Sample records for complex ac permeability

  1. How to include frequency dependent complex permeability Into SPICE models to improve EMI filters design?

    NASA Astrophysics Data System (ADS)

    Sixdenier, Fabien; Yade, Ousseynou; Martin, Christian; Bréard, Arnaud; Vollaire, Christian

    2018-05-01

    Electromagnetic interference (EMI) filters design is a rather difficult task where engineers have to choose adequate magnetic materials, design the magnetic circuit and choose the size and number of turns. The final design must achieve the attenuation requirements (constraints) and has to be as compact as possible (goal). Alternating current (AC) analysis is a powerful tool to predict global impedance or attenuation of any filter. However, AC analysis are generally performed without taking into account the frequency-dependent complex permeability behaviour of soft magnetic materials. That's why, we developed two frequency-dependent complex permeability models able to be included into SPICE models. After an identification process, the performances of each model are compared to measurements made on a realistic EMI filter prototype in common mode (CM) and differential mode (DM) to see the benefit of the approach. Simulation results are in good agreement with the measured ones especially in the middle frequency range.

  2. A poroelastic finite element model of the bone-cartilage unit to determine the effects of changes in permeability with osteoarthritis.

    PubMed

    Stender, Michael E; Regueiro, Richard A; Ferguson, Virginia L

    2017-02-01

    The changes experienced in synovial joints with osteoarthritis involve coupled chemical, biological, and mechanical processes. The aim of this study was to investigate the consequences of increasing permeability in articular cartilage (AC), calcified cartilage (CC), subchondral cortical bone (SCB), and subchondral trabecular bone (STB) as observed with osteoarthritis. Two poroelastic finite element models were developed using a depth-dependent anisotropic model of AC with strain-dependent permeability and poroelastic models of calcified tissues (CC, SCB, and STB). The first model simulated a bone-cartilage unit (BCU) in uniaxial unconfined compression, while the second model simulated spherical indentation of the AC surface. Results indicate that the permeability of AC is the primary determinant of the BCU's poromechanical response while the permeability of calcified tissues exerts no appreciable effect on the force-indentation response of the BCU. In spherical indentation simulations with osteoarthritic permeability properties, fluid velocities were larger in magnitude and distributed over a smaller area compared to normal tissues. In vivo, this phenomenon would likely lead to chondrocyte death, tissue remodeling, alterations in joint lubrication, and the progression of osteoarthritis. For osteoarthritic and normal tissue permeability values, fluid flow was predicted to occur across the osteochondral interface. These results help elucidate the consequences of increases in the permeability of the BCU that occur with osteoarthritis. Furthermore, this study may guide future treatments to counteract osteoarthritis.

  3. Fault current limiter

    DOEpatents

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  4. Effect of an ac Perturbation on the Electroosmotic Behavior of a Cation-Exchange Membrane. Influence of the Cation Nature.

    PubMed

    Barragán, V. M.; Bauzá, C. Ruíz

    2001-08-01

    The effect of an ac sinusoidal perturbation of known amplitude and frequency superimposed on the usual dc applied electric voltage difference on the electroosmotic flow through a typical cation-exchange membrane has been studied using different monovalent electrolytes. As a general trend, the presence of the ac perturbation increases the value of the electroosmotic flow with respect to the value in the absence of ac perturbation. A dispersion of the electroosmotic permeability on the frequency of the applied ac signal has been found for the three studied electrolytes, observing that the electroosmotic permeability reaches maximum values for some characteristic values of the frequency. This behavior may be related to the different relaxation processes in heterogeneous mediums. Copyright 2001 Academic Press.

  5. Engineered Trehalose Permeable to Mammalian Cells

    PubMed Central

    Abazari, Alireza; Meimetis, Labros G.; Budin, Ghyslain; Bale, Shyam Sundhar; Weissleder, Ralph; Toner, Mehmet

    2015-01-01

    Trehalose is a naturally occurring disaccharide which is associated with extraordinary stress-tolerance capacity in certain species of unicellular and multicellular organisms. In mammalian cells, presence of intra- and extracellular trehalose has been shown to confer improved tolerance against freezing and desiccation. Since mammalian cells do not synthesize nor import trehalose, the development of novel methods for efficient intracellular delivery of trehalose has been an ongoing investigation. Herein, we studied the membrane permeability of engineered lipophilic derivatives of trehalose. Trehalose conjugated with 6 acetyl groups (trehalose hexaacetate or 6-O-Ac-Tre) demonstrated superior permeability in rat hepatocytes compared with regular trehalose, trehalose diacetate (2-O-Ac-Tre) and trehalose tetraacetate (4-O-Ac-Tre). Once in the cell, intracellular esterases hydrolyzed the 6-O-Ac-Tre molecules, releasing free trehalose into the cytoplasm. The total concentration of intracellular trehalose (plus acetylated variants) reached as high as 10 fold the extracellular concentration of 6-O-Ac-Tre, attaining concentrations suitable for applications in biopreservation. To describe this accumulation phenomenon, a diffusion-reaction model was proposed and the permeability and reaction kinetics of 6-O-Ac-Tre were determined by fitting to experimental data. Further studies suggested that the impact of the loading and the presence of intracellular trehalose on cellular viability and function were negligible. Engineering of trehalose chemical structure rather than manipulating the cell, is an innocuous, cell-friendly method for trehalose delivery, with demonstrated potential for trehalose loading in different types of cells and cell lines, and can facilitate the wide-spread application of trehalose as an intracellular protective agent in biopreservation studies. PMID:26115179

  6. Nitrogen Transformations in Three Types of Permeable Pavement

    EPA Science Inventory

    In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...

  7. Alternating current (AC) iontophoretic transport across human epidermal membrane: effects of AC frequency and amplitude.

    PubMed

    Yan, Guang; Xu, Qingfang; Anissimov, Yuri G; Hao, Jinsong; Higuchi, William I; Li, S Kevin

    2008-03-01

    As a continuing effort to understand the mechanisms of alternating current (AC) transdermal iontophoresis and the iontophoretic transport pathways in the stratum corneum (SC), the objectives of the present study were to determine the interplay of AC frequency, AC voltage, and iontophoretic transport of ionic and neutral permeants across human epidermal membrane (HEM) and use AC as a means to characterize the transport pathways. Constant AC voltage iontophoresis experiments were conducted with HEM in 0.10 M tetraethyl ammonium pivalate (TEAP). AC frequencies ranging from 0.0001 to 25 Hz and AC applied voltages of 0.5 and 2.5 V were investigated. Tetraethyl ammonium (TEA) and arabinose (ARA) were the ionic and neutral model permeants, respectively. In data analysis, the logarithm of the permeability coefficients of HEM for the model permeants was plotted against the logarithm of the HEM electrical resistance for each AC condition. As expected, linear correlations between the logarithms of permeability coefficients and the logarithms of resistances of HEM were observed, and the permeability data were first normalized and then compared at the same HEM electrical resistance using these correlations. Transport enhancement of the ionic permeant was significantly larger than that of the neutral permeant during AC iontophoresis. The fluxes of the ionic permeant during AC iontophoresis of 2.5 V in the frequency range from 5 to 1,000 Hz were relatively constant and were approximately 4 times over those of passive transport. When the AC frequency decreased from 5 to 0.001 Hz at 2.5 V, flux enhancement increased to around 50 times over passive transport. While the AC frequency for achieving the full effect of iontophoretic enhancement at low AC frequency was lower than anticipated, the frequency for approaching passive diffusion transport at high frequency was higher than expected from the HEM morphology. These observations are consistent with a transport model of multiple barriers in series and the previous hypothesis that the iontophoresis pathways across HEM under AC behave like a series of reservoirs interconnected by short pore pathways.

  8. Study of the internal morphology of cation-exchange membranes by means of electroosmotic permeability relaxations.

    PubMed

    Barragán, V M; Izquierdo-Gil, M A; Godino, M P; Villaluenga, J P G

    2009-10-01

    The effect of an ac sinusoidal perturbation of known amplitude and frequency superimposed to the usual dc applied electric voltage difference on the electroosmotic flow through three cation-exchange membranes with different morphology has been studied. A dispersion of the electroosmotic permeability on the frequency of the applied ac signal has been found for the three membranes investigated, observing that the electroosmotic permeability reaches maximum values for some characteristic values of the frequency. These characteristic frequency values, which are related to relaxation processes in heterogeneous media, depend on the membrane system and permit to obtain information about the different structures of the membrane system. Thus, the study of the electroosmotic permeability relaxation can be used as a method to study the internal morphology of a cation-exchange membrane in a given electrolyte medium.

  9. Effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats.

    PubMed

    Kim, Dong-Hyun; Yeo, Sang Won

    2013-01-01

    This prospective, randomized, and controlled study examined the effects of normal saline and selenium-enriched hot spring water on experimentally induced rhinosinusitis in rats. The study comprised two control groups (untreated and saline-treated) and three experimental groups of Sprague Dawley rats. The experimental groups received an instillation of lipopolysaccharide (LPS) only, LPS+normal saline (LPS/saline), or LPS+selenium-enriched hot spring water (LPS/selenium). Histopathological changes were identified using hematoxylin-eosin staining. Leakage of exudate was identified using fluorescence microscopy. Microvascular permeability was measured using the Evans blue dye technique. Expression of the Muc5ac gene was measured using reverse transcription-polymerase chain reaction. Mucosal edema and expression of the Muc5ac gene were significantly lower in the LPS/saline group than in the LPS group. Microvascular permeability, mucosal edema, and expression of the Muc5ac gene were significantly lower in the LPS/selenium group than in the LPS group. Mucosal edema was similar in the LPS/selenium group and LPS/saline group, but capillary permeability and Muc5ac expression were lower in the LPS/selenium group. This study shows that normal saline and selenium-enriched hot spring water reduce inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Giant magneto-impedance and magneto-inductive effects in amorphous alloys

    NASA Astrophysics Data System (ADS)

    Panina, L. V.; Mohri, K.; Bushida, K.; Noda, M.

    1994-11-01

    Recent experiments have discovered giant and sensitive magneto-impedance and magneto-inductive effects in FeCoSiB amorphous wires. These effects include a sensitive change in an ac wire voltage with the application of a small dc longitudinal magnetic field. At low frequencies (1-10 kHz) the inductive voltage drops by 50% for a field of 2 Oe (25%/Oe) reflecting a strong field dependence of the circumferential permeability. At higher frequencies (0.1-10 MHz) when the skin effect is essential, the amplitude of the total wire voltage decreases by 40%-60% for fields of 3-10 Oe (about 10%/Oe). These effects exhibit no hysteresis for the variation of an applied field and can be obtained even in wires of 1 mm length and a few micrometer diameter. These characteristics are very useful to constitute a highly sensitive microsensor head to detect local fields of the order of 10(exp -5) Oe. In this paper, we review recently obtained experimental results on magneto-inductive and magneto-impedance effects and present a detailed discussion for their mechanism, developing a general approach in terms of ac complex impedance in a magnetic conductor. In the case of a strong skin effect the total wire impedance depends on the circumferential permeability through the penetration depth, resulting in the giant magneto-impedance effect.

  11. The MSPICE simulation of a saturating transformer

    NASA Astrophysics Data System (ADS)

    Maclean, David N.

    A transformer is simulated using a nonlinear saturating magnetic model. Hysteresis and gradual smooth reduction of core permeability are achieved with standard SPICE networks and functions. The equations that define the nonlinear inductance and the MSPICE circuits used to simulate them are derived. A hierarchy of circuit complexity that is based on the structured logic design subcircuit method is used. An example of a push-pull buck regulator being operated in an unbalanced condition is given. Noise ripple on the input power cable generates a dc offset current in the transformer. The example demonstrates how avionics power equipment can be evaluated for large-signal ac, dc, and transient behavior.

  12. Analysis of Instrumentation Selection and Placement to Monitor the Hydrologic Performance of Permeable Pavement Systems and Bioinfiltration Areas at the Edison Environmental Center in New Jersey

    EPA Science Inventory

    In 2009, the U.S. Environmental Protection Agency constructed a 0.4-ha (1-ac) parking lot surfaced with three different permeable pavement types (interlocking concrete pavers, porous concrete, and porous asphalt) and six bioinfiltration areas with three different drainage area to...

  13. Effects of multipurpose solutions on the adhesion of Acanthamoeba to rigid gas permeable contact lenses.

    PubMed

    Lee, Ga-Hyun; Yu, Hak-Sun; Lee, Ji-Eun

    2016-03-01

    To evaluate the effect of multipurpose contact lens care solutions (MPSs) on the adhesion of Acanthamoeba to rigid gas permeable (RGP) contact lenses. Acanthamoeba castellanii (AC) trophozoites were inoculated onto untreated RGP contact lenses (FP, Extra, or Menicon Z), and numbers of trophozoites adhering to lenses were counted under a phase contrast microscope at 18 h post-inoculation (controls). Similarly, adhering trophozoites were counted at 6 h post-inoculation on each of the three RGP lens types with one of three MPSs (Boston Simplus, Menicare Plus, and O2 Care). Scanning electron microscopic examinations were performed to compare lens surfaces. Adhesion of AC trophozoites to untreated FP was greater than to untreated Extra or Menicon Z. Surfaces of Extra and Menicon Z lenses were waxier, smoother, and more homogeneous than those of FP lenses. After treatment with Boston Simplus, adhesion of AC trophozoites was significantly reduced for all lens types as compared with controls (p < 0.0001). Treatments with Menicare Plus or O2 Care reduced the number of adherent AC trophozoites significantly on FP lenses only as compared with controls (p < 0.0001). The adhesion rates of AC trophozoites to RGP lenses depended on lens surfaces. Boston Simplus reduced the adhesion rate of AC trophozoites more than Menicare Plus or O2 Care. Appropriate RGP lens and MPS selection could decrease the prevalence of Acanthamoeba keratitis. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  14. P-glycoprotein is responsible for the poor intestinal absorption and low toxicity of oral aconitine: In vitro, in situ, in vivo and in silico studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Cuiping, E-mail: yangsophia76@hotmail.com; Zhang, Tianhong, E-mail: wdzth@sina.com; Li, Zheng, E-mail: lizh2524@126.com

    Aconitine (AC) is a highly toxic alkaloid from bioactive plants of the genus Aconitum, some of which have been widely used as medicinal herbs for thousands of years. In this study, we systematically evaluated the potential role of P-glycoprotein (P-gp) in the mechanisms underlying the low and variable bioavailability of oral AC. First, the bidirectional transport of AC across Caco-2 and MDCKII-MDR1 cells was investigated. The efflux of AC across monolayers of these two cell lines was greater than its influx. Additionally, the P-gp inhibitors, verapamil and cyclosporin A, significantly decreased the efflux of AC. An in situ intestinal perfusionmore » study in rats showed that verapamil co-perfusion caused a significant increase in the intestinal permeability of AC, from 0.22 × 10{sup −5} to 2.85 × 10{sup −5} cm/s. Then, the pharmacokinetic profile of orally administered AC with or without pre-treatment with verapamil was determined in rats. With pre-treatment of verapamil, the maximum plasma concentration (C{sub max}) of AC increased sharply, from 39.43 to 1490.7 ng/ml. Accordingly, a 6.7-fold increase in the area under the plasma concentration–time curve (AUC{sub 0–12} {sub h}) of AC was observed when co-administered with verapamil. In silico docking analyses suggested that AC and verapamil possess similar P-gp recognition mechanisms. This work demonstrated that P-gp is involved in limiting the intestinal absorption of AC and attenuating its toxicity to humans. Our data indicate that potential P-gp-mediated drug–drug interactions should be considered carefully in the clinical application of aconite and formulations containing AC. - Highlights: • Verapamil and cyclosporin A decreased the efflux of aconitine across Caco-2 cells. • Both inhibitors decreased the efflux of aconitine across MDCKII-MDR1 cells. • Co-perfusion with verapamil increased the intestinal permeability of aconitine. • Co-administration with verapamil sharply increased the C{sub max} and AUC of aconitine. • P-gp interacted with both verapamil and aconitine and recognized them similarly.« less

  15. Studies of electrical conductivity and complex initial permeability of multiferroic xBa{sub 0.95}Sr{sub 0.05}TiO{sub 3}-(1-x)BiFe{sub 0.90}Gd{sub 0.10}O{sub 3} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miah, Mohammad J., E-mail: mmjulhash@yahoo.com; Department of Physics, Comilla University, Comilla; Khan, M. N. I.

    Multiferroic xBa{sub 0.95}Sr{sub 0.05}TiO{sub 3}-(1-x)BiFe{sub 0.90}Gd{sub 0.10}O{sub 3} [xBST-(1-x)BFGO] (x = 0.00, 0.10 and 0.20) ceramics were prepared by the standard solid-state reaction technique. Crystal structure of the ceramics was determined by X-ray diffraction pattern. All the compositions exhibited rhombohedral crystal structure. The tolerance factor ‘t’ varied from 0.847 to 0.864. The AC conductivity spectrum followed the Jonscher’s power law. The Nyquist plots indicated that only grains have the contribution to the resistance in this material and the values of grain resistance (R{sub g}) increased with BST content. The real part of complex initial permeability decreased with the increase inmore » frequency and increased with increasing BST content. Magnetoelectric coefficient was determined for all compositions. The maximum value of magnetoelectric coefficient was found to be 1.467 mV.cm{sup −1}.Oe{sup −1} for x = 0.20.« less

  16. Lipopolysaccharide-induced pulmonary endothelial barrier disruption and lung edema: critical role for bicarbonate stimulation of AC10.

    PubMed

    Nickols, Jordan; Obiako, Boniface; Ramila, K C; Putinta, Kevin; Schilling, Sarah; Sayner, Sarah L

    2015-12-15

    Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10. Copyright © 2015 the American Physiological Society.

  17. Lipopolysaccharide-induced pulmonary endothelial barrier disruption and lung edema: critical role for bicarbonate stimulation of AC10

    PubMed Central

    Nickols, Jordan; Obiako, Boniface; Ramila, K. C.; Putinta, Kevin; Schilling, Sarah

    2015-01-01

    Bacteria-induced sepsis is a common cause of pulmonary endothelial barrier dysfunction and can progress toward acute respiratory distress syndrome. Elevations in intracellular cAMP tightly regulate pulmonary endothelial barrier integrity; however, cAMP signals are highly compartmentalized: whether cAMP is barrier-protective or -disruptive depends on the compartment (plasma membrane or cytosol, respectively) in which the signal is generated. The mammalian soluble adenylyl cyclase isoform 10 (AC10) is uniquely stimulated by bicarbonate and is expressed in pulmonary microvascular endothelial cells (PMVECs). Elevated extracellular bicarbonate increases cAMP in PMVECs to disrupt the endothelial barrier and increase the filtration coefficient (Kf) in the isolated lung. We tested the hypothesis that sepsis-induced endothelial barrier disruption and increased permeability are dependent on extracellular bicarbonate and activation of AC10. Our findings reveal that LPS-induced endothelial barrier disruption is dependent on extracellular bicarbonate: LPS-induced barrier failure and increased permeability are exacerbated in elevated bicarbonate compared with low extracellular bicarbonate. The AC10 inhibitor KH7 attenuated the bicarbonate-dependent LPS-induced barrier disruption. In the isolated lung, LPS failed to increase Kf in the presence of minimal perfusate bicarbonate. An increase in perfusate bicarbonate to the physiological range (24 mM) revealed the LPS-induced increase in Kf, which was attenuated by KH7. Furthermore, in PMVECs treated with LPS for 6 h, there was a dose-dependent increase in AC10 expression. Thus these findings reveal that LPS-induced pulmonary endothelial barrier failure requires bicarbonate activation of AC10. PMID:26475732

  18. The "soluble" adenylyl cyclase in sperm mediates multiple signaling events required for fertilization.

    PubMed

    Hess, Kenneth C; Jones, Brian H; Marquez, Becky; Chen, Yanqiu; Ord, Teri S; Kamenetsky, Margarita; Miyamoto, Catarina; Zippin, Jonathan H; Kopf, Gregory S; Suarez, Susan S; Levin, Lonny R; Williams, Carmen J; Buck, Jochen; Moss, Stuart B

    2005-08-01

    Mammalian fertilization is dependent upon a series of bicarbonate-induced, cAMP-dependent processes sperm undergo as they "capacitate," i.e., acquire the ability to fertilize eggs. Male mice lacking the bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC), the predominant source of cAMP in male germ cells, are infertile, as the sperm are immotile. Membrane-permeable cAMP analogs are reported to rescue the motility defect, but we now show that these "rescued" null sperm were not hyperactive, displayed flagellar angulation, and remained unable to fertilize eggs in vitro. These deficits uncover a requirement for sAC during spermatogenesis and/or epididymal maturation and reveal limitations inherent in studying sAC function using knockout mice. To circumvent this restriction, we identified a specific sAC inhibitor that allowed temporal control over sAC activity. This inhibitor revealed that capacitation is defined by separable events: induction of protein tyrosine phosphorylation and motility are sAC dependent while acrosomal exocytosis is not dependent on sAC.

  19. Determination of rock properties by low-frequency AC electrokinetics

    NASA Astrophysics Data System (ADS)

    Pengra, David B.; Xi Li, Sidney; Wong, Po-Zen

    1999-12-01

    In brine-saturated rock the existence of a mobile space charge at the fluid/solid interface leads to the electrokinetic phenomena of electroosmotic pressure and streaming potential. The coupling coefficients of these electrokinetic effects, when combined with the conductivity of the brine-saturated rock, determine the brine permeability of rock exactly. A sensitive low-frequency AC technique has been used to measure electrokinetic response of a collection of eight rock and four glass bead samples saturated with NaCl brine as a function of salt concentration (fluid conductivity of 0.5 to 6.38 S/m); the response of four of the original 12 samples has also been measured as a function of temperature from 0° to 50°C. All data verify the predicted permeability relationship. Additionally, the frequency response of the electroosmotic pressure signal alone can also be used to determine the permeability, given knowledge of experimental parameters. The concentration and temperature dependence of electroosmosis and streaming potential is found to mostly conform to the predictions of a simple model based on the Helmholtz-Smoluchowski equation, the Stern model of the electrochemical double layer, and an elementary theory of ionic conduction.

  20. Fine-tuning the physicochemical properties of peptide-based blood-brain barrier shuttles.

    PubMed

    Ghasemy, Somaye; García-Pindado, Júlia; Aboutalebi, Fatemeh; Dormiani, Kianoush; Teixidó, Meritxell; Malakoutikhah, Morteza

    2018-05-01

    N-methylation is a powerful method to modify the physicochemical properties of peptides. We previously found that a fully N-methylated tetrapeptide, Ac-(N-MePhe) 4 -CONH 2 , was more lipophilic than its non-methylated analog Ac-(Phe) 4 -CONH 2 . In addition, the former crossed artificial and cell membranes while the latter did not. Here we sought to optimize the physicochemical properties of peptides and address how the number and position of N-methylated amino acids affect these properties. To this end, 15 analogs of Ac-(Phe) 4 -CONH 2 were designed and synthesized in solid-phase. The solubility of the peptides in water and their lipophilicity, as measured by ultra performance liquid chromatography (UPLC) retention times, were determined. To study the permeability of the peptides, the Parallel Artificial Membrane Permeability Assay (PAMPA) was used as an in vitro model of the blood-brain barrier (BBB). Contrary to the parent peptide, the 15 analogs crossed the artificial membrane, thereby showing that N-methylation improved permeability. We also found that N-methylation enhanced lipophilicity but decreased the water solubility of peptides. Our results showed that both the number and position of N-methylated residues are important factors governing the physicochemical properties of peptides. There was no correlation between the number of N-methylated amide bonds and any of the properties measured. However, for the peptides consecutively N-methylated from the N-terminus to the C-terminus (p1, p5, p11, p12 and p16), lipophilicity correlated well with the number of N-methylated amide bonds and the permeability of the peptides. Moreover, the peptides were non-toxic to HEK293T cells, as determined by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Facilitatory effect of AC-iontophoresis of lidocaine hydrochloride on the permeability of human enamel and dentine in extracted teeth.

    PubMed

    Ikeda, Hideharu; Suda, Hideaki

    2013-04-01

    The objectives of the present study were to quantitatively evaluate chemical permeability through human enamel/dentine using conductometry and to clarify if alternating current (AC) iontophoresis facilitates such permeability. Electrical impedance of different concentrations of lidocaine hydrochloride was measured using a bipolar platinum impedance probe. A quadratic curve closely fitted to the response functions between conductance and lidocaine hydrochloride. For analysis of the passage of lidocaine hydrochloride through human enamel/dentine, eight premolars that were extracted for orthodontic treatment were sectioned at the cemento-enamel junction. The tooth crowns were held between two chambers with a double O-ring. The enamel-side chamber was filled with lidocaine hydrochloride, and the pulp-side chamber was filled with extrapure water. Two platinum plate electrodes were set at the end of each chamber to pass alternating current. A simulated interstitial pulp pressure was applied to the pulp-side chamber. The change in the concentration of lidocaine hydrochloride in the pulp-side chamber was measured every 2min using a platinum recording probe positioned at the centre of the pulp-side chamber. Passive entry without iontophoresis was used as a control. The level of lidocaine hydrochloride that passed through enamel/dentine against the dentinal fluid flow increased with time. Electrical conductance (G, mho) correlated closely to the concentration (x, mmol/L) of lidocaine hydrochloride (G=2.16x(2)+0.0289x+0.000376, r(2)=0.999). Lidocaine hydrochloride can pass through enamel/dentine. Conductometry showed that the level of lidocaine hydrochloride that passed through enamel/dentine was increased by AC iontophoresis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effects of nanosilver on sound absorption coefficients in solid wood species.

    PubMed

    Taghiyari, Hamid Reza; Esmailpour, Ayoub; Zolfaghari, Habib

    2016-06-01

    Sound absorption coefficients (ACs) were determined in five solid woods (poplar, beech, walnut, mulberry, and fir) in the longitudinal and tangential directions at four different frequencies of 800, 1000, 2000, and 4000 Hz. The length of the longitudinal and tangential specimens was 50-mm and 10-mm, respectively. Separate sets of specimens were impregnated with either nanosilver suspension or water. The size range of nanoparticles was 30-80 nm. Results showed that sound ACs were lower in longitudinal specimens because sound waves could penetrate the open ends of vessels more easily, being trapped and damped there. Impregnation with both nanosilver suspension and water resulted in a significant decrease in the sound ACs. The decrease in the ACs was due to the collapsing and accumulation of perforation plates and cell parts, blocking the way through which waves could pass through the vessels. This caused higher damping due to a phenomenon called vibration decay. Correlation between gas permeability versus sound AC is significantly dependant on the porous structure of individual specimens.

