environmental pollutant, induces DNA damage in vivo and is considered to be carcinogenic. The DNA adducts formed by the 1-NP metabolites stall replicative DNA polymerases but are presumably bypassed by error-prone Y-family DNA polymerases at the expense of replication fidelity and efficiency in vivo. Our running start assays confirmed that a site-specifically placed 8-(deoxyguanosin-N2-yl)-1-aminopyrene (dG1,8), one of the DNA adducts derived from 1-NP, can be bypassed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), although this representative Y-family enzyme was paused strongly by the lesion. Pre-steady-state kinetic assays were employed to determine the low nucleotide incorporation fidelity and establish a minimal kinetic mechanism for the dG1,8 bypass by Dpo4. To reveal a structural basis for dCTP incorporation opposite dG1,8, we solved the crystal structures of the complexes of Dpo4 and DNA containing a templating dG1,8 lesion in the absence or presence of dCTP. The Dpo4·DNA-dG1,8 binary structure shows that the aminopyrene moiety of the lesion stacks against the primer/template junction pair, while its dG moiety projected into the cleft between the Finger and Little Finger domains of Dpo4. In the Dpo4·DNA-dG1,8·dCTP ternary structure, the aminopyrene moiety of the dG1,8 lesion, is sandwiched between the nascent and junction base pairs, while its base is present in the major groove. Moreover, dCTP forms a Watson–Crick base pair with dG, two nucleotides upstream from the dG1,8 site, creating a complex for “-2” frameshift mutation. Mechanistically, these crystal structures provide additional insight into the aforementioned minimal kinetic mechanism. PMID:26327169

  9. Genetic Polymorphisms Associated to Folate Transport as Predictors of Increased Risk for Acute Lymphoblastic Leukemia in Mexican Children.

    PubMed

    Zaruma-Torres, Fausto; Lares-Asseff, Ismael; Lima, Aurea; Reyes-Espinoza, Aarón; Loera-Castañeda, Verónica; Sosa-Macías, Martha; Galaviz-Hernández, Carlos; Arias-Peláez, María C; Reyes-López, Miguel A; Quiñones, Luis A

    2016-01-01

    Acute lymphoblastic leukemia (ALL) is a frequent neoplasia occurring in children. The most commonly used drug for the treatment of ALL is methotrexate (MTX), an anti-folate agent. Previous studies suggest that folate transporters play a role in ALL prognosis and that genetic polymorphism of genes encoding folate transporters may increase the risk of ALL. Therefore, the main goal of this study was to determine the associations among six genetic polymorphisms in four genes related with the folate transporter pathway to determine a relationship with the occurrence of ALL in Mexican children. A case-control study was performed in 73 ALL children and 133 healthy children from Northern and Northwestern Mexico. COL18A1 (rs2274808), SLC19A1 (rs2838956), ABCB1 (rs1045642 and rs1128503), and ABCC5 (rs9838667 and rs3792585). Polymorphisms were assayed through qPCR. Our results showed an increased ALL risk in children carrying CT genotype (OR = 2.55, CI 95% 1.11-5.83, p = 0.0001) and TT genotype (OR = 21.05, CI 95% 5.62-78.87, p < 0.0001) of COL18A1 rs2274808; in SLC19A1 rs2838956 AG carriers (OR = 44.69, CI 95% 10.42-191.63, p = 0.0001); in ABCB1 rs1045642 TT carriers (OR = 13.76, CI 95% 5.94-31.88, p = 0.0001); in ABCC5 rs9838667 AC carriers (OR = 2.61, CI 95% 1.05-6.48, p < 0.05); and in ABCC5 rs3792585 CC carriers (OR = 9.99, CI 95% 3.19-31.28, p = 0.004). Moreover, several combinations of genetic polymorphisms were found to be significantly associated with a risk for ALL. Finally, two combinations of ABCC5 polymorphisms resulted in protection from this neoplasia. In conclusion, certain genetic polymorphisms related to the folate transport pathway, particularly COL18A1 rs2274808, SLC19A1 rs2838956, ABCB1 rs1045642, and ABCC5 rs3792585, were associated with an increased risk for ALL in Mexican children.

  10. Drug Transporter Genetic Variants Are Not Associated with TDF-Related Renal Dysfunction in Patients with HIV-1 Infection: A Pharmacogenetic Study

    PubMed Central

    Nishijima, Takeshi; Hayashida, Tsunefusa; Kurosawa, Takuma; Tanaka, Noriko; Oka, Shinichi; Gatanaga, Hiroyuki

    2015-01-01

    Objective To investigate whether single nucleotide polymorphisms (SNP) of drug transporter proteins for TDF is a risk factor for TDF-related renal function decrement. Methods This study investigated the association between 3 SNPs (ABCC2–24, 1249, and ABCB1 2677), which are shown to be associated with TDF-induced tubulopathy, and clinically important renal outcomes (>10ml/min/1.73m2 decrement in eGFR relative to baseline, >25% decrement in eGFR, and eGFR <60ml/min/1.73m2) in 703 HIV-1-infected Japanese patients who initiated TDF-containing antiretroviral therapy (ART). Genotyping was performed by allelic discrimination using TaqMan 5’-nuclease assays. Results 95% of the study patients were males and 66% were treatment-naïve, with median CD4 count of 249/μl, median baseline eGFR of 96ml/min/1.73m2 (IQR 84.6–109.2), and median exposure to TDF of 3.66 years (IQR 1.93–5.59). The frequencies of genotypes at -24, 1249 of ABCC2, and 2677 of ABCB1 were neither different between patients with decrement in eGFR of >10ml/min/1.73m2 and those without such decrement (ABCC2: -24, p = 0.53, 1249, p = 0.68; ABCB1: 2677, p = 0.74), nor between those without and with the other two renal outcomes (>25% decrement: ABCC2: -24, p = 0.83, 1249, p = 0.97, ABCB1: 2677, p = 0.40; eGFR <60ml/min/1.73m2: ABCC2: -24, p = 0.51, 1249, p = 0.81, ABCB1: 2677, p = 0.94). Logistic regression analysis showed that the risk genotype of the three SNPs were not associated with any of the three renal outcomes, respectively. Logistic regression model that applied either dominant, recessive, or additive model yielded the same results. Conclusions SNPs of the drug transporters for TDF are not associated with clinically important renal outcomes in patients who initiated TDF-containing ART. PMID:26535588

  11. Drug Transporter Genetic Variants Are Not Associated with TDF-Related Renal Dysfunction in Patients with HIV-1 Infection: A Pharmacogenetic Study.

    PubMed

    Nishijima, Takeshi; Hayashida, Tsunefusa; Kurosawa, Takuma; Tanaka, Noriko; Oka, Shinichi; Gatanaga, Hiroyuki

    2015-01-01

    To investigate whether single nucleotide polymorphisms (SNP) of drug transporter proteins for TDF is a risk factor for TDF-related renal function decrement. This study investigated the association between 3 SNPs (ABCC2-24, 1249, and ABCB1 2677), which are shown to be associated with TDF-induced tubulopathy, and clinically important renal outcomes (>10ml/min/1.73m2 decrement in eGFR relative to baseline, >25% decrement in eGFR, and eGFR <60ml/min/1.73m2) in 703 HIV-1-infected Japanese patients who initiated TDF-containing antiretroviral therapy (ART). Genotyping was performed by allelic discrimination using TaqMan 5'-nuclease assays. 95% of the study patients were males and 66% were treatment-naïve, with median CD4 count of 249/μl, median baseline eGFR of 96ml/min/1.73m2 (IQR 84.6-109.2), and median exposure to TDF of 3.66 years (IQR 1.93-5.59). The frequencies of genotypes at -24, 1249 of ABCC2, and 2677 of ABCB1 were neither different between patients with decrement in eGFR of >10ml/min/1.73m2 and those without such decrement (ABCC2: -24, p = 0.53, 1249, p = 0.68; ABCB1: 2677, p = 0.74), nor between those without and with the other two renal outcomes (>25% decrement: ABCC2: -24, p = 0.83, 1249, p = 0.97, ABCB1: 2677, p = 0.40; eGFR <60ml/min/1.73m2: ABCC2: -24, p = 0.51, 1249, p = 0.81, ABCB1: 2677, p = 0.94). Logistic regression analysis showed that the risk genotype of the three SNPs were not associated with any of the three renal outcomes, respectively. Logistic regression model that applied either dominant, recessive, or additive model yielded the same results. SNPs of the drug transporters for TDF are not associated with clinically important renal outcomes in patients who initiated TDF-containing ART.

  12. Association of genetic polymorphisms in SLCO1B3 and ABCC2 with docetaxel-induced leukopenia.

    PubMed

    Kiyotani, Kazuma; Mushiroda, Taisei; Kubo, Michiaki; Zembutsu, Hitoshi; Sugiyama, Yuichi; Nakamura, Yusuke

    2008-05-01

    Despite long-term clinical experience with docetaxel, unpredictable severe adverse reactions remain an important determinant for limiting the use of the drug. To identify a genetic factor(s) determining the risk of docetaxel-induced leukopenia/neutropenia, we selected subjects who received docetaxel chemotherapy from samples recruited at BioBank Japan, and conducted a case-control association study. We genotyped 84 patients, 28 patients with grade 3 or 4 leukopenia/neutropenia, and 56 with no toxicity (patients with grade 1 or 2 were excluded), for a total of 79 single nucleotide polymorphisms (SNPs) in seven genes possibly involved in the metabolism or transport of this drug: CYP3A4, CYP3A5, ABCB1, ABCC2, SLCO1B3, NR1I2, and NR1I3. Since one SNP in ABCB1, four SNPs in ABCC2, four SNPs in SLCO1B3, and one SNP in NR1I2 showed a possible association with the grade 3 leukopenia/neutropenia (P-value of <0.05), we further examined these 10 SNPs using 29 additionally obtained patients, 11 patients with grade 3/4 leukopenia/neutropenia, and 18 with no toxicity. The combined analysis indicated a significant association of rs12762549 in ABCC2 (P = 0.00022) and rs11045585 in SLCO1B3 (P = 0.00017) with docetaxel-induced leukopenia/neutropenia. When patients were classified into three groups by the scoring system based on the genotypes of these two SNPs, patients with a score of 1 or 2 were shown to have a significantly higher risk of docetaxel-induced leukopenia/neutropenia as compared to those with a score of 0 (P = 0.0000057; odds ratio [OR], 7.00; 95% CI [confidence interval], 2.95-16.59). This prediction system correctly classified 69.2% of severe leukopenia/neutropenia and 75.7% of non-leukopenia/neutropenia into the respective categories, indicating that SNPs in ABCC2 and SLCO1B3 may predict the risk of leukopenia/neutropenia induced by docetaxel chemotherapy.

  13. Interaction of Pyrrolobenzodiazepine (PBD) Ligands with Parallel Intermolecular G-Quadruplex Complex Using Spectroscopy and ESI-MS

    PubMed Central

    Raju, Gajjela; Srinivas, Ragampeta; Santhosh Reddy, Vangala; Idris, Mohammed M.; Kamal, Ahmed; Nagesh, Narayana

    2012-01-01

    Studies on ligand interaction with quadruplex DNA, and their role in stabilizing the complex at concentration prevailing under physiological condition, has attained high interest. Electrospray ionization mass spectrometry (ESI-MS) and spectroscopic studies in solution were used to evaluate the interaction of PBD and TMPyP4 ligands, stoichiometry and selectivity to G-quadruplex DNA. Two synthetic ligands from PBD family, namely pyrene-linked pyrrolo[2,1-c][1,4]benzodiazepine hybrid (PBD1), mixed imine-amide pyrrolobenzodiazepine dimer (PBD2) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) were studied. G-rich single-stranded oligonucleotide d(5′GGGGTTGGGG3′) designated as d(T2G8), from the telomeric region of Tetrahymena Glaucoma, was considered for the interaction with ligands. ESI-MS and spectroscopic methods viz., circular dichroism (CD), UV-Visible, and fluorescence were employed to investigate the G-quadruplex structures formed by d(T2G8) sequence and its interaction with PBD and TMPyP4 ligands. From ESI-MS spectra, it is evident that the majority of quadruplexes exist as d(T2G8)2 and d(T2G8)4 forms possessing two to ten cations in the centre, thereby stabilizing the complex. CD band of PBD1 and PBD2 showed hypo and hyperchromicity, on interaction with quadruplex DNA, indicating unfolding and stabilization of quadruplex DNA complex, respectively. UV-Visible and fluorescence experiments suggest that PBD1 bind externally where as PBD2 intercalate moderately and bind externally to G-quadruplex DNA. Further, melting experiments using SYBR Green indicate that PBD1 unfolds and PBD2 stabilizes the G-quadruplex complex. ITC experiments using d(T2G8) quadruplex with PBD ligands reveal that PBD1 and PBD2 prefer external/loop binding and external/intercalative binding to quadruplex DNA, respectively. From experimental results it is clear that the interaction of PBD2 and TMPyP4 impart higher stability to the quadruplex complex. PMID:22558271

  14. Sulfonylurea treatment before genetic testing in neonatal diabetes: pros and cons.

    PubMed

    Carmody, David; Bell, Charles D; Hwang, Jessica L; Dickens, Jazzmyne T; Sima, Daniela I; Felipe, Dania L; Zimmer, Carrie A; Davis, Ajuah O; Kotlyarevska, Kateryna; Naylor, Rochelle N; Philipson, Louis H; Greeley, Siri Atma W

    2014-12-01

    Diabetes in neonates nearly always has a monogenic etiology. Earlier sulfonylurea therapy can improve glycemic control and potential neurodevelopmental outcomes in children with KCNJ11 or ABCC8 mutations, the most common gene causes. Assess the risks and benefits of initiating sulfonylurea therapy before genetic testing results become available. Observational retrospective study of subjects with neonatal diabetes within the University of Chicago Monogenic Diabetes Registry. Response to sulfonylurea (determined by whether insulin could be discontinued) and treatment side effects in those treated empirically. A total of 154 subjects were diagnosed with diabetes before 6 months of age. A genetic diagnosis had been determined in 118 (77%), with 73 (47%) having a mutation in KCNJ11 or ABCC8. The median time from clinical diagnosis to genetic diagnosis was 10.4 weeks (range, 1.6 to 58.2 wk). In nine probands, an empiric sulfonylurea trial was initiated within 28 days of diabetes diagnosis. A genetic cause was subsequently found in eight cases, and insulin was discontinued within 14 days of sulfonylurea initiation in all of these cases. Sulfonylurea therapy appears to be safe and often successful in neonatal diabetes patients before genetic testing results are available; however, larger numbers of cases must be studied. Given the potential beneficial effect on neurodevelopmental outcome, glycemic control, and the current barriers to expeditious acquisition of genetic testing, an empiric inpatient trial of sulfonylurea can be considered. However, obtaining a genetic diagnosis remains imperative to inform long-term management and prognosis.

  15. A double-blind placebo controlled trial of piracetam added to risperidone in patients with autistic disorder.

    PubMed

    Akhondzadeh, Shahin; Tajdar, Hamid; Mohammadi, Mohammad-Reza; Mohammadi, Mohammad; Nouroozinejad, Gholam-Hossein; Shabstari, Omid L; Ghelichnia, Hossein-Ali

    2008-09-01

    It has been reported that autism is a hypoglutamatergic disorder. Therefore, it was of interest to assess the efficacy of piracetam, a positive modulator of AMPA-sensitive glutamate receptors in autistic disorder. About 40 children between the ages three and 11 years (inclusive) with a DSM IV clinical diagnosis of autism and who were outpatients from a specialty clinic for children were recruited. The children presented with a chief complaint of severely disruptive symptoms related to autistic disorder. Patients were randomly allocated to piracetam + risperidone (Group A) or placebo + risperidone (Group B) for a 10-week, double-blind, placebo-controlled study. The dose of risperidone was titrated up to 2 mg/day for children between 10 and 40 kg and 3 mg/day for children weighting above 40 kg. The dose of piracetam was titrated up to 800 mg/day. Patients were assessed at baseline and after 2, 4, 6, 8 and 10 weeks of starting medication. The measure of the outcome was the Aberrant Behavior Checklist-Community (ABC-C) Rating Scale (total score). The ABC-C Rating Scale scores improved with piracetam. The difference between the two protocols was significant as indicated by the effect of group, the between subjects factor (F = 5.85, d.f. = 1, P = 0.02). The changes at the endpoint compared with baseline were: -11.90 +/- 3.79 (mean +/- SD) and -5.15 +/- 3.04 for group A and B respectively. A significant difference was observed on the change in scores in the ABC-C Rating Scale in week 10 compared with baseline in the two groups (t = 6.017, d.f. = 38, P < 0.0001). The results suggest that a combination of atypical antipsychotic medications and a glutamate agent such as piracetam, might have increase synergistic effects in the treatment of autism.

  16. Fasting Induces Nuclear Factor E2-Related Factor 2 and ATP-Binding Cassette Transporters via Protein Kinase A and Sirtuin-1 in Mouse and Human

    PubMed Central

    Kulkarni, Supriya R.; Donepudi, Ajay C.; Xu, Jialin; Wei, Wei; Cheng, Qiuqiong C.; Driscoll, Maureen V.; Johnson, Delinda A.; Johnson, Jeffrey A.; Li, Xiaoling

    2014-01-01

    Abstract Aims: The purpose of this study was to determine whether 3′-5′-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and Sirtuin-1 (SIRT1) dependent mechanisms modulate ATP-binding Cassette (ABC) transport protein expression. ABC transport proteins (ABCC2–4) are essential for chemical elimination from hepatocytes and biliary excretion. Nuclear factor-E2 related-factor 2 (NRF2) is a transcription factor that mediates ABCC induction in response to chemical inducers and liver injury. However, a role for NRF2 in the regulation of transporter expression in nonchemical models of liver perturbation is largely undescribed. Results: Here we show that fasting increased NRF2 target gene expression through NRF2- and SIRT1–dependent mechanisms. In intact mouse liver, fasting induces NRF2 target gene expression by at least 1.5 to 5-fold. In mouse and human hepatocytes, treatment with 8-Bromoadenosine-cAMP, a cAMP analogue, increased NRF2 target gene expression and antioxidant response element activity, which was decreased by the PKA inhibitor, H-89. Moreover, fasting induced NRF2 target gene expression was decreased in liver and hepatocytes of SIRT1 liver-specific null mice and NRF2-null mice. Lastly, NRF2 and SIRT1 were recruited to MAREs and Antioxidant Response Elements (AREs) in the human ABCC2 promoter. Innovation: Oxidative stress mediated NRF2 activation is well described, yet the influence of basic metabolic processes on NRF2 activation is just emerging. Conclusion: The current data point toward a novel role of nutrient status in regulation of NRF2 activity and the antioxidant response, and indicates that cAMP/PKA and SIRT1 are upstream regulators for fasting-induced activation of the NRF2-ARE pathway. Antioxid. Redox Signal. 20, 15–30. PMID:23725046

  17. Simocyclinone D8, an inhibitor of DNA gyrase with a novel mode of action.

    PubMed

    Flatman, Ruth H; Howells, Alison J; Heide, Lutz; Fiedler, Hans-Peter; Maxwell, Anthony

    2005-03-01

    We have characterized the interaction of a new class of antibiotics, simocyclinones, with bacterial DNA gyrase. Even though their structures include an aminocoumarin moiety, a key feature of novobiocin, coumermycin A(1), and clorobiocin, which also target gyrase, simocyclinones behave strikingly differently from these compounds. Simocyclinone D8 is a potent inhibitor of gyrase supercoiling, with a 50% inhibitory concentration lower than that of novobiocin. However, it does not competitively inhibit the DNA-independent ATPase reaction of GyrB, which is characteristic of other aminocoumarins. Simocyclinone D8 also inhibits DNA relaxation by gyrase but does not stimulate cleavage complex formation, unlike quinolones, the other major class of gyrase inhibitors; instead, it abrogates both Ca(2+)- and quinolone-induced cleavage complex formation. Binding studies suggest that simocyclinone D8 interacts with the N-terminal domain of GyrA. Taken together, our results demonstrate that simocyclinones inhibit an early step of the gyrase catalytic cycle by preventing binding of the enzyme to DNA. This is a novel mechanism for a gyrase inhibitor and presents new possibilities for antibacterial drug development.

  18. Genetic polymorphisms of ATP-binding cassette (ABC) proteins, overall survival and drug toxicity in patients with Acute Myeloid Leukemia

    PubMed Central

    Hampras, Shalaka S; Sucheston, Lara; Weiss, Joli; Baer, Maria R; Zirpoli, Gary; Singh, Prashant K; Wetzler, Meir; Chennamaneni, Raj; Blanco, Javier G; Ford, LaurieAnn; Moysich, Kirsten B

    2010-01-01

    The overall survival of patients with acute myeloid leukemia (AML) remains poor due to both intrinsic and acquired chemotherapy resistance. Over expression of ATP binding cassette (ABC) proteins in AML cells has been suggested as a putative mechanism of drug resistance. Genetic variation among individuals affecting the expression or function of these proteins may contribute to inter-individual variation in treatment outcomes. DNA from pre-treatment bone marrow or blood samples from 261 patients age 20-85 years, who received cytarabine and anthracycline-based therapy at Roswell Park Cancer Institute between 1994 and 2006, was genotyped for eight non-synonymous single nucleotide polymorphisms in the ABCB1, ABCC1 and ABCG2 drug transporter genes. Heterozygous (AG) or homozygous (AA) variant genotypes for rs2231137 (G34A) in the ABCG2 (BRCP) gene, compared to the wild type (GG) genotype were associated with both significantly improved survival (HR=0.44, 95%CI=0.25-0.79), and increased odds for toxicity (OR=8.41, 95%CI= 1.10-64.28). Thus genetic polymorphisms in the ABCG2 (BRCP) gene may contribute to differential survival outcomes and toxicities in AML patients via a mechanism of decreased drug efflux in both, AML cells and normal progenitors. PMID:21311724

  19. Cdc45-induced loading of human RPA onto single-stranded DNA.

    PubMed

    Szambowska, Anna; Tessmer, Ingrid; Prus, Piotr; Schlott, Bernhard; Pospiech, Helmut; Grosse, Frank

    2017-04-07

    Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8-10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO determined by NMR spectroscopy.

    PubMed

    Spielmann, H P; Wemmer, D E; Jacobsen, J P

    1995-07-11

    We have used two-dimensional 1H NMR spectroscopy to determine the solution structure of the DNA oligonucleotide d(5'-CGCTAGCG-3')2 complexed with the bis-intercalating dye 1,1'-(4,4,8,8-tetramethyl-4,8-diazaundecamethylene)bis[4-(3-methyl -2,3- dihydrobenzo-1,3-thiazolyl-2-methylidene)qui nolinium] tetraiodide (TOTO). The determination of the structure was based on total relaxation matrix analysis of the NOESY cross-peak intensities using the program MARDIGRAS. Improved procedures to consider the experimental "noise" in NOESY spectra during these calculations have been employed. The NOE-derived distance restraints were applied in restrained molecular dynamics calculations. Twenty final structures each were generated for the TOTO complex from both A-form and B-form dsDNA starting structures. The root-mean-square (rms) deviation of the coordinates for the 40 structures of the complex was 1.45 A. The local DNA structure is distorted in the complex. The helix is unwound by 60 degrees and has an overall helical repeat of 12 base pairs, caused by bis-intercalation of TOTO. The poly(propylenamine) linker chain is located in the minor groove of dsDNA. Calculations indicate that the benzothiazole ring system is twisted relative to the quinoline in the uncomplexed TOTO molecule. The site selectivity of TOTO for the CTAG-CTAG site is explained by its ability to adapt to the base pair propeller twist of dsDNA to optimize stacking and the hydrophobic interaction between the thymidine methyl group and the benzothiazole ring. There is a 3000-fold fluorescence enhancement upon binding of TOTO to dsDNA. Rotation about the cyanine methine bonds is possible in free TOTO, allowing relaxation nonradiatively. When bound to dsDNA, the benzothiazole ring and the quinolinium ring are clamped by the nucleobases preventing this rotation, and the chromophore loses excitation energy by fluorescence instead.

  1. Preclinical anti-cancer activity and multiple mechanisms of action of a cationic silver complex bearing N-heterocyclic carbene ligands.

    PubMed

    Allison, Simon J; Sadiq, Maria; Baronou, Efstathia; Cooper, Patricia A; Dunnill, Chris; Georgopoulos, Nikolaos T; Latif, Ayşe; Shepherd, Samantha; Shnyder, Steve D; Stratford, Ian J; Wheelhouse, Richard T; Willans, Charlotte E; Phillips, Roger M

    2017-09-10

    Organometallic complexes offer the prospect of targeting multiple pathways that are important in cancer biology. Here, the preclinical activity and mechanism(s) of action of a silver-bis(N-heterocyclic carbine) complex (Ag8) were evaluated. Ag8 induced DNA damage via several mechanisms including topoisomerase I/II and thioredoxin reductase inhibition and induction of reactive oxygen species. DNA damage induction was consistent with cytotoxicity observed against proliferating cells and Ag8 induced cell death by apoptosis. Ag8 also inhibited DNA repair enzyme PARP1, showed preferential activity against cisplatin resistant A2780 cells and potentiated the activity of temozolomide. Ag8 was substantially less active against non-proliferating non-cancer cells and selectively inhibited glycolysis in cancer cells. Ag8 also induced significant anti-tumour effects against cells implanted intraperitoneally in hollow fibres but lacked activity against hollow fibres implanted subcutaneously. Thus, Ag8 targets multiple pathways of importance in cancer biology, is less active against non-cancer cells and shows activity in vivo in a loco-regional setting. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  2. Brain pathologies in extreme old age

    PubMed Central

    Neltner, Janna H.; Abner, Erin L.; Jicha, Gregory A.; Schmitt, Frederick A.; Patel, Ela; Poon, Leonard W.; Gearing, Marla; Green, Robert C.; Davey, Adam; Johnson, Mary Ann; Jazwinski, S. Michal; Kim, Sangkyu; Davis, Daron; Woodard, John L.; Kryscio, Richard J.; Van Eldik, Linda J.; Nelson, Peter T.

    2015-01-01

    With an emphasis on evolving concepts in the field, we evaluated neuropathologic data from very old research volunteers whose brain autopsies were performed at University of Kentucky (UK-ADC), incorporating data from the Georgia Centenarian Study (N=49 cases included), the Nun Study (N=17), and UK-ADC (N=11) cohorts. Average age of death was 102.0 years (range: 98–107) overall. Alzheimer’s disease (AD) pathology was not universal (62% with “moderate” or “frequent” neuritic amyloid plaque densities) whereas frontotemporal lobar degeneration (FTLD) was absent. By contrast, some hippocampal neurofibrillary tangles (including primary age-related tauopathy [PART]) were observed in every case. Lewy body pathology was seen in 16.9% of subjects, hippocampal sclerosis of aging (HS-Aging) in 20.8%. We describe anatomical distributions of pigment-laden macrophages, expanded Virchow-Robin spaces, and arteriolosclerosis among Georgia Centenarians. Moderate or severe arteriolosclerosis pathology, throughout the brain, was associated with both HS-Aging pathology and an ABCC9 gene variant. These results provide fresh insights into the complex cerebral multimorbidity, and a novel genetic risk factor, at the far end of the human aging spectrum. PMID:26597697

  3. Improved stability and electrophoretic properties of preformed fluorescent cationic dye-DNA complexes in a taps-tetrapentylammonium buffer in agarose slab gels.

    PubMed

    Zeng, Z; Clark, S M; Mathies, R A; Glazer, A N

    1997-10-01

    High-resolution capillary electrophoresis sizing of preformed complexes of bis-intercalating fluorescent dyes with double-stranded DNA has been demonstrated using hydroxyethylcellulose and 3-[tris-(hydroxymethyl) methylamino]-1-propanesulfonic acid-tetrapentylammonium (Taps-NPe+4) buffers (S. M. Clark and R. A. Mathies, Anal. Chem. 69, 1355-1363, 1997). Such capillary electrophoresis separations were unattainable in conventional buffers containing other cations such as Tris+, Na+, and NH+4. We report here the behavior of preformed double-stranded DNA-dye complexes on agarose slab gel electrophoresis in 40 mM Taps-NPe+4, 1 mM H2EDTA, pH 8.2. Upon electrophoresis in this buffer (a) complexes formed at DNA base pairs:dye ratios ranging from 100:1 to 5:1 show the same mobility; (b) the half-lives of DNA-dye complexes with monointercalators are two- to threefold longer than those in commonly used Tris buffers; (c) there is little dye transfer between labeled and unlabeled DNA molecules; and (d) precise two-color sizing of preformed restriction fragment-dye complexes with fluorescent bisintercalators is achieved.

  4. Biophysical and transfection studies of the diC(14)-amidine/DNA complex.

    PubMed Central

    Cherezov, Vadim; Qiu, Hong; Pector, Veronique; Vandenbranden, Michel; Ruysschaert, Jean-Marie; Caffrey, Martin

    2002-01-01

    Liposomes of the synthetic cationic lipid, N-t-butyl-N'-tetradecylamino-propionamidine (diC(14)-amidine), efficiently ports DNA into mammalian cells in the absence of other (neutral) lipids. The compositional simplicity of this transfection mix makes it attractive from a formulation perspective. We have used low- and wide-angle x-ray diffraction and polarized light microscopy to characterize the thermotropic phase behavior and microstructure of diC(14)-amidine and of the lipid/DNA (circular plasmid, 5.4 kb) complex with a view to understanding the structure of the complex and its role in transfection. Upon heating, the lipid in buffer undergoes a lamellar crystalline (L(c), d(001) = 41.7 A)-to-lamellar liquid crystal (L(c)(alpha), d(001) depends on hydration and T) transition at approximately 40 degrees C. Sonicated lipid vesicles with a reported transition temperature of approximately 23 degrees C complex with DNA. Complex formation is complete at a DNA/lipid mole ratio (rho) of 0.8. Adding DNA to the lipid causes d(001) of the multilayered complex to drop from 52 to 49 A as rho rises from 0.03 to 1.64. The minimal DNA-DNA duplex separation observed is 26 A, consistent with the close packing of B-DNA. Lipid bilayers in the complex undergo a lamellar gel (L(c)(beta))-to-L(c)(alpha) (superscript c refers to complex) transition at approximately 23 degrees C. Transfection efficiency was maximized at rho = 0.4. The structure and transfection data combined suggest that densely packaged DNA in a net positively charged complex is essential for transfection. PMID:12023234

  5. Kinetics, Structure, and Mechanism of 8-Oxo-7,8-dihydro-2′-deoxyguanosine Bypass by Human DNA Polymerase η*♦

    PubMed Central

    Patra, Amritraj; Nagy, Leslie D.; Zhang, Qianqian; Su, Yan; Müller, Livia; Guengerich, F. Peter; Egli, Martin

    2014-01-01

    DNA damage incurred by a multitude of endogenous and exogenous factors constitutes an inevitable challenge for the replication machinery. Cells rely on various mechanisms to either remove lesions or bypass them in a more or less error-prone fashion. The latter pathway involves the Y-family polymerases that catalyze trans-lesion synthesis across sites of damaged DNA. 7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxoG) is a major lesion that is a consequence of oxidative stress and is associated with cancer, aging, hepatitis, and infertility. We have used steady-state and transient-state kinetics in conjunction with mass spectrometry to analyze in vitro bypass of 8-oxoG by human DNA polymerase η (hpol η). Unlike the high fidelity polymerases that show preferential insertion of A opposite 8-oxoG, hpol η is capable of bypassing 8-oxoG in a mostly error-free fashion, thus preventing GC→AT transversion mutations. Crystal structures of ternary hpol η-DNA complexes and incoming dCTP, dATP, or dGTP opposite 8-oxoG reveal that an arginine from the finger domain assumes a key role in avoiding formation of the nascent 8-oxoG:A pair. That hpol η discriminates against dATP exclusively at the insertion stage is confirmed by structures of ternary complexes that allow visualization of the extension step. These structures with G:dCTP following either 8-oxoG:C or 8-oxoG:A pairs exhibit virtually identical active site conformations. Our combined data provide a detailed understanding of hpol η bypass of the most common oxidative DNA lesion. PMID:24759104

  6. Kinetics, structure, and mechanism of 8-Oxo-7,8-dihydro-2'-deoxyguanosine bypass by human DNA polymerase η.

    PubMed

    Patra, Amritraj; Nagy, Leslie D; Zhang, Qianqian; Su, Yan; Müller, Livia; Guengerich, F Peter; Egli, Martin

    2014-06-13

    DNA damage incurred by a multitude of endogenous and exogenous factors constitutes an inevitable challenge for the replication machinery. Cells rely on various mechanisms to either remove lesions or bypass them in a more or less error-prone fashion. The latter pathway involves the Y-family polymerases that catalyze trans-lesion synthesis across sites of damaged DNA. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) is a major lesion that is a consequence of oxidative stress and is associated with cancer, aging, hepatitis, and infertility. We have used steady-state and transient-state kinetics in conjunction with mass spectrometry to analyze in vitro bypass of 8-oxoG by human DNA polymerase η (hpol η). Unlike the high fidelity polymerases that show preferential insertion of A opposite 8-oxoG, hpol η is capable of bypassing 8-oxoG in a mostly error-free fashion, thus preventing GC→AT transversion mutations. Crystal structures of ternary hpol η-DNA complexes and incoming dCTP, dATP, or dGTP opposite 8-oxoG reveal that an arginine from the finger domain assumes a key role in avoiding formation of the nascent 8-oxoG:A pair. That hpol η discriminates against dATP exclusively at the insertion stage is confirmed by structures of ternary complexes that allow visualization of the extension step. These structures with G:dCTP following either 8-oxoG:C or 8-oxoG:A pairs exhibit virtually identical active site conformations. Our combined data provide a detailed understanding of hpol η bypass of the most common oxidative DNA lesion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Modulation of bilirubin neurotoxicity by the Abcb1 transporter in the Ugt1-/- lethal mouse model of neonatal hyperbilirubinemia.

    PubMed

    Bockor, Luka; Bortolussi, Giulia; Vodret, Simone; Iaconcig, Alessandra; Jašprová, Jana; Zelenka, Jaroslav; Vitek, Libor; Tiribelli, Claudio; Muro, Andrés F

    2017-01-01

    Moderate neonatal jaundice is the most common clinical condition during newborn life. However, a combination of factors may result in acute hyperbilirubinemia, placing infants at risk of developing bilirubin encephalopathy and death by kernicterus. While most risk factors are known, the mechanisms acting to reduce susceptibility to bilirubin neurotoxicity remain unclear. The presence of modifier genes modulating the risk of developing bilirubin-induced brain damage is increasingly being recognised. The Abcb1 and Abcc1 members of the ABC family of transporters have been suggested to have an active role in exporting unconjugated bilirubin from the central nervous system into plasma. However, their role in reducing the risk of developing neurological damage and death during neonatal development is still unknown.To this end, we mated Abcb1a/b-/- and Abcc1-/- strains with Ugt1-/- mice, which develop severe neonatal hyperbilirubinemia. While about 60% of Ugt1-/- mice survived after temporary phototherapy, all Abcb1a/b-/-/Ugt1-/- mice died before postnatal day 21, showing higher cerebellar levels of unconjugated bilirubin. Interestingly, Abcc1 role appeared to be less important.In the cerebellum of Ugt1-/- mice, hyperbilirubinemia induced the expression of Car and Pxr nuclear receptors, known regulators of genes involved in the genotoxic response.We demonstrated a critical role of Abcb1 in protecting the cerebellum from bilirubin toxicity during neonatal development, the most clinically relevant phase for human babies, providing further understanding of the mechanisms regulating bilirubin neurotoxicity in vivo. Pharmacological treatments aimed to increase Abcb1 and Abcc1 expression, could represent a therapeutic option to reduce the risk of bilirubin neurotoxicity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Hippocampal Sclerosis of Aging, a Common Alzheimer's Disease 'Mimic': Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe.

    PubMed

    Nho, Kwangsik; Saykin, Andrew J; Nelson, Peter T

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer's disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (∼50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer's disease contribution to atrophy outside of the hippocampus in older adults.

  9. Functional characterisation of a SNP in the ABCC11 allele - effects on axillary skin metabolism, odour generation and associated behaviours.

    PubMed

    Harker, Mark; Carvell, Ann-Marie; Marti, Vernon P J; Riazanskaia, Svetlana; Kelso, Hailey; Taylor, David; Grimshaw, Sally; Arnold, David S; Zillmer, Ruediger; Shaw, Jane; Kirk, Jayne M; Alcasid, Zee M; Gonzales-Tanon, Sheila; Chan, Gertrude P; Rosing, Egge A E; Smith, Adrian M

    2014-01-01

    A single nucleotide polymorphism (SNP), 538G→A, leading to a G180R substitution in the ABCC11 gene results in reduced concentrations of apocrine derived axillary odour precursors. Determine the axillary odour levels in the SNP ABCC11 genotype variants and to investigate if other parameters associated with odour production are affected. Axillary odour was assessed by subjective quantification and gas chromatography headspace analysis. Metabolite profiles, microbiome diversity and personal hygiene habits were also assessed. Axillary odour in the A/A homozygotes was significantly lower compared to the G/A and G/G genotypes. However, the perception-based measures still detected appreciable levels of axillary odour in the A/A subjects. Metabolomic analysis highlighted significant differences in axillary skin metabolites between A/A subjects compared to those carrying the G allele. These differences resulted in A/A subjects lacking specific volatile odourants in the axillary headspace, but all genotypes produced odoriferous short chain fatty acids. Microbiomic analysis revealed differences in the relative abundance of key bacterial genera associated with odour generation between the different genotypes. Deodorant usage indicated a high level of self awareness of axillary odour levels with A/A individuals less likely to adopt personal hygiene habits designed to eradicate/mask its presence. The SNP in the ABCC11 gene results in lower levels of axillary odour in the A/A homozygotes compared to those carrying the G allele, but A/A subjects still produce noticeable amounts of axillary odour. Differences in axillary skin metabolites, bacterial genera and personal hygiene behaviours also appear to be influenced by this SNP. Copyright © 2013. Published by Elsevier Ireland Ltd.

  10. Vitamin K does not prevent soft tissue mineralization in a mouse model of pseudoxanthoma elasticum

    PubMed Central

    Brampton, Christopher; Yamaguchi, Yukiko; Vanakker, Olivier; Laer, Lut Van; Chen, Li-Hsieh; Thakore, Manoj; De Paepe, Anne; Pomozi, Viola; Szabó, Pál T; Martin, Ludovic; Váradi, András

    2011-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable disease characterized by calcified elastic fibers in cutaneous, ocular and vascular tissues. PXE is caused by mutations in ABCC6, which encodes a protein of the ATP-driven organic anion transporter family. The inability of this transporter to secrete its substrate into the circulation is the likely cause of PXE. Vitamin K plays a role in the regulation of mineralization processes as a co-factor in the carboxylation of calcification inhibitors such as Matrix Gla Protein (MGP). Vitamin K precursor or a conjugated form has been proposed as potential substrate(s) for ABCC6. We investigated whether an enriched diet of vitamin K1 or vitamin K2 (MK4) could stop or slow the disease progression in Abcc6-/- mice. Abcc6-/- mice were placed on a diet of either vitamin K1 or MK4 at 5 or 100 mg/kg at prenatal, 3 weeks or 3 months of age. Disease progression was quantified by measuring the calcium content of one side of the mouse muzzle skin and histological staining for calcium of the opposing side. Raising the vitamin K1 or MK4 content of the diet increased the concentration of circulating MK4 in the serum. However, this increase did not significantly affect the MGP carboxylation status or reduce its abnormal abundance, the total calcium content or the pathologic calcification in the whiskers of the 3 treatment groups compared to controls. Our findings showed that raising the dietary intake of vitamin K1 or MK4 was not beneficial in the treatment of PXE and suggested that the availability of vitamin K may not be a limiting factor in this pathology. PMID:21597330

  11. Hippocampal Sclerosis of Aging, a Common Alzheimer’s Disease ‘Mimic’: Risk Genotypes are Associated with Brain Atrophy Outside the Temporal Lobe

    PubMed Central

    Nho, Kwangsik; Saykin, Andrew J.; Nelson, Peter T.

    2016-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a common brain disease in older adults with a clinical course that is similar to Alzheimer’s disease. Four single-nucleotide polymorphisms (SNPs) have previously shown association with HS-Aging. The present study investigated structural brain changes associated with these SNPs using surface-based analysis. Participants from the Alzheimer’s Disease Neuroimaging Initiative cohort (ADNI; n = 1,239), with both MRI scans and genotype data, were used to assess the association between brain atrophy and previously identified HS-Aging risk SNPs in the following genes: GRN, TMEM106B, ABCC9, and KCNMB2 (minor allele frequency for each is >30%). A fifth SNP (near the ABCC9 gene) was evaluated in post-hoc analysis. The GRN risk SNP (rs5848_T) was associated with a pattern of atrophy in the dorsomedial frontal lobes bilaterally, remarkable since GRN is a risk factor for frontotemporal dementia. The ABCC9 risk SNP (rs704180_A) was associated with multifocal atrophy whereas a SNP (rs7488080_A) nearby (~50 kb upstream) ABCC9 was associated with atrophy in the right entorhinal cortex. Neither TMEM106B (rs1990622_T), KCNMB2 (rs9637454_A), nor any of the non-risk alleles were associated with brain atrophy. When all four previously identified HS-Aging risk SNPs were summed into a polygenic risk score, there was a pattern of associated multifocal brain atrophy in a predominately frontal pattern. We conclude that common SNPs previously linked to HS-Aging pathology were associated with a distinct pattern of anterior cortical atrophy. Genetic variation associated with HS-Aging pathology may represent a non-Alzheimer’s disease contribution to atrophy outside of the hippocampus in older adults. PMID:27003218

  12. Formation of monofunctional cisplatin-DNA adducts in carbonate buffer.

    PubMed

    Binter, Alexandra; Goodisman, Jerry; Dabrowiak, James C

    2006-07-01

    Carbonate in its various forms is an important component in blood and the cytosol. Since, under conditions that simulate therapy, carbonate reacts with cisplatin to form carbonato complexes, one of which is taken up and/or modified by the cell [C.R. Centerwall, J. Goodisman, D.J. Kerwood, J. Am. Chem. Soc., 127 (2005) 12768-12769], cisplatin-carbonato complexes may be important in the mechanism of action of cisplatin. In this report we study the binding of cisplatin to pBR322 DNA in two different buffers, using gel electrophoresis. In 23.8mM HEPES, N-(2-hydroxyethyl)-piperazine-N'-2-ethanesulfonic acid, 5mM NaCl, pH 7.4 buffer, cisplatin produces aquated species, which react with DNA to unwind supercoiled Form I DNA, increasing its mobility, and reducing the binding of ethidium to DNA. This behavior is consistent with the formation of the well-known intrastrand crosslink on DNA. In 23.8mM carbonate buffer, 5mM NaCl, pH 7.4, cisplatin forms carbonato species that produce DNA-adducts which do not significantly change supercoiling but enhance binding of ethidium to DNA. This behavior is consistent with the formation of a monofunctional cisplatin adduct on DNA. These results show that aquated cisplatin and carbonato complexes of cisplatin produce different types of lesions on DNA and they underscore the importance of carrying out binding studies with cisplatin and DNA using conditions that approximate those found in the cell.

  13. Inhibition of the EGFR/STAT3/CEBPD Axis Reverses Cisplatin Cross-resistance with Paclitaxel in the Urothelial Carcinoma of the Urinary Bladder.

    PubMed

    Wang, Wei-Jan; Li, Chien-Feng; Chu, Yu-Yi; Wang, Yu-Hui; Hour, Tzyh-Chyuan; Yen, Chia-Jui; Chang, Wen-Chang; Wang, Ju-Ming

    2017-01-15

    Cisplatin (CDDP) is frequently used in combination chemotherapy with paclitaxel for treating urothelial carcinoma of the urinary bladder (UCUB). CDDP cross-resistance has been suggested to develop with paclitaxel, thus hindering successful UCUB treatment. Therefore, elucidating the mechanisms underlying CDDP-induced anticancer drug resistance is imperative and may provide an insight in developing novel therapeutic strategy. Loss-of-function assays were performed to elucidate the role of the EGFR and STAT3 in CDDP-induced CCAAT/enhancer-binding protein delta (CEBPD) expression in UCUB cells. Reporter and in vivo DNA-binding assays were employed to determine whether CEBPD directly regulates ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily C member 2 (ABCC2) activation. Finally, a xenograft animal assay was used to examine the abilities of gefitinib and S3I-201 (a STAT3 inhibitor) to reverse CDDP and paclitaxel sensitivity. CEBPD expression was maintained in postoperative chemotherapy patients, and this expression was induced by CDDP even in CDDP-resistant UCUB cells. Upon CDDP treatment, CEBPD activated ABCB1 and ABCC2. Furthermore, the EGFR/STAT3 pathway contributed to CDDP-induced CEBPD expression in UCUB cells. Gefitinib and S3I-201 treatment significantly reduced the expression of CEBPD and enhanced the sensitivity of CDDP-resistant UCUB cells to CDDP and paclitaxel. Our results revealed the risk of CEBPD activation in CDDP-resistant UCUB cells and suggested a therapeutic strategy for patients with UCUB or UCUB resisted to CDDP and paclitaxel by combination with either gefitinib or S3I-201. Clin Cancer Res; 23(2); 503-13. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Dependence of deodorant usage on ABCC11 genotype: scope for personalized genetics in personal hygiene.

    PubMed

    Rodriguez, Santiago; Steer, Colin D; Farrow, Alexandra; Golding, Jean; Day, Ian N M

    2013-07-01

    Earwax type and axillary odor are genetically determined by rs17822931, a single-nucleotide polymorphism (SNP) located in the ABCC11 gene. The literature has been concerned with the Mendelian trait of earwax, although axillary odor is also Mendelian. Ethnic diversity in rs17822931 exists, with higher frequency of allele A in east Asians. Influence on deodorant usage has not been investigated. In this work, we present a detailed analysis of the rs17822931 effect on deodorant usage in a large (N∼17,000 individuals) population cohort (the Avon Longitudinal Study of Parents and Children (ALSPAC)). We found strong evidence (P=3.7 × 10(-20)) indicating differential deodorant usage according to the rs17822931 genotype. AA homozygotes were almost 5-fold overrepresented in categories of never using deodorant or using it infrequently. However, 77.8% of white European genotypically nonodorous individuals still used deodorant, and 4.7% genotypically odorous individuals did not. We provide evidence of a behavioral effect associated with rs17822931. This effect has a biological basis that can result in a change in the family's environment if an aerosol deodorant is used. It also indicates potential cost saving to the nonodorous and scope for personalized genetics usage in personal hygiene choices, with consequent reduction of inappropriate chemical exposures for some.

  15. Clinical and Molecular Characterization of Children with Neonatal Diabetes Mellitus at a Tertiary Care Center in Northern India.

    PubMed

    Jain, Vandana; Satapathy, Amit; Yadav, Jaivinder; Sharma, Rajni; Radha, Venkatesan; Mohan, Viswanathan; De Franco, Elisa; Ellard, Sian

    2017-06-15

    To study the genetic mutations and clinical profile in children with neonatal diabetes mellitus. Genetic evaluation, clinical management and follow-up of infants with neonatal diabetes. Eleven infants were studied of which eight had permanent neonatal diabetes. Median age at presentation was 8 weeks and mean (SD) birth weight was 2.4 (0.5) kg. Pathogenic genetic mutations were identified in 7 (63.6%) children; 3 infants with mutations in KCNJ11 gene and 1 in ABCC8 were switched to oral sulfonylureas; 2 infants had mutations in INS and 1 in ZFP57. Neonatal diabetes mellitus is a heterogeneous disorder. Identification of genetic cause guides clinical management.

  16. A new fluorescent dye accumulation assay for parallel measurements of the ABCG2, ABCB1 and ABCC1 multidrug transporter functions.

    PubMed

    Szabó, Edit; Türk, Dóra; Telbisz, Ágnes; Kucsma, Nóra; Horváth, Tamás; Szakács, Gergely; Homolya, László; Sarkadi, Balázs; Várady, György

    2018-01-01

    ABC multidrug transporters are key players in cancer multidrug resistance and in general xenobiotic elimination, thus their functional assays provide important tools for research and diagnostic applications. In this study we have examined the potential interactions of three key human ABC multidrug transporters with PhenGreen diacetate (PGD), a cell permeable fluorescent metal ion indicator. The non-fluorescent, hydrophobic PGD rapidly enters the cells and, after cleavage by cellular esterases, in the absence of quenching metal ions, PhenGreen (PG) becomes highly fluorescent. We found that in cells expressing functional ABCG2, ABCB1, or ABCC1 transporters, cellular PG fluorescence is strongly reduced. This fluorescence signal in the presence of specific transporter inhibitors is increased to the fluorescence levels in the control cells. Thus the PG accumulation assay is a new, unique tool for the parallel determination of the function of the ABCG2, ABCB1, and ABCC1 multidrug transporters. Since PG has very low cellular toxicity, the PG accumulation assay also allows the selection, separation and culturing of selected cell populations expressing either of these transporters.

  17. The Chinese Herb Jianpijiedu Contributes to the Regulation of OATP1B2 and ABCC2 in a Rat Model of Orthotopic Transplantation Liver Cancer Pretreated with Food Restriction and Diarrhea

    PubMed Central

    Sun, Baoguo; Chen, Yan; Xiang, Ting; Zhang, Lei; Chen, Zexiong; Zhang, Shijun; Zhou, Houming; Chen, Shuqing

    2015-01-01

    Traditional Chinese Medicine Jianpijiedu decoction (JPJD) could improve the general status of liver cancer patients in clinics, especially the symptoms of decreased food intake and diarrhea. In this study, our results showed that the survival rate of the liver cancer with food restriction and diarrhea (FRD-LC) rats was lower than the liver cancer (LC) rats, and the tumor volume of the FRD-LC rats was higher than the LC rats. It was also shown that the high dose of JPJD significantly improved the survival rate, weight, and organ weight when compared with FRD-LC-induced rats. Moreover, JPJD administration upregulated the mRNA and protein levels of ABCC2 and downregulated the mRNA and protein levels of OATP1B2 in liver tissues. However, opposite results were observed in the cancer tissues. In conclusion, the study indicated that the Chinese Medicine JPJD could contribute to the rats with liver cancer which were pretreated with food restriction and diarrhea by regulating the expression of ABCC2 and OATP1B2 in liver tissues and cancer tissues. PMID:26665149

  18. Genetics in arterial calcification: pieces of a puzzle and cogs in a wheel.

    PubMed

    Rutsch, Frank; Nitschke, Yvonne; Terkeltaub, Robert

    2011-08-19

    Artery calcification reflects an admixture of factors such as ectopic osteochondral differentiation with primary host pathological conditions. We review how genetic factors, as identified by human genome-wide association studies, and incomplete correlations with various mouse studies, including knockout and strain analyses, fit into "pieces of the puzzle" in intimal calcification in human atherosclerosis, and artery tunica media calcification in aging, diabetes mellitus, and chronic kidney disease. We also describe in sharp contrast how ENPP1, CD73, and ABCC6 serve as "cogs in a wheel" of arterial calcification. Specifically, each is a minor component in the function of a much larger network of factors that exert balanced effects to promote and suppress arterial calcification. For the network to normally suppress spontaneous arterial calcification, the "cogs" ENPP1, CD73, and ABCC6 must be present and in working order. Monogenic ENPP1, CD73, and ABCC6 deficiencies each drive a molecular pathophysiology of closely related but phenotypically different diseases (generalized arterial calcification of infancy (GACI), pseudoxanthoma elasticum (PXE) and arterial calcification caused by CD73 deficiency (ACDC)), in which premature onset arterial calcification is a prominent but not the sole feature.

  19. Genetics in Arterial Calcification

    PubMed Central

    Rutsch, Frank; Nitschke, Yvonne; Terkeltaub, Robert

    2011-01-01

    Artery calcification reflects an admixture of factors such as ectopic osteochondral differentiation with primary host pathological conditions. We review how genetic factors, as identified by human genome-wide association studies, and incomplete correlations with various mouse studies, including knockout and strain analyses, fit into “pieces of the puzzle” in intimal calcification in human atherosclerosis, and artery tunica media calcification in aging, diabetes mellitus, and chronic kidney disease. We also describe in sharp contrast how ENPP1, CD73, and ABCC6 serve as “cogs in a wheel” of arterial calcification. Specifically, each is a minor component in the function of a much larger network of factors that exert balanced effects to promote and suppress arterial calcification. For the network to normally suppress spontaneous arterial calcification, the “cogs” ENPP1, CD73, and ABCC6 must be present and in working order. Monogenic ENPP1, CD73, and ABCC6 deficiencies each drive a molecular pathophysiology of closely related but phenotypically different diseases (generalized arterial calcification of infancy (GACI), pseudoxan-thoma elasticum (PXE) and arterial calcification caused by CD73 deficiency (ACDC)), in which premature onset arterial calcification is a prominent but not the sole feature. PMID:21852556

  20. Toward efficient Zn(II)-based artificial nucleases.

    PubMed

    Boseggia, Elisa; Gatos, Maddalena; Lucatello, Lorena; Mancin, Fabrizio; Moro, Stefano; Palumbo, Manlio; Sissi, Claudia; Tecilla, Paolo; Tonellato, Umberto; Zagotto, Giuseppe

    2004-04-14

    A series of cis-cis-triaminocyclohexane Zn(II) complex-anthraquinone intercalator conjugates, designed in such a way to allow their easy synthesis and modification, have been investigated as hydrolytic cleaving agents for plasmid DNA. The ligand structure comprises a triaminocyclohexane platform linked by means of alkyl spacers of different length (from C(4) to C(8)) to the anthraquinone group which may intercalate the DNA. At a concentration of 5 microM, the complex of the derivative with a C(8) alkyl spacer induces the hydrolytic stand scission of supercoiled DNA with a rate of 4.6 x 10(-6) s(-1) at pH 7 and 37 degrees C. The conjugation of the metal complex with the anthraquinone group leads to a 15-fold increase of the cleavage efficiency when compared with the anthraquinone lacking Zn-triaminocyclohexane complex. The straightforward synthetic procedure employed, allowing a systematic change of the spacer length, made possible to gain more insight on the role of the intercalating group in determining the reactivity of the systems. Comparison of the reactivity of the different complexes shows a remarkable increase of the DNA cleaving efficiency with the length of the spacer. In the case of too-short spacers, the advantages due to the increased DNA affinity are canceled due to the incorrect positioning of the reactive group, thus leading to cleavage inhibition.

  1. Sulfonylurea Treatment Before Genetic Testing in Neonatal Diabetes: Pros and Cons

    PubMed Central

    Carmody, David; Bell, Charles D.; Hwang, Jessica L.; Dickens, Jazzmyne T.; Sima, Daniela I.; Felipe, Dania L.; Zimmer, Carrie A.; Davis, Ajuah O.; Kotlyarevska, Kateryna; Naylor, Rochelle N.; Philipson, Louis H.

    2014-01-01

    Context: Diabetes in neonates nearly always has a monogenic etiology. Earlier sulfonylurea therapy can improve glycemic control and potential neurodevelopmental outcomes in children with KCNJ11 or ABCC8 mutations, the most common gene causes. Objective: Assess the risks and benefits of initiating sulfonylurea therapy before genetic testing results become available. Design, Setting, and Patients: Observational retrospective study of subjects with neonatal diabetes within the University of Chicago Monogenic Diabetes Registry. Main Outcome Measures: Response to sulfonylurea (determined by whether insulin could be discontinued) and treatment side effects in those treated empirically. Results: A total of 154 subjects were diagnosed with diabetes before 6 months of age. A genetic diagnosis had been determined in 118 (77%), with 73 (47%) having a mutation in KCNJ11 or ABCC8. The median time from clinical diagnosis to genetic diagnosis was 10.4 weeks (range, 1.6 to 58.2 wk). In nine probands, an empiric sulfonylurea trial was initiated within 28 days of diabetes diagnosis. A genetic cause was subsequently found in eight cases, and insulin was discontinued within 14 days of sulfonylurea initiation in all of these cases. Conclusions: Sulfonylurea therapy appears to be safe and often successful in neonatal diabetes patients before genetic testing results are available; however, larger numbers of cases must be studied. Given the potential beneficial effect on neurodevelopmental outcome, glycemic control, and the current barriers to expeditious acquisition of genetic testing, an empiric inpatient trial of sulfonylurea can be considered. However, obtaining a genetic diagnosis remains imperative to inform long-term management and prognosis. PMID:25238204

  2. In vitro effect of nicorandil on the carbachol-induced contraction of the lower esophageal sphincter of the rat.

    PubMed

    Shimbo, Tomonori; Adachi, Takeshi; Fujisawa, Susumu; Hongoh, Mai; Ohba, Takayoshi; Ono, Kyoichi

    2016-08-01

    The lower esophageal sphincter (LES) is a specialized region of the esophageal smooth muscle that allows the passage of a swallowed bolus into the stomach. Nitric oxide (NO) plays a major role in LES relaxation. Nicorandil possesses dual properties of a NO donor and an ATP-sensitive potassium channel (KATP channel) agonist, and is expected to reduce LES tone. This study investigated the mechanisms underlying the effects of nicorandil on the LES. Rat LES tissues were placed in an organ bath, and activities were recorded using an isometric force transducer. Carbachol-induced LES contraction was significantly inhibited by KATP channel agonists in a concentration-dependent manner; pinacidil > nicorandil ≈ diazoxide. Nicorandil-induced relaxation of the LES was prevented by pretreatment with glibenclamide, whereas N(G)-nitro-l-arginine methyl ester (l-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and iberiotoxin were ineffective at preventing nicorandil-induced LES relaxation. Furthermore, nicorandil did not affect high K(+)-induced LES contraction. Reverse-transcription polymerase chain reaction analysis and immunohistochemistry revealed expression of KCNJ8 (Kir6.1), KCNJ11 (Kir6.2), ABCC8 (SUR1) and ABCC9 (SUR2) subunits of the KATP channel in the rat lower esophagus. These findings indicate that nicorandil causes LES relaxation chiefly by activating the KATP channel, and that it may provide an additional pharmacological tool for the treatment of spastic esophageal motility disorders. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  3. The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP–DnaA-specific initiation complexes

    PubMed Central

    Keyamura, Kenji; Fujikawa, Norie; Ishida, Takuma; Ozaki, Shogo; Su’etsugu, Masayuki; Fujimitsu, Kazuyuki; Kagawa, Wataru; Yokoyama, Shigeyuki; Kurumizaka, Hitoshi; Katayama, Tsutomu

    2007-01-01

    Escherichia coli DiaA is a DnaA-binding protein that is required for the timely initiation of chromosomal replication during the cell cycle. In this study, we determined the crystal structure of DiaA at 1.8 Å resolution. DiaA forms a homotetramer consisting of a symmetrical pair of homodimers. Mutational analysis revealed that the DnaA-binding activity and formation of homotetramers are required for the stimulation of initiation by DiaA. DiaA tetramers can bind multiple DnaA molecules simultaneously. DiaA stimulated the assembly of multiple DnaA molecules on oriC, conformational changes in ATP–DnaA-specific initiation complexes, and unwinding of oriC duplex DNA. The mutant DiaA proteins are defective in these stimulations. DiaA associated also with ADP–DnaA, and stimulated the assembly of inactive ADP–DnaA–oriC complexes. Specific residues in the putative phosphosugar-binding motif of DiaA were required for the stimulation of initiation and formation of ATP–DnaA-specific–oriC complexes. Our data indicate that DiaA regulates initiation by a novel mechanism, in which DiaA tetramers most likely bind to multiple DnaA molecules and stimulate the assembly of specific ATP–DnaA–oriC complexes. These results suggest an essential role for DiaA in the promotion of replication initiation in a cell cycle coordinated manner. PMID:17699754

  4. Picolinic acid based Cu(II) complexes with heterocyclic bases--crystal structure, DNA binding and cleavage studies.

    PubMed

    Pulimamidi, Rabindra Reddy; Nomula, Raju; Pallepogu, Raghavaiah; Shaik, Hussain

    2014-05-22

    In view of the importance of picolinic acid (PA) in preventing cell growth and arresting cell cycle, new PA based metallonucleases were designed with a view to study their DNA binding and cleavage abilities. Three new Cu(II) complexes [Cu(II)(DPPA)].4H2O (1),[Cu(II)(DPPA)(bpy)].5H2O (2) and [Cu(II)(DPPA)(phen)].5H2O (3), were synthesized using a picolinic acid based bifunctional ligand (DPPA) and heterocyclic bases (where DPPA: Pyridine-2-carboxylic acid {2-phenyl-1-[(pyridin-2-ylmethyl)-carbonyl]-ethyl}-amide; bpy: 2, 2'-bipyridine and phen: 1, 10-phenanthroline). DPPA was obtained by coupling 2-picolinic acid and 2-picolyl amine with l-phenylalanine through amide bond‌‌. Complexes were structurally characterized by a single crystal X-ray crystallography. The molecular structure of 1 shows Cu(II) center essentially in a square planar coordination geometry, while complex 2 shows an approximate five coordinated square-pyramidal geometry. Eventhough we could not isolate single crystal for complex (3), its structure was established based on other techniques. The complex (3) also exhibits five coordinate square pyramidal geometry. The complexes show good binding affinity towards CT-DNA. The binding constants (Kb) decrease in the order 1.35 ± 0.01 × 10(5) (3) > 1.23 ± 0.01 × 10(5) (2) > 8.3 ± 0.01 × 10(4) (1) M(-1). They also exhibit efficient nuclease activity towards supercoiled pUC19 DNA both in the absence and presence of external agent (H2O2). The kinetic studies reveal that the hydrolytic cleavage reactions follow the pseudo first-order rate constant and the hydrolysis rates are in the range of (5.8-8.0) × 10(7) fold rate enhancement compared to non-catalyzed double stranded DNA (3.6 × 10(-8) h(-1)). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Lesion search and recognition by thymine DNA glycosylase revealed by single molecule imaging

    PubMed Central

    Buechner, Claudia N.; Maiti, Atanu; Drohat, Alexander C.; Tessmer, Ingrid

    2015-01-01

    The ability of DNA glycosylases to rapidly and efficiently detect lesions among a vast excess of nondamaged DNA bases is vitally important in base excision repair (BER). Here, we use single molecule imaging by atomic force microscopy (AFM) supported by a 2-aminopurine fluorescence base flipping assay to study damage search by human thymine DNA glycosylase (hTDG), which initiates BER of mutagenic and cytotoxic G:T and G:U mispairs in DNA. Our data reveal an equilibrium between two conformational states of hTDG–DNA complexes, assigned as search complex (SC) and interrogation complex (IC), both at target lesions and undamaged DNA sites. Notably, for both hTDG and a second glycosylase, hOGG1, which recognizes structurally different 8-oxoguanine lesions, the conformation of the DNA in the SC mirrors innate structural properties of their respective target sites. In the IC, the DNA is sharply bent, as seen in crystal structures of hTDG lesion recognition complexes, which likely supports the base flipping required for lesion identification. Our results support a potentially general concept of sculpting of glycosylases to their targets, allowing them to exploit the energetic cost of DNA bending for initial lesion sensing, coupled with continuous (extrahelical) base interrogation during lesion search by DNA glycosylases. PMID:25712093

  6. Decoding DNA labels by melting curve analysis using real-time PCR.

    PubMed

    Balog, József A; Fehér, Liliána Z; Puskás, László G

    2017-12-01

    Synthetic DNA has been used as an authentication code for a diverse number of applications. However, existing decoding approaches are based on either DNA sequencing or the determination of DNA length variations. Here, we present a simple alternative protocol for labeling different objects using a small number of short DNA sequences that differ in their melting points. Code amplification and decoding can be done in two steps using quantitative PCR (qPCR). To obtain a DNA barcode with high complexity, we defined 8 template groups, each having 4 different DNA templates, yielding 158 (>2.5 billion) combinations of different individual melting temperature (Tm) values and corresponding ID codes. The reproducibility and specificity of the decoding was confirmed by using the most complex template mixture, which had 32 different products in 8 groups with different Tm values. The industrial applicability of our protocol was also demonstrated by labeling a drone with an oil-based paint containing a predefined DNA code, which was then successfully decoded. The method presented here consists of a simple code system based on a small number of synthetic DNA sequences and a cost-effective, rapid decoding protocol using a few qPCR reactions, enabling a wide range of authentication applications.