  3. Intestinal Permeability of β-Lapachone and Its Cyclodextrin Complexes and Physical Mixtures.

    PubMed

    Mangas-Sanjuan, Victor; Gutiérrez-Nieto, Jorge; Echezarreta-López, Magdalena; González-Álvarez, Isabel; González-Álvarez, Marta; Casabó, Vicente-Germán; Bermejo, Marival; Landin, Mariana

    2016-12-01

    β-Lapachone (βLAP) is a promising, poorly soluble, antitumoral drug. βLAP combination with cyclodextrins (CDs) improves its solubility and dissolution but there is not enough information about the impact of cyclodextrins on βLAP intestinal permeability. The objectives of this work were to characterize βLAP intestinal permeability and to elucidate cyclodextrins effect on the dissolution properties and on the intestinal permeability. The final goal was to evaluate CDs influence on the oral absorption of βLAP. Binary systems (physical mixtures and inclusion complexes) including βLAP and CDs (β-cyclodextrin: βCD, random-methyl-β-cyclodextrin: RMβCD and sulfobutylether-β-cyclodextrin: SBEβCD) have been prepared and analysed by differential scanning calorimetry. βLAP (and its combinations with CDs) absorption rate coefficients and effective permeability values have been determined in vitro in MDCK or MDCK-Mdr1 monolayers and in situ in rat by a closed loop perfusion technique. DSC results confirmed the formation of the inclusion complexes. βLAP-CDs inclusion complexes improve drug solubility and dissolution rate in comparison with physical mixtures. βLAP presented a high permeability value which can provide complete oral absorption. Its oral absorption is limited by its low solubility and dissolution rate. Cyclodextrin (both as physical mixtures and inclusion complexes) showed a positive effect on the intestinal permeability of βLAP. Complexation with CDs does not reduce βLAP intestinal permeability in spite of the potential negative effect of the reduction in free fraction of the drug. The use of RMβCD or SBEβCD inclusion complexes could benefit βLAP oral absorption by enhancing its solubility, dissolution rate and permeability.

  4. On the role of adenylate cyclase, tyrosine kinase, and tyrosine phosphatase in the response of nerve and glial cells to photodynamic impact

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Bragin, D. E.; Dergacheva, Olga Y.; Vanzha, O.; Oparina, L.; Uzdensky, Anatoly B.

    2004-08-01

    The role of different intercellular signaling pathways involving adenylate cyclase (AC), receptor tyrosine kinase (RTK), tyrosine and serine/threonine protein phosphatases (PTP or PP, respectively) in the response of crayfish mechanoreceptor neuron (MRN) and surrounding glial cells to photodynamic effect of aluminum phthalocyanine Photosens have been studied. AC inhibition by MDL-12330A decreased neuron lifetime, whereas AC activation by forskolin increase it. Thus, increase in cAMP produced by activated AC protects SRN against photodynamic inactivation. Similarly, RTK inhibition by genistein decreased neuron lifetime, while inhibition of PTP or PP that remove phosphate groups from proteins, prolonged neuronal activity. AC inhibition reduced photoinduced damage of the plasma membrane, and, therefore, necrosis in neuronal and glial cells. RTK inhibition protected only neurons against PDT-induced membrane permeabilization while glial cells became lesser permeable under ortovanadate-mediated PTP inhibition. AC activation also prevented PDT-induced apoptosis in glial cells. PP inhibition enhanced apoptotic processes in photosensitized glial cells. Therefore, both intercellular signaling pathways involving AC and TRK are involved in the maintenance of neuronal activity, integrity of the neuronal and glial plasma membranes and in apoptotic processes in glia under photosensitization.

  5. Antitumor efficacy and tolerability of systemically administered gallium acetylacetonate-loaded gelucire-stabilized nanoparticles.

    PubMed

    Wehrung, Daniel; Bi, Lipeng; Geldenhuys, Werner J; Oyewumi, Moses O

    2013-06-01

    The widespread clinical success with most gallium compounds in cancer therapy is markedly hampered by lack of tumor specific accumulation, poor tumor permeability and undesirable toxicity to healthy tissues. The aim of this work was to investigate for the first time antitumor mechanism of a new gallium compound (gallium acetylacetonate; GaAcAc) while assessing effectiveness of gelucire-stabilized nanoparticles (NPs) for potential application in gallium-based lung cancer therapy. NPs loaded with GaAcAc (Ga-NPs) were prepared using mixtures of cetyl alcohol with Gelucire 44/14 (Ga-NP-1) or Gelucire 53/13 (Ga-NP-2) as matrix materials. Of special note from this work is the direct evidence of involvement of microtubule disruption in antitumor effects of GaAcAc on human lung adenocarcinoma (A549). In-vivo tolerability studies were based on plasma ALT, creatinine levels and histopathological examination of tissues. The superior in-vivo antitumor efficacy of Ga-NPs over GaAcAc was depicted in marked reduction of tumor weight and tumor volume as well as histological assessment of excised tumors. Compared to free GaAcAc, Ga-NPs showed a 3-fold increase in tumor-to-blood gallium concentrations with minimized overall exposure to healthy tissues. Overall, enhancement of antitumor effects of GaAcAc by gelucire-stabilized NPs coupled with reduced exposure of healthy tissues to gallium would likely ensure desired therapeutic outcomes and safety of gallium-based cancer treatment.

  6. An Experimental Study on Characterization of Physical Properties of Ultramafic Rocks and Controls on Evolution of Fracture Permeability During Serpentinization at Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Farough, Aida

    Serpentinization is a complex set of hydration reactions, where olivine and pyroxene are replaced by serpentine, magnetite, brucite, talc and carbonate minerals. Serpentinization reactions alter chemical, mechanical, magnetic, seismic, and hydraulic properties of the crust. To understand the complicated nature of serpentinization and the linkages between physical and chemical changes during the reactions, I performed flow-through laboratory experiments on cylindrically cored samples of ultramafic rocks. Each core had a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at an effective pressure of 30 MPa, and temperature of 260"aC, simulating a depth of 2 km under hydrostatic conditions. Fracture permeability decreased by one to two orders of magnitude during the 200 to 340 hour experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferromagnesian minerals. The rate of transformation of olivine to serpentine in a tensile fracture is calculated using the data on evolution of fracture permeability assuming the fracture permeability could be represented by parallel plates. Assuming the dissolution and precipitation reactions occur simultaneously; the rate of transformation at the beginning of the experiments was 10-8-10-9 (mol/m2s) and decreased monotonically by about an order of magnitude towards the end of the experiment. Results show that dissolution and precipitation is the main mechanism contributing to the reduction in fracture aperture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems may be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses may be required to maintain fluid circulation. Another set of flow through experiments were performed on intact samples of ultramafic rocks at room temperature and effective pressures of 10, 20 and 30 MPa to estimate the pressure dependency of intact permeability. Porosity and density measurements were also performed with the purpose of characterizing these properties of ultramafic rocks. The pressure dependency of the coefficient of matrix permeability of the ultramafic rock samples fell in the range of 0.05-0.14 MPa -1. Using porosity and permeability measurements, the ratio of interconnected porosity to total porosity was estimated to be small and the permeability of the samples was dominantly controlled by microcracks. Using the density and porosity measurements, the degree of alteration of samples was estimated. Samples with high density and pressure dependent permeability had a smaller degree of alteration than those with lower density and pressure dependency.

  7. A comparison of bactericidal/permeability-increasing protein variant versus recombinant endotoxin-neutralizing protein for the treatment of Escherichia coli sepsis in rats .

    PubMed

    Stack, A M; Saladino, R A; Siber, G R; Thompson, C; Marra, M N; Novitsky, T J; Fleisher, G R

    1997-01-01

    To compare a recombinant bactericidal/permeability-increasing protein variant and a recombinant endotoxin-neutralizing protein. Randomized, blinded, controlled study, using a rat model of sepsis. Animal research facility. Male Wistar rats. An inoculum of 1.5 x 10(7) to 1.8 x 10(8) Escherichia coli O18ac K1, implanted in the peritoneum, produced bacteremia in 95% of animals after 1 hr. One hour after E. coli challenge, animals received recombinant bactericidal/permeability-increasing protein variant, recombinant endotoxin-neutralizing protein, or saline intravenously, followed by ceftriaxone and gentamicin intramuscularly. Twenty-four (85.7%) of 28 animals receiving recombinant endotoxin-neutralizing protein (p < .001 vs. control) survived 7 days compared with nine (33.3%) of 27 recombinant bactericidal/permeability-increasing protein variant-treated (p < .001 vs. control) and two (6.5%) of 31 control animals. Both recombinant endotoxin-neutralizing protein and recombinant bactericidal/permeability-increasing protein variant improved survival. Recombinant endotoxin-neutralizing protein was superior to recombinant bactericidal/permeability-increasing protein variant in its protective effect at the doses tested. Our results suggest that both proteins may be useful in the treatment of human Gram-negative sepsis.

  8. In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium.

    PubMed

    Zidan, Mohamed F; Ibrahim, Hany M; Afouna, Mohsen I; Ibrahim, Elsherbeny A

    2018-08-01

    The aim of this study was to explore the feasibility of complexing the poorly water-soluble drug atorvastatin calcium (AC) with β-cyclodextrin (β-CD) based nanosponges (NS), which offer advantages of improving dissolution rate and eventually oral bioavailability. Blank NS were fabricated at first by reacting β-CD with the cross-linker carbonyldiimidazole at different molar ratios (1:2, 1:4, and 1:8), then NS of highest solubilization extent for AC were complexed with AC. AC loaded NS (AC-NS) were characterized for various physicochemical properties. Pharmacokinetic, pharmacodynamics and histological finding of AC-NS were performed in rats. The prepared AC-NS showed particles size ranged from 408.7 ± 12.9 to 423 ± 15.9 nm while zeta potential values varied from -21.7 ± 0.90 to -22.7 ± 0.85 mV. The loading capacity varied from 17.9 ± 1.21 to 34.1 ± 1.16%. DSC, FT-IR, and PXRD studies confirmed the complexation of AC with NS and amorphous state of the drug in the complex. AC-NS displayed a biphasic release pattern with increase in the dissolution rate of AC as compared to plain AC. Oral administration of AC-NS (1:4 w/w, drug: NS) to rats led to 2.13-folds increase in the bioavailability as compared to AC suspension. Pharmacodynamics studies in rats with fatty liver revealed significant reduction (p < .05) in total cholesterol, triglyceride, LDL-C and increased level of beneficial HDL-C along with improvement in the associated liver steatosis as confirmed through photomicrographs of liver sections. In this study, we confirmed that complexation of AC with NS would be a viable approach for improving oral bioavailability and in vivo performance of AC.

  9. PEMFC development at Asahi Glass Co., Ltd.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshitake, M.; Yanagisawa, E.; Naganuma, T.

    2000-07-01

    Perfluorinated ion exchange membranes were studied and the membrane technology for PEMFC has been developed. Thermal stability, mechanical strength, water content, AC specific resistance and gas permeability were measured. The influence of membrane thickness on gas permeability and the influence of incorporation of cations on water content and AC specific resistance of Flemion{reg_sign} and Nafion{reg_sign}117 were estimated. Gas permeation rates of the membranes decreased in inverse proportion to the increase of the membrane thickness and gas permeability coefficients were nearly constant and independent of the thickness. Hydrogen permeation rates of Flemion S at 70 C were converted to 2.1 mA/cm{supmore » 2} as current density. Flemion R-electrode assembly showed to maintain stable performance for over 3,500 hr. Furthermore, it was found that usage of thinner membranes of one with higher ion-exchange capacity gave not only lower internal cell voltage but also higher IR-free cell voltage. PTFE-yarn embedded type membrane (Flemion Mc and Sc) and PTFE-fibril dispersed type (Flemion Rf2) was examined to afford improvement in mechanical strength at moist and high temperature atmosphere. Flemion Sc (80{micro}m) was examined to give high cell performance of 0.67V at 0.5A/cm2, 80 C, 1 ata. Flemion Mc-electrode assembly was examined to keep stable performance during the life test of over 1,500 hr.« less

  10. Incorporation of bentonite clay in cassava starch films for the reduction of water vapor permeability.

    PubMed

    Monteiro, M K S; Oliveira, V R L; Santos, F K G; Barros Neto, E L; Leite, R H L; Aroucha, E M M; Silva, R R; Silva, K N O

    2018-03-01

    Complete factorial planning 2 3 was applied to identify the influence of the cassava starch(A), glycerol(B) and modified clay(C) content on the water vapor permeability(WVP) of the cassava starch films with the addition of bentonite clay as a filler, its surface was modified by ion exchange from cetyltrimethyl ammonium bromide. The films were characterized by X-ray diffraction(XRD), fourier transform by infrared radiation(FTIR), atomic force microscopy(AFM) and scanning electron microscopy(SEM). The factorial analysis suggested a mathematical model thats predicting the optimal condition of the minimization of WVP. The influence of each individual factor and interaction in the WVP was investigated by Pareto graph, response surface and the optimization was established by the desirability function. The sequence of the degree of statistical significance of the investigated effects on the WVP observed in the Pareto graph was C>B>A>BC>AC. Interactions AB, BC and AC showed that the modified clay was the factor of greater significance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Thermal treatment of low permeability soils using electrical resistance heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udell, K.S.

    1996-08-01

    The acceleration of recovery rates of second phase liquid contaminants from the subsurface during gas or water pumping operations is realized by increasing the soil and ground water temperature. Electrical heating with AC current is one method of increasing the soil and groundwater temperature and has particular applicability to low permeability soils. Several mechanisms have been identified that account for the enhanced removal of the contaminants during electrical heating. These are vaporization of liquid contaminants with low boiling points, temperature-enhanced evaporation rates of semi-volatile components, and removal of residual contaminants by the boiling of residual water. Field scale studies ofmore » electrical heating and fluid extraction show the effectiveness of this technique and its applicability to contaminants found both above and below the water table and within low permeability soils. 10 refs., 8 figs.« less

  12. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE PAGES

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; ...

    2016-05-23

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the hypothesis that it is the extrusion mechanism and order in linearly arrayed TCs that enables production of crystalline cellulose.« less

  13. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4 Å resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsDmore » in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 angstrom for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. Furthermore, the results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the hypothesis that it is the extrusion mechanism and order in linearly arrayed TCs that enables production of crystalline cellulose.« less

  14. Structure of the Cellulose Synthase Complex of Gluconacetobacter hansenii at 23.4 Å Resolution

    PubMed Central

    Du, Juan; Vepachedu, Venkata; Cho, Sung Hyun; Kumar, Manish; Nixon, B. Tracy

    2016-01-01

    Bacterial crystalline cellulose is used in biomedical and industrial applications, but the molecular mechanisms of synthesis are unclear. Unlike most bacteria, which make non-crystalline cellulose, Gluconacetobacter hansenii extrudes profuse amounts of crystalline cellulose. Its cellulose synthase (AcsA) exists as a complex with accessory protein AcsB, forming a 'terminal complex' (TC) that has been visualized by freeze-fracture TEM at the base of ribbons of crystalline cellulose. The catalytic AcsAB complex is embedded in the cytoplasmic membrane. The C-terminal portion of AcsC is predicted to form a translocation channel in the outer membrane, with the rest of AcsC possibly interacting with AcsD in the periplasm. It is thus believed that synthesis from an organized array of TCs coordinated with extrusion by AcsC and AcsD enable this bacterium to make crystalline cellulose. The only structural data that exist for this system are the above mentioned freeze-fracture TEM images, fluorescence microscopy images revealing that TCs align in a row, a crystal structure of AcsD bound to cellopentaose, and a crystal structure of PilZ domain of AcsA. Here we advance our understanding of the structural basis for crystalline cellulose production by bacterial cellulose synthase by determining a negative stain structure resolved to 23.4 Å for highly purified AcsAB complex that catalyzed incorporation of UDP-glucose into β-1,4-glucan chains, and responded to the presence of allosteric activator cyclic diguanylate. Although the AcsAB complex was functional in vitro, the synthesized cellulose was not visible in TEM. The negative stain structure revealed that AcsAB is very similar to that of the BcsAB synthase of Rhodobacter sphaeroides, a non-crystalline cellulose producing bacterium. The results indicate that the crystalline cellulose producing and non-crystalline cellulose producing bacteria share conserved catalytic and membrane translocation components, and support the hypothesis that it is the extrusion mechanism and order in linearly arrayed TCs that enables production of crystalline cellulose. PMID:27214134

  15. Impact of ventilation systems and energy savings in a building on the mechanisms governing the indoor radon activity concentration.

    PubMed

    Collignan, Bernard; Powaga, Emilie

    2017-11-23

    For a given radon potential in the ground and a given building, the parameters affecting the indoor radon activity concentration (IRnAC) are indoor depressurization of a building and its air change rate. These parameters depend mainly on the building characteristics, such as airtightness, and on the nature and performances of the ventilation system. This study involves a numerical sensitivity assessment of the indoor environmental conditions on the IRnAC in buildings. A numerical ventilation model has been adapted to take into account the effects of variations in the indoor environmental conditions (depressurization and air change rate) on the radon entry rate and on the IRnAC. In the context of the development of a policy to reduce energy consumption in a building, the results obtained showed that IRnAC could be strongly affected by variations in the air permeability of the building associated with the ventilation regime. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Platinum(II) and palladium(II) complexes with 2-acetylpyridine thiosemicarbazone: cytogenetic and antineoplastic effects.

    PubMed

    Lakovidou, Z; Papageorgiou, A; Demertzis, M A; Mioglou, E; Mourelatos, D; Kotsis, A; Yadav, P N; Kovala-Demertzi, D

    2001-01-01

    The effect of three novel complexes of Pt(II) and three complexes of Pd(II) with 2-acetylpyridine thiosemicarbazone (HAcTsc) on sister chromatid exchange (SCE) rates and human lymphocyte proliferation kinetics on a molar basis was studied. Also, the effect of Pt(II) and Pd(II) complexes against leukemia P388 was investigated. Among these compounds, the most effective in inducing antitumor and cytogenetic effects were the complexes [Pt(AcTsc)2] x H2O and [Pd(AcTsc)2] while the rest, i.e. (HAcTsc), [Pt(AcTsc)Cl], [Pt(HAcTsc)2]Cl2 x 2H2O, [Pd(AcTsc)Cl] and [Pd(HAcTsc)2]Cl2, displayed marginal cytogenetic and antitumor effects.

  17. Radiation induced dechlorination of some chlorinated hydrocarbons in aqueous suspensions of various solid particles

    NASA Astrophysics Data System (ADS)

    Múčka, V.; Buňata, M.; Čuba, V.; Silber, R.; Juha, L.

    2015-07-01

    Radiation induced dechlorination of trichloroethylene (TCE) and tetrachloroethylene (PCE) in aqueous solutions containing the active carbon (AC) or cupric oxide (CuO) as the modifiers was studied. The obtained results were compared to the previously studied dechlorination of polychlorinated biphenyls (PCBs). Both modifiers were found to decrease the efficiency of dechlorination. The AC modifier acts mainly via adsorption of the aliphatic (unlike the aromatic) hydrocarbons and the CuO oxide mainly inhibits the mineralization of the perchloroethylene. The results presented in this paper will be also helpful for the studies of the impact of chlorinated hydrocarbons on the membrane permeability of living cells.

  18. Role of permissive hypotension, hypertonic resuscitation and the global increased permeability syndrome in patients with severe hemorrhage: adjuncts to damage control resuscitation to prevent intra-abdominal hypertension.

    PubMed

    Duchesne, Juan C; Kaplan, Lewis J; Balogh, Zsolt J; Malbrain, Manu L N G

    2015-01-01

    Secondary intra-abdominal hypertension (IAH) and abdominal compartment syndrome (ACS) are closely related to fluid resuscitation. IAH causes major deterioration of the cardiac function by affecting preload, contractility and afterload. The aim of this review is to discuss the different interactions between IAH, ACS and resuscitation, and to explore a new hypothesis with regard to damage control resuscitation, permissive hypotension and global increased permeability syndrome. Review of the relevant literature via PubMed search. The recognition of the association between the development of ACS and resuscitation urged the need for new approach in traumatic shock management. Over a decade after wide spread application of damage control surgery damage control resuscitation was developed. DCR differs from previous resuscitation approaches by attempting an earlier and more aggressive correction of coagulopathy, as well as metabolic derangements like acidosis and hypothermia, often referred to as the 'deadly triad' or the 'bloody vicious cycle'. Permissive hypotension involves keeping the blood pressure low enough to avoid exacerbating uncontrolled haemorrhage while maintaining perfusion to vital end organs. The potential detrimental mechanisms of early, aggressive crystalloid resuscitation have been described. Limitation of fluid intake by using colloids, hypertonic saline (HTS) or hyperoncotic albumin solutions have been associated with favourable effects. HTS allows not only for rapid restoration of circulating intravascular volume with less administered fluid, but also attenuates post-injury oedema at the microcirculatory level and may improve microvascular perfusion. Capillary leak represents the maladaptive, often excessive, and undesirable loss of fluid and electrolytes with or without protein into the interstitium that generates oedema. The global increased permeability syndrome (GIPS) has been articulated in patients with persistent systemic inflammation failing to curtail transcapillary albumin leakage and resulting in increasingly positive net fluid balances. GIPS may represent a third hit after the initial insult and the ischaemia reperfusion injury. Novel markers like the capillary leak index, extravascular lung water and pulmonary permeability index may help the clinician in guiding appropriate fluid management. Capillary leak is an inflammatory condition with diverse triggers that results from a common pathway that includes ischaemia-reperfusion, toxic oxygen metabolite generation, cell wall and enzyme injury leading to a loss of capillary endothelial barrier function. Fluid overload should be avoided in this setting.

  19. Transintestinal transport mechanisms of 5-aminosalicylic acid (in situ rat intestine perfusion, Caco-2 cells) and Biopharmaceutics Classification System.

    PubMed

    Smetanová, Libuše; Stětinová, Věra; Kholová, Dagmar; Kuneš, Martin; Nobilis, Milan; Svoboda, Zbyněk; Květina, Jaroslav

    2013-09-01

    The aim of the study was 1) to estimate permeability of 5-aminosalicylic acid (5-ASA), 2) to categorize 5-ASA according to BCS (Biopharmaceutics Classification System), and 3) to contribute to determination of 5-ASA transintestinal transport and biotransformation mechanisms. The in situ rat intestine perfusion was used as an initial method to study 5-ASA transport. The amount of 5-ASA (released from tablet) transferred into portal circulation reached 5.79 ± 0.24%. During this transport, the intestinal formation of 5-ASA main metabolite (N-ac-5-ASA) occurred. N-ac-5-ASA was found in perfusate both from intestinal lumen and from v. portae. In in vitro Caco-2 monolayers, transport of 5-ASA (10-1000 µmol/l) was studied in apical-basolateral and basolateral-apical direction (iso-pH 7.4 conditions). The transport of total 5-ASA (parent drug plus intracellularly formed N-ac-5-ASA) was linear with time, concentration- and direction-dependent. Higher basolateral-apical (secretory) transport was mainly caused by higher transport of the metabolite (suggesting metabolite efflux transport). Transport of 5-ASA (only parent drug) was saturable (transepithelial carrier-mediated) at low doses, dominated by passive, paracellular process in higher doses which was confirmed by increased 5-ASA transport using Ca2+-free transport medium. The estimated low 5-ASA permeability and its low solubility enable to classify 5-ASA as BCS class IV.

  20. Measurement of electromagnetic properties of powder and solid metal materials for additive manufacturing

    NASA Astrophysics Data System (ADS)

    Todorov, Evgueni Iordanov

    2017-04-01

    The lack of validated nondestructive evaluation (NDE) techniques for examination during and after additive manufacturing (AM) component fabrication is one of the obstacles in the way of broadening use of AM for critical applications. Knowledge of electromagnetic properties of powder (e.g. feedstock) and solid AM metal components is necessary to evaluate and deploy electromagnetic NDE modalities for examination of AM components. The objective of this research study was to develop and implement techniques for measurement of powder and solid metal electromagnetic properties. Three materials were selected - Inconel 625, duplex stainless steel 2205, and carbon steel 4140. The powder properties were measured with alternate current (AC) model based eddy current technique and direct current (DC) resistivity measurements. The solid metal properties were measured with DC resistivity measurements, DC magnetic techniques, and AC model based eddy current technique. Initial magnetic permeability and electrical conductivity were acquired for both powder and solid metal. Additional magnetic properties such as maximum permeability, coercivity, retentivity, and others were acquired for 2205 and 4140. Two groups of specimens were tested along the build length and width respectively to investigate for possible anisotropy. There was no significant difference or anisotropy when comparing measurements acquired along build length to those along the width. A trend in AC measurements might be associated with build geometry. Powder electrical conductivity was very low and difficult to estimate reliably with techniques used in the study. The agreement between various techniques was very good where adequate comparison was possible.

  1. DFT modeling, UV-Vis and IR spectroscopic study of acetylacetone-modified zirconia sol-gel materials.

    PubMed

    Georgieva, Ivelina; Danchova, Nina; Gutzov, Stoyan; Trendafilova, Natasha

    2012-06-01

    Theoretical and spectroscopic studies of a series of monomeric and dimeric complexes formed through the modification of a zirconium butoxide precursor with acetylacetone and subsequent hydrolysis and/or condensation have been performed by applying DFT/B3LYP/6-31++G(d) and highly accurate RI-ADC(2) methods as well as IR and UV-Vis transmittance and diffuse reflectance spectroscopies. Based on DFT model calculations and simulated and experimental UV-Vis and IR spectra of all the studied structures, the most probable building units of the Zr(IV)-AcAc gel were predicted: the dimeric double hydroxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)(OH)(2br) 9 and the monooxo-bridged complex Zr(2)(AcAc)(2)(OH)(4)O(br)·2H(2)O 12. In both structures, the two AcAc ligands are coordinated to one Zr atom. It was shown that building units 9 and 12 determine the photophysical and vibrational properties of the gel material. The observed UV-Vis and IR spectra of Zr(IV)-AcAc gel were interpreted and a relation between the spectroscopic and structural data was derived. The observed UV-Vis bands at 315 nm and 298/288 nm were assigned to partial ligand-metal transitions and to intra-/inter-AcAc ligand transitions, respectively.

  2. Quantitative study of electrophoretic and electroosmotic enhancement during alternating current iontophoresis across synthetic membranes.

    PubMed

    Yan, Guang; Li, S Kevin; Peck, Kendall D; Zhu, Honggang; Higuchi, William I

    2004-12-01

    One of the primary safety and tolerability limitations of direct current iontophoresis is the potential for electrochemical burns associated with the necessary current densities and/or application times required for effective treatment. Alternating current (AC) transdermal iontophoresis has the potential to eliminate electrochemical burns that are frequently observed during direct current transdermal iontophoresis. Although it has been demonstrated that the intrinsic permeability of skin can be increased by applying low-to-moderate AC voltages, transdermal transport phenomena and enhancement under AC conditions have not been systematically studied and are not well understood. The aim of the present work was to study the fundamental transport mechanisms of square-wave AC iontophoresis using a synthetic membrane system. The model synthetic membrane used was a composite Nuclepore membrane. AC frequencies ranging from 20 to 1000 Hz and AC fields ranging from 0.25 to 0.5 V/membrane were investigated. A charged permeant, tetraethyl ammonium, and a neutral permeant, arabinose, were used. The transport studies showed that flux was enhanced by increasing the AC voltage and decreasing AC frequency. Two theoretical transport models were developed: one is a homogeneous membrane model; the other is a heterogeneous membrane model. Experimental transport data were compared with computer simulations based on these models. Excellent agreement between model predictions and experimental data was observed when the data were compared with the simulations from the heterogeneous membrane model. (c) 2004 Wiley-Liss, Inc. and the American Pharmacists Association

  3. The binuclear nickel center in the A-cluster of acetyl-CoA synthase (ACS) and two biomimetic dinickel complexes studied by X-ray absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Schrapers, P.; Mebs, S.; Ilina, Y.; Warner, D. S.; Wörmann, C.; Schuth, N.; Kositzki, R.; Dau, H.; Limberg, C.; Dobbek, H.; Haumann, M.

    2016-05-01

    Acetyl-CoA synthase (ACS) is involved in the bacterial carbon oxide conversion pathway. The binuclear nickel sites in ACS enzyme and two biomimetic synthetic compounds containing a Ni(II)Ni(II) unit (1 and 2) were compared using XAS/XES. EXAFS analysis of ACS proteins revealed similar Ni-N/O/S bond lengths and Ni-Ni/Fe distances as in the crystal structure in oxidized ACS, but elongated Ni-ligand bonds in reduced ACS, suggesting more reduced nickel species. The XANES spectra of ACS and the dinickel complexes showed overall similar shapes, but less resolved pre-edge and edge features in ACS, attributed to more distorted square-planar nickel sites in particular in reduced ACS. DFT calculation of pre-edge absorption and Kβ2,5 emission features reproduced the experimental spectra of the synthetic complexes, was sensitive even to the small geometry differences in 1 and 2, and indicated low-spin Ni(II) sites. Comparison of nickel sites in proteins and biomimetic compounds is valuable for deducing structural and electronic differences in response to ligation and redox changes.

  4. AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.

    2012-06-01

    AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.

  5. Fault current limiter with shield and adjacent cores

    DOEpatents

    Darmann, Francis Anthony; Moriconi, Franco; Hodge, Eoin Patrick

    2013-10-22

    In a fault current limiter (FCL) of a saturated core type having at least one coil wound around a high permeability material, a method of suppressing the time derivative of the fault current at the zero current point includes the following step: utilizing an electromagnetic screen or shield around the AC coil to suppress the time derivative current levels during zero current conditions.

  6. Multiferroic properties of microwave sintered PbFe12-xO19-δ

    NASA Astrophysics Data System (ADS)

    Prathap, S.; Madhuri, W.

    2017-05-01

    The effect of iron deficiency on the structural, electrical, ferroelectric and magnetic properties of nano PbFe12-xO19-δ (where x=0.0, 0.25, 0.50, 0.75, 1.0) hexaferrites prepared by sol-gel auto combustion and processed by microwaves are investigated. X-ray analysis confirms single phase magneto-plumbite phase formation. The surface morphology is studied from Field Emission Scanning Electron Microscope. Further, optical properties are investigated using Fourier Transform Infrared spectra and UV-visible spectra. AC electrical conductivity is estimated as a function of temperature and frequency in the range of room temperature (RT) to 500 °C and 100 Hz to 5MHz. AC electrical conduction analysis shows that conduction is mainly due to small polaron hopping mechanism. The variation of polarization with applied electric field exhibits hysteresis loop confirming the ferroelectric nature. The initial permeability studies with varying temperature reveals that the Curie transition temperature for the present series is around 400 °C. Variation of initial permeability with frequency ranging from 100 to 5 MHz shows a constant value (except for x=0.0) opening avenues for high frequency applications.

  7. Coordination-organometallic hybrid materials based on the trinuclear M(II)-Ru(II) (M=Ni and Zn) complexes: Synthesis, structural characterization, luminescence and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Pawal, S. B.; Lolage, S. R.; Chavan, S. S.

    2018-02-01

    A new series of trinuclear complexes of the type Ni[R-C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (1a-c) and Zn[Rsbnd C6H4Ndbnd CH(O)C6H3Ctbnd CRu(dppe)2Cl]2 (2a-c) have been prepared from the reaction of trans-[RuCl(dppe)2Ctbnd Csbnd C6H3(OH)(CHO)] (1) with aniline, 4-nitroaniline and 4-methoxyaniline (R1-3) in presence of nickel acetate and zinc acetate in CH2Cl2/MeOH (1:1) mixture. The structural properties of the complexes have been characterized by elemental analyses and spectroscopic techniques viz. FTIR, UV-Visible, 1H NMR and 31P NMR spectral studies. The crystal structure and morphology of the hybrid complexes was investigated with the help of X-ray powder diffraction (XRPD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The thermal properties of 1a-c and 2a-c were studied by thermogravimetric (TG) analysis. The electrochemical behaviour of the complexes reveals that all complexes displayed a quasireversible redox behaviour corresponding to Ru(II)/Ru(III) and Ni(II)/Ni(III) couples for 1a-c and only Ru(II)/Ru(III) couple for 2a-c. All complexes are emissive in solution at room temperature revealing the influence of substituents and solvent polarity on emission properties of the complexes.

  8. Mathematicians, Attributional Complexity, and Gender

    NASA Astrophysics Data System (ADS)

    Stalder, Daniel R.

    Given indirect indications in sex role and soda! psychology research that mathematical-deductive reasoning may negatively relate to social acuity, Study 1 investigated whether mathematicians were less attributionally complex than nonmathematicians. Study 1 administered the Attributional Complexity Scale, a measure of social acuity, to female and male faculty members and graduate students in four Midwestern schools. Atlrihutional complexity (AC) is the ability and motivation to give complex explanations for behavior. Study 1 found a significant interaction between field and gender. Only among women did mathematicians score lower on AC. In addition, an established gender difference in AC (that women score higher than men) was present only among nonmathematicians. Studies 2 and 3 offered some preliminary support for the possibility that it is generally female students who score tow on AC who aspire to he mathematicians and for the underlying view that female students' perceived similarity to mathematicians can influence their vocational choices.

  9. Partial characterization of chayotextle starch-based films added with ascorbic acid encapsulated in resistant starch.

    PubMed

    Martínez-Ortiz, Miguel A; Vargas-Torres, Apolonio; Román-Gutiérrez, Alma D; Chavarría-Hernández, Norberto; Zamudio-Flores, Paul B; Meza-Nieto, Martín; Palma-Rodríguez, Heidi M

    2017-05-01

    Chayotextle starch was modified by subjecting it to a dual treatment with acid and heating-cooling cycles. This caused a decrease in the content of amylose, which showed values of 30.22%, 4.80%, 3.27% and 3.57% for native chayotextle starch (NCS), starch modified by acid hydrolysis (CMS), and CMS with one (CMS1AC) and three autoclave cycles (CMS3AC), respectively. The percentage of crystallinity showed an increase of 36.9%-62% for NCS and CMS3AC. The highest content of resistant starch (RS) was observed in CMS3AC (37.05%). The microcapsules were made with CMS3AC due to its higher RS content; the total content of ascorbic acid of the microcapsules was 82.3%. The addition of different concentrations of CMS3AC microcapsules (0%, 2.5%, 6.255% and 12.5%) to chayotextle starch-based films (CSF) increased their tensile strength and elastic modulus. The content of ascorbic acid and RS in CSF was ranged from 0% to 59.4% and from 4.84% to 37.05% in the control film and in the film mixed with CMS3AC microcapsules, respectively. Water vapor permeability (WVP) values decreased with increasing concentrations of microcapsules in the films. Microscopy observations showed that higher concentrations of microcapsules caused agglomerations due their poor distribution in the matrix of the films. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions

    NASA Astrophysics Data System (ADS)

    Li, Xiangchen; Yan, Xiaopeng; Kang, Yili

    2018-04-01

    The combined effects of gas sorption, stress and temperature play a significant role in the changing behavior of gas permeability in coal seams. The effect of temperature on nitrogen and methane permeability of naturally fractured coal is investigated. Coal permeability, P-wave velocity and axial strain were simultaneously measured under two effective stresses and six different temperatures. The results showed that the behavior of nitrogen and methane permeability presented nonmonotonic changes with increasing temperature. The variation in the P-wave velocity and axial strain showed a good correspondence with coal permeability. A higher effective stress limited the bigger deformation and caused the small change in permeability. Methane adsorption and desorption significantly influence the mechanical properties of coal and play an important role in the variations in coal permeability. The result of coal permeability during a complete stress-strain process showed that the variation in permeability is determined by the evolution of the internal structure. The increase in the temperature of the gas saturated coal causes the complex interaction between matrix swelling, matrix shrinkage and micro-fracture generation, which leads to the complex changes in coal structure and permeability. These results are helpful to understand the gas transport mechanism for exploiting coal methane by heat injection.

  11. AcsF Catalyzes the ATP-dependent Insertion of Nickel into the Ni,Ni-[4Fe4S] Cluster of Acetyl-CoA Synthase*

    PubMed Central

    Gregg, Christina M.; Goetzl, Sebastian; Jeoung, Jae-Hun

    2016-01-01

    Acetyl-CoA synthase (ACS) catalyzes the reversible condensation of CO, CoA, and a methyl-cation to form acetyl-CoA at a unique Ni,Ni-[4Fe4S] cluster (the A-cluster). However, it was unknown which proteins support the assembly of the A-cluster. We analyzed the product of a gene from the cluster containing the ACS gene, cooC2 from Carboxydothermus hydrogenoformans, named AcsFCh, and showed that it acts as a maturation factor of ACS. AcsFCh and inactive ACS form a stable 2:1 complex that binds two nickel ions with higher affinity than the individual components. The nickel-bound ACS-AcsFCh complex remains inactive until MgATP is added, thereby converting inactive to active ACS. AcsFCh is a MinD-type ATPase and belongs to the CooC protein family, which can be divided into homologous subgroups. We propose that proteins of one subgroup are responsible for assembling the Ni,Ni-[4Fe4S] cluster of ACS, whereas proteins of a second subgroup mature the [Ni4Fe4S] cluster of carbon monoxide dehydrogenases. PMID:27382049

  12. Characterization of excess pore pressures at the toe of the Nankai accretionary complex, Ocean Drilling Program sites 1173, 1174, and 808: Results of one-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Gamage, K.; Screaton, E.

    2006-04-01

    Elevated fluid pore pressures play a critical role in the development of accretionary complexes, including the development of the décollement zone. In this study, we used measured permeabilities of core samples from Ocean Drilling Program (ODP) Leg 190 to develop a permeability-porosity relationship for hemipelagic sediments at the toe of the Nankai accretionary complex. This permeability-porosity relationship was used in a one-dimensional loading and fluid flow model to simulate excess pore pressures and porosities. Simulated excess pore pressure ratios (as a fraction of lithostatic pressure-hydrostatic pressure) using the best fit permeability-porosity relationship were lower than predicted from previous studies. We then tested sensitivity of excess pore pressure ratios in the underthrust sediments to bulk permeability, lateral stress in the prism, and a hypothetical low-permeability barrier at the décollement. Our results demonstrated significant increase in pore pressures below the décollement with lower bulk permeability, such as obtained by using the lower boundary of permeability-porosity data, or when a low-permeability barrier is added at the décollement. In contrast, pore pressures in the underthrust sediments demonstrated less sensitivity to added lateral stresses in the prism, although the profile of the excess pore pressure ratio is affected. Both simulations with lateral stress and a low-permeability barrier at the décollement resulted in sharp increases in porosity at the décollement, similar to that observed in measured porosities. Furthermore, in both scenarios, maximum excess pore pressure ratios were found at the décollement, suggesting that either of these factors would contribute to stable sliding along the décollement.

  13. Regional-dependent intestinal permeability and BCS classification: elucidation of pH-related complexity in rats using pseudoephedrine.

    PubMed

    Fairstein, Moran; Swissa, Rotem; Dahan, Arik

    2013-04-01

    Based on its lower Log P value relative to metoprolol, a marker for the low/high-permeability (P(eff)) class boundary, pseudoephedrine was provisionally classified as BCS low-permeability compound. On the other hand, following oral administration, pseudoephedrine fraction dose absorbed (F(abs)) and systemic bioavailability approaches 100%. This represents a challenge to the generally recognized P(eff)-F(abs) correlation. The purpose of this study was to elucidate the underlying mechanisms behind the confusion in pseudoephedrine's BCS classification. Pseudoephedrine's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Pseudoephedrine was found to be unequivocally a high-solubility compound. All of the permeability studies revealed similar phenomenon; at any given intestinal segment/pH, the permeability of metoprolol was higher than that of pseudoephedrine, however, as the intestinal region becomes progressively distal, and the pH gradually increases, pseudoephedrine's permeability rises above that of metoprolol in the former segment. This unique permeability pattern likely explains pseudoephedrine's complete absorption. In conclusion, pseudoephedrine is a BCS Class I compound; no discrepancy between P(eff) and F(abs) is involved in its absorption. Rather, it reflects the complexity behind P(eff) when considering the whole of the intestine. We propose to allow high-permeability classification to drugs with P(eff) that matches/exceeds the low/high class benchmark anywhere throughout the intestinal tract and not restricted necessarily to the jejunum.

  14. Molecular modeling of methyl-α-Neu5Ac analogues docked against cholera toxin--a molecular dynamics study.

    PubMed

    Blessy, J Jino; Sharmila, D Jeya Sundara

    2015-02-01

    Molecular modeling of synthetic methyl-α-Neu5Ac analogues modified in C-9 position was investigated by molecular docking and molecular dynamics (MD) simulation methods. Methyl-α-Neu5Ac analogues were docked against cholera toxin (CT) B subunit protein and MD simulations were carried out for three Methyl-α-Neu5Ac analogue-CT complexes (30, 10 and 10 ns) to estimate the binding activity of cholera toxin-Methyl-α-Neu5Ac analogues using OPLS_2005 force field. In this study, direct and water mediated hydrogen bonds play a vital role that exist between the methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ)-cholera toxin active site residues. The Energy plot, RMSD and RMSF explain that the simulation was stable throughout the simulation run. Transition of phi, psi and omega angle for the complex was calculated. Molecular docking studies could be able to identify the binding mode of methyl-α-Neu5Ac analogues in the binding site of cholera toxin B subunit protein. MD simulation for Methyl-α-9-N-benzoyl-amino-9-deoxy-Neu5Ac (BENZ), Methyl-α-9-N-acetyl-9-deoxy-9-amino-Neu5Ac and Methyl-α-9-N-biphenyl-4-acetyl-deoxy-amino-Neu5Ac complex with CT B subunit protein was carried out, which explains the stable nature of interaction. These methyl-α-Neu5Ac analogues that have computationally acceptable pharmacological properties may be used as novel candidates for drug design for cholera disease.

  15. The complexity of intestinal permeability: Assigning the correct BCS classification through careful data interpretation.

    PubMed

    Zur, Moran; Hanson, Allison S; Dahan, Arik

    2014-09-30

    While the solubility parameter is fairly straightforward when assigning BCS classification, the intestinal permeability (Peff) is more complex than generally recognized. In this paper we emphasize this complexity through the analysis of codeine, a commonly used antitussive/analgesic drug. Codeine was previously classified as a low-permeability compound, based on its lower LogP compared to metoprolol, a marker for the low-high permeability class boundary. In contrast, high fraction of dose absorbed (Fabs) was reported for codeine, which challenges the generally recognized Peff-Fabs correlation. The purpose of this study was to clarify this ambiguity through elucidation of codeine's BCS solubility/permeability class membership. Codeine's BCS solubility class was determined, and its intestinal permeability throughout the small intestine was investigated, both in vitro and in vivo in rats. Codeine was found to be unequivocally a high-solubility compound. All in vitro studies indicated that codeine's permeability is higher than metoprolol's. In vivo studies in rats showed similar permeability for both drugs throughout the entire small-intestine. In conclusion, codeine was found to be a BCS Class I compound. No Peff-Fabs discrepancy is involved in its absorption; rather, it reflects the risk of assigning BCS classification based on merely limited physicochemical characteristics. A thorough investigation using multiple experimental methods is prudent before assigning a BCS classification, to avoid misjudgment in various settings, e.g., drug discovery, formulation design, drug development and regulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase.

    PubMed

    Navarro, Gemma; Cordomí, Arnau; Casadó-Anguera, Verónica; Moreno, Estefanía; Cai, Ning-Sheng; Cortés, Antoni; Canela, Enric I; Dessauer, Carmen W; Casadó, Vicent; Pardo, Leonardo; Lluís, Carme; Ferré, Sergi

    2018-03-28

    G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit. Using a peptide-based approach, we here report evidence for the existence of functional pre-coupled complexes of heteromers of adenosine A 2A receptor and dopamine D 2 receptor homodimers coupled to their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation mediated by a Gs-coupled GPCR.

  17. High microwave attenuation performance of planar carbonyl iron particles with orientation of shape anisotropy field

    NASA Astrophysics Data System (ADS)

    Guo, Cheng; Yang, Zhihong; Shen, Shile; Liang, Juan; Xu, Guoyue

    2018-05-01

    Planar anisotropy carbonyl iron (PACI) particles were prepared from commercial spherical carbonyl iron particles through a high performance ball-milling technique. The paraffin composites with orientation of shape anisotropy field for these PACI particles were obtained by applying an external magnetic field during the fabrication process. The frequency-dependent complex permeability values of these prepared paraffin composites have been investigated in the frequency range of 1-18 GHz. The results demonstrate that the orientation of shape anisotropy field for these PACI particles can effectively increase the complex permeability and decrease the complex permittivity values. Benefit from the enhancement in the complex permeability and reduction in the complex permittivity, the better impedance matching condition can be obtained and thus the good microwave absorption performance can be achieved for the samples with enough magnetic field orientation time.

  18. Effect of the type of metal on the electrical conductivity and thermal properties of metal complexes: The relation between ionic radius of metal complexes and electrical conductivity

    NASA Astrophysics Data System (ADS)

    Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.

    2018-05-01

    Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.

  19. Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Li, Yan; Zhang, Yinbo; Zhang, Chang; Li, Xiongfei; Chen, Zhiliang; Huang, Junyi; Li, Xia; Flores, Giancarlo; Kamon, Masashi

    2014-11-01

    We investigated the optimum composition of permeable reactive barrier (PRB) materials for remediating groundwater heavily contaminated by landfill leachate, in column tests using various mixtures of zero-valent iron (ZVI), zeolite (Zeo) and activated carbon (AC) with 0.01-0.25, 3.0-5.0 and 0.7-1.0 mm grain sizes, respectively. The main contributors to the removal of organic/inorganic contaminants were ZVI and AC, and the optimum weight ratio of the three PRB materials for removing the contaminants and maintaining adequate hydraulic conductivity was found to be 5:1:4. Average reductions in chemical oxygen demand (COD) and contents of total nitrogen (TN), ammonium, Ni, Pb and 16 polycyclic aromatic hydrocarbons (PAHs) from test samples using this mixture were 55.8%, 70.8%, 89.2%, 70.7%, 92.7% and 94.2%, respectively. We also developed a systematic method for estimating the minimum required thickness and longevity of the PRB materials. A ≥ 309.6 cm layer with the optimum composition is needed for satisfactory longevity, defined here as meeting the Grade III criteria (the Chinese National Bureau of Standards: GB/T14848/93) for in situ treatment of the sampled groundwater for ≥ 10 years.

  20. Pumping-Induced Unsaturated Regions Beneath a Perennial River

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Jasperse, J.; Seymour, D.; Constantz, J.; Delaney, C.; Zhou, Q.

    2006-12-01

    The development of an unsaturated region beneath a streambed during groundwater pumping near streams reduces the capacity of the pumping system, changes flow paths, and alters the types of biological transformations in the streambed sediments. To investigate the formation of an unsaturated region beneath the streambed during near-stream groundwater pumping, a three-dimensional, multi-phase flow model was developed using TOUGH2 of the region near two horizontal collector wells operated by the Sonoma County Water Agency along the Russian River near Forestville, California. The simulations focus on the impact of streambed permeability on the development of an unsaturated region since streambed permeability controls the flux of river water entering and recharging the aquifer. The results indicate that as the streambed permeability decreases relative to the aquifer permeability, the size of the unsaturated region beneath the streambed increases. The simulations also demonstrate that the streambed permeabilities over which the aquifer beneath the streambed is unsaturated and able to extract water at the specified rate of 3200 m3/hr occurs over a relatively narrow range of values. Field measurements of streambed flow velocities, volumetric water content, and temperatures near the collector wells are also presented and compared with the simulation results. This work was supported by the Sonoma County Water Agency, through U.S. Department of Energy Contract No. DE-AC03-76SF00098.

  1. Polymer Soft-Landing Isolation of Acetylene on Polystyrene and Poly(vinylpyridine): A Novel Approach to Probing Hydrogen Bonding in Polymers.

    PubMed

    Li, Yike; Samet, Cindy

    2015-09-17

    Hydrogen-bonded complexes of acetylene (Ac) with the polymers polystyrene (PS), poly(4-vinylpyridine) (P4VP), and poly(2-vinylpyridine) (P2VP) have been characterized for the first time at 16 K in a "polymer soft-landing isolation" experiment which is being pioneered in our research laboratory. In particular, changes in vibrational modes of Ac provide ample evidence for hydrogen-bonded complexes between Ac and the phenyl groups of PS or the pyridyl groups of P4VP and P2VP. With PS, the proton on the top Ac molecule of the classic T-shaped Ac dimer interacts with the π cloud of the benzene (Bz) ring to form a C-H---π interaction, while the π cloud of the lower Ac forms a second C-H---π interaction with a proton on the Bz ring. An analogous (ring)1-(Ac)2 double interaction occurs between an Ac dimer and the pyridine (Pyr) rings on both P2VP and P4VP, yielding a C-H---N and C-H---π interaction. With P4VP and P2VP a second bridged (ring)2-(Ac)2 product is formed, with the Ac dimer forming nearly collinear C-H---N hydrogen bonds to adjacent Pyr rings. On P2VP this bridged product is the only one after extensive annealing. These complexes in which Ac acts as both proton donor and acceptor have not previously been observed in conventional matrix isolation experiments. This study is the second from our laboratory employing this method, which represents a slight modification of the traditional matrix isolation technique.

  2. Filter aids influence on pressure drop across a filtration system

    NASA Astrophysics Data System (ADS)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  3. AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae.

    PubMed

    Rao, Rosa; Fiandra, Luisa; Giordana, Barbara; de Eguileor, Magda; Congiu, Terenzio; Burlini, Nedda; Arciello, Stefania; Corrado, Giandomenico; Pennacchio, Francesco

    2004-11-01

    Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) chitinase A (ChiA) is a protein which promotes the final liquefaction of infected host larvae. The potential of this viral molecule as a new tool for insect control is explored here. The ChiA gene was isolated from the AcMNPV genome by PCR and expressed in E. coli. The recombinant protein, purified by affinity chromatography, showed both exo- and endo-chitinase activities and produced perforations on the peritrophic membrane (PM) of Bombyx mori larvae which increased in number and in size, in a dose-dependent manner. This structural alteration resulted into a significant increase of PM permeability to methylene blue and to the small neuropeptide proctolin. When the fifth instar larvae of B. mori were fed on a artificial diet supplemented with the recombinant ChiA, 100% mortality was observed at a dose of 1 microg/g of larval body weight (LW), while at sub-lethal doses of 0.56 microg/g LW, a reduced larval growth was recorded. These results indicate that AcMNPV-ChiA may offer interesting new opportunities for pest control.

  4. Improving permeability and oral absorption of mangiferin by phospholipid complexation.

    PubMed

    Ma, Hequn; Chen, Hongming; Sun, Le; Tong, Lijin; Zhang, Tianhong

    2014-03-01

    Mangiferin is an active ingredient of medicinal plant with poor hydrophilicity and lipophilicity. Many reports focused on improving aqueous solubility, but oral bioavailability of mangiferin was still limited. In this study, we intended to increase not only solubility, but also membrane permeability of mangiferin by a phospholipid complexation technique. The new complex's physicochemical properties were characterized in terms of scanning electron microscopy (SEM), differential scanning calorimetry (DSC), infrared absorption spectroscopy (IR), aqueous solubility, oil-water partition coefficient and in vitro dissolution. The intestinal absorption of the complex was studied by the rat in situ intestinal perfusion model. After oral administration of mangiferin-phospholipid complex and crude mangiferin in rats, the concentrations of mangiferin were determined by a validated RP-HPLC method. Results showed that the solubility of the complex in water and in n-octanol was enhanced and the oil-water partition coefficient was improved by 6.2 times and the intestinal permeability in rats was enhanced significantly. Peak plasma concentration and AUC of mangiferin from the complex (Cmax: 377.66 μg/L, AUC: 1039.94 μg/L*h) were higher than crude mangiferin (Cmax: 180 μg/L, AUC: 2355.63 μg/L*h). In view of improved solubility and enhanced permeability, phospholipid complexation technique can increase bioavailability of mangiferin by 2.3 times in comparison to the crude mangiferin. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Aging dynamics in the polymer glass of poly(2-chlorostyrene): Dielectric susceptibility and volume

    NASA Astrophysics Data System (ADS)

    Fukao, Koji; Tahara, Daisuke

    2009-11-01

    Aging dynamics was investigated in the glassy states of poly(2-chlorostyrene) by measuring the complex electrical capacitance during aging below the glass transition temperature. The variations with time and temperature of the ac dielectric susceptibility and volume could be determined by simply measuring the variation in the complex electrical capacitance. Isothermal aging at a given temperature for several hours after an intermittent stop in constant-rate cooling is stored in the deviations of both the real and imaginary parts of the complex ac dielectric susceptibility and volume. During cooling after isothermal aging, the deviation of the ac dielectric susceptibility from the reference value decreases and almost vanishes at room temperature. By contrast, the deviation in volume induced during isothermal aging remains almost constant during cooling. The simultaneous measurement of ac dielectric susceptibility and volume clearly revealed that the ac dielectric susceptibility exhibits a full rejuvenation effect, whereas the volume does not show any rejuvenation effects. We discuss a plausible model that can reproduce the present experimental results.

  6. Field application of activated carbon amendment for in-situ stabilization of polychlorinated biphenyls in marine sediment.

    PubMed

    Cho, Yeo-Myoung; Ghosh, Upal; Kennedy, Alan J; Grossman, Adam; Ray, Gary; Tomaszewski, Jeanne E; Smithenry, Dennis W; Bridges, Todd S; Luthy, Richard G

    2009-05-15

    We report results on the first field-scale application of activated carbon (AC) amendment to contaminated sediment for in-situ stabilization of polychlorinated biphenyls (PCBs). The test was performed on a tidal mud flat at South Basin, adjacent to the former Hunters Point Naval Shipyard, San Francisco Bay, CA. The major goals of the field study were to (1) assess scale up of the AC mixing technology using two available, large-scale devices, (2) validate the effectiveness of the AC amendment at the field scale, and (3) identify possible adverse effects of the remediation technology. Also, the test allowed comparison among monitoring tools, evaluation of longer-term effectiveness of AC amendment, and identification of field-related factors that confound the performance of in-situ biological assessments. Following background pretreatment measurements, we successfully incorporated AC into sediment to a nominal 30 cm depth during a single mixing event, as confirmed by total organic carbon and black carbon contents in the designated test plots. The measured AC dose averaged 2.0-3.2 wt% and varied depending on sampling locations and mixing equipment. AC amendment did not impact sediment resuspension or PCB release into the water column over the treatment plots, nor adversely impactthe existing macro benthic community composition, richness, or diversity. The PCB bioaccumulation in marine clams was reduced when exposed to sediment treated with 2% AC in comparison to the control plot Field-deployed semi permeable membrane devices and polyethylene devices showed about 50% reduction in PCB uptake in AC-treated sediment and similar reduction in estimated pore-water PCB concentration. This reduction was evident even after 13-month post-treatment with then 7 months of continuous exposure, indicating AC treatment efficacy was retained for an extended period. Aqueous equilibrium PCB concentrations and PCB desorption showed an AC-dose response. Field-exposed AC after 18 months retained a strong stabilization capability to reduce aqueous equilibrium PCB concentrations by about 90%, which also supports the long-term effectiveness of AC in the field. Additional mixing during or after AC deployment, increasing AC dose, reducing AC-particle size, and sequential deployment of AC dose will likely improve AC-sediment contact and overall effectiveness. The reductions in PCB availability observed with slow mass transfer under field conditions calls for predictive models to assess the long-term trends in pore-water PCB concentrations and the benefits of alternative in-situ AC application and mixing strategies.