  7. Targeted DNA delivery to cancer cells using a biotinylated chitosan carrier.

    PubMed

    Darvishi, Mohammad H; Nomani, Alireza; Hashemzadeh, Hadi; Amini, Mohsen; Shokrgozar, Mohammad A; Dinarvand, Rassoul

    2017-05-01

    A novel biotinylated chitosan-graft-polyethyleneimine (Bio-Chi-g-PEI) copolymer was synthesized and evaluated as a nonviral gene delivery carrier for improvement of the transfection efficiency, endosomal escape, and targeted gene delivery of a plasmid encoding green fluorescent protein N1 (pEGFP-N1) into two different biotin-overexpressing cell lines including HeLa and OVCAR-3 cells. The structure of the obtained copolymers was confirmed by 1 H nuclear magnetic resonance ( 1 H NMR) and Fourier transform infrared spectroscopy. Physicochemical properties of the Bio-Chi-g-PEI/plasmid DNA (pDNA) complexes such as complex stability, size, zeta potential, and their morphology were investigated at various weight ratios of copolymer to pDNA. Bio-Chi-g-PEI copolymers could effectively condense pDNA into small particles with average diameters less than 164 nm and the zeta potential of +34.8 mV at the N/P ratio of 40/1. As revealed by flow cytometry, Bio-Chi-g-PEI/pDNA complexes had lower cytotoxicity than that of PEI 25 kDa/pDNA complexes in both cell lines. In vitro experiments revealed that the Bio-Chi-gPEI/pDNA complexes not only had much lower cytotoxicity, but also displayed higher transfection efficiency than that of PEI 25kDa/pDNA complexes. High percentage of cancer cells was successfully transfected by Bio-Chi-g-PEI/pDNA and properly expressed GFP protein. This study indicates that this copolymer complex can be a promising gene delivery carrier. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  8. An experimental double-blind irradiation study of a novel topical product (TPF 50) compared to other topical products with DNA repair enzymes, antioxidants, and growth factors with sunscreens: implications for preventing skin aging and cancer.

    PubMed

    Emanuele, Enzo; Spencer, James M; Braun, Martin

    2014-03-01

    The exposure to ultraviolet radiation (UVR) is a major risk factor for skin aging and the development of non-melanoma skin cancer (NMSC). Although traditional sunscreens remain the mainstay for the prevention of UVR-induced skin damage, they cannot ensure a complete protection against the whole spectrum of molecular lesions associated with UVR exposure. The formation of helix-distorting photoproducts such as cyclobutane pyrimidine dimers (CPD), as well as oxidative damage to DNA bases, including the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8OHdG) are among the key DNA lesions associated with photoaging and tumorigenesis. Besides DNA lesions, UVR-induced formation of free radicals can result in protein carbonylation (PC), a major form of irreversible protein damage that inactivates their biological function. This study compares a complex novel topical product (TPF50) consisting of three actives, ie, 1) traditional physical sunscreens (SPF 50), 2) a liposome-encapsulated DNA repair enzymes complex (photolyase, endonuclease, and 8-oxoguanine glycosylase [OGG1]), and 3) a potent antioxidant complex (carnosine, arazine, ergothionine) to existing products. Specifically, we assessed the ability of TFP50 vs those of DNA repair and antioxidant and growth factor topical products used with SPF 50 sunscreens in preventing CPD, 8OHdG, and PC formation in human skin biopsies after experimental irradiations. In head-to-head comparison studies, TPF50 showed the best efficacy in reducing all of the three molecular markers. The results indicated that the three TPF50 components had a synergistic effect in reducing CPD and PC, but not 8OHdG. Taken together, our results indicate that TPF50 improves the genomic and proteomic integrity of skin cells after repeated exposure to UVR, ultimately reducing the risk of skin aging and NMSC.

  9. A Dual Role of Caspase-8 in Triggering and Sensing Proliferation-Associated DNA Damage, a Key Determinant of Liver Cancer Development.

    PubMed

    Boege, Yannick; Malehmir, Mohsen; Healy, Marc E; Bettermann, Kira; Lorentzen, Anna; Vucur, Mihael; Ahuja, Akshay K; Böhm, Friederike; Mertens, Joachim C; Shimizu, Yutaka; Frick, Lukas; Remouchamps, Caroline; Mutreja, Karun; Kähne, Thilo; Sundaravinayagam, Devakumar; Wolf, Monika J; Rehrauer, Hubert; Koppe, Christiane; Speicher, Tobias; Padrissa-Altés, Susagna; Maire, Renaud; Schattenberg, Jörn M; Jeong, Ju-Seong; Liu, Lei; Zwirner, Stefan; Boger, Regina; Hüser, Norbert; Davis, Roger J; Müllhaupt, Beat; Moch, Holger; Schulze-Bergkamen, Henning; Clavien, Pierre-Alain; Werner, Sabine; Borsig, Lubor; Luther, Sanjiv A; Jost, Philipp J; Weinlich, Ricardo; Unger, Kristian; Behrens, Axel; Hillert, Laura; Dillon, Christopher; Di Virgilio, Michela; Wallach, David; Dejardin, Emmanuel; Zender, Lars; Naumann, Michael; Walczak, Henning; Green, Douglas R; Lopes, Massimo; Lavrik, Inna; Luedde, Tom; Heikenwalder, Mathias; Weber, Achim

    2017-09-11

    Concomitant hepatocyte apoptosis and regeneration is a hallmark of chronic liver diseases (CLDs) predisposing to hepatocellular carcinoma (HCC). Here, we mechanistically link caspase-8-dependent apoptosis to HCC development via proliferation- and replication-associated DNA damage. Proliferation-associated replication stress, DNA damage, and genetic instability are detectable in CLDs before any neoplastic changes occur. Accumulated levels of hepatocyte apoptosis determine and predict subsequent hepatocarcinogenesis. Proliferation-associated DNA damage is sensed by a complex comprising caspase-8, FADD, c-FLIP, and a kinase-dependent function of RIPK1. This platform requires a non-apoptotic function of caspase-8, but no caspase-3 or caspase-8 cleavage. It may represent a DNA damage-sensing mechanism in hepatocytes that can act via JNK and subsequent phosphorylation of the histone variant H2AX. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Interactions of tetracationic porphyrins with DNA and their effects on DNA cleavage

    NASA Astrophysics Data System (ADS)

    Lebedeva, Natalya Sh.; Yurina, Elena S.; Gubarev, Yury A.; Syrbu, Sergey A.

    2018-06-01

    The interaction of tetracationic porphyrins with DNA was studied using UV-Vis absorption, fluorescence spectroscopy and viscometry, and the particle sizes were determined. Аs cationic porphyrins, two isomer porphyrins, 3,3‧,3″,3‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP3) and 4,4‧,4″,4‴-(5,10,15,20-Porphyrintetrayl)tetrakis(1-methylpyridinium) (TMPyP4), were studied. They differ in the position of NCH3+ group in phenyl ring of the porphyrins and hence, in degree of freedom of rotation of the phenyl rings about the central macrocycle. It was found that intercalated complexes are formed at DNA/porphyrin molar ratios (R) of 2.2 and 3.9 for TMPyP3 и TMPyP4, respectively. Decreasing R up to 0.4 and 0.8 for TMPyP3 и TMPyP4, respectively, leads mainly to formation of outside complexes due to π-π stacking between the porphyrin chromophores interacting electrostatically with phosphate framework of DNA. Each type of the obtained complexes was characterized using Scatchard approach. It was ascertained that the affinity of TMPyP4 to DNA is stronger than TMPyP3, meanwhile the wedge effect of the latter is higher. The differences between the porphyrin isomers become more evident at irradiation of their complexes with DNA. It was established that irradiation of the intercalated complexes results in DNA fragmentation. In the case of TMPyP4, DNA fragments of different size are formed. The irradiation of the outside DNA/porphyrin complexes leads to cleavage of DNA (TMPyP3 and TMPyP4) and partial destruction of the complex due to photolysis of the porphyrin (TMPyP3).

  11. Complexes formed between DNA and poly(amido amine) dendrimers of different generations--modelling DNA wrapping and penetration.

    PubMed

    Qamhieh, Khawla; Nylander, Tommy; Black, Camilla F; Attard, George S; Dias, Rita S; Ainalem, Marie-Louise

    2014-07-14

    This study deals with the build-up of biomaterials consisting of biopolymers, namely DNA, and soft particles, poly(amido amine) (PAMAM) dendrimers, and how to model their interactions. We adopted and applied an analytical model to provide further insight into the complexation between DNA (4331 bp) and positively charged PAMAM dendrimers of generations 1, 2, 4, 6 and 8, previously studied experimentally. The theoretical models applied describe the DNA as a semiflexible polyelectrolyte that interacts with dendrimers considered as either hard (impenetrable) spheres or as penetrable and soft spheres. We found that the number of DNA turns around one dendrimer, thus forming a complex, increases with the dendrimer size or generation. The DNA penetration required for the complex to become charge neutral depends on dendrimer generation, where lower generation dendrimers require little penetration to give charge neutral complexes. High generation dendrimers display charge inversion for all considered dendrimer sizes and degrees of penetration. Consistent with the morphologies observed experimentally for dendrimer/DNA aggregates, where highly ordered rods and toroids are found for low generation dendrimers, the DNA wraps less than one turn around the dendrimer. Disordered globular structures appear for high generation dendrimers, where the DNA wraps several turns around the dendrimer. Particularly noteworthy is that the dendrimer generation 4 complexes, where the DNA wraps about one turn around the dendrimers, are borderline cases and can form all types of morphologies. The net-charges of the aggregate have been estimated using zeta potential measurements and are discussed within the theoretical framework.

  12. Determination of nucleic acids based on the quenching effect on resonance light scattering of the Y(III)-1,6-bi(1'-phenyl-3'-methyl-5'-pyrazolone-4'-)hexane-dione system.

    PubMed

    Wu, Xia; Yang, Jing He; Sun, Shuna; Guo, Changying; Ran, Dehuan; Zheng, Jinhua

    2006-01-01

    Nucleic acids can quench resonance light scattering (RLS) intensity of the Y(III)-1,6-bi(1'-phenyl-3'-methyl-5'-pyrazolone-4'-)hexane-dione(BPMPHD) complex in the pH range 5.0-5.8. Under optimal conditions, there are linear relationships between the quenching of RLS and the concentration of nucleic acids in the range 6.3 x 10(-8)-2.1 x 10(-5) g/mL for fish sperm DNA (fsDNA), 1.2 x 10(-8)-5.0 x 10(-5) g/mL for calf thymus DNA (ctDNA) and 6.0 x 10(-8)-2.0 x 10(-5) g/mL for yeast RNA (yRNA). The detection limits (3 s) of fsDNA, ctDNA and yRNA are 0.7 ng/mL, 3.8 ng/mL and 4.2 ng/mL, respectively. Copyright (c) 2006 John Wiley & Sons, Ltd.

  13. Cantu syndrome-associated SUR2 (ABCC9) mutations in distinct structural domains result in KATP channel gain-of-function by differential mechanisms.

    PubMed

    McClenaghan, Conor; Hanson, Alex; Sala-Rabanal, Monica; Roessler, Helen I; Josifova, Dragana; Grange, Dorothy K; van Haaften, Gijs; Nichols, Colin G

    2018-02-09

    The complex disorder Cantu syndrome (CS) arises from gain-of-function mutations in either KCNJ8 or ABCC9 , the genes encoding the Kir6.1 and SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, respectively. Recent reports indicate that such mutations can increase channel activity by multiple molecular mechanisms. In this study, we determined the mechanism by which K ATP function is altered by several substitutions in distinct structural domains of SUR2: D207E in the intracellular L0-linker and Y985S, G989E, M1060I, and R1154Q/R1154W in TMD2. We engineered substitutions at their equivalent positions in rat SUR2A (D207E, Y981S, G985E, M1056I, and R1150Q/R1150W) and investigated functional consequences using macroscopic rubidium ( 86 Rb + ) efflux assays and patch-clamp electrophysiology. Our results indicate that D207E increases K ATP channel activity by increasing intrinsic stability of the open state, whereas the cluster of Y981S/G985E/M1056I substitutions, as well as R1150Q/R1150W, augmented Mg-nucleotide activation. We also tested the responses of these channel variants to inhibition by the sulfonylurea drug glibenclamide, a potential pharmacotherapy for CS. None of the D207E, Y981S, G985E, or M1056I substitutions had a significant effect on glibenclamide sensitivity. However, Gln and Trp substitution at Arg-1150 significantly decreased glibenclamide potency. In summary, these results provide additional confirmation that mutations in CS-associated SUR2 mutations result in K ATP gain-of-function. They help link CS genotypes to phenotypes and shed light on the underlying molecular mechanisms, including consequences for inhibitory drug sensitivity, insights that may inform the development of therapeutic approaches to manage CS. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Multidrug Resistance Protein 1 (MRP1, ABCC1), a “Multitasking” ATP-binding Cassette (ABC) Transporter*

    PubMed Central

    Cole, Susan P. C.

    2014-01-01

    The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases. PMID:25281745

  15. Structural Confirmation of a Bent and Open Model for the Initiation Complex of T7 RNA Polymerase

    PubMed Central

    Turingan, Rosemary S.; Liu, Cuihua; Hawkins, Mary E.; Martin, Craig T.

    2008-01-01

    T7 RNA polymerase is known to induce bending of its promoter DNA upon binding, as evidenced by gel-shift assays and by recent end-to-end fluorescence energy transfer distance measurements. Crystal structures of promoter-bound and initially transcribing complexes, however, lack downstream DNA, providing no information on the overall path of the DNA through the protein. Crystal structures of the elongation complex do include downstream DNA and provide valuable guidance in the design of models for the complete melted bubble structure at initiation. In the current study, we test a specific structural model for the initiation complex, obtained by alignment of the C-terminal regions of the protein structures from both initiation and elongation and then simple transferal of the downstream DNA from the elongation complex onto the initiation complex. FRET measurement of distances from a point upstream on the promoter DNA to various points along the downstream helix reproduce the expected helical periodicity in the distances and support the model’s orientation and phasing of the downstream DNA. The model also makes predictions about the extent of melting downstream of the active site. By monitoring fluorescent base analogs incorporated at various positions in the DNA we have mapped the downstream edge of the bubble, confirming the model. The initially melted bubble, in the absence of substrate, encompasses 7–8 bases and is sufficient to allow synthesis of a 3 base transcript before further melting is required. The results demonstrate that despite massive changes in the N-terminal portion of the protein and in the DNA upstream of the active site, the DNA downstream of the active site is virtually identical in both initiation and elongation complexes. PMID:17253774

  16. A new crystal structure of the bifunctional antibiotic simocyclinone D8 bound to DNA gyrase gives fresh insight into the mechanism of inhibition.

    PubMed

    Hearnshaw, Stephen J; Edwards, Marcus J; Stevenson, Clare E; Lawson, David M; Maxwell, Anthony

    2014-05-15

    Simocyclinone D8 (SD8) is an antibiotic produced by Streptomyces antibioticus that targets DNA gyrase. A previous structure of SD8 complexed with the N-terminal domain of the DNA gyrase A protein (GyrA) suggested that four SD8 molecules stabilized a tetramer of the protein; subsequent mass spectrometry experiments suggested that a protein dimer with two symmetry-related SD8s was more likely. This work describes the structures of a further truncated form of the GyrA N-terminal domain fragment with and without SD8 bound. The structure with SD8 has the two SD8 molecules bound within the same GyrA dimer. This new structure is entirely consistent with the mutations in GyrA that confer SD8 resistance and, by comparison with a new apo structure of the GyrA N-terminal domain, reveals the likely conformation changes that occur upon SD8 binding and the detailed mechanism of SD8 inhibition of gyrase. Isothermal titration calorimetry experiments are consistent with the crystallography results and further suggest that a previously observed complex between SD8 and GyrB is ~1000-fold weaker than the interaction with GyrA. Copyright © 2014. Published by Elsevier Ltd.

  17. A New Crystal Structure of the Bifunctional Antibiotic Simocyclinone D8 Bound to DNA Gyrase Gives Fresh Insight into the Mechanism of Inhibition

    PubMed Central

    Hearnshaw, Stephen J.; Edwards, Marcus J.; Stevenson, Clare E.; Lawson, David M.; Maxwell, Anthony

    2014-01-01

    Simocyclinone D8 (SD8) is an antibiotic produced by Streptomyces antibioticus that targets DNA gyrase. A previous structure of SD8 complexed with the N-terminal domain of the DNA gyrase A protein (GyrA) suggested that four SD8 molecules stabilized a tetramer of the protein; subsequent mass spectrometry experiments suggested that a protein dimer with two symmetry-related SD8s was more likely. This work describes the structures of a further truncated form of the GyrA N-terminal domain fragment with and without SD8 bound. The structure with SD8 has the two SD8 molecules bound within the same GyrA dimer. This new structure is entirely consistent with the mutations in GyrA that confer SD8 resistance and, by comparison with a new apo structure of the GyrA N-terminal domain, reveals the likely conformation changes that occur upon SD8 binding and the detailed mechanism of SD8 inhibition of gyrase. Isothermal titration calorimetry experiments are consistent with the crystallography results and further suggest that a previously observed complex between SD8 and GyrB is ~ 1000-fold weaker than the interaction with GyrA. PMID:24594357

  18. Single Nucleotide Polymorphisms of Stemness Genes Predicted to Regulate RNA Splicing, microRNA and Oncogenic Signaling are Associated with Prostate Cancer Survival.

    PubMed

    Freedman, Jennifer A; Wang, Yanru; Li, Xuechan; Liu, Hongliang; Moorman, Patricia G; George, Daniel J; Lee, Norman H; Hyslop, Terry; Wei, Qingyi; Patierno, Steven R

    2018-05-03

    Prostate cancer is a clinically and molecularly heterogeneous disease, with variation in outcomes only partially predicted by grade and stage. Additional tools to distinguish indolent from aggressive disease are needed. Phenotypic characteristics of stemness correlate with poor cancer prognosis. Given this correlation, we identified single nucleotide polymorphisms (SNPs) of stemness-related genes and examined their associations with prostate cancer survival. SNPs within stemness-related genes were analyzed for association with overall survival of prostate cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Significant SNPs predicted to be functional were selected for linkage disequilibrium analysis and combined and stratified analyses. Identified SNPs were evaluated for association with gene expression. SNPs of CD44 (rs9666607), ABCC1 (rs35605 and rs212091) and GDF15 (rs1058587) were associated with prostate cancer survival and predicted to be functional. A role for rs9666607 of CD44 and rs35605 of ABCC1 in RNA splicing regulation, rs212091 of ABCC1 in miRNA binding site activity and rs1058587 of GDF15 in causing an amino acid change was predicted. These SNPs represent potential novel prognostic markers for overall survival of prostate cancer and support a contribution of the stemness pathway to prostate cancer patient outcome.

  19. Fragmented red blood cells automated measurement is a useful parameter to exclude schistocytes on the blood film.

    PubMed

    Lesesve, J-F; Asnafi, V; Braun, F; Zini, G

    2012-12-01

      The diagnosis of thrombotic microangiopathies (TMA) or disorders that may mimic their features remains difficult. Mechanical hemolytic anemia with the detection of shistocytes on the blood smear is a cornerstone finding to assess the diagnosis, but microscopic evaluation of shistocytes is still problematic with wide interobserver variations. Some of the latest generation automated blood cell counters (ABCC) propose an original quantitative approach of fragmented red cells (FRC), aiming to be equivalent to the microscopic count. This parameter has been poorly evaluated.   To assess the predictive value (PV) of this test, we conducted studies comparing automated and microscopic counts of FRC/schistocytes, based on the analysis of thousands samples in four university hospitals and using the 2 ABCC currently available (Siemens ADVIA series, Sysmex XE-2100). Reference range for FRC was <0.3% for the ADVIA and <0.5% for the XE-2100. The presence of FRC below a threshold determined at 1% (ADVIA and XE-2100) had a negative PV close to 100% to exclude the presence of schistocyte on the blood smear, but in relationship with a poor PV value. Our study validated the utility of the immediately available FRC parameter on ABCC to exclude schistocytes and the diagnosis of TMA. © 2012 Blackwell Publishing Ltd.

  20. Elevated Dietary Magnesium Prevents Connective Tissue Mineralization in a Mouse Model of Pseudoxanthoma Elasticum (Abcc6−/−)

    PubMed Central

    LaRusso, Jennifer; Li, Qiaoli; Jiang, Qiujie; Uitto, Jouni

    2010-01-01

    Pseudoxanthoma elasticum (PXE) is an autosomal recessive multi-system disorder characterized by ectopic connective tissue mineralization, with clinical manifestations primarily in the skin, eyes and the cardiovascular system. There is considerable, both intra-and inter-familial variability in the spectrum of phenotypic presentation. Previous studies have suggested that mineral content of the diet may modify the severity of the clinical phenotype in PXE. In this study, we utilized a targeted mutant mouse (Abcc6−/−) as a model system for PXE. We examined the effects of changes in dietary phosphate and magnesium on the mineralization process using calcification of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Mice placed on custom-designed diets either high or low in phosphate did not show changes in mineralization, which was similar to that noted in Abcc6−/− mice on control diet. However, mice placed on diet enriched in magnesium (5-fold) showed no evidence of connective tissue mineralization in this mouse model of PXE. The inhibitory capacity of magnesium was confirmed in a cell-based mineralization assay system in vitro. Collectively, our observations suggest that assessment of dietary magnesium in patients with PXE may be warranted. PMID:19122649

  1. Serum Factors from Pseudoxanthoma Elasticum Patients Alter Elastic Fiber Formation In Vitro

    PubMed Central

    Le Saux, Olivier; Bunda, Severa; VanWart, Christopher M.; Douet, Vanessa; Got, Laurence; Martin, Ludovic; Hinek, Aleksander

    2017-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable disorder mainly characterized by calcified elastic fibers in cutaneous, ocular, and vascular tissues. PXE is caused by mutations in ABCC6, a gene encoding an ABC transporter predominantly expressed in liver and kidneys. The functional relationship between ABCC6 and elastic fiber calcification is unknown. We speculated that ABCC6 deficiency in PXE patients induces a persistent imbalance in circulating metabolite(s), which may impair the synthetic abilities of normal elastoblasts or specifically alter elastic fiber assembly. Therefore, we compared the deposition of elastic fiber proteins in cultures of fibroblasts derived from PXE and unaffected individuals. PXE fibroblasts cultured with normal human serum expressed and deposited increased amounts of proteins, but structurally normal elastic fibers. Interestingly, normal and PXE fibroblasts as well as normal smooth muscle cells deposited abnormal aggregates of elastic fibers when maintained in the presence of serum from PXE patients. The expression of tropoelastin and other elastic fiber-associated genes was not significantly modulated by the presence of PXE serum. These results indicated that certain metabolites present in PXE sera interfered with the normal assembly of elastic fibers in vitro and suggested that PXE is a primary metabolic disorder with secondary connective tissue manifestations. PMID:16543900

  2. Memantine as adjunctive treatment to risperidone in children with autistic disorder: a randomized, double-blind, placebo-controlled trial.

    PubMed

    Ghaleiha, Ali; Asadabadi, Mahtab; Mohammadi, Mohammad-Reza; Shahei, Maryam; Tabrizi, Mina; Hajiaghaee, Reza; Hassanzadeh, Elmira; Akhondzadeh, Shahin

    2013-05-01

    Autism is a neurodevelopmental disorder that causes significant impairment in socialization and communication. It is also associated with ritualistic and stereotypical behaviour. Recent studies propose both hyper-and hypoglutamatergic ideologies for autism. The objective of this study was to assess the effects of memantine plus risperidone in the treatment of children with autism. Children with autism were randomly allocated to risperidone plus memantine or placebo plus risperidone for a 10-wk, double-blind, placebo-controlled study. The dose of risperidone was titrated up to 3 mg/d and memantine was titrated to 20 mg/d. Children were assessed at baseline and after 2, 4, 6, 8 and 10 wk of starting medication protocol. The primary outcome measure was the irritability subscale of Aberrant Behavior Checklist-Community (ABC-C). Difference between the two treatment arms was significant as the group that received memantine had greater reduction in ABC-C subscale scores for irritability, stereotypic behaviour and hyperactivity. Eight side-effects were observed over the trial, out of the 25 side-effects that the checklist included. The difference between the two groups in the frequency of side-effects was not significant. The present study suggests that memantine may be a potential adjunctive treatment strategy for autism and it was generally well tolerated. This trial is registered with the Iranian Clinical Trials Registry (IRCT1138901151556N10; www.irct.ir).

  3. Dependence of Deodorant Usage on ABCC11 Genotype: Scope for Personalized Genetics in Personal Hygiene

    PubMed Central

    Rodriguez, Santiago; Steer, Colin D; Farrow, Alexandra; Golding, Jean; Day, Ian N M

    2013-01-01

    Earwax type and axillary odor are genetically determined by rs17822931, a single-nucleotide polymorphism (SNP) located in the ABCC11 gene. The literature has been concerned with the Mendelian trait of earwax, although axillary odor is also Mendelian. Ethnic diversity in rs17822931 exists, with higher frequency of allele A in east Asians. Influence on deodorant usage has not been investigated. In this work, we present a detailed analysis of the rs17822931 effect on deodorant usage in a large (N∼17,000 individuals) population cohort (the Avon Longitudinal Study of Parents and Children (ALSPAC)). We found strong evidence (P=3.7 × 10−20) indicating differential deodorant usage according to the rs17822931 genotype. AA homozygotes were almost 5-fold overrepresented in categories of never using deodorant or using it infrequently. However, 77.8% of white European genotypically nonodorous individuals still used deodorant, and 4.7% genotypically odorous individuals did not. We provide evidence of a behavioral effect associated with rs17822931. This effect has a biological basis that can result in a change in the family's environment if an aerosol deodorant is used. It also indicates potential cost saving to the nonodorous and scope for personalized genetics usage in personal hygiene choices, with consequent reduction of inappropriate chemical exposures for some. PMID:23325016

  4. l-Carnosine As an Adjunctive Therapy to Risperidone in Children with Autistic Disorder: A Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Hajizadeh-Zaker, Reihaneh; Ghajar, Alireza; Mesgarpour, Bita; Afarideh, Mohsen; Mohammadi, Mohammad-Reza; Akhondzadeh, Shahin

    2018-02-01

    This study aimed at investigating the efficacy and tolerability of l-carnosine as an add-on to risperidone in the management of children with autism. This was a 10-week, randomized, double-blind, placebo-controlled study. Seventy drug-free children aged 4-12 years old with a diagnosis of autism spectrum disorder (ASD), according to the Diagnostic and Statistical Manual of Mental Disorders, fifth edition. (DSM-5) who had an Aberrant Behavior Checklist-Community (ABC-C) scale irritability subscale score of ≥12, entered the study. The patients were randomly assigned to l-carnosine (800 mg/day in 2 divided doses) or placebo in addition to risperidone titrated up to 2 mg/day (based on body weight) for 10 weeks. The children were assessed by using ABC-C at baseline and weeks 5 and 10 post-baseline. The primary outcome measure was the mean change in the ABC-C irritability subscale score, and other subscale scores were defined as secondary outcomes. Using the general linear model repeated measures, no significant effect was observed for time × treatment interaction on the irritability subscale scores. However, significant effect was detected on the hyperactivity/noncompliance subscale [F (1.62, 64.96) = 3.53, p-value = 0.044]. No significant improvements were obtained on the lethargy/social withdrawal, stereotypic behavior, and inappropriate speech subscale scores. Significantly greater score reduction in the hyperactivity/noncompliance subscale occurred in the l-carnosine group compared with the placebo group at the end of the trial. Extrapyramidal Symptom Rating Scale Scores and its changes did not differ between the two groups. The frequency of other side effects was not significantly different between the two groups. Although no significant difference was detected on the irritability subscale scores, l-carnosine add-on can improve hyperactivity/noncompliance subscales of the ABC-C rating scale in patients with ASD.

  5. Levels of circulating soluble receptor activator of NF-κB and interleukins-1 predicting outcome of locally advanced basal cell carcinoma.

    PubMed

    Lin, Quan; Li, Yan; Zhang, Duo; Jin, Hongjuan

    2016-12-01

    Decreasing levels of cytokines are associated with better responses to therapies, while increasing levels are related to progression or recurrence and decreased survival. NF-κB's role in the cell cycle and its ubiquity are only stressed out by the evidence for the importance of activation (aberrant activation in the majority of cancers) of both canonical and non-canonical pathways in advanced basal cell carcinomas (aBCCs), a subset of basal cell carcinoma (BCC). NF-κB acts through its canonical, or classical, form activated by interleukin-1 (IL-1), regulates cytoprotective, innate, and adaptive immune responses. However, NF-κB2 often acts through its non-canonical or alternate pathway. During the two-year study period, we selected 21 patients presenting with aBCCs due to delay in accessing medical attention with an advanced form of BCCs (n = 19) and infiltrative BCCs (n = 2). Initial diagnosis of BCCs of head and neck was made clinically and verified by skin biopsy. Venous blood was drawn and serum was obtained. Samples were collected at baseline and every three days thereafter (days 3, 6, 9, etc. until surgery). Antigenes' quantities (cytokines) were determined by ELISA kits. Initially, the mean value of all cytokine subjects was significantly different related to the control group (P <0.05). Changes in serum levels of circulating soluble receptor activator of NF-κB and interleukins-1 (α and β) were observed following the surgery. Changes in serum levels of circulating soluble receptor activator of NF-κB and interleukins-1 (α and β) are evident throughout our study period and a certain regularity in its dynamics is evident as the follow-up period moves away. It was therefore concluded that measurement of these factors might be useful in predicting the overall outcome of patients with aBCCs. This study highlights the systemic effects of aBCCs, but further studies are required on this topic. © The Author(s) 2016.

  6. Levels of circulating soluble receptor activator of NF-κB and interleukins-1 predicting outcome of locally advanced basal cell carcinoma

    PubMed Central

    Lin, Quan; Li, Yan; Zhang, Duo; Jin, Hongjuan

    2016-01-01

    Decreasing levels of cytokines are associated with better responses to therapies, while increasing levels are related to progression or recurrence and decreased survival. NF-κB’s role in the cell cycle and its ubiquity are only stressed out by the evidence for the importance of activation (aberrant activation in the majority of cancers) of both canonical and non-canonical pathways in advanced basal cell carcinomas (aBCCs), a subset of basal cell carcinoma (BCC). NF-κB acts through its canonical, or classical, form activated by interleukin-1 (IL-1), regulates cytoprotective, innate, and adaptive immune responses. However, NF-κB2 often acts through its non-canonical or alternate pathway. During the two-year study period, we selected 21 patients presenting with aBCCs due to delay in accessing medical attention with an advanced form of BCCs (n = 19) and infiltrative BCCs (n = 2). Initial diagnosis of BCCs of head and neck was made clinically and verified by skin biopsy. Venous blood was drawn and serum was obtained. Samples were collected at baseline and every three days thereafter (days 3, 6, 9, etc. until surgery). Antigenes’ quantities (cytokines) were determined by ELISA kits. Initially, the mean value of all cytokine subjects was significantly different related to the control group (P <0.05). Changes in serum levels of circulating soluble receptor activator of NF-κB and interleukins-1 (α and β) were observed following the surgery. Changes in serum levels of circulating soluble receptor activator of NF-κB and interleukins-1 (α and β) are evident throughout our study period and a certain regularity in its dynamics is evident as the follow-up period moves away. It was therefore concluded that measurement of these factors might be useful in predicting the overall outcome of patients with aBCCs. This study highlights the systemic effects of aBCCs, but further studies are required on this topic. PMID:27760847

  7. Association of Allelic Interaction of Single Nucleotide Polymorphisms of Influx and Efflux Transporters Genes With Nonhematologic Adverse Events of Docetaxel in Breast Cancer Patients.

    PubMed

    Jabir, Rafid Salim; Ho, Gwo Fuang; Annuar, Muhammad Azrif Bin Ahmad; Stanslas, Johnson

    2018-05-04

    Nonhematologic adverse events (AEs) of docetaxel constitute an extra burden in the treatment of cancer patients and necessitate either a dose reduction or an outright switch of docetaxel for other regimens. These AEs are frequently associated with genetic polymorphisms of genes encoding for proteins involved docetaxel disposition. Therefore, we investigated that association in Malaysian breast cancer patients. A total of 110 Malaysian breast cancer patients were enrolled in the present study, and their blood samples were investigated for different single nucleotide polymorphisms using polymerase chain reaction restriction fragment length polymorphism. AEs were evaluated using the Common Terminology Criteria for Adverse Events, version 4.0. Fatigue, nausea, oral mucositis, and vomiting were the most common nonhematologic AEs. Rash was associated with heterozygous and mutant genotypes of ABCB1 3435C>T (P < .05). Moreover, patients carrying the GG genotype of ABCB1 2677G>A/T reported more fatigue than those carrying the heterozygous genotype GA (P < .05). The presence of ABCB1 3435-T, ABCC2 3972-C, ABCC2 1249-G, and ABCB1 2677-G alleles was significantly associated with nausea and oral mucositis. The coexistence of ABCB1 3435-C, ABCC2 3972-C, ABCC2 1249-G, and ABCB1 2677-A was significantly associated with vomiting (P < .05). The prevalence of nonhematologic AEs in breast cancer patients treated with docetaxel has been relatively high. The variant allele of ABCB1 3435C>T polymorphism could be a potential predictive biomarker of docetaxel-induced rash, and homozygous wild-type ABCB1 2677G>A/T might predict for a greater risk of fatigue. In addition, the concurrent presence of specific alleles could be predictive of vomiting, nausea, and oral mucositis. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect

    PubMed Central

    Zhang, Dandan; Gong, Lingling; He, Fei; Soberón, Mario; Bravo, Alejandra; Tabashnik, Bruce E.; Wu, Kongming

    2016-01-01

    Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. Recent efforts to delay pest adaptation to Bt crops focus primarily on combinations of two or more Bt toxins that kill the same pest, but this approach is often compromised because resistance to one Bt toxin causes cross-resistance to others. Thus, integration of Bt toxins with alternative controls that do not exhibit such cross-resistance is urgently needed. The ideal scenario of negative cross-resistance, where selection for resistance to a Bt toxin increases susceptibility to alternative controls, has been elusive. Here we discovered that selection of the global crop pest, Helicoverpa armigera, for >1000-fold resistance to Bt toxin Cry1Ac increased susceptibility to abamectin and spineotram, insecticides derived from the soil bacteria Streptomyces avermitilis and Saccharopolyspora spinosa, respectively. Resistance to Cry1Ac did not affect susceptibility to the cyclodiene, organophospate, or pyrethroid insecticides tested. Whereas previous work demonstrated that the resistance to Cry1Ac in the strain analyzed here is conferred by a mutation disrupting an ATP-binding cassette protein named ABCC2, the new results show that increased susceptibility to abamectin is genetically linked with the same mutation. Moreover, RNAi silencing of HaABCC2 not only decreased susceptibility to Cry1Ac, it also increased susceptibility to abamectin. The mutation disrupting ABCC2 reduced removal of abamectin in live larvae and in transfected Hi5 cells. The results imply that negative cross-resistance occurs because the wild type ABCC2 protein plays a key role in conferring susceptibility to Cry1Ac and in decreasing susceptibility to abamectin. The negative cross-resistance between a Bt toxin and other bacterial insecticides reported here may facilitate more sustainable pest control. PMID:26872031

  9. Polymorphisms in ABC Transporter Genes and Concentrations of Mercury in Newborns – Evidence from Two Mediterranean Birth Cohorts

    PubMed Central

    Llop, Sabrina; Engström, Karin; Ballester, Ferran; Franforte, Elisa; Alhamdow, Ayman; Pisa, Federica; Tratnik, Janja Snoj; Mazej, Datja; Murcia, Mario; Rebagliato, Marisa; Bustamante, Mariona; Sunyer, Jordi; Sofianou-Katsoulis, Αikaterini; Prasouli, Alexia; Antonopoulou, Eleni; Antoniadou, Ioanna; Nakou, Sheena; Barbone, Fabio; Horvat, Milena; Broberg, Karin

    2014-01-01

    Background The genetic background may influence methylmercury (MeHg) metabolism and neurotoxicity. ATP binding cassette (ABC) transporters actively transport various xenobiotics across biological membranes. Objective To investigate the role of ABC polymorphisms as modifiers of prenatal exposure to MeHg. Methods The study population consisted of participants (n = 1651) in two birth cohorts, one in Italy and Greece (PHIME) and the other in Spain (INMA). Women were recruited during pregnancy in Italy and Spain, and during the perinatal period in Greece. Total mercury concentrations were measured in cord blood samples by atomic absorption spectrometry. Maternal fish intake during pregnancy was determined from questionnaires. Polymorphisms (n = 5) in the ABC genes ABCA1, ABCB1, ABCC1 and ABCC2 were analysed in both cohorts. Results ABCB1 rs2032582, ABCC1 rs11075290, and ABCC2 rs2273697 modified the associations between maternal fish intake and cord blood mercury concentrations. The overall interaction coefficient between rs2032582 and log2-transformed fish intake was negative for carriers of GT (β = −0.29, 95%CI −0.47, −0.12) and TT (β = −0.49, 95%CI −0.71, −0.26) versus GG, meaning that for a doubling in fish intake of the mothers, children with the rs2032582 GG genotype accumulated 35% more mercury than children with TT. For rs11075290, the interaction coefficient was negative for carriers of TC (β = −0.12, 95%CI −0.33, 0.09), and TT (β = −0.28, 95%CI −0.51, −0.06) versus CC. For rs2273697, the interaction coefficient was positive when combining GA+AA (β = 0.16, 95%CI 0.01, 0.32) versus GG. Conclusion The ABC transporters appear to play a role in accumulation of MeHg during early development. PMID:24831289

  10. DNA interaction studies of new nano metal based anticancer agent: validation by spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Tabassum, Sartaj; Sharma, Girish Chandra; Arjmand, Farukh; Azam, Ameer

    2010-05-01

    A new nano dimensional heterobimetallic Cu-Sn containing complex as a potential drug candidate was designed, synthesized and characterized by analytical and spectral methods. The electronic absorption and electron paramagnetic resonance parameters of the complex revealed that the Cu(II) ion exhibits a square pyramidal geometry with the two pyrazole nitrogen atoms, the amine nitrogen atom and the carboxylate oxygen of the phenyl glycine chloride ligand located at the equatorial sites and the coordinated chloride ion occupying an apical position. 119Sn NMR spectral data showed a hexa-coordinated environment around the Sn(IV) metal ion. TEM, AFM and XRD measurements illustrate that the complex could induce the condensation of CT-DNA to a particulate nanostructure. The interaction of the Cu-Sn complex with CT-DNA was investigated by UV-vis absorption and emission spectroscopy, as well as cyclic voltammetric measurements. The results indicated that the complex interacts with DNA through an electrostatic mode of binding with an intrinsic binding constant Kb = 8.42 × 104 M - 1. The Cu-Sn complex exhibits effective cleavage of pBR322 plasmid DNA by an oxidative cleavage mechanism, monitored at different concentrations both in the absence and in the presence of reducing agents.

  11. Mass spectrometry reveals that the antibiotic simocyclinone D8 binds to DNA gyrase in a "bent-over" conformation: evidence of positive cooperativity in binding.

    PubMed

    Edwards, Marcus J; Williams, Mark A; Maxwell, Anthony; McKay, Adam R

    2011-05-03

    DNA topoisomerases are enzymes that control DNA topology and are vital targets for antimicrobial and anticancer drugs. Here we present a mass spectrometry study of complexes formed between the A subunit of the topoisomerase DNA gyrase and the bifunctional inhibitor simocyclinone D8 (SD8), an antibiotic isolated from Streptomyces. These studies show that, in an alternative mode of interaction to that found by X-ray crystallography, each subunit binds a single bifunctional inhibitor with separate binding pockets for the two ends of SD8. The gyrase subunits form constitutive dimers, and fractional occupancies of inhibitor-bound states show that there is strong allosteric cooperativity in the binding of two bifunctional ligands to the dimer. We show that the mass spectrometry data can be fitted to a general model of cooperative binding via an extension of the "tight-binding" approach, providing a rigorous determination of the dissociation constants and degree of cooperativity. This general approach will be applicable to other systems with multiple binding sites and highlights mass spectrometry's role as a powerful emerging tool for unraveling the complexities of biomolecular interactions.

  12. NRAGE is involved in homologous recombination repair to resist the DNA-damaging chemotherapy and composes a ternary complex with RNF8-BARD1 to promote cell survival in squamous esophageal tumorigenesis.

    PubMed

    Yang, Q; Pan, Q; Li, C; Xu, Y; Wen, C; Sun, F

    2016-08-01

    NRAGE, a neurotrophin receptor-interacting melanoma antigen-encoding gene homolog, is significantly increased in the nucleus of radioresistant esophageal tumor cell lines and is highly upregulated to promote cell proliferation in esophageal carcinomas (ECs). However, whether the overexpressed NRAGE promotes cell growth by participating in DNA-damage response (DDR) is still unclear. Here we show that NRAGE is required for efficient double-strand breaks (DSBs) repair via homologous recombination repair (HRR) and downregulation of NRAGE greatly sensitizes EC cells to DNA-damaging agents both in vitro and in vivo. Moreover, NRAGE not only regulates the stability of DDR factors, RNF8 and BARD1, in a ubiquitin-proteolytic pathway, but also chaperons the interaction between BARD1 and RNF8 via their RING domains to form a novel ternary complex. Additionally, the expression of NRAGE is closely correlated with RNF8 and BARD1 in esophageal tumor tissues. In summary, our findings reveal a novel function of NRAGE that will help to guide personalized esophageal cancer treatments by targeting NRAGE to increase cell sensitivity to DNA-damaging therapeutics in the long run.

  13. Brain pathologies in extreme old age.

    PubMed

    Neltner, Janna H; Abner, Erin L; Jicha, Gregory A; Schmitt, Frederick A; Patel, Ela; Poon, Leonard W; Marla, Gearing; Green, Robert C; Davey, Adam; Johnson, Mary Ann; Jazwinski, S Michal; Kim, Sangkyu; Davis, Daron; Woodard, John L; Kryscio, Richard J; Van Eldik, Linda J; Nelson, Peter T

    2016-01-01

    With an emphasis on evolving concepts in the field, we evaluated neuropathologic data from very old research volunteers whose brain autopsies were performed at the University of Kentucky Alzheimer's Disease Center, incorporating data from the Georgia Centenarian Study (n = 49 cases included), Nun Study (n = 17), and University of Kentucky Alzheimer's Disease Center (n = 11) cohorts. Average age of death was 102.0 (range: 98-107) years overall. Alzheimer's disease pathology was not universal (62% with "moderate" or "frequent" neuritic amyloid plaque densities), whereas frontotemporal lobar degeneration was absent. By contrast, some hippocampal neurofibrillary tangles (including primary age-related tauopathy) were observed in every case. Lewy body pathology was seen in 16.9% of subjects and hippocampal sclerosis of aging in 20.8%. We describe anatomic distributions of pigment-laden macrophages, expanded Virchow-Robin spaces, and arteriolosclerosis among Georgia Centenarians. Moderate or severe arteriolosclerosis pathology, throughout the brain, was associated with both hippocampal sclerosis of aging pathology and an ABCC9 gene variant. These results provide fresh insights into the complex cerebral multimorbidity, and a novel genetic risk factor, at the far end of the human aging spectrum. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer.

    PubMed

    Dvorak, Pavel; Pesta, Martin; Soucek, Pavel

    2017-05-01

    Adenosine triphosphate-binding cassette proteins constitute a large family of active transporters through extracellular and intracellular membranes. Increased drug efflux based on adenosine triphosphate-binding cassette protein activity is related to the development of cancer cell chemoresistance. Several articles have focused on adenosine triphosphate-binding cassette gene expression profiles (signatures), based on the expression of all 49 human adenosine triphosphate-binding cassette genes, in individual tumor types and reported connections to established clinicopathological features. The aim of this study was to test our theory about the existence of adenosine triphosphate-binding cassette gene expression profiles common to multiple types of tumors, which may modify tumor progression and provide clinically relevant information. Such general adenosine triphosphate-binding cassette profiles could constitute a new attribute of carcinogenesis. Our combined cohort consisted of tissues from 151 cancer patients-breast, colorectal, and pancreatic carcinomas. Standard protocols for RNA isolation and quantitative real-time polymerase chain reaction were followed. Gene expression data from individual tumor types as well as a merged tumor dataset were analyzed by bioinformatics tools. Several general adenosine triphosphate-binding cassette profiles, with differences in gene functions, were established and shown to have significant relations to clinicopathological features such as tumor size, histological grade, or clinical stage. Genes ABCC7, A3, A8, A12, and C8 prevailed among the most upregulated or downregulated ones. In conclusion, the results supported our theory about general adenosine triphosphate-binding cassette gene expression profiles and their importance for cancer on clinical as well as research levels. The presence of ABCC7 (official symbol CFTR) among the genes with key roles in the profiles supports the emerging evidence about its crucial role in various cancers. Graphical abstract.

  15. Permanent neonatal diabetes mellitus: prevalence and genetic diagnosis in the SEARCH for Diabetes in Youth Study.

    PubMed

    Kanakatti Shankar, Roopa; Pihoker, Catherine; Dolan, Lawrence M; Standiford, Debra; Badaru, Angela; Dabelea, Dana; Rodriguez, Beatriz; Black, Mary Helen; Imperatore, Giuseppina; Hattersley, Andrew; Ellard, Sian; Gilliam, Lisa K

    2013-05-01

    Neonatal diabetes mellitus (NDM) is defined as diabetes with onset before 6 months of age. Nearly half of individuals with NDM are affected by permanent neonatal diabetes mellitus (PNDM). Mutations in KATP channel genes (KCNJ11, ABCC8) and the insulin gene (INS) are the most common causes of PNDM. To estimate the prevalence of PNDM among SEARCH for Diabetes in Youth (SEARCH) study participants (2001-2008) and to identify the genetic mutations causing PNDM. SEARCH is a multicenter population-based study of diabetes in youth <20 yr of age. Participants diagnosed with diabetes before 6 months of age were invited for genetic testing for mutations in the KCNJ11, ABCC8, and INS genes. Of the 15,829 SEARCH participants with diabetes, 39 were diagnosed before 6 months of age. Thirty-five of them had PNDM (0.22% of all diabetes cases in SEARCH), 3 had transient neonatal diabetes that had remitted by 18 months and 1 was unknown. The majority of them (66.7%) had a clinical diagnosis of type1 diabetes by their health care provider. Population prevalence of PNDM in youth <20 yr was estimated at 1 in 252 000. Seven participants underwent genetic testing; mutations causing PNDM were identified in five (71%), (two KCNJ11, three INS). We report the first population-based frequency of PNDM in the US based on the frequency of PNDM in SEARCH. Patients with NDM are often misclassified as having type1 diabetes. Widespread education is essential to encourage appropriate genetic testing and treatment of NDM. © 2012 John Wiley & Sons A/S.

  16. Recurrent spontaneous hypoglycaemia causes loss of neurogenic and neuroglycopaenic signs in infants with congenital hyperinsulinism.

    PubMed

    Christesen, Henrik T; Brusgaard, Klaus; Hussain, Khalid

    2012-04-01

    Hypoglycaemia-associated autonomic failure (HAAF) with impaired neurogenic and neuroglycopaenic responses occurs in adults following recent, repeated hypoglycaemia. We aimed to evaluate whether HAAF also occurs in patients with infant-onset congenital hyperinsulinism (CHI). A controlled fast was performed in (i) seven CHI infants with initial symptomatic hypoglycaemia and three recent episodes of spontaneous recurrent hypoglycaemia each lasting <5 min and in (ii) seven infants with idiopathic ketotic hypoglycaemia for control. At the time of hypoglycaemia (blood glucose <3 mmol/l or clinical signs), blood was drawn for serum insulin, cortisol, glucagon, adrenalin and nor-adrenalin. Signs of hypoglycaemia were documented. In CHI patients, the ABCC8 and KCNJ11 genes were analysed by denaturing high performance liquid chromatography (DHPLC) and/or direct bidirectional sequencing. Two CHI patients had a paternal ABCC8 mutation, five had no mutations. When repeated hypoglycaemia was provoked, all CHI patients exhibited a complete loss of clinical signs of hypoglycaemia, along with a global blunting of the counter-regulatory hormones cortisol, glucagon, growth hormone, adrenalin and nor-adrenalin responses (median values 256 nmol/l, 23 pmol/l, 5·6 mU/l, 390 pmol/l and 2·9 nmol/l, respectively), irrespective of mutational status. In the controls, hypoglycaemia was always clinically overt with normal counter-regulatory cortisol, glucagon, adrenalin and nor-adrenalin responses (530 nmol/l, 60, 920 pmol/l and 4·0 nmol/l, respectively). Recurrent hyperinsulinaemic hypoglycaemia even of short duration blunts the autonomic, neuroglycopaenic and glucose counter-regulatory hormonal responses in patients with infant-onset CHI resulting in clinically silent hypoglycaemia. Tight, or continuous, glucose monitoring is therefore recommended, especially in conservatively treated patients. © 2012 Blackwell Publishing Ltd.

  17. Transcriptome-Based Identification of ABC Transporters in the Western Tarnished Plant Bug Lygus hesperus

    PubMed Central

    Hull, J. Joe; Chaney, Kendrick; Geib, Scott M.; Fabrick, Jeffrey A.; Brent, Colin S.; Walsh, Douglas; Lavine, Laura Corley

    2014-01-01

    ATP-binding cassette (ABC) transporters are a large superfamily of proteins that mediate diverse physiological functions by coupling ATP hydrolysis with substrate transport across lipid membranes. In insects, these proteins play roles in metabolism, development, eye pigmentation, and xenobiotic clearance. While ABC transporters have been extensively studied in vertebrates, less is known concerning this superfamily in insects, particularly hemipteran pests. We used RNA-Seq transcriptome sequencing to identify 65 putative ABC transporter sequences (including 36 full-length sequences) from the eight ABC subfamilies in the western tarnished plant bug (Lygus hesperus), a polyphagous agricultural pest. Phylogenetic analyses revealed clear orthologous relationships with ABC transporters linked to insecticide/xenobiotic clearance and indicated lineage specific expansion of the L. hesperus ABCG and ABCH subfamilies. The transcriptional profile of 13 LhABCs representative of the ABCA, ABCB, ABCC, ABCG, and ABCH subfamilies was examined across L. hesperus development and within sex-specific adult tissues. All of the transcripts were amplified from both reproductively immature and mature adults and all but LhABCA8 were expressed to some degree in eggs. Expression of LhABCA8 was spatially localized to the testis and temporally timed with male reproductive development, suggesting a potential role in sexual maturation and/or spermatozoa protection. Elevated expression of LhABCC5 in Malpighian tubules suggests a possible role in xenobiotic clearance. Our results provide the first transcriptome-wide analysis of ABC transporters in an agriculturally important hemipteran pest and, because ABC transporters are known to be important mediators of insecticidal resistance, will provide the basis for future biochemical and toxicological studies on the role of this protein family in insecticide resistance in Lygus species. PMID:25401762

  18. The insulin-sensitivity sulphonylurea receptor variant is associated with thyrotoxic paralysis.

    PubMed

    Rolim, Ana Luiza R; Lindsey, Susan C; Kunii, Ilda S; Crispim, Felipe; Moisés, Regina Célia M S; Maciel, Rui M B; Dias-da-Silva, Magnus R

    2014-10-01

    Thyrotoxicosis is the most common cause of the acquired flaccid muscle paralysis in adults called thyrotoxic periodic paralysis (TPP) and is characterised by transient hypokalaemia and hypophosphataemia under high thyroid hormone levels that is frequently precipitated by carbohydrate load. The sulphonylurea receptor 1 (SUR1 (ABCC8)) is an essential regulatory subunit of the β-cell ATP-sensitive K(+) channel that controls insulin secretion after feeding. Additionally, the SUR1 Ala1369Ser variant appears to be associated with insulin sensitivity. We examined the ABCC8 gene at the single nucleotide level using PCR-restriction fragment length polymorphism (RFLP) analysis to determine its allelic variant frequency and calculated the frequency of the Ala1369Ser C-allele variant in a cohort of 36 Brazilian TPP patients in comparison with 32 controls presenting with thyrotoxicosis without paralysis (TWP). We verified that the frequency of the alanine 1369 C-allele was significantly higher in TPP patients than in TWP patients (61.1 vs 34.4%, odds ratio (OR)=3.42, P=0.039) and was significantly more common than the minor allele frequency observed in the general population from the 1000 Genomes database (61.1 vs 29.0%, OR=4.87, P<0.005). Additionally, the C-allele frequency was similar between TWP patients and the general population (34.4 vs 29%, OR=1.42, P=0.325). We have demonstrated that SUR1 alanine 1369 variant is associated with allelic susceptibility to TPP. We suggest that the hyperinsulinaemia that is observed in TPP may be linked to the ATP-sensitive K(+)/SUR1 alanine variant and, therefore, contribute to the major feedforward precipitating factors in the pathophysiology of TPP. © 2014 Society for Endocrinology.

  19. Purification, crystallization and preliminary X-ray analysis of the BseCI DNA methyltransferase from Bacillus stearothermophilus in complex with its cognate DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapetaniou, Evangelia G.; Kotsifaki, Dina; Providaki, Mary

    2007-01-01

    The DNA methyltransferase M.BseCI from B. stearothermophilus was crystallized as a complex with its cognate DNA. Crystals belong to space group P6 and diffract to 2.5 Å resolution at a synchrotron source. The DNA methyltransferase M.BseCI from Bacillus stearothermophilus (EC 2.1.1.72), a 579-amino-acid enzyme, methylates the N6 atom of the 3′ adenine in the sequence 5′-ATCGAT-3′. M.BseCI was crystallized in complex with its cognate DNA. The crystals were found to belong to the hexagonal space group P6, with unit-cell parameters a = b = 87.0, c = 156.1 Å, β = 120.0° and one molecule in the asymmetric unit. Twomore » complete data sets were collected at wavelengths of 1.1 and 2.0 Å to 2.5 and 2.8 Å resolution, respectively, using synchrotron radiation at 100 K.« less

  20. Structure of the Mecl Repressor from Staphylococcus aureus in Complex with the Cognate DNA Operator of mec

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safo,M.; Ko, T.; Musayev, F.

    The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of {beta}-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Angstroms resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA, and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtualmore » DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI-mec complex, but unlike the MecI-bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less

  1. Understanding Gas Phase Modifier Interactions in Rapid Analysis by Differential Mobility-Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul

    2014-07-01

    A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.

  2. Understanding gas phase modifier interactions in rapid analysis by Differential Mobility-Tandem Mass Spectrometry

    PubMed Central

    Kafle, Amol; Coy, Stephen L.; Wong, Bryan M.; Fornace, Albert J.; Glick, James J.; Vouros, Paul

    2014-01-01

    A systematic study involving the use and optimization of gas phase modifiers in quantitative differential mobility- mass spectrometry (DMS-MS) analysis is presented using mucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 106 normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab-initio thermochemical results we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry in mobility differences, but at lower temperatures multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects. PMID:24452298

  3. A discriminatory function for prediction of protein-DNA interactions based on alpha shape modeling.

    PubMed

    Zhou, Weiqiang; Yan, Hong

    2010-10-15

    Protein-DNA interaction has significant importance in many biological processes. However, the underlying principle of the molecular recognition process is still largely unknown. As more high-resolution 3D structures of protein-DNA complex are becoming available, the surface characteristics of the complex become an important research topic. In our work, we apply an alpha shape model to represent the surface structure of the protein-DNA complex and developed an interface-atom curvature-dependent conditional probability discriminatory function for the prediction of protein-DNA interaction. The interface-atom curvature-dependent formalism captures atomic interaction details better than the atomic distance-based method. The proposed method provides good performance in discriminating the native structures from the docking decoy sets, and outperforms the distance-dependent formalism in terms of the z-score. Computer experiment results show that the curvature-dependent formalism with the optimal parameters can achieve a native z-score of -8.17 in discriminating the native structure from the highest surface-complementarity scored decoy set and a native z-score of -7.38 in discriminating the native structure from the lowest RMSD decoy set. The interface-atom curvature-dependent formalism can also be used to predict apo version of DNA-binding proteins. These results suggest that the interface-atom curvature-dependent formalism has a good prediction capability for protein-DNA interactions. The code and data sets are available for download on http://www.hy8.com/bioinformatics.htm kenandzhou@hotmail.com.