  7. Detrimental effect of electromagnetic pulse exposure on permeability of in vitro blood-brain-barrier model.

    PubMed

    Zhou, Jia Xing; Ding, Gui Rong; Zhang, Jie; Zhou, Yong Chun; Zhang, Yan Jun; Guo, Guo Zhen

    2013-02-01

    To study the effect of electromagnetic pulse (EMP) exposure on permeability of in vitro blood-brain-barrier (BBB) model. An in vitro BBB model, established by co-culturing brain microvascular endothelial cells (BMVEC) and astroglial cells (AC) isolated from rat brain, was exposed to EMP at 100 kV/m and 400 kV/m, respectively. Permeability of the model was assayed by measuring the transendothelial electrical resistance (TEER) and the horseradish peroxidase (HRP) transmission at different time points. Levels of BBB tight junction-related proteins were measured at 0, 1, 2, 4, 8, 12, 16, 20, 24 h after EMP exposure by Western blotting. The TEER level was lower in BBB model group than in control group at 12 h after EMP, exposure which returned to its normal level at 24 h. The 24 h recovery process was triphasic and biphasic respectively after EMP exposure at 100 kV/m and 400 kV/m. Following exposure to 400 kV/m EMP, the HRP permeability increased at 1-12 h and returned to its normal level at 24 h. Western blotting showed that the claudin-5 and ZO-1 protein levels were changed after EMP exposure. EMP exposure at 100 kV/m and 400 kV/m can increase the permeability of in vitro BBB model and BBB tight junction-related proteins such as ZO-1 and claudin-5 may change EMP-induced BBB permeability. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  8. The metallic sphere in a uniform ac magnetic field: A simple and precise experiment for exploring eddy currents and non-destructive testing

    NASA Astrophysics Data System (ADS)

    Honke, Michael L.; Bidinosti, Christopher P.

    2018-06-01

    We describe a very simple experiment that utilizes standard laboratory equipment to measure the electromagnetic response of a metallic sphere exposed to a uniform ac magnetic field. Measurements were made for a variety of non-magnetic and magnetic metals, and in all cases the results fit very well with theory over the four orders of frequency (25 Hz to 102 kHz) explored here. Precise values of magnetic permeability and electrical conductivity can be extracted from fits to the data given the sphere radius only. The same apparatus is also used to explore the effects of geometry on eddy current generation as well as to demonstrate non-destructive testing through measurements on coins of different composition.

  9. Development of a nano-tesla magnetic field shielded chamber and highly precise AC-susceptibility measurement coil at μK temperatures

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Prakash, Om; Ramakrishanan, S.

    2014-04-01

    A special sample measurement chamber has been developed to perform experiments at ultralow temperatures and ultralow magnetic field. A high permeability material known as cryoperm 10 and Pb is used to shield the measurement space consisting of the signal detecting set-up and the sample. The detecting setup consists of a very sensitive susceptibility coil wound on OFHC Cu bobbin.

  10. Efficacy of a Fixed Combination of Tetracycline, Chloramphenicol, and Colistimethate Sodium for Treatment of Candida albicans Keratitis.

    PubMed

    Blanco, Anna R; Nostro, Antonia; D'Angelo, Valeria; D'Arrigo, Manuela; Mazzone, Maria G; Marino, Andreana

    2017-08-01

    To evaluate the antifungal activity of a fixed antibiotic combination (AC) containing tetracycline (TET), chloramphenicol (CAF), and colistimethate sodium (CS). In vitro: Candida ATCC and clinical strains were used. The minimum inhibitory concentrations (MICs) of AC and of each antibiotic were determined. Fluconazole (FLC) was tested for comparison. Time-killing curves of selected strains were performed. Ex vivo keratitis: corneas were injected intrastromally with the selected strains. After the injection, corneas were divided into groups of treatments: AC, FLC, or saline. Then, the tissues were analyzed for colony-forming units per gram (CFU/g). Propidium iodide (PI) and MitoTracker (MTR) staining were used to investigate the mode of action. Values of MIC required to inhibit the growth of 90% of organisms for the antibiotics alone were higher than FLC. However, their activity was enhanced when used in combination against Candida yeasts. Time-killing curves showed that at 24 hours, AC reduced the load of both strains of approximately 1 Log10 CFU/g compared with the initial inoculum (P < 0.0001). This effect was also significant versus FLC. In ex vivo, AC was effective in decreasing the loads of both strains by 4 Log10 CFU/g with respect to the control. Moreover, it showed higher activity than FLC against Candida albicans ATCC 10231 (1 Log10 CFU/g, P < 0.01 versus control). PI staining demonstrated that CS changed the membrane's permeability, whereas MTR staining demonstrated that TET or CAF altered mitochondrial function. The cells treated with AC and stained showed both effects. In this study, AC showed antifungal efficacy versus Candida spp.; this activity can be due to the synergistic effects of antibiotics in it.

  11. Lactic Acid Bacteria Protects Caenorhabditis elegans from Toxicity of Graphene Oxide by Maintaining Normal Intestinal Permeability under different Genetic Backgrounds

    NASA Astrophysics Data System (ADS)

    Zhao, Yunli; Yu, Xiaoming; Jia, Ruhan; Yang, Ruilong; Rui, Qi; Wang, Dayong

    2015-11-01

    Lactic acid bacteria (LAB) is safe and useful for food and feed fermentation. We employed Caenorhabditis elegans to investigate the possible beneficial effect of LAB (Lactobacillus bulgaricus) pretreatment against toxicity of graphene oxide (GO) and the underlying mechanisms. LAB prevented GO toxicity on the functions of both primary and secondary targeted organs in wild-type nematodes. LAB blocked translocation of GO into secondary targeted organs through intestinal barrier by maintaining normal intestinal permeability in wild-type nematodes. Moreover, LAB prevented GO damage on the functions of both primary and secondary targeted organs in exposed nematodes with mutations of susceptible genes (sod-2, sod-3, gas-1, and aak-2) to GO toxicity by sustaining normal intestinal permeability. LAB also sustained the normal defecation behavior in both wild-type nematodes and nematodes with mutations of susceptible genes. Therefore, the beneficial role of LAB against GO toxicity under different genetic backgrounds may be due to the combinational effects on intestinal permeability and defecation behavior. Moreover, the beneficial effects of LAB against GO toxicity was dependent on the function of ACS-22, homologous to mammalian FATP4 to mammalian FATP4. Our study provides highlight on establishment of pharmacological strategy to protect intestinal barrier from toxicity of GO.

  12. Evaluation of constant current alternating current iontophoresis for transdermal drug delivery.

    PubMed

    Yan, Guang; Li, S Kevin; Higuchi, William I

    2005-12-10

    Previous studies in our laboratory have demonstrated that alternating current (AC) iontophoresis can significantly decrease skin electric resistance and enhance the transport of charged permeants across skin. Flux variability of neutral permeants during AC iontophoresis was also found to be less than that of conventional direct current (DC) iontophoresis. The objectives of the present study were to evaluate flux enhancement of constant current AC transdermal iontophoresis and compare the AC flux with that of constant current DC iontophoresis. Iontophoresis studies of AC amplitude of 1, 2, and 5 mA were conducted in side-by-side diffusion cells with donor solution of 0.015, 0.15, and 1.0 M tetraethylammonium (TEA) chloride and receiver solution of phosphate buffered saline (PBS) using human epidermal membrane (HEM). Conventional constant current DC iontophoresis of 0.2 mA was also performed under similar conditions. TEA and mannitol were the model permeants. The following are the major findings in the present study. The flux of TEA increased proportionally with the AC current for all three TEA chloride concentrations and at the AC frequency used in the present study. When the permeant and its counter ion were the only ionic species in the donor chamber, the fluxes during DC iontophoresis were weakly dependent of its donor concentration. The fluxes of TEA during constant current AC iontophoresis were moderately related to the donor concentration with the highest TEA flux observed under the 1.0 M TEA chloride condition although the relationship between flux and donor concentration was not linear. A trend of decreasing electroosmotic transport with increasing donor TEA chloride concentration was observed with significant sample-to-sample variability during DC iontophoresis. Mannitol permeability was also observed to decrease with increasing TEA chloride concentration in the donor under the AC conditions, but data variability under AC was significantly smaller than that under DC. The results in the present study indicate that constant current AC iontophoresis under conditions tolerable to human (2 and 5 mA) can provide predictable fluxes that were lower than but of comparable magnitude as those of conventional constant current DC iontophoresis (0.2 mA).

  13. Broadband complex permeability characterization of magnetic thin films using shorted microstrip transmission-line perturbation

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Chen, Linfeng; Tan, C. Y.; Liu, H. J.; Ong, C. K.

    2005-06-01

    A brief review of the methods used for broadband complex permeability measurement of magnetic thin films up to microwave frequencies is given. In particular, the working principles of the transmission-line perturbation methods for the characterization of magnetic thin films are discussed, with emphasis on short-circuited planar transmission-line perturbation methods. The algorithms for calculating the complex permeability of magnetic thin films for short-circuited planar transmission-line perturbation methods are analyzed. A shorted microstrip line is designed and fabricated as a prototype measurement fixture. The structure of the microstrip fixture and the corresponding measurement procedure are discussed in detail. A piece of 340 nm thick FeTaN thin film deposited on Si substrate using sputtering method is characterized using the microstrip fixture. An improved technique for obtaining permeability by using a saturation magnetization field is demonstrated here, and the results fit well with the Landau-Lifchitz-Gilbert theory. Approaches to extending this method to other aspects in the investigation of magnetic thin film are also discussed.

  14. Anti-inflammatory and anti-periductal fibrosis effects of an anthocyanin complex in Opisthorchis viverrini-infected hamsters.

    PubMed

    Intuyod, Kitti; Priprem, Aroonsri; Limphirat, Wanwisa; Charoensuk, Lakhanawan; Pinlaor, Porntip; Pairojkul, Chawalit; Lertrat, Kamol; Pinlaor, Somchai

    2014-12-01

    The pharmacological activities of herbal extracts can be enhanced by complex formation. In this study, we manipulated cyanidin and delphinidin-rich extracts to form an anthocyanin complex (AC) with turmeric and evaluated activity against inflammation and periductal fibrosis in Opisthorchis viverrini-infected hamsters. The AC was prepared from anthocyanins extracted from cobs of purple waxy corn (70%), petals of blue butterfly pea (20%) and turmeric extract (10%), resulting in an enhanced free-radical scavenging capacity. Oral administration of AC (175 and 700 mg/kg body weight) every day for 1 month to O. viverrini-infected hamsters resulted in reduced inflammatory cells and periductal fibrosis. Fourier transform infrared spectroscopy and partial least square discriminant analysis suggested nucleic acid changes in the O. viverrini-infected liver samples, which were partially prevented by the AC treatment. AC reduced 8-oxodG formation, an oxidative DNA damage marker, significantly decreased levels of nitrite in the plasma and alanine aminotransferase activity and increased the ferric reducing ability of plasma. AC also decreased the expression of oxidant-related genes (NF-κB and iNOS) and increased the expression of antioxidant-related genes (CAT, SOD, and GPx). Thus, AC increases free-radical scavenging capacity, decreases inflammation, suppresses oxidative/nitrative stress, and reduces liver injury and periductal fibrosis in O. viverrini-infected hamsters.

  15. Synthesis, characterization and catalytic activity of nanosized Ni complexed aminoclay

    NASA Astrophysics Data System (ADS)

    Ranchani, A. Amala Jeya; Parthasarathy, V.; Devi, A. Anitha; Meenarathi, B.; Anbarasan, R.

    2017-11-01

    A novel Ni complexed aminoclay (AC) catalyst was prepared by complexation method followed by reduction reaction. Various analytical techniques such as FTIR spectroscopy, UV-visible spectroscopy, DSC, TGA, SEM, HRTEM, EDX, XPS and WCA measurement are used to characterize the synthesized material. The AC-Ni catalyst system exhibited improved thermal stability and fiber-like morphology. The XPS results declared the formation of Ni nanoparticles. Thus, synthesized catalyst was tested towards the Schiff base formation reaction between various bio-medical polymers and aniline under air atmosphere at 85 °C for 24 h. The catalytic activity of the catalyst was studied by varying the % weight loading of the AC-Ni system towards the Schiff base formation. The Schiff base formation was quantitatively calculated by the 1H-NMR spectroscopy. While increasing the % weight loading of the AC-Ni catalyst, the % yield of Schiff base was also increased. The k app and Ti values were determined for the reduction of indole and α-terpineol in the presence of AC-Ni catalyst system. The experimental results were compared with the literature report.

  16. Study of electrical properties of Sc doped BaFe12O19 ceramic using dielectric, impedance, modulus spectroscopy and AC conductivity

    NASA Astrophysics Data System (ADS)

    Gupta, Surbhi; Deshpande, S. K.; Sathe, V. G.; Siruguri, V.

    2018-04-01

    We present dielectric, complex impedance, modulus spectroscopy and AC conductivity studies of the compound BaFe10Sc2O19 as a function of temperature and frequency to understand the conduction mechanism. The variation in complex dielectric constant with frequency and temperature were analyzed on the basis of Maxwell-Wagner-Koop's theory and charge hopping between ferrous and ferric ions. The complex impedance spectroscopy study shows only grain contribution whereas complex modulus plot shows two semicircular arcs which indicate both grain and grain boundary contributions in conduction mechanism. AC conductivity has also been evaluated which follows the Jonscher's law. The activation energy calculated from temperature dependence of DC conductivity comes out to be Ea˜ 0.31eV.

  17. Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner

    PubMed Central

    Lowe, Alan R; Tang, Jeffrey H; Yassif, Jaime; Graf, Michael; Huang, William YC; Groves, Jay T; Weis, Karsten; Liphardt, Jan T

    2015-01-01

    Soluble karyopherins of the importin-β (impβ) family use RanGTP to transport cargos directionally through the nuclear pore complex (NPC). Whether impβ or RanGTP regulate the permeability of the NPC itself has been unknown. In this study, we identify a stable pool of impβ at the NPC. A subpopulation of this pool is rapidly turned-over by RanGTP, likely at Nup153. Impβ, but not transportin-1 (TRN1), alters the pore's permeability in a Ran-dependent manner, suggesting that impβ is a functional component of the NPC. Upon reduction of Nup153 levels, inert cargos more readily equilibrate across the NPC yet active transport is impaired. When purified impβ or TRN1 are mixed with Nup153 in vitro, higher-order, multivalent complexes form. RanGTP dissolves the impβ•Nup153 complexes but not those of TRN1•Nup153. We propose that impβ and Nup153 interact at the NPC's nuclear face to form a Ran-regulated mesh that modulates NPC permeability. DOI: http://dx.doi.org/10.7554/eLife.04052.001 PMID:25748139

  18. Reactivity of a series of isostructural cobalt pincer complexes with CO2, CO, and H(+).

    PubMed

    Shaffer, David W; Johnson, Samantha I; Rheingold, Arnold L; Ziller, Joseph W; Goddard, William A; Nielsen, Robert J; Yang, Jenny Y

    2014-12-15

    The preparation and characterization of a series of isostructural cobalt complexes [Co(t-Bu)2P(E)Py(E)P(t-Bu)2(CH3CN)2][BF4]2 (Py = pyridine, E = CH2, NH, O, and X = BF4 (1a-c)) and the corresponding one-electron reduced analogues [Co(t-Bu)2P(E)Py(E)P(t-Bu)2(CH3CN)2][BF4]2 (2a-c) are reported. The reactivity of the reduced cobalt complexes with CO2, CO, and H(+) to generate intermediates in a CO2 to CO and H2O reduction cycle are described. The reduction of 1a-c and subsequent reactivity with CO2 was investigated by cyclic voltammetry, and for 1a also by infrared spectroelectrochemistry. The corresponding CO complexes of (2a-c) were prepared, and the Co-CO bond strengths were characterized by IR spectroscopy. Quantum mechanical methods (B3LYP-d3 with solvation) were used to characterize the competitive reactivity of the reduced cobalt centers with H(+) versus CO2. By investigating a series of isostructural complexes, correlations in reactivity with ligand electron withdrawing effects are made.

  19. New insights into the hydrostratigraphy of the High Plains aquifer from three-dimensional visualizations based on well records

    USGS Publications Warehouse

    Macfarlane, P.A.

    2009-01-01

    Regional aquifers in thick sequences of continentally derived heterolithic deposits, such as the High Plains of the North American Great Plains, are difficult to characterize hydrostratigraphically because of their framework complexity and the lack of high-quality subsurface information from drill cores and geophysical logs. However, using a database of carefully evaluated drillers' and sample logs and commercially available visualization software, it is possible to qualitatively characterize these complex frameworks based on the concept of relative permeability. Relative permeability is the permeable fraction of a deposit expressed as a percentage of its total thickness. In this methodology, uncemented coarse and fine sediments are arbitrarily set at relative permeabilities of 100% and 0%, respectively, with allowances made for log entries containing descriptions of mixed lithologies, heterolithic strata, and cementation. To better understand the arrangement of high- and low-permeability domains within the High Plains aquifer, a pilot study was undertaken in southwest Kansas to create three-dimensional visualizations of relative permeability using a database of >3000 logs. Aggregate relative permeability ranges up to 99% with a mean of 51%. Laterally traceable, thick domains of >80% relative permeability embedded within a lower relative permeability matrix strongly suggest that preferred pathways for lateral and vertical water transmission exist within the aquifer. Similarly, domains with relative permeabilities of <45% are traceable laterally over appreciable distances in the sub-surface and probably act as leaky confining layers. This study shows that the aquifer does not consist solely of local, randomly distributed, hydrostratigraphic units, as suggested by previous studies. ?? 2009 Geological Society of America.

  20. Synthesis and Characterization of the Actinium Aquo Ion

    PubMed Central

    2017-01-01

    Metal aquo ions occupy central roles in all equilibria that define metal complexation in natural environments. These complexes are used to establish thermodynamic metrics (i.e., stability constants) for predicting metal binding, which are essential for defining critical parameters associated with aqueous speciation, metal chelation, in vivo transport, and so on. As such, establishing the fundamental chemistry of the actinium(III) aquo ion (Ac-aquo ion, Ac(H2O)x3+) is critical for current efforts to develop 225Ac [t1/2 = 10.0(1) d] as a targeted anticancer therapeutic agent. However, given the limited amount of actinium available for study and its high radioactivity, many aspects of actinium chemistry remain poorly defined. We overcame these challenges using the longer-lived 227Ac [t1/2 = 21.772(3) y] isotope and report the first characterization of this fundamentally important Ac-aquo coordination complex. Our X-ray absorption fine structure study revealed 10.9 ± 0.5 water molecules directly coordinated to the AcIII cation with an Ac–OH2O distance of 2.63(1) Å. This experimentally determined distance was consistent with molecular dynamics density functional theory results that showed (over the course of 8 ps) that AcIII was coordinated by 9 water molecules with Ac–OH2O distances ranging from 2.61 to 2.76 Å. The data is presented in the context of other actinide(III) and lanthanide(III) aquo ions characterized by XAFS and highlights the uniqueness of the large AcIII coordination numbers and long Ac–OH2O bond distances. PMID:28386595

  1. Temperature dependence dynamical permeability characterization of magnetic thin film using near-field microwave microscopy

    NASA Astrophysics Data System (ADS)

    Hung, Le Thanh; Phuoc, Nguyen N.; Wang, Xuan-Cong; Ong, C. K.

    2011-08-01

    A temperature dependence characterization system of microwave permeability of magnetic thin film up to 5 GHz in the temperature range from room temperature up to 423 K is designed and fabricated as a prototype measurement fixture. It is based on the near field microwave microscopy technique (NFMM). The scaling coefficient of the fixture can be determined by (i) calibrating the NFMM with a standard sample whose permeability is known; (ii) by calibrating the NFMM with an established dynamic permeability measurement technique such as shorted microstrip transmission line perturbation method; (iii) adjusting the real part of the complex permeability at low frequency to fit the value of initial permeability. The algorithms for calculating the complex permeability of magnetic thin films are analyzed. A 100 nm thick FeTaN thin film deposited on Si substrate by sputtering method is characterized using the fixture. The room temperature permeability results of the FeTaN film agree well with results obtained from the established short-circuited microstrip perturbation method. Temperature dependence permeability results fit well with the Landau-Lifshitz-Gilbert equation. The temperature dependence of the static magnetic anisotropy H_K^{sta}, the dynamic magnetic anisotropy H_K^{dyn}, the rotational anisotropy Hrot, together with the effective damping coefficient αeff, ferromagnetic resonance fFMR, and frequency linewidth Δf of the thin film are investigated. These temperature dependent magnetic properties of the magnetic thin film are important to the high frequency applications of magnetic devices at high temperatures.

  2. TNF-α Signals Through PKCζ/NF-κB to Alter the Tight Junction Complex and Increase Retinal Endothelial Cell Permeability

    PubMed Central

    Aveleira, Célia A.; Lin, Cheng-Mao; Abcouwer, Steven F.; Ambrósio, António F.; Antonetti, David A.

    2010-01-01

    OBJECTIVE Tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) are elevated in the vitreous of diabetic patients and in retinas of diabetic rats associated with increased retinal vascular permeability. However, the molecular mechanisms underlying retinal vascular permeability induced by these cytokines are poorly understood. In this study, the effects of IL-1β and TNF-α on retinal endothelial cell permeability were compared and the molecular mechanisms by which TNF-α increases cell permeability were elucidated. RESEARCH DESIGN AND METHODS Cytokine-induced retinal vascular permeability was measured in bovine retinal endothelial cells (BRECs) and rat retinas. Western blotting, quantitative real-time PCR, and immunocytochemistry were performed to determine tight junction protein expression and localization. RESULTS IL-1β and TNF-α increased BREC permeability, and TNF-α was more potent. TNF-α decreased the protein and mRNA content of the tight junction proteins ZO-1 and claudin-5 and altered the cellular localization of these tight junction proteins. Dexamethasone prevented TNF-α–induced cell permeability through glucocorticoid receptor transactivation and nuclear factor-kappaB (NF-κB) transrepression. Preventing NF-κB activation with an inhibitor κB kinase (IKK) chemical inhibitor or adenoviral overexpression of inhibitor κB alpha (IκBα) reduced TNF-α–stimulated permeability. Finally, inhibiting protein kinase C zeta (PKCζ) using both a peptide and a novel chemical inhibitor reduced NF-κB activation and completely prevented the alterations in the tight junction complex and cell permeability induced by TNF-α in cell culture and rat retinas. CONCLUSIONS These results suggest that PKCζ may provide a specific therapeutic target for the prevention of vascular permeability in retinal diseases characterized by elevated TNF-α, including diabetic retinopathy. PMID:20693346

  3. Multiple Hydrogen Bond Tethers for Grazing Formic Acid in Its Complexes with Phenylacetylene.

    PubMed

    Karir, Ginny; Kumar, Gaurav; Kar, Bishnu Prasad; Viswanathan, K S

    2018-03-01

    Complexes of phenylacetylene (PhAc) and formic acid (FA) present an interesting picture, where the two submolecules are tethered, sometimes multiply, by hydrogen bonds. The multiple tentacles adopted by PhAc-FA complexes stem from the fact that both submolecules can, in the same complex, serve as proton acceptors and/or proton donors. The acetylenic and phenyl π systems of PhAc can serve as proton acceptors, while the ≡C-H or -C-H of the phenyl ring can act as a proton donor. Likewise, FA also is amphiprotic. Hence, more than 10 hydrogen-bonded structures, involving O-H···π, C-H···π, and C-H···O contacts, were indicated by our computations, some with multiple tentacles. Interestingly, despite the multiple contacts in the complexes, the barrier between some of the structures is small, and hence, FA grazes around PhAc, even while being tethered to it, with hydrogen bonds. We used matrix isolation infrared spectroscopy to experimentally study the PhAc-FA complexes, with which we located global and a few local minima, involving primarily an O-H···π interaction. Experiments were corroborated by ab initio computations, which were performed using MP2 and M06-2X methods, with 6-311++G (d,p) and aug-cc-pVDZ basis sets. Single-point energy calculations were also done at MP2/CBS and CCSD(T)/CBS levels. The nature, strength, and origin of these noncovalent interactions were studied using AIM, NBO, and LMO-EDA analysis.

  4. Permeability measurement and control for epoxy composites

    NASA Astrophysics Data System (ADS)

    Chang, Tsun-Hsu; Tsai, Cheng-Hung; Wong, Wei-Syuan; Chen, Yen-Ren; Chao, Hsien-Wen

    2017-08-01

    The coupling of the electric and magnetic fields leads to a strong interplay in materials' permittivity and permeability. Here, we proposed a specially designed cavity, called the mu cavity. The mu cavity, consisting of a mushroom structure inside a cylindrical resonator, is exclusively sensitive to permeability, but not to permittivity. It decouples materials' electromagnetic properties and allows an accurate measurement of the permeability. With the help of an epsilon cavity, these two cavities jointly determine the complex permeability and permittivity of the materials at microwave frequencies. Homemade epoxy-based composite materials were prepared and tested. Measurement and manipulation of the permeability and permittivity of the epoxy composites will be shown. The results will be compared with the effective medium theories.

  5. A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process

    NASA Astrophysics Data System (ADS)

    Jia, B.; Tsau, J. S.; Barati, R.

    2017-12-01

    Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.

  6. Pore-scale modeling of moving contact line problems in immiscible two-phase flow

    NASA Astrophysics Data System (ADS)

    Kucala, Alec; Noble, David; Martinez, Mario

    2016-11-01

    Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Complex permeability and permittivity spectra of percolated Fe50Co50/Cu granular composites

    NASA Astrophysics Data System (ADS)

    Massango, Herieta; Tsutaoka, Takanori; Kasagi, Teruhiro; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2017-11-01

    Complex permeability and permittivity spectra of Fe50Co50/Cu hybrid granular composite materials have been studied in the RF to microwave frequency range. At low Cu particle content, the Fe50Co50/Cu hybrid sample shows a metallic percolative property with the electrical conductivity value about 0.1 S/cm. However, the low frequency plasmonic (LFP) state with negative permittivity (ENG) spectrum was not observed. An abrupt increase of electrical conductivity takes place at 14 to 16 vol% Cu content where the conductivity becomes above 1.0 S/cm; the Fe50Co50/Cu composite possesses the LFP state with negative permittivity spectrum below a characteristic frequency. The complex permittivity spectra in the LFP state can be described by the Drude model. Magnetic permeability spectrum in the LFP state showed a broad frequency dispersion above 10 MHz; a small negative permeability (MNG) dispersion was observed from 2 to 10 GHz. Consequently, the double negative (DNG) electromagnetic property with MNG and ENG was realized in the microwave range for the Cu content of 26 and 30 vol%.

  8. Effects of humidity on the magnetic and woody characteristics of powder-type magnetic wood

    NASA Astrophysics Data System (ADS)

    Oka, H.; Tokuta, H.; Namizaki, Y.; Sekino, N.

    2004-05-01

    Among three types of proposed magnetic wood, powder-type magnetic wood can be made of recycled magnetic materials from IT devices, consumer electronics and waste wood. Because of its wood powder content, powder-type magnetic wood shows special characteristics different from those of typical magnetic materials. We focused on the relationship between humidity and magnetic characteristics of powder-type magnetic wood. The magnetic powder ratio, wood powder density and magnetic binder density were all examined as parameters for AC permeability.

  9. Synthesis and Characterization of the Actinium Aquo Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrier, Maryline G.; Stein, Benjamin W.; Batista, Enrique R.

    Metal aquo ions occupy central roles in all equilibria that define metal complexation in natural environments. These complexes are used to establish thermodynamic metrics (i.e., stability constants) for predicting metal binding, which are essential for defining critical parameters associated with aqueous speciation, metal chelation, in vivo transport, and so on. As such, establishing the fundamental chemistry of the actinium(III) aquo ion (Ac-aquo ion, Ac(H 2O) x 3+) is critical for current efforts to develop 225Ac [t 1/2 = 10.0(1) d] as a targeted anticancer therapeutic agent. However, given the limited amount of actinium available for study and its high radioactivity,more » many aspects of actinium chemistry remain poorly defined. We overcame these challenges using the longer-lived 227Ac [t 1/2 = 21.772(3) y] isotope and report the first characterization of this fundamentally important Ac-aquo coordination complex. Our X-ray absorption fine structure study revealed 10.9 ± 0.5 water molecules directly coordinated to the Ac III cation with an Ac–O H2O distance of 2.63(1) Å. This experimentally determined distance was consistent with molecular dynamics density functional theory results that showed (over the course of 8 ps) that Ac III was coordinated by 9 water molecules with Ac–O H2O distances ranging from 2.61 to 2.76 Å. Lastly, the data is presented in the context of other actinide(III) and lanthanide(III) aquo ions characterized by XAFS and highlights the uniqueness of the large Ac III coordination numbers and long Ac–O H2O bond distances.« less

  10. Synthesis and Characterization of the Actinium Aquo Ion

    DOE PAGES

    Ferrier, Maryline G.; Stein, Benjamin W.; Batista, Enrique R.; ...

    2017-02-01

    Metal aquo ions occupy central roles in all equilibria that define metal complexation in natural environments. These complexes are used to establish thermodynamic metrics (i.e., stability constants) for predicting metal binding, which are essential for defining critical parameters associated with aqueous speciation, metal chelation, in vivo transport, and so on. As such, establishing the fundamental chemistry of the actinium(III) aquo ion (Ac-aquo ion, Ac(H 2O) x 3+) is critical for current efforts to develop 225Ac [t 1/2 = 10.0(1) d] as a targeted anticancer therapeutic agent. However, given the limited amount of actinium available for study and its high radioactivity,more » many aspects of actinium chemistry remain poorly defined. We overcame these challenges using the longer-lived 227Ac [t 1/2 = 21.772(3) y] isotope and report the first characterization of this fundamentally important Ac-aquo coordination complex. Our X-ray absorption fine structure study revealed 10.9 ± 0.5 water molecules directly coordinated to the Ac III cation with an Ac–O H2O distance of 2.63(1) Å. This experimentally determined distance was consistent with molecular dynamics density functional theory results that showed (over the course of 8 ps) that Ac III was coordinated by 9 water molecules with Ac–O H2O distances ranging from 2.61 to 2.76 Å. Lastly, the data is presented in the context of other actinide(III) and lanthanide(III) aquo ions characterized by XAFS and highlights the uniqueness of the large Ac III coordination numbers and long Ac–O H2O bond distances.« less

  11. Good Trellises for IC Implementation of Viterbi Decoders for Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Moorthy, Hari T.; Lin, Shu; Uehara, Gregory T.

    1997-01-01

    This paper investigates trellis structures of linear block codes for the integrated circuit (IC) implementation of Viterbi decoders capable of achieving high decoding speed while satisfying a constraint on the structural complexity of the trellis in terms of the maximum number of states at any particular depth. Only uniform sectionalizations of the code trellis diagram are considered. An upper-bound on the number of parallel and structurally identical (or isomorphic) subtrellises in a proper trellis for a code without exceeding the maximum state complexity of the minimal trellis of the code is first derived. Parallel structures of trellises with various section lengths for binary BCH and Reed-Muller (RM) codes of lengths 32 and 64 are analyzed. Next, the complexity of IC implementation of a Viterbi decoder based on an L-section trellis diagram for a code is investigated. A structural property of a Viterbi decoder called add-compare-select (ACS)-connectivity which is related to state connectivity is introduced. This parameter affects the complexity of wire-routing (interconnections within the IC). The effect of five parameters namely: (1) effective computational complexity; (2) complexity of the ACS-circuit; (3) traceback complexity; (4) ACS-connectivity; and (5) branch complexity of a trellis diagram on the very large scale integration (VISI) complexity of a Viterbi decoder is investigated. It is shown that an IC implementation of a Viterbi decoder based on a nonminimal trellis requires less area and is capable of operation at higher speed than one based on the minimal trellis when the commonly used ACS-array architecture is considered.

  12. Good trellises for IC implementation of viterbi decoders for linear block codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Moorthy, Hari T.; Uehara, Gregory T.

    1996-01-01

    This paper investigates trellis structures of linear block codes for the IC (integrated circuit) implementation of Viterbi decoders capable of achieving high decoding speed while satisfying a constraint on the structural complexity of the trellis in terms of the maximum number of states at any particular depth. Only uniform sectionalizations of the code trellis diagram are considered. An upper bound on the number of parallel and structurally identical (or isomorphic) subtrellises in a proper trellis for a code without exceeding the maximum state complexity of the minimal trellis of the code is first derived. Parallel structures of trellises with various section lengths for binary BCH and Reed-Muller (RM) codes of lengths 32 and 64 are analyzed. Next, the complexity of IC implementation of a Viterbi decoder based on an L-section trellis diagram for a code is investigated. A structural property of a Viterbi decoder called ACS-connectivity which is related to state connectivity is introduced. This parameter affects the complexity of wire-routing (interconnections within the IC). The effect of five parameters namely: (1) effective computational complexity; (2) complexity of the ACS-circuit; (3) traceback complexity; (4) ACS-connectivity; and (5) branch complexity of a trellis diagram on the VLSI complexity of a Viterbi decoder is investigated. It is shown that an IC implementation of a Viterbi decoder based on a non-minimal trellis requires less area and is capable of operation at higher speed than one based on the minimal trellis when the commonly used ACS-array architecture is considered.

  13. Permian arc evolution associated with Panthalassa subduction along the eastern margin of the South China block, based on sandstone provenance and U-Pb detrital zircon ages of the Kurosegawa belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Hara, Hidetoshi; Hirano, Miho; Kurihara, Toshiyuki; Takahashi, Toshiro; Ueda, Hayato

    2018-01-01

    We have studied the petrography, geochemistry, and detrital zircon U-Pb ages of sandstones from shallow-marine forearc sediments, accretionary complexes (ACs), and metamorphosed accretionary complexes (Meta-ACs) within the Kurosegawa belt of Southwest Japan. Those rocks formed in a forearc region of a Permian island arc associated with subduction of the Panthalassa oceanic crust along the eastern margin of the South China block (Yangtze block). The provenance of the shallow-marine sediments was dominated by basaltic to andesitic volcanic rocks and minor granitic rocks during the late Middle to Late Permian. The ACs were derived from felsic to andesitic volcanic rocks during the Late Permian. The provenance of Meta-ACs was dominated by andesitic volcanic rocks in the Middle Permian. The provenance, source rock compositions, and zircon age distribution for the forearc sediments, ACs and Meta-ACs have allowed us to reconstruct the geological history of the Permian arc system of the Kurosegawa belt. During the Middle Permian, the ACs were accreted along the eastern margin of the South China block. The Middle Permian arc was an immature oceanic island arc consisting of andesitic volcanic rocks. During the Late Permian, the ACs formed in a mature arc, producing voluminous felsic to andesitic volcanic rocks. A forearc basin developed during the late Middle to Late Permian. Subsequently, the Middle Permian ACs and part of the Late Permian AC underwent low-grade metamorphism in the Late to Early Jurassic, presenting the Meta-ACs.

  14. A homogeneous cellular histone deacetylase assay suitable for compound profiling and robotic screening.

    PubMed

    Ciossek, Thomas; Julius, Heiko; Wieland, Heike; Maier, Thomas; Beckers, Thomas

    2008-01-01

    Most cellular assays that quantify the efficacy of histone deacetylase (HDAC) inhibitors measure hyperacetylation of core histone proteins H3 and H4. Here we describe a new approach, directly measuring cellular HDAC enzymatic activity using the substrate Boc-K(Ac)-7-amino-4-methylcoumarin (AMC). After penetration into HeLa cervical carcinoma or K562 chronic myeloid leukemia cells, the deacetylated product Boc-K-AMC is formed which, after cell lysis, is cleaved by trypsin, finally releasing the fluorophor AMC. The cellular potency of suberoylanilide hydroxamic acid, LBH589, trichostatin A, and MS275 as well-known HDAC inhibitors was determined using this assay. IC(50) values derived from concentration-effect curves correlated well with EC(50) values derived from a cellomics array scan histone H3 hyperacetylation assay. The cellular HDAC activity assay was adapted to a homogeneous format, fully compatible with robotic screening. Concentration-effect curves generated on a Tecan Genesis Freedom workstation were highly reproducible with a signal-to-noise ratio of 5.7 and a Z' factor of 0.88, indicating a very robust assay. Finally, a HDAC-inhibitor focused library was profiled in a medium-throughput screening campaign. Inhibition of cellular HDAC activity correlated well with cytotoxicity and histone H3 hyperacetylation in HeLa cells and with inhibition of human recombinant HDAC1 in a biochemical assay. Thus, by using Boc-K(Ac)-AMC as a cell-permeable HDAC substrate, the activity of various protein lysine-specific deacetylases including HDAC1-containing complexes is measurable in intact cells in a simple and homogeneous manner.

  15. Validating predictions of evolving porosity and permeability in carbonate reservoir rocks exposed to CO2-brine

    NASA Astrophysics Data System (ADS)

    Smith, M. M.; Hao, Y.; Carroll, S.

    2017-12-01

    Improving our ability to better forecast the extent and impact of changes in porosity and permeability due to CO2-brine-carbonate reservoir interactions should lower uncertainty in long-term geologic CO2 storage capacity estimates. We have developed a continuum-scale reactive transport model that simulates spatial and temporal changes to porosity, permeability, mineralogy, and fluid composition within carbonate rocks exposed to CO2 and brine at storage reservoir conditions. The model relies on two primary parameters to simulate brine-CO2-carbonate mineral reaction: kinetic rate constant(s), kmineral, for carbonate dissolution; and an exponential parameter, n, relating porosity change to resulting permeability. Experimental data collected from fifteen core-flooding experiments conducted on samples from the Weyburn (Saskatchewan, Canada) and Arbuckle (Kansas, USA) carbonate reservoirs were used to calibrate the reactive-transport model and constrain the useful range of k and n values. Here we present the results of our current efforts to validate this model and the use of these parameter values, by comparing predictions of extent and location of dissolution and the evolution of fluid permeability against our results from new core-flood experiments conducted on samples from the Duperow Formation (Montana, USA). Agreement between model predictions and experimental data increase our confidence that these parameter ranges need not be considered site-specific but may be applied (within reason) at various locations and reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum

    PubMed Central

    Carlson, Ellinor D.

    2017-01-01

    ABSTRACT With recent advances in synthetic biology, CO2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO2, and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum, which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms. IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum, which is natively incapable of CO2 fixation. The expression of CODH, alone or together with the C. carboxidivorans acetyl-CoA synthase (ACS), enabled C. acetobutylicum to catalyze both CO2 reduction and CO oxidation. Importantly, CODH exhibited activity in both the presence and absence of ACS. 13C-tracer studies confirmed that the engineered C. acetobutylicum strains can reduce CO2 to CO and oxidize CO during growth on glucose. PMID:28625981

  17. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO2 and Oxidation of CO by Clostridium acetobutylicum.

    PubMed

    Carlson, Ellinor D; Papoutsakis, Eleftherios T

    2017-08-15

    With recent advances in synthetic biology, CO 2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO 2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO 2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO 2 , and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO 2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum , which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO 2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO 2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO 2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms. IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum , which is natively incapable of CO 2 fixation. The expression of CODH, alone or together with the C. carboxidivorans acetyl-CoA synthase (ACS), enabled C. acetobutylicum to catalyze both CO 2 reduction and CO oxidation. Importantly, CODH exhibited activity in both the presence and absence of ACS. 13 C-tracer studies confirmed that the engineered C. acetobutylicum strains can reduce CO 2 to CO and oxidize CO during growth on glucose. Copyright © 2017 American Society for Microbiology.

  18. Permeability structure of a highly heterogeneous transgressive-marine complex: Tocito Sandstone, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, M.L.; Cole, R.D.

    1996-01-01

    The Tocito Sandstone Member of the Mancos Shale is an Upper Cretaceous shallow-marine sandstone and mudrock complex deposited along the western margin of the Western Interior seaway. The Tocito is a major hydrocarbon producer in the San Juan Basin (approximately 117 million barrels of oil and 79 billion cubic feet of gas). Because of reservoir heterogeneity, ultimate Tocito oil recovery factors are low, generally between 10 and 20 percent. To enhance understanding of permeability heterogeneity in the Tocito, we have undertaken a detailed surface and subsurface investigation. A total of 2,697 permeability measurements have been made using minipermeameters. Permeability variationmore » within the Tocito is controlled by two principal factors: lithofacies and burial/diagenetic history. Coarser grained and better sorted lithofacies have the highest permeability. The permeability values from outcrop and shallow subsurface cores are dramatically higher than those from deep subsurface cores. This is due to dissolution of grains and calcite cement, and decompaction that preferentially affected the outcrop and shallow subsurface. Correlation lengths for permeability values along horizontal transacts are typically less than 3 m, whereas those for vertical transacts are usually less than 0.6 m. These data suggest that small grid block sizes should be used during reservoir simulations if the investigator wishes to accurately capture the reservoir heterogeneity.« less

  19. Permeability structure of a highly heterogeneous transgressive-marine complex: Tocito Sandstone, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, M.L.; Cole, R.D.

    1996-12-31

    The Tocito Sandstone Member of the Mancos Shale is an Upper Cretaceous shallow-marine sandstone and mudrock complex deposited along the western margin of the Western Interior seaway. The Tocito is a major hydrocarbon producer in the San Juan Basin (approximately 117 million barrels of oil and 79 billion cubic feet of gas). Because of reservoir heterogeneity, ultimate Tocito oil recovery factors are low, generally between 10 and 20 percent. To enhance understanding of permeability heterogeneity in the Tocito, we have undertaken a detailed surface and subsurface investigation. A total of 2,697 permeability measurements have been made using minipermeameters. Permeability variationmore » within the Tocito is controlled by two principal factors: lithofacies and burial/diagenetic history. Coarser grained and better sorted lithofacies have the highest permeability. The permeability values from outcrop and shallow subsurface cores are dramatically higher than those from deep subsurface cores. This is due to dissolution of grains and calcite cement, and decompaction that preferentially affected the outcrop and shallow subsurface. Correlation lengths for permeability values along horizontal transacts are typically less than 3 m, whereas those for vertical transacts are usually less than 0.6 m. These data suggest that small grid block sizes should be used during reservoir simulations if the investigator wishes to accurately capture the reservoir heterogeneity.« less

  20. Intraepithelial gammadelta+ lymphocytes maintain the integrity of intestinal epithelial tight junctions in response to infection.

    PubMed

    Dalton, Jane E; Cruickshank, Sheena M; Egan, Charlotte E; Mears, Rainy; Newton, Darren J; Andrew, Elizabeth M; Lawrence, Beth; Howell, Gareth; Else, Kathryn J; Gubbels, Marc-Jan; Striepen, Boris; Smith, Judith E; White, Stanley J; Carding, Simon R

    2006-09-01

    Intestinal epithelial integrity and permeability is dependent on intercellular tight junction (TJ) complexes. How TJ integrity is regulated remains unclear, although phosphorylation and dephosphorylation of the integral membrane protein occludin is an important determinant of TJ formation and epithelial permeability. We have investigated the role intestinal intraepithelial lymphocytes (iIELs) play in regulating epithelial permeability in response to infection. Recombinant strains of Toxoplasma gondii were used to assess intestinal epithelial barrier function and TJ integrity in mice with intact or depleted populations of iIELs. Alterations in epithelial permeability were correlated with TJ structure and the state of phosphorylation of occludin. iIEL in vivo reconstitution experiments were used to identify the iIELs required to maintain epithelial permeability and TJ integrity. In the absence of gammadelta+ iIELs, intestinal epithelial barrier function and the ability to restrict epithelial transmigration of Toxoplasma and the unrelated intracellular bacterial pathogen Salmonella typhimurium was severely compromised. Leaky epithelium in gammadelta+ iIEL-deficient mice was associated with the absence of phosphorylation of serine residues of occludin and lack of claudin 3 and zona occludens-1 proteins in TJ complexes. These deficiencies were attributable to the absence of a single subset of gammadelta T-cell receptor (TCR-Vgamma7+) iIELs that, after reconstituting gammadelta iIEL-deficient mice, restored epithelial barrier function and TJ complexes, resulting in increased resistance to infection. These findings identify a novel role for gammadelta+ iIELs in maintaining TJ integrity and epithelial barrier function that have implications for understanding the pathogenesis of intestinal inflammatory diseases associated with disruption of TJ complexes.

  1. Investigation into the Emerging Role of the Basic Amino Acid L-Lysine in Enhancing Solubility and Permeability of BCS Class II and BCS Class IV Drugs.

    PubMed

    Abdelkader, Hamdy; Fathalla, Zeinab

    2018-06-18

    The search for a simple and scalable approach that can improve the two key biopharmaceutical processes (solubility and permeability) for BCS Class II and BCS Class IV has still been unmet need. In this study, L-lysine was investigated as a potential excipient to tackle problems with solubility and permeability. Bendazac (Class II); quercetin and rutin (Class IV) were employed. Drugs-lysine complexes in 1:1 M ratios were prepared by co-precipitation and co-grinding; characterized for solubility, partition coefficient, DSC, FTIR, SEM, dissolution rate and permeability. Chemical stability of quercetin-lysine and rutin-lysine was studied by assessing antioxidant capacity using Trolox and CUPRAC assays. Drugs-lysine salt/complexes were confirmed. Solubility enhancement factors ranged from 68- to 433-fold increases and dissolution rates were also significantly enhanced by up to 6-times, compared with drugs alone. With the exception of rutin-lysine, P app for bendazac-lysine and quercetin-lysine enhanced by 2.3- to 4-fold. P app for quercetin (Class IV) benefited more than bendazac (Class II) when complexed with lysine. This study warrants the use of L-lysine as a promising excipient for enhanced solubility and permeability of Class II and Class IV, providing that the solubility of the drug is ensured at 'the door step' of absorption sites.

  2. A joint swarm intelligence algorithm for multi-user detection in MIMO-OFDM system

    NASA Astrophysics Data System (ADS)

    Hu, Fengye; Du, Dakun; Zhang, Peng; Wang, Zhijun

    2014-11-01

    In the multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system, traditional multi-user detection (MUD) algorithms that usually used to suppress multiple access interference are difficult to balance system detection performance and the complexity of the algorithm. To solve this problem, this paper proposes a joint swarm intelligence algorithm called Ant Colony and Particle Swarm Optimisation (AC-PSO) by integrating particle swarm optimisation (PSO) and ant colony optimisation (ACO) algorithms. According to simulation results, it has been shown that, with low computational complexity, the MUD for the MIMO-OFDM system based on AC-PSO algorithm gains comparable MUD performance with maximum likelihood algorithm. Thus, the proposed AC-PSO algorithm provides a satisfactory trade-off between computational complexity and detection performance.

  3. Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina

    PubMed Central

    Pang, Ji-Jie; Gao, Fan; Wu, Samuel M.

    2010-01-01

    Nitric oxide (NO), produced by NO synthase (NOS), modulates the function of all retinal neurons and ocular blood vessels and participates in the pathogenesis of ocular diseases. To further understand the regulation of ocular NO release, we systematically studied the morphology, topography and light responses of NOS-containing amacrine cells (NOACs) in dark-adapted mouse retina. Immunohistological staining for neuronal NOS (bNOS), combined with retrograde labeling of ganglion cells (GCs) with Neurobiotin (NB, a gap junction permeable dye) and Lucifer yellow (LY, a less permeable dye), was used to identify NOACs. The light responses of ACs were recorded under whole-cell voltage clamp conditions and cell morphology was examined with a confocal microscope. We found that in dark-adapted conditions bNOS-immunoreactivity (IR) was present primarily in the inner nuclear layer and the ganglion cell layer. bNOS-IR somas were negative for LY, thus they were identified as ACs; nearly 6 % of the cells were labeled by NB but not by LY, indicating that they were dye-coupled with GCs. Three morphological subtypes of NOACs (NI, NII and displaced) were identified. The cell density, inter-cellular distance and the distribution of NOACs were studied in whole retinas. Light evoked depolarizing highly sensitive ON-OFF responses in NI cells and less sensitive OFF responses in NII cells. Frequent (1 to 2 Hz) or abrupt change of light-intensity evoked larger peak responses. The possibility for light to modify NO release from NOACs is discussed. PMID:20503422

  4. Rapid labeling of intracellular His-tagged proteins in living cells.

    PubMed

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-03-10

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni(2+)-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni(2+)-NTA-based probes. Unfortunately, previous Ni-NTA-based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni(2+) ions. The probe, driven by Ni(2+)-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells.

  5. Alternate current magnetic property characterization of nonstoichiometric zinc ferrite nanocrystals for inductor fabrication via a solution based process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Hongseok; Kim, Jungkwun; Allen, Mark G.

    2016-03-21

    We investigate the ac magnetic behavior of solution processable, non-stoichiometric zinc ferrite nanocrystals with a series of sizes and zinc concentrations. Nearly monodisperse Zn{sub x}Fe{sub 3−x}O{sub 4} nanocrystals (x = 0–0.25) with an average size ranging from 7.4 nm to 13.8 nm are synthesized by using a solvothermal method. All the nanocrystals are in a superparamagnetic state at 300 K, which is confirmed by Superconductive Quantum Interference Device magnetometry. Due to the doping of non-magnetic Zn{sup 2+} into A site of ferrite, the saturation magnetization of nanocrystals increases as the size and Zn concentration increases. The ac magnetic permeability measurements at radio frequencies reveal thatmore » the real part of the magnetic permeability of similarly sized ferrite nanocrystals can be enhanced by almost twofold as the Zn{sup 2+} doping level increases from 0 to 0.25. The integration of 12.3 nm Zn{sub 0.25}Fe{sub 2.75}O{sub 4} nanocrystals into a toroidal inductor and a solenoid inductor prepared via a simple solution cast process yields a higher quality factors than air core inductors with the same geometries up to 5 MHz and 9 MHz, respectively, which is in the regime of the switching frequencies for the advanced integrated power converters.« less

  6. Synthesis and Structure of Vanadium Halide Complexes Containing Diphosphine Ligands with Pendant Amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egbert, Jonathan D.; Labios, Liezel A.; Darmon, Jonathan M.

    2016-02-18

    A series of vanadium(III) diiodide complexes of the formula CpV(P RN R'P R)I 2 (Cp = 5-C 5H 5; P RN R'P R = (R 2PCH 2) 2N(R)), where R = Et, R = Me (1a), R = Ph (1b); R = Ph, R = Me (1c)) is reported. The corresponding vanadium(II) monoiodide complexes of the formula CpV(P RN R' PR)I, where R = Et, R = Me (2a), R = Ph (2b); R = Ph, R = Me (2c)) were prepared in THF by reduction of 1a-c with Zn powder. The paramagnetic complexes 1a-c and 2a-c are characterized bymore » elemental analysis, 1H NMR spectroscopy, and by cyclic voltammetry for complexes 2b and 4b. Complexes 1c and 2a-c were also characterized in the single crystal by X-ray crystallography. We report the preparation of the vanadium(II) complexes CpV(P Ph 2N Ph 2)I (3) (P Ph 2N Ph 2 = 1,5-diphenyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) and trans-[VCl 2(PEtNMePEt)2] (4a) and trans-[VCl 2(PEtNPhPEt) 2] (4b). These complexes represent initial coordination chemistry of vanadium complexes with P RN R'P R and P Ph 2N Ph 2 diphosphine ligands, which contain a pendant amine in the second coordination sphere. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.« less

  7. Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives.

    PubMed

    Breda, Susana A; Jimenez-Kairuz, Alvaro F; Manzo, Ruben H; Olivera, María E

    2009-04-17

    The hydrochlorides of the 1:3 aluminum:norfloxacin and aluminum:ciprofloxacin complexes were characterized according to the Biopharmaceutics Classification System (BCS) premises in comparison with their parent compounds. The pH-solubility profiles of the complexes were experimentally determined at 25 and 37 degrees C in the range of pH 1-8 and compared to that of uncomplexed norfloxacin and ciprofloxacin. Both complexes are clearly more soluble than the antibiotics themselves, even at the lowest solubility pHs. The increase in solubility was ascribed to the species controlling solubility, which were analyzed in the solid phases at equilibrium at selected pHs. Additionally, permeability was set as low, based on data reported in the scientific literature regarding oral bioavailability, intestinal and cell cultures permeabilities and also considering the influence of stoichiometric amounts of aluminum. The complexes fulfill the BCS criterion to be classified as class 3 compounds (high solubility/low permeability). Instead, the active pharmaceutical ingredients (APIs) currently used in solid dosage forms, norfloxacin and ciprofloxacin hydrochloride, proved to be BCS class 4 (low solubility/low permeability). The solubility improvement turns the complexes as potential biowaiver candidates from the scientific point of view and may be a good way for developing more dose-efficient formulations. An immediate release tablet showing very rapid dissolution was obtained. Its dissolution profile was compared to that of the commercial ciprofloxacin hydrochloride tablets allowing to dissolution of the complete dose at a critical pH such as 6.8.

  8. Development of magneto-rheologial fluid (MRF) based clutch for output torque control of AC motors

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. Hung; Do, H. M. Hieu; Nguyen, V. Quoc; Nguyen, N. Diep; Le, D. Thang

    2018-03-01

    In industry, the AC motor is widely used because of low price, power availability, low cost maintenance. The main disadvantages of AC motors compared to DC motors are difficulty in speed and torque control, requiring expensive controllers with complex control algorithms. This is the basic limitations in the widespread adoption of AC motor systems for industrial automation. One feasible solution for AC motor control is using MRF (magneto-rheological fluid) based clutches (shortly called MR clutches) Although there have been many studies on MR clutches, most of these clutches used traditional configuration with coils wound on the middle cylindrical part and a compotator is used to supply power to the coils. Therefore, this type of MR clutches possesses many disadvantages such as high friction and unstable applied current due to commutator, complex structure which causes difficulty in manufacture, assembly, and maintenance. In addition, the bottleneck problem of magnetic field is also a challenging issue. In this research, we will develop a new type of MR clutches that overcomes the abovementioned disadvantages of traditional MR clutches and more suitable for application in controlling of AC motor. Besides, in this study, speed and torque control system for AC motors using developed MR clutches is designed and experimental validated.