  4. Substitution-inert trinuclear platinum complexes efficiently condense/aggregate nucleic acids and inhibit enzymatic activity**

    PubMed Central

    Malina, Jaroslav; Farrell, Nicholas P.; Brabec, Viktor

    2015-01-01

    The trinuclear platinum complexes ([{Pt(NH3)3}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}]6+, TriplatinNC‐A; [{trans-Pt(NH3)2(NH2(CH2)6NH3+)}2-μ-{trans-Pt(NH3)2(NH2(CH2)6NH2)2}]8+, TriplatinNC) belong to a class of biologically active agents that bind to DNA via nonbonding noncovalent (hydrogen bonding, electrostatic) interactions. Charge delocalization (6+ to 8+) in these linear trinuclear platinum complexes results in a high cellular uptake and promising cytotoxic activity in several carcinoma cell lines. We show in the present work with the aid of the methods of biophysical chemistry that in particular TriplatinNC condenses DNA with unprecedented potency which is much higher than that of conventional DNA condensing agents. In addition, in contrast to other DNA condensing agents, both platinum complexes induce aggregation of small transfer RNA molecules. We also demonstrate for the first time that TriplatinNC-A and TriplatinNC in particular completely inhibit DNA transcriptional activity at markedly lower concentration than naturally occurring spermine. Notably, the topoisomerase I-mediated relaxation of supercoiled DNA was inhibited by TriplatinNC-A and TriplatinNC at ~60-fold and ~250-fold lower concentration than that of spermine, respectively. We suggest that the general mechanisms of biological activity of TriplatinNC-A and TriplatinNC may be associated with their unique ability to condense/aggregate nucleic acids with consequent inhibitory effect on crucial enzymatic activities. PMID:25256921

  5. Screening the efficient biological prospects of triazole allied mixed ligand metal complexes

    NASA Astrophysics Data System (ADS)

    Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2017-12-01

    Triazole appended mixed ligand complexes (1-8) of the general formula [ML (bpy/phen)2]Cl2, where M = Cu(II), Co(II), Ni(II) and Zn(II), L = triazole appended Schiff base (E)sbnd N-(4-nitrobenzylidene)-1H-1,2,4-triazol-3-amine and bpy/phen = 2,2‧-bipyridine/1,10-phenanthroline, have been synthesized. The design and synthesis of this elaborate ligand has been performed with the aim of increasing stability and conjugation of 1,2,4 triazole, whose Schiff base derivatives are known as biologically active compounds thereby exploring their DNA binding affinity and other biological applications. The compounds have been comprehensively characterized by elemental analysis, spectroscopic methods (IR, UV-Vis, EPR, 1H and 13C NMR spectroscopy), ESI mass spectrometry and magnetic susceptibility measurements. The complexes were found to exhibit octahedral geometry. The complexes 1-8 were subjected to DNA binding techniques evaluated using UV-Vis absorption, CV, CD, Fluorescence spectroscopy and hydrodynamic measurements. Complex 5 showed a Kb value of 3.9 × 105 M-1. The DNA damaging efficacy for the complexes was observed to be high compared to the ligand. The antimicrobial screening of the compounds against bacterial and fungal strains indicates that the complexes possess excellent antimicrobial activity than the ligand. The overall biological activity of the complexes with phen as a co-ligand possessed superior potential than the ligand.

  6. Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safo, Martin K., E-mail: msafo@vcu.edu; Ko, Tzu-Ping; Musayev, Faik N.

    The up-and-down binding of dimeric MecI to mecA dyad DNA may account for the cooperative effect of the repressor. The dimeric repressor MecI regulates the mecA gene that encodes the penicillin-binding protein PBP-2a in methicillin-resistant Staphylococcus aureus (MRSA). MecI is similar to BlaI, the repressor for the blaZ gene of β-lactamase. MecI and BlaI can bind to both operator DNA sequences. The crystal structure of MecI in complex with the 32 base-pair cognate DNA of mec was determined to 3.8 Å resolution. MecI is a homodimer and each monomer consists of a compact N-terminal winged-helix domain, which binds to DNA,more » and a loosely packed C-terminal helical domain, which intertwines with its counter-monomer. The crystal contains horizontal layers of virtual DNA double helices extending in three directions, which are separated by perpendicular DNA segments. Each DNA segment is bound to two MecI dimers. Similar to the BlaI–mec complex, but unlike the MecI–bla complex, the MecI repressors bind to both sides of the mec DNA dyad that contains four conserved sequences of TACA/TGTA. The results confirm the up-and-down binding to the mec operator, which may account for cooperative effect of the repressor.« less

  7. Megadalton Complexes in the Chloroplast Stroma of Arabidopsis thaliana Characterized by Size Exclusion Chromatography, Mass Spectrometry, and Hierarchical Clustering*

    PubMed Central

    Olinares, Paul Dominic B.; Ponnala, Lalit; van Wijk, Klaas J.

    2010-01-01

    To characterize MDa-sized macromolecular chloroplast stroma protein assemblies and to extend coverage of the chloroplast stroma proteome, we fractionated soluble chloroplast stroma in the non-denatured state by size exclusion chromatography with a size separation range up to ∼5 MDa. To maximize protein complex stability and resolution of megadalton complexes, ionic strength and composition were optimized. Subsequent high accuracy tandem mass spectrometry analysis (LTQ-Orbitrap) identified 1081 proteins across the complete native mass range. Protein complexes and assembly states above 0.8 MDa were resolved using hierarchical clustering, and protein heat maps were generated from normalized protein spectral counts for each of the size exclusion chromatography fractions; this complemented previous analysis of stromal complexes up to 0.8 MDa (Peltier, J. B., Cai, Y., Sun, Q., Zabrouskov, V., Giacomelli, L., Rudella, A., Ytterberg, A. J., Rutschow, H., and van Wijk, K. J. (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol. Cell. Proteomics 5, 114–133). This combined experimental and bioinformatics analyses resolved chloroplast ribosomes in different assembly and functional states (e.g. 30, 50, and 70 S), which enabled the identification of plastid homologues of prokaryotic ribosome assembly factors as well as proteins involved in co-translational modifications, targeting, and folding. The roles of these ribosome-associating proteins will be discussed. Known RNA splice factors (e.g. CAF1/WTF1/RNC1) as well as uncharacterized proteins with RNA-binding domains (pentatricopeptide repeat, RNA recognition motif, and chloroplast ribosome maturation), RNases, and DEAD box helicases were found in various sized complexes. Chloroplast DNA (>3 MDa) was found in association with the complete heteromeric plastid-encoded DNA polymerase complex, and a dozen other DNA-binding proteins, e.g. DNA gyrase, topoisomerase, and various DNA repair enzymes. The heteromeric ≥5-MDa pyruvate dehydrogenase complex and the 0.8–1-MDa acetyl-CoA carboxylase complex associated with uncharacterized biotin carboxyl carrier domain proteins constitute the entry point to fatty acid metabolism in leaves; we suggest that their large size relates to the need for metabolic channeling. Protein annotations and identification data are available through the Plant Proteomics Database, and mass spectrometry data are available through Proteomics Identifications database. PMID:20423899

  8. DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds

    PubMed Central

    Chityala, Vijay Kumar; Sathish Kumar, K.; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj

    2014-01-01

    Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO 4] and [Cu. L. A] where “L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493

  9. RNA polymerase I-Rrn3 complex at 4.8 Å resolution

    NASA Astrophysics Data System (ADS)

    Engel, Christoph; Plitzko, Jürgen; Cramer, Patrick

    2016-07-01

    Transcription of ribosomal DNA by RNA polymerase I (Pol I) requires the initiation factor Rrn3. Here we report the cryo-EM structure of the Pol I-Rrn3 complex at 4.8 Å resolution. The structure reveals how Rrn3 binding converts an inactive Pol I dimer into an initiation-competent monomeric complex and provides insights into the mechanisms of Pol I-specific initiation and regulation.

  10. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.

    PubMed

    Liu, Tina Y; Iavarone, Anthony T; Doudna, Jennifer A

    2017-01-01

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are RNA-guided adaptive immunity pathways used by bacteria and archaea to defend against phages and plasmids. Type III-A systems use a multisubunit interference complex called Csm, containing Cas proteins and a CRISPR RNA (crRNA) to target cognate nucleic acids. The Csm complex is intriguing in that it mediates RNA-guided targeting of both RNA and transcriptionally active DNA, but the mechanism is not well understood. Here, we overexpressed the five components of the Thermus thermophilus (T. thermophilus) Type III-A Csm complex (TthCsm) with a defined crRNA sequence, and purified intact TthCsm complexes from E. coli cells. The complexes were thermophilic, targeting complementary ssRNA more efficiently at 65°C than at 37°C. Sequence-independent, endonucleolytic cleavage of single-stranded DNA (ssDNA) by TthCsm was triggered by recognition of a complementary ssRNA, and required a lack of complementarity between the first 8 nucleotides (5' tag) of the crRNA and the 3' flanking region of the ssRNA. Mutation of the histidine-aspartate (HD) nuclease domain of the TthCsm subunit, Cas10/Csm1, abolished DNA cleavage. Activation of DNA cleavage was dependent on RNA binding but not cleavage. This leads to a model in which binding of an ssRNA target to the Csm complex would stimulate cleavage of exposed ssDNA in the cell, such as could occur when the RNA polymerase unwinds double-stranded DNA (dsDNA) during transcription. Our findings establish an amenable, thermostable system for more in-depth investigation of the targeting mechanism using structural biology methods, such as cryo-electron microscopy and x-ray crystallography.

  11. Acute inactivation of the replicative helicase in human cells triggers MCM8–9-dependent DNA synthesis

    PubMed Central

    Natsume, Toyoaki; Nishimura, Kohei; Minocherhomji, Sheroy; Bhowmick, Rahul; Hickson, Ian D.; Kanemaki, Masato T.

    2017-01-01

    DNA replication fork progression can be disrupted at difficult to replicate loci in the human genome, which has the potential to challenge chromosome integrity. This replication fork disruption can lead to the dissociation of the replisome and the formation of DNA damage. To model the events stemming from replisome dissociation during DNA replication perturbation, we used a degron-based system for inducible proteolysis of a subunit of the replicative helicase. We show that MCM2-depleted cells activate a DNA damage response pathway and generate replication-associated DNA double-strand breaks (DSBs). Remarkably, these cells maintain some DNA synthesis in the absence of MCM2, and this requires the MCM8–9 complex, a paralog of the MCM2–7 replicative helicase. We show that MCM8–9 functions in a homologous recombination-based pathway downstream from RAD51, which is promoted by DSB induction. This RAD51/MCM8–9 axis is distinct from the recently described RAD52-dependent DNA synthesis pathway that operates in early mitosis at common fragile sites. We propose that stalled replication forks can be restarted in S phase via homologous recombination using MCM8–9 as an alternative replicative helicase. PMID:28487407

  12. The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters.

    PubMed

    Rigalli, Juan Pablo; Tocchetti, Guillermo Nicolás; Arana, Maite Rocío; Villanueva, Silvina Stella Maris; Catania, Viviana Alicia; Theile, Dirk; Ruiz, María Laura; Weiss, Johanna

    2016-06-28

    Breast cancer is the most frequent malignancy in women. Multidrug resistance due to overexpression of ABC drug transporters is a common cause of chemotherapy failure and disease recurrence. Genistein (GNT) is a phytoestrogen present in soybeans and hormone supplements. We investigated the effect of GNT on the expression and function of ABC transporters in MCF-7 and MDA-MB-231 breast cancer cell lines. Results demonstrated an induction at the protein level of ABCC1 and ABCG2 and of ABCC1 in MCF-7 and MDA-MB-231, respectively. MCF-7 cells showed a concomitant increase in doxorubicin and mitoxantrone efflux and resistance, dependent on ABCG2 activity. ABCC1 induction by GNT in MDA-MB-231 cells modified neither drug efflux nor chemoresistance due to simultaneous acute inhibition of the transporter activity by GNT. All inductions took place at the translational level, as no increment in mRNA was observed and protein increase was prevented by cycloheximide. miR-181a, already demonstrated to inhibit ABCG2 translation, was down-regulated by GNT, explaining translational induction. Effects were independent of classical estrogen receptors. Results suggest potential nutrient-drug interactions that could threaten chemotherapy efficacy, especially in ABCG2-expressing tumors treated with substrates of this transporter. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Evaluating Metabolite-Related DNA Oxidation and Adduct Damage from Aryl Amines Using a Microfluidic ECL Array.

    PubMed

    Bist, Itti; Bhakta, Snehasis; Jiang, Di; Keyes, Tia E; Martin, Aaron; Forster, Robert J; Rusling, James F

    2017-11-21

    Damage to DNA from the metabolites of drugs and pollutants constitutes a major human toxicity pathway known as genotoxicity. Metabolites can react with metal ions and NADPH to oxidize DNA or participate in S N 2 reactions to form covalently linked adducts with DNA bases. Guanines are the main DNA oxidation sites, and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG) is the initial product. Here we describe a novel electrochemiluminescent (ECL) microwell array that produces metabolites from test compounds and measures relative rates of DNA oxidation and DNA adduct damage. In this new array, films of DNA, metabolic enzymes, and an ECL metallopolymer or complex assembled in microwells on a pyrolytic graphite wafer are housed in dual microfluidic chambers. As reactant solution passes over the wells, metabolites form and can react with DNA in the films to form DNA adducts. These adducts are detected by ECL from a RuPVP polymer that uses DNA as a coreactant. Aryl amines also combine with Cu 2+ and NADPH to form reactive oxygen species (ROS) that oxidize DNA. The resulting 8-oxodG was detected selectively by ECL-generating bis(2,2'-bipyridine)-(4-(1,10-phenanthrolin-6-yl)-benzoic acid)Os(II). DNA/enzyme films on magnetic beads were oxidized similarly, and 8-oxodG determined by LC/MS/MS enabled array standardization. The array limit of detection for oxidation was 720 8-oxodG per 10 6 nucleobases. For a series of aryl amines, metabolite-generated DNA oxidation and adduct formation turnover rates from the array correlated very well with rodent 1/TD 50 and Comet assay results.

  14. Targeting Photoinduced DNA Destruction by Ru(II) Tetraazaphenanthrene in Live Cells by Signal Peptide.

    PubMed

    Burke, Christopher S; Byrne, Aisling; Keyes, Tia E

    2018-06-06

    Exploiting NF-κB transcription factor peptide conjugation, a Ru(II)-bis-tap complex (tap = 1,4,5,8-tetraazaphenanthrene) was targeted specifically to the nuclei of live HeLa and CHO cells for the first time. DNA binding of the complex  within the nucleus of live cells was evident from gradual extinction of the metal complex luminescence after it had crossed the nuclear envelope, attributed to guanine quenching of the ruthenium emission via photoinduced electron transfer. Resonance Raman imaging confirmed that the complex remained in the nucleus after emission is extinguished. In the dark and under imaging conditions the cells remain viable, but efficient cellular destruction was induced with precise spatiotemporal control by applying higher irradiation intensities to selected cells. Solution studies indicate that the peptide conjugated complex associates strongly with calf thymus DNA ex-cellulo and gel electrophoresis confirmed that the peptide conjugate is capable of singlet oxygen independent photodamage to plasmid DNA. This indicates that the observed efficient cellular destruction likely operates via direct DNA oxidation by photoinduced electron transfer between guanine and the precision targeted Ru(II)-tap probe. The discrete targeting of polyazaaromatic complexes to the cell nucleus and confirmation that they are photocytotoxic after nuclear delivery is an important step toward their application in cellular phototherapy.

  15. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.

    PubMed

    Upadhya, Archana; Sangave, Preeti C

    2016-10-01

    Cell penetrating peptides are useful tools for intracellular delivery of nucleic acids. Delivery of plasmid DNA, a large nucleic acid, poses a challenge for peptide mediated transport. The paper investigates and compares efficacy of five novel peptide designs for complexation of plasmid DNA and subsequent delivery into cells. The peptides were designed to contain reported DNA condensing agents and basic cell penetrating sequences, octa-arginine (R 8 ) and CHK 6 HC coupled to cell penetration accelerating peptides such as Bax inhibitory mutant peptide (KLPVM) and a peptide derived from the Kaposi fibroblast growth factor (kFGF) membrane translocating sequence. A tryptophan rich peptide, an analogue of Pep-3, flanked with CH 3 on either ends was also a part of the study. The peptides were analysed for plasmid DNA complexation, protection of peptide-plasmid DNA complexes against DNase I, serum components and competitive ligands by simple agarose gel electrophoresis techniques. Hemolysis of rat red blood corpuscles (RBCs) in the presence of the peptides was used as a measure of peptide cytotoxicity. Plasmid DNA delivery through the designed peptides was evaluated in two cell lines, human cervical cancer cell line (HeLa) and (NIH/3 T3) mouse embryonic fibroblasts via expression of the secreted alkaline phosphatase (SEAP) reporter gene. The importance of hydrophobic sequences in addition to cationic sequences in peptides for non-covalent plasmid DNA complexation and delivery has been illustrated. An alternative to the employment of fatty acid moieties for enhanced gene transfer has been proposed. Comparison of peptides for plasmid DNA complexation and delivery of peptide-plasmid DNA complexes to cells estimated by expression of a reporter gene, SEAP. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  16. Transformation of glucocorticoid receptors bound to the antagonist RU 486: Effects of alkaline phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruol, D.J.; Wolfe, K.A.

    1990-08-28

    RU 486 is a synthetic steroid that binds avidly to glucocorticoid receptors without promoting their transformation into activated transcription factors. A significant part of this behavior has been shown to be due to a failure of the RU 486 bound receptor to be efficiently released from a larger (sedimenting at 8-9 S) multimeric complex containing the 90-kDa heat shock protein. The studies have found that in vitro at 15{degree}C the RU 486-receptor was slowly released from the 8-9S complex and converted into a DNA binding protein by a process that could be blocked by sodium fluoride. Moreover, this transition wasmore » significantly accelerated by treatment with alkaline phosphatase. High-resolution anion-exchange chromatography showed that the profile of receptor subspecies released from the 8-9S complex was different for the RU 486 bound receptor when compared to the receptor occupied by the agonist triamcinolone acetonide. Production of the earliest eluting receptor form (peak A) was inhibited with RU 486. Treatment of the Ru 486-receptor with alkaline phosphatase increased the formation of the peak A subspecies as well as the capacity of receptor to bind DNA-cellulose. Taken together, the results indicate that phosphorylation of the receptor or a tightly bound factor contributes to defining the capacity with which individual steroids can promote dissociation of the 8-9S complex and conversion of the glucocorticoid receptor into a DNA-binding protein.« less

  17. Structural Mechanism of Replication Stalling on a Bulky Amino-Polycyclic Aromatic Hydrocarbon DNA Adduct by a Y Family DNA Polymerase

    PubMed Central

    Kirouac, Kevin N.; Basu, Ashis K.; Ling, Hong

    2013-01-01

    Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. PMID:23876706

  18. Structural mechanism of replication stalling on a bulky amino-polycyclic aromatic hydrocarbon DNA adduct by a y family DNA polymerase.

    PubMed

    Kirouac, Kevin N; Basu, Ashis K; Ling, Hong

    2013-11-15

    Polycyclic aromatic hydrocarbons and their nitro derivatives are culprits of the detrimental health effects of environmental pollution. These hydrophobic compounds metabolize to reactive species and attach to DNA producing bulky lesions, such as N-[deoxyguanosine-8-yl]-1-aminopyrene (APG), in genomic DNA. The bulky adducts block DNA replication by high-fidelity polymerases and compromise replication fidelities and efficiencies by specialized lesion bypass polymerases. Here we present three crystal structures of the DNA polymerase Dpo4, a model translesion DNA polymerase of the Y family, in complex with APG-lesion-containing DNA in pre-insertion and extension stages. APG is captured in two conformations in the pre-insertion complex; one is highly exposed to the solvent, whereas the other is harbored in a shallow cleft between the finger and unique Y family little finger domain. In contrast, APG is in a single conformation at the extension stage, in which the pyrene ring is sandwiched between the little finger domain and a base from the turning back single-stranded template strand. Strikingly, a nucleotide intercalates the DNA helix to form a quaternary complex with Dpo4, DNA, and an incoming nucleotide, which stabilizes the distorted DNA structure at the extension stage. The unique APG DNA conformations in Dpo4 inhibit DNA translocation through the polymerase active site for APG bypass. We also modeled an insertion complex that illustrates a solvent-exposed pyrene ring contributing to an unstable insertion state. The structural work combined with our lesion replication assays provides a novel structural mechanism on bypass of DNA adducts containing polycyclic aromatic hydrocarbon moieties. © 2013.

  19. Pharmacogenetic screening for polymorphisms in drug-metabolizing enzymes and drug transporters in a Dutch population.

    PubMed

    Bosch, T M; Doodeman, V D; Smits, P H M; Meijerman, I; Schellens, J H M; Beijnen, J H

    2006-01-01

    A possible explanation for the wide interindividual variability in toxicity and efficacy of drug therapy is variation in genes encoding drug-metabolizing enzymes and drug transporters. The allelic frequency of these genetic variants, linkage disequilibrium (LD), and haplotype of these polymorphisms are important parameters in determining the genetic differences between patients. The aim of this study was to explore the frequencies of polymorphisms in drug-metabolizing enzymes (CYP1A1, CYP2C9, CYP2C19, CYP3A4, CYP2D6, CYP3A5, DPYD, UGT1A1, GSTM1, GSTP1, GSTT1) and drug transporters (ABCB1[MDR1] and ABCC2[MRP2]), and to investigate the LD and perform haplotype analysis of these polymorphisms in a Dutch population. Blood samples were obtained from 100 healthy volunteers and genomic DNA was isolated and amplified by PCR. The amplification products were sequenced and analyzed for the presence of polymorphisms by sequence alignment. In the study population, we identified 13 new single nucleotide polymorphisms (SNPs) in Caucasians and three new SNPs in non-Caucasians, in addition to previously recognized SNPs. Three of the new SNPs were found within exons, of which two resulted in amino acid changes (A428T in CYP2C9 resulting in the amino acid substitution D143V; and C4461T in ABCC2 in a non-Caucasian producing the amino acid change T1476M). Several LDs and haplotypes were found in the Caucasian individuals. In this Dutch population, the frequencies of 16 new SNPs and those of previously recognized SNPs were determined in genes coding for drug-metabolizing enzymes and drug transporters. Several LDs and haplotypes were also inferred. These data are important for further research to help explain the interindividual pharmacokinetic and pharmacodynamic variability in response to drug therapy.

  20. Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, Matthew; Rudnicki, Jean; Midkiff, John

    2010-04-12

    The fidelity of DNA replication is under constant threat from the formation of lesions within the genome. Oxidation of DNA bases leads to the formation of altered DNA bases such as 8-oxo-7,8-dihydroguanine, commonly called 8-oxoG, and 2-hydroxyadenenine, or 2-OHA. In this work we have examined the incorporation kinetics opposite these two oxidatively derived lesions as well as an abasic site analogue by the replicative DNA polymerase from bacteriophage RB69. We compared the kinetic parameters for both wild type and the low fidelity L561A variant. While nucleotide incorporation rates (k{sub pol}) were generally higher for the variant, the presence of amore » lesion in the templating position reduced the ability of both the wild-type and variant DNA polymerases to form ternary enzyme-DNA-dNTP complexes. Thus, the L561A substitution does not significantly affect the ability of the RB69 DNA polymerase to recognize damaged DNA; instead, the mutation increases the probability that nucleotide incorporation will occur. We have also solved the crystal structure of the L561A variant forming an 8-oxoG {center_dot} dATP mispair and show that the propensity for forming this mispair depends on an enlarged polymerase active site.« less

  1. Alternative splicing within the ligand binding domain of the human constitutive androstane receptor.

    PubMed

    Savkur, Rajesh S; Wu, Yifei; Bramlett, Kelli S; Wang, Minmin; Yao, Sufang; Perkins, Douglas; Totten, Michelle; Searfoss, George; Ryan, Timothy P; Su, Eric W; Burris, Thomas P

    2003-01-01

    The human constitutive androstane receptor (hCAR; NR1I3) is a member of the nuclear receptor superfamily. The activity of hCAR is regulated by a variety of xenobiotics including clotrimazole and acetaminophen metabolites. hCAR, in turn, regulates a number of genes responsible for xenobiotic metabolism and transport including several cytochrome P450s (CYP 2B5, 2C9, and 3A4) and the multidrug resistance-associated protein 2 (MRP2, ABCC2). Thus, hCAR is believed to be a mediator of drug-drug interactions. We identified two novel hCAR splice variants: hCAR2 encodes a receptor in which alternative splice acceptor sites are utilized resulting in a 4 amino acid insert between exons 6 and 7, and a 5 amino acid insert between 7 and 8, and hCAR3 encodes a receptor with exon 7 completely deleted resulting in a 39 amino acid deletion. Both hCAR2 and hCAR3 mRNAs are expressed in a pattern similar to the initially described MB67 (hCAR1) with some key distinctions. Although the levels of expression vary depending on the tissue examined, hCAR2 and hCAR3 contribute 6-8% of total hCAR mRNA in liver. Analysis of the activity of these variants indicates that both hCAR2 and hCAR3 lose the ability to heterodimerize with RXR and lack transactivation activity in cotransfection experiments where either full-length receptor or GAL4 DNA-binding domain/CAR ligand binding domain chimeras were utilized. Although the role of hCAR2 and hCAR3 is currently unclear, these additional splice variants may provide for increased diversity in terms of responsiveness to xenobiotics.

  2. Brca2 (XRCC11) Deficiency Results in Radioresistant DNA Synthesis and a Higher Frequency of Spontaneous Deletions

    PubMed Central

    Kraakman-van der Zwet, Maria; Overkamp, Wilhelmina J. I.; van Lange, Rebecca E. E.; Essers, Jeroen; van Duijn-Goedhart, Annemarie; Wiggers, Ingrid; Swaminathan, Srividya; van Buul, Paul P. W.; Errami, Abdellatif; Tan, Raoul T. L.; Jaspers, Nicolaas G. J.; Sharan, Shyam K.; Kanaar, Roland; Zdzienicka, Małgorzata Z.

    2002-01-01

    We show here that the radiosensitive Chinese hamster cell mutant (V-C8) of group XRCC11 is defective in the breast cancer susceptibility gene Brca2. The very complex phenotype of V-C8 cells is complemented by a single human chromosome 13 providing the BRCA2 gene, as well as by the murine Brca2 gene. The Brca2 deficiency in V-C8 cells causes hypersensitivity to various DNA-damaging agents with an extreme sensitivity toward interstrand DNA cross-linking agents. Furthermore, V-C8 cells show radioresistant DNA synthesis after ionizing radiation, suggesting that Brca2 deficiency affects cell cycle checkpoint regulation. In addition, V-C8 cells display tremendous chromosomal instability and a high frequency of abnormal centrosomes. The mutation spectrum at the hprt locus showed that the majority of spontaneous mutations in V-C8 cells are deletions, in contrast to wild-type V79 cells. A mechanistic explanation for the genome instability phenotype of Brca2-deficient cells is provided by the observation that the nuclear localization of the central DNA repair protein in homologous recombination, Rad51, is reduced in V-C8 cells. PMID:11756561

  3. Two-stage DNA compaction induced by silver ions suggests a cooperative binding mechanism

    NASA Astrophysics Data System (ADS)

    Jiang, Wen-Yan; Ran, Shi-Yong

    2018-05-01

    The interaction between silver ions and DNA plays an important role in the therapeutic use of silver ions and in related technologies such as DNA sensors. However, the underlying mechanism has not been fully understood. In this study, the dynamics of Ag+-DNA interaction at a single-molecule level was studied using magnetic tweezers. AgNO3 solutions with concentrations ranging from 1 μM to 20 μM led to a 1.4-1.8 μm decrease in length of a single λ-DNA molecule, indicating that Ag+ has a strong binding with DNA, causing the DNA conformational change. The compaction process comprises one linear declining stage and another sigmoid-shaped stage, which can be attributed to the interaction mechanism. Considering the cooperative effect, the sigmoid trend was well explained using a phenomenological model. By contrast, addition of silver nanoparticle solution induced no detectable transition of DNA. The dependence of the interaction on ionic strength and DNA concentration was examined via morphology characterization and particle size distribution measurement. The size of the Ag+-DNA complex decreased with an increase in Ag+ ionic strength ranging from 1 μM to 1 mM. Morphology characterization confirmed that silver ions induced DNA to adopt a compacted globular conformation. At a fixed [AgNO3]:[DNA base pairs] ratio, increasing DNA concentration led to increased sizes of the complexes. Intermolecular interaction is believed to affect the Ag+-DNA complex formation to a large extent.

  4. Efficient plasmid DNA cleavage by a mononuclear copper(II) complex.

    PubMed

    Sissi, Claudia; Mancin, Fabrizio; Gatos, Maddalena; Palumbo, Manlio; Tecilla, Paolo; Tonellato, Umberto

    2005-04-04

    The Cu(II) complex of the ligand all-cis-2,4,6-triamino-1,3,5-trihydroxycyclohexane (TACI) is a very efficient catalyst of the cleavage of plasmid DNA in the absence of any added cofactor. The maximum rate of degradation of the supercoiled plasmid DNA form, obtained at pH 8.1 and 37 degrees C, in the presence of 48 microM TACI.Cu(II), is 2.3 x 10(-3) s(-1), corresponding to a half-life time of only 5 min for the cleavage of form I (supercoiled) to form II (relaxed circular). The dependence of the rate of plasmid DNA cleavage from the TACI.Cu(II) complex concentration follows an unusual and very narrow bell-like profile, which suggests an high DNA affinity of the complexes but also a great tendency to form unreactive dimers. The reactivity of the TACI.Cu(II) complexes is not affected by the presence of several scavengers for reactive oxygen species or when measured under anaerobic conditions. Moreover, no degradation of the radical reporter Rhodamine B is observed in the presence of such complexes. These results are consistent with the operation of a prevailing hydrolytic pathway under the normal conditions used, although the failure to obtain enzymatic religation of the linearized DNA does not allow one to rule out the occurrence of a nonhydrolytic oxygen-independent cleavage. A concurrent oxidative mechanism becomes competitive upon addition of reductants or in the presence of high levels of molecular oxygen: under such conditions, in fact, a remarkable increase in the rate of DNA cleavage is observed.

  5. Regular square planer bis-(4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione)/copper(II) complex: Trans/cis-DFT isomerization, crystal structure, thermal, solvatochromism, hirshfeld surface and DNA-binding analysis

    NASA Astrophysics Data System (ADS)

    Hema, M. K.; Karthik, C. S.; Warad, Ismail; Lokanath, N. K.; Zarrouk, Abdelkader; Kumara, Karthik; Pampa, K. J.; Mallu, P.

    2018-04-01

    Trans-[Cu(O∩O)2] complex, O∩O = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione was reported with high potential toward CT-DNA binder. The solved XRD-structure of complex indicated a perfect regular square-planer geometry around the Cu(II) center. The trans/cis-DFT-isomerization calculation supported the XRD seen in reflecting the trans-isomer as the kinetic-favor isomer. The desired complex structure was also characterized by conductivity measurement, CHN-elemental analyses, MS, EDX, SEM, UV-Vis., FT-IR, HAS and TG/DTG. The Solvatochromism behavior of the complex was evaluated using four different polar solvents. MPE and Hirshfeld surface analysis (HSA) come to an agreement that fluoride and thiophene protons atoms are with suitable electro-potential environment to form non-classical H-bonds of type CThsbnd H⋯F. The DNA-binding properties were investigated by viscosity tests and spectrometric titrations, the results revealed the complex as strong calf-thymus DNA binder. High intrinsic-binding constants value ∼1.8 × 105 was collected.

  6. Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan

    2014-10-01

    Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.

  7. Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis.

    PubMed Central

    Arakawa, H; Neault, J F; Tajmir-Riahi, H A

    2001-01-01

    Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentration of DNA or RNA and various concentrations of Ag(I). Fourier transform infrared spectroscopy and capillary electrophoresis were used to analyze the Ag(I) binding mode, the binding constant, and the polynucleotides' structural changes in the Ag-DNA and Ag-RNA complexes. The spectroscopic results showed that in the type I complex formed with DNA, Ag(I) binds to guanine N7 at low cation concentration (r = 1/80) and adenine N7 site at higher concentrations (r = 1/20 to 1/10), but not to the backbone phosphate group. At r = 1/2, type II complexes formed with DNA in which Ag(I) binds to the G-C and A-T base pairs. On the other hand, Ag(I) binds to the guanine N7 atom but not to the adenine and the backbone phosphate group in the Ag-RNA complexes. Although a minor alteration of the sugar-phosphate geometry was observed, DNA remained in the B-family structure, whereas RNA retained its A conformation. Scatchard analysis following capillary electrophoresis showed two binding sites for the Ag-DNA complexes with K(1) = 8.3 x 10(4) M(-1) for the guanine and K(2) = 1.5 x 10(4) M(-1) for the adenine bases. On the other hand, Ag-RNA adducts showed one binding site with K = 1.5 x 10(5) M(-1) for the guanine bases. PMID:11509371

  8. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Němcová-Fürstová, Vlasta, E-mail: vlasta.furstova@

    Development of taxane resistance has become clinically very important issue. The molecular mechanisms underlying the resistance are still unclear. To address this issue, we established paclitaxel-resistant sublines of the SK-BR-3 and MCF-7 breast cancer cell lines that are capable of long-term proliferation in 100 nM and 300 nM paclitaxel, respectively. Application of these concentrations leads to cell death in the original counterpart cells. Both sublines are cross-resistant to doxorubicin, indicating the presence of the MDR phenotype. Interestingly, resistance in both paclitaxel-resistant sublines is circumvented by the second-generation taxane SB-T-1216. Moreover, we demonstrated that it was not possible to establish sublinesmore » of SK-BR-3 and MCF-7 cells resistant to this taxane. It means that at least the tested breast cancer cells are unable to develop resistance to some taxanes. Employing mRNA expression profiling of all known human ABC transporters and subsequent Western blot analysis of the expression of selected transporters, we demonstrated that only the ABCB1/PgP and ABCC3/MRP3 proteins were up-regulated in both paclitaxel-resistant sublines. We found up-regulation of ABCG2/BCRP and ABCC4 proteins only in paclitaxel-resistant SK-BR-3 cells. In paclitaxel-resistant MCF-7 cells, ABCB4/MDR3 and ABCC2/MRP2 proteins were up-regulated. Silencing of ABCB1 expression using specific siRNA increased significantly, but did not completely restore full sensitivity to both paclitaxel and doxorubicin. Thus we showed a key, but not exclusive, role for ABCB1 in mechanisms of paclitaxel resistance. It suggests the involvement of multiple mechanisms in paclitaxel resistance in tested breast cancer cells. - Highlights: • Expression of all ABC transporters in paclitaxel-resistant sublines of SK-BR-3 and MCF-7 cells was analyzed. • SK-BR-3 and MCF-7 cells are unable to develop resistance to some taxanes. • Some taxanes are able to overcome developed resistance to paclitaxel. • Paclitaxel resistance was associated with increased levels of ABCB1 and ABCC3 protein. • ABCB1 silencing increased significantly sensitivity to both paclitaxel and doxorubicin.« less

  9. Sequential Activation of Classic PKC and Estrogen Receptor α Is Involved in Estradiol 17ß-D-Glucuronide-Induced Cholestasis

    PubMed Central

    Barosso, Ismael R.; Zucchetti, Andrés E.; Boaglio, Andrea C.; Larocca, M. Cecilia; Taborda, Diego R.; Luquita, Marcelo G.; Roma, Marcelo G.; Crocenzi, Fernando A.; Sánchez Pozzi, Enrique J.

    2012-01-01

    Estradiol 17ß-d-glucuronide (E17G) induces acute cholestasis in rat with endocytic internalization of the canalicular transporters bile salt export pump (Abcb11) and multidrug resistance-associated protein 2 (Abcc2). Classical protein kinase C (cPKC) and PI3K pathways play complementary roles in E17G cholestasis. Since non-conjugated estradiol is capable of activating these pathways via estrogen receptor alpha (ERα), we assessed the participation of this receptor in the cholestatic manifestations of estradiol glucuronidated-metabolite E17G in perfused rat liver (PRL) and in isolated rat hepatocyte couplets (IRHC). In both models, E17G activated ERα. In PRL, E17G maximally decreased bile flow, and the excretions of dinitrophenyl-glutathione, and taurocholate (Abcc2 and Abcb11 substrates, respectively) by 60% approximately; preadministration of ICI 182,780 (ICI, ERα inhibitor) almost totally prevented these decreases. In IRHC, E17G decreased the canalicular vacuolar accumulation of cholyl-glycylamido-fluorescein (Abcb11 substrate) with an IC50 of 91±1 µM. ICI increased the IC50 to 184±1 µM, and similarly prevented the decrease in the canalicular vacuolar accumulation of the Abcc2 substrate, glutathione-methylfluorescein. ICI also completely prevented E17G-induced delocalization of Abcb11 and Abcc2 from the canalicular membrane, both in PRL and IRHC. The role of ERα in canalicular transporter internalization induced by E17G was confirmed in ERα-knocked-down hepatocytes cultured in collagen sandwich. In IRHC, the protection of ICI was additive to that produced by PI3K inhibitor wortmannin but not with that produced by cPKC inhibitor Gö6976, suggesting that ERα shared the signaling pathway of cPKC but not that of PI3K. Further analysis of ERα and cPKC activations induced by E17G, demonstrated that ICI did not affect cPKC activation whereas Gö6976 prevented that of ERα, indicating that cPKC activation precedes that of ERα. Conclusion: ERα is involved in the biliary secretory failure induced by E17G and its activation follows that of cPKC. PMID:23209816

  10. ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology

    PubMed Central

    Estus, Steven; Abner, Erin L.; Parikh, Ishita; Malik, Manasi; Neltner, Janna H.; Ighodaro, Eseosa; Wang, Wang-Xia; Wilfred, Bernard R.; Wang, Li-San; Kukull, Walter A.; Nandakumar, Kannabiran; Farman, Mark L.; Poon, Wayne W.; Corrada, Maria M.; Kawas, Claudia H.; Cribbs, David H.; Bennett, David A.; Schneider, Julie A.; Larson, Eric B.; Crane, Paul K.; Valladares, Otto; Schmitt, Frederick A.; Kryscio, Richard J.; Jicha, Gregory A.; Smith, Charles D.; Scheff, Stephen W.; Sonnen, Joshua A.; Haines, Jonathan L.; Pericak-Vance, Margaret A.; Mayeux, Richard; Farrer, Lindsay A.; Van Eldik, Linda J.; Horbinski, Craig; Green, Robert C.; Gearing, Marla; Poon, Leonard W.; Kramer, Patricia L.; Woltjer, Randall L.; Montine, Thomas J.; Partch, Amanda B.; Rajic, Alexander J.; Richmire, KatieRose; Monsell, Sarah E.; Schellenberg, Gerard D.

    2014-01-01

    Hippocampal sclerosis of aging (HS-Aging) is a high-morbidity brain disease in the elderly but risk factors are largely unknown. We report the first genome-wide association study (GWAS) with HS-Aging pathology as an endophenotype. In collaboration with the Alzheimer’s Disease Genetics Consortium, data were analyzed from large autopsy cohorts: (#1) National Alzheimer’s Coordinating Center (NACC); (#2) Rush University Religious Orders Study and Memory and Aging Project; (#3) Group Health Research Institute Adult Changes in Thought study; (#4) University of California at Irvine 90+ Study; and (#5) University of Kentucky Alzheimer’s Disease Center. Altogether, 363 HS-Aging cases and 2,303 controls, all pathologically confirmed, provided statistical power to test for risk alleles with large effect size. A two-tier study design included GWAS from cohorts #1–3 (Stage I) to identify promising SNP candidates, followed by focused evaluation of particular SNPs in cohorts #4–5 (Stage II). Polymorphism in the ATP-binding cassette, sub-family C member 9 (ABCC9) gene, also known as sulfonylurea receptor 2, was associated with HS-Aging pathology. In the meta-analyzed Stage I GWAS, ABCC9 polymorphisms yielded the lowest p values, and factoring in the Stage II results, the meta-analyzed risk SNP (rs704178:G) attained genome-wide statistical significance (p = 1.4 × 10−9), with odds ratio (OR) of 2.13 (recessive mode of inheritance). For SNPs previously linked to hippocampal sclerosis, meta-analyses of Stage I results show OR = 1.16 for rs5848 (GRN) and OR = 1.22 rs1990622 (TMEM106B), with the risk alleles as previously described. Sulfonylureas, a widely prescribed drug class used to treat diabetes, also modify human ABCC9 protein function. A subsample of patients from the NACC database (n = 624) were identified who were older than age 85 at death with known drug history. Controlling for important confounders such as diabetes itself, exposure to a sulfonylurea drug was associated with risk for HS-Aging pathology (p = 0.03). Thus, we describe a novel and targetable dementia risk factor. PMID:24770881

  11. Cationic micelles self-assembled from cholesterol-conjugated oligopeptides as an efficient gene delivery vector.

    PubMed

    Guo, Xin Dong; Tandiono, Fanny; Wiradharma, Nikken; Khor, Dingyue; Tan, Chuan Guan; Khan, Majad; Qian, Yu; Yang, Yi-Yan

    2008-12-01

    Cholesterol-conjugated H(5)R(10) and H(10)R(10) oligopeptides (HR15-Chol and HR20-Chol) were designed and synthesized. These amphiphilic oligopeptides were able to self-assemble into cationic micelles in aqueous solution at low concentrations, and their critical micelle concentrations in sodium acetate buffer (20mM, pH 5.0) were 17.8 and 28.2mg/L respectively. The micelle formation was further evidenced via SEM and dynamic light scattering analyses. The average hydrodynamic size of HR15-Chol and HR20-Chol micelles was about 425 and 435 nM in diameter with zeta potential of 64 and 66 mV respectively. The formation of micelles increased local concentration of cationic charge, leading to higher DNA binding efficiency as compared to the control peptides HR15 and HR20. The minimum size observed for HR15-Chol/DNA and HR20-Chol/DNA complexes was about 175-176 nM, and the maximum zeta potential was around 61-62 mV. In comparison, HR15 and HR20 formed DNA complexes with a similar size but significantly lower zeta potential (i.e. about 31-40 mV). In particular, after being challenged by DMEM medium, the size of peptide/DNA complexes was increased significantly and their surface charge was neutralized. Nevertheless, the size of the micelle/DNA complexes formed from HR15-Chol and HR20-Chol was still about 200 nM with positive charge of around 20 mV at high N/P ratios. The micelles induced much higher overall gene expression (i.e. luciferase expression) levels than the peptides in both HepG2 and HEK293 cell lines. Increasing the histidine residue from 0 to 5 to 10 further increased gene expression efficiency. In particular, HR20-Chol micelles yielded 95% GFP-positive HepG2 cells at N/P 50, much higher than that induced by PEI at its optimal N/P ratio (i.e. 10), which was 6.8%. In 4T1 cells, HR20-Chol induced 2 times higher luciferase expression level than PEI at their optimal N/P ratios. Moreover, HR20-Chol micelle/DNA complexes were less cytotoxic than PEI/DNA complexes. These micelles may be a promising carrier for delivery of therapeutic genes.

  12. 21 CFR 514.8 - Supplements and other changes to an approved application.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... method(s) or an addition, deletion, or substitution of steps in an aseptic processing operation; (D... solely affecting a natural product, a recombinant DNA-derived protein/polypeptide, or a complex or...) or references to previously approved documentation; (H) For a natural product, a recombinant DNA...

  13. 21 CFR 514.8 - Supplements and other changes to an approved application.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... method(s) or an addition, deletion, or substitution of steps in an aseptic processing operation; (D... solely affecting a natural product, a recombinant DNA-derived protein/polypeptide, or a complex or...) or references to previously approved documentation; (H) For a natural product, a recombinant DNA...

  14. 21 CFR 514.8 - Supplements and other changes to an approved application.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... method(s) or an addition, deletion, or substitution of steps in an aseptic processing operation; (D... solely affecting a natural product, a recombinant DNA-derived protein/polypeptide, or a complex or...) or references to previously approved documentation; (H) For a natural product, a recombinant DNA...

  15. Mitochondrial respiratory chain enzyme assay and DNA analysis in peripheral blood leukocytes for the etiological study of Chinese children with Leigh syndrome due to complex I deficiency.

    PubMed

    Ma, Yan Yan; Wu, Tong Fei; Liu, Yu Peng; Wang, Qiao; Li, Xi Yuan; Zhang, Yao; Song, Jin Qing; Wang, Yu Jie; Yang, Yan Ling

    2013-02-01

    Mitochondrial respiratory chain complex I enzyme deficiency is the most commonly seen mitochondrial respiratory chain disorder. Although screening and diagnostic methods are available overseas, clinically feasible diagnostic methods have not yet been established in China. In this study, four Chinese boys with Leigh syndrome due to complex I deficiency were diagnosed by mitochondrial respiratory chain enzyme assay and DNA analysis using peripheral blood leukocytes. Four patients were admitted at the age of 5-14 years because of unexplained progressive neuromuscular symptoms, including motor developmental delay or regression, weakness, and seizures. Their cranial magnetic resonance imaging revealed typical finding as Leigh syndrome. Peripheral leukocyte mitochondrial respiratory chain complex I activities were found decreased to 9.6-33.1 nmol/min/mg mitochondrial protein(control 44.0 ± 5.4 nmol/min/mg). The ratios of complex I to citrate synthase activity were also decreased (8.9-19.8% in patients vs. control 48 ± 11%). Three mtDNA mutations were identified from three out of four patients, supporting the diagnosis of complex I deficiency. Point mutations m.10191T>C in mitochondrial ND3 gene, m.13513G>A in ND5 gene and m.14,453G>A in ND6 gene were detected in three patients.

  16. Regulatory Control of Breast Tumor Cell Poly (ADP-Ribose) Polymerase

    DTIC Science & Technology

    2002-08-01

    DNA replication complex (designated the DNA synthesome) from a variety of non-malignant and malignant tumor cells including breast cancer cells. We have shown that poly(ADP-ribose) polymerase PARP is among the components of the DNA synthesome. The transformation of a non-malignant human breast cell to a malignant state was accompanied by a significant alteration in the 2-D PAGE profile of specific protein components of the DNA synthesome (such as PCNA) together with a 6-8 decrease in the replication fidelity of the DNA

  17. Association of genetic variations with pharmacokinetics and lipid-lowering response to atorvastatin in healthy Korean subjects.

    PubMed

    Woo, Hye In; Kim, Suk Ran; Huh, Wooseong; Ko, Jae-Wook; Lee, Soo-Youn

    2017-01-01

    Statins are effective agents in the primary and secondary prevention of cardiovascular disease, but treatment response to statins varies among individuals. We analyzed multiple genetic polymorphisms and assessed pharmacokinetic and lipid-lowering responses after atorvastatin 80 mg treatment in healthy Korean individuals. Atorvastatin 80 mg was given to 50 healthy Korean male volunteers. Blood samples were collected to measure plasma atorvastatin and lipid concentrations up to 48 hours after atorvastatin administration. Subjects were genotyped for 1,936 drug metabolism and transporter genetic polymorphisms using the Affymetrix DMET plus array. The pharmacokinetics and lipid-lowering effect of atorvastatin showed remarkable interindividual variation. Three polymorphisms in the SLCO1B1 , SLCO1B3 , and ABCC2 genes were associated with either the maximum concentration (C max ) of atorvastatin or changes in total cholesterol or low-density lipoprotein cholesterol (LDL-C). Minor homozygotes (76.5 ng/mL) of SLCO1B1 c.-910G>A showed higher C max than heterozygotes (34.0 ng/mL) and major homozygotes (33.5 ng/mL, false discovery rate P =0.040). C max and the area under the plasma concentration curve from hour 0 to infinity (AUC ∞ ) were higher in carriers of the SLCO1B1 *17 haplotype that included c.-910G>A than in noncarriers (46.1 vs 32.8 ng/mL for C max ; 221.5 vs 154.2 ng/mL for AUC ∞ ). SLCO1B3 c.334G>T homozygotes (63.0 ng/mL) also showed higher C max than heterozygotes (34.7 ng/mL) and major homozygotes (31.4 ng/mL, FDR P =0.037). A nonsynonymous ABCC2 c.1249G>A was associated with small total cholesterol and LDL-C responses (0.23% and -0.70% for G/A vs -11.9% and -17.4% for G/G). The C max tended to increase according to the increase in the number of minor allele of SLCO1B1 c. -910G>A and SLCO1B3 c.334G>T. Genetic polymorphisms in transporter genes, including SLCO1B1 , SLCO1B3 , and ABCC2 , may influence the pharmacokinetics and lipid-lowering response to atorvastatin administration.

  18. Association of genetic variations with pharmacokinetics and lipid-lowering response to atorvastatin in healthy Korean subjects

    PubMed Central

    Woo, Hye In; Kim, Suk Ran; Huh, Wooseong; Ko, Jae-Wook; Lee, Soo-Youn

    2017-01-01

    Background Statins are effective agents in the primary and secondary prevention of cardiovascular disease, but treatment response to statins varies among individuals. We analyzed multiple genetic polymorphisms and assessed pharmacokinetic and lipid-lowering responses after atorvastatin 80 mg treatment in healthy Korean individuals. Methods Atorvastatin 80 mg was given to 50 healthy Korean male volunteers. Blood samples were collected to measure plasma atorvastatin and lipid concentrations up to 48 hours after atorvastatin administration. Subjects were genotyped for 1,936 drug metabolism and transporter genetic polymorphisms using the Affymetrix DMET plus array. Results The pharmacokinetics and lipid-lowering effect of atorvastatin showed remarkable interindividual variation. Three polymorphisms in the SLCO1B1, SLCO1B3, and ABCC2 genes were associated with either the maximum concentration (Cmax) of atorvastatin or changes in total cholesterol or low-density lipoprotein cholesterol (LDL-C). Minor homozygotes (76.5 ng/mL) of SLCO1B1 c.-910G>A showed higher Cmax than heterozygotes (34.0 ng/mL) and major homozygotes (33.5 ng/mL, false discovery rate P=0.040). Cmax and the area under the plasma concentration curve from hour 0 to infinity (AUC∞) were higher in carriers of the SLCO1B1*17 haplotype that included c.-910G>A than in noncarriers (46.1 vs 32.8 ng/mL for Cmax; 221.5 vs 154.2 ng/mL for AUC∞). SLCO1B3 c.334G>T homozygotes (63.0 ng/mL) also showed higher Cmax than heterozygotes (34.7 ng/mL) and major homozygotes (31.4 ng/mL, FDR P=0.037). A nonsynonymous ABCC2 c.1249G>A was associated with small total cholesterol and LDL-C responses (0.23% and −0.70% for G/A vs −11.9% and −17.4% for G/G). The Cmax tended to increase according to the increase in the number of minor allele of SLCO1B1 c. −910G>A and SLCO1B3 c.334G>T. Conclusion Genetic polymorphisms in transporter genes, including SLCO1B1, SLCO1B3, and ABCC2, may influence the pharmacokinetics and lipid-lowering response to atorvastatin administration. PMID:28435225

  19. Base excision repair: NMR backbone assignments of Escherichia coli formamidopyrimidine-DNA glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchko, Garry W.; Wallace, Susan S.; Kennedy, Michael A.

    2002-03-01

    Oxidative damage is emerging as one of the most important mechanisms responsible for mutagenesis, carcinogenesis, aging, and various diseases (Farr and Kogma, 1991). One of the potential targets for oxidation is cellular DNA. While exposure to exogenous agents, such as ionizing radiation and chemicals, contributes to damaging DNA, the most important oxidative agents are endogenous, such as the reactive free radicals produced during normal oxidative metabolism (Adelman et., 1988). To mitigate the potentially deleterious effects of oxidative DNA damage virtually all aerobic organisms have developed complex repair mechanisms (Petit and Sancar, 1999). One repair mechanism, base excision repair (BER), appearsmore » to be responsible for replacing most oxidative DNA damage (David and Williams, 1998). Formamidopyrimidine-DNA glycosylase (Fpg), a 269-residue metalloprotein with a molecular weight of 30.2 kDa, is a key BER enzyme in prokaryotes (Boiteaux et al., 1987). Substrates recognized and released by Fpg include 7,8-dihydro-8-oxoguanine (8-oxoG), 2,6 diamino-4-hydroxy-5-formamido pyrimidine (Fapy-G), the adenine equivalents 8-oxoA and Fapy-A, 5-hydroxycytosine, 5-hydroxyuracil, B ureidoisobutiric acid, and a-R-hydroxy-B-ureidoisobutiric acid (Freidberg et al., 1995). In vitro Fpg bind double-stranded DNA and performs three catalytic activities: (i) DNA glycosylase, (ii) AP lyase, and (iii) deoxyribophosphodiesterase.« less

  20. RPS8—a New Informative DNA Marker for Phylogeny of Babesia and Theileria Parasites in China

    PubMed Central

    Tian, Zhan-Cheng; Liu, Guang-Yuan; Yin, Hong; Luo, Jian-Xun; Guan, Gui-Quan; Luo, Jin; Xie, Jun-Ren; Shen, Hui; Tian, Mei-Yuan; Zheng, Jin-feng; Yuan, Xiao-song; Wang, Fang-fang

    2013-01-01

    Piroplasmosis is a serious debilitating and sometimes fatal disease. Phylogenetic relationships within piroplasmida are complex and remain unclear. We compared the intron–exon structure and DNA sequences of the RPS8 gene from Babesia and Theileria spp. isolates in China. Similar to 18S rDNA, the 40S ribosomal protein S8 gene, RPS8, including both coding and non-coding regions is a useful and novel genetic marker for defining species boundaries and for inferring phylogenies because it tends to have little intra-specific variation but considerable inter-specific difference. However, more samples are needed to verify the usefulness of the RPS8 (coding and non-coding regions) gene as a marker for the phylogenetic position and detection of most Babesia and Theileria species, particularly for some closely related species. PMID:24244571

  1. PEG and mPEG-anthracene induce DNA condensation and particle formation.

    PubMed

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2011-08-18

    In this study, we investigated the binding of DNA with poly(ethylene glycol) (PEG) of different sizes and compositions such as PEG 3350, PEG 6000, and mPEG-anthracene in aqueous solution at physiological conditions. The effects of size and composition on DNA aggregation and condensation as well as conformation were determined using Fourier transform infrared (FTIR), UV-visible, CD, fluorescence spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed moderate complex formation for PEG 3350 and PEG 6000 and weaker interaction for mPE-anthracene-DNA adducts with both hydrophilic and hydrophobic contacts. The order of ± stability of the complexes formed is K(PEG 6000) = 1.5 (±0.4) × 10(4) M(-1) > K(PEG 3350) = 7.9 (±1) × 10(3) M(-1) > K(m(PEG-anthracene))= 3.6 (±0.8) × 10(3) M(-1) with nearly 1 bound PEG molecule per DNA. No B-DNA conformational changes were observed, while DNA condensation and particle formation occurred at high PEG concentration.

  2. Basic quantitative polymerase chain reaction using real-time fluorescence measurements.

    PubMed

    Ares, Manuel

    2014-10-01

    This protocol uses quantitative polymerase chain reaction (qPCR) to measure the number of DNA molecules containing a specific contiguous sequence in a sample of interest (e.g., genomic DNA or cDNA generated by reverse transcription). The sample is subjected to fluorescence-based PCR amplification and, theoretically, during each cycle, two new duplex DNA molecules are produced for each duplex DNA molecule present in the sample. The progress of the reaction during PCR is evaluated by measuring the fluorescence of dsDNA-dye complexes in real time. In the early cycles, DNA duplication is not detected because inadequate amounts of DNA are made. At a certain threshold cycle, DNA-dye complexes double each cycle for 8-10 cycles, until the DNA concentration becomes so high and the primer concentration so low that the reassociation of the product strands blocks efficient synthesis of new DNA and the reaction plateaus. There are two types of measurements: (1) the relative change of the target sequence compared to a reference sequence and (2) the determination of molecule number in the starting sample. The first requires a reference sequence, and the second requires a sample of the target sequence with known numbers of the molecules of sequence to generate a standard curve. By identifying the threshold cycle at which a sample first begins to accumulate DNA-dye complexes exponentially, an estimation of the numbers of starting molecules in the sample can be extrapolated. © 2014 Cold Spring Harbor Laboratory Press.

  3. M-DNA: a self-assembling molecular wire for nanoelectronics and biosensing.

    PubMed

    Wettig, Shawn D; Li, Chen-Zhong; Long, Yi-Tao; Kraatz, Heinz-Bernhard; Lee, Jeremy S

    2003-01-01

    M-DNA is a complex between divalent metal ions such as Zn2+ and duplex DNA which forms at pH 8.5. Unlike B-DNA, M-DNA does not bind ethidium so that M-DNA formation can be monitored conveniently by an ethidium fluorescence assay. M-DNA was shown to be a better conductor than B-DNA by fluorometric measurements of electron transport in donor-acceptor labelled duplexes; by direct conductivity measurements of M-DNA bound between gold electrodes and by cyclic voltammetric studies on ferrocene labelled duplexes attached to gold microelectrodes. As is the case with B-DNA, M-DNA can self-assemble into a variety of structures and is anticipated to find widespread use in nanoelectronics and biosensing.

  4. Optimizing Cationic and Neutral Lipids for Efficient Gene Delivery at High Serum Content

    PubMed Central

    Majzoub, Ramsey N.; Hwu, Yeu-kuang; Liang, Keng S.; Leal, Cecília; Safinya, Cyrus R.

    2014-01-01

    Background Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential applications in gene therapy. A key challenge in creating CL-DNA complexes for applications is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of high serum contents on TE even though this may provide design guidelines for applications in vivo. Methods We prepared CL-DNA complexes in which we varied the neutral lipid (DOPC, glycerol-monooleate (GMO), cholesterol), the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). Results In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, in particular at high serum content. Conclusions Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We suggest guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid. PMID:24753287

  5. Specific gene transfer mediated by galactosylated poly-L-lysine into hepatoma cells.

    PubMed

    Han, J; Il Yeom, Y

    2000-07-20

    Plasmid DNA/galactosylated poly-L-lysine(GalPLL) complex was used to transfer luciferase reporter gene in vitro into human hepatoma cells by a receptor-mediated endocytosis process. DNA was combined with galPLL via charge interaction (DNA:GalPLL:fusogenic peptide, 1:0.4:5, w/w/w) and the resulting complex was characterized by dynamic light scattering, gel retardation assay and zeta potential analyzer to determine the particle size, electrostatic charge interaction, and apparent surface charge. The complex was tested for the efficiency of gene transfer in cultured human hepatoblastoma cell line Hep G2 and fibroblast cells NIH/3T3 in vitro. The mean diameter of the complex (DNA:GalPLL=1:0.4, w/w) was 256+/-34.8 nm, and at this ratio, it was positively charged (zeta potential of this complex was 10.1 mV). Hep G2 cells, which express a galactose specific membrane lectin, were efficiently and selectively transfected with the RSV Luc/GalPLL complex in a sugar-dependent manner. NIH/3T3 cells, which do not express the galactose-specific membrane lectin, showed only a marginal level of gene expression. The transfection efficiency of GalPLL-conjugated DNA complex into Hep G2 cells was greatly enhanced in the presence of fusogenic peptide that can disrupt endosomes, where the GalPLL-DNA complex is entrapped with the fusogenic peptide. With the fusogenic peptide KALA, the luciferase activity in Hep G2 cells was ten-fold higher than that of cells transfected in the absence of the fusogenic peptide. Our gene transfer formulation may find potential application for the gene therapy of liver diseases.

  6. Genetic variation in biotransformation enzymes, air pollution exposures, and risk of spina bifida.

    PubMed

    Padula, Amy M; Yang, Wei; Schultz, Kathleen; Lurmann, Fred; Hammond, S Katharine; Shaw, Gary M

    2018-05-01

    Spina bifida is a birth defect characterized by incomplete closure of the embryonic neural tube. Genetic factors as well as environmental factors have been observed to influence risks for spina bifida. Few studies have investigated possible gene-environment interactions that could contribute to spina bifida risk. The aim of this study is to examine the interaction between gene variants in biotransformation enzyme pathways and ambient air pollution exposures and risk of spina bifida. We evaluated the role of air pollution exposure during pregnancy and gene variants of biotransformation enzymes from bloodspots and buccal cells in a California population-based case-control (86 cases of spina bifida and 208 non-malformed controls) study. We considered race/ethnicity and folic acid vitamin use as potential effect modifiers and adjusted for those factors and smoking. We observed gene-environment interactions between each of the five pollutants and several gene variants: NO (ABCC2), NO 2 (ABCC2, SLC01B1), PM 10 (ABCC2, CYP1A1, CYP2B6, CYP2C19, CYP2D6, NAT2, SLC01B1, SLC01B3), PM 2.5 (CYP1A1 and CYP1A2). These analyses show positive interactions between air pollution exposure during early pregnancy and gene variants associated with metabolizing enzymes. These exploratory results suggest that some individuals based on their genetic background may be more susceptible to the adverse effects of pollution. © 2018 Wiley Periodicals, Inc.