  9. Inhibiting and Remodeling Toxic Amyloid-Beta Oligomer Formation Using a Computationally Designed Drug Molecule That Targets Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Downey, Matthew A.; Giammona, Maxwell J.; Lang, Christian A.; Buratto, Steven K.; Singh, Ambuj; Bowers, Michael T.

    2018-04-01

    Alzheimer's disease (AD) is rapidly reaching epidemic status among a burgeoning aging population. Much evidence suggests the toxicity of this amyloid disease is most influenced by the formation of soluble oligomeric forms of amyloid β-protein, particularly the 42-residue alloform (Aβ42). Developing potential therapeutics in a directed, streamlined approach to treating this disease is necessary. Here we utilize the joint pharmacophore space (JPS) model to design a new molecule [AC0107] incorporating structural characteristics of known Aβ inhibitors, blood-brain barrier permeability, and limited toxicity. To test the molecule's efficacy experimentally, we employed ion mobility mass spectrometry (IM-MS) to discover [AC0107] inhibits the formation of the toxic Aβ42 dodecamer at both high (1:10) and equimolar concentrations of inhibitor. Atomic force microscopy (AFM) experiments reveal that [AC0107] prevents further aggregation of Aβ42, destabilizes preformed fibrils, and reverses Aβ42 aggregation. This trend continues for long-term interaction times of 2 days until only small aggregates remain with virtually no fibrils or higher order oligomers surviving. Pairing JPS with IM-MS and AFM presents a powerful and effective first step for AD drug development.

  10. EFFECT OF ANNEALING TEMPERATURE ON THE STRUCTURE AND AC MAGNETIC PROPERTIES OF Fe73Cu1Nb3.5-xVxSi13.5B9 (x = 1.0, 1.5, 2.0) NANOCRYSTALLINE SOFT MAGNETIC ALLOYS

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Huang, Ping; Wang, Yuxin; Yan, Biao

    2013-07-01

    In this paper, Nb element was partially replaced by V element in Finemet-type Fe73Cu1Nb3.5-xVxSi13.5B9 (x = 1, 1.5, 2) alloys and the effect of annealing temperatures on the microstructure and AC magnetic properties of the samples are studied. The annealing temperatures affect the grain sizes of the bcc α-Fe phase greatly. When the annealing temperature is between 540-560°C, the samples have better AC magnetic properties than the samples annealed at other temperatures. The optimized annealing temperature of the studied samples is around 560°C. The coercivity and iron loss of the V2 sample is a little bit higher than that of V1 and V1.5 alloys while the amplitude permeability of V2 alloy is larger than that of V1 and V1.5, which indicate that the content of V element has strong influence on the magnetic properties of nanocrystalline soft magnetic alloys.

  11. The transition from brittle faulting to cataclastic flow: Permeability evolution

    NASA Astrophysics Data System (ADS)

    Zhu, Wenlu; Wong, Teng-Fong

    1997-02-01

    Triaxial compression experiments were conducted to investigate influences of stress and failure mode on axial permeability of five sandstones with porosities ranging from 15% to 35%. In the cataclastic flow regime, permeability and porosity changes closely track one another. A drastic decrease in permeability was triggered by the onset of shear-enhanced compaction caused by grain crushing and pore collapse. The compactive yield stress C* maps out a boundary in stress space separating two different types of permeability evolution. Before C* is attained, permeability and porosity both decrease with increasing effective mean stress, but they are independent of deviatoric stresses. However, with loading beyond C*, both permeability and porosity changes are strongly dependent on the deviatoric and effective mean stresses. In the brittle faulting regime, permeability and porosity changes are more complex. Before the onset of shear-induced dilation C', both permeability and porosity decrease with increasing effective mean stress. Beyond C', permeability may actually decrease in a dilating rock prior to brittle failure. After the peak stress has been attained, the development of a relatively impermeable shear band causes an accelerated decrease of permeability. Permeability evolution in porous sandstones is compared with that in low-porosity crystalline rocks. A conceptual model for the coupling of deformation and fluid transport is proposed in the form of a deformation-permeability map.

  12. Global loss of a nuclear lamina component, lamin A/C, and LINC complex components SUN1, SUN2, and nesprin-2 in breast cancer.

    PubMed

    Matsumoto, Ayaka; Hieda, Miki; Yokoyama, Yuhki; Nishioka, Yu; Yoshidome, Katsuhide; Tsujimoto, Masahiko; Matsuura, Nariaki

    2015-10-01

    Cancer cells exhibit a variety of features indicative of atypical nuclei. However, the molecular mechanisms underlying these phenomena remain to be elucidated. The linker of nucleoskeleton and cytoskeleton (LINC) complex, a nuclear envelope protein complex consisting mainly of the SUN and nesprin proteins, connects nuclear lamina and cytoskeletal filaments and helps to regulate the size and shape of the nucleus. Using immunohistology, we found that a nuclear lamina component, lamin A/C and all of the investigated LINC complex components, SUN1, SUN2, and nesprin-2, were downregulated in human breast cancer tissues. In the majority of cases, we observed lower expression levels of these analytes in samples' cancerous regions as compared to their cancer-associated noncancerous regions (in cancerous regions, percentage of tissue samples exhibiting low protein expression: lamin A/C, 85% [n = 73]; SUN1, 88% [n = 43]; SUN2, 74% [n = 43]; and nesprin-2, 79% [n = 53]). Statistical analysis showed that the frequencies of recurrence and HER2 expression were negatively correlated with lamin A/C expression (P < 0.05), and intrinsic subtype and ki-67 level were associated with nesprin-2 expression (P < 0.05). In addition, combinatorial analysis using the above four parameters showed that all patients exhibited reduced expression of at least one of four components despite the tumor's pathological classification. Furthermore, several cultured breast cancer cell lines expressed less SUN1, SUN2, nesprin-2 mRNA, and lamin A/C compared to noncancerous mammary gland cells. Together, these results suggest that the strongly reduced expression of LINC complex and nuclear lamina components may play fundamental pathological functions in breast cancer progression. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  13. Quantifying tight-gas sandstone permeability via critical path analysis

    USDA-ARS?s Scientific Manuscript database

    Rock permeability has been actively investigated over the past several decades by the geosciences community. However, its accurate estimation still presents significant technical challenges, especially in spatially complex rocks. In this letter, we apply critical path analysis (CPA) to estimate perm...

  14. Permeability from complex conductivity: an evaluation of polarization magnitude versus relaxation time based geophysical length scales

    NASA Astrophysics Data System (ADS)

    Slater, L. D.; Robinson, J.; Weller, A.; Keating, K.; Robinson, T.; Parker, B. L.

    2017-12-01

    Geophysical length scales determined from complex conductivity (CC) measurements can be used to estimate permeability k when the electrical formation factor F describing the ratio between tortuosity and porosity is known. Two geophysical length scales have been proposed: [1] the imaginary conductivity σ" normalized by the specific polarizability cp; [2] the time constant τ multiplied by a diffusion coefficient D+. The parameters cp and D+ account for the control of fluid chemistry and/or varying minerology on the geophysical length scale. We evaluated the predictive capability of two recently presented CC permeability models: [1] an empirical formulation based on σ"; [2] a mechanistic formulation based on τ;. The performance of the CC models was evaluated against measured permeability; this performance was also compared against that of well-established k estimation equations that use geometric length scales to represent the pore scale properties controlling fluid flow. Both CC models predict permeability within one order of magnitude for a database of 58 sandstone samples, with the exception of those samples characterized by high pore volume normalized surface area Spor and more complex mineralogy including significant dolomite. Variations in cp and D+ likely contribute to the poor performance of the models for these high Spor samples. The ultimate value of such geophysical models for permeability prediction lies in their application to field scale geophysical datasets. Two observations favor the implementation of the σ" based model over the τ based model for field-scale estimation: [1] the limited range of variation in cp relative to D+; [2] σ" is readily measured using field geophysical instrumentation (at a single frequency) whereas τ requires broadband spectral measurements that are extremely challenging and time consuming to accurately measure in the field. However, the need for a reliable estimate of F remains a major obstacle to the field-scale implementation of either of the CC permeability models for k estimation.

  15. A Micro Hydrogen Air Fuel Cell

    DTIC Science & Technology

    2005-10-01

    with hydrogen and air, 10 mV AC perturbation. 10-1 100 101 102 103 104 105 101 102 103 Frequency (Hz) |Z | B-U-FC.z B-L-FC.z D-L-FC.z C-U-FC.z C-L...FC.z 10-1 100 101 102 103 104 105 -75 -50 -25 0 Frequency (Hz) th et a 64 Task 5. On-board Hydrogen Storage/Generation During the past six months...parallel with the synthesis effort. 104 STATUS: Completed. Hydrogen and oxygen permeability studies were not performed as they were replaced by the

  16. Magnetic Design Guidelines for Electronic Power Supplies.

    DTIC Science & Technology

    1986-09-30

    henries ",= peak flux density in gauss d = wire (conductor) dia in mils CM = d2 = circular mi’s Irms = RMS current in amperes Idc = DC current in...component lac = RMS ac current in the inductor f = minimum frequency in hertz L = inductance in henries Then Eac 2 16.83 x 2, x 760 x .05 10 Eac 1 168.3 x 2...duty cycle x 1/f L inductance in henries *permeability in gauss/oersted H magnetizing force in oersteds ’. i g length of air gap in cm ic length of

  17. Reaction of hydroxyl radicals with azacytosines: a pulse radiolysis and theoretical study.

    PubMed

    Pramod, G; Prasanthkumar, K P; Mohan, Hari; Manoj, V M; Manoj, P; Suresh, C H; Aravindakumar, C T

    2006-10-12

    Pulse radiolysis and density functional theory (DFT) calculations at B3LYP/6-31+G(d,p) level have been carried out to probe the reaction of the water-derived hydroxyl radicals (*OH) with 5-azacytosine (5Ac) and 5-azacytidine (5Acyd) at near neutral and basic pH. A low percentage of nitrogen-centered oxidizing radicals, and a high percentage of non-oxidizing carbon-centered radicals were identified based on the reaction of transient intermediates with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate), ABTS2-. Theoretical calculations suggests that the N3 atom in 5Ac is the most reactive center as it is the main contributor of HOMO, whereas C5 atom is the prime donor for the HOMO of cytosine (Cyt) where the major addition site is C5. The order of stability of the adduct species were found to be C6-OH_5Ac*>C4-OH_5Ac*>N3-OH_5Ac*>N5-OH_5Ac* both in the gaseous and solution phase (using the PCM model) respectively due to the additions of *OH at C6, C4, N3, and N5 atoms. These additions occur in direct manner, without the intervention of any precursor complex formation. The possibility of a 1,2-hydrogen shift from the C6 to N5 in the nitrogen-centered C6-OH_5Ac* radical is considered in order to account for the experimental observation of the high yield of non-oxidizing radicals, and found that such a conversion requires activation energy of about 32 kcal/mol, and hence this possibility is ruled out. The hydrogen abstraction reactions were assumed to occur from precursor complexes (hydrogen bonded complexes represented as S1, S2, S3, and S4) resulted from the electrostatic interactions of the lone pairs on the N3, N5, and O8 atoms with the incoming *OH radical. It was found that the conversion of these precursor complexes to their respective transition states has ample barrier heights, and it persists even when the effect of solvent is considered. It was also found that the formation of precursor complexes itself is highly endergonic in solution phase. Hence, the abstraction reactions will not occur in the present case. Finally, the time dependent density functional theory (TDDFT) calculations predicted an absorption maximum of 292 nm for the N3-OH_5Ac* adduct, which is close to the experimentally observed spectral maxima at 290 nm. Hence, it is assumed that the addition to the most reactive center N3, which results the N3-OH_5Ac* radical, occurs via a kinetically driven process.

  18. Quantitative analysis of nano-pore geomaterials and representative sampling for digital rock physics

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Dewers, T. A.

    2014-12-01

    Geomaterials containing nano-pores (e.g., shales and carbonate rocks) have become increasingly important for emerging problems such as unconventional gas and oil resources, enhanced oil recovery, and geologic storage of CO2. Accurate prediction of coupled geophysical and chemical processes at the pore scale requires realistic representation of pore structure and topology. This is especially true for chalk materials, where pore networks are small and complex, and require characterization at sub-micron scale. In this work, we apply laser scanning confocal microscopy to characterize pore structures and microlithofacies at micron- and greater scales and dual focused ion beam-scanning electron microscopy (FIB-SEM) for 3D imaging of nanometer-to-micron scale microcracks and pore distributions. With imaging techniques advanced for nano-pore characterization, a problem of scale with FIB-SEM images is how to take nanometer scale information and apply it to the thin-section or larger scale. In this work, several texture characterization techniques including graph-based spectral segmentation, support vector machine, and principal component analysis are applied for segmentation clusters represented by 1-2 FIB-SEM samples per each cluster. Geometric and topological properties are analyzed and lattice-Boltzmann method (LBM) is used to obtain permeability at several different scales. Upscaling of permeability to the Darcy scale (e.g., the thin-section scale) with image dataset will be discussed with emphasis on understanding microfracture-matrix interaction, representative volume for FIB-SEM sampling, and multiphase flow and reactive transport. Funding from the DOE Basic Energy Sciences Geosciences Program is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. A broadband permeability measurement of FeTaN lamination stack by the shorted microstrip line method

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Ma, Yungui; Xu, Feng; Wang, Peng; Ong, C. K.

    2009-01-01

    In this paper, the microwave characteristics of a FeTaN lamination stack are studied with a shorted microstrip line method. The FeTaN lamination stack was fabricated by gluing 54 layers of FeTaN units with epoxy together. The FeTaN units were deposited on both sides of an 8 μm polyethylene terephthate (Mylar) film as the substrate by rf magnetron sputtering. On each side of the Mylar substrate, three 100-nm FeTaN layers are laminated with two 8 nm Al2O3 layers. The complex permeability of FeTaN lamination stack is calculated by the scattering parameters using the shorted load transmission line model based on the quasi-transverse-electromagnetic approximation. A full wave analysis combined with an optimization process is employed to determine the accurate effective permeability values. The optimized complex permeability data can be used for the microwave filter design.

  20. Method for enhancing cell penetration of Gd3+-based MRI contrast agents by conjugation with hydrophobic fluorescent dyes.

    PubMed

    Yamane, Takehiro; Hanaoka, Kenjiro; Muramatsu, Yasuaki; Tamura, Keita; Adachi, Yusuke; Miyashita, Yasushi; Hirata, Yasunobu; Nagano, Tetsuo

    2011-11-16

    Gadolinium ion (Gd(3+)) complexes are commonly used as magnetic resonance imaging (MRI) contrast agents to enhance signals in T(1)-weighted MR images. Recently, several methods to achieve cell-permeation of Gd(3+) complexes have been reported, but more general and efficient methodology is needed. In this report, we describe a novel method to achieve cell permeation of Gd(3+) complexes by using hydrophobic fluorescent dyes as a cell-permeability-enhancing unit. We synthesized Gd(3+) complexes conjugated with boron dipyrromethene (BDP-Gd) and Cy7 dye (Cy7-Gd), and showed that these conjugates can be introduced efficiently into cells. To examine the relationship between cell permeability and dye structure, we further synthesized a series of Cy7-Gd derivatives. On the basis of MR imaging, flow cytometry, and ICP-MS analysis of cells loaded with Cy7-Gd derivatives, highly hydrophobic and nonanionic dyes were effective for enhancing cell permeation of Gd(3+) complexes. Furthermore, the behavior of these Cy7-Gd derivatives was examined in mice. Thus, conjugation of hydrophobic fluorescent dyes appears to be an effective approach to improve the cell permeability of Gd(3+) complexes, and should be applicable for further development of Gd(3+)-based MRI contrast agents.

  1. Reactive Transport Modeling of CO2-induced Porosity and Permeability Changes in Heterogeneous Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Hao, Y.; Smith, M. M.; Mason, H. E.; Carroll, S.

    2015-12-01

    It has long been appreciated that chemical interactions have a major effect on rock porosity and permeability evolution and may alter the behavior or performance of both natural and engineered reservoir systems. Such reaction-induced permeability evolution is of particular importance for geological CO2 sequestration and storage associated with enhanced oil recovery. In this study we used a three-dimensional Darcy scale reactive transport model to simulate CO2 core flood experiments in which the CO2-equilibrated brine was injected into dolostone cores collected from the Arbuckle carbonate reservoir, Wellington, Kansas. Heterogeneous distributions of macro pores, fractures, and mineral phases inside the cores were obtained from X-ray computed microtomography (XCMT) characterization data, and then used to construct initial model macroscopic properties including porosity, permeability, and mineral compositions. The reactive transport simulations were performed by using the Nonisothermal Unsaturated Flow and Transport (NUFT) code, and their results were compared with experimental data. It was observed both experimentally and numerically that the dissolution fronts became unstable in highly heterogeneous and less permeable formations, leading to the development of highly porous flow paths or wormholes. Our model results indicate that the continuum-scale reactive transport models are able to adequately capture the evolution of distinct dissolution fronts as observed in carbonate rocks at a core scale. The impacts of rock heterogeneity, chemical kinetics and porosity-permeability relationships were also examined in this study. The numerical model developed in this study will not only help improve understanding of coupled physical and chemical processes controlling carbonate dissolution, but also provide a useful basis for upscaling transport and reaction properties from core scale to field scale. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Adsorption of Polycyclic aromatic hydrocarbons (fluoranthene and anthracenemethanol) by functional graphene oxide and removal by pH and temperature-sensitive coagulation.

    PubMed

    Zhang, Caili; Wu, Lin; Cai, Dongqing; Zhang, Caiyun; Wang, Ning; Zhang, Jing; Wu, Zhengyan

    2013-06-12

    A new kind of functional graphene oxide with fine stability in water was fabricated by mixing graphene oxide (GO) and brilliant blue (BB) with a certain weight ratio. The adsorption performance of this mixture of BB and GO (BBGO) to polycyclic aromatic hydrocarbons (anthracenemethanol (AC) and fluoranthene (FL)) was investigated, and the results indicated BBGO possessed adsorption capacity of 1.676 mmol/g and removal efficiency of 72.7% as to AC and adsorption capacity of 2.212 mmol/g and removal efficiency of 93.2% as to FL. After adsorption, pH and temperature-sensitive coagulation (PTC) method was used to remove the AC/BBGO or FL/BBGO complex and proved to be an effective approach to flocculate the AC/BBGO or FL/BBGO complex into large flocs, which tended to be removed from the aqueous solution.

  3. Permeability evolution of shale during spontaneous imbibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, N.; Karpyn, Z. T.; Liu, S.

    Shales have small pore and throat sizes ranging from nano to micron scales, low porosity and limited permeability. The poor permeability and complex pore connectivity of shales pose technical challenges to (a) understanding flow and transport mechanisms in such systems and, (b) in predicting permeability changes under dynamic saturation conditions. This paper presents quantitative experimental evidence of the migration of water through a generic shale core plug using micro CT imaging. In addition, in-situ measurements of gas permeability were performed during counter-current spontaneous imbibition of water in nano-darcy permeability Marcellus and Haynesville core plugs. It was seen that water blocksmore » severely reduced the effective permeability of the core plugs, leading to losses of up to 99.5% of the initial permeability in experiments lasting 30 days. There was also evidence of clay swelling which further hindered gas flow. When results from this study were compared with similar counter-current gas permeability experiments reported in the literature, the initial (base) permeability of the rock was found to be a key factor in determining the time evolution of effective gas permeability during spontaneous imbibition. With time, a recovery of effective permeability was seen in the higher permeability rocks, while becoming progressively detrimental and irreversible in tighter rocks. Finally, these results suggest that matrix permeability of ultra-tight rocks is susceptible to water damage following hydraulic fracturing stimulation and, while shut-in/soaking time helps clearing-up fractures from resident fluid, its effect on the adjacent matrix permeability could be detrimental.« less

  4. Permeability evolution of shale during spontaneous imbibition

    DOE PAGES

    Chakraborty, N.; Karpyn, Z. T.; Liu, S.; ...

    2017-01-05

    Shales have small pore and throat sizes ranging from nano to micron scales, low porosity and limited permeability. The poor permeability and complex pore connectivity of shales pose technical challenges to (a) understanding flow and transport mechanisms in such systems and, (b) in predicting permeability changes under dynamic saturation conditions. This paper presents quantitative experimental evidence of the migration of water through a generic shale core plug using micro CT imaging. In addition, in-situ measurements of gas permeability were performed during counter-current spontaneous imbibition of water in nano-darcy permeability Marcellus and Haynesville core plugs. It was seen that water blocksmore » severely reduced the effective permeability of the core plugs, leading to losses of up to 99.5% of the initial permeability in experiments lasting 30 days. There was also evidence of clay swelling which further hindered gas flow. When results from this study were compared with similar counter-current gas permeability experiments reported in the literature, the initial (base) permeability of the rock was found to be a key factor in determining the time evolution of effective gas permeability during spontaneous imbibition. With time, a recovery of effective permeability was seen in the higher permeability rocks, while becoming progressively detrimental and irreversible in tighter rocks. Finally, these results suggest that matrix permeability of ultra-tight rocks is susceptible to water damage following hydraulic fracturing stimulation and, while shut-in/soaking time helps clearing-up fractures from resident fluid, its effect on the adjacent matrix permeability could be detrimental.« less

  5. Scattering of Microwaves by Steady-State Plasma Slabs, Columns, and Layers at Atmospheric Pressure

    DTIC Science & Technology

    1998-03-01

    permeability unity is- (Fig 0) SÖ$ftS?S5 Pressure Plasmas Y=J7(er) . 2071 (1) where y is the complex propagation coefficient, w is the wave...a phase dependence expjtot-Yxl to a i„ ., permeability nnTty,^ J ’°SSy med’Um °f reIat<- ■j^r)^ • (1) where y is the complex propagation...preservation is an. issue. Some examples are food (solid or liquid) sterilization, pharmaceutical applications, and environmental applications ( soil

  6. Microwave techniques for measuring complex permittivity and permeability of materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillon, P.

    1995-08-01

    Different materials are of fundamental importance to the aerospace, microwave, electronics and communications industries, and include for example microwave absorbing materials, antennas lenses and radomes, substrates for MMIC and microwave components and antennaes. Basic measurements for the complex permittivity and permeability of those homogeneous solid materials in the microwave spectral region are described including hardware, instrumentation and analysis. Elevated temperature measurements as well as measurements intercomparisons, with a discussion of the strengths and weaknesses of each techniques are also presented.

  7. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development.

    PubMed

    Beier, Anna; Teichert, Ines; Krisp, Christoph; Wolters, Dirk A; Kück, Ulrich

    2016-06-21

    The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. The striatin-interacting phosphatase and kinase (STRIPAK) complex is highly conserved from yeasts to humans and is an important regulator of numerous eukaryotic developmental processes, such as cellular signaling and cell development. Although functional insights into the STRIPAK complex are accumulating, the detailed molecular mechanisms of single subunits are only partially understood. The first fungal STRIPAK was described in Sordaria macrospora, which is a well-established model organism used to study the formation of fungal fruiting bodies, three-dimensional organ-like structures. We analyzed STRIPAK subunit PP2Ac1, catalytic subunit 1 of protein phosphatase PP2A, to study the importance of the catalytic activity of this protein during sexual development. The results of our yeast two-hybrid analysis and tandem affinity purification, followed by mass spectrometry, indicate that PP2Ac1 activity connects STRIPAK with other signaling pathways and thus forms a large interconnected signaling network. Copyright © 2016 Beier et al.

  8. The Andes Virus Nucleocapsid Protein Directs Basal Endothelial Cell Permeability by Activating RhoA

    PubMed Central

    Gorbunova, Elena E.; Simons, Matthew J.; Gavrilovskaya, Irina N.

    2016-01-01

    ABSTRACT Andes virus (ANDV) predominantly infects microvascular endothelial cells (MECs) and nonlytically causes an acute pulmonary edema termed hantavirus pulmonary syndrome (HPS). In HPS patients, virtually every pulmonary MEC is infected, MECs are enlarged, and infection results in vascular leakage and highly lethal pulmonary edema. We observed that MECs infected with the ANDV hantavirus or expressing the ANDV nucleocapsid (N) protein showed increased size and permeability by activating the Rheb and RhoA GTPases. Expression of ANDV N in MECs increased cell size by preventing tuberous sclerosis complex (TSC) repression of Rheb-mTOR-pS6K. N selectively bound the TSC2 N terminus (1 to 1403) within a complex containing TSC2/TSC1/TBC1D7, and endogenous TSC2 reciprocally coprecipitated N protein from ANDV-infected MECs. TSCs normally restrict RhoA-induced MEC permeability, and we found that ANDV infection or N protein expression constitutively activated RhoA. This suggests that the ANDV N protein alone is sufficient to activate signaling pathways that control MEC size and permeability. Further, RhoA small interfering RNA, dominant-negative RhoA(N19), and the RhoA/Rho kinase inhibitors fasudil and Y27632 dramatically reduced the permeability of ANDV-infected MECs by 80 to 90%. Fasudil also reduced the bradykinin-directed permeability of ANDV and Hantaan virus-infected MECs to control levels. These findings demonstrate that ANDV activation of RhoA causes MEC permeability and reveal a potential edemagenic mechanism for ANDV to constitutively inhibit the basal barrier integrity of infected MECs. The central importance of RhoA activation in MEC permeability further suggests therapeutically targeting RhoA, TSCs, and Rac1 as potential means of resolving capillary leakage during hantavirus infections. PMID:27795403

  9. Artificial Lipid Membrane Permeability Method for Predicting Intestinal Drug Transport: Probing the Determining Step in the Oral Absorption of Sulfadiazine; Influence of the Formation of Binary and Ternary Complexes with Cyclodextrins.

    PubMed

    Delrivo, Alicia; Aloisio, Carolina; Longhi, Marcela R; Granero, Gladys

    2018-04-01

    We propose an in vitro permeability assay by using a modified lipid membrane to predict the in vivo intestinal passive permeability of drugs. Two conditions were tested, one with a gradient pH (pH 5.5 donor/pH 7.4 receptor) and the other with an iso-pH 7.4. The predictability of the method was established by correlating the obtained apparent intestinal permeability coefficients (P app ) and the oral dose fraction absorbed in humans (f a ) of 16 drugs with different absorption properties. The P app values correlated well with the absorption rates under the two conditions, and the method showed high predictability and good reproducibility. On the other hand, with this method, we successfully predicted the transport characteristics of oral sulfadiazine (SDZ). Also, the tradeoff between the increase in the solubility of SDZ by its complex formation with cyclodextrins and/or aminoacids and its oral permeability was assessed. Results suggest that SDZ is transported through the gastrointestinal epithelium by passive diffusion in a pH-dependent manner. These results support the classification of SDZ as a high/low borderline permeability compound and are in agreement with the Biopharmaceutics Classification Systems (BCS). This conclusion is consistent with the in vivo pharmacokinetic properties of SDZ.

  10. Application of novel Ni(II) complex and ZrO2 nanoparticle as mediators for electrocatalytic determination of N-acetylcysteine in drug samples.

    PubMed

    Karimi-Maleh, Hassan; Salehi, Mehdi; Faghani, Fatemeh

    2017-10-01

    The electrooxidation of N-acetylcysteine (N-AC) was studied by a novel Ni(II) complex modified ZrO 2 nanoparticle carbon paste electrode [Ni(II)/ZrO 2 /NPs/CPE] using voltammetric methods. The results showed that Ni(II)/ZrO 2 /NPs/CPE had high electrocatalytic activity for the electrooxidation of N-AC in aqueous buffer solution (pH = 7.0). The electrocatalytic oxidation peak currents increase linearly with N-AC concentrations over the concentration ranges of 0.05-600μM using square wave voltammetric methods. The detection limit for N-AC was equal to 0.009μM. The catalytic reaction rate constant, k h , was calculated (7.01 × 10 2  M -1  s -1 ) using the chronoamperometry method. Finally, Ni(II)/ZrO 2 /NPs/CPE was also examined as an ultrasensitive electrochemical sensor for the determination of N-AC in real samples such as tablet and urine. Copyright © 2017. Published by Elsevier B.V.

  11. Structural Basis for Inhibition of Mammalian Adenylyl Cyclase by Calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mou, Tung-Chung; Masada, Nanako; Cooper, Dermot M.F.

    2009-09-11

    Type V and VI mammalian adenylyl cyclases (AC5, AC6) are inhibited by Ca{sup 2+} at both sub- and supramicromolar concentration. This inhibition may provide feedback in situations where cAMP promotes opening of Ca{sup 2+} channels, allowing fine control of cardiac contraction and rhythmicity in cardiac tissue where AC5 and AC6 predominate. Ca{sup 2+} inhibits the soluble AC core composed of the C1 domain of AC5 (VC1) and the C2 domain of AC2 (IIC2). As observed for holo-AC5, inhibition is biphasic, showing 'high-affinity' (K{sub i} = {approx}0.4 {mu}M) and 'low-affinity' (K{sub i} = {approx}100 {mu}M) modes of inhibition. At micromolar concentration,more » Ca{sup 2+} inhibition is nonexclusive with respect to pyrophosphate (PP{sub i}), a noncompetitive inhibitor with respect to ATP, but at >100 {mu}M Ca{sup 2+}, inhibition appears to be exclusive with respect to PP{sub i}. The 3.0 {angstrom} resolution structure of G{alpha}s{center_dot}GTP{gamma}S/forskolin-activated VC1:IIC2 crystals soaked in the presence of ATP{alpha}S and 8 {mu}M free Ca{sup 2+} contains a single, loosely coordinated metal ion. ATP soaked into VC1:IIC2 crystals in the presence of 1.5 mM Ca{sup 2+} is not cyclized, and two calcium ions are observed in the 2.9 {angstrom} resolution structure of the complex. In both of the latter complexes VC1:IIC2 adopts the 'open', catalytically inactive conformation characteristic of the apoenzyme, in contrast to the 'closed', active conformation seen in the presence of ATP analogues and Mg{sup 2+} or Mn{sup 2+}. Structures of the pyrophosphate (PP{sub i}) complex with 10 mM Mg{sup 2+} (2.8 {angstrom}) or 2 mM Ca{sup 2+} (2.7 {angstrom}) also adopt the open conformation, indicating that the closed to open transition occurs after cAMP release. In the latter complexes, Ca{sup 2+} and Mg{sup 2+} bind only to the high-affinity 'B' metal site associated with substrate/product stabilization. Ca{sup 2+} thus stabilizes the inactive conformation in both ATP- and PP{sub i}-bound states.« less

  12. Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials

    NASA Astrophysics Data System (ADS)

    Mingdong, Chen; Huangzhong, Yu; Xiaohua, Jie; Yigang, Lu

    2018-03-01

    Based on the physical principle of interaction between electromagnetic field and the electromagnetic medium, the relationship between microwave absorbing coefficient (MAC) and the electromagnetic parameters of materials was established. With the composite materials of nickel ferrite (NiFe2O4), carbon nanotubes (CNTs) and paraffin as an example, optimization on absorbing properties of CNTs/magnetic oxide composite materials was studied at the frequency range of 2-18 GHz, and a conclusion is drawn that the MAC is the biggest at the same frequency, when the CNTs is 10 wt% in the composite materials. Through study on the relationship between complex permeability and MAC, another interesting conclusion is drawn that MAC is obviously affected by the real part of complex permeability, and increasing real part of complex permeability is beneficial for improving absorbing properties. The conclusion of this paper can provide a useful reference for the optimization research on the microwave absorbing properties of CNTs/ferrite composite materials.

  13. Light-Induced Conversion of Chemical Permeability to Enhance Electron and Molecular Transfer in Nanoscale Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balgley, Renata; de Ruiter, Graham; Evmenenko, Guennadi

    In this paper, we demonstrate how photochemically enhancing the permeability of metal–organic assemblies results in a significant enhancement of the electrochemical activity of metal complexes located within the assembly. The molecular assemblies consist of different layers of redox-active metal complexes ([M(mbpy-py)3][PF6]2; M = Ru or Os) that are separated by redox-inactive spacers consisting of 1,4-bis[2-(4-pyridyl)ethenyl]benzene (BPEB) and PdCl2 of variable thicknesses (0–13.4 nm). UV-irradiation (λ = 254 nm) of our assemblies induces a photochemical reaction in the redox-inactive spacer increasing the permeability of the assembly. The observed increase was evident by trapping organic (nBu4NBF4) and inorganic (NiCl2) salts inside themore » assemblies, and by evaluating the electrochemical response of quinones absorbed inside the molecular assemblies before and after UV irradiation. The increase in permeability is reflected by higher currents and a change in the directionality of electron transfer, i.e., from mono- to bidirectional, between the redox-active metal complexes and the electrode surface. The supramolecular structure of the assemblies dominates the overall electron transfer properties and overrules possible electron transfer mediated by the extensive π-conjugation of its individual organic components.« less

  14. An analytical model for inductively coupled implantable biomedical devices with ferrite rods.

    PubMed

    Theilmann, P T; Asbeck, P M

    2009-02-01

    Using approximations applicable to near field coupled implants simplified expressions for the complex mutual inductance of coaxial aligned coils with and without a cylindrical ferrite rod are derived. Experimental results for ferrite rods of various sizes and permeabilities are presented to verify the accuracy of this expression. An equivalent circuit model for the inductive link between an implant and power coil is then presented and used to investigate how ferrite size, permeability and loss affect the power available to the implant device. Enhancements in coupling provided by high frequency, low permeability nickel zinc rods are compared with low frequency high permeability manganese zinc rods.

  15. Gas and Oil Flow through Wellbore Flaws

    NASA Astrophysics Data System (ADS)

    Hatambeigi, M.; Anwar, I.; Reda Taha, M.; Bettin, G.; Chojnicki, K. N.; Stormont, J.

    2017-12-01

    We have measured gas and oil flow through laboratory samples that represent two important potential flow paths in wellbores associated with the Strategic Petroleum Reserve (SPR): cement-steel interfaces (microannuli) and cement fractures. Cement fractures were created by tensile splitting of cement cores. Samples to represent microannuli were created by placing thin steel sheets within split cement cores so flow is channeled along the cement-steel interface. The test sequence included alternating gas and oil flow measurements. The test fluids were nitrogen and silicone oil with properties similar to a typical crude oil stored in the SPR. After correcting for non-linear (inertial) flow when necessary, flows were interpreted as effective permeability and hydraulic aperture using the cubic law. For both samples with cement fractures and those with cement-steel interfaces, initial gas and oil permeabilities were comparable. Once saturated with oil, a displacement pressure had to be overcome to establish gas flow through a sample, and the subsequent gas permeability were reduced by more than 50% compared to its initial value. Keywords: wellbore integrity, leakage, fracture, microannulus, SPR. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of NTESS/Honeywell, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2017-8168 A

  16. Rapid labeling of intracellular His-tagged proteins in living cells

    PubMed Central

    Lai, Yau-Tsz; Chang, Yuen-Yan; Hu, Ligang; Yang, Ya; Chao, Ailun; Du, Zhi-Yan; Tanner, Julian A.; Chye, Mee-Len; Qian, Chengmin; Ng, Kwan-Ming; Li, Hongyan; Sun, Hongzhe

    2015-01-01

    Small molecule-based fluorescent probes have been used for real-time visualization of live cells and tracking of various cellular events with minimal perturbation on the cells being investigated. Given the wide utility of the (histidine)6-Ni2+-nitrilotriacetate (Ni-NTA) system in protein purification, there is significant interest in fluorescent Ni2+-NTA–based probes. Unfortunately, previous Ni-NTA–based probes suffer from poor membrane permeability and cannot label intracellular proteins. Here, we report the design and synthesis of, to our knowledge, the first membrane-permeable fluorescent probe Ni-NTA-AC via conjugation of NTA with fluorophore and arylazide followed by coordination with Ni2+ ions. The probe, driven by Ni2+-NTA, binds specifically to His-tags genetically fused to proteins and subsequently forms a covalent bond upon photoactivation of the arylazide, leading to a 13-fold fluorescence enhancement. The arylazide is indispensable not only for fluorescence enhancement, but also for strengthening the binding between the probe and proteins. Significantly, the Ni-NTA-AC probe can rapidly enter different types of cells, even plant tissues, to target His-tagged proteins. Using this probe, we visualized the subcellular localization of a DNA repair protein, Xeroderma pigmentosum group A (XPA122), which is known to be mainly enriched in the nucleus. We also demonstrated that the probe can image a genetically engineered His-tagged protein in plant tissues. This study thus offers a new opportunity for in situ visualization of large libraries of His-tagged proteins in various prokaryotic and eukaryotic cells. PMID:25713372

  17. Synthesis, structure and catalytic properties of CNN pincer palladium(II) and ruthenium(II) complexes with N-substituted-2-aminomethyl-6-phenylpyridines.

    PubMed

    Wang, Tao; Hao, Xin-Qi; Zhang, Xiao-Xue; Gong, Jun-Fang; Song, Mao-Ping

    2011-09-21

    N-substituted-2-aminomethyl-6-phenylpyridines 2a-c have been easily prepared from commercially available 6-bromo-2-picolinaldehyde in two steps. Reaction of 2a-c with PdCl(2) in toluene in the presence of triethylamine gave the CNN pincer Pd(II) complexes 3a-c in 18-28% yields. The CNN pincer Ru(II) complex 5 containing a Ru-NHR functionality could be obtained in a 71% yield by treatment of 2c with a Ru(II) precursor instead of PdCl(2). Additionally, the related CNN pincer Ru(II) complex 7 containing a Ru-NH(2) functionality has been synthesized by the reaction of 2-aminomethyl-6-phenylpyridine with the same Ru(II) precursor in a 68% yield. All the new compounds were characterized by elemental analysis (MS for ligands), (1)H, (13)C NMR, (31)P{(1)H} NMR (for Ru complexes) and IR spectra. Molecular structures of Pd complex 3c as well as Ru complexes 5 and 7 have been determined by X-ray single-crystal diffraction. The obtained Pd complexes 3a-c were effective catalysts for the allylation of aldehydes as well as for three-component allylation of aldehydes, arylamines and allyltributyltin and their activity was found to be much higher than a related NCN Pd(II) pincer in the allylation of aldehyde. On the other hand, the two new CNN pincer Ru(II) complexes 5 and 7 displayed excellent catalytic activity in the transfer hydrogenation of ketones in refluxing 2-propanol with the latter being much more active. The final TOF values were up to 4510 h(-1) with 0.01 mol% of 5 and 220,800 h(-1) with 0.005 mol% of 7, respectively. This journal is © The Royal Society of Chemistry 2011

  18. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  19. An evaluation of factors influencing pore pressure in accretionary complexes: Implications for taper angle and wedge mechanics

    USGS Publications Warehouse

    Saffer, D.M.; Bekins, B.A.

    2006-01-01

    At many subduction zones, accretionary complexes form as sediment is off-scraped from the subducting plate. Mechanical models that treat accretionary complexes as critically tapered wedges of sediment demonstrate that pore pressure controls their taper angle by modifying basal and internal shear strength. Here, we combine a numerical model of groundwater flow with critical taper theory to quantify the effects of sediment and de??collement permeability, sediment thickness, sediment partitioning between accretion and underthrusting, and plate convergence rate on steady state pore pressure. Our results show that pore pressure in accretionary wedges can be viewed as a dynamically maintained response to factors which drive pore pressure (source terms) and those that limit flow (permeability and drainage path length). We find that sediment permeability and incoming sediment thickness are the most important factors, whereas fault permeability and the partitioning of sediment have a small effect. For our base case model scenario, as sediment permeability is increased, pore pressure decreases from near-lithostatic to hydrostatic values and allows stable taper angles to increase from ??? 2.5?? to 8??-12.5??. With increased sediment thickness in our models (from 100 to 8000 m), increased pore pressure drives a decrease in stable taper angle from 8.4??-12.5?? to 15?? to <4??) with increased sediment thickness (from <1 to 7 km). One key implication is that hydrologic properties may strongly influence the strength of the crust in a wide range of geologic settings. Copyright 2006 by the American Geophysical Union.

  20. The role of phospholipid as a solubility- and permeability-enhancing excipient for the improved delivery of the bioactive phytoconstituents of Bacopa monnieri.

    PubMed

    Saoji, Suprit D; Dave, Vivek S; Dhore, Pradip W; Bobde, Yamini S; Mack, Connor; Gupta, Deepak; Raut, Nishikant A

    2017-10-15

    In an attempt to improve the solubility and permeability of Standardized Bacopa Extract (SBE), a complexation approach based on phospholipid was employed. A solvent evaporation method was used to prepare the SBE-phospholipid complex (Bacopa Naturosome, BN). The formulation and process variables were optimized using a central-composite design. The formation of BN was confirmed by photomicroscopy, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Powder X-ray Diffraction (PXRD). The saturation solubility, the in-vitro dissolution, and the ex-vivo permeability studies were used for the functional evaluation of the prepared complex. BN exhibited a significantly higher aqueous solubility compared to the pure SBE (20-fold), or the physical mixture of SBE and the phospholipid (13-fold). Similarly, the in-vitro dissolution revealed a significantly higher efficiency of the prepared complex (BN) in releasing the SBE (>97%) in comparison to the pure SCE (~42%), or the physical mixture (~47%). The ex-vivo permeation studies showed that the prepared BN significantly improved the permeation of SBE (>90%), compared to the pure SBE (~21%), or the physical mixture (~24%). Drug-phospholipid complexation may thus be a promising strategy for solubility enhancement of bioactive phytoconstituents. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Hypothyroid-induced acute compartment syndrome in all extremities.

    PubMed

    Musielak, Matthew C; Chae, Jung Hee

    2016-12-20

    Acute compartment syndrome (ACS) is an uncommon complication of uncontrolled hypothyroidism. If unrecognized, this can lead to ischemia, necrosis and potential limb loss. A 49-year-old female presented with the sudden onset of bilateral lower and upper extremity swelling and pain. The lower extremity anterior compartments were painful and tense. The extensor surface of the upper extremities exhibited swelling and pain. Motor function was intact, however, limited due to pain. Bilateral lower extremity fasciotomies were performed. Postoperative Day 1, upper extremity motor function decreased significantly and paresthesias occurred. She therefore underwent bilateral forearm fasciotomies. The pathogenesis of hypothyroidism-induced compartment syndrome is unclear. Thyroid-stimulating hormone-induced fibroblast activation results in increased glycosaminoglycan deposition. The primary glycosaminoglycan in hypothyroid myxedematous changes is hyaluronic acid, which binds water causing edema. This increases vascular permeability, extravasation of proteins and impaired lymphatic drainage. These contribute to increased intra-compartmental pressure and subsequent ACS. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2016.

  2. Magnetostrictive materials and method for improving AC characteristics in same

    DOEpatents

    Pulvirenti, Patricia P.; Jiles, David C.

    2001-08-14

    The present invention provides Terfenol-D alloys ("doped" Terfenol) having optimized performances under the condition of time-dependent magnetic fields. In one embodiment, performance is optimized by lowering the conductivity of Terfenol, thereby improving the frequency response. This can be achieved through addition of Group III or IV elements, such as Si and Al. Addition of these types of elements provides scattering sites for conduction electrons, thereby increasing resistivity by 125% which leads to an average increase in penetration depth of 80% at 1 kHz and an increase in energy conversion efficiency of 55%. The permeability of doped Terfenol remains constant over a wider frequency range as compared with undoped Terfenol. These results demonstrate that adding impurities, such as Si and Al, are effective in improving the ac characteristics of Terfenol. A magnetoelastic Gruneisen parameter, .gamma..sub.me, has also been derived from the thermodynamic equations of state, and provides another means by which to characterize the coupling efficiency in magnetostrictive materials on a more fundamental basis.

  3. Probing the low-frequency vortex dynamics in a nanostructured superconducting strip

    NASA Astrophysics Data System (ADS)

    Silva, C. C. de Souza; Raes, B.; Brisbois, J.; Cabral, L. R. E.; Silhanek, A. V.; Van de Vondel, J.; Moshchalkov, V. V.

    2016-07-01

    We investigate by scanning susceptibility microscopy the response of a thin Pb strip, with a square array of submicron antidots, to a low-frequency ac magnetic field applied perpendicularly to the film plane. By mapping the local permeability of the sample within the field range where vortices trapped by the antidots and interstitial vortices coexist, we observed two distinct dynamical regimes occurring at different temperatures. At a temperature just below the superconducting transition, T /Tc=0.96 , the sample response is essentially dominated by the motion of highly mobile interstitial vortices. However, at a slightly lower temperature, T /Tc=0.93 , the interstitial vortices freeze up leading to a strong reduction of the ac screening length. We propose a simple model for the vortex response in this system which fits well to the experimental data. Our analysis suggests that the observed switching to the high mobility regime stems from a resonant effect, where the period of the ac excitation is just large enough to allow interstitial vortices to thermally hop through the weak pinning landscape produced by random material defects. This argument is further supported by the observation of a pronounced enhancement of the out-of-phase response at the crossover between both dynamical regimes.

  4. Hydrogen ion-driven permeation in carbonaceous films

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Holland, D. F.; Longhurst, G. R.

    1989-04-01

    This paper presents the results of investigations into the permeation properties of amorphous carbonaceous, a-C: H, films produced by plasmachemical deposition techniques. Carbonaceous films on iron substrates with thickness ranging from 60 nm to 110 nm were subjected to high fluence implantations with mass analyzed D +3 ions with energies ranging from 600 eV to 3000 eV and fluxes ranging from 5 × 10 14D/ cm2 s to 5 × 10 15D/ cm2 s, respectively. Deuterium re-emission upstream, deuterium permeation downstream and secondary ions sputtered from the implantation surface were measured as a function of implantation fluence for specimens at 420 K. The present studies indicate that the a-C : H film permeability is directly related to the time, hence the fluence, required to achieve isotopic replacement and saturation of the deuterium ion beam atoms stopped in the implant region. Once the deuterium saturation level is achieved in the layer, a significant fraction of the implanting ions can result in permeation. For the present experiment, this permeation factor was much higher than that for uncoated iron specimens subjected to similar beam conditions. Carbon sputter yields of 0.008-0.01 C/D were determined in this work for 1000-eV to 400-eV deuterium ions incident on a-C : H films.

  5. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability

    NASA Astrophysics Data System (ADS)

    van der Linden, Joost H.; Narsilio, Guillermo A.; Tordesillas, Antoinette

    2016-08-01

    We present a data-driven framework to study the relationship between fluid flow at the macroscale and the internal pore structure, across the micro- and mesoscales, in porous, granular media. Sphere packings with varying particle size distribution and confining pressure are generated using the discrete element method. For each sample, a finite element analysis of the fluid flow is performed to compute the permeability. We construct a pore network and a particle contact network to quantify the connectivity of the pores and particles across the mesoscopic spatial scales. Machine learning techniques for feature selection are employed to identify sets of microstructural properties and multiscale complex network features that optimally characterize permeability. We find a linear correlation (in log-log scale) between permeability and the average closeness centrality of the weighted pore network. With the pore network links weighted by the local conductance, the average closeness centrality represents a multiscale measure of efficiency of flow through the pore network in terms of the mean geodesic distance (or shortest path) between all pore bodies in the pore network. Specifically, this study objectively quantifies a hypothesized link between high permeability and efficient shortest paths that thread through relatively large pore bodies connected to each other by high conductance pore throats, embodying connectivity and pore structure.

  6. Influence of severe drought conditions on chromophoric dissolved organic matter dynamics in south Texas coastal waters

    NASA Astrophysics Data System (ADS)

    Miller, Stephanie A.; Shank, G. Christopher

    2013-01-01

    We investigated chromophoric dissolved organic matter (CDOM) dynamics in response to the severe drought conditions of 2009 in the Aransas-Copano (AC) Bay complex and adjacent nearshore Gulf of Mexico (GoM) along the southern Texas (USA) coast. Surface water absorption coefficients (a305 in m-1) were measured daily at the University of Texas at Austin Marine Science Institute (UTMSI) pier located at the interface between the AC complex and the GoM. From June to August 2009, a305 averaged 0.81 ± 0.31 m-1 compared to 1.20 ± 0.70 m-1 during summer of 2008 (June-August) and 1.84 ± 0.34 m-1 during summer 2007 (non-drought year). Despite negligible freshwater input to the AC system for most of 2009, mean a305 values for AC Bay sites were similar in 2008 and 2009, ranging from 3.24 ± 0.60 m-1 in the lower estuary to 6.22 ± 0.55 m-1 in the upper estuary during summer 2009, and 3.15 ± 0.38 m-1 to 6.81 ± 0.73 m-1 during summer 2008 (no data for 2007). CDOM photobleaching experiments were performed using a SunTest XLS + solar simulator with an irradiation spectrum that closely matches solar UV at subtropical latitudes. AC Bay samples exhibited a305 photobleaching half-lives of 33-48 h, while GoM samples exhibited a305 photobleaching half-lives of 36-89 h. We estimate that summertime photobleaching may reduce CDOM levels by >50% in the AC bay complex before discharge into the GoM and by up to 25% more throughout the nearshore waters along the western GoM shelf.

  7. Mucin genes (MUC2, MUC4, MUC5AC, and MUC6) detection in normal and pathological endometrial tissues.

    PubMed

    Alameda, Francesc; Mejías-Luque, Raquel; Garrido, Marta; de Bolós, Carme

    2007-01-01

    Changes in the composition and physical properties of the mucous gel covering the endometrial surface are detected during the menstrual cycle and in pathological conditions. The aim of this study is to analyze the expression patterns of the 11p15 secreted mucins, MUC2, MUC5AC, and MUC6, and the membrane-bound mucin MUC4 in proliferative and secretory normal endometrium, simple and complex hyperplasia, and endometrial adenocarcinoma. A total of 98 samples, 19 of normal endometrium (11 proliferative and 8 secretor), 44 of endometrial hyperplasia (23 simple, 21 complex), and 35 of endometrial endometrioid adenocarcinomas were analyzed by immunohistochemical techniques using specific antimucin antibodies. In the endometrial proliferative glandular epithelium, only MUC4 is detected (36.3% cases). During the secretory phase, increased levels of MUC2 are found (37.5%), whereas MUC4 is less detected (12.5%). In simple hyperplasia, higher levels of mucins are expressed in the endometrial glands: MUC2 is detected in 8.7%, MUC4 in 43.4%, and MUC5AC and MUC6 in 13% of the samples, whereas in complex hyperplasia, decreased levels of mucin expression are found: MUC2 and MUC5AC are not detected, and MUC4 (28.5%) and MUC6 (20.4%) are positive. In endometrial adenocarcinoma, MUC4 is highly detected (77.1%) and increased levels of MUC5AC and MUC6 are found (61.7% and 48.5%), whereas MUC2 is poorly detected (8.5%). These findings suggest that during endometrial neoplasic transformation, increased levels of MUC4, MUC5AC, and MUC6 are detected, whereas MUC2 is only significantly detected in the secretory endometrium.

  8. Development and characterisation of polymeric microparticle of poly(d,l-lactic acid) loaded with holmium acetylacetonate.

    PubMed

    de Azevedo, Mariangela de Burgos M; de Melo, Vitor H S; Soares, Carlos Roberto J; Miyamoto, Douglas M; Katayama, Ricardo A; Squair, Peterson L; Barros, Caio H N; Tasic, Ljubica

    2018-06-14

    Biodegradable polymers containing radioactive isotopes such as Holmium 166 ( 166 Ho) have potential applications as beta particle emitters in tumour tissues. It is also a gamma ray emitter, allowing nuclear imaging of any tissue to be acquired. It is frequently used in the form of complexes such as holmium acetylacetonate (HoAcAc), which may cause damages in tissues next to the targets cancer cells, as it is difficult to control its linkage or healthy tissues radiotherapy effects. Poly(d,l-lactic acid), PDLLA, was used to encapsulate holmium acetylacetonate (HoAcAc) using an emulsion solvent extraction/evaporation technique. Microspheres with sizes between 20-53 µm were extensively characterised. HoAcAc release from the microspheres was assessed through studies using Inductively Coupled Plasma - Optical Emission Spectroscopy, and the microspheres showed no holmium leakage after a period of 10 half-lives and following gamma irradiation. Thus, HoAcAc loaded microspheres are here presented as a potential system for brachytherapy and imaging purposes.

  9. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    PubMed

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  10. Stereological Analysis of Neuron, Glial and Endothelial Cell Numbers in the Human Amygdaloid Complex

    PubMed Central

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm3 and mean cell numbers (x106) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals’ age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions. PMID:22719923

  11. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168.

    PubMed

    Cooper, Gareth R; Moir, Anne

    2011-05-01

    The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore.

  12. Pilot Field Test of Electrokinetically-Delivered and Thermally Activated Persulfate (EKTAP) for Remediation of Chlorinated Solvents in Clay

    NASA Astrophysics Data System (ADS)

    O'Carrol, D. M.; Head, N.; Chowdhury, A. I.; Inglis, A.; Garcia, A. N.; Reynolds, D. A.; Hayman, J.; Hogberg, D.; Austrins, L. M.; Sidebottom, A.; Auger, M.; Eimers, J.; Gerhard, J.

    2017-12-01

    Remediation of low-permeability soils that are contaminated with chlorinated solvents is challenging. In-situ chemical oxidation (ISCO) with persulfate is promising, however, the delivery of the oxidant by hydraulic gradient is limited in low-permeability soils. Electrokinetic (EK) enhanced transport of amendments has shown the potential to overcome these limitations. In particular, the combined technology of EK-delivered and thermally activated persulfate (EKTAP) has been recently demonstrated in the laboratory as promising in these challenging environments (Chowdhury A. I. (2016) Hydraulic and Electrokinetic Delivery of Remediants for In-situ Remediation. Electronic Thesis and Dissertation Repository, Paper 4135). This study presents the first pilot field test to evaluate EKTAP to enhance the distribution and effectiveness of persulfate in clayey soil. The pilot field test was conducted at a contaminated site formerly occupied by a chlorinated solvent production facility. In the EK transport phase, 925 L of 40 g/L persulfate was injected over 57 days, during which 9A of direct current (DC) was applied between two electrodes spaced 3 m apart. In the subsequent heating phase, 10A of alternate current (AC) was applied across the same electrodes for an additional 70 days. Extensive sampling of soil and groundwater in this EKTAP cell were compared to those from two parallel control cells, one with EK only and one with no electrodes. Results indicated that EK can significantly increase transport rates of persulfate in clayey soil. Persulfate activation primarily occurred in the period of DC application, indicating that the natural reduction capacity of the clay soil had a significant impact on persulfate decomposition. Temperature mapping indicated that AC current was able to increase soil temperatures, validating the EKTAP concept. Degradation of chlorinated compounds, in particular, 1-2, dichloroethane (1,2- DCA), was observed to be substantial in areas of persulfate delivery. Studies are ongoing to evaluate the mineral oxidation of the persulfate and how to optimize the system for both EK and ERH applications. This study nevertheless demonstrates for the first time at the field scale that EKTAP can result in enhanced amendment transport and remediation of low permeability strata.