  7. Osteomalacia induced by long-term low-dose adefovir dipivoxil: Clinical characteristics and genetic predictors.

    PubMed

    Wei, Zhe; He, Jin-Wei; Fu, Wen-Zhen; Zhang, Zhen-Lin

    2016-12-01

    Adefovir dipivoxil (ADV) was an important cause of adult-onset hypophosphatemic osteomalacia. However, its clinical characteristics and mechanisms have not been well defined. The objective of the study was to summarize the clinical characteristics of ADV-induced osteomalacia and to explore the association between ADV-associated tubulopathy and polymorphisms in genes encoding drug transporters. Seventy-six affected patients were clinically studied. The SLC22A6 and ABCC2 genes were screened and compared with healthy people from the HapMap. Hypophosphatemia, high serum alkaline phosphatase (ALP) levels, hypouricemia, nondiabetic glycosuria, proteinuria, metabolic acidosis and high bone turnover markers were the main metabolic characteristics. Fractures and pseudofractures occurred in 39 patients. Stopping ADV administration, supplementing calcitriol and calcium was effective during the follow-up period. Single SNP analysis revealed a higher percentage of the G/A genotype at c.2934 in exon 22 of the ABCC2 gene (rs3740070) in patients than in healthy people (12% [7 of 58 patients] vs. 0% [0 of 45 patients]; P=0.017), while there was no subject with homozygosity for the A allele at c.2934. ADV can be nephrotoxic at a conventional dosage. The G/A genotype at c.2934 of the ABCC2 gene may be a predictor of patients at greater risk for developing ADV-associated tubulopathy. Larger case-control studies are needed to further verify this finding. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Fis protein induced λF-DNA bending observed by single-pair fluorescence resonance energy transfer

    NASA Astrophysics Data System (ADS)

    Chi-Cheng, Fu; Wunshain, Fann; Yuan Hanna, S.

    2006-03-01

    Fis, a site-specific DNA binding protein, regulates many biological processes including recombination, transcription, and replication in E.coli. Fis induced DNA bending plays an important role in regulating these functions and bending angle range from ˜50 to 95 dependent on the DNA sequence. For instance, the average bending angle of λF-DNA (26 bp, 8.8nm long, contained λF binding site on the center) measured by gel mobility shift assays was ˜ 94 . But the traditional method cannot provide information about the dynamics and the angle distribution. In this study, λF-DNA was labeled with donor (Alexa Fluor 546) and acceptor (Alexa Fluor 647) dyes on its two 5' ends and the donor-acceptor distances were measured using single-pair fluorescence resonance energy transfer (sp-FRET) with and without the present of Fis protein. Combing with structure information of Fis-DNA complex, the sp-FRET results are used to estimate the protein induced DNA bending angle distribution and dynamics.

  9. RNF8- and Ube2S-Dependent Ubiquitin Lysine 11-Linkage Modification in Response to DNA Damage.

    PubMed

    Paul, Atanu; Wang, Bin

    2017-05-18

    Ubiquitin modification of proteins plays pivotal roles in the cellular response to DNA damage. Given the complexity of ubiquitin conjugation due to the formation of poly-conjugates of different linkages, functional roles of linkage-specific ubiquitin modification at DNA damage sites are largely unclear. We identify that Lys11-linkage ubiquitin modification occurs at DNA damage sites in an ATM-dependent manner, and ubiquitin-modifying enzymes, including Ube2S E2-conjugating enzyme and RNF8 E3 ligase, are responsible for the assembly of Lys11-linkage conjugates on damaged chromatin, including histone H2A/H2AX. We show that RNF8- and Ube2S-dependent Lys11-linkage ubiquitin conjugation plays an important role in regulating DNA damage-induced transcriptional silencing, distinct from the role of Lys63-linkage ubiquitin in the recruitment of DNA damage repair proteins 53BP1 and BRCA1. Thus, our study highlights the importance of linkage-specific ubiquitination at DNA damage sites, and it reveals that Lys11-linkage ubiquitin modification plays a crucial role in the DNA damage response. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Interaction with biomacromolecules and antiproliferative activities of Mn(II), Ni(II), Zn(II) complexes of demethylcantharate and 2,2'-bipyridine

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Lin, Qiu-Yue; Hu, Wan-Li; Song, Wen-Ji; Shen, Shu-Ting; Gui, Pan

    2013-06-01

    Three new transition metal complexes [Mn2(DCA)2(bipy)2]·5H2O (1), [M2(DCA)2(bipy)2(H2O)]·10H2O(M = Ni(II)(2);Zn(II)(3)), (DCA = demethylcantharate, 7-oxabicyclo[2,2,1]heptane-2,3-dicarboxylate, C8H8O5) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra and X-ray diffraction techniques. Each metal ion was six-coordinated in complexes. Complex 1 has a Mn2O2 center. Complexes 2 and 3 have asymmetric binuclear structure. Great amount of intermolecular hydrogen-bonding and π-π* stacking interactions were formed in these complex structures. The DNA-binding properties of complexes were investigated by electronic absorption spectra and viscosity measurements. The DNA binding constants Kb/(L mol-1) were 1.71 × 104 (1), 2.62 × 104 (2) and 1.59 × 104 (3) at 298 K. The complexes could quench the intrinsic fluorescence of bovine serum albumin (BSA) strongly through static quenching. The protein binding constants Ka/(L mol-1) were 7.27 × 104 (1), 4.55 × 104 (2) and 7.87 × 104 L mol-1 (3) and binding site was one. The complexes bind more tightly with DNA and BSA than with ligands. Complexes 1 and 3 had stronger inhibition ratios than Na2(DCA) against human hepatoma cells (SMMC-7721) lines and human gastric cancer cells (MGC80-3) lines in vitro. Complex 3 showed the strongest antiproliferative activity against SMMC-7721 (IC50 = 29.46 ± 2.12 μmol L-1) and MGC80-3 (IC50 = 27.02 ± 2.38 μmol L-1), which shows potential in anti-cancer drug development.

  11. Structures of transcription pre-initiation complex with TFIIH and Mediator.

    PubMed

    Schilbach, S; Hantsche, M; Tegunov, D; Dienemann, C; Wigge, C; Urlaub, H; Cramer, P

    2017-11-09

    For the initiation of transcription, RNA polymerase II (Pol II) assembles with general transcription factors on promoter DNA to form the pre-initiation complex (PIC). Here we report cryo-electron microscopy structures of the Saccharomyces cerevisiae PIC and PIC-core Mediator complex at nominal resolutions of 4.7 Å and 5.8 Å, respectively. The structures reveal transcription factor IIH (TFIIH), and suggest how the core and kinase TFIIH modules function in the opening of promoter DNA and the phosphorylation of Pol II, respectively. The TFIIH core subunit Ssl2 (a homologue of human XPB) is positioned on downstream DNA by the 'E-bridge' helix in TFIIE, consistent with TFIIE-stimulated DNA opening. The TFIIH kinase module subunit Tfb3 (MAT1 in human) anchors the kinase Kin28 (CDK7), which is mobile in the PIC but preferentially located between the Mediator hook and shoulder in the PIC-core Mediator complex. Open spaces between the Mediator head and middle modules may allow access of the kinase to its substrate, the C-terminal domain of Pol II.

  12. Electrochemical study of the interaction between dsDNA and copper(I) using carbon paste and hanging mercury drop electrode.

    PubMed

    Stanić, Z; Girousi, S

    2008-06-30

    The interaction of copper(I) with double-stranded (ds) calf thymus DNA was studied in solution and at the electrode surface by means of transfer voltammetry using a carbon paste electrode (CPE) as working electrode in 0.2 M acetate buffer solution (pH 5.0). As a result of the interaction of Cu(I) between the base pairs of the dsDNA, the characteristic peaks of dsDNA, due to the oxidation of guanine and adenine, increased and after a certain concentration of Cu(I) a new peak at +1.37 V appeared, probably due to the formation of a purine-Cu(I) complex (dsDNA-Cu(I) complex). Accordingly, the interaction of copper(I) with calf thymus dsDNA was studied in solution as well as at the electrode surface using hanging mercury drop electrode (HMDE) by means of alternating current voltammetry (AC voltammetry) in 0.3 M NaCl and 50 mM sodium phosphate buffer (pH 8.5) as supporting electrolyte. Its interaction with DNA is shown to be time dependent. Significant changes in the characteristic peaks of dsDNA were observed after addition of higher concentration of Cu(I) to a solution containing dsDNA, as a result of the interaction between Cu(I) and dsDNA. All the experimental results indicate that Cu(I) can bind to DNA by electrostatic binding and form an association complex.

  13. Regulation of oxidative DNA damage repair by DNA polymerase λ and MutYH by cross-talk of phosphorylation and ubiquitination

    PubMed Central

    Markkanen, Enni; van Loon, Barbara; Ferrari, Elena; Parsons, Jason L.; Dianov, Grigory L.; Hübscher, Ulrich

    2012-01-01

    It is of pivotal importance for genome stability that repair DNA polymerases (Pols), such as Pols λ and β, which all exhibit considerably reduced fidelity when replicating undamaged DNA, are tightly regulated, because their misregulation could lead to mutagenesis. Recently, we found that the correct repair of the abundant and highly miscoding oxidative DNA lesion 7,8-dihydro-8-oxo-2′-deoxyguanine (8-oxo-G) is performed by an accurate repair pathway that is coordinated by the MutY glycosylase homologue (MutYH) and Pol λ in vitro and in vivo. Pol λ is phosphorylated by Cdk2/cyclinA in late S and G2 phases of the cell cycle, promoting Pol λ stability by preventing it from being targeted for proteasomal degradation by ubiquitination. However, it has remained a mystery how the levels of Pol λ are controlled, how phosphorylation promotes its stability, and how the engagement of Pol λ in active repair complexes is coordinated. Here, we show that the E3 ligase Mule mediates the degradation of Pol λ and that the control of Pol λ levels by Mule has functional consequences for the ability of mammalian cells to deal with 8-oxo-G lesions. Furthermore, we demonstrate that phosphorylation of Pol λ by Cdk2/cyclinA counteracts its Mule-mediated degradation by promoting recruitment of Pol λ to chromatin into active 8-oxo-G repair complexes through an increase in Pol λ’s affinity to chromatin-bound MutYH. Finally, MutYH appears to promote the stability of Pol λ by binding it to chromatin. In contrast, Pol λ not engaged in active repair on chromatin is subject for proteasomal degradation. PMID:22203964

  14. Several adaptor proteins promote intracellular localisation of the transporter MRP4/ABCC4 in platelets and haematopoietic cells.

    PubMed

    Schaletzki, Yvonne; Kromrey, Marie-Luise; Bröderdorf, Susanne; Hammer, Elke; Grube, Markus; Hagen, Paul; Sucic, Sonja; Freissmuth, Michael; Völker, Uwe; Greinacher, Andreas; Rauch, Bernhard H; Kroemer, Heyo K; Jedlitschky, Gabriele

    2017-01-05

    The multidrug resistance protein 4 (MRP4/ABCC4) has been identified as an important transporter for signalling molecules including cyclic nucleotides and several lipid mediators in platelets and may thus represent a novel target to interfere with platelet function. Besides its localisation in the plasma membrane, MRP4 has been also detected in the membrane of dense granules in resting platelets. In polarised cells it is localised at the basolateral or apical plasma membrane. To date, the mechanism of MRP4 trafficking has not been elucidated; protein interactions may regulate both the localisation and function of this transporter. We approached this issue by searching for interacting proteins by in vitro binding assays, followed by immunoblotting and mass spectrometry, and by visualising their co-localisation in platelets and haematopoietic cells. We identified the PDZ domain containing scaffold proteins ezrin-binding protein 50 (EBP50/NHERF1), postsynaptic density protein 95 (PSD95), and sorting nexin 27 (SNX27), but also the adaptor protein complex 3 subunit β3A (AP3B1) and the heat shock protein HSP90 as putative interaction partners of MRP4. The knock-down of SNX27, PSD95, and AP3B1 by siRNA in megakaryoblastic leukaemia cells led to a redistribution of MRP4 from intracellular structures to the plasma membrane. Inhibition of HSP90 led to a diminished expression and retention of MRP4 in the endoplasmic reticulum. These results indicate that MRP4 localisation and function are regulated by multiple protein interactions. Changes in the adaptor proteins can hence lead to altered localisation and function of the transporter.

  15. Bis-anthracycline WP760 abrogates melanoma cell growth by transcription inhibition, p53 activation and IGF1R downregulation.

    PubMed

    Olbryt, Magdalena; Rusin, Aleksandra; Fokt, Izabela; Habryka, Anna; Tudrej, Patrycja; Student, Sebastian; Sochanik, Aleksander; Zieliński, Rafał; Priebe, Waldemar

    2017-10-01

    Anthracycline chemotherapeutics, e.g. doxorubicin and daunorubicin, are active against a broad spectrum of cancers. Their cytotoxicity is mainly attributed to DNA intercalation, interference with topoisomerase activity, and induction of double-stranded DNA breaks. Since modification of anthracyclines can profoundly affect their pharmacological properties we attempted to elucidate the mechanism of action, and identify possible molecular targets, of bis-anthracycline WP760 which previously demonstrated anti-melanoma activity at low nanomolar concentrations. We studied the effect of WP760 on several human melanoma cell lines derived from tumors in various development stages and having different genetic backgrounds. WP760 inhibited cell proliferation (IC 50  = 1-99 nM), impaired clonogenic cell survival (100 nM), and inhibited spheroid growth (≥300 nM). WP760 did not induce double-stranded DNA breaks but strongly inhibited global transcription. Moreover, WP760 caused nucleolar stress and led to activation of the p53 pathway. PCR array analysis showed that WP760 suppressed transcription of ten genes (ABCC1, MTOR, IGF1R, EGFR, GRB2, PRKCA, PRKCE, HDAC4, TXNRD1, AKT1) associated with, inter alia, cytoprotective mechanisms initiated in cancer cells during chemotherapy. Furthermore, WP760 downregulated IGF1R and upregulated PLK2 expression in most of the tested melanoma cell lines. These results suggest that WP760 exerts anti-melanoma activity by targeting global transcription and activation of the p53 pathway and could become suitable as an effective therapeutic agent.

  16. Non-enolisable Knoevenagel condensate appended Schiff bases-metal (II) complexes: Spectral characteristics, DNA-binding and nuclease activities

    NASA Astrophysics Data System (ADS)

    Gubendran, Ammavasi; Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Mitu, Liviu; Athappan, Periyakaruppan; Rajesh, Jegathalaprathaban

    2017-06-01

    New Schiff base complexes [Cu(L1)Cl] (1), [Ni(L1)Cl] (2), [Zn(L1)Cl] (3), and [Fe(L2)H2OCl] (4) {L1 = (4E)-3-(2-hydroxybenzylidene)-4-(2-hydroxyphenylimino)pentan-2-one, L2 = 2,2‧-(1E,1‧E)-(3-(2-hydroxybenzylidene)-pentane-2,4-diylidene)bis(azan-1-yl-1 idene)diphenol} have been synthesized and characterized by elemental analysis, UV-Vis, IR, FAB-mass, EPR, spectral studies and electrochemical studies, the ligands L1 &L2 were characterized by 1H and 13C NMR spectra. Complex 1 show a visible spectral d-d band near 600 nm and display cyclic voltammetric quasireversible response for the Cu(II)/Cu(I) couple vs Ag/AgCl in DMSO. The EPR spectrum of 1 show g‖ > g⊥ suggesting a square planar geometry around copper with dx2 - y2 as the ground state. The mass spectral results have confirmed the proposed structure for complexes 1-4. DNA binding properties of these complexes 1-4 have been investigated by absorption titrations, cyclic voltammetric studies and circular dichroism studies. On titration with DNA, the complexes 1-4 show hypochromism at the MLCT band (13-31%) with a red shift of 1-8 nm in the electronic spectrum and positive shift of voltammetric E1/2 in the CV studies are in favour of intercalative binding. CD spectra of 1 showed an increase in molar ellipticity (θ278) of the positive band with a minor red shift indicating the transition of B-form of DNA to A like form. DNA cleavage studies of complexes 1 and 4 with pUC18 DNA were studied by gel electrophoresis and complex 4 cleaves supercoiled pUC18 DNA in an oxidative manner in the presence of H2O2 and on photo irradiation at 312 nm.

  17. Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding

    NASA Astrophysics Data System (ADS)

    Volbeda, Anne; Dodd, Erin L.; Darnault, Claudine; Crack, Jason C.; Renoux, Oriane; Hutchings, Matthew I.; Le Brun, Nick E.; Fontecilla-Camps, Juan C.

    2017-04-01

    NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe-4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe-4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove.

  18. Polyethyleneimine-lipid conjugate-based pH-sensitive micellar carrier for gene delivery

    PubMed Central

    Sawant, Rupa R.; Sriraman, Shravan Kumar; Navarro, Gemma; Biswas, Swati; Dalvi, Riddhi A.; Torchilin, Vladimir P.

    2012-01-01

    A low molecular weight polyethyleneimine (PEI 1.8 kDa) was modified with dioleoylphosphatidylethanolamine (PE) to form the PEI-PE conjugate investigated as a transfection vector. The optimized PEI-PE/pDNA complexes at an N/P ratio of 16 had a particle size of 225 nm, a surface charge of +31 mV, and protected the pDNA from the action of DNase I. The PEI-PE conjugate had a critical micelle concentration (CMC) of about 34 μg/ml and exhibited no toxicity compared to a high molecular weight PEI (PEI 25 kDa) as tested with B16-F10 melanoma cells. The B16-F10 cells transfected with PEI-PE/pEGFP complexes showed protein expression levels higher than with PEI-1.8 or PEI-25 vectors. Complexes prepared with YOYO 1-labeled pEGFP confirmed the enhanced delivery of the plasmid with PEI-PE compared to PEI-1.8 and PEI-25. The PEI-PE/pDNA complexes were also mixed with various amounts of micelle-forming material, polyethylene glycol (PEG)-PE to improve biocompatibility. The resulting particles exhibited a neutral surface charge, resistance to salt-induced aggregation, and good transfection activity in the presence of serum in complete media. The use of the low-pH-degradable PEG-hydrazone-PE produced particles with transfection activity sensitive to changes in pH consistent with the relatively acidic tumor environment. PMID:22365809

  19. Deciphering the Binding between Nupr1 and MSL1 and Their DNA-Repairing Activity

    PubMed Central

    Doménech, Rosa; Pantoja-Uceda, David; Gironella, Meritxell; Santoro, Jorge; Velázquez-Campoy, Adrián; Neira, José L.; Iovanna, Juan L.

    2013-01-01

    The stress protein Nupr1 is a highly basic, multifunctional, intrinsically disordered protein (IDP). MSL1 is a histone acetyl transferase-associated protein, known to intervene in the dosage compensation complex (DCC). In this work, we show that both Nupr1 and MSL1 proteins were recruited and formed a complex into the nucleus in response to DNA-damage, which was essential for cell survival in reply to cisplatin damage. We studied the interaction of Nupr1 and MSL1, and their binding affinities to DNA by spectroscopic and biophysical methods. The MSL1 bound to Nupr1, with a moderate affinity (2.8 µM) in an entropically-driven process. MSL1 did not bind to non-damaged DNA, but it bound to chemically-damaged-DNA with a moderate affinity (1.2 µM) also in an entropically-driven process. The Nupr1 protein bound to chemically-damaged-DNA with a slightly larger affinity (0.4 µM), but in an enthalpically-driven process. Nupr1 showed different interacting regions in the formed complexes with Nupr1 or DNA; however, they were always disordered (“fuzzy”), as shown by NMR. These results underline a stochastic description of the functionality of the Nupr1 and its other interacting partners. PMID:24205110

  20. Structure of a group II intron in complex with its reverse transcriptase.

    PubMed

    Qu, Guosheng; Kaushal, Prem Singh; Wang, Jia; Shigematsu, Hideki; Piazza, Carol Lyn; Agrawal, Rajendra Kumar; Belfort, Marlene; Wang, Hong-Wei

    2016-06-01

    Bacterial group II introns are large catalytic RNAs related to nuclear spliceosomal introns and eukaryotic retrotransposons. They self-splice, yielding mature RNA, and integrate into DNA as retroelements. A fully active group II intron forms a ribonucleoprotein complex comprising the intron ribozyme and an intron-encoded protein that performs multiple activities including reverse transcription, in which intron RNA is copied into the DNA target. Here we report cryo-EM structures of an endogenously spliced Lactococcus lactis group IIA intron in its ribonucleoprotein complex form at 3.8-Å resolution and in its protein-depleted form at 4.5-Å resolution, revealing functional coordination of the intron RNA with the protein. Remarkably, the protein structure reveals a close relationship between the reverse transcriptase catalytic domain and telomerase, whereas the active splicing center resembles the spliceosomal Prp8 protein. These extraordinary similarities hint at intricate ancestral relationships and provide new insights into splicing and retromobility.

  1. Structural basis for ATP-dependent chromatin remodelling by the INO80 complex.

    PubMed

    Eustermann, Sebastian; Schall, Kevin; Kostrewa, Dirk; Lakomek, Kristina; Strauss, Mike; Moldt, Manuela; Hopfner, Karl-Peter

    2018-04-01

    In the eukaryotic nucleus, DNA is packaged in the form of nucleosomes, each of which comprises about 147 base pairs of DNA wrapped around a histone protein octamer. The position and histone composition of nucleosomes is governed by ATP-dependent chromatin remodellers 1-3 such as the 15-subunit INO80 complex 4 . INO80 regulates gene expression, DNA repair and replication by sliding nucleosomes, the exchange of histone H2A.Z with H2A, and the positioning of + 1 and -1 nucleosomes at promoter DNA 5-8 . The structures and mechanisms of these remodelling reactions are currently unknown. Here we report the cryo-electron microscopy structure of the evolutionarily conserved core of the INO80 complex from the fungus Chaetomium thermophilum bound to a nucleosome, at a global resolution of 4.3 Å and with major parts at 3.7 Å. The INO80 core cradles one entire gyre of the nucleosome through multivalent DNA and histone contacts. An Rvb1/Rvb2 AAA + ATPase heterohexamer is an assembly scaffold for the complex and acts as a 'stator' for the motor and nucleosome-gripping subunits. The Swi2/Snf2 ATPase motor binds to nucleosomal DNA at superhelical location -6, unwraps approximately 15 base pairs, disrupts the H2A-DNA contacts and is poised to pump entry DNA into the nucleosome. Arp5 and Ies6 bind superhelical locations -2 and -3 to act as a counter grip for the motor, on the other side of the H2A-H2B dimer. The Arp5 insertion domain forms a grappler element that binds the nucleosome dyad, connects the Arp5 actin-fold and entry DNA over a distance of about 90 Å and packs against histone H2A-H2B near the 'acidic patch'. Our structure together with biochemical data 8 suggests a unified mechanism for nucleosome sliding and histone editing by INO80. The motor is part of a macromolecular ratchet, persistently pumping entry DNA across the H2A-H2B dimer against the Arp5 grip until a large nucleosome translocation step occurs. The transient exposure of H2A-H2B by motor activity as well as differential recognition of H2A.Z and H2A may regulate histone exchange.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damian, Luminita, E-mail: luminitadamian@microcal.eu.com; Universite de Toulouse, UPS, IPBS, F-31077 Toulouse; IUB, School of Engineering and Science, D-28727 Bremen

    Is single-strand DNA translatable? Since the 60s, the question still remains whether or not DNA could be directly translated into protein. Some discrepancies in the results were reported about functional translation of single-strand DNA but all results converged on a similar behavior of RNA and ssDNA in the initiation step. Isothermal Titration Calorimetry method was used to determine thermodynamic constants of interaction between single-strand DNA and S30 extract of Escherichia coli. Our results showed that the binding was not affected by the nature of the template tested and the dissociation constants were in the same range when ssDNA (K{sub d}more » = 3.62 {+-} 2.1 x 10{sup -8} M) or the RNA corresponding sequence (K{sub d} = 2.7 {+-} 0.82 x 10{sup -8} M) bearing SD/ATG sequences were used. The binding specificity was confirmed by antibiotic interferences which block the initiation complex formation. These results suggest that the limiting step in translation of ssDNA is the elongation process.« less

  3. Genetic influences on human body odor: from genes to the axillae.

    PubMed

    Preti, George; Leyden, James J

    2010-02-01

    Several groups have identified the characteristic axillary odorants and how they arrive on the skin surface, pre-formed, bound to water-soluble odorless precursors in apocrine secretions. In the current issue, Martin et al., (2010) describe the relationship between the production of axillary odorants and variants in the ABCC11 gene. Individuals who are homozygotic for a SNP (538G>A) were found to have significantly less of the characteristic axillary odorants than either individuals who were heterozygotic for this change or those who had the wild-type gene. The 538G>A SNP predominates in Asians who have nearly complete loss of typical body odor. ABCC11 is expressed and localized in apocrine sweat glands. These findings are remarkably similar to the ethnic distribution and expression patterns for apocrine apoD, a previously identified carrier of a characteristic axillary odorant.

  4. Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro.

    PubMed

    Weiss, Johanna; Haefeli, Walter Emil

    2013-05-01

    The objective of this study was to assess the drug-drug interaction potential of the new non-nucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine in vitro. The following were evaluated: P-glycoprotein (P-gp/ABCB1) inhibition by calcein assay; breast cancer resistance protein (BCRP/ABCG2) inhibition by pheophorbide A efflux; and inhibition of organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 by 8-fluorescein-cAMP uptake. Inhibition of cytochrome P450 enzymes was assessed using commercially available kits. Substrate characteristics were evaluated by growth inhibition assays in MDCKII cells overexpressing particular ABC transporters. Induction of drug-metabolising enzymes and transporters was quantified by real-time RT-PCR in LS180 cells, and activation of pregnane X receptor (PXR) by a reporter gene assay. Rilpivirine significantly inhibited P-gp (IC(50) = 13.1 ± 6.8 μmol/L), BCRP (IC(50) = 1.5 ± 0.3 μmol/L), OATP1B1 (IC(50) = 4.1 ± 1.8 μmol/L), OATP1B3 (IC(50) = 6.1 ± 0.9 μmol/L), CYP3A4 (IC(50) = 1.3 ± 0.6 μmol/L), CYP2C19 (IC(50) = 2.7 ± 0.3 μmol/L) and CYP2B6 (IC(50) = 4.2 ± 1.6 μmol/L). Growth inhibition assays indicate that rilpivirine is not a substrate of P-gp, BCRP, or multidrug resistance-associated proteins 1 and 2. In LS180 cells, rilpivirine induced mRNA expression of ABCB1, CYP3A4 and UGT1A3, whereas ABCC1, ABCC2, ABCG2, OATP1B1 and UGT1A9 were not induced. Moreover, rilpivirine was a PXR activator. In conclusion, rilpivirine inhibits and induces several relevant drug-metabolising enzymes and drug transporters, but owing to its low plasma concentrations it is most likely less prone to drug-drug interactions than older NNRTIs. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  5. New luminescent bioprobes Eu(lll)-phloroglucinol derivatives and their spectrofluorimetric, electrochemical interactions with nucleotides and DNA.

    PubMed

    Azab, Hassan Ahmed; Anwar, Zeinab M; Abdel-Salam, Enas T; el-Sayed-Sebak, Mahmoud

    2012-01-01

    Two new ligands derived from phloroglucinol 2-{[(4-methoxy benzoyl)oxy]} methyl benzoic acid[L1] and 2-{[(4-methyl benzoyl)oxy] methyl} benzoic acid[L2] were synthesized. The solid complex Eu(III)-L2 has been synthesised and characterized by elemental analysis, UV and IR spectra. The reaction of Eu(III) with the two synthesized ligands has been investigated in I = 0.1 mol dm(-3) p-toluene sulfonate by cyclic voltammetry and square wave voltammetry. The reaction of Eu (III)-L1 and Eu (III)-L2 binary complexes with nucleotide 5'-AMP, 5'-ADP, 5'-ATP, 5'- GMP, 5'-IMP, and 5'-CMP has been investigated using UV, fluorescence and electrochemical methods. The experimental conditions were selected such that self-association of the nucleotides and their complexes was negligibly small, that is, the monomeric complexes were studied. The interaction of the Eu(III)-L1 or L2 solid complexes with calf-thymus DNA has been investigated by fluorescence and electrochemical methods including cyclic voltammetery(CV), differential pulse polarography (DPP) and square wave voltammetry (SWV) on a glassy carbon electrode. The fluorescence intensity of Eu(III)-L2 complex was enhanced with the addition of DNA. Under optimal conditions in phosphate buffer pH 7.0 at 25 °C the linear range is 3-20 μM for calf thymus DNA (CT-DNA) and the corresponding determination limit is 1.8 μM.

  6. Mechanism of synergistic DNA damage induced by the hydroquinone metabolite of brominated phenolic environmental pollutants and Cu(II): Formation of DNA-Cu complex and site-specific production of hydroxyl radicals.

    PubMed

    Shao, Bo; Mao, Li; Qu, Na; Wang, Ya-Fen; Gao, Hui-Ying; Li, Feng; Qin, Li; Shao, Jie; Huang, Chun-Hua; Xu, Dan; Xie, Lin-Na; Shen, Chen; Zhou, Xiang; Zhu, Ben-Zhan

    2017-03-01

    2,6-Dibromohydroquinone (2,6-DBrHQ) has been identified as an reactive metabolite of many brominated phenolic environmental pollutants such as tetrabromobisphenol-A (TBBPA), bromoxynil and 2,4,6-tribromophenol, and was also found as one of disinfection byproducts in drinking water. In this study, we found that the combination of 2,6-DBrHQ and Cu(II) together could induce synergistic DNA damage as measured by double strand breakage in plasmid DNA and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) formation, while either of them alone has no effect. 2,6-DBrHQ/Cu(II)-induced DNA damage could be inhibited by the Cu(I)-specific chelating agent bathocuproine disulfonate and catalase, but not by superoxide dismutase, nor by the typical hydroxyl radical (•OH) scavengers such as DMSO and mannitol. Interestingly, we found that Cu(II)/Cu(I) could be combined with DNA to form DNA-Cu(II)/Cu(I) complex by complementary application of low temperature direct ESR, circular dichroism, cyclic voltammetry and oxygen consumption methods; and the highly reactive •OH were produced synergistically by DNA-bound-Cu(I) with H 2 O 2 produced by the redox reactions between 2,6-DBrHQ and Cu(II), which then immediately attack DNA in a site-specific manner as demonstrated by both fluorescent method and by ESR spin-trapping studies. Further DNA sequencing investigations provided more direct evidence that 2,6-DBrHQ/Cu(II) caused preferential cleavage at guanine, thymine and cytosine residues. Based on these data, we proposed that the synergistic DNA damage induced by 2,6-DBrHQ/Cu(II) might be due to the synergistic and site-specific production of •OH near the binding site of copper and DNA. Our findings may have broad biological and environmental implications for future research on the carcinogenic polyhalogenated phenolic compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Effect of complex polyphenols and tannins from red wine (WCPT) on chemically induced oxidative DNA damage in the rat.

    PubMed

    Casalini, C; Lodovici, M; Briani, C; Paganelli, G; Remy, S; Cheynier, V; Dolara, P

    1999-08-01

    Flavonoids are polyphenolic antioxidants occurring in vegetables and fruits as well as beverages such as tea and wine which have been thought to influence oxidative damage. We wanted to verify whether a complex mixture of wine tannins (wine complex polyphenols and tannins, WCPT) prevent chemically-induced oxidative DNA damage in vivo. Oxidative DNA damage was evaluated by measuring the ratio of 8-hydroxy-2'-deoxyguanosine (80HdG)/ 2-deoxyguanosine (2dG) x 10(-6) in hydrolyzed DNA using HPLC coupled with electrochemical and UV detectors. We treated rats with WCPT (57 mg/kg p.o.) for 14 d, a dose 10-fold higher than what a moderate wine drinker would be exposed to. WCPT administration significantly reduced the ratio of 80HdG/2dG x 10(-6) in liver DNA obtained from rats treated with 2-nitropropane (2NP) relative to controls administered 2NP only (33. 3 +/- 2.5 vs. 44.9 +/- 3.2 x 10(-6) 2dG; micro +/- SE; p<0.05). On the contrary, pretreatment with WCPT for 10 d did not protect the colon mucosa from oxidative DNA damage induced by 1, 2-dimethylhydrazine (DMH). 2NP and DMH are hepatic and colon carcinogens, respectively, capable of inducing oxidative DNA damage. WCPT have protective action against some types of chemically-induced oxidative DNA damage in vivo.

  8. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies

    NASA Astrophysics Data System (ADS)

    Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka

    2018-03-01

    The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.

  9. Bio-important antipyrine derived Schiff bases and their transition metal complexes: Synthesis, spectroscopic characterization, antimicrobial, anthelmintic and DNA cleavage investigation

    NASA Astrophysics Data System (ADS)

    Manjunath, M.; Kulkarni, Ajaykumar D.; Bagihalli, Gangadhar B.; Malladi, Shridhar; Patil, Sangamesh A.

    2017-01-01

    Spectroscopic (IR, NMR, UV-vis, ESR, ESI-mass), magnetic and TGA studies suggests octahedral geometry for all the CoII, NiII and CuII complexes of the Schiff bases, derived from 4-aminoantipyrine and 8-formyl-7-Hydroxy-4-methylcoumarin/5-formyl-6-hydroxycoumarin, coordinated through ONO donor sites. Antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi), antifungal (Aspergillus niger, Aspergillus flavus and Cladosporium) and DNA cleavage properties of the metal complexes are investigated. The results suggested that some of the synthesized compounds are potential antimicrobials. The synthesized compounds tested for their anthelmintic activities and it was found that CoII and NiII complexes exhibited good anthelmintic properties.

  10. Unique active site promotes error-free replication opposite an 8-oxo-guanine lesion by human DNA polymerase iota

    PubMed Central

    Kirouac, Kevin N.; Ling, Hong

    2011-01-01

    The 8-oxo-guanine (8-oxo-G) lesion is the most abundant and mutagenic oxidative DNA damage existing in the genome. Due to its dual coding nature, 8-oxo-G causes most DNA polymerases to misincorporate adenine. Human Y-family DNA polymerase iota (polι) preferentially incorporates the correct cytosine nucleotide opposite 8-oxo-G. This unique specificity may contribute to polι’s biological role in cellular protection against oxidative stress. However, the structural basis of this preferential cytosine incorporation is currently unknown. Here we present four crystal structures of polι in complex with DNA containing an 8-oxo-G lesion, paired with correct dCTP or incorrect dATP, dGTP, and dTTP nucleotides. An exceptionally narrow polι active site restricts the purine bases in a syn conformation, which prevents the dual coding properties of 8-oxo-G by inhibiting syn/anti conformational equilibrium. More importantly, the 8-oxo-G base in a syn conformation is not mutagenic in polι because its Hoogsteen edge does not form a stable base pair with dATP in the narrow active site. Instead, the syn 8-oxo-G template base forms the most stable replicating base pair with correct dCTP due to its small pyrimidine base size and enhanced hydrogen bonding with the Hoogsteen edge of 8-oxo-G. In combination with site directed mutagenesis, we show that Gln59 in the finger domain specifically interacts with the additional O8 atom of the lesion base, which influences nucleotide selection, enzymatic efficiency, and replication stalling at the lesion site. Our work provides the structural mechanism of high-fidelity 8-oxo-G replication by a human DNA polymerase. PMID:21300901

  11. A crystal structure of the bifunctional antibiotic simocyclinone D8, bound to DNA gyrase.

    PubMed

    Edwards, Marcus J; Flatman, Ruth H; Mitchenall, Lesley A; Stevenson, Clare E M; Le, Tung B K; Clarke, Thomas A; McKay, Adam R; Fiedler, Hans-Peter; Buttner, Mark J; Lawson, David M; Maxwell, Anthony

    2009-12-04

    Simocyclinones are bifunctional antibiotics that inhibit bacterial DNA gyrase by preventing DNA binding to the enzyme. We report the crystal structure of the complex formed between the N-terminal domain of the Escherichia coli gyrase A subunit and simocyclinone D8, revealing two binding pockets that separately accommodate the aminocoumarin and polyketide moieties of the antibiotic. These are close to, but distinct from, the quinolone-binding site, consistent with our observations that several mutations in this region confer resistance to both agents. Biochemical studies show that the individual moieties of simocyclinone D8 are comparatively weak inhibitors of gyrase relative to the parent compound, but their combination generates a more potent inhibitor. Our results should facilitate the design of drug molecules that target these unexploited binding pockets.

  12. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta.

    PubMed

    Myllynen, Päivi; Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysä, Jaana; Pirilä, Rauna; Lastumäki, Anni; Vähäkangas, Kirsi H

    2008-10-15

    We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of (14)C-PhIP (2 microM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72+/-0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of (14)C-PhIP from maternal to fetal circulation (FM ratio 0.90+/-0.08 at 6 h, p<0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75+/-0.10, p=0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of (14)C-PhIP (R=-0.81, p<0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: -0.11, p=0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of (14)C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarcinoma cells.

  13. Japanese Legacy Cohorts: The Life Span Study Atomic Bomb Survivor Cohort and Survivors’ Offspring

    PubMed Central

    Grant, Eric J; Kodama, Kazunori

    2018-01-01

    Cohorts of atomic bomb survivors—including those exposed in utero—and children conceived after parental exposure were established to investigate late health effects of atomic bomb radiation and its transgenerational effects by the Atomic Bomb Casualty Commission (ABCC) in the 1950s. ABCC was reorganized to the Radiation Effects Research Foundation (RERF) in 1975, and all work has been continued at RERF. The Life Span Study, the cohort of survivors, consists of about 120,000 subjects and has been followed since 1950. Cohorts of in utero survivors and the survivors’ children include about 3,600 and 77,000 subjects, respectively, and have been followed since 1945. Atomic bomb radiation dose was estimated for each subject based on location at the time of the bombing and shielding conditions from exposure, which were obtained through enormous efforts of investigators and cooperation of subjects. Outcomes include vital status, cause of death, and cancer incidence. In addition, sub-cohorts of these three cohorts were constructed to examine clinical features of late health effects, and the subjects have been invited to periodic health examinations at clinics of ABCC and RERF. They were also asked to donate biosamples for biomedical investigations. Epidemiological studies have observed increased radiation risks for malignant diseases among survivors, including those exposed in utero, and possible risks for some non-cancer diseases. In children of survivors, no increased risks due to parental exposure to radiation have been observed for malignancies or other diseases, but investigations are continuing, as these cohorts are still relatively young. PMID:29553058

  14. Japanese Legacy Cohorts: The Life Span Study Atomic Bomb Survivor Cohort and Survivors' Offspring.

    PubMed

    Ozasa, Kotaro; Grant, Eric J; Kodama, Kazunori

    2018-04-05

    Cohorts of atomic bomb survivors-including those exposed in utero-and children conceived after parental exposure were established to investigate late health effects of atomic bomb radiation and its transgenerational effects by the Atomic Bomb Casualty Commission (ABCC) in the 1950s. ABCC was reorganized to the Radiation Effects Research Foundation (RERF) in 1975, and all work has been continued at RERF. The Life Span Study, the cohort of survivors, consists of about 120,000 subjects and has been followed since 1950. Cohorts of in utero survivors and the survivors' children include about 3,600 and 77,000 subjects, respectively, and have been followed since 1945. Atomic bomb radiation dose was estimated for each subject based on location at the time of the bombing and shielding conditions from exposure, which were obtained through enormous efforts of investigators and cooperation of subjects. Outcomes include vital status, cause of death, and cancer incidence. In addition, sub-cohorts of these three cohorts were constructed to examine clinical features of late health effects, and the subjects have been invited to periodic health examinations at clinics of ABCC and RERF. They were also asked to donate biosamples for biomedical investigations. Epidemiological studies have observed increased radiation risks for malignant diseases among survivors, including those exposed in utero, and possible risks for some non-cancer diseases. In children of survivors, no increased risks due to parental exposure to radiation have been observed for malignancies or other diseases, but investigations are continuing, as these cohorts are still relatively young.

  15. Detergent-free purification of ABC (ATP-binding-cassette) transporters.

    PubMed

    Gulati, Sonali; Jamshad, Mohammed; Knowles, Timothy J; Morrison, Kerrie A; Downing, Rebecca; Cant, Natasha; Collins, Richard; Koenderink, Jan B; Ford, Robert C; Overduin, Michael; Kerr, Ian D; Dafforn, Timothy R; Rothnie, Alice J

    2014-07-15

    ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.

  16. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myllynen, Paeivi; Kummu, Maria; Kangas, Tiina

    2008-10-15

    We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of {sup 14}C-PhIP (2 {mu}M) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72 {+-} 0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of {sup 14}C-PhIP from maternal to fetal circulation (FM ratio 0.90 {+-} 0.08 at 6 h, p < 0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75 {+-}more » 0.10, p = 0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of {sup 14}C-PhIP (R = - 0.81, p < 0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: - 0.11, p = 0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of {sup 14}C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarinoma cells.« less

  17. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome.

    PubMed

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo.

  18. Xeroderma Pigmentosum Group A Suppresses Mutagenesis Caused by Clustered Oxidative DNA Adducts in the Human Genome

    PubMed Central

    Sassa, Akira; Kamoshita, Nagisa; Kanemaru, Yuki; Honma, Masamitsu; Yasui, Manabu

    2015-01-01

    Clustered DNA damage is defined as multiple sites of DNA damage within one or two helical turns of the duplex DNA. This complex damage is often formed by exposure of the genome to ionizing radiation and is difficult to repair. The mutagenic potential and repair mechanisms of clustered DNA damage in human cells remain to be elucidated. In this study, we investigated the involvement of nucleotide excision repair (NER) in clustered oxidative DNA adducts. To identify the in vivo protective roles of NER, we established a human cell line lacking the NER gene xeroderma pigmentosum group A (XPA). XPA knockout (KO) cells were generated from TSCER122 cells derived from the human lymphoblastoid TK6 cell line. To analyze the mutagenic events in DNA adducts in vivo, we previously employed a system of tracing DNA adducts in the targeted mutagenesis (TATAM), in which DNA adducts were site-specifically introduced into intron 4 of thymidine kinase genes. Using the TATAM system, one or two tandem 7,8-dihydro-8-oxoguanine (8-oxoG) adducts were introduced into the genomes of TSCER122 or XPA KO cells. In XPA KO cells, the proportion of mutants induced by a single 8-oxoG (7.6%) was comparable with that in TSCER122 cells (8.1%). In contrast, the lack of XPA significantly enhanced the mutant proportion of tandem 8-oxoG in the transcribed strand (12%) compared with that in TSCER122 cells (7.4%) but not in the non-transcribed strand (12% and 11% in XPA KO and TSCER122 cells, respectively). By sequencing the tandem 8-oxoG-integrated loci in the transcribed strand, we found that the proportion of tandem mutations was markedly increased in XPA KO cells. These results indicate that NER is involved in repairing clustered DNA adducts in the transcribed strand in vivo. PMID:26559182

  19. Noncovalent Interactions of DNA Bases with Naphthalene and Graphene.

    PubMed

    Cho, Yeonchoo; Min, Seung Kyu; Yun, Jeonghun; Kim, Woo Youn; Tkatchenko, Alexandre; Kim, Kwang S

    2013-04-09

    The complexes of a DNA base bound to graphitic systems are studied. Considering naphthalene as the simplest graphitic system, DNA base-naphthalene complexes are scrutinized at high levels of ab initio theory including coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] at the complete basis set (CBS) limit. The stacked configurations are the most stable, where the CCSD(T)/CBS binding energies of guanine, adenine, thymine, and cytosine are 9.31, 8.48, 8.53, 7.30 kcal/mol, respectively. The energy components are investigated using symmetry-adapted perturbation theory based on density functional theory including the dispersion energy. We compared the CCSD(T)/CBS results with several density functional methods applicable to periodic systems. Considering accuracy and availability, the optB86b nonlocal functional and the Tkatchenko-Scheffler functional are used to study the binding energies of nucleobases on graphene. The predicted values are 18-24 kcal/mol, though many-body effects on screening and energy need to be further considered.

  20. A mononuclear Cu(II) complex with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine: Synthesis, crystal structure, DNA- and BSA-binding, molecular modeling, and anticancer activity against MCF-7, A-549, and HT-29 cell lines.

    PubMed

    Anjomshoa, Marzieh; Hadadzadeh, Hassan; Torkzadeh-Mahani, Masoud; Fatemi, Seyed Jamilaldin; Adeli-Sardou, Mahboubeh; Rudbari, Hadi Amiri; Nardo, Viviana Mollica

    2015-01-01

    The copper(II) complex of 1,2,4-triazine derivatives, [Cu(dppt)2(H2O)](PF6)2(dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), has been synthesized and fully characterized by spectroscopic methods and single crystal X-ray diffraction. The in vitro DNA-binding studies of the complex have been investigated by several methods. The results showed that the complex intercalates into the base pairs of DNA. The complex also indicated good binding propensity to BSA. The results of molecular docking and molecular dynamic simulation methods confirm the experimental results. Finally, the in vitro cytotoxicity indicate that the complex has excellent anticancer activity against the three human carcinoma cell lines, MCF-7, A-549, and HT-29, with IC50 values of 9.8, 7.80, and 4.50 μM, respectively. The microscopic analyses of the cancer cells demonstrate that the Cu(II) complex apparently induced apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Magnesium Carbonate‐Containing Phosphate Binder Prevents Connective Tissue Mineralization in Abcc6 −/− Mice–Potential for Treatment of Pseudoxanthoma Elasticum

    PubMed Central

    Li, Qiaoli; LaRusso, Jennifer; Grand‐Pierre, Alix E.; Uitto, Jouni

    2009-01-01

    Abstract Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic mineralization of connective tissues primarily in the skin, eyes, and the cardiovascular system. PXE is caused by mutations in the ABCC6 gene. While PXE is associated with considerable morbidity and mortality, there is currently no effective or specific treatment. In this study, we tested oral phosphate binders for treatment of a mouse model of PXE which we have developed by targeted ablation of the corresponding mouse gene (Abcc6 −/−). This “knock‐out” (KO) mouse model recapitulates features of PXE and demonstrates mineralization of a number of tissues, including the connective tissue capsule surrounding vibrissae in the muzzle skin which serves as an early biomarker of the mineralization process. Treatment of these mice with a magnesium carbonate‐enriched diet (magnesium concentration being 5‐fold higher than in the control diet) completely prevented mineralization of the vibrissae up to 6 months of age, as demonstrated by computerized morphometric analysis of histopathology as well as by calcium and phosphate chemical assays. The magnesium carbonate‐enriched diet also prevented the progression of mineralization when the mice were placed on that experimental diet at 3 months of age and followed up to 6 months of age. Treatment with magnesium carbonate was associated with a slight increase in the serum concentration of magnesium, with no effect on serum calcium and phosphorus levels. In contrast, concentration of calcium in the urine was increased over 10‐fold while the concentration of phosphorus was markedly decreased, being essentially undetectable after long‐term (>4 month) treatment. No significant changes were noted in the serum parathyroid hormone levels. Computerized axial tomography scan of bones in mice placed on magnesium carbonate‐enriched diet showed no differences in the bone density compared to mice on the control diet, and chemical assays showed a small increase in the calcium and phosphate content of the femurs by chemical assay, in comparison to mice on control diet. Similar experiments with another experimental diet supplemented with lanthanum carbonate did not interfere with the mineralization process in Abcc6 −/− mice. These results suggest that magnesium carbonate may offer a potential treatment modality for PXE, a currently intractable disease, as well as for other conditions characterized by ectopic mineralization of connective tissues. PMID:20443931

  2. Magnesium carbonate-containing phosphate binder prevents connective tissue mineralization in Abcc6(-/-) mice-potential for treatment of pseudoxanthoma elasticum.

    PubMed

    Li, Qiaoli; Larusso, Jennifer; Grand-Pierre, Alix E; Uitto, Jouni

    2009-12-01

    Pseudoxanthoma elasticum (PXE) is a heritable disorder characterized by ectopic mineralization of connective tissues primarily in the skin, eyes, and the cardiovascular system. PXE is caused by mutations in the ABCC6 gene. While PXE is associated with considerable morbidity and mortality, there is currently no effective or specific treatment. In this study, we tested oral phosphate binders for treatment of a mouse model of PXE which we have developed by targeted ablation of the corresponding mouse gene (Abcc6(-/-)). This "knock-out" (KO) mouse model recapitulates features of PXE and demonstrates mineralization of a number of tissues, including the connective tissue capsule surrounding vibrissae in the muzzle skin which serves as an early biomarker of the mineralization process. Treatment of these mice with a magnesium carbonate-enriched diet (magnesium concentration being 5-fold higher than in the control diet) completely prevented mineralization of the vibrissae up to 6 months of age, as demonstrated by computerized morphometric analysis of histopathology as well as by calcium and phosphate chemical assays. The magnesium carbonate-enriched diet also prevented the progression of mineralization when the mice were placed on that experimental diet at 3 months of age and followed up to 6 months of age. Treatment with magnesium carbonate was associated with a slight increase in the serum concentration of magnesium, with no effect on serum calcium and phosphorus levels. In contrast, concentration of calcium in the urine was increased over 10-fold while the concentration of phosphorus was markedly decreased, being essentially undetectable after long-term (> 4 month) treatment. No significant changes were noted in the serum parathyroid hormone levels. Computerized axial tomography scan of bones in mice placed on magnesium carbonate-enriched diet showed no differences in the bone density compared to mice on the control diet, and chemical assays showed a small increase in the calcium and phosphate content of the femurs by chemical assay, in comparison to mice on control diet. Similar experiments with another experimental diet supplemented with lanthanum carbonate did not interfere with the mineralization process in Abcc6(-/-) mice. These results suggest that magnesium carbonate may offer a potential treatment modality for PXE, a currently intractable disease, as well as for other conditions characterized by ectopic mineralization of connective tissues.

  3. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that ABCB1 expression identifies a subpopulation of pro-inflammatory Th17 cells which were resistant to treatment with glucocorticoids. The evidence for the involvement of ABCC2 and ABCG2 in colonic pathophysiology was weak. CONCLUSION: ABCB1, diet, and gut microbes mutually interact in colonic inflammation, a well-known risk factor for CRC. Further insight may be translated into preventive and treatment strategies. PMID:26557010

  4. Lack of contribution of covalent benzo[a]pyrene-7,8-quinone-DNA adducts in benzo[a]pyrene-induced mouse lung tumorigenesis.

    PubMed

    Nesnow, Stephen; Nelson, Garret; Padgett, William T; George, Michael H; Moore, Tanya; King, Leon C; Adams, Linda D; Ross, Jeffrey A

    2010-07-30

    Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-7,8-dihydroxy-7,8-dihydroB[a]P-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: (1) the induction of apurinic sites from radical cation processes, and (2) the metabolic formation of B[a]P-7,8-quinone (BPQ) that can form covalent DNA adducts or reactive oxygen species which can damage DNA. The studies presented here sought to examine the role of stable BPQ-DNA adducts in B[a]P-induced mouse lung tumorigenesis. Male strain A/J mice were injected intraperitoneally once with BPQ or trans-7,8-dihydroxy-7,8-dihydroB[a]P (BP-7,8-diol) at 30, 10, 3, or 0mg/kg. Lungs and livers were harvested after 24h, the DNA extracted and subjected to (32)P-postlabeling analysis. Additional groups of mice were dosed once with BPQ or BP-7,8-diol each at 30 mg/kg and tissues harvested 48 and 72 h later, or with B[a]P (50mg/kg, a tumorigenic dose) and tissues harvested 72 h later. No BPQ or any other DNA adducts were observed in lung or liver tissues 24, 48, or 72 h after the treatment with 30 mg/kg BPQ. BP-7,8-diol gave BPDE-DNA adducts at all time points in both tissues and B[a]P treatment gave BPDE-DNA adducts in the lung. In each case, no BPQ-DNA adducts were detected. Mouse body weights significantly decreased over time after BPQ or BP-7,8-diol treatments suggesting that systemic toxicity was induced by both agents. Model studies with BPQ and N-acetylcysteine suggested that BPQ is rapidly inactivated by sulfhydryl-containing compounds and not available for DNA adduction. We conclude that under these treatment conditions BPQ does not form stable covalent DNA adducts in the lungs or livers of strain A/J mice, suggesting that stable BPQ-covalent adducts are not a part of the complex of mechanisms involved in B[a]P-induced mouse lung tumorigenesis. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  5. Dissociation free-energy profiles of specific and nonspecific DNA-protein complexes.

    PubMed

    Yonetani, Yoshiteru; Kono, Hidetoshi

    2013-06-27

    DNA-binding proteins recognize DNA sequences with at least two different binding modes: specific and nonspecific. Experimental structures of such complexes provide us a static view of the bindings. However, it is difficult to reveal further mechanisms of their target-site search and recognition only from static information because the transition process between the bound and unbound states is not clarified by static information. What is the difference between specific and nonspecific bindings? Here we performed adaptive biasing force molecular dynamics simulations with the specific and nonspecific structures of DNA-Lac repressor complexes to investigate the dissociation process. The resultant free-energy profiles showed that the specific complex has a sharp, deep well consistent with tight binding, whereas the nonspecific complex has a broad, shallow well consistent with loose binding. The difference in the well depth, ~5 kcal/mol, was in fair agreement with the experimentally obtained value and was found to mainly come from the protein conformational difference, particularly in the C-terminal tail. Also, the free-energy profiles were found to be correlated with changes in the number of protein-DNA contacts and that of surface water molecules. The derived protein spatial distributions around the DNA indicate that any large dissociation occurs rarely, regardless of the specific and nonspecific sites. Comparison of the free-energy barrier for sliding [~8.7 kcal/mol; Furini J. Phys. Chem. B 2010, 114, 2238] and that for dissociation (at least ~16 kcal/mol) calculated in this study suggests that sliding is much preferred to dissociation.

  6. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: Synthesis and spectral approach

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.

    2015-02-01

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  7. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: synthesis and spectral approach.

    PubMed

    Patil, Sangamesh A; Prabhakara, Chetan T; Halasangi, Bhimashankar M; Toragalmath, Shivakumar S; Badami, Prema S

    2015-02-25

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, (1)H NMR, (13)C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A new variant of a known mutation in two siblings with permanent neonatal diabetes mellitus.

    PubMed

    Aycan, Zehra; Cetinkaya, Semra; Oğuz, Serife Suna; Ceylaner, Serdar

    2011-01-01

    Permanent neonatal diabetes mellitus is a rare disorder usually presenting within the first few weeks or months of life. This disorder is genetically heterogeneous and has been associated with mutations in various genes. The genetic cause remains mostly unknown although several genes have been linked to this disorder. Mutations in KCNJ11, ABCC8, or INS are the cause of permanent neonatal diabetes mellitus in about 50%-60% of the patients. With genetic studies, we hope to increase our knowledge of neonatal diabetes, whereby new treatment models can become possible. Here, we defined a new variant of a known mutation, INS Exon 1-3 homozygous deletion, in two siblings diagnosed with permanent neonatal diabetes mellitus.

  9. In depth analysis of the quenching of three fluorene-phenylene-based cationic conjugated polyelectrolytes by DNA and DNA bases.

    PubMed

    Davies, Matthew L; Douglas, Peter; Burrows, Hugh D; Martincigh, Bice; Miguel, Maria da Graça; Scherf, Ullrich; Mallavia, Ricardo; Douglas, Alastair

    2014-01-16

    The interaction of three cationic poly {9,9-bis[N,N-(trimethylammonium)hexyl]fluorene-co-1,4-phenylene} polymers with average chain lengths of ∼6, 12, and 100 repeat units (PFP-NR36(I),12(Br),100(Br)) with both double and single stranded, short and long, DNA and DNA bases have been studied by steady state and time-resolved fluorescence techniques. Fluorescence of PFP-NR3 polymers is quenched with high efficiency by DNA (both double and single stranded) and DNA bases. The resulting quenching plots are sigmoidal and are not accurately described by using a Stern-Volmer quenching mechanism. Here, the quenching mechanism is well modeled in terms of an equilibrium in which a PFP-NR3/DNA aggregate complex is formed which brings polymer chains into close enough proximity to allow interchain excitation energy migration and quenching at aggregate or DNA base traps. Such an analysis gives equilibrium constants of 8.4 × 10(6) (±1.2 × 10(6)) M(-1) for short-dsDNA and 8.6 × 10(6) (±1.7 × 10(6)) M(-1) for short-ssDNA with PFP-NR36(I).

  10. Substitution-inert trinuclear platinum complexes efficiently condense/aggregate nucleic acids and inhibit enzymatic activity.

    PubMed

    Malina, Jaroslav; Farrell, Nicholas P; Brabec, Viktor

    2014-11-17

    The trinuclear platinum complexes (TriplatinNC-A [{Pt(NH3 )3 }2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }](6+) , and TriplatinNC [{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH3 (+) )}2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }](8+) ) are biologically active agents that bind to DNA through noncovalent (hydrogen bonding, electrostatic) interactions. Herein, we show that TriplatinNC condenses DNA with a much higher potency than conventional DNA condensing agents. Both complexes induce aggregation of small transfer RNA molecules, and TriplatinNC in particular completely inhibits DNA transcription at lower concentrations than naturally occurring spermine. Topoisomerase I-mediated relaxation of supercoiled DNA was inhibited by TriplatinNC-A and TriplatinNC at concentrations which were 60 times and 250 times lower than that of spermine. The mechanisms for the biological activity of TriplatinNC-A and TriplatinNC may be associated with their ability to condense/aggregate nucleic acids with consequent inhibitory effects on crucial enzymatic activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. TRF1 and TRF2 use different mechanisms to find telomeric DNA but share a novel mechanism to search for protein partners at telomeres.

    PubMed

    Lin, Jiangguo; Countryman, Preston; Buncher, Noah; Kaur, Parminder; E, Longjiang; Zhang, Yiyun; Gibson, Greg; You, Changjiang; Watkins, Simon C; Piehler, Jacob; Opresko, Patricia L; Kad, Neil M; Wang, Hong

    2014-02-01

    Human telomeres are maintained by the shelterin protein complex in which TRF1 and TRF2 bind directly to duplex telomeric DNA. How these proteins find telomeric sequences among a genome of billions of base pairs and how they find protein partners to form the shelterin complex remains uncertain. Using single-molecule fluorescence imaging of quantum dot-labeled TRF1 and TRF2, we study how these proteins locate TTAGGG repeats on DNA tightropes. By virtue of its basic domain TRF2 performs an extensive 1D search on nontelomeric DNA, whereas TRF1's 1D search is limited. Unlike the stable and static associations observed for other proteins at specific binding sites, TRF proteins possess reduced binding stability marked by transient binding (∼ 9-17 s) and slow 1D diffusion on specific telomeric regions. These slow diffusion constants yield activation energy barriers to sliding ∼ 2.8-3.6 κ(B)T greater than those for nontelomeric DNA. We propose that the TRF proteins use 1D sliding to find protein partners and assemble the shelterin complex, which in turn stabilizes the interaction with specific telomeric DNA. This 'tag-team proofreading' represents a more general mechanism to ensure a specific set of proteins interact with each other on long repetitive specific DNA sequences without requiring external energy sources.

  12. Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis.

    PubMed

    Gharahkhani, Puya; Fitzgerald, Rebecca C; Vaughan, Thomas L; Palles, Claire; Gockel, Ines; Tomlinson, Ian; Buas, Matthew F; May, Andrea; Gerges, Christian; Anders, Mario; Becker, Jessica; Kreuser, Nicole; Noder, Tania; Venerito, Marino; Veits, Lothar; Schmidt, Thomas; Manner, Hendrik; Schmidt, Claudia; Hess, Timo; Böhmer, Anne C; Izbicki, Jakob R; Hölscher, Arnulf H; Lang, Hauke; Lorenz, Dietmar; Schumacher, Brigitte; Hackelsberger, Andreas; Mayershofer, Rupert; Pech, Oliver; Vashist, Yogesh; Ott, Katja; Vieth, Michael; Weismüller, Josef; Nöthen, Markus M; Attwood, Stephen; Barr, Hugh; Chegwidden, Laura; de Caestecker, John; Harrison, Rebecca; Love, Sharon B; MacDonald, David; Moayyedi, Paul; Prenen, Hans; Watson, R G Peter; Iyer, Prasad G; Anderson, Lesley A; Bernstein, Leslie; Chow, Wong-Ho; Hardie, Laura J; Lagergren, Jesper; Liu, Geoffrey; Risch, Harvey A; Wu, Anna H; Ye, Weimin; Bird, Nigel C; Shaheen, Nicholas J; Gammon, Marilie D; Corley, Douglas A; Caldas, Carlos; Moebus, Susanne; Knapp, Michael; Peters, Wilbert H M; Neuhaus, Horst; Rösch, Thomas; Ell, Christian; MacGregor, Stuart; Pharoah, Paul; Whiteman, David C; Jankowski, Janusz; Schumacher, Johannes

    2016-10-01

    Oesophageal adenocarcinoma represents one of the fastest rising cancers in high-income countries. Barrett's oesophagus is the premalignant precursor of oesophageal adenocarcinoma. However, only a few patients with Barrett's oesophagus develop adenocarcinoma, which complicates clinical management in the absence of valid predictors. Within an international consortium investigating the genetics of Barrett's oesophagus and oesophageal adenocarcinoma, we aimed to identify novel genetic risk variants for the development of Barrett's oesophagus and oesophageal adenocarcinoma. We did a meta-analysis of all genome-wide association studies of Barrett's oesophagus and oesophageal adenocarcinoma available in PubMed up to Feb 29, 2016; all patients were of European ancestry and disease was confirmed histopathologically. All participants were from four separate studies within Europe, North America, and Australia and were genotyped on high-density single nucleotide polymorphism (SNP) arrays. Meta-analysis was done with a fixed-effects inverse variance-weighting approach and with a standard genome-wide significance threshold (p<5 × 10 -8 ). We also did an association analysis after reweighting of loci with an approach that investigates annotation enrichment among genome-wide significant loci. Furthermore, the entire dataset was analysed with bioinformatics approaches-including functional annotation databases and gene-based and pathway-based methods-to identify pathophysiologically relevant cellular mechanisms. Our sample comprised 6167 patients with Barrett's oesophagus and 4112 individuals with oesophageal adenocarcinoma, in addition to 17 159 representative controls from four genome-wide association studies in Europe, North America, and Australia. We identified eight new risk loci associated with either Barrett's oesophagus or oesophageal adenocarcinoma, within or near the genes CFTR (rs17451754; p=4·8 × 10 -10 ), MSRA (rs17749155; p=5·2 × 10 -10 ), LINC00208 and BLK (rs10108511; p=2·1 × 10 -9 ), KHDRBS2 (rs62423175; p=3·0 × 10 -9 ), TPPP and CEP72 (rs9918259; p=3·2 × 10 -9 ), TMOD1 (rs7852462; p=1·5 × 10 -8 ), SATB2 (rs139606545; p=2·0 × 10 -8 ), and HTR3C and ABCC5 (rs9823696; p=1·6 × 10 -8 ). The locus identified near HTR3C and ABCC5 (rs9823696) was associated specifically with oesophageal adenocarcinoma (p=1·6 × 10 -8 ) and was independent of Barrett's oesophagus development (p=0·45). A ninth novel risk locus was identified within the gene LPA (rs12207195; posterior probability 0·925) after reweighting with significantly enriched annotations. The strongest disease pathways identified (p<10 -6 ) belonged to muscle cell differentiation and to mesenchyme development and differentiation. Our meta-analysis of genome-wide association studies doubled the number of known risk loci for Barrett's oesophagus and oesophageal adenocarcinoma and revealed new insights into causes of these diseases. Furthermore, the specific association between oesophageal adenocarcinoma and the locus near HTR3C and ABCC5 might constitute a novel genetic marker for prediction of the transition from Barrett's oesophagus to oesophageal adenocarcinoma. Fine-mapping and functional studies of new risk loci could lead to identification of key molecules in the development of Barrett's oesophagus and oesophageal adenocarcinoma, which might encourage development of advanced prevention and intervention strategies. US National Cancer Institute, US National Institutes of Health, National Health and Medical Research Council of Australia, Swedish Cancer Society, Medical Research Council UK, Cambridge NIHR Biomedical Research Centre, Cambridge Experimental Cancer Medicine Centre, Else Kröner Fresenius Stiftung, Wellcome Trust, Cancer Research UK, AstraZeneca UK, University Hospitals of Leicester, University of Oxford, Australian Research Council. Copyright © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.

  13. 1,8-Naphthalimide: A Potent DNA Intercalator and Target for Cancer Therapy.

    PubMed

    Tandon, Runjhun; Luxami, Vijay; Kaur, Harsovin; Tandon, Nitin; Paul, Kamaldeep

    2017-10-01

    The poor pharmacokinetics, side effects and particularly the rapid emergence of drug resistance compromise the efficiency of clinically used anticancer drugs. Therefore, the discovery of novel and effective drugs is still an extremely primary mission. Naphthalimide family is one of the highly active anticancer drug based upon effective intercalator with DNA. In this article, we review the discovery and development of 1,8-naphthalimide moiety, and, especially, pay much attention to the structural modifications and structure activity relationships. The review demonstrates how modulation of the moiety affecting naphthalimide compound for DNA binding that is achieved to afford a profile of antitumor activity. The DNA binding of imide and ring substitution at naphthalimide, bisnaphthalimide, naphthalimide-metal complexes is achieved by molecular recognition through intercalation mode. Thus, this synthetic/natural small molecule can act as a drug when activation or inhibition of DNA function, is required to cure or control the cancer disease. The present study is a review of the advances in 1,8-naphthalimide-related research, with a focus on how such derivatives are intercalated into DNA for their anticancer activities. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Spectroscopic analysis on the resveratrol-DNA binding interactions at physiological pH

    NASA Astrophysics Data System (ADS)

    Zhang, Shufang; Sun, Xuejun; Jing, Zhihong; Qu, Fengli

    2011-11-01

    The interaction of resveratrol with calf thymus deoxyribonucleic acid (ctDNA) under physiological conditions (Tris-HCl buffer solutions, pH 7.4) was studied by spectroscopy, fluorescence spectroscopy and viscosity measurement method, respectively. Results indicated that a complex of resveratrol with ctDNA was formed with a binding constant of K17 °C = 5.49 × 10 3 L mol -1 and K37 °C = 1.90 × 10 4 L mol -1. The fluorescence quenching mechanism of acridine orange (AO)-ctDNA by resveratrol was shown to be a static quenching type. The thermodynamic parameters of the complex were calculated by a double reciprocal method: ΔHms=4.64×10 J mol, ΔSms=231.8 J K mol and ΔGms=-2.54×10 J mol (37 °C). Spectroscopic techniques together with viscosity determination provided evidences of intercalation mode of binding for the interaction between resveratrol and ctDNA.

  15. Interaction of a copper (II) complex containing an artificial sweetener (aspartame) with calf thymus DNA.

    PubMed

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh

    2014-01-01

    A copper (II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2⋅2H2O, was synthesized and characterized. In vitro binding interaction of this complex with native calf thymus DNA (CT-DNA) was studied at physiological pH. The interaction was studied using different methods: spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD) and viscosimetric techniques. Hyperchromicity was observed in UV absorption band of Cu(APM)2Cl2⋅2H2O. A strong fluorescence quenching reaction of DNA to Cu(APM)2Cl2⋅2H2O was observed and the binding constants (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be+89.3 kJ mol(-1) and+379.3 J mol(-1) K(-1) according to Van't Hoff equation which indicated that reaction is predominantly entropically driven. Experimental results from spectroscopic methods were comparable and further supported by viscosity measurements. We suggest that Cu(APM)2Cl2⋅2H2O interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 8×10+4 M(-1). Binding of this copper complex to DNA was found to be stronger compared to aspartame which was studied recently. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Crystallization and X-ray diffraction analysis of the HMG domain of the chondrogenesis master regulator Sox9 in complex with a ChIP-Seq-identified DNA element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivekanandan, Saravanan; Moovarkumudalvan, Balasubramanian; Lescar, Julien

    Sox9 is a fundamental sex-determining gene and the master regulator of chondrogenesis, and is involved in the development of various vital organs such as testes, kidney, heart and brain, and in skeletal development. Similar to other known Sox transcription factors, Sox9 recognizes and binds DNA with the consensus sequence C(T/A)TTG(T/A)(T/A) through the highly conserved HMG domain. Nonetheless, the molecular basis of the functional specificity of Sox9 in key developmental processes is still unclear. As an initial step towards a mechanistic understanding of Sox9 transcriptional regulation, the current work describes the details of the purification of the mouse Sox9 HMG domainmore » (mSox9HMG), its crystallization in complex with a ChIP-Seq-identified FOXP2 promoter DNA element and the X-ray diffraction data analysis of this complex. The mSox9HMG–FOXP2 promoter DNA complex was crystallized by the hanging-drop vapour-diffusion method using 20% PEG 3350 in 200 mMsodium/potassium phosphate with 100 mMbis-tris propane at pH 8.5. The crystals diffracted to 2.7 Å resolution and the complex crystallized in the tetragonal space groupP4 12 12, with unit-cell parametersa=b= 99.49,c= 45.89 Å. Crystal-packing parameters revealed that asymmetric unit contained one mSox9HMG–FOXP2 promoter DNA complex with an estimated solvent content of 64%.« less

  17. Preparation and testing of quaternized chitosan nanoparticles as gene delivery vehicles.

    PubMed

    Li, Guang-Feng; Wang, Jing-Cheng; Feng, Xin-Min; Liu, Zhen-Dong; Jiang, Chao-Yong; Yang, Jian-Dong

    2015-04-01

    The aim of this study was to synthesize a chitosan (CS) derivative, a quaternary ammonium salt crystal called N-2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC), and test a series of HACC and pEGFP-DNA complexes at different weight ratios for their efficiency of gene delivery into human cells. CS was modified with cationic etherifying agent to obtain the CS derivative. Fourier transform infrared spectra were recorded on KBr pellets with a spectrometer. (1)H nuclear magnetic resonance (NMR) spectra of HACC were obtained using a spectrometer. HACC was subsequently used to prepare HACC/DNA complexes at different weight ratios by coacervation method. The resulting particle size and surface charge were assessed by laser light scattering using a zeta potential analyzer. The HACC/DNA complex formation and DNA protection in the nanoparticle complex was investigated by gel mobility shift assay and DNase I protection assay, respectively. The cytotoxicity of HACC and HACC/DNA nanoparticles was evaluated by MTT assay using (mesenchymal stem cell) MSC lines. The nanoscale structure of the particles was obtained by transmission electron microscope (TEM). The FTIR spectrum of HACC showed the characteristic quaternary ammonium group absorption band at 1475 cm(-1), which indicated the presence of quaternary ammonium group. The successful synthesis of HACC was also confirmed by (1)H NMR spectrum. HACC showed good solubility in water and was electropositive. HACC efficiently packed and protected pEGFP-DNA at a weight ratio of 10. With increased weight ratios, the surface charge of the composite particle increased from negative to positive, the average particle size increased, and HACC nanoparticle had a higher carrying efficiency. The nanoparticles released DNA in two distinct phases, and 55 % was released within the first 20 h of solubilization. The nanoparticles under TEM showed circular or oval shapes. The particles exhibited no cytotoxicity against human cells. No significant difference in gene delivery efficiency was detected between HACC/pEGFP-GDNF and liposome/pEGFP-GDNF complexes (33.8 vs. 34 %, P = 0.363). In this study, HACC was successfully synthesized, and HACC/DNA complex assembled efficiently. HACC showed strong DNA binding affinity and high protection of DNA and was non-cytotoxic to human cells. The particles had appropriate nanostructure, mean diameter, and DNA release time. The results suggest that HACC nanoparticles are a novel tool for efficient and safe gene delivery.

  18. Genotoxic activity of 4,4',5'-trimethylazapsoralen on plasmid DNA.

    PubMed

    Lagatolla, C; Dolzani, L; Granzotto, M; Monti-Bragadin, C

    1998-01-01

    The genotoxic activities of 8-methoxypsoralen (8-MOP) and 4,4',5'-trimethylazapsoralen (4,4',5'-TMAP) on plasmid DNA have been compared. In a previous work, 4,4',5'-TMAP, a methyl derivative of a psoralen isoster, had shown potential photochemotherapeutic activity. The mutagenic activity of mono- and bifunctional lesions caused by these compounds was evaluated both after UVA irradiation, which causes the formation of both kinds of lesions, and after a two-step irradiation procedure of the psoralen-plasmid DNA complex, which allowed monoadducts and interstrand crosslinks to be studied separately. Furthermore, we used a procedure that allowed us to evaluate both the mutagenic and recombinogenic activity of the two compounds. Results indicate that the most important difference between 8-MOP and 4,4',5'-TMAP consists in their mode of photoreaction with DNA rather than in their mutagenic potential. In fact, in all of the experimental procedures, 4,4',5'-TMAP shows a lower ability than 8-MOP to generate interstrand crosslinks. However, when comparable toxicity levels are reached, the two compounds show the same mutagenic potentiality.

  19. Self-recognition of the racemic ligand in the formation of homochiral dinuclear V(V) complex: In vitro anticancer activity, DNA and HSA interaction.

    PubMed

    Kazemi, Zahra; Amiri Rudbari, Hadi; Mirkhani, Valiollah; Sahihi, Mehdi; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj; Kajani, Abolghasem Abbasi; Azimi, Gholamhassan

    2017-07-28

    The reaction of a racemic mixture of Schiff base tridentate ligand with vanadium(V) affords homochiral vanadium complex, (VO(R-L)) 2 O and (VO(S-L)) 2 O due to ligand "self-recognition" process. The formation of homochiral vanadium complex was confirmed by 1 H NMR, 13 C NMR and X-ray diffraction. The HSA- and DNA-binding of the resultant complex is assessed by absorption, fluorescence and circular dichroism (CD) spectroscopy methods. Based on the results, the HSA- and DNA-binding constant, K b , were found to be 8.0 × 10 4 and 1.9 × 10 5  M -1 , respectively. Interestingly, in vitro cytotoxicity assay revealed the potent anticancer activity of this complex on two prevalent cancer cell lines of MCF-7 (IC50 value of 14 μM) and HeLa (IC50 value of 36 μM), with considerably low toxicity on normal human fibroblast cells. The maximum cell mortality of 12.3% obtained after 48 h incubation of fibroblast cells with 100 μM of the complex. Additionally, the specific DNA- and HSA-binding was also shown using molecular docking method. The synthesized complex displayed high potential for biomedical applications especially for development of novel and efficient anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations

    PubMed Central

    Sun, Jiying; Shi, Lin; Kinomura, Aiko; Fukuto, Atsuhiko; Horikoshi, Yasunori; Oma, Yukako; Harata, Masahiko; Ikura, Masae; Ikura, Tsuyoshi; Kanaar, Roland

    2018-01-01

    Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities. PMID:29759113

  1. Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations.

    PubMed

    Sun, Jiying; Shi, Lin; Kinomura, Aiko; Fukuto, Atsuhiko; Horikoshi, Yasunori; Oma, Yukako; Harata, Masahiko; Ikura, Masae; Ikura, Tsuyoshi; Kanaar, Roland; Tashiro, Satoshi

    2018-05-08

    Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities. © 2018, Sun et al.

  2. Up-regulation of glutathione-related genes, enzyme activities and transport proteins in human cervical cancer cells treated with doxorubicin.

    PubMed

    Drozd, Ewa; Krzysztoń-Russjan, Jolanta; Marczewska, Jadwiga; Drozd, Janina; Bubko, Irena; Bielak, Magda; Lubelska, Katarzyna; Wiktorska, Katarzyna; Chilmonczyk, Zdzisław; Anuszewska, Elżbieta; Gruber-Bzura, Beata

    2016-10-01

    Doxorubicin (DOX), one of the most effective anticancer drugs, acts in a variety of ways including DNA damage, enzyme inhibition and generation of reactive oxygen species. Glutathione (GSH) and glutathione-related enzymes including: glutathione peroxidase (GPX), glutathione reductase (GSR) and glutathione S-transferases (GST) may play a role in adaptive detoxification processes in response to the oxidative stress, thus contributing to drug resistance phenotype. In this study, we investigated effects of DOX treatment on expression and activity of GSH-related enzymes and multidrug resistance-associated proteins in cultured human cervical cancer cells displaying different resistance against this drug (HeLa and KB-V1). Determination of expression level of genes encoding GST isoforms and MRP proteins (GCS, GPX, GSR, GSTA1-3, GSTM1, GSTP1, ABCC1-3, MGST1-3) was performed using StellARray™ Technology. Enzymatic activities of GPX and GSR were measured using biochemical methods. Expression of MRP1 was examined by immunofluorescence microscopy. This study showed that native expression levels of GSTM1 and GSTA3 were markedly higher in KB-V1 cells (2000-fold and 200-fold) compared to HeLa cells. Resistant cells have also shown significantly elevated expression of GSTA1 and GSTA2 genes (200-fold and 50-fold) as a result of DOX treatment. In HeLa cells, exposure to DOX increased expression of all genes: GSTM1 (7-fold) and GSTA1-3 (550-fold, 150-fold and 300-fold). Exposure to DOX led to the slight increase of GCS expression as well as GPX activity in KB-V1 cells, while in HeLa cells it did not. Expression of ABCC1 (MRP1) was not increased in any of the tested cell lines. Our results indicate that expression of GSTM1 and GSTA1-3 genes is up-regulated by DOX treatment and suggest that activity of these genes may be associated with drug resistance of the tested cells. At the same time, involvement of MRP1 in DOX resistance in the given experimental conditions is unlikely. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Oxidative damage to DNA: counterion-assisted addition of water to ionized DNA.

    PubMed

    Barnett, Robert N; Bongiorno, Angelo; Cleveland, Charles L; Joy, Abraham; Landman, Uzi; Schuster, Gary B

    2006-08-23

    Oxidative damage to DNA, implicated in mutagenesis, aging, and cancer, follows electron loss that generates a radical cation that migrates to a guanine, where it may react with water to form 8-oxo-7,8-dihydroguanine (8-OxoG). Molecular dynamics and ab initio quantum simulations on a B-DNA tetradecamer reveal activated reaction pathways that depend on the local counterion arrangement. The lowest activation barrier, 0.73 eV, is found for a reaction that starts from a configuration where a Na(+) resides in the major groove near the N7 atoms of adjacent guanines, and evolves through a transition state where a bond between a water oxygen atom and a carbon atom forms concurrently with displacement of a proton toward a neighboring water molecule. Subsequently, a bonded complex of a hydronium ion and the nearest backbone phosphate group forms. This counterion-assisted proton shuttle mechanism is supported by experiments exploiting selective substitution of backbone phosphates by methylphosphonates.

  4. Oxidative DNA damage background estimated by a system model of base excision repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Wilson, III, D M

    Human DNA can be damaged by natural metabolism through free radical production. It has been suggested that the equilibrium between innate damage and cellular DNA repair results in an oxidative DNA damage background that potentially contributes to disease and aging. Efforts to quantitatively characterize the human oxidative DNA damage background level based on measuring 8-oxoguanine lesions as a biomarker have led to estimates varying over 3-4 orders of magnitude, depending on the method of measurement. We applied a previously developed and validated quantitative pathway model of human DNA base excision repair, integrating experimentally determined endogenous damage rates and model parametersmore » from multiple sources. Our estimates of at most 100 8-oxoguanine lesions per cell are consistent with the low end of data from biochemical and cell biology experiments, a result robust to model limitations and parameter variation. Our results show the power of quantitative system modeling to interpret composite experimental data and make biologically and physiologically relevant predictions for complex human DNA repair pathway mechanisms and capacity.« less

  5. Photoactive platinum(II) complexes of nonsteroidal anti-inflammatory drug naproxen: Interaction with biological targets, antioxidant activity and cytotoxicity.

    PubMed

    Srivastava, Payal; Singh, Khushbu; Verma, Madhu; Sivakumar, Sri; Patra, Ashis K

    2018-01-20

    The effect on the therapeutic efficacy of Pt(II) complexes on combining non-steroidal anti-inflammatory drugs (NSAIDs) is an attractive strategy to circumvent chronic inflammation mediated by cancer and metastasis. Two square-planar platinum(II) complexes: [Pt(dach)(nap)Cl] (1) and [Pt(dach)(nap) 2 ] (2), where dach = (1R,2R)-dichloro(cyclohexane-1,2-diamine) and NSAID drug naproxen (nap), have been designed for studying their biological activity. The naproxen bound to the Pt(II) centre get released upon photoirradiation with low-power UV-A light as confirmed by the significant enhancement in emission intensities of the complexes. The compounds were evaluated for their photophysical properties, photostability, reactivity with 5'-guanosine monophophosphate (5'-GMP), interactions with CT-DNA and BSA, antioxidant activity and reactive oxygen species mediated photo-induced DNA damage properties. ESI-MS studies demonstrated the formation of bis-adduct with 5'-GMP and the formation of Pt II -DNA crosslinks by gel electrophoretic mobility shift assay and ITC studies. The interaction of the complexes 1 and 2 with the CT-DNA exhibits potential binding affinity (K b  ∼ 10 4  M -1 , K app ∼ 10 5  M -1 ), implying intercalation to CT-DNA through planar naphthyl ring of the complexes. Both the complexes also exhibit strong binding affinity towards BSA (K BSA ∼ 10 5  M -1 ). The complexes exhibit efficient DNA damage activity on irradiation at 365 nm via formation of singlet oxygen ( 1 O 2 ) and hydroxyl radical ( • OH) under physiological conditions. Both the complexes were cytotoxic in dark and exhibit significant enhancement of cytotoxicity upon photo-exposure against HeLa and HepG2 cancer cells giving IC 50 values ranging from 8 to 12 μM for 1 and 2. The cellular internalization data showed cytosolic and nuclear localization of the complexes in the HeLa cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. New modulated design and synthesis of quercetin-Cu(II)/Zn(II)-Sn2(IV) scaffold as anticancer agents: in vitro DNA binding profile, DNA cleavage pathway and Topo-I activity.

    PubMed

    Tabassum, Sartaj; Zaki, Mehvash; Afzal, Mohd; Arjmand, Farukh

    2013-07-21

    New molecular topologies quercetin-Cu(II)-Sn2(IV) and Zn(II)-Sn2(IV)1 and 2 were designed and synthesized to act as potential cancer chemotherapeutic agents. Their interaction with CT DNA by UV-vis and fluorescence spectroscopy was evaluated revealing an electrostatic mode of binding. Quercetin complexes are capable of promoting DNA cleavage involving both single and double strand breaks. Complex 1 cleaved pBR322 DNA via an oxidative mechanism while 2 followed a hydrolytic pathway, accessible to the minor groove of the DNA double helix in accordance with molecular docking studies with the DNA duplex of sequence d(CGCGAATTCGCG)2 dodecamer demonstrating that the complex was stabilized by additional electrostatic and hydrogen bonding interactions with the DNA. ROS such as OH˙, H2O2 and O2˙(-) are the major metabolites responsible for chronic diseases such as cancer, respiratory disorders, HIV, and diabetes etc., therefore eliminating ROS by molecular scaffolds involving SOD enzymatic activity has emerged as a potential way to develop a novel class of drugs. Therefore, in vitro superoxide dismutase activity of redox active complex 1 was evaluated by using a xanthine/xanthine oxidase-NBT assay which showed an IC50 value of 2.26 μM. Moreover, the cytotoxicity of both the complexes were screened on a panel of human carcinoma cell lines (GI50 values <8.7 μM) which revealed that 1 has a better prospect of acting as a cancer chemotherapeutic agent, and to elucidate the mechanism of tumor inhibition, Topo-I enzymatic activity was carried out. Furthermore, molecular modeling studies were carried out to understand molecular features important for drug-enzyme interactions which offer new insights into the experimental model observations.

  7. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.

    2014-11-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).

  8. Early zygote-specific nuclease in mitochondria of the true slime mold Physarum polycephalum.

    PubMed

    Moriyama, Yohsuke; Yamazaki, Tomokazu; Nomura, Hideo; Sasaki, Narie; Kawano, Shigeyuki

    2005-11-01

    The active, selective digestion of mtDNA from one parent is a possible molecular mechanism for the uniparental inheritance of mtDNA. In Physarum polycephalum, mtDNA is packed by DNA-binding protein Glom, which packs mtDNA into rod-shaped mt-nucleoids. After the mating, mtDNA from one parent is selectively digested, and the Glom began to disperse. Dispersed Glom was retained for at least 6 h after mtDNA digestion, but disappeared completely by about 12 h after mixing two strains. We identified two novel nucleases using DNA zymography with native-PAGE and SDS-PAGE. One is a Ca2+-dependent, high-molecular-weight nuclease complex (about 670 kDa), and the other is a Mn2+-dependent, high-molecular-weight nuclease complex (440-670 kDa); the activity of the latter was detected as a Mn2+-dependent, 13-kDa DNase band on SDS-PAGE. All mitochondria isolated from myxamoebae had mt-nucleoids, whereas half of the mitochondria isolated from the zygotes at 12 h after mixing had lost the mt-nucleoids. The activity of the Mn2+-dependent nuclease in the isolated mitochondria was detected at least 8 h after mixing of two strains. The timing and localization of the Mn2+-dependent DNase activity matched the selective digestion of mtDNA.

  9. Secure and effective gene delivery system of plasmid DNA coated by polynucleotide.

    PubMed

    Kodama, Yukinobu; Ohkubo, Chikako; Kurosaki, Tomoaki; Egashira, Kanoko; Sato, Kayoko; Fumoto, Shintaro; Nishida, Koyo; Higuchi, Norihide; Kitahara, Takashi; Nakamura, Tadahiro; Sasaki, Hitoshi

    2015-01-01

    Polynucleotides are anionic macromolecules which are expected to transfer into the targeted cells through specific uptake mechanisms. So, we developed polynucleotides coating complexes of plasmid DNA (pDNA) and polyethylenimine (PEI) for a secure and efficient gene delivery system and evaluated their usefulness. Polyadenylic acid (polyA), polyuridylic acid (polyU), polycytidylic acid (polyC), and polyguanylic acid (polyG) were examined as the coating materials. pDNA/PEI/polyA, pDNA/PEI/polyU, and pDNA/PEI/polyC complexes formed nanoparticles with a negative surface charge although pDNA/PEI/polyG was aggregated. The pDNA/PEI/polyC complex showed high transgene efficiency in B16-F10 cells although there was little efficiency in pDNA/PEI/polyA and pDNA/PEI/polyU complexes. An inhibition study strongly indicated the specific uptake mechanism of pDNA/PEI/polyC complex. Polynucleotide coating complexes had lower cytotoxicity than pDNA/PEI complex. The pDNA/PEI/polyC complex showed high gene expression selectively in the spleen after intravenous injection into mice. The pDNA/PEI/polyC complex showed no agglutination with erythrocytes and no acute toxicity although these were observed in pDNA/PEI complex. Thus, we developed polynucleotide coating complexes as novel vectors for clinical gene therapy, and the pDNA/PEI/polyC complex as a useful candidate for a gene delivery system.

  10. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity.

    PubMed

    Aminkeng, Folefac; Ross, Colin J D; Rassekh, Shahrad R; Hwang, Soomi; Rieder, Michael J; Bhavsar, Amit P; Smith, Anne; Sanatani, Shubhayan; Gelmon, Karen A; Bernstein, Daniel; Hayden, Michael R; Amstutz, Ursula; Carleton, Bruce C

    2016-09-01

    Anthracycline-induced cardiotoxicity (ACT) occurs in 57% of treated patients and remains an important limitation of anthracycline-based chemotherapy. In various genetic association studies, potential genetic risk markers for ACT have been identified. Therefore, we developed evidence-based clinical practice recommendations for pharmacogenomic testing to further individualize therapy based on ACT risk. We followed a standard guideline development process, including a systematic literature search, evidence synthesis and critical appraisal, and the development of clinical practice recommendations with an international expert group. RARG rs2229774, SLC28A3 rs7853758 and UGT1A6 rs17863783 variants currently have the strongest and the most consistent evidence for association with ACT. Genetic variants in ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17, HFE and NOS3 have also been associated with ACT, but require additional validation. We recommend pharmacogenomic testing for the RARG rs2229774 (S427L), SLC28A3 rs7853758 (L461L) and UGT1A6*4 rs17863783 (V209V) variants in childhood cancer patients with an indication for doxorubicin or daunorubicin therapy (Level B - moderate). Based on an overall risk stratification, taking into account genetic and clinical risk factors, we recommend a number of management options including increased frequency of echocardiogram monitoring, follow-up, as well as therapeutic options within the current standard of clinical practice. Existing evidence demonstrates that genetic factors have the potential to improve the discrimination between individuals at higher and lower risk of ACT. Genetic testing may therefore support both patient care decisions and evidence development for an improved prevention of ACT. © 2016 The British Pharmacological Society.

  11. Recommendations for genetic testing to reduce the incidence of anthracycline‐induced cardiotoxicity

    PubMed Central

    Aminkeng, Folefac; Ross, Colin J. D.; Rassekh, Shahrad R.; Hwang, Soomi; Rieder, Michael J.; Bhavsar, Amit P.; Smith, Anne; Sanatani, Shubhayan; Gelmon, Karen A.; Bernstein, Daniel; Hayden, Michael R.; Amstutz, Ursula

    2016-01-01

    Aims Anthracycline‐induced cardiotoxicity (ACT) occurs in 57% of treated patients and remains an important limitation of anthracycline‐based chemotherapy. In various genetic association studies, potential genetic risk markers for ACT have been identified. Therefore, we developed evidence‐based clinical practice recommendations for pharmacogenomic testing to further individualize therapy based on ACT risk. Methods We followed a standard guideline development process, including a systematic literature search, evidence synthesis and critical appraisal, and the development of clinical practice recommendations with an international expert group. Results RARG rs2229774, SLC28A3 rs7853758 and UGT1A6 rs17863783 variants currently have the strongest and the most consistent evidence for association with ACT. Genetic variants in ABCC1, ABCC2, ABCC5, ABCB1, ABCB4, CBR3, RAC2, NCF4, CYBA, GSTP1, CAT, SULT2B1, POR, HAS3, SLC22A7, SCL22A17, HFE and NOS3 have also been associated with ACT, but require additional validation. We recommend pharmacogenomic testing for the RARG rs2229774 (S427L), SLC28A3 rs7853758 (L461L) and UGT1A6*4 rs17863783 (V209V) variants in childhood cancer patients with an indication for doxorubicin or daunorubicin therapy (Level B – moderate). Based on an overall risk stratification, taking into account genetic and clinical risk factors, we recommend a number of management options including increased frequency of echocardiogram monitoring, follow‐up, as well as therapeutic options within the current standard of clinical practice. Conclusions Existing evidence demonstrates that genetic factors have the potential to improve the discrimination between individuals at higher and lower risk of ACT. Genetic testing may therefore support both patient care decisions and evidence development for an improved prevention of ACT. PMID:27197003

  12. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics.

    PubMed

    Innocenti, Federico; Kroetz, Deanna L; Schuetz, Erin; Dolan, M Eileen; Ramírez, Jacqueline; Relling, Mary; Chen, Peixian; Das, Soma; Rosner, Gary L; Ratain, Mark J

    2009-06-01

    We aim to identify genetic variation, in addition to the UGT1A1*28 polymorphism, that can explain the variability in irinotecan (CPT-11) pharmacokinetics and neutropenia in cancer patients. Pharmacokinetic, genetic, and clinical data were obtained from 85 advanced cancer patients treated with single-agent CPT-11 every 3 weeks at doses of 300 mg/m(2) (n = 20) and 350 mg/m(2) (n = 65). Forty-two common variants were genotyped in 12 candidate genes of the CPT-11 pathway using several methodologies. Univariate and multivariate models of absolute neutrophil count (ANC) nadir and pharmacokinetic parameters were evaluated. Almost 50% of the variation in ANC nadir is explained by UGT1A1*93, ABCC1 IVS11 -48C>T, SLCO1B1*1b, ANC baseline levels, sex, and race (P < .0001). More than 40% of the variation in CPT-11 area under the curve (AUC) is explained by ABCC2 -24C>T, SLCO1B1*5, HNF1A 79A>C, age, and CPT-11 dose (P < .0001). Almost 30% of the variability in SN-38 (the active metabolite of CPT-11) AUC is explained by ABCC1 1684T>C, ABCB1 IVS9 -44A>G, and UGT1A1*93 (P = .004). Other models explained 17%, 23%, and 27% of the variation in APC (a metabolite of CPT-11), SN-38 glucuronide (SN-38G), and SN-38G/SN-38 AUCs, respectively. When tested in univariate models, pretreatment total bilirubin was able to modify the existing associations between genotypes and phenotypes. On the basis of this exploratory analysis, common polymorphisms in genes encoding for ABC and SLC transporters may have a significant impact on the pharmacokinetics and pharmacodynamics of CPT-11. Confirmatory studies are required.

  13. Targeting NF-κB RelA/p65 phosphorylation overcomes RITA resistance.

    PubMed

    Bu, Yiwen; Cai, Guoshuai; Shen, Yi; Huang, Chenfei; Zeng, Xi; Cao, Yu; Cai, Chuan; Wang, Yuhong; Huang, Dan; Liao, Duan-Fang; Cao, Deliang

    2016-12-28

    Inactivation of p53 occurs frequently in various cancers. RITA is a promising anticancer small molecule that dissociates p53-MDM2 interaction, reactivates p53 and induces exclusive apoptosis in cancer cells, but acquired RITA resistance remains a major drawback. This study found that the site-differential phosphorylation of nuclear factor-κB (NF-κB) RelA/p65 creates a barcode for RITA chemosensitivity in cancer cells. In naïve MCF7 and HCT116 cells where RITA triggered vast apoptosis, phosphorylation of RelA/p65 increased at Ser536, but decreased at Ser276 and Ser468; oppositely, in RITA-resistant cells, RelA/p65 phosphorylation decreased at Ser536, but increased at Ser276 and Ser468. A phosphomimetic mutation at Ser536 (p65/S536D) or silencing of endogenous RelA/p65 resensitized the RITA-resistant cells to RITA while the phosphomimetic mutant at Ser276 (p65/S276D) led to RITA resistance of naïve cells. In mouse xenografts, intratumoral delivery of the phosphomimetic p65/S536D mutant increased the antitumor activity of RITA. Furthermore, in the RITA-resistant cells ATP-binding cassette transporter ABCC6 was upregulated, and silencing of ABCC6 expression in these cells restored RITA sensitivity. In the naïve cells, ABCC6 delivery led to RITA resistance and blockage of p65/S536D mutant-induced RITA sensitivity. Taken together, these data suggest that the site-differential phosphorylation of RelA/p65 modulates RITA sensitivity in cancer cells, which may provide an avenue to manipulate RITA resistance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Data-based mathematical modeling of vectorial transport across double-transfected polarized cells.

    PubMed

    Bartholomé, Kilian; Rius, Maria; Letschert, Katrin; Keller, Daniela; Timmer, Jens; Keppler, Dietrich

    2007-09-01

    Vectorial transport of endogenous small molecules, toxins, and drugs across polarized epithelial cells contributes to their half-life in the organism and to detoxification. To study vectorial transport in a quantitative manner, an in vitro model was used that includes polarized MDCKII cells stably expressing the recombinant human uptake transporter OATP1B3 in their basolateral membrane and the recombinant ATP-driven efflux pump ABCC2 in their apical membrane. These double-transfected cells enabled mathematical modeling of the vectorial transport of the anionic prototype substance bromosulfophthalein (BSP) that has frequently been used to examine hepatobiliary transport. Time-dependent analyses of (3)H-labeled BSP in the basolateral, intracellular, and apical compartments of cells cultured on filter membranes and efflux experiments in cells preloaded with BSP were performed. A mathematical model was fitted to the experimental data. Data-based modeling was optimized by including endogenous transport processes in addition to the recombinant transport proteins. The predominant contributions to the overall vectorial transport of BSP were mediated by OATP1B3 (44%) and ABCC2 (28%). Model comparison predicted a previously unrecognized endogenous basolateral efflux process as a negative contribution to total vectorial transport, amounting to 19%, which is in line with the detection of the basolateral efflux pump Abcc4 in MDCKII cells. Rate-determining steps in the vectorial transport were identified by calculating control coefficients. Data-based mathematical modeling of vectorial transport of BSP as a model substance resulted in a quantitative description of this process and its components. The same systems biology approach may be applied to other cellular systems and to different substances.

  15. Identification of novel point mutations in splicing sites integrating whole-exome and RNA-seq data in myeloproliferative diseases.

    PubMed

    Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo

    2013-11-01

    Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC 3 (NM_003786.3:c.1783-1G>A), KLHDC 1 (NM_172193.1:c.568-2A>G), HOOK 1 (NM_015888.4:c.1662-1G>A), SMAD 9 (NM_001127217.2:c.1004-1C>T), and DNAH 9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC 3, HOOK 1. In ABCC 3 and HOOK 1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK 1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4-6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis.

  16. Virus inactivation under the photodynamic effect of phthalocyanine zinc(II) complexes.

    PubMed

    Remichkova, Mimi; Mukova, Luchia; Nikolaeva-Glomb, Lubomira; Nikolova, Nadya; Doumanova, Lubka; Mantareva, Vanya; Angelov, Ivan; Kussovski, Veselin; Galabov, Angel S

    2017-03-01

    Various metal phthalocyanines have been studied for their capacity for photodynamic effects on viruses. Two newly synthesized water-soluble phthalocyanine Zn(II) complexes with different charges, cationic methylpyridyloxy-substituted Zn(II)- phthalocyanine (ZnPcMe) and anionic sulfophenoxy-substituted Zn(II)-phthalocyanine (ZnPcS), were used for photoinactivation of two DNA-containing enveloped viruses (herpes simplex virus type 1 and vaccinia virus), two RNA-containing enveloped viruses (bovine viral diarrhea virus and Newcastle disease virus) and two nude viruses (the enterovirus Coxsackie B1, a RNA-containing virus, and human adenovirus 5, a DNA virus). These two differently charged phthalocyanine complexes showed an identical marked virucidal effect against herpes simplex virus type 1, which was one and the same at an irradiation lasting 5 or 20 min (Δlog=3.0 and 4.0, respectively). Towards vaccinia virus this effect was lower, Δlog=1.8 under the effect of ZnPcMe and 2.0 for ZnPcS. Bovine viral diarrhea virus manifested a moderate sensitivity to ZnPcMe (Δlog=1.8) and a pronounced one to ZnPcS at 5- and 20-min irradiation (Δlog=5.8 and 5.3, respectively). The complexes were unable to inactivate Newcastle disease virus, Coxsackievirus B1 and human adenovirus type 5.

  17. MODULATION BY IONIC STRENGTH AND SUPERHELICITY OF BENZO[a]PYRENE DIOL EPOXIDE INDUCED DNA ALKYLATION AND UNWINDING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamper, Howard B.; Straub, Kenneth; Calvin, Melvin

    Superhelical and partially relaxed SV40 DNA were reacted in vitro with (+)7{beta}, 8{alpha}-dihydroxy-9{alpha},10{alpha}-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide). The modified DNA contained N{sup 2} guanine and N{sup 6} adeninte hydrocarbon adducts in the ratio 86:14. Superhelical SV40 DNA was approximately 6% more susceptible to modification than partially relaxed viral DNA. Counterions inhibited DNA alkylation by up to 90%, Mg{sup 2+} being 50-fold more effective than Na{sup +}. The sensitivity of covalent binding to helix stability is consistent with a reaction complex in which BaP diol epoxide is intercalated. The superhelical density of the modified DNA substrates was determined electrophoretically relative to partiallymore » relaxed standards and an unwinding angle for the hydrocarbon adducts was calculated. The angle was dependent upon the superhelicity of the DNA molecule and ranged from 330{sup o} to 30{sup o}. This data indicates that the modified base pairs are disrupted and, in the presence of torsional strain, act as centers for the further denaturation of up to 8 adjacent base pairs. In the absence of such strain the alkylation sites have an ordered structure with the attached hydrocarbon probably oriented in the minor or major groove of the helix.« less

  18. Significance of the DNA-Histone Complex Level as a Predictor of Major Adverse Cardiovascular Events in Hemodialysis Patients: The Effect of Uremic Toxin on DNA-Histone Complex Formation.

    PubMed

    Jeong, Jong Cheol; Kim, Ji-Eun; Gu, Ja-Yoon; Yoo, Hyun Ju; Ryu, Ji Won; Kim, Dong Ki; Joo, Kwon Wook; Kim, Hyun Kyung

    2016-01-01

    Neutrophils can release the DNA-histone complex into circulation following exposure to inflammatory stimuli. This prospective study investigated whether the DNA-histone complex and other biomarkers could predict major cardiovascular adverse events (MACEs) in hemodialysis (HD) patients. The levels of circulating DNA-histone complexes, cell-free DNA, interleukin (IL)-6, and neutrophil elastase were measured in 60 HD patients and 28 healthy controls. MACE was assessed at 24 months. Uremic toxin-induced neutrophil released contents were measured in vitro. Compared with controls, HD patients showed higher levels of DNA-histone complexes and IL-6. The DNA-histone complex level was inversely associated with the Kt/V. In a multivariable Cox analysis, the high level of DNA-histone complexes was a significant independent predictor of MACE. The uremic toxins induced DNA-histone complex formation in normal neutrophils in vitro. The DNA-histone complex is a potentially useful marker to predict MACE in HD patients. Uremic toxins induced DNA-histone complex formation in vitro. © 2015 S. Karger AG, Basel.

  19. The vaccinia virus I3L gene product is localized to a complex endoplasmic reticulum-associated structure that contains the viral parental DNA.

    PubMed

    Welsch, Sonja; Doglio, Laura; Schleich, Sibylle; Krijnse Locker, Jacomine

    2003-05-01

    The vaccinia virus (VV) I3L gene product is a single-stranded DNA-binding protein made early in infection that localizes to the cytoplasmic sites of viral DNA replication (S. C. Rochester and P. Traktman, J. Virol. 72:2917-2926, 1998). Surprisingly, when replication was blocked, the protein localized to distinct cytoplasmic spots (A. Domi and G. Beaud, J. Gen. Virol. 81:1231-1235, 2000). Here these I3L-positive spots were characterized in more detail. By using an anti-I3L peptide antibody we confirmed that the protein localized to the cytoplasmic sites of viral DNA replication by both immunofluorescence and electron microscopy (EM). Before replication had started or when replication was inhibited with hydroxyurea or cytosine arabinoside, I3L localized to distinct cytoplasmic punctate structures of homogeneous size. We show that these structures are not incoming cores or cytoplasmic sites of VV early mRNA accumulation. Instead, morphological and quantitative data indicate that they are specialized sites where the parental DNA accumulates after its release from incoming viral cores. By EM, these sites appeared as complex, electron-dense structures that were intimately associated with the cellular endoplasmic reticulum (ER). By double labeling of cryosections we show that they contain DNA and a viral early protein, the gene product of E8R. Since E8R is a membrane protein that is able to bind to DNA, the localization of this protein to the I3L puncta suggests that they are composed of membranes. The results are discussed in relation to our previous data showing that the process of viral DNA replication also occurs in close association with the ER.

  20. Targeting multidrug resistance protein 1 (MRP1, ABCC1): past, present, and future.

    PubMed

    Cole, Susan P C

    2014-01-01

    The human ATP-binding cassette transporter multidrug resistance protein 1 (MRP1), encoded by ABCC1, was initially identified because of its ability to confer multidrug resistance in lung cancer cells. It is now established that MRP1 plays a role in protecting certain tissues from xenobiotic insults and that it mediates the cellular efflux of the proinflammatory cysteinyl leukotriene C4 as well as a vast array of other endo- and xenobiotic organic anions. Many of these are glutathione (GSH) or glucuronide conjugates, the products of Phase II drug metabolism. MRP1 also plays a role in the cellular efflux of the reduced and oxidized forms of GSH and thus contributes to the many physiological and pathophysiological processes influenced by these small peptides, including oxidative stress. In this review, the pharmacological and physiological aspects of MRP1 are considered in the context of the current status and future prospects of pharmacological and genetic modulation of MRP1 activity.

  1. Role of DNA conformation & energetic insights in Msx-1-DNA recognition as revealed by molecular dynamics studies on specific and nonspecific complexes.

    PubMed

    Kachhap, Sangita; Singh, Balvinder

    2015-01-01

    In most of homeodomain-DNA complexes, glutamine or lysine is present at 50th position and interacts with 5th and 6th nucleotide of core recognition region. Molecular dynamics simulations of Msx-1-DNA complex (Q50-TG) and its variant complexes, that is specific (Q50K-CC), nonspecific (Q50-CC) having mutation in DNA and (Q50K-TG) in protein, have been carried out. Analysis of protein-DNA interactions and structure of DNA in specific and nonspecific complexes show that amino acid residues use sequence-dependent shape of DNA to interact. The binding free energies of all four complexes were analysed to define role of amino acid residue at 50th position in terms of binding strength considering the variation in DNA on stability of protein-DNA complexes. The order of stability of protein-DNA complexes shows that specific complexes are more stable than nonspecific ones. Decomposition analysis shows that N-terminal amino acid residues have been found to contribute maximally in binding free energy of protein-DNA complexes. Among specific protein-DNA complexes, K50 contributes more as compared to Q50 towards binding free energy in respective complexes. The sequence dependence of local conformation of DNA enables Q50/Q50K to make hydrogen bond with nucleotide(s) of DNA. The changes in amino acid sequence of protein are accommodated and stabilized around TAAT core region of DNA having variation in nucleotides.

  2. Respiratory chain complex III deficiency in patients with tRNA-leu mutation.

    PubMed

    Jiang, J; Wang, X L; Ma, Y Y

    2015-12-29

    The aim of this study was to investigate the clinical and genetic profiles of mitochondrial disease resulting from deficiencies in the respiratory chain complex III. Three patients, aged between 8 months and 12 years, were recruited for this study. The activities of mitochondrial respiratory chain complexes in the peripheral leucocytes were spectrophotometrically measured. The entire mitochondrial DNA (mtDNA) sequence was analyzed. Samples obtained from the three patients and their families were subjected to restriction fragment length polymorphism and gene sequencing analyses. mtDNA copy numbers of all patients and their mothers were analyzed. The patients displayed nervous system impairment, including motor and mental developmental delay, hypotonia, and motor regression. Two patients also suffered from Leigh syndrome. Assay of the mitochondrial respiratory chain enzymes revealed an isolated complex III deficiency in the three patients. The m.3243 A>G mutation was detected in all patients and their mothers. The mutation loads were 48.3, 57.2, and 45.5% in the patients, and 20.5, 16.4, and 23.6% in their respective mothers. The leukocyte mtDNA copy numbers of the patients and their mothers were within the control range. The clinical manifestation and genetics were observed to be very heterogeneous. Patient carrying an m.3243 A>G mutation may biochemically display a deficiency in the mitochondrial respiratory chain complex III.

  3. Roles of Residues Arg-61 and Gln-38 of Human DNA Polymerase η in Bypass of Deoxyguanosine and 7,8-Dihydro-8-oxo-2'-deoxyguanosine.

    PubMed

    Su, Yan; Patra, Amritraj; Harp, Joel M; Egli, Martin; Guengerich, F Peter

    2015-06-26

    Like the other Y-family DNA polymerases, human DNA polymerase η (hpol η) has relatively low fidelity and is able to tolerate damage during DNA synthesis, including 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG), one of the most abundant DNA lesions in the genome. Crystal structures show that Arg-61 and Gln-38 are located near the active site and may play important roles in the fidelity and efficiency of hpol η. Site-directed mutagenesis was used to replace these side chains either alone or together, and the wild type or mutant proteins were purified and tested by replicating DNA past deoxyguanosine (G) or 8-oxoG. The catalytic activity of hpol η was dramatically disrupted by the R61M and Q38A/R61A mutations, as opposed to the R61A and Q38A single mutants. Crystal structures of hpol η mutant ternary complexes reveal that polarized water molecules can mimic and partially compensate for the missing side chains of Arg-61 and Gln-38 in the Q38A/R61A mutant. The combined data indicate that the positioning and positive charge of Arg-61 synergistically contribute to the nucleotidyl transfer reaction, with additional influence exerted by Gln-38. In addition, gel filtration chromatography separated multimeric and monomeric forms of wild type and mutant hpol η, indicating the possibility that hpol η forms multimers in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Roles of Residues Arg-61 and Gln-38 of Human DNA Polymerase η in Bypass of Deoxyguanosine and 7,8-Dihydro-8-oxo-2′-deoxyguanosine*

    PubMed Central

    Su, Yan; Patra, Amritraj; Harp, Joel M.; Egli, Martin; Guengerich, F. Peter

    2015-01-01

    Like the other Y-family DNA polymerases, human DNA polymerase η (hpol η) has relatively low fidelity and is able to tolerate damage during DNA synthesis, including 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxoG), one of the most abundant DNA lesions in the genome. Crystal structures show that Arg-61 and Gln-38 are located near the active site and may play important roles in the fidelity and efficiency of hpol η. Site-directed mutagenesis was used to replace these side chains either alone or together, and the wild type or mutant proteins were purified and tested by replicating DNA past deoxyguanosine (G) or 8-oxoG. The catalytic activity of hpol η was dramatically disrupted by the R61M and Q38A/R61A mutations, as opposed to the R61A and Q38A single mutants. Crystal structures of hpol η mutant ternary complexes reveal that polarized water molecules can mimic and partially compensate for the missing side chains of Arg-61 and Gln-38 in the Q38A/R61A mutant. The combined data indicate that the positioning and positive charge of Arg-61 synergistically contribute to the nucleotidyl transfer reaction, with additional influence exerted by Gln-38. In addition, gel filtration chromatography separated multimeric and monomeric forms of wild type and mutant hpol η, indicating the possibility that hpol η forms multimers in vivo. PMID:25947374

  5. Photoactive platinum(ii) β-diketonates as dual action anticancer agents.

    PubMed

    Raza, Md Kausar; Mitra, Koushambi; Shettar, Abhijith; Basu, Uttara; Kondaiah, Paturu; Chakravarty, Akhil R

    2016-08-16

    Platinum(ii) complexes, viz. [Pt(L)(cur)] (1), [Pt(L)(py-acac)] (2) and [Pt(L)(an-acac)] (3), where HL is 4,4'-bis-dimethoxyazobenzene, Hcur is curcumin, Hpy-acac and Han-acac are pyrenyl and anthracenyl appended acetylacetone, were prepared, characterized and their anticancer activities were studied. Complex [Pt(L)(acac)] (4) was used as a control. Complex 1 showed an absorption band at 430 nm (ε = 8.8 × 10(4) M(-1) cm(-1)). The anthracenyl and pyrenyl complexes displayed bands near 390 nm (ε = 3.7 × 10(4) for 3 and 4.4 × 10(4) M(-1) cm(-1) for 2). Complex 1 showed an emission band at 525 nm (Φ = 0.017) in 10% DMSO-DPBS (pH, 7.2), while 2 and 3 were blue emissive (λem = 440 and 435, Φ = 0.058 and 0.045). There was an enhancement in emission intensity on glutathione (GSH) addition indicating diketonate release. The platinum(ii) species thus formed acted as a transcription inhibitor. The released β-diketonate base showed photo-chemotherapeutic activity. The complexes photocleaved plasmid DNA under blue light of 457 nm forming ∼75% nicked circular (NC) DNA with hydroxyl radicals and singlet oxygen as the ROS. Complexes 1-3 were photocytotoxic in skin keratinocyte HaCaT cells giving IC50 of 8-14 μM under visible light (400-700 nm, 10 J cm(-2)), while being non-toxic in the dark (IC50: ∼60 μM). Complex 4 was inactive. Complexes 1-3 generating cellular ROS caused apoptotic cell death under visible light as evidenced from DCFDA and annexin-V/FITC-PI assays. This work presents a novel way to deliver an active platinum(ii) species and a phototoxic β-diketone species to the cancer cells.

  6. Spectroscopic studies of the interaction between pirimicarb and calf thymus DNA.

    PubMed

    Zhang, Guowen; Hu, Xing; Pan, Junhui

    2011-02-01

    The interaction between pirimicarb and calf thymus DNA in physiological buffer (pH 7.4) was investigated with the use of Neutral Red (NR) dye as a spectral probe by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, as well as viscosity measurements and DNA melting techniques. The results revealed that an intercalation binding should be the interaction mode of pirimicarb to DNA. CD spectra indicated that pirimicarb induced conformational changes of DNA. The binding constants of pirimicarb with DNA were obtained by the fluorescence quenching method. The thermodynamic parameters, enthalpy change (ΔHθ) and entropy change (ΔSθ) were calculated to be -52.13±2.04 kJ mol(-1) and -108.8±6.72 J mol(-1) K(-1) according to the van't Hoff equation, which suggested that hydrogen bonds and van der Waals forces might play a major role in the binding of pirimicarb to DNA. Further, the alternative least squares (ALS) method was applied to resolve a complex two-way array of the absorption spectra data, which provided simultaneously the concentration information for the three reaction components, pirimicarb, NR and DNA-NR. This ALS analysis indicated that the intercalation of pirimicarb into the DNA by substituting for NR in the DNA-NR complex. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Formation and Repair of Mismatches Containing Ribonucleotides and Oxidized Bases at Repeated DNA Sequences*

    PubMed Central

    Cilli, Piera; Minoprio, Anna; Bossa, Cecilia; Bignami, Margherita; Mazzei, Filomena

    2015-01-01

    The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences. PMID:26338705

  8. Mutations in the Putative Zinc-Binding Motif of UL52 Demonstrate a Complex Interdependence between the UL5 and UL52 Subunits of the Human Herpes Simplex Virus Type 1 Helicase/Primase Complex

    PubMed Central

    Chen, Yan; Carrington-Lawrence, Stacy D.; Bai, Ping; Weller, Sandra K.

    2005-01-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface. PMID:15994803

  9. Mutations in the putative zinc-binding motif of UL52 demonstrate a complex interdependence between the UL5 and UL52 subunits of the human herpes simplex virus type 1 helicase/primase complex.

    PubMed

    Chen, Yan; Carrington-Lawrence, Stacy D; Bai, Ping; Weller, Sandra K

    2005-07-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface.

  10. Mechanism of Error-Free Bypass of the Environmental Carcinogen N-(2'-Deoxyguanosin-8-yl)-3-aminobenzanthrone Adduct by Human DNA Polymerase η.

    PubMed

    Patra, Amritraj; Politica, Dustin A; Chatterjee, Arindom; Tokarsky, E John; Suo, Zucai; Basu, Ashis K; Stone, Michael P; Egli, Martin

    2016-11-03

    The environmental pollutant 3-nitrobenzanthrone produces bulky aminobenzanthrone (ABA) DNA adducts with both guanine and adenine nucleobases. A major product occurs at the C8 position of guanine (C8-dG-ABA). These adducts present a strong block to replicative polymerases but, remarkably, can be bypassed in a largely error-free manner by the human Y-family polymerase η (hPol η). Here, we report the crystal structure of a ternary Pol⋅DNA⋅dCTP complex between a C8-dG-ABA-containing template:primer duplex and hPol η. The complex was captured at the insertion stage and provides crucial insight into the mechanism of error-free bypass of this bulky lesion. Specifically, bypass involves accommodation of the ABA moiety inside a hydrophobic cleft to the side of the enzyme active site and formation of an intra-nucleotide hydrogen bond between the phosphate and ABA amino moiety, allowing the adducted guanine to form a standard Watson-Crick pair with the incoming dCTP. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Multidrug resistance-associated protein 4 (MRP4) controls ganciclovir intracellular accumulation and contributes to ganciclovir-induced neutropenia in renal transplant patients.

    PubMed

    Billat, Pierre-André; Ossman, Tahani; Saint-Marcoux, Franck; Essig, Marie; Rerolle, Jean-Philippe; Kamar, Nassim; Rostaing, Lionel; Kaminski, Hannah; Fabre, Gabin; Otyepka, Michal; Woillard, Jean-Baptiste; Marquet, Pierre; Trouillas, Patrick; Picard, Nicolas

    2016-09-01

    Ganciclovir (GCV) is the cornerstone of cytomegalovirus prevention and treatment in transplant patients. It is associated with problematic adverse hematological effects in this population of immunosuppressed patients, which may lead to dose reduction thus favoring resistance. GCV crosses the membranes of cells, is activated by phosphorylation, and then stops the replication of viral DNA. Its intracellular accumulation might favor host DNA polymerase inhibition, hence toxicity. Following this hypothesis, we investigated the association between a selected panel of membrane transporter polymorphisms and the evolution of neutrophil counts in n=174 renal transplant recipients. An independent population of n=96 renal transplants served as a replication and experiments using HEK293T-transfected cells were performed to validate the clinical findings. In both cohorts, we found a variant in ABCC4 (rs11568658) associated with decreased neutrophil counts following valganciclovir (GCV prodrug) administration (exploratory cohort: β±SD=-0.68±0.28, p=0.029; replication cohort: β±SD=-0.84±0.29, p=0.0078). MRP4-expressing cells showed decreased GCV accumulation as compared to negative control cells (transfected with an empty vector) (-61%; p<0.0001). The efflux process was almost abolished in cells expressing MRP4 rs11568658 variant protein. Molecular dynamic simulations of GCV membrane crossing showed a preferred location of the drug just beneath the polar head group region, which supports its interaction with efflux transporters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Detection of M. tuberculosis using DNA chips combined with an image analysis system.

    PubMed

    Huang, T-S; Liu, Y-C; Bair, C-H; Sy, C-L; Chen, Y-S; Tu, H-Z; Chen, B-C

    2008-01-01

    To develop a packaged DNA chip assay (the DR. MTBC Screen assay) for direct detection of the Mycobacterium tuberculosis complex. We described a DNA chip assay based on the IS6110 gene that can be used for the detection of M. tuberculosis complex. Probes were spotted onto the polystyrene strips in the wells of 96-well microtitre plates and used for hybridisation with biotin-labelled amplicon to yield a pattern of visualised positive spots. The plate image was scanned, analysed and interpreted automatically. The results corresponded well with those obtained by conventional culture as well as clinical diagnosis, with sensitivity and specificity rates of respectively 83.8% and 94.2%, and 84.6% and 96.3%. We conclude that the DR. MTBC Screen assay can detect M. tuberculosis complex rapidly in respiratory specimens, readily adapts to routine work and provides a flexible choice to meet different cost-effectiveness and automation needs in TB-endemic countries. The cost for reagents is around US$10 per sample.

  13. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin

    PubMed Central

    Zhen, Chao Yu; Tatavosian, Roubina; Huynh, Thao Ngoc; Duc, Huy Nguyen; Das, Raibatak; Kokotovic, Marko; Grimm, Jonathan B; Lavis, Luke D; Lee, Jun; Mejia, Frances J; Li, Yang; Yao, Tingting; Ren, Xiaojun

    2016-01-01

    The Polycomb PRC1 plays essential roles in development and disease pathogenesis. Targeting of PRC1 to chromatin is thought to be mediated by the Cbx family proteins (Cbx2/4/6/7/8) binding to histone H3 with a K27me3 modification (H3K27me3). Despite this prevailing view, the molecular mechanisms of targeting remain poorly understood. Here, by combining live-cell single-molecule tracking (SMT) and genetic engineering, we reveal that H3K27me3 contributes significantly to the targeting of Cbx7 and Cbx8 to chromatin, but less to Cbx2, Cbx4, and Cbx6. Genetic disruption of the complex formation of PRC1 facilitates the targeting of Cbx7 to chromatin. Biochemical analyses uncover that the CD and AT-hook-like (ATL) motif of Cbx7 constitute a functional DNA-binding unit. Live-cell SMT of Cbx7 mutants demonstrates that Cbx7 is targeted to chromatin by co-recognizing of H3K27me3 and DNA. Our data suggest a novel hierarchical cooperation mechanism by which histone modifications and DNA coordinate to target chromatin regulatory complexes. DOI: http://dx.doi.org/10.7554/eLife.17667.001 PMID:27723458

  14. Genetic polymorphisms of enzyme proteins and transporters related to methotrexate response and pharmacokinetics in a Japanese population.

    PubMed

    Hashiguchi, Masayuki; Shimizu, Mikiko; Hakamata, Jun; Tsuru, Tomomi; Tanaka, Takanori; Suzaki, Midori; Miyawaki, Kumika; Chiyoda, Takeshi; Takeuchi, Osamu; Hiratsuka, Jiro; Irie, Shin; Maruyama, Junya; Mochizuki, Mayumi

    2016-01-01

    Methotrexate (MTX) is currently the anchor drug widely used worldwide in the treatment of rheumatoid arthritis (RA). However, the therapeutic response to MTX has been shown to vary widely among individuals, genders and ethnic groups. The reason for this has been not clarified but it is considered to be partially due to several mechanisms in the cellular pathway of MTX including single-nucleotide polymorphisms (SNPs). The purpose of this study was to investigate the allelic frequencies in different ethnic and/or population groups in the 10 polymorphisms of enzyme proteins and transporters related to the MTX response and pharmacokinetics including MTHFR, TYMS, RFC1, FPGS, GGH, ABCB1, ABCC2 and ABCG2 in unrelated healthy Japanese adults and patients with RA. Ten polymorphisms, methylenetetrahydrofolate reductase (MTHFR) 1298, thymidylate synthase (TYMS) 3'-UTR, reduced folate carrier 1 (RFC1) 80 and-43, folypolyglutamyl synthase (FPGS) 1994, γ-glutamyl hydrolase (GGH) 452 and-401, the ABC transporters (ABCB1 3435, ABCC2 IVS23 + 56, ABCG2 914) of enzyme proteins and transporters related to MTX response and pharmacokinetics in 299 unrelated healthy Japanese adults and 159 Japanese patients with RA were investigated to clarify their contributions to individual variations in response and safety to MTX and establish personalized MTX therapy. SNPs were evaluated using real-time polymerase chain reaction (PCR). Comparison of allelic frequencies in our study with other ethnic/population groups of healthy adults and RA patients showed significant differences in 10 polymorphisms among healthy adults and 7 among RA patients. Allelic frequencies of MTHFR 1298 C, FPGS 1994A and ABCB1 3435 T were lower in Japanese than in Caucasian populations and those of ABCC2 IVS23 + 56 C and ABCG2 914A were higher in Japanese than in Caucasian/European populations in both healthy adults and RA patients. Allelic frequencies of MTHFR 1298 C, GGH-401 T, ABCB1 3435 T, and ABCG2 914A were higher in healthy Japanese adults than in an African population, and those of RFC1 80A, RFC1-43C and ABCC2 IVS23 + 56 C in healthy Japanese adults were lower than in Africans. However, no significant differences were seen in the distribution of allelic frequencies between healthy Japanese adults and RA patients. The variations in allelic frequencies in different ethnic and/or population groups in healthy adults and RA patients may contribute to individual variations in MTX response and toxicity.

  15. Promoter scanning of the Human COX-2 gene with 8-ring polyamides: unexpected weakening of polyamide-DNA binding and selectivity by replacing an internal N-Me-pyrrole with β-alanine

    PubMed Central

    Aston, Karl; Ramos, Joseph P.; Koeller, Kevin J.; Nanjunda, Rupesh; He, Gaofei

    2012-01-01

    Rules for polyamide DNA recognition have proved invaluable for the design of sequence-selective DNA-binding agents in cell-free systems. However, these rules are not fully transferrable to predicting activity in cells, tissues or animals, and additional refinements to our understanding of DNA recognition would help biomedical studies. Similar complexities are encountered when using internal β-alanines as polyamide building blocks in place of N-methyl pyrrole; β-alanines were introduced in polyamide designs to maintain good hydrogen bonding registry with the target DNA, especially for long polyamides or those with several GC bp (P.B. Dervan, A.R. Urbach, Essays Contemp. Chem. (2001) 327–339). Thus, to clarify important subtleties of molecular recognition, we studied the effects of replacing a single pyrrole with β-alanine in 8-ring polyamides designed against the Ets-1 transcription factor. Replacement of a single internal N-methylpyrrole with β-alanine to generate a β/Im pairing in two 8-ring polyamides causes a decrease in DNA binding affinity by two orders of magnitude and decreases DNA binding selectivity, contrary to expectations based on the literature. Measurements were made by fluorescence spectroscopy, quantitative DNA footprinting and surface plasmon resonance, with these vastly different techniques showing excellent agreement. Furthermore, results were validated for a range of DNA substrates from small hairpins to long dsDNA sequences. Docking studies helped show that β-alanine does not make efficient hydrophobic contacts with the rest of the polyamide or nearby DNA, in contrast to pyrrole. These results help refine design principles and expectations for polyamide-DNA recognition. PMID:23023196

  16. DNA Yield From Tissue Samples in Surgical Pathology and Minimum Tissue Requirements for Molecular Testing.

    PubMed

    Austin, Melissa C; Smith, Christina; Pritchard, Colin C; Tait, Jonathan F

    2016-02-01

    Complex molecular assays are increasingly used to direct therapy and provide diagnostic and prognostic information but can require relatively large amounts of DNA. To provide data to pathologists to help them assess tissue adequacy and provide prospective guidance on the amount of tissue that should be procured. We used slide-based measurements to establish a relationship between processed tissue volume and DNA yield by A260 from 366 formalin-fixed, paraffin-embedded tissue samples submitted for the 3 most common molecular assays performed in our laboratory (EGFR, KRAS, and BRAF). We determined the average DNA yield per unit of tissue volume, and we used the distribution of DNA yields to calculate the minimum volume of tissue that should yield sufficient DNA 99% of the time. All samples with a volume greater than 8 mm(3) yielded at least 1 μg of DNA, and more than 80% of samples producing less than 1 μg were extracted from less than 4 mm(3) of tissue. Nine square millimeters of tissue should produce more than 1 μg of DNA 99% of the time. We conclude that 2 tissue cores, each 1 cm long and obtained with an 18-gauge needle, will almost always provide enough DNA for complex multigene assays, and our methodology may be readily extrapolated to individual institutional practice.

  17. DNA synthesis involving a complexes form of DNA polymerase I in extracts of Escherichia coli.

    PubMed Central

    Hendler, R W; Pereira, M; Scharff, R

    1975-01-01

    DNA polymerase I (EC 2.7.7.7; deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase) has been recovered as a complex of about 390,000 molecular weight. The complex displays an ATP-stimulated DNA-synthesizing activity that prefers native to heat-denatured DNA. Genetic evidence indicates that the recBC enzyme is associated with the polymerase in the complex. Preliminary evidence for complexes involving DNA polymerases II and III is also presented. PMID:1094453

  18. Entrapment and Structure of an Extrahelical Guanine Attempting to Enter the Active Site of a Bacterial DNA Glycosylase, MutM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Yan; Spong, Marie C.; Nam, Kwangho

    2010-09-21

    MutM, a bacterial DNA glycosylase, protects genome integrity by catalyzing glycosidic bond cleavage of 8-oxoguanine (oxoG) lesions, thereby initiating base excision DNA repair. The process of searching for and locating oxoG lesions is especially challenging, because of the close structural resemblance of oxoG to its million-fold more abundant progenitor, G. Extrusion of the target nucleobase from the DNA double helix to an extrahelical position is an essential step in lesion recognition and catalysis by MutM. Although the interactions between the extruded oxoG and the active site of MutM have been well characterized, little is known in structural detail regarding themore » interrogation of extruded normal DNA bases by MutM. Here we report the capture and structural elucidation of a complex in which MutM is attempting to present an undamaged G to its active site. The structure of this MutM-extrahelical G complex provides insights into the mechanism MutM employs to discriminate against extrahelical normal DNA bases and into the base extrusion process in general.« less

  19. NGS-based likelihood ratio for identifying contributors in two- and three-person DNA mixtures.

    PubMed

    Chan Mun Wei, Joshua; Zhao, Zicheng; Li, Shuai Cheng; Ng, Yen Kaow

    2018-06-01

    DNA fingerprinting, also known as DNA profiling, serves as a standard procedure in forensics to identify a person by the short tandem repeat (STR) loci in their DNA. By comparing the STR loci between DNA samples, practitioners can calculate a probability of match to identity the contributors of a DNA mixture. Most existing methods are based on 13 core STR loci which were identified by the Federal Bureau of Investigation (FBI). Analyses based on these loci of DNA mixture for forensic purposes are highly variable in procedures, and suffer from subjectivity as well as bias in complex mixture interpretation. With the emergence of next-generation sequencing (NGS) technologies, the sequencing of billions of DNA molecules can be parallelized, thus greatly increasing throughput and reducing the associated costs. This allows the creation of new techniques that incorporate more loci to enable complex mixture interpretation. In this paper, we propose a computation for likelihood ratio that uses NGS (next generation sequencing) data for DNA testing on mixed samples. We have applied the method to 4480 simulated DNA mixtures, which consist of various mixture proportions of 8 unrelated whole-genome sequencing data. The results confirm the feasibility of utilizing NGS data in DNA mixture interpretations. We observed an average likelihood ratio as high as 285,978 for two-person mixtures. Using our method, all 224 identity tests for two-person mixtures and three-person mixtures were correctly identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Ancient diversification of eukaryotic MCM DNA replication proteins

    PubMed Central

    Liu, Yuan; Richards, Thomas A; Aves, Stephen J

    2009-01-01

    Background Yeast and animal cells require six mini-chromosome maintenance proteins (Mcm2-7) for pre-replication complex formation, DNA replication initiation and DNA synthesis. These six individual MCM proteins form distinct heterogeneous subunits within a hexamer which is believed to form the replicative helicase and which associates with the essential but non-homologous Mcm10 protein during DNA replication. In contrast Archaea generally only possess one MCM homologue which forms a homohexameric MCM helicase. In some eukaryotes Mcm8 and Mcm9 paralogues also appear to be involved in DNA replication although their exact roles are unclear. Results We used comparative genomics and phylogenetics to reconstruct the diversification of the eukaryotic Mcm2-9 gene family, demonstrating that Mcm2-9 were formed by seven gene duplication events before the last common ancestor of the eukaryotes. Mcm2-7 protein paralogues were present in all eukaryote genomes studied suggesting that no gene loss or functional replacements have been tolerated during the evolutionary diversification of eukaryotes. Mcm8 and 9 are widely distributed in eukaryotes and group together on the MCM phylogenetic tree to the exclusion of all other MCM paralogues suggesting co-ancestry. Mcm8 and Mcm9 are absent in some taxa, including Trichomonas and Giardia, and appear to have been secondarily lost in some fungi and some animals. The presence and absence of Mcm8 and 9 is concordant in all taxa sampled with the exception of Drosophila species. Mcm10 is present in most eukaryotes sampled but shows no concordant pattern of presence or absence with Mcm8 or 9. Conclusion A multifaceted and heterogeneous Mcm2-7 hexamer evolved during the early evolution of the eukaryote cell in parallel with numerous other acquisitions in cell complexity and prior to the diversification of extant eukaryotes. The conservation of all six paralogues throughout the eukaryotes suggests that each Mcm2-7 hexamer component has an exclusive functional role, either by a combination of unique lock and key interactions between MCM hexamer subunits and/or by a range of novel side interactions. Mcm8 and 9 evolved early in eukaryote cell evolution and their pattern of presence or absence suggests that they may have linked functions. Mcm8 is highly divergent in all Drosophila species and may not provide a good model for Mcm8 in other eukaryotes. PMID:19292915

  1. Episodic weakness due to mitochondrial DNA MT-ATP6/8 mutations.

    PubMed

    Auré, Karine; Dubourg, Odile; Jardel, Claude; Clarysse, Lucie; Sternberg, Damien; Fournier, Emmanuel; Laforêt, Pascal; Streichenberger, Nathalie; Petiot, Philippe; Gervais-Bernard, Hélène; Vial, Christophe; Bedat-Millet, Anne-Laure; Drouin-Garraud, Valérie; Bouillaud, Frédéric; Vandier, Christophe; Fontaine, Bertrand; Lombès, Anne

    2013-11-19

    To report that homoplasmic deleterious mutations in the mitochondrial DNA MT-ATP6/8 genes may be responsible for acute episodes of limb weakness mimicking periodic paralysis due to channelopathies and dramatically responding to acetazolamide. Mitochondrial DNA sequencing and restriction PCR, oxidative phosphorylation functional assays, reactive oxygen species metabolism, and patch-clamp technique in cultured skin fibroblasts. Occurrence of a typical MELAS (mitochondrial encephalopathy with lactic acidosis and stroke-like episodes) syndrome in a single member of a large pedigree with episodic weakness associated with a later-onset distal motor neuropathy led to the disclosure of 2 deleterious mitochondrial DNA mutations. The MT-ATP6 m.9185T>C p.Leu220Pro mutation, previously associated with Leigh syndrome, was present in all family members, while the MT-TL1 m.3271T>C mutation, a known cause of MELAS syndrome, was observed in the sole patient with MELAS presentation. Significant defect of complexes V and I as well as oxidative stress were observed in both primary fibroblasts and cybrid cells with 100% m.9185T>C mutation. Permanent plasma membrane depolarization and altered permeability to K(+) in fibroblasts provided a link with the paralysis episodes. Screening of 9 patients, based on their clinical phenotype, identified 4 patients with similar deleterious MT-ATP6 mutations (twice m.9185T>C and once m.9176T>C or m.8893T>C). A fifth patient presented with an original potentially deleterious MT-ATP8 mutation (m.8403T>C). All mutations were associated with almost-normal complex V activity but significant oxidative stress and permanent plasma membrane depolarization. Homoplasmic mutations in the MT-ATP6/8 genes may cause episodic weakness responding to acetazolamide treatment.

  2. STATIC AND KINETIC SITE-SPECIFIC PROTEIN-DNA PHOTOCROSSLINKING: ANALYSIS OF BACTERIAL TRANSCRIPTION INITIATION COMPLEXES

    PubMed Central

    Naryshkin, Nikolai; Druzhinin, Sergei; Revyakin, Andrei; Kim, Younggyu; Mekler, Vladimir; Ebright, Richard H.

    2009-01-01

    Static site-specific protein-DNA photocrosslinking permits identification of protein-DNA interactions within multiprotein-DNA complexes. Kinetic site-specific protein-DNA photocrosslinking--involving rapid-quench-flow mixing and pulsed-laser irradiation--permits elucidation of pathways and kinetics of formation of protein-DNA interactions within multiprotein-DNA complexes. We present detailed protocols for application of static and kinetic site-specific protein-DNA photocrosslinking to bacterial transcription initiation complexes. PMID:19378179

  3. Perspective on the Genetics and Diagnosis of Congenital Hyperinsulinism Disorders

    PubMed Central

    2016-01-01

    Context: Congenital hyperinsulinism (HI) is the most common cause of hypoglycemia in children. The risk of permanent brain injury in infants with HI continues to be as high as 25–50% due to delays in diagnosis and inadequate treatment. Congenital HI has been described since the birth of the JCEM under various terms, including “idiopathic hypoglycemia of infancy,” “leucine-sensitive hypoglycemia,” or “nesidioblastosis.” Evidence Acquisition: In the past 20 years, it has become apparent that HI is caused by genetic defects in the pathways that regulate pancreatic β-cell insulin secretion. Evidence Synthesis: There are now 11 genes associated with monogenic forms of HI (ABCC8, KCNJ11, GLUD1, GCK, HADH1, UCP2, MCT1, HNF4A, HNF1A, HK1, PGM1), as well as several syndromic genetic forms of HI (eg, Beckwith-Wiedemann, Kabuki, and Turner syndromes). HI is also the cause of hypoglycemia in transitional neonatal hypoglycemia and in persistent hypoglycemia in various groups of high-risk neonates (such as birth asphyxia, small for gestational age birthweight, infant of diabetic mother). Management of HI is one of the most difficult problems faced by pediatric endocrinologists and frequently requires difficult choices, such as near-total pancreatectomy and/or highly intensive care with continuous tube feedings. For 50 years, diazoxide, a KATP channel agonist, has been the primary drug for infants with HI; however, it is ineffective in most cases with mutations of ABCC8 or KCNJ11, which constitute the majority of infants with monogenic HI. Conclusions: Genetic mutation testing has become standard of care for infants with HI and has proven to be useful not only in projecting prognosis and family counseling, but also in diagnosing infants with surgically curable focal HI lesions. 18F-fluoro-L-dihydroxyphenylalanine (18F-DOPA) PET scans have been found to be highly accurate for localizing such focal lesions preoperatively. New drugs under investigation provide hope for improving the outcomes of children with HI. PMID:26908106

  4. Congenital hyperinsulinism: current trends in diagnosis and therapy

    PubMed Central

    2011-01-01

    Congenital hyperinsulinism (HI) is an inappropriate insulin secretion by the pancreatic β-cells secondary to various genetic disorders. The incidence is estimated at 1/50, 000 live births, but it may be as high as 1/2, 500 in countries with substantial consanguinity. Recurrent episodes of hyperinsulinemic hypoglycemia may expose to high risk of brain damage. Hypoglycemias are diagnosed because of seizures, a faint, or any other neurological symptom, in the neonatal period or later, usually within the first two years of life. After the neonatal period, the patient can present the typical clinical features of a hypoglycemia: pallor, sweat and tachycardia. HI is a heterogeneous disorder with two main clinically indistinguishable histopathological lesions: diffuse and focal. Atypical lesions are under characterization. Recessive ABCC8 mutations (encoding SUR1, subunit of a potassium channel) and, more rarely, recessive KCNJ11 (encoding Kir6.2, subunit of the same potassium channel) mutations, are responsible for most severe diazoxide-unresponsive HI. Focal HI, also diazoxide-unresponsive, is due to the combination of a paternally-inherited ABCC8 or KCNJ11 mutation and a paternal isodisomy of the 11p15 region, which is specific to the islets cells within the focal lesion. Genetics and 18F-fluoro-L-DOPA positron emission tomography (PET) help to diagnose diffuse or focal forms of HI. Hypoglycemias must be rapidly and intensively treated to prevent severe and irreversible brain damage. This includes a glucose load and/or a glucagon injection, at the time of hypoglycemia, to correct it. Then a treatment to prevent the recurrence of hypoglycemia must be set, which may include frequent and glucose-enriched feeding, diazoxide and octreotide. When medical and dietary therapies are ineffective, or when a focal HI is suspected, surgical treatment is required. Focal HI may be definitively cured when the partial pancreatectomy removes the whole lesion. By contrast, the long-term outcome of diffuse HI after subtotal pancreatectomy is characterized by a high risk of diabetes, but the time of its onset is hardly predictable. PMID:21967988

  5. Improved deoxyribozymes for synthesis of covalently branched DNA and RNA.

    PubMed

    Lee, Christine S; Mui, Timothy P; Silverman, Scott K

    2011-01-01

    A covalently branched nucleic acid can be synthesized by joining the 2'-hydroxyl of the branch-site ribonucleotide of a DNA or RNA strand to the activated 5'-phosphorus of a separate DNA or RNA strand. We have previously used deoxyribozymes to synthesize several types of branched nucleic acids for experiments in biotechnology and biochemistry. Here, we report in vitro selection experiments to identify improved deoxyribozymes for synthesis of branched DNA and RNA. Each of the new deoxyribozymes requires Mn²(+) as a cofactor, rather than Mg²(+) as used by our previous branch-forming deoxyribozymes, and each has an initially random region of 40 rather than 22 or fewer combined nucleotides. The deoxyribozymes all function by forming a three-helix-junction (3HJ) complex with their two oligonucleotide substrates. For synthesis of branched DNA, the best new deoxyribozyme, 8LV13, has k(obs) on the order of 0.1 min⁻¹, which is about two orders of magnitude faster than our previously identified 15HA9 deoxyribozyme. 8LV13 also functions at closer-to-neutral pH than does 15HA9 (pH 7.5 versus 9.0) and has useful tolerance for many DNA substrate sequences. For synthesis of branched RNA, two new deoxyribozymes, 8LX1 and 8LX6, were identified with broad sequence tolerances and substantial activity at pH 7.5, versus pH 9.0 for many of our previous deoxyribozymes that form branched RNA. These experiments provide new, and in key aspects improved, practical catalysts for preparation of synthetic branched DNA and RNA.

  6. Ribonucleotide reductase activity is regulated by proliferating cell nuclear antigen (PCNA)

    PubMed Central

    Salguero, Israel; Guarino, Estrella; Shepherd, Marianne; Deegan, Tom; Havens, Courtney G.; MacNeill, Stuart A.; Walter, Johannes C.; Kearsey, Stephen E.

    2014-01-01

    Summary Synthesis of dNTPs is required for both DNA replication and DNA repair and is catalyzed by ribonucleotide reductases (RNR), which convert ribonucleotides to their deoxy forms [1, 2]. Maintaining the correct levels of dNTPs for DNA synthesis is important for minimising the mutation rate [3-7], and this is achieved by tight regulation of ribonucleotide reductase [2, 8, 9]. In fission yeast, ribonucleotide reductase is regulated in part by a small protein inhibitor, Spd1, which is degraded in S phase and after DNA damage to allow up-regulation of dNTP supply [10-12]. Spd1 degradation is mediated by the activity of the CRL4Cdt2 ubiquitin ligase complex [5, 13, 14]. This has been reported to be dependent on modulation of Cdt2 levels which are cell cycle regulated, peaking in S phase, and which also increase after DNA damage in a checkpoint-dependent manner [7, 13]. We show here that Cdt2 levels fluctuations are not sufficient to regulate Spd1 proteolysis and that the key step in this event is the interaction of Spd1 with the polymerase processivity factor PCNA, complexed onto DNA. This mechanism thus provides a direct link between DNA synthesis and ribonucleotide reductase regulation. PMID:22464192

  7. 4β-Hydroxywithanolide E selectively induces oxidative DNA damage for selective killing of oral cancer cells.

    PubMed

    Tang, Jen-Yang; Huang, Hurng-Wern; Wang, Hui-Ru; Chan, Ya-Ching; Haung, Jo-Wen; Shu, Chih-Wen; Wu, Yang-Chang; Chang, Hsueh-Wei

    2018-03-01

    Reactive oxygen species (ROS) induction had been previously reported in 4β-hydroxywithanolide (4βHWE)-induced selective killing of oral cancer cells, but the mechanism involving ROS and the DNA damage effect remain unclear. This study explores the role of ROS and oxidative DNA damage of 4βHWE in the selective killing of oral cancer cells. Changes in cell viability, morphology, ROS, DNA double strand break (DSB) signaling (γH2AX foci in immunofluorescence and DSB signaling in western blotting), and oxidative DNA damage (8-oxo-2'deoxyguanosine [8-oxodG]) were detected in 4βHWE-treated oral cancer (Ca9-22) and/or normal (HGF-1) cells. 4βHWE decreased cell viability, changed cell morphology and induced ROS generation in oral cancer cells rather than oral normal cells, which were recovered by a free radical scavenger N-acetylcysteine (NAC). For immunofluorescence, 4βHWE also accumulated more of the DSB marker, γH2AX foci, in oral cancer cells than in oral normal cells. For western blotting, DSB signaling proteins such as γH2AX and MRN complex (MRE11, RAD50, and NBS1) were overexpressed in 4βHWE-treated oral cancer cells in different concentrations and treatment time. In the formamidopyrimidine-DNA glycolyase (Fpg)-based comet assay and 8-oxodG-based flow cytometry, the 8-oxodG expressions were higher in 4βHWE-treated oral cancer cells than in oral normal cells. All the 4βHWE-induced DSB and oxidative DNA damage to oral cancer cells were recovered by NAC pretreatment. Taken together, the 4βHWE selectively induced DSB and oxidative DNA damage for the ROS-mediated selective killing of oral cancer cells. © 2017 Wiley Periodicals, Inc.

  8. Near-atomic structural model for bacterial DNA replication initiation complex and its functional insights.

    PubMed

    Shimizu, Masahiro; Noguchi, Yasunori; Sakiyama, Yukari; Kawakami, Hironori; Katayama, Tsutomu; Takada, Shoji

    2016-12-13

    Upon DNA replication initiation in Escherichia coli, the initiator protein DnaA forms higher-order complexes with the chromosomal origin oriC and a DNA-bending protein IHF. Although tertiary structures of DnaA and IHF have previously been elucidated, dynamic structures of oriC-DnaA-IHF complexes remain unknown. Here, combining computer simulations with biochemical assays, we obtained models at almost-atomic resolution for the central part of the oriC-DnaA-IHF complex. This complex can be divided into three subcomplexes; the left and right subcomplexes include pentameric DnaA bound in a head-to-tail manner and the middle subcomplex contains only a single DnaA. In the left and right subcomplexes, DnaA ATPases associated with various cellular activities (AAA+) domain III formed helices with specific structural differences in interdomain orientations, provoking a bend in the bound DNA. In the left subcomplex a continuous DnaA chain exists, including insertion of IHF into the DNA looping, consistent with the DNA unwinding function of the complex. The intervening spaces in those subcomplexes are crucial for DNA unwinding and loading of DnaB helicases. Taken together, this model provides a reasonable near-atomic level structural solution of the initiation complex, including the dynamic conformations and spatial arrangements of DnaA subcomplexes.

  9. An isolated Hda-clamp complex is functional in the regulatory inactivation of DnaA and DNA replication.

    PubMed

    Kawakami, Hironori; Su'etsugu, Masayuki; Katayama, Tsutomu

    2006-10-01

    In Escherichia coli, a complex consisting of Hda and the DNA-loaded clamp-subunit of the DNA polymerase III holoenzyme promotes hydrolysis of DnaA-ATP. The resultant ADP-DnaA is inactive for initiation of chromosomal DNA replication, thereby repressing excessive initiations. As the cellular content of the clamp is 10-100 times higher than that of Hda, most Hda molecules might be complexed with the clamp in vivo. Although Hda predominantly forms irregular aggregates when overexpressed, in the present study we found that co-overexpression of the clamp with Hda enhances Hda solubility dramatically and we efficiently isolated the Hda-clamp complex. A single molecule of the complex appears to consist of two Hda molecules and a single clamp. The complex is competent in DnaA-ATP hydrolysis and DNA replication in the presence of DNA and the clamp deficient subassembly of the DNA polymerase III holoenzyme (pol III*). These findings indicate that the clamp contained in the complex is loaded onto DNA through an interaction with the pol III* and that the Hda activity is preserved in these processes. The complex consisting of Hda and the DNA-unloaded clamp may play a specific role in a process proceeding to the DnaA-ATP hydrolysis in vivo.

  10. Initiation of lambda DNA replication. The Escherichia coli small heat shock proteins, DnaJ and GrpE, increase DnaK's affinity for the lambda P protein.

    PubMed

    Osipiuk, J; Georgopoulos, C; Zylicz, M

    1993-03-05

    It is known that the initiation of bacteriophage lambda replication requires the orderly assembly of the lambda O.lambda P.DnaB helicase protein preprimosomal complex at the ori lambda DNA site. The DnaK, DnaJ, and GrpE heat shock proteins act together to destabilize the lambda P.DnaB complex, thus freeing DnaB and allowing it to unwind lambda DNA near the ori lambda site. The first step of this disassembly reaction is the binding of DnaK to the lambda P protein. In this report, we examined the influence of the DnaJ and GrpE proteins on the stability of the lambda P.DnaK complex. We present evidence for the existence of the following protein-protein complexes: lambda P.DnaK, lambda P.DnaJ, DnaJ.DnaK, DnaK.GrpE, and lambda P.DnaK.GrpE. Our results suggest that the presence of GrpE alone destabilizes the lambda P.DnaK complex, whereas the presence of DnaJ alone stabilizes the lambda P.DnaK complex. Using immunoprecipitation, we show that in the presence of GrpE, DnaK exhibits a higher affinity for the lambda P.DnaJ complex than it does alone. Using cross-linking with glutaraldehyde, we show that oligomeric forms of DnaK exhibit a higher affinity for lambda P than monomeric DnaK. However, in the presence of GrpE, monomeric DnaK can efficiently bind lambda P protein. These findings help explain our previous results, namely that in the GrpE-dependent lambda DNA replication system, the DnaK protein requirement can be reduced up to 10-fold.

  11. A Novel c.125 T>G (p.Val42Gly) Mutation in The Human INS Gene Leads to Neonatal Diabetes Mellitus via a Decrease in Insulin Synthesis.

    PubMed

    Sun, Fei; Du, Wenhua; Ma, Junhua; Gu, Mingjun; Wang, Jingnan; Zhu, Hongling; Song, Huaidong; Gao, Guanqi

    2018-06-11

    Neonatal diabetes mellitus is likely caused by monogenic mutations, several of which have been identified. INS mutations have a broad spectrum of clinical presentations, ranging from severe neonatal onset to mild adult onset, which suggests that the products of different mutant INS alleles behave differently and utilize distinct mechanisms to induce diabetes. In this study, a neonatal diabetes mellitus patient's INS gene was sequenced, and functional experiments were conducted. The neonatal diabetes mellitus patient's genomic DNA was extracted, and the patient's KCNJ11, ABCC8, and INS genes were sequenced. A novel mutation was identified in INS, and the open reading frame of this human mutant INS gene was inserted into the pMSCV-PIG plasmid. The constructed pMSCV-PIG plasmid was combined with VSV-g and Gag-pol and transfected into 293T cells to package the lentivirus. To stably overexpress the mutant gene, INS-1 cells were infected with the virus. The levels of insulin in the cell culture medium and cytoplasm were determined by ELISA and immunocytochemistry, respectively. A heterozygous mutation, c.125T>G (p. Val42Gly), was identified in a neonatal diabetes mellitus patient's INS gene. The human mutant INS open reading frame was overexpressed in INS-1 cells, and the mutant insulin was undetectable in the cell culture medium and cytoplasm. The novel heterozygous activating mutation c.125 T>G (p.Val42Gly) impairs the synthesis of insulin by pancreatic beta cells, resulting in diabetes. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Computational Analysis of Single Nucleotide Polymorphisms Associated with Altered Drug Responsiveness in Type 2 Diabetes

    PubMed Central

    Costa, Valerio; Federico, Antonio; Pollastro, Carla; Ziviello, Carmela; Cataldi, Simona; Formisano, Pietro; Ciccodicola, Alfredo

    2016-01-01

    Type 2 diabetes (T2D) is one of the most frequent mortality causes in western countries, with rapidly increasing prevalence. Anti-diabetic drugs are the first therapeutic approach, although many patients develop drug resistance. Most drug responsiveness variability can be explained by genetic causes. Inter-individual variability is principally due to single nucleotide polymorphisms, and differential drug responsiveness has been correlated to alteration in genes involved in drug metabolism (CYP2C9) or insulin signaling (IRS1, ABCC8, KCNJ11 and PPARG). However, most genome-wide association studies did not provide clues about the contribution of DNA variations to impaired drug responsiveness. Thus, characterizing T2D drug responsiveness variants is needed to guide clinicians toward tailored therapeutic approaches. Here, we extensively investigated polymorphisms associated with altered drug response in T2D, predicting their effects in silico. Combining different computational approaches, we focused on the expression pattern of genes correlated to drug resistance and inferred evolutionary conservation of polymorphic residues, computationally predicting the biochemical properties of polymorphic proteins. Using RNA-Sequencing followed by targeted validation, we identified and experimentally confirmed that two nucleotide variations in the CAPN10 gene—currently annotated as intronic—fall within two new transcripts in this locus. Additionally, we found that a Single Nucleotide Polymorphism (SNP), currently reported as intergenic, maps to the intron of a new transcript, harboring CAPN10 and GPR35 genes, which undergoes non-sense mediated decay. Finally, we analyzed variants that fall into non-coding regulatory regions of yet underestimated functional significance, predicting that some of them can potentially affect gene expression and/or post-transcriptional regulation of mRNAs affecting the splicing. PMID:27347941

  13. Discriminating between adaptive and carcinogenic liver hypertrophy in rat studies using logistic ridge regression analysis of toxicogenomic data: The mode of action and predictive models.

    PubMed

    Liu, Shujie; Kawamoto, Taisuke; Morita, Osamu; Yoshinari, Kouichi; Honda, Hiroshi

    2017-03-01

    Chemical exposure often results in liver hypertrophy in animal tests, characterized by increased liver weight, hepatocellular hypertrophy, and/or cell proliferation. While most of these changes are considered adaptive responses, there is concern that they may be associated with carcinogenesis. In this study, we have employed a toxicogenomic approach using a logistic ridge regression model to identify genes responsible for liver hypertrophy and hypertrophic hepatocarcinogenesis and to develop a predictive model for assessing hypertrophy-inducing compounds. Logistic regression models have previously been used in the quantification of epidemiological risk factors. DNA microarray data from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System were used to identify hypertrophy-related genes that are expressed differently in hypertrophy induced by carcinogens and non-carcinogens. Data were collected for 134 chemicals (72 non-hypertrophy-inducing chemicals, 27 hypertrophy-inducing non-carcinogenic chemicals, and 15 hypertrophy-inducing carcinogenic compounds). After applying logistic ridge regression analysis, 35 genes for liver hypertrophy (e.g., Acot1 and Abcc3) and 13 genes for hypertrophic hepatocarcinogenesis (e.g., Asns and Gpx2) were selected. The predictive models built using these genes were 94.8% and 82.7% accurate, respectively. Pathway analysis of the genes indicates that, aside from a xenobiotic metabolism-related pathway as an adaptive response for liver hypertrophy, amino acid biosynthesis and oxidative responses appear to be involved in hypertrophic hepatocarcinogenesis. Early detection and toxicogenomic characterization of liver hypertrophy using our models may be useful for predicting carcinogenesis. In addition, the identified genes provide novel insight into discrimination between adverse hypertrophy associated with carcinogenesis and adaptive hypertrophy in risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Interaction of DNA with Simple and Mixed Ligand Copper(II) Complexes of 1,10-Phenanthrolines as Studied by DNA-Fiber EPR Spectroscopy

    PubMed Central

    Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan

    2015-01-01

    The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668

  15. Formation and Repair of Mismatches Containing Ribonucleotides and Oxidized Bases at Repeated DNA Sequences.

    PubMed

    Cilli, Piera; Minoprio, Anna; Bossa, Cecilia; Bignami, Margherita; Mazzei, Filomena

    2015-10-23

    The cellular pool of ribonucleotide triphosphates (rNTPs) is higher than that of deoxyribonucleotide triphosphates. To ensure genome stability, DNA polymerases must discriminate against rNTPs and incorporated ribonucleotides must be removed by ribonucleotide excision repair (RER). We investigated DNA polymerase β (POL β) capacity to incorporate ribonucleotides into trinucleotide repeated DNA sequences and the efficiency of base excision repair (BER) and RER enzymes (OGG1, MUTYH, and RNase H2) when presented with an incorrect sugar and an oxidized base. POL β incorporated rAMP and rCMP opposite 7,8-dihydro-8-oxoguanine (8-oxodG) and extended both mispairs. In addition, POL β was able to insert and elongate an oxidized rGMP when paired with dA. We show that RNase H2 always preserves the capacity to remove a single ribonucleotide when paired to an oxidized base or to incise an oxidized ribonucleotide in a DNA duplex. In contrast, BER activity is affected by the presence of a ribonucleotide opposite an 8-oxodG. In particular, MUTYH activity on 8-oxodG:rA mispairs is fully inhibited, although its binding capacity is retained. This results in the reduction of RNase H2 incision capability of this substrate. Thus complex mispairs formed by an oxidized base and a ribonucleotide can compromise BER and RER in repeated sequences. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. In vitro and in vivo gene delivery using chitosan/hyaluronic acid nanoparticles: Influences of molecular mass of hyaluronic acid and lyophilization on transfection efficiency.

    PubMed

    Sato, Toshinori; Nakata, Mitsuhiro; Yang, Zhihong; Torizuka, Yu; Kishimoto, Satoko; Ishihara, Masayuki

    2017-08-01

    Lyophilization is an effective method for preserving nonviral gene vectors. To improve the stability and transgene expression of lyophilized plasmid DNA (pDNA) complexes, we coated the surfaces of pDNA/chitosan complexes with hyaluronic acid (HA) of varying molecular masses. The transgene expression of pDNA/chitosan/HA ternary complexes was characterized in vitro and in vivo. pDNA complexes were lyophilized overnight and the resultant products with spongy, porous consistencies were stored at -30, 4 or 25°C for 2 weeks. Rehydrated complexes were characterized using gel retardation assays, aiming to confirm complex formation, measure particle size and evaluate zeta potential, as well as conduct luciferase gene reporter assays. The anti-tumor effects of pDNA ternary complexes were evaluated using suicide gene (pTK) coding thymidine kinase in Huh7-implanted mice. Transfection efficiencies of pDNA/chitosan/HA ternary complexes were dependent on the average molecular masses of HA. The coating of pDNA/chitosan complexes with HA maintained the cellular transfection efficiencies of lyophilized pDNA ternary complexes. Furthermore, intratumoral injection of lyophilized, rehydrated pDNA ternary complexes into tumor-bearing mice showed a significant suppression of tumor growth. The coating of pDNA/chitosan complexes with high-molecular-weight HA augmented the stability and cellular transfection ability of the complexes after lyophilization-rehydration. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Immunodetection of human topoisomerase I-DNA covalent complexes

    PubMed Central

    Patel, Anand G.; Flatten, Karen S.; Peterson, Kevin L.; Beito, Thomas G.; Schneider, Paula A.; Perkins, Angela L.; Harki, Daniel A.; Kaufmann, Scott H.

    2016-01-01

    A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15–30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo. PMID:26917015

  18. Deformation of DNA molecules by hydrodynamic focusing

    NASA Astrophysics Data System (ADS)

    Wong, Pak Kin; Lee, Yi-Kuen; Ho, Chih-Ming

    2003-12-01

    The motion of a DNA molecule in a solvent flow reflects the deformation of a nano/microscale flexible mass spring structure by the forces exerted by the fluid molecules. The dynamics of individual molecules can reveal both fundamental properties of the DNA and basic understanding of the complex rheological properties of long-chain molecules. In this study, we report the dynamics of isolated DNA molecules under homogeneous extensional flow. Hydrodynamic focusing generates homogeneous extensional flow with uniform velocity in the transverse direction. The deformation of individual DNA molecules in the flow was visualized with video fluorescence microscopy. A coil stretch transition was observed when the Deborah number (De) is larger than 0.8. With a sudden stopping of the flow, the DNA molecule relaxes and recoils. The longest relaxation time of T2 DNA was determined to be 0.63 s when scaling viscosity to 0.9 cP.

  19. Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome.

    PubMed

    Bénit, Paule; Steffann, Julie; Lebon, Sophie; Chretien, Dominique; Kadhom, Noman; de Lonlay, Pascale; Goldenberg, Alice; Dumez, Yves; Dommergues, Marc; Rustin, Pierre; Munnich, Arnold; Rötig, Agnès

    2003-05-01

    Complex I deficiency, the most common cause of mitochondrial disorders, accounts for a variety of clinical symptoms and its genetic heterogeneity makes identification of the disease genes particularly tedious. Indeed, most of the 43 complex I subunits are encoded by nuclear genes, only seven of them being mitochondrially encoded. In order to offer urgent prenatal diagnosis, we have studied an inbred/multiplex family with complex I deficiency by using microsatellite DNA markers flanking the putative disease loci. Microsatellite DNA markers have allowed us to exclude the NDUFS7, NDUFS8, NDUFV1 and NDUFS1 genes and to find homozygosity at the NDUFS4 locus. Direct sequencing has led to identification of a homozygous splice acceptor site mutation in intron 1 of the NDUFS4 gene (IVS1nt -1, G-->A); this was not found in chorion villi of the ongoing pregnancy. We suggest that genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families helps to identify the disease-causing mutation. More generally, we suggest giving consideration to a more systematic microsatellite analysis of putative disease loci for identification of disease genes in inbred/multiplex families affected with genetically heterogeneous conditions.

  20. Perspectives of ruthenium(ii) polyazaaromatic photo-oxidizing complexes photoreactive towards tryptophan-containing peptides and derivatives.

    PubMed

    Estalayo-Adrián, S; Garnir, K; Moucheron, C

    2018-01-04

    Ru II polyazaaromatic complexes have been studied with the aim of developing molecular tools for DNA and oligonucleotides. In this context, Ru II -TAP (TAP = 1,4,5,8-tetraazaphenanthrene) complexes have been developed as specific photoreagents targeting the genetic material. The advantage of such compounds is due to the formation of photo-addition products between the Ru-TAP complex and the biomolecule, originating from a photo-induced electron transfer process that takes place between the excited Ru-TAP complex and guanine (G) bases of DNA. This photo-addition has been more recently extended to amino acids in view of applications involving peptides, such as inhibition or photocontrol of proteins. More particularly, tryptophan (Trp) and Trp-containing peptides are also able to be photo-oxidized by Ru II -TAP complexes, leading to the formation of photo-addition products. This mini review focuses on recent advances in the search for Ru II polyazaaromatic photo-oxidizing complexes of interest as molecular tools and photoreagents for Trp-containing peptides and proteins. Different possible future directions in this field are also discussed.

  1. Effect of Escherichia coli DNA binding protein on the transcription of single-stranded phage M13 DNA by Escherichia coli RNA polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niyogi, S.K.; Ratrie, H. III; Datta, A.K.

    E. coli DNA binding protein strongly inhibits the transcription of single-stranded rather than double-stranded phage M13 DNA by E. coli RNA polymerase. This inhibition cannot be significantly overcome by increasing the concentration of RNA polymerase. Nor does the order of addition of binding protein affect its inhibitory property: inhibition is evident whether binding protein is added before or after the formation of the RNA polymerase--DNA complex. Inhibition is also observed if binding protein is added at various times after initiation of RNA synthesis. Maximal inhibition occurs at a binding protein-to-DNA ratio (w/w) of about 8:1. This corresponds to one bindingmore » protein molecule covering about 30 nucleotides, in good agreement with values obtained by physical measurements.« less

  2. Splenic gene delivery system using self-assembling nano-complex with phosphatidylserine analog.

    PubMed

    Kurosaki, Tomoaki; Nakasone, Chihiro; Kodama, Yukinobu; Egashira, Kanoko; Harasawa, Hitomi; Muro, Takahiro; Nakagawa, Hiroo; Kitahara, Takashi; Higuchi, Norihide; Nakamura, Tadahiro; Sasaki, Hitoshi

    2015-01-01

    The recognition of phosphatidylserine on the erythrocyte membrane mediates erythrophagocytosis by resident spleen macrophages. The application of phosphatidylserine to a gene vector may be a novel approach for splenic drug delivery. Therefore, we chose 1,2-dioleoyl-sn-glycero-3-phospho-L-serin (DOPS) as an analogue of phosphatidylserine for splenic gene delivery of plasmid DNA (pDNA). In the present study, we successfully prepared a stable pDNA ternary complex using DOPS and polyethyleneimine (PEI) and evaluated its efficacy and safety. The pDNA/PEI complex had a positive charge and showed high transgene efficacy, although it caused cytotoxicity and agglutination. The addition of DOPS changed the ζ-potential of the pDNA/PEI complex to negative. It is known that anionic complexes are not taken up well by cells. Surprisingly, however, the pDNA/PEI/DOPS complex showed relatively high transgene efficacy in vitro. Fluorescence microscope observation revealed that the pDNA/PEI/DOPS complex internalized the cells while maintaining the complex formation. The injection of the pDNA/PEI complex killed most mice within 24 h at high doses, although all mice in the pDNA/PEI/DOPS complex group survived. The ternary complex with DOPS showed markedly better safety compared with the pDNA/PEI complex. The pDNA/PEI/DOPS complex showed high gene expression selectively in the spleen after intravenous injection into mice. Thus the ternary complex with DOPS can be used to deliver pDNA to the spleen, in which immune cells are abundant. It appears to have an excellent safety level, although further study to determine the mechanism of action is necessary.

  3. DNA adducts and oxidative DNA damage induced by organic extracts from PM2.5 in an acellular assay.

    PubMed

    Topinka, Jan; Rossner, Pavel; Milcova, Alena; Schmuczerova, Jana; Svecova, Vlasta; Sram, Radim J

    2011-05-10

    The genotoxic activities of complex mixtures of organic extracts from the urban air particles collected in various localities of the Czech Republic, which differed in the extent and sources of air pollution, were compared. For this purpose, PM2.5 particles were collected by high volume samplers in the most polluted area of the Czech Republic--Ostrava region (localities Bartovice, Poruba and Karvina) and in the locality exhibiting a low level of air pollution--Trebon--a small town in the non-industrial region of Southern Bohemia. To prepare extractable organic matter (EOM), PM2.5 particles were extracted by dichloromethane and c-PAHs contents in the EOMs were determined. As markers of genotoxic potential, DNA adduct levels and oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxodG, levels) induced by EOMs in an acellular assay of calf thymus DNA coupled with ³²P-postlabeling (DNA adducts) and ELISA (8-oxodG) in the presence and absence of microsomal S9 fraction were employed. Twofold higher DNA adduct levels (17.20 adducts/10⁸ nucleotides/m³ vs. 8.49 adducts/10⁸ nucleotides/m³) were induced by EOM from Ostrava-Bartovice (immediate proximity of heavy industry) compared with that from Ostrava-Poruba (mostly traffic emissions). Oxidative DNA damage induced by EOM from Ostrava-Bartovice was more than fourfold higher than damage induced by EOM from Trebon (8-oxodG/10⁸ dG/m³: 0.131 vs. 0.030 for Ostrava-Bartovice vs. Trebon, respectively). Since PM2.5 particles collected in various localities differ with respect to their c-PAHs content, and c-PAHs significantly contribute to genotoxicity (DNA adduct levels), we suggest that monitoring of PM2.5 levels is not a sufficient basis to assess genotoxicity of respirable aerosols. It seems likely that the industrial emissions prevailing in Ostrava-Bartovice represent a substantially higher genotoxic risk than mostly traffic-related emissions in Ostrava-Poruba. B[a]P and c-PAH contents in EOMs are the most important factors relating to their genotoxic potential. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Crystallization and preliminary X-ray diffraction analysis of the CRISPR-Cas RNA-silencing Cmr complex.

    PubMed

    Osawa, Takuo; Inanaga, Hideko; Numata, Tomoyuki

    2015-06-01

    Clustered regularly interspaced short palindromic repeat (CRISPR)-derived RNA (crRNA) and CRISPR-associated (Cas) proteins constitute a prokaryotic adaptive immune system (CRISPR-Cas system) that targets and degrades invading genetic elements. The type III-B CRISPR-Cas Cmr complex, composed of the six Cas proteins (Cmr1-Cmr6) and a crRNA, captures and cleaves RNA complementary to the crRNA guide sequence. Here, a Cmr1-deficient functional Cmr (CmrΔ1) complex composed of Pyrococcus furiosus Cmr2-Cmr3, Archaeoglobus fulgidus Cmr4-Cmr5-Cmr6 and the 39-mer P. furiosus 7.01-crRNA was prepared. The CmrΔ1 complex was cocrystallized with single-stranded DNA (ssDNA) complementary to the crRNA guide by the vapour-diffusion method. The crystals diffracted to 2.1 Å resolution using synchrotron radiation at the Photon Factory. The crystals belonged to the triclinic space group P1, with unit-cell parameters a = 75.5, b = 76.2, c = 139.2 Å, α = 90.3, β = 104.8, γ = 118.6°. The asymmetric unit of the crystals is expected to contain one CmrΔ1-ssDNA complex, with a Matthews coefficient of 2.03 Å(3) Da(-1) and a solvent content of 39.5%.

  5. Analytical methods to determine the comparative DNA binding studies of curcumin-Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Rajesh, Jegathalaprathaban; Rajasekaran, Marichamy; Rajagopal, Gurusamy; Athappan, Periakaruppan

    2012-11-01

    DNA interaction studies of two mononuclear [1:1(1); 1:2(2)] copper(II) complexes of curcumin have been studied. The interaction of these complexes with CT-DNA has been explored by physical methods to propose modes of DNA binding of the complexes. Absorption spectral titrations of complex 1 with CT-DNA shows a red-shift of 3 nm with the DNA binding affinity of Kb, 5.21 × 104 M-1 that are higher than that obtained for 2 (red-shift, 2 nm; Kb, 1.73 × 104 M-1) reveal that the binding occurs in grooves as a result of the interaction is via exterior phosphates. The CD spectra of these Cu(II) complexes show a red shift of 3-10 nm in the positive band with increase in intensities. This spectral change of induced CD due to the hydrophobic interaction of copper complexes with DNA is the characteristic of B to A conformational change. The EB displacement assay also reveals the same trend as observed in UV-Vis spectral titration. The addition of complexes 1 and 2 to the DNA bound ethidium bromide (EB) solutions causes an obvious reduction in emission intensities indicating that these complexes competitively bind to DNA with EB. The positive shift of both the Epc and E0' accompanied by reduction of peak currents in differential pulse voltammogram (DPV), upon adding different concentrations of DNA to the metal complexes, are obviously in favor of strong binding to DNA. The super coiled plasmid pUC18 DNA cleavage ability of Cu(II) complexes in the presence of reducing agent reveals the single strand DNA cleavage (ssDNA) is observed. The hydroxyl radical (HOrad ) and the singlet oxygen are believed to be the reactive species responsible for the cleavage.

  6. Minichromosome maintenance complex component 8 mutations cause primary ovarian insufficiency.

    PubMed

    Dou, Xiaoyun; Guo, Ting; Li, Guangyu; Zhou, LiGuang; Qin, Yingying; Chen, Zi-Jiang

    2016-11-01

    To investigate whether mutations in the minichromosome maintenance complex component 8 (MCM8) gene were present in 192 patients with sporadic primary ovarian insufficiency (POI). Retrospective case-control cohort study. University-based reproductive medicine center. A total of 192 patients with sporadic POI and 312 control women with regular menstruation (192 age-matched women and 120 women >45 years old). Sanger sequencing was performed in patients with sporadic POI, and potentially pathogenic variants were confirmed in matched controls. DNA damage was induced by mitomycinC (MMC) treatment, and DNA repair capacity was evaluated by histone H2AX phosphorylation level. Sanger sequencing for MCM8 was performed in 192 patients with sporadic POI, and functional experiments were performed to explore the deleterious effects of mutations identified. Two novel missense variants in MCM8, c. A950T (p. H317L), and c. A1802G (p. H601R), were identified in two patients with POI but absent in 312 controls (the upper 90% confidence limit for the proportion 2/192 is 2.24%). The HeLa cells overexpressing mutant p. H317L and p. H601R showed higher sensitivity to MMC compared with wild type. Furthermore, mutant p. H317L showed decreased repair capacity after MMC treatment with much more histone H2AX phosphorylation remaining after 2 hours of recovery. Our result suggests novel mutations p. H317L and p. H601R in the MCM8 gene are potentially causative for POI by dysfunctional DNA repair. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Nanoparticle formulation enhanced protective immunity provoked by PYGPI8p-transamidase related protein (PyTAM) DNA vaccine in Plasmodium yoelii malaria model.

    PubMed

    Cherif, Mahamoud Sama; Shuaibu, Mohammed Nasir; Kodama, Yukinobu; Kurosaki, Tomoaki; Helegbe, Gideon Kofi; Kikuchi, Mihoko; Ichinose, Akitoyo; Yanagi, Tetsuo; Sasaki, Hitoshi; Yui, Katsuyuki; Tien, Nguyen Huy; Karbwang, Juntra; Hirayama, Kenji

    2014-04-07

    We have previously reported the new formulation of polyethylimine (PEI) with gamma polyglutamic acid (γ-PGA) nanoparticle (NP) to have provided Plasmodium yoelii merozoite surface protein-1 (PyMSP-1) plasmid DNA vaccine with enhanced protective cellular and humoral immunity in the lethal mouse malaria model. PyGPI8p-transamidase-related protein (PyTAM) was selected as a possible candidate vaccine antigen by using DNA vaccination screening from 29 GPI anchor and signal sequence motif positive genes picked up using web-based bioinformatics tools; though the observed protection was not complete. Here, we observed augmented protective effect of PyTAM DNA vaccine by using PEI and γ-PGA complex as delivery system. NP-coated PyTAM plasmid DNA immunized mice showed a significant survival rate from lethal P. yoelii challenge infection compared with naked PyTAM plasmid or with NP-coated empty plasmid DNA group. Antigen-specific IgG1 and IgG2b subclass antibody levels, proportion of CD4 and CD8T cells producing IFN-γ in the splenocytes and IL-4, IFN-γ, IL-12 and TNF-α levels in the sera and in the supernatants from ex vivo splenocytes culture were all enhanced by the NP-coated PyTAM DNA vaccine. These data indicates that NP augments PyTAM protective immune response, and this enhancement was associated with increased DC activation and concomitant IL-12 production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Role of Electron-Driven Proton-Transfer Processes in the Ultrafast Deactivation of Photoexcited Anionic 8-oxoGuanine-Adenine and 8-oxoGuanine-Cytosine Base Pairs.

    PubMed

    Wu, Xiuxiu; Karsili, Tolga N V; Domcke, Wolfgang

    2017-01-14

    It has been reported that 8-oxo-7,8-dihydro-guanosine (8-oxo-G), which is the main product of oxidative damage of DNA, can repair cyclobutane pyrimidine dimer (CPD) lesions when incorporated into DNA or RNA strands in proximity to such lesions. It has therefore been suggested that the 8-oxo-G nucleoside may have been a primordial precursor of present-day flavins in DNA or RNA repair. Because the electron transfer leading to the splitting of a thymine-thymine pair in a CPD lesion occurs in the photoexcited state, a reasonably long excited-state lifetime of 8-oxo-G is required. The neutral (protonated) form of 8-oxo-G exhibits a very short (sub-picosecond) intrinsic excited-state lifetime which is unfavorable for repair. It has therefore been argued that the anionic (deprotonated) form of 8-oxo-G, which exhibits a much longer excited-state lifetime, is more likely to be a suitable cofactor for DNA repair. Herein, we have investigated the exited-state quenching mechanisms in the hydrogen-bonded complexes of deprotonated 8-oxo-G - with adenine (A) and cytosine (C) using ab initio wave-function-based electronic-structure calculations. The calculated reaction paths and potential-energy profiles reveal the existence of barrierless electron-driven inter-base proton-transfer reactions which lead to low-lying S₁/S₀ conical intersections. The latter can promote ultrafast excited-state deactivation of the anionic base pairs. While the isolated deprotonated 8-oxo-G - nucleoside may have been an efficient primordial repair cofactor, the excited states of the 8-oxo-G - -A and 8-oxo-G - -C base pairs are likely too short-lived to be efficient electron-transfer repair agents.

  9. Psychometric Properties and Norms of the German ABC-Community and PAS-ADD Checklist

    ERIC Educational Resources Information Center

    Zeilinger, Elisabeth L.; Weber, Germain; Haveman, Meindert J.

    2011-01-01

    Aim: The aim of the present study was to standardize and generate psychometric evidence of the German language versions of two well-established English language mental health instruments: the "Aberrant Behavior Checklist-Community" (ABC-C) and the "Psychiatric Assessment Schedule for Adults with Developmental Disabilities" (PAS-ADD) Checklist. New…

  10. Connective Tissue Mineralization in Abcc6−/− Mice, a Model for Pseudoxanthoma Elasticum

    PubMed Central

    Kavukcuoglu, N. Beril; Li, Qiaoli; Pleshko, Nancy; Uitto, Jouni

    2012-01-01

    Pseudoxanthoma elasticum (PXE) is a heritable multisystem disorder characterized by ectopic mineralization. However, the structure of the mineral deposits, their interactions with the connective tissue matrix, and the details of the progressive maturation of the mineral crystals are currently unknown. In this study, we examined the mineralization processes in Abcc6−/− mice, a model system for PXE, by energy dispersive X-ray, and Fourier transform infrared imaging spectroscopy (FT-IRIS). The results indicated that the principal components of the mineral deposits were calcium and phosphate which co-localized within the histologically demonstrable lesions determined by topographic mapping. The Ca/P ratio increased in samples with progressive mineralization reaching the value comparable to that in endochondral bone. A progressive increase in mineralization was also reflected by increased mineral-to-matrix ratio determined by FT-IRIS. Determination of the mineral phases by FT-IRIS suggested progressive maturation of the mineral deposits from amorphous calcium phosphate to hydroxyapatite. These results provide critical information of the mechanisms of mineralization in PXE, with potential pharmacologic implications. PMID:22421595

  11. Pseudoxanthoma elasticum is a metabolic disease.

    PubMed

    Jiang, Qiujie; Endo, Masayuki; Dibra, Florian; Wang, Krystle; Uitto, Jouni

    2009-02-01

    Pseudoxanthoma elasticum (PXE) is a pleiotropic multisystem disorder affecting skin, eyes, and the cardiovascular system with progressive pathological mineralization. It is caused by mutations in the ABCC6 gene expressed primarily in the liver and kidneys, and at very low levels, if at all, in tissues affected by PXE. A question has arisen regarding the pathomechanism of PXE, particularly the "metabolic" versus the "PXE cell" hypotheses. We examined a murine PXE model (Abcc6(-/-)) by transplanting muzzle skin from knockout (KO) and wild-type (WT) mice onto the back of WT and KO mice using mineralization of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Grafting of WT mouse muzzle skin onto the back of KO mice resulted in mineralization of vibrissae, whereas grafting KO mouse muzzle skin onto WT mice did not. Thus, these findings implicate circulatory factors as a critical component of the mineralization process. This mouse grafting model supports the notion that PXE is a systemic metabolic disorder with secondary mineralization of connective tissues and that the mineralization process can be countered or even reversed by changes in the homeostatic milieu.

  12. Programmable self-assembly of three-dimensional nanostructures from 104 unique components

    PubMed Central

    Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.; Grun, Casey; Strauss, Maximilian T.; Bron, Patrick; Lai-Kee-Him, Josephine; Schueder, Florian; Wang, Bei; Wang, Pengfei; Kishi, Jocelyn Y.; Myhrvold, Cameron A.; Zhu, Allen; Jungmann, Ralf

    2017-01-01

    Nucleic acids (DNA and RNA) are widely used to construct nanoscale structures with ever increasing complexity1–14 for possible applications in fields as diverse as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early examples typically containing on the order of 10 unique DNA strands. The introduction of DNA origami4, which uses many staple strands to fold one long scaffold strand into a desired structure, gave access to kilo- to mega-dalton nanostructures containing about 102 unique DNA strands6,7,10,13 . Aiming for even larger DNA origami structures is in principle possible15,16, but faces the challenge of having to manufacture and route an increasingly long scaffold strand. An alternative and in principle more readily scalable approach uses DNA brick assembly8,9, which doesn’t need a scaffold and instead uses hundreds of short DNA brick strands that self-assemble according to specific inter-brick interactions. First-generation bricks used to create 3D structures are 32-nt long with four 8-nt binding domains that directed 102 distinct bricks into well-formed assemblies, but attempts to create larger structures encountered practical challenges and had limited success.9 Here we show that a new generation of DNA bricks with longer binding domains makes it possible to self-assemble 0.1 – 1 giga-dalton three-dimensional nanostructures from 104 unique components, including a 0.5 giga-dalton cuboid containing 30,000 unique bricks and a 1 giga-dalton rotationally symmetric tetramer. We also assemble a cuboid containing 10,000 bricks and 20,000 uniquely addressable ‘nano-voxels’ that serves as a molecular canvas for three-dimensional sculpting, with introduction of sophisticated user-prescribed 3D cavities yielding structures such as letters, a complex helicoid and a teddy bear. We anticipate that, with further optimization, even larger assemblies might be accessible and prove useful as scaffolds or for positioning functional components. PMID:29219968

  13. Role of the Escherichia coli grpE heat shock protein in the initiation of bacteriophage lambda DNA replication.

    PubMed

    Osipiuk, J; Zylicz, M

    1991-01-01

    Initiation of replication of lambda DNA requires assembly of the proper nucleoprotein complex consisting of the lambda origin of replication-lambda O-lambda P-dnaB proteins. The dnaJ, dnaK and grpE heat shock proteins destabilize the lambda P-dnaB interaction in this complex permitting dnaB helicase to unwind lambda DNA near ori lambda sequence. First step of this disassembling reaction is the binding of dnaK protein to lambda P protein. In this report we examined the influence of dnaJ and grpE proteins on stability of the lambda P-dnaK complex. Our results show that grpE alone dissociates this complex, but both grpE and dnaJ together do not. These results suggest that, in the presence of grpE protein, dnaK protein has a higher affinity for lambda P protein complexed with dnaJ protein than in the situation where grpE protein is not used.

  14. Nucleoprotein Complexes Containing Replicating Simian Virus 40 DNA: Comparison with Polyoma Nucleoprotein Complexes

    PubMed Central

    Hall, Mark R.; Meinke, William; Goldstein, David A.

    1973-01-01

    Procedures for isolating nucleoprotein complexes containing replicating polyoma DNA from infected mouse cells were used to prepare short-lived nucleoprotein complexes (r-SV40 complexes) containing replicating simian virus 40 (SV40) DNA from infected monkey cells. Like the polyoma complexes, r-SV40 complexes were only partially released from nuclei by cell lysis but could be extracted from nuclei by prolonged treatment with solutions containing Triton X-100. r-SV40 complexes sedimented faster than complexes containing SV40 supercoiled DNA (SV40 complex) in sucrose gradients, and both types of SV40 nucleoprotein complexes sedimented ahead of polyoma complexes containing supercoiled polyoma DNA (py complex). The sedimentation rates of py complex and SV40 complex were 56 and 61S, respectively, based on the sedimentation rate of the mouse large ribosomal subunit as a marker. r-SV40 complexes sedimented as multiple peaks between 56 and 75S. Sedimentation and buoyant density measurements indicated that protein is bound to all forms of SV40 DNA at about the same ratio of protein to DNA (1-2/1) as was reported for polyoma nucleoproteins. PMID:4359958

  15. Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection.

    PubMed

    Luo, Zhaofeng; Zhou, Hongmin; Jiang, Hao; Ou, Huichao; Li, Xin; Zhang, Liyun

    2015-04-21

    Aptamers have attracted much attention due to their ability to bind to target molecules with high affinity and specificity. The development of an approach capable of efficiently generating aptamers through systematic evolution of ligands by exponential enrichment (SELEX) is particularly challenging. Herein, a fraction collection approach in capillary electrophoresis SELEX (FCE-SELEX) for the partition of a bound DNA-target complex is developed. By integrating fraction collection with a facile oil seal method for avoiding contamination while amplifying the bound DNA-target complex, in a single round of selection, a streptavidin-binding aptamer (SBA) has been generated. The affinity of aptamer SBA-36 for streptavidin (SA) is determined as 30.8 nM by surface plasmon resonance (SPR). Selectivity and biotin competition experiments demonstrate that the SBA-36 aptamer selected by FCE-SELEX is as efficient as those from other methods. Based on the ability of fraction collection in partition and collection of the aptamer-target complex from the original DNA library, FCE-SELEX can be a universal tool for the development of aptamers.

  16. Hydrophobic modification of low molecular weight polyethylenimine for improved gene transfection.

    PubMed

    Teo, Pei Yun; Yang, Chuan; Hedrick, James L; Engler, Amanda C; Coady, Daniel J; Ghaem-Maghami, Sadaf; George, Andrew J T; Yang, Yi Yan

    2013-10-01

    Hydrophobic modification of low molecular weight (LMW) polyethylenimine (PEI) is known to increase gene transfection efficiency of LMW PEI. However, few studies have explored how the conjugated hydrophobic groups influence the properties of the modified LMW PEI mainly due to difficulties in obtaining well defined final product compositions and limitations in current chemical synthesis routes. The aim of this study was to modify LMW PEI (Mn 1.8 kDa, PEI-1.8) judiciously with different hydrophobic functional groups and to investigate how hydrophobicity, molecular structure and inclusion of hydrogen bonding properties in the conjugated side groups as well as the conjugation degree (number of primary amine groups of PEI-1.8 modified with hydrophobic groups) influence PEI-1.8 gene transfection efficiency. The modified polymers were characterized for DNA binding ability, particle size, zeta potential, in vitro gene transfection efficiency and cytotoxicity in SKOV-3 human ovarian cancer and HepG2 human liver carcinoma cell lines. The study shows that modified PEI-1.8 polymers are able to condense plasmid DNA into cationic nanoparticles, of sizes ~100 nm, whereas unmodified polymer/DNA complexes display larger particle sizes of 2 μm. Hydrophobic modification also increases the zeta potential of polymer/DNA complexes. Importantly, modified PEI-1.8 shows enhanced transfection efficiency over the unmodified counterpart. Higher transfection efficiency is obtained when PEI-1.8 is modified with shorter hydrophobic groups (MTC-ethyl) as opposed to longer ones (MTC-octyl and MTC-deodecyl). An aromatic structured functional group (MTC-benzyl) also enhances transfection efficiency more than an alkyl functional group (MTC-octyl). An added hydrogen-bonding urea group in the conjugated functional group (MTC-urea) does not enhance transfection efficiency over one without urea (MTC-benzyl). The study also demonstrates that modification degree greatly influences gene transfection, and ~100% substitution of primary amine groups leads to significantly lower gene transfection efficiency. These findings provide insights to modification of PEI for development of effective and non-cytotoxic non-viral vectors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Detection and functional characterization of Pgp1 (ABCB1) and MRP3 (ABCC3) efflux transporters in the PLHC-1 fish hepatoma cell line.

    PubMed

    Zaja, Roko; Klobucar, Roberta Sauerborn; Smital, Tvrtko

    2007-03-30

    The PLHC-1 hepatoma cell line derived from topminnow (Poeciliopsis lucida) is one of the most frequently used fish cell lines in aquatic ecotoxicology. These cells have been well characterized regarding the presence of phase I and phase II enzymes involved in the metabolism of xenobiotics. However, the presence of the ABC transport proteins possibly involved in the MultiXenobiotic Resistance (MXR) mechanism as phase III of cellular detoxification has never been described in the PLHC-1 cells. The main goal of this study was the detection and functional characterization of toxicologically relevant xenobiotic efflux transporters from ABCB and ABCC subfamily in the PLHC-1 cells. Using specific primer pairs two PCR products 1769 and 1023bp in length were successfully cloned and sequenced. Subsequent multiple alignment and phylogenetic analysis showed that these sequences share a high degree of homology with the P-glycoprotein (Pgp1; ABCB1) and the MRP3 (ABCC3). Functional experiments with fluorescent model substrates and specific inhibitors were used to verify that transport activities of Pgp- and MRP-related proteins are indeed present in PLHC-1 cells. Accumulation or efflux/retention rates of rhodamine 123, calcein-AM or monochlorbimane were time- and concentration-dependent. Cyclosporine A, MK571, verapamil, reversine 205, indomethacine and probenecid were used as specific inhibitors of Pgp1 and/or MRPs transport activities, resulting in a dose dependent inhibition of related transport activities in PLHC-1 cells. Similar to mammalian systems, the obtained IC(50) values were in the lower micromolar range. Taken together these data demonstrate that: (1) the PLHC-1 cells do express a functional MXR mechanism mediated by toxicologically relevant ABC efflux transporters; and (2) the presence of all three critical phases of cellular detoxification additionally affirms the PLHC-1 cells as a reliable in vitro model in aquatic toxicology.

  18. Accumulation of murine amyloid-β mimics early Alzheimer's disease.

    PubMed

    Krohn, Markus; Bracke, Alexander; Avchalumov, Yosef; Schumacher, Toni; Hofrichter, Jacqueline; Paarmann, Kristin; Fröhlich, Christina; Lange, Cathleen; Brüning, Thomas; von Bohlen Und Halbach, Oliver; Pahnke, Jens

    2015-08-01

    Amyloidosis mouse models of Alzheimer's disease are generally established by transgenic approaches leading to an overexpression of mutated human genes that are known to be involved in the generation of amyloid-β in Alzheimer's families. Although these models made substantial contributions to the current knowledge about the 'amyloid hypothesis' of Alzheimer's disease, the overproduction of amyloid-β peptides mimics only inherited (familiar) Alzheimer's disease, which accounts for <1% of all patients with Alzheimer's disease. The inherited form is even regarded a 'rare' disease according to the regulations for funding of the European Union (www.erare.eu). Here, we show that mice that are double-deficient for neprilysin (encoded by Mme), one major amyloid-β-degrading enzyme, and the ABC transporter ABCC1, a major contributor to amyloid-β clearance from the brain, develop various aspects of sporadic Alzheimer's disease mimicking the clinical stage of mild cognitive impairment. Using behavioural tests, electrophysiology and morphological analyses, we compared different ABC transporter-deficient animals and found that alterations are most prominent in neprilysin × ABCC1 double-deficient mice. We show that these mice have a reduced probability to survive, show increased anxiety in new environments, and have a reduced working memory performance. Furthermore, we detected morphological changes in the hippocampus and amygdala, e.g. astrogliosis and reduced numbers of synapses, leading to defective long-term potentiation in functional measurements. Compared to human, murine amyloid-β is poorly aggregating, due to changes in three amino acids at N-terminal positions 5, 10, and 13. Interestingly, our findings account for the action of early occurring amyloid-β species/aggregates, i.e. monomers and small amyloid-β oligomers. Thus, neprilysin × ABCC1 double-deficient mice present a new model for early effects of amyloid-β-related mild cognitive impairment that allows investigations without artificial overexpression of inherited Alzheimer's disease genes. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Factor validity and reliability of the aberrant behavior checklist-community (ABC-C) in an Indian population with intellectual disability.

    PubMed

    Lehotkay, R; Saraswathi Devi, T; Raju, M V R; Bada, P K; Nuti, S; Kempf, N; Carminati, G Galli

    2015-03-01

    In this study realised in collaboration with the department of psychology and parapsychology of Andhra University, validation of the Aberrant Behavior Checklist-Community (ABC-C) in Telugu, the official language of Andhra Pradesh, one of India's 28 states, was carried out. To assess the factor validity and reliability of this Telugu version, 120 participants with moderate to profound intellectual disability (94 men and 26 women, mean age 25.2, SD 7.1) were rated by the staff of the Lebenshilfe Institution for Mentally Handicapped in Visakhapatnam, Andhra Pradesh, India. Rating data were analysed with a confirmatory factor analysis. The internal consistency was estimated by Cronbach's alpha. To confirm the test-retest reliability, 50 participants were rated twice with an interval of 4 weeks, and 50 were rated by pairs of raters to assess inter-rater reliability. Confirmatory factor analysis revealed that the root mean square error of approximation (RMSEA) was equal to 0.06, the comparative fit index (CFI) was equal to 0.77, and the Tucker Lewis index (TLI) was equal to 0.77, which indicated that the model with five correlated factors had a good fit. Coefficient alpha ranged from 0.85 to 0.92 across the five subscales. Spearman's rank correlation coefficients for inter-rater reliability tests ranged from 0.65 to 0.75, and the correlations for test-retest reliability ranged from 0.58 to 0.76. All reliability coefficients were statistically significant (P < 0.01). The factor validity and reliability of Telugu version of the ABC-C evidenced factor validity and reliability comparable to the original English version and appears to be useful for assessing behaviour disorders in Indian people with intellectual disabilities. © 2014 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  20. Molecular Evidence and Functional Expression of a Novel Drug Efflux pump (ABCC2) in Human Corneal Epithelium and Rabbit Cornea and its role in Ocular drug efflux

    PubMed Central

    Karla, Pradeep K.; Pal, Dhananjay; Quinn, Tim; Mitra, Ashim K.

    2007-01-01

    Cornea is considered as a major barrier for ocular drug delivery. Low ocular bioavailability of drugs has been attributed primarily to low permeability across corneal epithelium thus leading to sub-therapeutic concentrations of drug in the eye and treatment failure. The role of drug efflux proteins, particularly the Pglycoprotein in ocular drug bioavailability has been reported. The objective of this research was to determine whether human corneal epithelium expresses multi drug resistance associated proteins contributing to drug efflux by employing both cultured corneal cells and freshly excised rabbit cornea. SV40 HCEC and rPCEC were selected for in-vitro testing. SV40-HCEC and freshly excised rabbit corneas were utilized for transport studies. [3H]-cyclosporine-A and [14C]-erythromycin which are known substrates for ABCC2 and MK-571, a specific inhibitor for MRP were applied in this study. RT-PCR indicated a unique and distinct band at ∼272 bp corresponding to ABCC2 in HCEC, SV40-HCEC, rabbit cornea, rPCEC and MDCKII-MRP2 cells. Also RT-PCR indicated a unique band ∼181 bp for HCEC and SV40-HCEC. Immunoprecipitation followed by Western Blot analysis revealed a specific band at ∼190-kDa in membrane fraction of SV40-HCEC, MDCKII-MRP2 and no band with isotype control. Uptake of [3H]-cyclosporine-A and [14C]-erythromycin in the presence of MK-571 was significantly enhanced than control in both SV40 HCEC and rPCEC. Similarly a significant elevation in (A→B) permeability of [3H]-cyclosporine-A and [14C]-erythromycin was observed in the presence of MK-571 in SV40-HCEC. A→B transport of [3H]-cyclosporine-A was elevated in the presence of MK-571 in freshly excised rabbit cornea indicating potential role of this efflux transporter and high clinical significance of this finding. PMID:17156953

  1. Identification of novel point mutations in splicing sites integrating whole-exome and RNA-seq data in myeloproliferative diseases

    PubMed Central

    Spinelli, Roberta; Pirola, Alessandra; Redaelli, Sara; Sharma, Nitesh; Raman, Hima; Valletta, Simona; Magistroni, Vera; Piazza, Rocco; Gambacorti-Passerini, Carlo

    2013-01-01

    Point mutations in intronic regions near mRNA splice junctions can affect the splicing process. To identify novel splicing variants from exome sequencing data, we developed a bioinformatics splice-site prediction procedure to analyze next-generation sequencing (NGS) data (SpliceFinder). SpliceFinder integrates two functional annotation tools for NGS, ANNOVAR and MutationTaster and two canonical splice site prediction programs for single mutation analysis, SSPNN and NetGene2. By SpliceFinder, we identified somatic mutations affecting RNA splicing in a colon cancer sample, in eight atypical chronic myeloid leukemia (aCML), and eight CML patients. A novel homozygous splicing mutation was found in APC (NM_000038.4:c.1312+5G>A) and six heterozygous in GNAQ (NM_002072.2:c.735+1C>T), ABCC3 (NM_003786.3:c.1783-1G>A), KLHDC1 (NM_172193.1:c.568-2A>G), HOOK1 (NM_015888.4:c.1662-1G>A), SMAD9 (NM_001127217.2:c.1004-1C>T), and DNAH9 (NM_001372.3:c.10242+5G>A). Integrating whole-exome and RNA sequencing in aCML and CML, we assessed the phenotypic effect of mutations on mRNA splicing for GNAQ, ABCC3, HOOK1. In ABCC3 and HOOK1, RNA-Seq showed the presence of aberrant transcripts with activation of a cryptic splice site or intron retention, validated by the reverse transcription-polymerase chain reaction (RT-PCR) in the case of HOOK1. In GNAQ, RNA-Seq showed 22% of wild-type transcript and 78% of mRNA skipping exon 5, resulting in a 4–6 frameshift fusion confirmed by RT-PCR. The pipeline can be useful to identify intronic variants affecting RNA sequence by complementing conventional exome analysis. PMID:24498620

  2. Lipophilicity-dependent ruthenium N-heterocyclic carbene complexes as potential anticancer agents.

    PubMed

    Lv, Gaochao; Guo, Liubin; Qiu, Ling; Yang, Hui; Wang, Tengfei; Liu, Hong; Lin, Jianguo

    2015-04-28

    Five Ru(II)-N-heterocyclic carbenes (NHC) (1-5) were synthesized by reacting the appropriately substituted imidazolium chlorides with Ag2O, forming the NHC-silver chloride in situ followed by transmetalation with dimeric p-cymene ruthenium(II) dichloride. All the complexes were characterized by NMR and ESI-MS, and complex 1 was also characterized by single-crystal X-ray diffraction. The IC50 values of these five complexes were determined by the MTT-based assay on four human cancer cell lines, SKOV-3 (ovarian), PC-3 (prostate), MDA-MB-231 (breast) and EC109 (esophagus). The cytotoxicities of these complexes changed from a moderate effect to a fine one, corresponding to the increasing lipophilicity order of the complex of 2 < 1 < 3 < 4 < 5 (0.91, 0.88, 1.36, 1.85 and 2.62 for 1–5 respectively). Complex 5 showed the most cytotoxicity with the IC50 values 10.3 ± 0.3 μM for SKOV-3, 2.9 ± 0.1 μM for PC-3, 8.2 ± 0.6 μM for MDA-MB-231, 6.4 ± 0.2 μM for EC109 cell lines. Due to the superior cytotoxicity of complex 5 against the PC-3 cell lines, further biological evaluations were carried out to elucidate its action mechanism. The morphologic changes and cell cycle analysis showed that complex 5 can inhibit PC-3 cell lines by inducing cell cycle arrest at the G2/M phase. The DNA binding experiments further demonstrate that complex 5 has a better binding ability for DNA (Kb = 2.2 × 10(6) M(-1)) than complexes 1-4 (3.8 × 10(5), 7.0 × 10(5), 5.7 × 10(5), and 1.9 × 10(5) respectively).

  3. DNA methylation differences in exposed workers and nearby residents of the Ma Ta Phut industrial estate, Rayong, Thailand

    PubMed Central

    Peluso, Marco; Bollati, Valentina; Munnia, Armelle; Srivatanakul, Petcharin; Jedpiyawongse, Adisorn; Sangrajrang, Suleeporn; Piro, Sara; Ceppi, Marcello; Bertazzi, Pier Alberto; Boffetta, Paolo; Baccarelli, Andrea A

    2012-01-01

    Background Adverse biological effects from airborne pollutants are a primary environmental concern in highly industrialized areas. Recent studies linked air pollution exposures with altered blood Deoxyribo-nucleic acid (DNA) methylation, but effects from industrial sources and underlying biological mechanisms are still largely unexplored. Methods The Ma Ta Phut industrial estate (MIE) in Rayong, Thailand hosts one of the largest steel, oil refinery and petrochemical complexes in south-eastern Asia. We measured a panel of blood DNA methylation markers previously associated with air pollution exposures, including repeated elements [long interspersed nuclear element-1 (LINE-1) and Alu] and genes [p53, hypermethylated-in-cancer-1 (HIC1), p16 and interleukin-6 (IL-6)], in 67 MIE workers, 65 Ma Ta Phut residents and 45 rural controls. To evaluate the role of DNA damage and oxidation, we correlated DNA methylation measures with bulky DNA and 3-(2-deoxy-β-D-erythro-pentafuranosyl)pyrimido[1,2-α]purin-10(3H)-one deoxyguanosine (M1dG) adducts. Results In covariate-adjusted models, MIE workers, compared with rural residents, showed lower LINE-1 (74.8% vs 78.0%; P < 0.001), p53 (8.0% vs 15.7%; P < 0.001) and IL-6 methylation (39.2% vs 45.0%; P = 0.027) and higher HIC1 methylation (22.2% vs 15.3%, P < 0.001). For all four markers, Ma Ta Phut residents exhibited methylation levels intermediate between MIE workers and rural controls (LINE-1, 75.7%, P < 0.001; p53, 9.0%, P < 0.001; IL-6, 39.8%, P = 0.041; HIC1, 17.8%, P = 0.05; all P-values vs rural controls). Bulky DNA adducts showed negative correlation with p53 methylation (P = 0.01). M1dG showed negative correlations with LINE-1 (P = 0.003) and IL-6 methylation (P = 0.05). Conclusions Our findings indicate that industrial exposures may induce alterations of DNA methylation patterns detectable in blood leucocyte DNA. Correlation of DNA adducts with DNA hypomethylation suggests potential mediation by DNA damage. PMID:23064502

  4. Comparison of computational methods to model DNA minor groove binders.

    PubMed

    Srivastava, Hemant Kumar; Chourasia, Mukesh; Kumar, Devesh; Sastry, G Narahari

    2011-03-28

    There has been a profound interest in designing small molecules that interact in sequence-selective fashion with DNA minor grooves. However, most in silico approaches have not been parametrized for DNA ligand interaction. In this regard, a systematic computational analysis of 57 available PDB structures of noncovalent DNA minor groove binders has been undertaken. The study starts with a rigorous benchmarking of GOLD, GLIDE, CDOCKER, and AUTODOCK docking protocols followed by developing QSSR models and finally molecular dynamics simulations. In GOLD and GLIDE, the orientation of the best score pose is closer to the lowest rmsd pose, and the deviation in the conformation of various poses is also smaller compared to other docking protocols. Efficient QSSR models were developed with constitutional, topological, and quantum chemical descriptors on the basis of B3LYP/6-31G* optimized geometries, and with this ΔT(m) values of 46 ligands were predicted. Molecular dynamics simulations of the 14 DNA-ligand complexes with Amber 8.0 show that the complexes are stable in aqueous conditions and do not undergo noticeable fluctuations during the 5 ns production run, with respect to their initial placement in the minor groove region.

  5. Synthesis of trimethoprim metal complexes: Spectral, electrochemical, thermal, DNA-binding and surface morphology studies.

    PubMed

    Demirezen, Nihat; Tarınç, Derya; Polat, Duygu; Ceşme, Mustafa; Gölcü, Ayşegül; Tümer, Mehmet

    2012-08-01

    Complexes of trimethoprim (TMP), with Cu(II), Zn(II), Pt(II), Ru(III) and Fe(III) have been synthesized. Then, these complexes have been characterized by spectroscopic techniques involving UV-vis, IR, mass and (1)H NMR. CHN elemental analysis, electrochemical and thermal behavior of complexes have also been investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV spectroscopy and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and four Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with the reference drug TMP. Almost all types of complexes show excellent activity against all type of bacteria and fungi. The morphology of the CT DNA, TMP, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with CT DNA has been studied by means of differential pulse voltammetry (DPV) at CT DNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Use of ATP analogs to inhibit HIV-1 transcription

    PubMed Central

    Narayanan, Aarthi; Sampey, Gavin; Van Duyne, Rachel; Guendel, Irene; Kehn-Hall, Kylene; Roman, Jessica; Currer, Robert; Galons, Hervé; Oumata, Nassima; Joseph, Benoît; Meijer, Laurent; Caputi, Massimo; Nekhai, Sergei; Kashanchi, Fatah

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1) is the etiological agent of AIDS. Chronic persistent infection is an important reason for the presence of “latent cell populations” even after Anti Retroviral Therapy (ART). We have analyzed the effect of ATP analogs in inhibiting cdk9/T1 complex in infected cells. A third generation drug named CR8#13 is an effective inhibitor of Tat activated transcription. Following drug treatment, we observed a decreased loading of cdk9 onto the HIV-1 DNA. We found multiple novel cdk9/T1 complexes present in infected and uninfected cells with one complex being unique to infected cells. This complex is sensitive to CR8#13 in kinase assays. Treatment of PBMC with CR8#13 does not kill infected cells as compared to Flavopiridol. Interestingly, there is a difference in sensitivity of various clades to these analogs. Collectively, these results point to targeting novel complexes for inhibition of cellular proteins that are unique to infected cells. PMID:22771113

  7. Endothelial and smooth muscle cells from abdominal aortic aneurysm have increased oxidative stress and telomere attrition.

    PubMed

    Cafueri, Giuseppe; Parodi, Federica; Pistorio, Angela; Bertolotto, Maria; Ventura, Francesco; Gambini, Claudio; Bianco, Paolo; Dallegri, Franco; Pistoia, Vito; Pezzolo, Annalisa; Palombo, Domenico

    2012-01-01

    Abdominal aortic aneurysm (AAA) is a complex multi-factorial disease with life-threatening complications. AAA is typically asymptomatic and its rupture is associated with high mortality rate. Both environmental and genetic risk factors are involved in AAA pathogenesis. Aim of this study was to investigate telomere length (TL) and oxidative DNA damage in paired blood lymphocytes, aortic endothelial cells (EC), vascular smooth muscle cells (VSMC), and epidermal cells from patients with AAA in comparison with matched controls. TL was assessed using a modification of quantitative (Q)-FISH in combination with immunofluorescence for CD31 or α-smooth muscle actin to detect EC and VSMC, respectively. Oxidative DNA damage was investigated by immunofluorescence staining for 7, 8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG). Telomeres were found to be significantly shortened in EC, VSMC, keratinocytes and blood lymphocytes from AAA patients compared to matched controls. 8-oxo-dG immunoreactivity, indicative of oxidative DNA damage, was detected at higher levels in all of the above cell types from AAA patients compared to matched controls. Increased DNA double strand breaks were detected in AAA patients vs controls by nuclear staining for γ-H2AX histone. There was statistically significant inverse correlation between TL and accumulation of oxidative DNA damage in blood lymphocytes from AAA patients. This study shows for the first time that EC and VSMC from AAA have shortened telomeres and oxidative DNA damage. Similar findings were obtained with circulating lymphocytes and keratinocytes, indicating the systemic nature of the disease. Potential translational implications of these findings are discussed.

  8. DNA adduct formation among workers in a Thai industrial estate and nearby residents.

    PubMed

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Meunier, Aurelie; Sangrajrang, Suleeporn; Piro, Sara; Ceppi, Marcello; Boffetta, Paolo

    2008-01-25

    The genotoxic effects of air pollutant exposures have been studied in people living and working in Map Ta Phut, Rayong province, Thailand, a site where is located the Map Ta Phut Industrial Estate (MIE) one of the largest steel, refinery and petrochemical complex in the South-Eastern Asia. This was done by the conduction of a transversal study aimed to compare the prevalence of bulky DNA adducts in groups of subjects experiencing various degree of air pollution. DNA adduct analysis was performed in the leukocytes of 201 volunteers by the (32)P-postlabelling assay: 79 were workers in the MIE complex, including 24 refinery workers, 40 steel workers and 15 tinplate workers, 72 were people residing downwind in the MIE area and 50 were residents in a control district of the same Rayong province but without industrial exposures. The groups of workers were analyzed separately to evaluate if DNA adduct formation differs by the type of industry. The levels of bulky DNA adducts were 1.17+/-0.17 (SE) adducts/10(8) nucleotides in refinery workers, 1.19+/-0.19 (SE) in steel workers, 0.87+/-0.17 (SE) in tinplate workers, 0.85+/-0.07 (SE) in MIE residents and 0.53+/-0.05 (SE) in district controls. No effects of smoking habits on DNA adducts was found. The multivariate regression analysis shows that the levels of DNA adducts were significantly increased among the individuals living near the MIE industrial complex in respect to those resident in a control district (p<0.05). In the groups of occupationally exposed workers, the highest levels of DNA adducts were found among the workers experiencing an occupational exposure to polycyclic aromatic hydrocarbons, e.g. the steel factory and refinery workers. When we have evaluated if the levels of DNA adducts of the PAH exposed workers were different from those of the MIE residents, a statistical significantly difference was found (p<0.05). Our present study indicates that people living near point sources of industrial air pollution can experiment an excess of DNA adduct formation. The emissions from the MIE complex are the main source of air pollution in this area and can be the cause of such increment in the levels of DNA damage.

  9. Riluzole as an adjunctive therapy to risperidone for the treatment of irritability in children with autistic disorder: a double-blind, placebo-controlled, randomized trial.

    PubMed

    Ghaleiha, Ali; Mohammadi, Effat; Mohammadi, Mohammad-Reza; Farokhnia, Mehdi; Modabbernia, Amirhossein; Yekehtaz, Habibeh; Ashrafi, Mandana; Hassanzadeh, Elmira; Akhondzadeh, Shahin

    2013-12-01

    A hyperglutamatergic state has been shown to play a possible role in the pathophysiology of autistic disorders. Riluzole is a glutamate-modulating agent with neuroprotective properties, which has been shown to have positive effects in many neuropsychiatric disorders. The aim of this study was to assess the efficacy and tolerability of riluzole as an adjunctive to risperidone in the treatment of irritability in autistic children who were not optimally responding to previous medications. This was a 10-week, randomized, double-blind, parallel-group, placebo-controlled trial. The study enrolled male and female outpatients aged 5-12 years with a diagnosis of autistic disorder based on the DSM-IV-TR criteria and a score of ≥12 on the Aberrant Behavior Checklist-Community (ABC-C) irritability subscale who had discontinued other medications because of a lack of efficacy. Subjects received riluzole (titrated to 50 or 100 mg/day based on bodyweight) or placebo in addition to risperidone (titrated up to 2 or 3 mg/day based on bodyweight) for 10 weeks. Patients were assessed at baseline, week 5, and week 10. The primary outcome measure was the difference in the change in the ABC-C irritability subscale score from baseline to week 10 between the two groups. We also compared changes in other ABC-C subscale scores and Clinical Global Impressions-Improvement (CGI-I) scale scores between the two groups. Forty-nine patients were enrolled in the study, and forty children completed the trial (dropouts: placebo = 4, riluzole = 5). A significantly greater improvement in the study primary outcome (the ABC-C irritability subscale score) was achieved by the riluzole-treated children compared with the placebo group (P = 0.03). Patients in the riluzole group also showed significantly greater improvement on the lethargy/social withdrawal (P = 0.02), stereotypic behavior (P = 0.03), and hyperactivity/non-compliance subscales (P = 0.005), but not on the inappropriate speech subscale (P = 0.20) than patients in the placebo group. Eleven patients in the riluzole group and five patients in the placebo group were classified as responders based on their CGI-I scores [χ(2)(1) = 3.750, P = 0.05]. Children in the riluzole group experienced significantly more increases in their appetite and bodyweight than children in the placebo group by the end of the study. Riluzole add-on therapy shows several therapeutic outcomes, particularly for improving irritability, in children with autism. However, its add-on to risperidone also results in significantly increased appetite and weight gain.

  10. Characterization of human glucocorticoid receptor complexes formed with DNA fragments containing or lacking glucocorticoid response elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tully, D.B.; Cidlowski, J.A.

    1989-03-07

    Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing ({sup 3}H)triamcinolone acetonide (({sup 3}H)TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, ({sup 3}H)TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins priormore » to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. Activated ({sup 3}H)TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA. Stability of the complexes formed between GR and these three DNA fragments was strongly affected by even moderate alterations in either the salt concentration or the pH of the gradient buffer. Under all conditions tested, the complex formed with the MMTV LTR DNA fragment was more stable than the complexes formed with either of the pBR322 DNA fragments. Together these observations indicate that the formation of stable complexes between activated GR and isolated DNA fragments requires the presence of GRE consensus sequences in the DNA.« less

  11. Differences in unwinding of supercoiled DNA induced by the two enantiomers of anti-benzo[a]pyrene diol epoxide.

    PubMed Central

    Xu, R; Birke, S; Carberry, S E; Geacintov, N E; Swenberg, C E; Harvey, R G

    1992-01-01

    The unwinding of supercoiled phi X174 RFI DNA induced by the tumorigenic (+) and non-tumorigenic (-) enantiomers of trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) has been investigated by agarose slab-gel and ethidium titration tube gel electrophoresis. The differences in adduct conformations were verified by flow linear dichroism techniques. Both enantiomers cause a reversible unwinding by the formation of noncovalent intercalative complexes. The effects of covalently bound BPDE residues on the electrophoretic mobilities of the RF I DNA form in agarose gels were investigated in detail in the range of binding ratios rb approximately 0.0-0.06 (covalently bound BPDE residues/nucleotide). In this range of rb values, there is a striking difference in the mobilities of (+)-BPDE- and (-)-BPDE-adducted phi X174 DNA in agarose slab-gels, the covalently bound (+)-BPDE residues causing a significantly greater retardation than (-)-BPDE residues. Increasing the level of covalent adducts beyond rb approximately 0.06 in the case of the (+)-BPDE enantiomer, leads to further unwinding and a minimum in the mobilities (corresponding to comigration of the nicked form and the covalently closed relaxed modified form) at rb 0.10 +/- 0.01; at still higher rb values, rewinding of the modified DNA in the opposite sense is observed. From the minimum in the mobility, a mean unwinding angle (per BPDE residue) of theta = 12 +/- 1.5 degrees is determined, which is in good agreement the value of theta = 11 +/- 1.8 degrees obtained by the tube gel titration method. Using this latter method, values of theta = 6.8 +/- 1.7 degrees for (-)-BPDE-phi X174 adducts are observed. It is concluded that agarose slab gel techniques are not suitable for determining unwinding angles for (-)-BPDE-modified phi X174 DNA because the alterations in the tertiary structures for rb < 0.06 are too small to cause sufficiently large changes in the electrophoretic mobilities. The major trans (+)-BPDE-N2-guanosine covalent adduct is situated at external binding sites and the mechanisms of unwinding are therefore different from those relevant to noncovalent intercalative BPDE-DNA complexes or to classical intercalating drug molecules; a flexible hinge joint and a widening of the minor groove at the site of the lesion may account for the observed unwinding effects. The more heterogeneous (-)-BPDE-nucleoside adducts (involving cis and trans N2-guanosine, and adenosine adducts) are less effective in causing unwinding of supercoiled DNA for reasons which remain to be elucidated. Images PMID:1475180

  12. ABC-B transporter genes in Dirofilaria immitis.

    PubMed

    Bourguinat, Catherine; Che, Hua; Mani, Thangadurai; Keller, Kathy; Prichard, Roger K

    2016-08-01

    Dirofilaria immitis is a filarial nematode causing infection and heartworm disease in dogs and other canids, cats, and occasionally in humans. Prevention with macrocyclic lactones (ML) is recommended during the mosquito transmission season. Recently, ML resistance has been reported. ABC-B transporter genes are thought to be involved in the mechanism of ML resistance in other nematodes. This study aimed to identify all the ABC-B transporter genes in D. immitis using as a reference the nDi.2.2 D. immitis whole genome, which is not completely annotated. Using bioinformatic tools and PCR amplification on pooled D. immitis genomic DNA and on pooled cDNA, nine ABC transporter genes including one pseudogene were characterized. Bioinformatic and phylogenetic analyses allowed identification of three P-glycoproteins (Pgps) (Dim-pgp-3 Dim-pgp-10, Dim-pgp-11), of two ABC-B half transporter genes (one ortholog of Cel-haf-4 and Cel-haf-9; and one ortholog of Cel-haf-1 and Cel-haf-3), of one ABC half transporter gene (ortholog of Cel-haf-5) that contained an ABC-C motif, and of one additional half transporter that would require functional study for characterization. The number of ABC-B transporter genes identified was lower than in Caenorhabditis elegans and Haemonchus contortus. Further studies are needed to understand their possible role in ML resistance in D. immitis. These ABC transporters constitute a base for ML resistance investigation in D. immitis and advance our understanding of the molecular biology of this parasite. Copyright © 2016. Published by Elsevier Ltd.

  13. Cyproheptadine in the treatment of autistic disorder: a double-blind placebo-controlled trial.

    PubMed

    Akhondzadeh, S; Erfani, S; Mohammadi, M R; Tehrani-Doost, M; Amini, H; Gudarzi, S S; Yasamy, M T

    2004-04-01

    Autism is a childhood-onset disorder of unknown, possibly of multiple aetiologies. The core symptoms of autism are abnormalities in social interaction, communication and behaviour. The involvement of neurotransmitters such as 5-HT has been suggested in neuropsychiatric disorders and particularly in autistic disorder. Increased platelet 5-HT levels were found in 40% of the autistic population, suggesting that hyperserotonaemia may be a pathologic factor in infantile autism. Therefore, it is of interest to assess the efficacy of cyproheptadine, a 5-HT2 antagonist in the treatment of autistic disorder. In this 8-week double-blind, placebo-controlled trial, we assessed the effects of cyproheptadine plus haloperidol in the treatment of autistic disorder. Children between the ages 3 and 11 years (inclusive) with a DSM IV clinical diagnosis of autism and who were outpatients from a specialty clinic for children at Roozbeh Psychiatric Teaching Hospital were recruited. The children presented with a chief complaint of severely disruptive symptoms related to autistic disorder. Patients were randomly allocated to cyproheptadine + haloperidol (Group A) or haloperidol + placebo (Group B) for an 8-week, double-blind, placebo-controlled study. The dose of haloperidol and cyproheptadine was titrated up to 0.05 and 0.2 mg/kg/day respectively. Patients were assessed by a third-year resident of psychiatry at baseline and after 2, 4, 6 and 8 weeks of starting medication. The primary measure of the outcome was the Aberrant Behaviour Checklist-Community (ABC-C) and the secondary measure of the outcome was the Childhood Autism Rating Scale (relating to people and verbal communication). Side effects and extrapyramidal symptoms were systematically recorded throughout the study and were assessed using a checklist and the Extrapyramidal Symptoms Rating Scale, administered by a resident of psychiatry during weeks 1, 2, 4, 6 and 8. The ABC-C and the Childhood Autism Rating Scale scores improved with cyproheptadine. The behaviour of the two treatments was not homogeneous across time (groups-by-time interaction, Greenhouse-Geisser correction; F = 7.30, d.f. = 1.68, P = 0.002; F = 8.21, d.f. = 1.19, P = 0.004 respectively). The difference between the two treatments was significant as indicated by the effect of group, and the between-subjects factor (F = 4.17, d.f. = 1, P = 0.048; F = 4.29, d.f. = 1, P = 0.045 respectively). No significant difference was observed between the two groups in terms of extrapyramidal symptoms (P = 0.23). The difference between the two groups in the frequency of side effects was not significant. The results suggest that the combination of cyproheptadine with a conventional antipsychotic may be superior to conventional antipsychotic alone for children with autistic disorder. However the results need confirmation by a larger randomized controlled trial.

  14. Insights into the nature of DNA binding of AbrB-like transcription factors

    PubMed Central

    Sullivan, Daniel M.; Bobay, Benjamin G.; Kojetin, Douglas J.; Thompson, Richele J.; Rance, Mark; Strauch, Mark A.; Cavanagh, John

    2008-01-01

    Summary Understanding the DNA recognition and binding by the AbrB-like family of transcriptional regulators is of significant interest since these proteins enable bacteria to elicit the appropriate response to diverse environmental stimuli. Although these ‘transition-state regulator’ proteins have been well characterized at the genetic level, the general and specific mechanisms of DNA binding remain elusive. We present RDC-refined NMR solution structures and dynamic properties of the DNA-binding domains of three Bacillus subtilis transition-state regulators AbrB, Abh, and SpoVT. We combined previously investigated DNase I footprinting, DNA methylation, gel shift assays, mutagenic and NMR studies to generate a structural model of the complex between AbrBN55 and its cognate promoter, abrB8. These investigations have enabled us to generate the first model for the specific nature of the transition-state regulator-DNA interaction. PMID:19000822

  15. Binding and thermodynamics of REV peptide-ctDNA interaction.

    PubMed

    Upadhyay, Santosh Kumar

    2017-03-01

    The thermodynamics of DNA-ligand binding is important as it provides useful information to understand the details of binding processes. HIV-1 REV response element (RRE) located in the env coding region of the viral genome is reported to be well conserved across different HIV-1 isolates. In this study, the binding characteristics of Calf thymus DNA (ctDNA) and REV peptide from HIV-1 were investigated using spectroscopic (UV-visible, fluorescence, and circular dichroism (CD)) and isothermal titration calorimetric (ITC) techniques. Thermal stability and ligand binding properties of the ctDNA revealed that native ctDNA had a T m of 75.5 °C, whereas the ctDNA-REV peptide complex exhibited an incremental shift in the T m by 8 °C, indicating thermal stability of the complex. CD data indicated increased ellipticity due to large conformational changes in ctDNA molecule upon binding with REV peptide and two binding stoichiometric modes are apparent. The ctDNA experienced condensation due to large conformational changes in the presence of REV peptide and positive B→Ψ transition was observed at higher molar charge ratios. Fluorescence studies performed at several ligand concentrations revealed a gradual decrease in the fluorescence intensity of EtBr-bound ctDNA in response to increasing ligand concentrations. The fluorescence data further confirmed two stoichiometric modes of binding for ctDNA-REV peptide complex as previously observed with CD studies. The binding enthalpies were determined using ITC in the temperature range of 293 K-308 K. The ITC binding isotherm was exothermic at all temperatures examined, with low ΔH values indicating that the ctDNA-REV peptide interaction is driven largely by entropy. The heat capacity change (ΔC p ) was insignificant, an unusual finding in the area of DNA-peptide interaction studies. The variation in the values obtained for ΔH, ΔS, and ΔG with temperature further suggests that ctDNA-REV peptide interaction is entropically driven. ITC based analysis of salt dependence of binding constant gave a charge value (Z) = +4.01, as determined for the δlnK/δln[Na + ] parameter, suggesting the participation of only 3-4 Arg out of 11 Arg charge from REV peptide. The stoichiometry observed for the complex was three molar charge of REV peptide binding per molar charge of ctDNA. ITC based analysis further confirmed that the binding between ctDNA and REV peptide is governed by electrostatic interaction. Molecular interactions including H-bonding, van der Waals forces, and solvent molecules rearrangement, underlie the binding of REV peptide to ctDNA. © 2016 Wiley Periodicals, Inc.

  16. Quantitation of exposure to benzo[a]pyrene with monoclonal antibodies.

    PubMed Central

    Santella, R M; Hsieh, L L; Lin, C D; Viet, S; Weinstein, I B

    1985-01-01

    It is now possible to quantitate carcinogen adducts on DNA by highly sensitive immunoassays. These techniques are particularly useful for screening human populations for exposure to potential environmental carcinogens. We have developed a panel of monoclonal antibodies that react with benzo(a)pyrene (BP) modified DNA to be used in an enzyme linked immunoassay (ELISA) to quantitate adduct levels of both human and animal samples. BALBc/Cr mice were immunized with either DNA modified by 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9, 10-tetrahydrobenzo(a)pyrene (BPDE-I-DNA) complexed electrostatically to methylated bovine serum albumin or with BPDE-I-modified guanosine conjugated with bovine serum albumin (BPDE-I-G-BSA). Four stable clones were produced from the spleen cells of animals immunized with BPDE-I-DNA and one from BPDE-I-G-BSA immunized animals. All antibodies were shown to be highly specific for BPDE-I-DNA and did not crossreact with nonmodified DNA or with N-2-acetylaminofluorene or 1-aminopyrene modified DNA. The antibodies differed in their sensitivity to BPDE-II-DNA, BPDE-I-poly G, BPDE-I-tetraols and BPDE-I-dG. In general, all the antibodies showed the greatest affinity for their original antigen. Those generated against modified DNA showed highest reactivity against modified DNA while the one antibody generated against the monoadduct showed highest reactivity with the monoadduct. These antibodies are currently being used in a highly sensitive competitive ELISA to quantitate levels of BP-DNA adducts in various animal and human tissue samples. PMID:4085452

  17. Blocking Blood Supply to Breast Carcinoma With a DNA Vaccine Encoding VEGF Receptor-2

    DTIC Science & Technology

    2006-03-01

    recognize antigens in the form of 8 to 10 amino acid long peptides, presented to T- cell receptors (TCRs) on the cell surface as complexes with major... receptor , and providing tumor- associated antigens , our DNA vaccine can efficiently activate DCs, NK cells , and CTLs, presumably in Peyer’s patches. The... immunoreceptor in immune cell activation and natural killing. Immunity. 2002;17:19-29. (5) Snyder MR, Weyand CM, Goronzy JJ. The double life of NK receptors

  18. Formation of A Wrapped DNA-Protein Interface: Expermental Characterization and Analysis of the Large Contributions of Ions and Water to the Thermodynamics of Binding IHF to H′DNA

    PubMed Central

    Vander Meulen, Kirk A.; Saecker, Ruth M.; Record, M. Thomas

    2008-01-01

    To characterize driving forces and driven processes in formation of a large-interface, wrapped protein-DNA complex analogous to the nucleosome, we have investigated the thermodynamics of binding the 34 bp H′ DNA sequence to the E. coli DNA-remodeling protein Integration Host Factor (IHF). Isothermal titration calorimetry (ITC) and fluorescence resonance energy transfer (FRET) are applied to determine effects of salt concentration (KCl, KF, KGlutamate (KGlu)), and of the excluded solute glycine betaine, on the binding thermodynamics at 20°C. Both the binding constant Kobs and enthalpy ΔH°obs depend strongly on [salt] and anion identity. Formation of the wrapped complex is enthalpy-driven, especially at low [salt] (e.g. ΔH°obs = −20.2 kcal · mol−1 in 0.04 M KCl). ΔH°obs increases linearly with [salt] with a slope (dΔH°obs/d[salt]) which is much larger in KCl (38 ± 3 kcal · mol−1M−1) than in KF or KGlu (average 11 ± 2 kcal · mol−1M−1). At 0.33 M [salt], Kobs is approximately 30-fold larger in KGlu or KF than in KCl, and the [salt] derivative SKobs = dlnKobs/dln[salt] is almost twice as large in magnitude in KCl (−8.8 ± 0.7) as in KF or KGlu (average −4.7 ± 0.6). A novel analysis of the large effects of anion identity on Kobs, SKobs and on ΔH°obs dissects coulombic, Hofmeister and osmotic contributions to these quantities. This analysis attributes anion-specific differences in Kobs, SKobs and ΔH°obs to (i) displacement of a large number of waters of hydration (estimated to be 1.0 (± 0.2) × 103) from the 5340 Å2 of IHF and H′ DNA surface buried in complex formation, and (ii) significant local exclusion of F− and Glu− from this hydration water, relative to the situation with Cl−, which we propose is randomly distributed. To quantify net water release from anionic surface (22% of the surface buried in complexation, mostly from DNA phosphates), we determined the stabilizing effect of glycine betaine (GB) on Kobs: dlnKobs/d[GB] = 2.7 ± 0.4 at constant KCl activity, indicating the net release of 150 H2O from anionic surface. PMID:18237740

  19. Ultrasound enhances in vivo tumor expression of plasmid DNA by PEG-introduced cationized dextran.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2005-11-28

    This study is an investigation to experimentally confirm whether or not ultrasound (US) irradiation is effective in enhancing the in vivo gene expression of plasmid DNA in tumor. Dextran was cationized by introducing spermine to the hydroxyl groups to allow to polyionically complex with a plasmid DNA. The cationized dextran prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have an active ester and methoxy groups at each terminal, to obtain cationized dextran with different percentages of PEG introduced. Various cationized dextrans with or without PEG introduction were mixed with a plasmid DNA of LacZ to form cationized dextran-plasmid DNA complexes. Electrophoretical examination revealed that the plasmid DNA was complexed both with the cationized dextran and PEG-introduced cationized dextran, irrespective of the PEG introduction percentage, although the higher N/P ratio was needed for plasmid DNA complexation with the latter. By complexation with the cationized dextran, the zeta potential of plasmid DNA was changed to be positive. The charge of PEG-introduced cationized dextran-plasmid DNA complexes became close to 0 mV as their percentage of PEG introduced increased, although the molecular size was about 250 nm, irrespective of the PEG introduction. When cationized dextran-plasmid DNA complexes with or without PEG introduction were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass and the subsequent US irradiation to the tumor mass percutaneously, the PEG-introduced cationized dextran-plasmid DNA complex plus US irradiation enhanced the tumor level of gene expression to a significantly high extent compared with the cationized dextran-plasmid DNA complex and free plasmid DNA with or without US irradiation. The enhanced level depended on the time period and timing of US irradiation. Fluorescent microscopic studies revealed that the localization of plasmid DNA and the gene expression were observed in the tumor tissue injected with the PEG-introduced cationized dextran-plasmid DNA complex plus the subsequent US irradiation. We conclude that complexation with the PEG-introduced cationized dextran combined with US irradiation is a promising way to target the plasmid DNA to the tumor for gene expression.

  20. Structure of an anti-HIV-1 hammerhead ribozyme complex with a 17-mer DNA substrate analog of HIV-1 gag RNA and a mechanism for the cleavage reaction: 750 MHz NMR and computer experiments

    NASA Technical Reports Server (NTRS)

    Ojha, R. P.; Dhingra, M. M.; Sarma, M. H.; Myer, Y. P.; Setlik, R. F.; Shibata, M.; Kazim, A. L.; Ornstein, R. L.; Rein, R.; Turner, C. J.; hide

    1997-01-01

    The structure of an anti-HIV-1 ribozyme-DNA abortive substrate complex was investigated by 750 MHz NMR and computer modeling experiments. The ribozyme was a chimeric molecule with 30 residues-18 DNA nucleotides, and 12 RNA residues in the conserved core. The DNA substrate analog had 17 residues. The chimeric ribozyme and the DNA substrate formed a shortened ribozyme-abortive substrate complex of 47 nucleotides with two DNA stems (stems I and III) and a loop consisting of the conserved core residues. Circular dichroism spectra showed that the DNA stems assume A-family conformation at the NMR concentration and a temperature of 15 degrees C, contrary to the conventional wisdom that DNA duplexes in aqueous solution populate entirely in the B-form. It is proposed that the A-family RNA residues at the core expand the A-family initiated at the core into the DNA stems because of the large free energy requirement for the formation of A/B junctions. Assignments of the base H8/H6 protons and H1' of the 47 residues were made by a NOESY walk. In addition to the methyl groups of all T's, the imino resonances of stems I and III and AH2's were assigned from appropriate NOESY walks. The extracted NMR data along with available crystallographic data, were used to derive a structural model of the complex. Stems I and III of the final model displayed a remarkable similarity to the A form of DNA; in stem III, a GC base pair was found to be moving into the floor of the minor groove defined by flanking AT pairs; data suggest the formation of a buckled rhombic structure with the adjacent pair; in addition, the base pair at the interface of stem III and the loop region displayed deformed geometry. The loop with the catalytic core, and the immediate region of the stems displayed conformational multiplicity within the NMR time scale. A catalytic mechanism for ribozyme action based on the derived structure, and consistent with biochemical data in the literature, is proposed. The complex between the anti HIV-1 gag ribozyme and its abortive DNA substrate manifests in the detection of a continuous track of A.T base pairs; this suggests that the interaction between the ribozyme and its DNA substrate is stronger than the one observed in the case of the free ribozyme where the bases in stem I and stem III regions interact strongly with the ribozyme core region (Sarma, R. H., et al. FEBS Letters 375, 317-23, 1995). The complex formation provides certain guidelines in the design of suitable therapeutic ribozymes. If the residues in the ribozyme stem regions interact with the conserved core, it may either prevent or interfere with the formation of a catalytically active tertiary structure.

  1. CryoEM and image sorting for flexible protein/DNA complexes.

    PubMed

    Villarreal, Seth A; Stewart, Phoebe L

    2014-07-01

    Intrinsically disordered regions of proteins and conformational flexibility within complexes can be critical for biological function. However, disorder, flexibility, and heterogeneity often hinder structural analyses. CryoEM and single particle image processing techniques offer the possibility of imaging samples with significant flexibility. Division of particle images into more homogenous subsets after data acquisition can help compensate for heterogeneity within the sample. We present the utility of an eigenimage sorting analysis for examining two protein/DNA complexes with significant conformational flexibility and heterogeneity. These complexes are integral to the non-homologous end joining pathway, and are involved in the repair of double strand breaks of DNA. Both complexes include the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and biotinylated DNA with bound streptavidin, with one complex containing the Ku heterodimer. Initial 3D reconstructions of the two DNA-PKcs complexes resembled a cryoEM structure of uncomplexed DNA-PKcs without additional density clearly attributable to the remaining components. Application of eigenimage sorting allowed division of the DNA-PKcs complex datasets into more homogeneous subsets. This led to visualization of density near the base of the DNA-PKcs that can be attributed to DNA, streptavidin, and Ku. However, comparison of projections of the subset structures with 2D class averages indicated that a significant level of heterogeneity remained within each subset. In summary, image sorting methods allowed visualization of extra density near the base of DNA-PKcs, suggesting that DNA binds in the vicinity of the base of the molecule and potentially to a flexible region of DNA-PKcs. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. The Mini-Chromosome Maintenance (Mcm) Complexes Interact with DNA Polymerase α-Primase and Stimulate Its Ability to Synthesize RNA Primers

    PubMed Central

    You, Zhiying; De Falco, Mariarosaria; Kamada, Katsuhiko; Pisani, Francesca M.; Masai, Hisao

    2013-01-01

    The Mini-chromosome maintenance (Mcm) proteins are essential as central components for the DNA unwinding machinery during eukaryotic DNA replication. DNA primase activity is required at the DNA replication fork to synthesize short RNA primers for DNA chain elongation on the lagging strand. Although direct physical and functional interactions between helicase and primase have been known in many prokaryotic and viral systems, potential interactions between helicase and primase have not been explored in eukaryotes. Using purified Mcm and DNA primase complexes, a direct physical interaction is detected in pull-down assays between the Mcm2∼7 complex and the hetero-dimeric DNA primase composed of the p48 and p58 subunits. The Mcm4/6/7 complex co-sediments with the primase and the DNA polymerase α-primase complex in glycerol gradient centrifugation and forms a Mcm4/6/7-primase-DNA ternary complex in gel-shift assays. Both the Mcm4/6/7 and Mcm2∼7 complexes stimulate RNA primer synthesis by DNA primase in vitro. However, primase inhibits the Mcm4/6/7 helicase activity and this inhibition is abolished by the addition of competitor DNA. In contrast, the ATP hydrolysis activity of Mcm4/6/7 complex is not affected by primase. Mcm and primase proteins mutually stimulate their DNA-binding activities. Our findings indicate that a direct physical interaction between primase and Mcm proteins may facilitate priming reaction by the former protein, suggesting that efficient DNA synthesis through helicase-primase interactions may be conserved in eukaryotic chromosomes. PMID:23977294

  3. Turkish Preservice Science Teachers' Efficacy Beliefs Regarding Science Teaching and Their Beliefs about Classroom Management

    ERIC Educational Resources Information Center

    Gencer, Ayse Savran; Cakiroglu, Jale

    2007-01-01

    The purpose of this study was to explore Turkish preservice science teachers' science teaching efficacy and classroom management beliefs. Data in this study were collected from a total number of 584 preservice science teachers utilizing the Science Teaching Efficacy Belief Instrument and the attitudes and beliefs on classroom control (ABCC)…

  4. Linkage of an ABCC transporter to a single QTL that controls Ostrinia nubilalis larval resistance to the Bacillus thuringiensis Cry1Fa toxin

    USDA-ARS?s Scientific Manuscript database

    Field evolved resistance of insect populations to Bacillus thuringiensis (Bt) crystalline (Cry) toxins expressed by crop plants has resulted in reduced control of insect feeding damage to field crops, and threatens the sustainability of Bt transgenic technologies. A single quantitative trait locus ...

  5. FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5′-DNA end

    PubMed Central

    Sato, Koichi; Shimomuki, Mayo; Katsuki, Yoko; Takahashi, Daisuke; Kobayashi, Wataru; Ishiai, Masamichi; Miyoshi, Hiroyuki; Takata, Minoru; Kurumizaka, Hitoshi

    2016-01-01

    The FANCI-FANCD2 (I-D) complex is considered to work with RAD51 to protect the damaged DNA in the stalled replication fork. However, the means by which this DNA protection is accomplished have remained elusive. In the present study, we found that the I-D complex directly binds to RAD51, and stabilizes the RAD51-DNA filament. Unexpectedly, the DNA binding activity of FANCI, but not FANCD2, is explicitly required for the I-D complex-mediated RAD51-DNA filament stabilization. The RAD51 filament stabilized by the I-D complex actually protects the DNA end from nucleolytic degradation by an FA-associated nuclease, FAN1. This DNA end protection is not observed with the RAD51 mutant from FANCR patient cells. These results clearly answer the currently enigmatic question of how RAD51 functions with the I-D complex to prevent genomic instability at the stalled replication fork. PMID:27694619

  6. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors.

    PubMed

    Gasparre, Giuseppe; Porcelli, Anna Maria; Bonora, Elena; Pennisi, Lucia Fiammetta; Toller, Matteo; Iommarini, Luisa; Ghelli, Anna; Moretti, Massimo; Betts, Christine M; Martinelli, Giuseppe Nicola; Ceroni, Alberto Rinaldi; Curcio, Francesco; Carelli, Valerio; Rugolo, Michela; Tallini, Giovanni; Romeo, Giovanni

    2007-05-22

    Oncocytic tumors are a distinctive class of proliferative lesions composed of cells with a striking degree of mitochondrial hyperplasia that are particularly frequent in the thyroid gland. To understand whether specific mitochondrial DNA (mtDNA) mutations are associated with the accumulation of mitochondria, we sequenced the entire mtDNA in 50 oncocytic lesions (45 thyroid tumors of epithelial cell derivation and 5 mitochondrion-rich breast tumors) and 52 control cases (21 nononcocytic thyroid tumors, 15 breast carcinomas, and 16 gliomas) by using recently developed technology that allows specific and reliable amplification of the whole mtDNA with quick mutation scanning. Thirteen oncocytic lesions (26%) presented disruptive mutations (nonsense or frameshift), whereas only two samples (3.8%) presented such mutations in the nononcocytic control group. In one case with multiple thyroid nodules analyzed separately, a disruptive mutation was found in the only nodule with oncocytic features. In one of the five mitochondrion-rich breast tumors, a disruptive mutation was identified. All disruptive mutations were found in complex I subunit genes, and the association between these mutations and the oncocytic phenotype was statistically significant (P=0.001). To study the pathogenicity of these mitochondrial mutations, primary cultures from oncocytic tumors and corresponding normal tissues were established. Electron microscopy and biochemical and molecular analyses showed that primary cultures derived from tumors bearing disruptive mutations failed to maintain the mutations and the oncocytic phenotype. We conclude that disruptive mutations in complex I subunits are markers of thyroid oncocytic tumors.

  7. Meiosis-Specific Cohesin Component, Stag3 Is Essential for Maintaining Centromere Chromatid Cohesion, and Required for DNA Repair and Synapsis between Homologous Chromosomes

    PubMed Central

    Hopkins, Jessica; Bedigian, Rick; Oka, Kazuhiro; Overbeek, Paul; Murray, Steve; Jordan, Philip W.

    2014-01-01

    Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3) proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG) protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β), two α-kleisins (RAD21L and REC8) and one STAG protein (STAG3) that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC). From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8) is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis-specific cohesin complexes. Furthermore, our data suggests that STAG3 is required for structural changes of chromosomes that mediate chromosome pairing and synapsis, DNA repair and progression of meiosis. PMID:24992337

  8. Meiosis-specific cohesin component, Stag3 is essential for maintaining centromere chromatid cohesion, and required for DNA repair and synapsis between homologous chromosomes.

    PubMed

    Hopkins, Jessica; Hwang, Grace; Jacob, Justin; Sapp, Nicklas; Bedigian, Rick; Oka, Kazuhiro; Overbeek, Paul; Murray, Steve; Jordan, Philip W

    2014-07-01

    Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3) proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG) protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β), two α-kleisins (RAD21L and REC8) and one STAG protein (STAG3) that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC). From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8) is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis-specific cohesin complexes. Furthermore, our data suggests that STAG3 is required for structural changes of chromosomes that mediate chromosome pairing and synapsis, DNA repair and progression of meiosis.

  9. Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex

    PubMed Central

    Witosch, Justine; Wolf, Eva; Mizuno, Naoko

    2014-01-01

    The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. PMID:25348395

  10. Incorporation of Deoxyribonucleic Acid Precursors by T4 Deoxyribonucleic Acid-Protein Complexes Retained on Glass Fiber Filters

    PubMed Central

    Miller, Robert C.; Kozinski, Andrzej W.

    1970-01-01

    Bacteriophage T4 deoxyribonucleic acid (DNA)-protein complexes were retained preferentially on glass fiber filters. DNA polymerase activity in the complex was detected through the incorporation of 3H-labeled DNA precursors. The primer-product DNA hybridized with both phage and Escherichia coli DNA. Density labeling experiments showed that about 30% of incorporated 3H-deoxyadenosine triphosphate was found in DNA which hybridized with phage DNA; this DNA was found to be covalently attached to the primer DNA. PMID:5497903

  11. Adsorption of Nucleic Acid/Protein Supramolecular Complexes on Goethite: The Influence of Solution Interactions on Behavior at the Solution-Mineral Interface

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Martinez, C. E.

    2017-12-01

    Adsorption of biomolecule rich supramolecular complexes onto mineral surfaces plays an important role in the development of organo-mineral associations in soils. In this study, a series of supramolecular complexes of a model nucleic acid (deoxyribonucleic acid (DNA)) and protein (bovine serum albumin (BSA)) are synthesized, characterized and exposed to goethite to probe their adsorption behavior. To synthesize DNA/BSA complexes, a fixed DNA concentration (0.1 mg/mL) was mixed with a range of BSA concentrations (0.025-0.5 mg/mL) in 5 mM KCl at pH=5.0. Circular dichroism spectroscopy demonstrates strong, cooperative, Hill-type binding between DNA and BSA (Ka= 4.74 x 105 M-1) with DNA saturation achieved when BSA concentration reaches 0.4 mg/mL. Dynamic light scattering measurements of DNA/BSA complexes suggest binding accompanies disruption of DNA-DNA intermolecular electrostatic repulsion, resulting in a decrease of the DNA slow relaxation mode with increasing amount of BSA. Zeta potential measurements show increasing amounts of BSA lead to a reduction of negative charge on DNA/BSA complexes, in line with light scattering results. In situ attenuated total reflectance Fourier transform infrared spectroscopic studies of adsorption of DNA/BSA complexes onto goethite show that complexation of BSA with DNA appears to hinder direct coordination of DNA backbone phosphodiester groups with goethite, relative to DNA by itself. Furthermore, increasing amount of BSA (up to 0.4 mg/mL) in DNA/BSA complexes enhances DNA adsorption, possibly as a result of reduced repulsion between adsorbed DNA helices. When BSA concentration exceeds 0.4 mg/mL, a decrease in adsorbed DNA is observed. We hypothesize that this discrepancy in behavior between systems with BSA concentrations below and above saturation of DNA is caused by initial fast adsorption of loosely associated BSA on goethite, restricting access to goethite surface sites. Overall, these results highlight the impact of solution interaction between biomolecules on subsequent behavior at mineral surfaces. This work represents a bridge between model experiments with individual biomolecules and more complex natural systems, yielding a fundamental viewpoint of the formation of organo-mineral associations in soils.

  12. Biosynthesis of edeine: II. Localization of edeine synthetase within Bacillus brevis Vm4.

    PubMed

    Kurylo-Borowska, Z

    1975-07-14

    Edeine-synthesizing polyenzymes, associated with a complex of sytoplasmic membrane and DNA, were obtained from gently lysed cells of Bacillus brevis Vm4. The polyenzymes-membrane-DNA complex, isolated from dells intensively synthesizing edeines (18--20 h culture) contained edeine B. Edeine B was found to be bound covalently t o the edeine synthetase. The amount of edeine bound to polyenzymes was 0.1--0.3 mumol/mg protein, depending on the age of cells. Detachment of deeine synthetase with a covalently bound edeine B from the membrane-DNA complex was accomplished by a treatment with (NH4)2-SO4 at 45--55% saturation or by DEAE-cellulose column fractionation. In contrast to other components of the complex, the edeine-polyenzymes fragment was not adsorbed to the DEAE-cellulose. Sephadex G-200 column chromatography separated the edeine-polyenzymes complex into 3 fractions. Edeine-polyenzymes complex, obtained from lysozyme-Brij-58-DNAase treated cells, contained edeine B bound to two protein fractions of mol. wt 210 000 and 160 000. Edeine-polyenzymes complex detached from the complex with the membrane and DNA contained edeine B, bound only to protein fraction of mol. wt 210 000. Edeine A was not found in the edeine-polyenzymes complex. No accumulation of free antibiotics within 16--22 h old cells of B. brevis Vm4 was detected. The edeine-polyenzymes complex associated with the DNA-membrane complex has shown no antimicrobial activity. By treating of above with alkali, edeine B of specific activity: 80 units/mjmol was released. The complex of DNA-membrane associated with edeine-polyenzymes complex was able to synthesize DNA, under the conditions described for synthesis, directed by a DNA-membrane complex. Edeine when associated with this complex did not effect the DNA-synthesizing activity.

  13. Structure, stability, and thermodynamics of lamellar DNA-lipid complexes.

    PubMed Central

    Harries, D; May, S; Gelbart, W M; Ben-Shaul, A

    1998-01-01

    We develop a statistical thermodynamic model for the phase evolution of DNA-cationic lipid complexes in aqueous solution, as a function of the ratios of charged to neutral lipid and charged lipid to DNA. The complexes consist of parallel strands of DNA intercalated in the water layers of lamellar stacks of mixed lipid bilayers, as determined by recent synchrotron x-ray measurements. Elastic deformations of the DNA and the lipid bilayers are neglected, but DNA-induced spatial inhomogeneities in the bilayer charge densities are included. The relevant nonlinear Poisson-Boltzmann equation is solved numerically, including self-consistent treatment of the boundary conditions at the polarized membrane surfaces. For a wide range of lipid compositions, the phase evolution is characterized by three regions of lipid to DNA charge ratio, rho: 1) for low rho, the complexes coexist with excess DNA, and the DNA-DNA spacing in the complex, d, is constant; 2) for intermediate rho, including the isoelectric point rho = 1, all of the lipid and DNA in solution is incorporated into the complex, whose inter-DNA distance d increases linearly with rho; and 3) for high rho, the complexes coexist with excess liposomes (whose lipid composition is different from that in the complex), and their spacing d is nearly, but not completely, independent of rho. These results can be understood in terms of a simple charging model that reflects the competition between counterion entropy and inter-DNA (rho < 1) and interbilayer (rho > 1) repulsions. Finally, our approach and conclusions are compared with theoretical work by others, and with relevant experiments. PMID:9649376

  14. PriC-mediated DNA replication restart requires PriC complex formation with the single-stranded DNA-binding protein.

    PubMed

    Wessel, Sarah R; Marceau, Aimee H; Massoni, Shawn C; Zhou, Ruobo; Ha, Taekjip; Sandler, Steven J; Keck, James L

    2013-06-14

    Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.

  15. Stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1.

    PubMed

    Schneider, G J; Geiduschek, E P

    1990-06-25

    The stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1 has been determined. 3H-Labeled TF1 was allowed to bind to a 32P-labeled DNA fragment containing a TF1 binding site. Multiple TF1-DNA complexes were resolved from each other and from unbound DNA by native gel electrophoresis. DNA-protein complexes were cut from polyacrylamide gels, and the amounts of 3H and 32P contained in each slice were measured. A ratio of 1.12 +/- 0.06 TF1 dimer/DNA molecule was calculated for the fastest-migrating TF1-DNA complex. We conclude that TF1 has a DNA-binding unit of one dimer. More slowly migrating complexes are apparently formed by serial addition of single TF1 dimers.

  16. StructAlign, a Program for Alignment of Structures of DNA-Protein Complexes.

    PubMed

    Popov, Ya V; Galitsyna, A A; Alexeevski, A V; Karyagina, A S; Spirin, S A

    2015-11-01

    Comparative analysis of structures of complexes of homologous proteins with DNA is important in the analysis of DNA-protein recognition. Alignment is a necessary stage of the analysis. An alignment is a matching of amino acid residues and nucleotides of one complex to residues and nucleotides of the other. Currently, there are no programs available for aligning structures of DNA-protein complexes. We present the program StructAlign, which should fill this gap. The program inputs a pair of complexes of DNA double helix with proteins and outputs an alignment of DNA chains corresponding to the best spatial fit of the protein chains.

  17. DNA sequence alignment by microhomology sampling during homologous recombination

    PubMed Central

    Qi, Zhi; Redding, Sy; Lee, Ja Yil; Gibb, Bryan; Kwon, YoungHo; Niu, Hengyao; Gaines, William A.; Sung, Patrick

    2015-01-01

    Summary Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair ssDNA with a homologous dsDNA template. Here we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real-time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a 9th nucleotide coincides with an additional reduction in binding free energy and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination. PMID:25684365

  18. Relationship between DNA damage response, initiated by camptothecin or oxidative stress, and DNA replication, analyzed by quantitative 3D image analysis.

    PubMed

    Berniak, K; Rybak, P; Bernas, T; Zarębski, M; Biela, E; Zhao, H; Darzynkiewicz, Z; Dobrucki, J W

    2013-10-01

    A method of quantitative analysis of spatial (3D) relationship between discrete nuclear events detected by confocal microscopy is described and applied in analysis of a dependence between sites of DNA damage signaling (γH2AX foci) and DNA replication (EdU incorporation) in cells subjected to treatments with camptothecin (Cpt) or hydrogen peroxide (H2O2). Cpt induces γH2AX foci, likely reporting formation of DNA double-strand breaks (DSBs), almost exclusively at sites of DNA replication. This finding is consistent with the known mechanism of induction of DSBs by DNA topoisomerase I (topo1) inhibitors at the sites of collisions of the moving replication forks with topo1-DNA "cleavable complexes" stabilized by Cpt. Whereas an increased level of H2AX histone phosphorylation is seen in S-phase of cells subjected to H2O2, only a minor proportion of γH2AX foci coincide with DNA replication sites. Thus, the increased level of H2AX phosphorylation induced by H2O2 is not a direct consequence of formation of DNA lesions at the sites of moving DNA replication forks. These data suggest that oxidative stress induced by H2O2 and formation of the primary H2O2-induced lesions (8-oxo-7,8-dihydroguanosine) inhibits replication globally and triggers formation of γH2AX at various distances from replication forks. Quantitative analysis of a frequency of DNA replication sites and γH2AX foci suggests also that stalling of replicating forks by Cpt leads to activation of new DNA replication origins. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  19. CD44+ Cancer Stem-Like Cells in EBV-Associated Nasopharyngeal Carcinoma

    PubMed Central

    Lun, Samantha Wei-Man; Cheung, Siu Tim; Cheung, Phyllis Fung Yi; To, Ka-Fai; Woo, John Kong-Sang; Choy, Kwong-Wai; Chow, Chit; Cheung, Chartia Ching-Mei; Chung, Grace Tin-Yun; Cheng, Alice Suk-Hang; Ko, Chun-Wai; Tsao, Sai-Wah; Busson, Pierre; Ng, Margaret Heung-Ling; Lo, Kwok-Wai

    2012-01-01

    Nasopharyngeal carcinoma (NPC) is a unique EBV-associated epithelial malignancy, showing highly invasive and metastatic phenotype. Despite increasing evidence demonstrating the critical role of cancer stem-like cells (CSCs) in the maintenance and progression of tumors in a variety of malignancies, the existence and properties of CSC in EBV-associated NPC are largely unknown. Our study aims to elucidate the presence and role of CSCs in the pathogenesis of this malignant disease. Sphere-forming cells were isolated from an EBV-positive NPC cell line C666-1 and its tumor-initiating properties were confirmed by in vitro and in vivo assays. In these spheroids, up-regulation of multiple stem cell markers were found. By flow cytometry, we demonstrated that both CD44 and SOX2 were overexpressed in a majority of sphere-forming C666-1 cells. The CD44+SOX2+ cells was detected in a minor population in EBV-positive xenografts and primary tumors and considered as potential CSC in NPC. Notably, the isolated CD44+ NPC cells were resistant to chemotherapeutic agents and with higher spheroid formation efficiency, showing CSC properties. On the other hand, microarray analysis has revealed a number of differentially expressed genes involved in transcription regulation (e.g. FOXN4, GLI1), immune response (CCR7, IL8) and transmembrane transport (e.g. ABCC3, ABCC11) in the spheroids. Among these genes, increased expression of CCR7 in CD44+ CSCs was confirmed in NPC xenografts and primary tumors. Importantly, blocking of CCR7 abolished the sphere-forming ability of C666-1 in vitro. Expression of CCR7 was associated with recurrent disease and distant metastasis. The current study defined the specific properties of a CSC subpopulation in EBV-associated NPC. Our findings provided new insights into developing effective therapies targeting on CSCs, thereby potentiating treatment efficacy for NPC patients. PMID:23285037

  20. Identification and Characterization of FAM124B as a Novel Component of a CHD7 and CHD8 Containing Complex

    PubMed Central

    Batsukh, Tserendulam; Schulz, Yvonne; Wolf, Stephan; Rabe, Tamara I.; Oellerich, Thomas; Urlaub, Henning; Schaefer, Inga-Marie; Pauli, Silke

    2012-01-01

    Background Mutations in the chromodomain helicase DNA binding protein 7 gene (CHD7) lead to CHARGE syndrome, an autosomal dominant multiple malformation disorder. Proteins involved in chromatin remodeling typically act in multiprotein complexes. We previously demonstrated that a part of human CHD7 interacts with a part of human CHD8, another chromodomain helicase DNA binding protein presumably being involved in the pathogenesis of neurodevelopmental (NDD) and autism spectrum disorders (ASD). Because identification of novel CHD7 and CHD8 interacting partners will provide further insights into the pathogenesis of CHARGE syndrome and ASD/NDD, we searched for additional associated polypeptides using the method of stable isotope labeling by amino acids in cell culture (SILAC) in combination with mass spectrometry. Principle findings The hitherto uncharacterized FAM124B (Family with sequence similarity 124B) was identified as a potential interaction partner of both CHD7 and CHD8. We confirmed the result by co-immunoprecipitation studies and showed a direct binding to the CHD8 part by direct yeast two hybrid experiments. Furthermore, we characterized FAM124B as a mainly nuclear localized protein with a widespread expression in embryonic and adult mouse tissues. Conclusion Our results demonstrate that FAM124B is a potential interacting partner of a CHD7 and CHD8 containing complex. From the overlapping expression pattern between Chd7 and Fam124B at murine embryonic day E12.5 and the high expression of Fam124B in the developing mouse brain, we conclude that Fam124B is a novel protein possibly involved in the pathogenesis of CHARGE syndrome and neurodevelopmental disorders. PMID:23285124

  1. Regulation of DNA methylation on EEF1D and RPL8 expression in cattle.

    PubMed

    Liu, Xuan; Yang, Jie; Zhang, Qin; Jiang, Li

    2017-10-01

    Dynamic changes to the epigenome play a critical role in a variety of biology processes and complex traits. Many important candidate genes have been identified through our previous genome wide association study (GWAS) on milk production traits in dairy cattle. However, the underlying mechanism of candidate genes have not yet been clearly understood. In this study, we analyzed the methylation variation of the candidate genes, EEF1D and RPL8, which were identified to be strongly associated with milk production traits in dairy cattle in our previous studies, and its effect on protein and mRNA expression. We compared DNA methylation profiles and gene expression levels of EEF1D and RPL8 in five different tissues (heart, liver, mammary gland, ovary and muscle) of three cows. Both genes showed the highest expression level in mammary gland. For RPL8, there was no difference in the DNA methylation pattern in the five tissues, suggesting no effect of DNA methylation on gene expression. For EEF1D, the DNA methylation levels of its first CpG island differed in the five tissues and were negatively correlated with the gene expression levels. To further investigate the function of DNA methylation on the expression of EEF1D, we collected blood samples of three cows at early stage of lactation and in dry period and analyzed its expression and the methylation status of the first CpG island in blood. As a result, the mRNA expression of EEF1D in the dry period was higher than that at the early stage of lactation, while the DNA methylation level in the dry period was lower than that at the early stage of lactation. Our result suggests that the DNA methylation of EEF1D plays an important role in the spatial and temporal regulation of its expression and possibly have an effect on the milk production traits.

  2. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  3. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE PAGES

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; ...

    2016-03-09

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  4. Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome

    NASA Astrophysics Data System (ADS)

    Walter, Jean-Charles; Walliser, Nils-Ole; David, Gabriel; Dorignac, Jérôme; Geniet, Frédéric; Palmeri, John; Parmeggiani, Andrea; Wingreen, Ned S.; Broedersz, Chase P.

    2018-03-01

    The bacterial genome is organized by a variety of associated proteins inside a structure called the nucleoid. These proteins can form complexes on DNA that play a central role in various biological processes, including chromosome segregation. A prominent example is the large ParB-DNA complex, which forms an essential component of the segregation machinery in many bacteria. ChIP-Seq experiments show that ParB proteins localize around centromere-like parS sites on the DNA to which ParB binds specifically, and spreads from there over large sections of the chromosome. Recent theoretical and experimental studies suggest that DNA-bound ParB proteins can interact with each other to condense into a coherent 3D complex on the DNA. However, the structural organization of this protein-DNA complex remains unclear, and a predictive quantitative theory for the distribution of ParB proteins on DNA is lacking. Here, we propose the looping and clustering model, which employs a statistical physics approach to describe protein-DNA complexes. The looping and clustering model accounts for the extrusion of DNA loops from a cluster of interacting DNA-bound proteins that is organized around a single high-affinity binding site. Conceptually, the structure of the protein-DNA complex is determined by a competition between attractive protein interactions and loop closure entropy of this protein-DNA cluster on the one hand, and the positional entropy for placing loops within the cluster on the other. Indeed, we show that the protein interaction strength determines the ‘tightness’ of the loopy protein-DNA complex. Thus, our model provides a theoretical framework for quantitatively computing the binding profiles of ParB-like proteins around a cognate (parS) binding site.

  5. Mechanism of T7 RNAP pausing and termination at the T7 concatemer junction: a local change in transcription bubble structure drives a large change in transcription complex architecture.

    PubMed

    Nayak, Dhananjaya; Siller, Sylvester; Guo, Qing; Sousa, Rui

    2008-02-15

    The T7RNA polymerase (RNAP) elongation complex (EC) pauses and is destabilized at a unique 8 nucleotide (nt) sequence found at the junction of the head-to-tail concatemers of T7 genomic DNA generated during T7 DNA replication. The paused EC may recruit the T7 DNA processing machinery, which cleaves the concatemerized DNA within this 8 nt concatemer junction (CJ). Pausing of the EC at the CJ involves structural changes in both the RNAP and transcription bubble. However, these structural changes have not been fully defined, nor is it understood how the CJ sequence itself causes the EC to change its structure, to pause, and to become less stable. Here we use solution and RNAP-tethered chemical nucleases to probe the CJ transcript and changes in the EC structure as the polymerase pauses and terminates at the CJ. Together with extensive mutational scanning of regions of the polymerase that are likely to be involved in recognition of the CJ, we are able to develop a description of the events that occur as the EC transcribes through the CJ and subsequently pauses. In this process, a local change in the structure of the transcription bubble drives a large change in the architecture of the EC. This altered EC structure may then serve as the signal that recruits the processing machinery to the CJ.

  6. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice

    PubMed Central

    Chen, Yanshan; Han, Yong-He; Cao, Yue; Zhu, Yong-Guan; Rathinasabapathi, Bala; Ma, Lena Q.

    2017-01-01

    Rice (Oryza sativa L.) feeds ∼3 billion people. Due to the wide occurrence of arsenic (As) pollution in paddy soils and its efficient plant uptake, As in rice grains presents health risks. Genetic manipulation may offer an effective approach to reduce As accumulation in rice grains. The genetics of As uptake and metabolism have been elucidated and target genes have been identified for genetic engineering to reduce As accumulation in grains. Key processes controlling As in grains include As uptake, arsenite (AsIII) efflux, arsenate (AsV) reduction and AsIII sequestration, and As methylation and volatilization. Recent advances, including characterization of AsV uptake transporter OsPT8, AsV reductase OsHAC1;1 and OsHAC1;2, rice glutaredoxins, and rice ABC transporter OsABCC1, make many possibilities to develop low-arsenic rice. PMID:28298917

  7. Intraspecific differentiation of Paramecium novaurelia strains (Ciliophora, Protozoa) inferred from phylogenetic analysis of ribosomal and mitochondrial DNA variation.

    PubMed

    Tarcz, Sebastian

    2013-01-01

    Paramecium novaurelia Beale and Schneller, 1954, was first found in Scotland and is known to occur mainly in Europe, where it is the most common species of the P. aurelia complex. In recent years, two non-European localities have been described: Turkey and the United States of America. This article presents the analysis of intraspecific variability among 25 strains of P. novaurelia with the application of ribosomal and mitochondrial loci (ITS1-5.8S-ITS2, 5' large subunit rDNA (5'LSU rDNA) and cytochrome c oxidase subunit 1 (COI) mtDNA). The mean distance observed for all of the studied P. novaurelia sequence pairs was p=0.008/0.016/0.092 (ITS1-5.8S-ITS2/5'LSU rDNA/COI). Phylogenetic trees (NJ/MP/BI) based on a comparison of all of the analysed sequences show that the studied strains of P. novaurelia form a distinct clade, separate from the P. caudatum outgroup, and are divided into two clusters (A and B) and two branches (C and D). The occurrence of substantial genetic differentiation within P. novaurelia, confirmed by the analysed DNA fragments, indicates a rapid evolution of particular species within the Paramecium genus. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. M-DNA is stabilised in G•C tracts or by incorporation of 5-fluorouracil

    PubMed Central

    Wood, David O.; Dinsmore, Michael J.; Bare, Grant A.; Lee, Jeremy S.

    2002-01-01

    M-DNA is a complex between the divalent metal ions Zn2+, Ni2+ and Co2+ and duplex DNA which forms at a pH of ∼8.5. The stability and formation of M-DNA was monitored with an ethidium fluorescence assay in order to assess the relationship between pH, metal ion concentration, DNA concentration and the base composition. The dismutation of calf thymus DNA exhibits hysteresis with the formation of M-DNA occurring at a higher pH than the reconversion of M-DNA back to B-DNA. Hysteresis is most prominent with the Ni form of M-DNA where complete reconversion to B-DNA takes several hours even in the presence of EDTA. Increasing the DNA concentration leads to an increase in the metal ion concentration required for M-DNA formation. Both poly(dG)•poly(dC) and poly(dA)•poly(dT) formed M-DNA more readily than the corresponding mixed sequence DNAs. For poly(dG)•(poly(dC) M-DNA formation was observed at pH 7.4 with 0.5 mM ZnCl2. Modified bases were incorporated into a 500 bp fragment of phage λ DNA by polymerase chain reaction. DNAs in which guanine was replaced with hypoxanthine or thymine with 5-fluorouracil formed M-DNA at pHs below 8 whereas substitutions such as 2-aminoadenine and 5-methylcytosine had little effect. Poly[d(A5FU)] also formed a very stable M-DNA duplex as judged from Tm measurements. It is evident that the lower the pKa of the imino proton of the base, the lower the pH at which M-DNA will form; a finding that is consistent with the replacement of the imino proton with the metal ion. PMID:12000844

  9. An asymmetric structure of the Bacillus subtilis replication terminator protein in complex with DNA.

    PubMed

    Vivian, J P; Porter, C J; Wilce, J A; Wilce, M C J

    2007-07-13

    In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.

  10. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.

    PubMed

    Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke

    2013-10-21

    Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.

  11. Quantitative Proteomics Reveals Dynamic Interactions of the Minichromosome Maintenance Complex (MCM) in the Cellular Response to Etoposide Induced DNA Damage.

    PubMed

    Drissi, Romain; Dubois, Marie-Line; Douziech, Mélanie; Boisvert, François-Michel

    2015-07-01

    The minichromosome maintenance complex (MCM) proteins are required for processive DNA replication and are a target of S-phase checkpoints. The eukaryotic MCM complex consists of six proteins (MCM2-7) that form a heterohexameric ring with DNA helicase activity, which is loaded on chromatin to form the pre-replication complex. Upon entry in S phase, the helicase is activated and opens the DNA duplex to recruit DNA polymerases at the replication fork. The MCM complex thus plays a crucial role during DNA replication, but recent work suggests that MCM proteins could also be involved in DNA repair. Here, we employed a combination of stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics with immunoprecipitation of green fluorescent protein-tagged fusion proteins to identify proteins interacting with the MCM complex, and quantify changes in interactions in response to DNA damage. Interestingly, the MCM complex showed very dynamic changes in interaction with proteins such as Importin7, the histone chaperone ASF1, and the Chromodomain helicase DNA binding protein 3 (CHD3) following DNA damage. These changes in interactions were accompanied by an increase in phosphorylation and ubiquitination on specific sites on the MCM proteins and an increase in the co-localization of the MCM complex with γ-H2AX, confirming the recruitment of these proteins to sites of DNA damage. In summary, our data indicate that the MCM proteins is involved in chromatin remodeling in response to DNA damage. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Synthesis, characterization and DNA-binding studies of mono and heterobimetallic complexes Cu sbnd Sn 2/Zn sbnd Sn 2 and their DNA cleavage activity

    NASA Astrophysics Data System (ADS)

    Arjmand, Farukh; Sayeed, Fatima

    2010-02-01

    Heterobimetallic complexes C 6H 24N 4O 6CuSn 2Cl 63, C 6H 24N 4O 6ZnSn 2Cl 64 have been synthesized from their monometallic analogs C 6H 16N 4O 2CuCl 21, C 6H 16N 4O 2ZnCl 22, and were characterized by various spectroscopic and analytical methods. The complexes 1-4 reveal an octahedral geometry for both central metal ions Cu/Zn as well as for Sn metal ion. The interaction of complexes 1-4 with CT-DNA, were investigated by using absorption, emission, cyclic voltammetry, viscometry and DNA cleavage studies. The emission quenching of 3 and 4 by [Fe(CN) 6] 4- depressed greatly when bound to CT-DNA. The results of spectroscopic, viscometric and cyclic voltammetry of complexes 3 and 4 revealed electrostatic mode of binding of the complexes with CT-DNA. These results revealed that 4 bind more avidly in comparison to 3 with CT-DNA. Gel electrophoresis of DNA with complexes 3 and 4 demonstrated that the complexes exhibit excellent cleavage activity under physiological conditions.

  13. [DNA complexes, formed on aqueous phase surfaces: new planar polymeric and composite nanostructures].

    PubMed

    Antipina, M N; Gaĭnutdinov, R V; Rakhnianskaia, A A; Sergeev-Cherenkov, A N; Tolstikhina, A L; Iurova, T V; Kislov, V V; Khomutov, G B

    2003-01-01

    The formation of DNA complexes with Langmuir monolayers of the cationic lipid octadecylamine (ODA) and the new amphiphilic polycation poly-4-vinylpyridine with 16% of cetylpyridinium groups (PVP-16) on the surface of an aqueous solution of native DNA of low ionic strength was studied. Topographic images of Langmuir-Blodgett films of DNA/ODA and DNA/PVP-16 complexes applied to micaceous substrates were investigated by the method of atomic force microscopy. It was found that films of the amphiphilic polycation have an ordered planar polycrystalline structure. The morphology of planar DNA complexes with the amphiphilic cation substantially depended on the incubation time and the phase state of the monolayer on the surface of the aqueous DNA solution. Complex structures and individual DNA molecules were observed on the surface of the amphiphilic monolayer. Along with quasi-linear individual bound DNA molecules, characteristic extended net-like structures and quasi-circular toroidal condensed conformations of planar DNA complexes were detected. Mono- and multilayer films of DNA/PVP-16 complexes were used as templates and nanoreactors for the synthesis of inorganic nanostructures via the binding of metal cations from the solution and subsequent generation of the inorganic phase. As a result, ultrathin polymeric composite films with integrated DNA building blocks and quasi-linear arrays of inorganic semiconductor (CdS) and iron oxide nanoparticles and nanowires were obtained. The nanostructures obtained were characterized by scanning probe microscopy and transmission electron microscopy techniques. The methods developed are promising for investigating the mechanisms of structural organization and transformation in DNA and polyelectrolyte complexes at the gas-liquid interface and for the design of new extremely thin highly ordered planar polymeric and composite materials, films, and coatings with controlled ultrastructure for applications in nanoelectronics and nanobiotechnology.

  14. Modeling Non-homologous End Joining

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng

    2013-01-01

    Non-homologous end joining (NHEJ) is the dominant DNA double strand break (DSB) repair pathway and involves several NHEJ proteins such as Ku, DNA-PKcs, XRCC4, Ligase IV and so on. Once DSBs are generated, Ku is first recruited to the DNA end, followed by other NHEJ proteins for DNA end processing and ligation. Because of the direct ligation of break ends without the need for a homologous template, NHEJ turns out to be an error-prone but efficient repair pathway. Some mechanisms have been proposed of how the efficiency of NHEJ repair is affected. The type of DNA damage is an important factor of NHEJ repair. For instance, the length of DNA fragment may determine the recruitment efficiency of NHEJ protein such as Ku [1], or the complexity of the DNA breaks [2] is accounted for the choice of NHEJ proteins and subpathway of NHEJ repair. On the other hand, the chromatin structure also plays a role of the accessibility of NHEJ protein to the DNA damage site. In this talk, some mathematical models of NHEJ, that consist of series of biochemical reactions complying with the laws of chemical reaction (e.g. mass action, etc.), will be introduced. By mathematical and numerical analysis and parameter estimation, the models are able to capture the qualitative biological features and show good agreement with experimental data. As conclusions, from the viewpoint of modeling, how the NHEJ proteins are recruited will be first discussed for connection between the classical sequential model [4] and recently proposed two-phase model [5]. Then how the NHEJ repair pathway is affected, by the length of DNA fragment [6], the complexity of DNA damage [7] and the chromatin structure [8], will be addressed

  15. Nickel-quinolones interaction. Part 4. Structure and biological evaluation of nickel(II)-enrofloxacin complexes compared to zinc(II) analogues.

    PubMed

    Skyrianou, Kalliopi C; Psycharis, Vassilis; Raptopoulou, Catherine P; Kessissoglou, Dimitris P; Psomas, George

    2011-01-01

    The nickel(II) complexes with the second-generation quinolone antibacterial agent enrofloxacin in the presence or absence of the nitrogen-donor heterocyclic ligands 1,10-phenanthroline, 2,2'-bipyridine or pyridine have been synthesized and characterized. Enrofloxacin acts as bidentate ligand coordinated to Ni(II) ion through the ketone oxygen and a carboxylato oxygen. The crystal structure of (1,10-phenanthroline)bis(enrofloxacinato)nickel(II) has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA and bis(pyridine)bis(enrofloxacinato)nickel(II) exhibits the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the complexes have been evaluated in comparison to the corresponding Zn(II) enrofloxacinato complexes as well as Ni(II) complexes with the first-generation quinolone oxolinic acid. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Elevated Levels of Urinary Markers of Oxidative DNA and RNA Damage in Type 2 Diabetes with Complications.

    PubMed

    Liu, Xinle; Gan, Wei; Zou, Yuangao; Yang, Bin; Su, Zhenzhen; Deng, Jin; Wang, Lanlan; Cai, Jianping

    2016-01-01

    The mechanisms underlying progression of type 2 diabetes are complex and varied. Recent studies indicated that oxidative stress provided a new sight. To further assess the relationship between nucleic acid oxidation and complications in patients with type 2 diabetes and explore its possible molecular mechanisms, we studied 1316 subjects, including 633 type 2 diabetes patients and 683 age- and sex-matched healthy controls. Urinary levels of DNA oxidation marker 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and RNA oxidation marker 8-oxo-7,8-dihydroguanosine (8-oxoGuo) were measured by ultraperformance liquid chromatography and mass spectrometry (UPLC-MS/MS). Serum glucose, HbA1c, total cholesterol, HDL cholesterol, LDL cholesterol, and triglycerides (TG) were also determined. The results showed significantly elevated levels of both the urinary 8-oxodGuo and 8-oxoGuo in diabetes patients with/without complications compared with age-matched healthy control subjects (p = 0.02 and p < 0.001, resp.). Patients with complications, especially macrovascular complications, exhibited higher levels of 8-oxoGuo than those without complications, while there was no difference in the concentrations of serum glucose and lipids. The finding indicates the role for oxidative damage to DNA and RNA, as a molecular mechanism contributing to the progression of type 2 diabetes. Elevated levels of 8-oxoGuo may be a risk factor for type 2 diabetes complications, especially in diabetic macrovascular complications.

  17. PolySUMOylation by Siz2 and Mms21 triggers relocation of DNA breaks to nuclear pores through the Slx5/Slx8 STUbL

    PubMed Central

    Horigome, Chihiro; Bustard, Denise E.; Marcomini, Isabella; Delgoshaie, Neda; Tsai-Pflugfelder, Monika; Cobb, Jennifer A.; Gasser, Susan M.

    2016-01-01

    High-resolution imaging shows that persistent DNA damage in budding yeast localizes in distinct perinuclear foci for repair. The signals that trigger DNA double-strand break (DSB) relocation or determine their destination are unknown. We show here that DSB relocation to the nuclear envelope depends on SUMOylation mediated by the E3 ligases Siz2 and Mms21. In G1, a polySUMOylation signal deposited coordinately by Mms21 and Siz2 recruits the SUMO targeted ubiquitin ligase Slx5/Slx8 to persistent breaks. Both Slx5 and Slx8 are necessary for damage relocation to nuclear pores. When targeted to an undamaged locus, however, Slx5 alone can mediate relocation in G1-phase cells, bypassing the requirement for polySUMOylation. In contrast, in S-phase cells, monoSUMOylation mediated by the Rtt107-stabilized SMC5/6–Mms21 E3 complex drives DSBs to the SUN domain protein Mps3 in a manner independent of Slx5. Slx5/Slx8 and binding to pores favor repair by ectopic break-induced replication and imprecise end-joining. PMID:27056668

  18. [Molecular dynamics of immune complex of photoadduct-containing DNA with Fab-Anti-DNA antibody fragment].

    PubMed

    Akberova, N I; Zhmurov, A A; Nevzorova, T A; Litvinov, R I

    2016-01-01

    Antibodies to DNA play an important role in the pathogenesis of autoimmune diseases. The elucidation of structural mechanisms of both the antigen recognition and the interaction of anti-DNA antibodies with DNA will help to understand the role of DNA-containing immune complexes in various pathologies and can provide a basis for new treatment modalities. Moreover, the DNA-antibody complex is an analog of specific intracellular DNA-protein interactions. In this work, we used in silico molecular dynamic simulations of bimolecular complexes of the dsDNA segment containing the Fab fragment of an anti-DNA antibody to obtain the detailed thermodynamic and structural characteristics of dynamic intermolecular interactions. Using computationally modified crystal structure of the Fab-DNA complex (PDB ID: 3VW3), we studied the equilibrium molecular dynamics of the 64M-5 antibody Fab fragment associated with the dsDNA fragment containing the thymine dimer, the product of DNA photodamage. Amino acid residues that constitute paratopes and the complementary nucleotide epitopes for the Fab-DNA construct were identified. Stacking and electrostatic interactions were found to play the main role in mediating the most specific antibody-dsDNA contacts, while hydrogen bonds were less significant. These findings may shed light on the formation and properties of pathogenic anti-DNA antibodies in autoimmune diseases, such as systemic lupus erythematosus associated with skin photosensitivity and DNA photodamage.

  19. Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex.

    PubMed

    Witosch, Justine; Wolf, Eva; Mizuno, Naoko

    2014-11-10

    The Timeless-Tipin (Tim-Tipin) complex, also referred to as the fork protection complex, is involved in coordination of DNA replication. Tim-Tipin is suggested to be recruited to replication forks via Replication Protein A (RPA) but details of the interaction are unknown. Here, using cryo-EM and biochemical methods, we characterized complex formation of Tim-Tipin, RPA and single-stranded DNA (ssDNA). Tim-Tipin and RPA form a 258 kDa complex with a 1:1:1 stoichiometry. The cryo-EM 3D reconstruction revealed a globular architecture of the Tim-Tipin-RPA complex with a ring-like and a U-shaped domain covered by a RPA lid. Interestingly, RPA in the complex adopts a horse shoe-like shape resembling its conformation in the presence of long ssDNA (>30 nucleotides). Furthermore, the recruitment of the Tim-Tipin-RPA complex to ssDNA is modulated by the RPA conformation and requires RPA to be in the more compact 30 nt ssDNA binding mode. The dynamic formation and disruption of the Tim-Tipin-RPA-ssDNA complex implicates the RPA-based recruitment of Tim-Tipin to the replication fork. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Next generation sequencing analysis reveals a relationship between rDNA unit diversity and locus number in Nicotiana diploids

    PubMed Central

    2012-01-01

    Background Tandemly arranged nuclear ribosomal DNA (rDNA), encoding 18S, 5.8S and 26S ribosomal RNA (rRNA), exhibit concerted evolution, a pattern thought to result from the homogenisation of rDNA arrays. However rDNA homogeneity at the single nucleotide polymorphism (SNP) level has not been detailed in organisms with more than a few hundred copies of the rDNA unit. Here we study rDNA complexity in species with arrays consisting of thousands of units. Methods We examined homogeneity of genic (18S) and non-coding internally transcribed spacer (ITS1) regions of rDNA using Roche 454 and/or Illumina platforms in four angiosperm species, Nicotiana sylvestris, N. tomentosiformis, N. otophora and N. kawakamii. We compared the data with Southern blot hybridisation revealing the structure of intergenic spacer (IGS) sequences and with the number and distribution of rDNA loci. Results and Conclusions In all four species the intragenomic homogeneity of the 18S gene was high; a single ribotype makes up over 90% of the genes. However greater variation was observed in the ITS1 region, particularly in species with two or more rDNA loci, where >55% of rDNA units were a single ribotype, with the second most abundant variant accounted for >18% of units. IGS heterogeneity was high in all species. The increased number of ribotypes in ITS1 compared with 18S sequences may reflect rounds of incomplete homogenisation with strong selection for functional genic regions and relaxed selection on ITS1 variants. The relationship between the number of ITS1 ribotypes and the number of rDNA loci leads us to propose that rDNA evolution and complexity is influenced by locus number and/or amplification of orphaned rDNA units at new chromosomal locations. PMID:23259460

  1. [Multifunctional nano-vector for gene delivery into human adipose derived mesenchymal stem cells and in vitro cellular magnetic resonance imaging].

    PubMed

    Pang, Pengfei; Li, Bing; Hu, Xiaojun; Kang, Zhuang; Guan, Shouhai; Gong, Faming; Meng, Xiaochun; Li, Dan; Huang, Mingsheng; Shan, Hong

    2014-04-08

    To examine the feasibility and efficacy of using superparamagnetic iron oxide nanoparticles coated with polyethylene glycol-grafted polyethylenimine (PEG-g-PEI-SPION) as a carrier for gene delivery into human adipose derived mesenchymal stem cells (hADMSCs) and in vitro cellular magnetic resonance imaging (MRI). PEG-g-PEI-SPION was synthesized as previously reported. Gel electrophoresis was performed to assess the pDNA condensation capacity of PEG-g-PEI-SPION. The particle size and zeta potential of PEG-g-PEI-SPION/pDNA complexes were determined by dynamic light scattering. Cytotoxicity of PEG-g-PEI-SPION was evaluated by CCK-8 assay with hADMSCs. Gene transfection efficiency of PEG-g-PEI-SPION in hADMSCs was quantified by flow cytometry. The cellular internalization of PEG-g-PEI-SPION/pDNA nanocomplexes was studied by confocal laser scanning microscopy and Prussian blue staining. MRI function of PEG-g-PEI-SPION was studied by in vitro cellular MRI scanning. PEG-g-PEI-SPION condensed pDNA to form stable complexes of 80-100 nm in diameter and showed low cytotoxicity in hADMSCs. At the optimal N/P ratio of 20, PEG-g-PEI-SPION/pDNA obtained the highest transfection efficiency of 22.8% ± 3.6% in hADMSCs. And it was higher than that obtained with lipofectamine 11.2% ± 2.6% (P < 0.05). Furthermore, hADMSCs labeled with PEG-g-PEI-SPION showed sensitive low signal intensity on MRI T2-weighted images in vitro. PEG-g-PEI-SPION is an efficient and MRI-visible nano-vector for gene delivery into hADMSCs.

  2. Classroom Management Training, Teaching Experience and Gender: Do These Variables Impact Teachers' Attitudes and Beliefs toward Classroom Management Style?

    ERIC Educational Resources Information Center

    Martin, Nancy K.; Yin, Zenong; Mayall, Hayley

    2006-01-01

    This study represents a continuation of research efforts to further refine the Attitudes and Beliefs on Classroom Control (ABCC) Inventory. The purposes of this study were to investigate the: (1) impact of classroom management training on classroom management style; (2) differences in attitudes toward classroom management between novice and…

  3. DAVID-WS: a stateful web service to facilitate gene/protein list analysis

    PubMed Central

    Jiao, Xiaoli; Sherman, Brad T.; Huang, Da Wei; Stephens, Robert; Baseler, Michael W.; Lane, H. Clifford; Lempicki, Richard A.

    2012-01-01

    Summary: The database for annotation, visualization and integrated discovery (DAVID), which can be freely accessed at http://david.abcc.ncifcrf.gov/, is a web-based online bioinformatics resource that aims to provide tools for the functional interpretation of large lists of genes/proteins. It has been used by researchers from more than 5000 institutes worldwide, with a daily submission rate of ∼1200 gene lists from ∼400 unique researchers, and has been cited by more than 6000 scientific publications. However, the current web interface does not support programmatic access to DAVID, and the uniform resource locator (URL)-based application programming interface (API) has a limit on URL size and is stateless in nature as it uses URL request and response messages to communicate with the server, without keeping any state-related details. DAVID-WS (web service) has been developed to automate user tasks by providing stateful web services to access DAVID programmatically without the need for human interactions. Availability: The web service and sample clients (written in Java, Perl, Python and Matlab) are made freely available under the DAVID License at http://david.abcc.ncifcrf.gov/content.jsp?file=WS.html. Contact: xiaoli.jiao@nih.gov; rlempicki@nih.gov PMID:22543366

  4. Brief exposures of human body lice to sub-lethal amounts of ivermectin over transcribes detoxification genes involved in tolerance

    PubMed Central

    Yoon, K. S.; Strycharz, J. P.; Baek, J. H.; Sun, W.; Kim, J.H.; Kang, J.S.; Pittendrigh, B. R.; Lee, S. H.; Clark, J. M.

    2011-01-01

    Transcriptional profiling results, using our non-invasive induction assay [short exposure intervals (2–5 h) to sub-lethal amounts of insecticides (

  5. DAVID-WS: a stateful web service to facilitate gene/protein list analysis.

    PubMed

    Jiao, Xiaoli; Sherman, Brad T; Huang, Da Wei; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A

    2012-07-01

    The database for annotation, visualization and integrated discovery (DAVID), which can be freely accessed at http://david.abcc.ncifcrf.gov/, is a web-based online bioinformatics resource that aims to provide tools for the functional interpretation of large lists of genes/proteins. It has been used by researchers from more than 5000 institutes worldwide, with a daily submission rate of ∼1200 gene lists from ∼400 unique researchers, and has been cited by more than 6000 scientific publications. However, the current web interface does not support programmatic access to DAVID, and the uniform resource locator (URL)-based application programming interface (API) has a limit on URL size and is stateless in nature as it uses URL request and response messages to communicate with the server, without keeping any state-related details. DAVID-WS (web service) has been developed to automate user tasks by providing stateful web services to access DAVID programmatically without the need for human interactions. The web service and sample clients (written in Java, Perl, Python and Matlab) are made freely available under the DAVID License at http://david.abcc.ncifcrf.gov/content.jsp?file=WS.html.

  6. Clinical validity of new genetic biomarkers of irinotecan neutropenia: an independent replication study.

    PubMed

    Crona, D J; Ramirez, J; Qiao, W; de Graan, A-J; Ratain, M J; van Schaik, R H N; Mathijssen, R H J; Rosner, G L; Innocenti, F

    2016-02-01

    The overall goal of this study was to provide evidence for the clinical validity of nine genetic variants in five genes previously associated with irinotecan neutropenia and pharmacokinetics. Variants associated with absolute neutrophil count (ANC) nadir and/or irinotecan pharmacokinetics in a discovery cohort of cancer patients were genotyped in an independent replication cohort of 108 cancer patients. Patients received single-agent irinotecan every 3 weeks. For ANC nadir, we replicated UGT1A1*28, UGT1A1*93 and SLCO1B1*1b in univariate analyses. For irinotecan area under the concentration-time curve (AUC0-24), we replicated ABCC2 -24C>T; however, ABCC2 -24C>T only predicted a small fraction of the variance. For SN-38 AUC0-24 and the glucuronidation ratio, we replicated UGT1A1*28 and UGT1A1*93. In addition to UGT1A1*28, this study independently validated UGT1A1*93 and SLCO1B1*1b as new predictors of irinotecan neutropenia. Further demonstration of their clinical utility will optimize irinotecan therapy in cancer patients.

  7. Pseudoxanthoma Elasticum is a Metabolic Disease

    PubMed Central

    Jiang, Qiujie; Endoh, Masayuki; Dibra, Florian; Wang, Krystle; Uitto, Jouni

    2011-01-01

    Pseudoxanthoma elasticum (PXE) is a pleiotropic multisystem disorder affecting skin, eyes, and the cardiovascular system with progressive pathological mineralization. It is caused by mutations in the ABCC6 gene expressed primarily in the liver and kidneys, and at very low levels, if at all, in tissues affected by PXE. A question has arisen regarding the pathomechanism of PXE, particularly the “metabolic” versus the “PXE cell” hypotheses. We examined a murine PXE model (Abcc6−/−) by transplanting muzzle skin from knock-out (KO) and wild-type (WT) mice onto the back of WT and KO mice using mineralization of the connective tissue capsule surrounding the vibrissae as an early phenotypic biomarker. Grafting of WT mouse muzzle skin onto the back of KO mice resulted in mineralization of vibrissae, while grafting KO mouse muzzle skin onto the WT mice did not. Thus, these findings implicate circulatory factors as a critical component of the mineralization process. This mouse grafting model supports the notion that PXE is a systemic metabolic disorder with secondary mineralization of connective tissues and that the mineralization process can be countered or even reversed by changes in the homeostatic milieu. PMID:18685618

  8. Impact of Efavirenz on Intestinal Metabolism and Transport: Insights From an Interaction Study With Ezetimibe in Healthy Volunteers

    PubMed Central

    Oswald, S; zu Schwabedissen, HE Meyer; Nassif, A; Modess, C; Desta, Z; Ogburn, ET; Mostertz, J; Keiser, M; Jia, J; Hubeny, A; Ulrich, A; Runge, D; Marinova, M; Lütjohann, D; Kroemer, HK; Siegmund, W

    2013-01-01

    Hypercholesterolemia frequently occurs in patients treated with efavirenz who cannot be treated adequately with statins because of drug interactions. These patients may benefit from cholesterol-lowering therapy with ezetimibe. This study determined the influence of single-dose and multiple-dose efavirenz (400 mg/day for 9 days) on the pharmacokinetics and sterol-lowering of ezetimibe (10 mg) in 12 healthy subjects. In addition, the influence of efavirenz on genome-wide intestinal expression and in vitro function of ABCB1, ABCC2, UGT1A1, and OATP1B1 was studied. Efavirenz (multiple dose) had no influence on the pharmacokinetics and lipid-lowering functions of ezetimibe. Intestinal expression of enzymes and transporters (e.g., ABCB1, ABCC2, and UGT1A1) was not affected by chronic efavirenz. Efavirenz (single dose) slightly increased ezetimibe absorption and markedly decreased exposure to ezetimibe-glucuronide (single dose and multiple dose), which may be explained by inhibition of UGT1A1 and ABCB1 (in vitro data). Ezetimibe had no effect on the disposition of efavirenz. Consequently, ezetimibe may be a safe and efficient therapeutic option in patients with HIV infection. PMID:22297387

  9. Midgut transcriptome response to a Cry toxin in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Lei, Yanyuan; Zhu, Xun; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Guo, Zhaojiang; Xu, Baoyun; Li, Xianchun; Zhou, Xuguo; Zhang, Youjun

    2014-01-01

    To investigate the response of Plutella xylostella transcriptome in defending against a Bt toxin, high-throughput RNA-sequencing was carried out to examine Cry1Ac-susceptible and -resistant strains. The comparative analysis indentified over 2900 differentially expressed unigenes (DEUs) between these two strains. Gene Ontology analysis placed these unigenes primarily into cell, cell part, organelle, binding, catalytic, cellular process, metabolic process, and response to stimulus categories. Based on pathway analyses, DEUs were enriched in oxidoreductase activity and membrane lipid metabolic processes, and they were also significantly enriched in pathways related to the metabolic and biosynthesis of secondary metabolites. Most of the unigenes involved in the metabolic pathway were up-regulated in resistant strains. Within the ABC transporter pathway, majority of the down-regulated unigenes belong to ABCC2 and ABCC10, respectively, while up-regulated unigenes were mainly categorized as ABCG2. Furthermore, two aminopeptidases, and four cadherins encoding genes were significantly elevated as well. This study provides a transcriptome foundation for the identification and functional characterization of genes involved in the Bt resistance in an agriculturally important insect pest, P. xylostella. © 2013 Elsevier B.V. All rights reserved.

  10. PEGylation enhances tumor targeting of plasmid DNA by an artificial cationized protein with repeated RGD sequences, Pronectin.

    PubMed

    Hosseinkhani, Hossein; Tabata, Yasuhiko

    2004-05-31

    The objective of this study is to investigate feasibility of a non-viral gene carrier with repeated RGD sequences (Pronectin F+) in tumor targeting for gene expression. The Pronectin F+ was cationized by introducing spermine (Sm) to the hydroxyl groups to allow to polyionically complex with plasmid DNA. The cationized Pronectin F+ prepared was additionally modified with poly(ethylene glycol) (PEG) molecules which have active ester and methoxy groups at the terminal, to form various PEG-introduced cationized Pronectin F+. The cationized Pronectin F+ with or without PEGylation at different extents was mixed with a plasmid DNA of LacZ to form respective cationized Pronectin F+-plasmid DNA complexes. The plasmid DNA was electrophoretically complexed with cationized Pronectin F+ and PEG-introduced cationized Pronectin F+, irrespective of the PEGylation extent, although the higher N/P ratio of complexes was needed for complexation with the latter Pronectin F+. The molecular size and zeta potential measurements revealed that the plasmid DNA was reduced in size to about 250 nm and the charge was changed to be positive by the complexation with cationized Pronectin F+. For the complexation with PEG-introduced cationized Pronectin F+, the charge of complex became neutral being almost 0 mV with the increasing PEGylation extents, while the molecular size was similar to that of cationized Pronectin F+. When cationized Pronectin F+-plasmid DNA complexes with or without PEGylation were intravenously injected to mice carrying a subcutaneous Meth-AR-1 fibrosarcoma mass, the PEG-introduced cationized Pronectin F+-plasmid DNA complex specifically enhanced the level of gene expression in the tumor, to a significantly high extent compared with the cationized Pronectin F+-plasmid DNA complexes and free plasmid DNA. The enhanced level of gene expression depended on the percentage of PEG introduced, the N/P ratio, and the plasmid DNA dose. A fluorescent microscopic study revealed that the localization of plasmid DNA in the tumor tissue was observed only for the PEG-introduced cationized Pronectin F+-plasmid DNA complex injected. We conclude that the PEGylation of cationized Pronectin F+ is a promising way to enable the plasmid DNA to target to the tumor for gene expression. Coyright 2004 Elsevier B.V.

  11. Structural analysis of DNA binding by C.Csp231I, a member of a novel class of R-M controller proteins regulating gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevtsov, M. B.; Streeter, S. D.; Thresh, S.-J.

    2015-02-01

    The structure of the new class of controller proteins (exemplified by C.Csp231I) in complex with its 21 bp DNA-recognition sequence is presented, and the molecular basis of sequence recognition in this class of proteins is discussed. An unusual extended spacer between the dimer binding sites suggests a novel interaction between the two C-protein dimers. In a wide variety of bacterial restriction–modification systems, a regulatory ‘controller’ protein (or C-protein) is required for effective transcription of its own gene and for transcription of the endonuclease gene found on the same operon. We have recently turned our attention to a new class ofmore » controller proteins (exemplified by C.Csp231I) that have quite novel features, including a much larger DNA-binding site with an 18 bp (∼60 Å) spacer between the two palindromic DNA-binding sequences and a very different recognition sequence from the canonical GACT/AGTC. Using X-ray crystallography, the structure of the protein in complex with its 21 bp DNA-recognition sequence was solved to 1.8 Å resolution, and the molecular basis of sequence recognition in this class of proteins was elucidated. An unusual aspect of the promoter sequence is the extended spacer between the dimer binding sites, suggesting a novel interaction between the two C-protein dimers when bound to both recognition sites correctly spaced on the DNA. A U-bend model is proposed for this tetrameric complex, based on the results of gel-mobility assays, hydrodynamic analysis and the observation of key contacts at the interface between dimers in the crystal.« less

  12. Hairpin-shaped tetranuclear palladium(II) complex: synthesis, crystal structure, DNA binding and cytotoxicity activity studies.

    PubMed

    Gao, En-Jun; Wang, Ke-Hua; Zhu, Ming-Chang; Liu, Lei

    2010-07-01

    A novel tetranuclear palladium(II) complex [Pd(4)(phen)(4) (micro-pydc)(4)].10H(2)O (phen = 1,10-phenanthroline, pydc = pyridine-3,4-dicarboxylate) has been synthesized and characterized. In the tetranuclear complex, two pairs of dipalladated [Pd(phen)] moieties are bridged together by four pydc, presenting a hairpin molecular shape. The binding of the title complex with fish sperm DNA (FS-DNA) has been investigated by UV spectrum and fluorescence spectrum. All the results indicate that the complex bind to DNA in an intercalative mode and considerating the molecular shape and size, the dipalladated phenanthroline moieties bisintercalate to the base pairs of DNA. Agarose gel electrophoresis assay demonstrates the ability of the complex to cleave the pBR322 plasmid DNA. Cytotoxic activity studies show the complex exhibited good cytotoxic activity against four different cancer cell lines. Crown Copyright (c) 2010. Published by Elsevier Masson SAS. All rights reserved.

  13. A core hSSB1–INTS complex participates in the DNA damage response

    PubMed Central

    Zhang, Feng; Ma, Teng; Yu, Xiaochun

    2013-01-01

    Summary Human single-stranded DNA-binding protein 1 (hSSB1) plays an important role in the DNA damage response and the maintenance of genomic stability. It has been shown that the core hSSB1 complex contains hSSB1, INTS3 and C9orf80. Using protein affinity purification, we have identified integrator complex subunit 6 (INTS6) as a major subunit of the core hSSB1 complex. INTS6 forms a stable complex with INTS3 and hSSB1 both in vitro and in vivo. In this complex, INTS6 directly interacts with INTS3. In response to the DNA damage response, along with INTS3 and hSSB1, INTS6 relocates to the DNA damage sites. Moreover, the hSSB1–INTS complex regulates the accumulation of RAD51 and BRCA1 at DNA damage sites and the correlated homologous recombination. PMID:23986477

  14. The UL5 and UL52 subunits of the herpes simplex virus type 1 helicase-primase subcomplex exhibit a complex interdependence for DNA binding.

    PubMed

    Biswas, N; Weller, S K

    2001-05-18

    Herpes simplex virus type 1 encodes a heterotrimeric helicase-primase complex composed of the products of the UL5, UL52, and UL8 genes. The UL5 protein contains seven motifs found in all members of helicase Superfamily 1 (SF1), and the UL52 protein contains several conserved motifs found in primases; however, the contributions of each subunit to the biochemical activities of the subcomplex are not clear. In this work, the DNA binding properties of wild type and mutant subcomplexes were examined using single-stranded, duplex, and forked substrates. A gel mobility shift assay indicated that the UL5-UL52 subcomplex binds more efficiently to the forked substrate than to either single strand or duplex DNA. Although nucleotides are not absolutely required for DNA binding, ADP stimulated the binding of UL5-UL52 to single strand DNA whereas ATP, ADP, and adenosine 5'-O-(thiotriphosphate) stimulated the binding to a forked substrate. We have previously shown that both subunits contact single-stranded DNA in a photocross-linking assay (Biswas, N., and Weller, S. K. (1999) J. Biol. Chem. 274, 8068-8076). In this study, photocross-linking assays with forked substrates indicate that the UL5 and UL52 subunits contact the forked substrates at different positions, UL52 at the single-stranded DNA tail and UL5 near the junction between single-stranded and double-stranded DNA. Neither subunit was able to cross-link a forked substrate when 5-iododeoxyuridine was located within the duplex portion. Photocross-linking experiments with subcomplexes containing mutant versions of UL5 and wild type UL52 indicated that the integrity of the ATP binding region is important for DNA binding of both subunits. These results support our previous proposal that UL5 and UL52 exhibit a complex interdependence for DNA binding (Biswas, N., and Weller, S. K. (1999) J. Biol. Chem. 274, 8068-8076) and indicate that the UL52 subunit may play a more active role in helicase activity than had previously been thought.

  15. Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP.

    PubMed

    Lin, C H; Patel, D J

    1997-11-01

    Structural studies by nuclear magnetic resonance (NMR) of RNA and DNA aptamer complexes identified through in vitro selection and amplification have provided a wealth of information on RNA and DNA tertiary structure and molecular recognition in solution. The RNA and DNA aptamers that target ATP (and AMP) with micromolar affinity exhibit distinct binding site sequences and secondary structures. We report below on the tertiary structure of the AMP-DNA aptamer complex in solution and compare it with the previously reported tertiary structure of the AMP-RNA aptamer complex in solution. The solution structure of the AMP-DNA aptamer complex shows, surprisingly, that two AMP molecules are intercalated at adjacent sites within a rectangular widened minor groove. Complex formation involves adaptive binding where the asymmetric internal bubble of the free DNA aptamer zippers up through formation of a continuous six-base mismatch segment which includes a pair of adjacent three-base platforms. The AMP molecules pair through their Watson-Crick edges with the minor groove edges of guanine residues. These recognition G.A mismatches are flanked by sheared G.A and reversed Hoogsteen G.G mismatch pairs. The AMP-DNA aptamer and AMP-RNA aptamer complexes have distinct tertiary structures and binding stoichiometries. Nevertheless, both complexes have similar structural features and recognition alignments in their binding pockets. Specifically, AMP targets both DNA and RNA aptamers by intercalating between purine bases and through identical G.A mismatch formation. The recognition G.A mismatch stacks with a reversed Hoogsteen G.G mismatch in one direction and with an adenine base in the other direction in both complexes. It is striking that DNA and RNA aptamers selected independently from libraries of 10(14) molecules in each case utilize identical mismatch alignments for molecular recognition with micromolar affinity within binding-site pockets containing common structural elements.

  16. Exposure of DNA bases induced by the interaction of DNA and calf thymus DNA helix-destabilizing protein.

    PubMed Central

    Kohwi-Shigematsu, T; Enomoto, T; Yamada, M A; Nakanishi, M; Tsuboi, M

    1978-01-01

    The reaction of chloroacetaldehyde with adenine bases in DNA to give a fluorescent product was used to study the availability to intermolecular reaction of positions 1 and 6 of adenine in DNA complexes with calf thymus DNA helix-destabilizing protein. No inhibition of this reaction was observed when heat-denatured DNA was complexed with the protein at a protein/DNA weight ratio of 10:1, compared to free DNA. On the contrary, the same reaction was inhibited markedly for denatured DNA in the presence of calf thymus histone HI at protein/DNA weight ratio of 2:1. Furthermore, the exchange rate for hydrogens of amino and imide groups of DNA bases in DNA strands with deuterium in the solvent was totally unaffected upon complexing of DNA with the DNA helix-destabilizing protein as examined by stopped-flow ultraviolet spectroscopy. These results indicate that the DNA helix-destabilizing protein forms a complex with single-stranded DNA, leaving DNA bases uncovered by the protein. The fluorescence intensity of DNA pretreated with chloroacetaldehyde was amplified by nearly 3-fold upon addition of the DNA helix-destabilizing protein. The possibility of "unstacking" of DNA bases induced by the protein is discussed. PMID:216994

  17. Co-opting the Fanconi Anemia Genomic Stability Pathway Enables Herpesvirus DNA Synthesis and Productive Growth

    PubMed Central

    Karttunen, Heidi; Savas, Jeffrey N.; McKinney, Caleb; Chen, Yu-Hung; Yates, John R.; Hukkanen, Veijo; Huang, Tony T.; Mohr, Ian

    2015-01-01

    SUMMARY DNA damage associated with viral DNA synthesis can result in double strand breaks that threaten genome integrity and must be repaired. Here, we establish that the cellular Fanconi Anemia (FA) genomic stability pathway is exploited by HSV1 to promote viral DNA synthesis and enable its productive growth. Potent FA pathway activation in HSV1-infected cells resulted in monoubiquitination of FA effector proteins, FANCI and FANCD2 (FANCI-D2) and required the viral DNA polymerase. FANCD2 relocalized to viral replication compartments and FANCI-D2 interacted with a multi-subunit complex containing the virus-encoded single-stranded DNA-binding protein ICP8. Significantly, while HSV1 productive growth was impaired in monoubiquitination-defective FA patient cells, this restriction was partially surmounted by antagonizing the DNA-dependent protein kinase (DNA-PK), a critical enzyme required for non-homologous end-joining (NHEJ). This identifies the FA-pathway as a new cellular factor required for herpesvirus productive growth and suggests that FA-mediated suppression of NHEJ is a fundamental step in the viral lifecycle. PMID:24954902

  18. Chiral Binaphthylbis(4,4'-Bipyridin-1-Ium)/Cucurbit[8]Uril Supramolecular System and Its Induced Circularly Polarized Luminescence.

    PubMed

    Chen, Xu-Man; Chen, Yong; Liang, Lu; Liu, Qiu-Jun; Liu, Yu

    2018-05-01

    Circularly polarized luminescence (CPL) induced by host-guest complexation remains a challenge in supramolecular chemistry. Herein, a couple of CPL-silent enantiomeric guest binaphthylbis(4,4'-bipyridinium) salts can emit obvious CPL in the presence of cucurbit[8]uril in aqueous media, due to the restriction of molecular rotation limitation effect. Such CPL can be reversibly adjusted by the addition of acid and base. Furthermore, the resultant supramolecular systems can interact with DNA, accompanied by the morphological conversion from branched supramolecular nanowires to exfoliated nanowires, which can enable to the exploration of such supramolecular systems as DNA markers by CPL signals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Liu, Juewen

    2014-05-01

    Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials.Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials. Electronic supplementary information (ESI) available: Methods, additional gels, kinetics, mass spectrum. See DOI: 10.1039/c4nr00867g

  20. Novel strategies to construct complex synthetic vectors to produce DNA molecular weight standards.

    PubMed

    Chen, Zhe; Wu, Jianbing; Li, Xiaojuan; Ye, Chunjiang; Wenxing, He

    2009-05-01

    DNA molecular weight standards (DNA markers, nucleic acid ladders) are commonly used in molecular biology laboratories as references to estimate the size of various DNA samples in electrophoresis process. One method of DNA marker production is digestion of synthetic vectors harboring multiple DNA fragments of known sizes by restriction enzymes. In this article, we described three novel strategies-sequential DNA fragment ligation, screening of ligation products by polymerase chain reaction (PCR) with end primers, and "small fragment accumulation"-for constructing complex synthetic vectors and minimizing the mass differences between DNA fragments produced from restrictive digestion of synthetic vectors. The strategy could be applied to construct various complex synthetic vectors to produce any type of low-range DNA markers, usually available commercially. In addition, the strategy is useful for single-step ligation of multiple DNA fragments for construction of complex synthetic vectors and other applications in molecular biology field.

Top