  13. Cardiotoxicity of acetogenins from Persea americana occurs through the mitochondrial permeability transition pore and caspase-dependent apoptosis pathways.

    PubMed

    Silva-Platas, Christian; García, Noemí; Fernández-Sada, Evaristo; Dávila, Daniel; Hernández-Brenes, Carmen; Rodríguez, Dariana; García-Rivas, Gerardo

    2012-08-01

    Acetogenins are cell-membrane permeable, naturally occurring secondary metabolites of plants such as Annonaceae, Lauraceae and other related phylogenic families. They belong to the chemical derivatives of polyketides, which are synthesized from fatty acid precursors. Although acetogenins have displayed diverse biological activities, the anti-proliferative effect on human cancer cells has been widely reported. Acetogenins are inhibitors of complex I in the electron transport chain therefore they interrupt ATP synthesis in mitochondria. We tested a new acetogenins-enriched extract from the seed of Persea americana in order to investigate if any toxicity was induced on cardiac tissue and determine the involved mechanism. In isolated perfused heart we found that contractility was completely inhibited at an accumulative dose of 77 μg/ml. In isolated cardiomyocytes, the acetogenins-enriched extract induced apoptosis through the activation of the intrinsic pathway at 43 μg/ml. In isolated mitochondria, it inhibited complex I activity on NADH-linked respiration, as would be expected, but also induced permeability transition on succinate-linked respiration. Cyclosporine A, a known blocker of permeability transition, significantly prevented the permeability transition triggered by the acetogenins-enriched extract. In addition, our acetogenins-enriched extract inhibited ADP/ATP exchange, suggesting that an important element in phosphate or adenylate transport was affected. In this manner we suggest that acetogenins-enriched extract from Persea americana could directly modulate permeability transition, an entity not yet associated with the acetogenins' direct effects, resulting in cardiotoxicity.

  14. Influence of temperature on AC conductivity of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.

    2012-07-01

    Nanocrystalline CuAlO2 was synthesized by mechanical alloying of Cu2O and α-Al2O3 powders in the molar ratio of 1:1 for 20 h in toluene medium with tungsten carbide balls and vials using planetary ball mill. The ball milling was carried out at 300 rpm with a ball to powder weight ratio of 10:1 and then annealed at 1373 K in a platinum crucible for 20 h to get CuAlO2 phase with average crystallite size 45 nm. Complex impedance spectroscopic measurement in the frequency region 1 Hz to 10 MHz between the temperatures 333 to 473 K was carried out for nanocrystalline CuAlO2 sample. The obtained complex impedance data was analyzed for AC conductivities, DC and AC conductivities correlations and crossover frequencies ( f co ). The BNN (Barton, Nakajima and Namikawa) relation was applied to understand the correlation between DC and AC conductivities. The observed experimental results were discussed in the paper.

  15. Practical interpretation of CYP2D6 haplotypes: Comparison and integration of automated and expert calling.

    PubMed

    Ruaño, Gualberto; Kocherla, Mohan; Graydon, James S; Holford, Theodore R; Makowski, Gregory S; Goethe, John W

    2016-05-01

    We describe a population genetic approach to compare samples interpreted with expert calling (EC) versus automated calling (AC) for CYP2D6 haplotyping. The analysis represents 4812 haplotype calls based on signal data generated by the Luminex xMap analyzers from 2406 patients referred to a high-complexity molecular diagnostics laboratory for CYP450 testing. DNA was extracted from buccal swabs. We compared the results of expert calls (EC) and automated calls (AC) with regard to haplotype number and frequency. The ratio of EC to AC was 1:3. Haplotype frequencies from EC and AC samples were convergent across haplotypes, and their distribution was not statistically different between the groups. Most duplications required EC, as only expansions with homozygous or hemizygous haplotypes could be automatedly called. High-complexity laboratories can offer equivalent interpretation to automated calling for non-expanded CYP2D6 loci, and superior interpretation for duplications. We have validated scientific expert calling specified by scoring rules as standard operating procedure integrated with an automated calling algorithm. The integration of EC with AC is a practical strategy for CYP2D6 clinical haplotyping. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Temperature-accelerated molecular dynamics gives insights into globular conformations sampled in the free state of the AC catalytic domain.

    PubMed

    Selwa, Edithe; Huynh, Tru; Ciccotti, Giovanni; Maragliano, Luca; Malliavin, Thérèse E

    2014-10-01

    The catalytic domain of the adenyl cyclase (AC) toxin from Bordetella pertussis is activated by interaction with calmodulin (CaM), resulting in cAMP overproduction in the infected cell. In the X-ray crystallographic structure of the complex between AC and the C terminal lobe of CaM, the toxin displays a markedly elongated shape. As for the structure of the isolated protein, experimental results support the hypothesis that more globular conformations are sampled, but information at atomic resolution is still lacking. Here, we use temperature-accelerated molecular dynamics (TAMD) simulations to generate putative all-atom models of globular conformations sampled by CaM-free AC. As collective variables, we use centers of mass coordinates of groups of residues selected from the analysis of standard molecular dynamics (MD) simulations. Results show that TAMD allows extended conformational sampling and generates AC conformations that are more globular than in the complexed state. These structures are then refined via energy minimization and further unrestrained MD simulations to optimize inter-domain packing interactions, thus resulting in the identification of a set of hydrogen bonds present in the globular conformations. © 2014 Wiley Periodicals, Inc.

  17. The baculovirus core gene ac83 is required for nucleocapsid assembly and per os infectivity of Autographa californica nucleopolyhedrovirus.

    PubMed

    Zhu, Shimao; Wang, Wei; Wang, Yan; Yuan, Meijin; Yang, Kai

    2013-10-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac83 is a baculovirus core gene whose function in the AcMNPV life cycle is unknown. In the present study, an ac83-knockout AcMNPV (vAc83KO) was constructed to investigate the function of ac83 through homologous recombination in Escherichia coli. No budded virions were produced in vAc83KO-transfected Sf9 cells, although viral DNA replication was unaffected. Electron microscopy revealed that nucleocapsid assembly was aborted due to the ac83 deletion. Domain-mapping studies revealed that the expression of Ac83 amino acid residues 451 to 600 partially rescued the ability of AcMNPV to produce infectious budded virions. Bioassays indicated that deletion of the chitin-binding domain of Ac83 resulted in the failure of oral infection of Trichoplusia ni larvae by AcMNPV, but AcMNPV remained infectious following intrahemocoelic injection, suggesting that the domain is involved in the binding of occlusion-derived virions to the peritrophic membrane and/or to other chitin-containing insect tissues. It has been demonstrated that Ac83 is the only component with a chitin-binding domain in the per os infectivity factor complex on the occlusion-derived virion envelope. Interestingly, a functional inner nuclear membrane sorting motif, which may facilitate the localization of Ac83 to the envelopes of occlusion-derived virions, was identified by immunofluorescence analysis. Taken together, these results demonstrate that Ac83 plays an important role in nucleocapsid assembly and the establishment of oral infection.

  18. Comparative analysis of bleeding risk by the location and shape of arachnoid cysts: a finite element model analysis.

    PubMed

    Lee, Chang-Hyun; Han, In Seok; Lee, Ji Yeoun; Phi, Ji Hoon; Kim, Seung-Ki; Kim, Young-Eun; Wang, Kyu-Chang

    2017-01-01

    Although arachnoid cysts (ACs) are observed in various locations, only sylvian ACs are mainly regarded to be associated with bleeding. The reason for this selective association of sylvian ACs with bleeding is not understood well. This study is to investigate the effect of the location and shape of ACs on the risk of bleeding. A developed finite element model of the head/brain was modified for models of sylvian, suprasellar, and posterior fossa ACs. A spherical AC was placed at each location to compare the effect of AC location. Bowl-shaped and oval-shaped AC models were developed to compare the effect by shape. The shear force on the spot-weld elements (SFSW) was measured between the dura and the outer wall of the ACs or the comparable arachnoid membrane in the normal model. All AC models revealed higher SFSW than comparable normal models. By location, sylvian AC displayed the highest SFSW for frontal and lateral impacts. By shape, small outer wall AC models showed higher SFSW than large wall models in sylvian area and lower SFSW than large ones in posterior fossa. In regression analysis, the presence of AC was the only independent risk of bleeding. The bleeding mechanism of ACs is very complex, and the risk quantification failed to show a significant role of location and shape of ACs. The presence of AC increases shear force on impact condition and may be a risk factor of bleeding, and sylvian location of AC may not have additive risks of AC bleeding.

  19. Using the Dynamic Model of Affect (DMA) to examine leisure time as a stress coping resource: Taking into account stress severity and gender difference

    PubMed Central

    Qian, Xinyi Lisa; Yarnal, Careen M.; Almeida, David M.

    2014-01-01

    Affective complexity (AC) is a marker of psychological well-being. According to the Dynamic Model of Affect (DMA), stressful experiences reduce AC while positive events increase AC. One type of positive events is leisure, which was also identified as a coping resource. This study extended the DMA and leisure coping research by assessing gender difference in how daily stress severity and leisure time influence AC. Analyzing eight-day diary data, we found that females, compared to males, experienced greater decrease in AC with increase in stress severity but also bigger increase in AC with increase in leisure time. The finding highlights gender difference in affective reactivity to and coping with daily stress, the value of the DMA, and the importance of severity appraisal. PMID:25242824

  20. Effect of lactobacilli on paracellular permeability in the gut.

    PubMed

    Ahrne, Siv; Hagslatt, Marie-Louise Johansson

    2011-01-01

    Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells.

  1. Examining the Link Between Public Transit Use and Active Commuting

    PubMed Central

    Bopp, Melissa; Gayah, Vikash V.; Campbell, Matthew E.

    2015-01-01

    Background: An established relationship exists between public transportation (PT) use and physical activity. However, there is limited literature that examines the link between PT use and active commuting (AC) behavior. This study examines this link to determine if PT users commute more by active modes. Methods: A volunteer, convenience sample of adults (n = 748) completed an online survey about AC/PT patterns, demographic, psychosocial, community and environmental factors. t-test compared differences between PT riders and non-PT riders. Binary logistic regression analyses examined the effect of multiple factors on AC and a full logistic regression model was conducted to examine AC. Results: Non-PT riders (n = 596) reported less AC than PT riders. There were several significant relationships with AC for demographic, interpersonal, worksite, community and environmental factors when considering PT use. The logistic multivariate analysis for included age, number of children and perceived distance to work as negative predictors and PT use, feelings of bad weather and lack of on-street bike lanes as a barrier to AC, perceived behavioral control and spouse AC were positive predictors. Conclusions: This study revealed the complex relationship between AC and PT use. Further research should investigate how AC and public transit use are related. PMID:25898405

  2. Examining the link between public transit use and active commuting.

    PubMed

    Bopp, Melissa; Gayah, Vikash V; Campbell, Matthew E

    2015-04-17

    An established relationship exists between public transportation (PT) use and physical activity. However, there is limited literature that examines the link between PT use and active commuting (AC) behavior. This study examines this link to determine if PT users commute more by active modes. A volunteer, convenience sample of adults (n = 748) completed an online survey about AC/PT patterns, demographic, psychosocial, community and environmental factors. t-test compared differences between PT riders and non-PT riders. Binary logistic regression analyses examined the effect of multiple factors on AC and a full logistic regression model was conducted to examine AC. Non-PT riders (n = 596) reported less AC than PT riders. There were several significant relationships with AC for demographic, interpersonal, worksite, community and environmental factors when considering PT use. The logistic multivariate analysis for included age, number of children and perceived distance to work as negative predictors and PT use, feelings of bad weather and lack of on-street bike lanes as a barrier to AC, perceived behavioral control and spouse AC were positive predictors. This study revealed the complex relationship between AC and PT use. Further research should investigate how AC and public transit use are related.

  3. Adenylyl cyclase 3/adenylyl cyclase-associated protein 1 (CAP1) complex mediates the anti-migratory effect of forskolin in pancreatic cancer cells.

    PubMed

    Quinn, Sierra N; Graves, Sarai H; Dains-McGahee, Clayton; Friedman, Emilee M; Hassan, Humma; Witkowski, Piotr; Sabbatini, Maria E

    2017-04-01

    Pancreatic cancer is one of the most lethal human malignancies. A better understanding of the intracellular mechanism of migration and invasion is urgently needed to develop treatment that will suppress metastases and improve overall survival. Cyclic adenosine monophosphate (cyclic AMP) is a second messenger that has shown to regulate migration and invasion of pancreatic cancer cells. The rise of cyclic AMP suppressed migration and invasion of pancreatic ductal adenocarcinoma cells. Cyclic AMP is formed from cytosolic ATP by the enzyme adenylyl cyclase (AC). There are ten isoforms of ACs; nine are anchored in the plasma membrane and one is soluble. What remains unknown is the extent to which the expression of transmembrane AC isoforms is both modified in pancreatic cancer and mediates the inhibitory effect of forskolin on cell motility. Using real-time PCR analysis, ADCY3 was found to be highly expressed in pancreatic tumor tissues, resulting in a constitutive increase in cyclic AMP levels. On the other hand, ADCY2 was down-regulated. Migration, invasion, and filopodia formation in two different pancreatic adenocarcinoma cell lines, HPAC and PANC-1 deficient in AC1 or AC3, were studied. We found that AC3, upon stimulation with forskolin, enhanced cyclic AMP levels and inhibited cell migration and invasion. Unlikely to be due to a cytotoxic effect, the inhibitory effects of forskolin involved the quick formation of AC3/adenylyl cyclase-associated protein 1 (CAP1)/G-actin complex, which inhibited filopodia formation and cell motility. Using Western blotting analysis, forskolin, through AC3 activation, caused phosphorylation of CREB, but not ERK. The effect of CREB phosphorylation is likely to be associated with long-term signaling changes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Early Rockets

    NASA Image and Video Library

    1990-07-25

    An Atlas Centaur rocket (AC-S9) was launched from Cape Canaveral Air Force Station complex 36B carrying into orbit the Combined Release and Radiation Effects Satellite (CRRES) spacecraft. CRRES was a joint NASA/Air Force mission to study the effects of chemical release on the Earth’s atmosphere and magnetosphere.

  5. Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane

    PubMed Central

    Zhou, Dinggang; Guo, Jinlong; Xu, Liping; Gao, Shiwu; Lin, Qingliang; Wu, Qibin; Wu, Luguang; Que, Youxiong

    2014-01-01

    To meet the demand for detection of foreign genes in genetically modified (GM) sugarcane necessary for regulation of gene technology, an efficient method with high specificity and rapidity was developed for the cry1Ac gene, based on loop-mediated isothermal amplification (LAMP). A set of four primers was designed using the sequence of cry1Ac along with optimized reaction conditions: 5.25 mM of Mg2+, 4:1 ratio of inner primer to outer primer, 2.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. Three post-LAMP detection methods (precipitation, calcein (0.60 mM) with Mn2+ (0.05 mM) complex and SYBR Green I visualization), were shown to be effective. The sensitivity of the LAMP method was tenfold higher than that of conventional PCR when using templates of the recombinant cry1Ac plasmid or genomic DNA from cry1Ac transgenic sugarcane plants. More importantly, this system allowed detection of the foreign gene on-site when screening GM sugarcane without complex and expensive instruments, using the naked eye. This method can not only provide technological support for detection of cry1Ac, but can also further facilitate the use of this detection technique for other transgenes in GM sugarcane. PMID:24810230

  6. Reactions of the linear tetranuclear complex Ru sub 4 (CO) sub 10 (CH sub 3 C double bond C(H)C(H) double bond N-i-Pr) sub 2 with oxidizing reagents. Syntheses of halide-bridged (Ru(CO) sub 2 X(CH sub 3 C double bond C(H)C(H) double bond N-i-Pr)) sub 2 and fac-Ru(CO) sub 3 X(CH sub 3 C double bond C(H)C(H) double bond N-i-Pr)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mul, W.P.; Elsevier, C.J.; van Leijen, M.

    1991-01-01

    The linear tetranuclear complex Ru{sub 4}(CO){sub 10}(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr){sub 2} (1), containing two {eta}{sup 5}-azaruthenacyclopentadienyl systems, reacts with oxidizing reagents (I{sub 2}, Br{sub 2}, NBS, CCl{sub 4}) at elevated temperatures (40-90C) in heptane or benzene to give the new dimeric halide-bridged organoruthenium(II) complexes (Ru(CO){sub 2}X(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr)){sub 2} (X = I (3a), X = Br (3b), Cl (3c); yield 30-80%) together with (Ru(CO){sub 3}X{sub 2}){sub 2}. The reactions of 1 with CX{sub 4} (X = I, Br, Cl) are accelerated by CO, probably because Ru{sub 4}(CO){sub 12}(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr){sub 2} (5), which contains two unbridged metal-metal bonds,more » is formed prior to oxidation. The halide-bridged dimers 3a-c are obtained as mixtures of four isomers, the configurations of which are discussed. Splitting of the halide bridges takes place when a solution of 3a-c is saturated with CO, whereby mononuclear fac-Ru(CO){sub 3}X(CH{sub 3}C{double bond}C(H)C(H){double bond}N-i-Pr) (4a-c) is obtained. This process is reversible; ie., passing a stream of nitrogen through a solution of 4a-c or removal of the solvent under vacuum causes the reverse reaction with reformation of 3a-c. Compounds 3a-c and 4a-c have been characterized by IR (3, 4), FD mass (3), {sup 1}H (3, 4), and {sup 13}C{l brace}H{r brace} NMR (4) spectroscopy and satisfactory elemental analyses have been obtained for 3a-c. Compounds 3 and 4 are suitable precursors for the preparation of new homo- and heteronuclear transition-metal complexes.« less

  7. In vitro biopharmaceutical evaluation of ciprofloxacin/metal cation complexes for pulmonary administration.

    PubMed

    Brillault, J; Tewes, F; Couet, W; Olivier, J C

    2017-01-15

    Pulmonary delivery of fluoroquinolones (FQs) is an interesting approach to treat lung infections as it may lead to high local concentrations while minimizing systemic exposure. However, FQs have a rapid diffusion through the lung epithelium giving the pulmonary route no advantage compared to the oral route. Interactions between FQs and metal cations form complexes which limit the diffusion through the epithelial barrier and would reduce the absorption of FQs and maintain high concentrations in the lung. The effects of this complexation depend on the FQ and the metal cations and optimum partners should be selected through in vitro experiments prior to aerosol drug formulation. In this study, CIP was chosen as a representative FQ and 5 cations (Ca 2+ , Mg 2+ , Zn 2+ , Al 3+ , Cu 2+ ) were selected to study the complexation and its effects on permeability, antimicrobial efficacy and cell toxicity. The results showed that the apparent association constants between CIP and cations ranked with the descending order: Cu 2+ >Al 3+ >Zn 2+ >Mg 2+ >Ca 2+ . When a target of 80% complexation was reached with the adequate concentrations of cations, the CIP permeability through the Calu-3 lung epithelial cells was decreased of 50%. Toxicity of the CIP on the Calu-3 cells, with an EC50 evaluated at 7μM, was not significantly affected by the presence of the cations. The minimum inhibitory concentration of CIP for Pseudomonas aeruginosa was not affected or slightly increased in the range of cation concentrations tested, except for Mg 2+ . In conclusion, permeability was the main parameter that was affected by the metal cation complexation while cell toxicity and antimicrobial activity were not or slightly modified. Cu 2+ , with the highest apparent constant of association and with no effect on cell toxicity and antimicrobial activity of the CIP, appeared as a promising cation for the development of a controlled-permeability formulation of CIP for lung treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species.

    PubMed

    Monaghan-Benson, Elizabeth; Burridge, Keith

    2009-09-18

    Vascular permeability is a complex process involving the coordinated regulation of multiple signaling pathways in the endothelial cell. It has long been documented that vascular endothelial growth factor (VEGF) greatly enhances microvascular permeability; however, the molecular mechanisms controlling VEGF-induced permeability remain unknown. Treatment of microvascular endothelial cells with VEGF led to an increase in reactive oxygen species (ROS) production. ROS are required for VEGF-induced permeability as treatment with the free radical scavenger, N-acetylcysteine, inhibited this effect. Additionally, treatment with VEGF caused ROS-dependent tyrosine phosphorylation of both vascular-endothelial (VE)-cadherin and beta-catenin. Rac1 was required for the VEGF-induced increase in permeability and adherens junction protein phosphorylation. Knockdown of Rac1 inhibited VEGF-induced ROS production consistent with Rac lying upstream of ROS in this pathway. Collectively, these data suggest that VEGF leads to a Rac-mediated generation of ROS, which, in turn, elevates the tyrosine phosphorylation of VE-cadherin and beta-catenin, ultimately regulating adherens junction integrity.

  9. Influence of thermal aging on AC leakage current in XLPE insulation

    NASA Astrophysics Data System (ADS)

    Geng, Pulong; Song, Jiancheng; Tian, Muqin; Lei, Zhipeng; Du, Yakun

    2018-02-01

    Cross-linked polyethylene (XLPE) has been widely used as cable insulation material because of its excellent dielectric properties, thermal stability and solvent resistance. To understand the influence of thermal aging on AC leakage current in XLPE insulation, all XLPE specimens were aged in oven in temperature range from 120 °C to 150 °C, and a series of tests were conducted on these XLPE specimens in different aging stages to measure the characteristic parameters, such as complex permittivity, leakage current and complex dielectric modulus. In the experiments, the effects of thermal aging, temperature and frequency on the AC leakage current in XLPE insulation were studied by analyzing complex dielectric constant and dielectric relaxation modulus spectrum, the change of relaxation peak and activation energy. It has been found that the active part of leakage current increases sharply with the increase of aging degree, and the test temperature and frequency have an influence on AC leakage current but the influence of test temperature is mainly reflected in the low frequency region. In addition, it has been shown by the experiments that the reactive part of leakage current exhibits a strong frequency dependent characteristic in the testing frequency range from 10-2 Hz to 105 Hz, but the influence of test temperature and thermal aging on it is relatively small.

  10. Combined Experimental and Theoretical Investigations on Optical Activities of Möbius Aromatic and Möbius Antiaromatic Hexaphyrin Phosphorus Complexes.

    PubMed

    Mori, Tadashi; Tanaka, Takayuki; Higashino, Tomohiro; Yoshida, Kota; Osuka, Atsuhiro

    2016-06-23

    Intrinsically chiral Möbius aromatic [28]hexaphyrin monophosphorus(V) and Möbius antiaromatic [30]hexaphyrin bisphosphorus(V) complexes have been optically resolved and their absolute configurations (ACs) were determined by combined experimental and theoretical investigations on their circular dichroisms (CDs). First elutes in chiral HPLC exhibited strong positive Cotton effects (CEs) at the B-band, characteristic for the ML configurations in their Möbius strips. Weak CEs at the Q-band, if attainable, complemented their AC assignment. The whole CD pattern and intensity were well reproduced by time-dependent approximate coupled cluster theory using model systems that omit five outward meso-aryl substituents (inward-meso-retained model), providing a solid basis for AC assignment. The cost efficient TD-DFT method with appropriate functionals for fully substituted (nontruncated) complexes well reproduced CEs around the B-band (but less satisfactory at the Q-band), also allows the rapid AC estimation for their Möbius strips. Observed difference in CDs between aromatic and antiaromatic hexaphyrins were better interpreted by their shifts in energy levels and altered interactions of relevant molecular orbitals, rather than small differences in Möbius geometries nor aromatic/antiaromatic character, despite the correlations recently claimed in planar π-systems.

  11. Glutamine Supplementation Attenuates Ethanol-Induced Disruption of Apical Junctional Complexes in Colonic Epithelium and Ameliorates Gut Barrier Dysfunction and Fatty Liver in Mice

    PubMed Central

    Chaudhry, Kamaljit K.; Shukla, Pradeep K.; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E.; Rao, RadhaKrishna

    2015-01-01

    Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of glutamine in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed Gln-free diet and absent in mice fed Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579

  12. Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes.

    PubMed

    Loch, Christian; Zakelj, Simon; Kristl, Albin; Nagel, Stefan; Guthoff, Rudolf; Weitschies, Werner; Seidlitz, Anne

    2012-08-30

    To treat ophthalmic diseases like glaucoma or inflammatory disorders topically applied ophthalmic formulations such as eye drops are usually used. In addition, novel ophthalmic implants releasing drug substances locally into different parts of the eye are available today. In the work presented here, the permeability coefficients of selected drugs (ciprofloxacin hydrochloride, lidocaine hydrochloride, timolol maleate) for ophthalmic tissues were determined using side-by-side diffusion chambers (so-called Ussing chambers). Sclera, conjunctiva, cornea, choroidea-retina-complex and a complex of conjunctiva-sclera-choroidea-retina were excised from fresh porcine, rabbit and bovine eyes. In the porcine eye tissues the highest P(app) values were obtained for conjunctiva with the exception of lidocaine. Therefore, it can be estimated that a certain amount of drug diffuses or is transported through conjunctiva after application. The P(app) values for sclera were also higher than those for cornea and even more, the surface area of sclera which is available for drug absorption is much larger than that of cornea when applying an implant. The obtained permeability coefficients for sclera and conjunctiva indicate that the administration of periocular implants can be an alternative to topically applied formulations. The complexes of the tissues were a significantly (p<0.01) stronger barrier to the investigated substances than the separated tissues. Distinct differences in permeability coefficients between the investigated animal tissues were observed. Overall the highest P(app) values for all mounted tissues were obtained with the rabbit, followed by porcine and bovine eyes. Because of these distinct interspecies differences one must be very careful when selecting the proper animal model for the permeability experiments. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Context based computational analysis and characterization of ARS consensus sequences (ACS) of Saccharomyces cerevisiae genome.

    PubMed

    Singh, Vinod Kumar; Krishnamachari, Annangarachari

    2016-09-01

    Genome-wide experimental studies in Saccharomyces cerevisiae reveal that autonomous replicating sequence (ARS) requires an essential consensus sequence (ACS) for replication activity. Computational studies identified thousands of ACS like patterns in the genome. However, only a few hundreds of these sites act as replicating sites and the rest are considered as dormant or evolving sites. In a bid to understand the sequence makeup of replication sites, a content and context-based analysis was performed on a set of replicating ACS sequences that binds to origin-recognition complex (ORC) denoted as ORC-ACS and non-replicating ACS sequences (nrACS), that are not bound by ORC. In this study, DNA properties such as base composition, correlation, sequence dependent thermodynamic and DNA structural profiles, and their positions have been considered for characterizing ORC-ACS and nrACS. Analysis reveals that ORC-ACS depict marked differences in nucleotide composition and context features in its vicinity compared to nrACS. Interestingly, an A-rich motif was also discovered in ORC-ACS sequences within its nucleosome-free region. Profound changes in the conformational features, such as DNA helical twist, inclination angle and stacking energy between ORC-ACS and nrACS were observed. Distribution of ACS motifs in the non-coding segments points to the locations of ORC-ACS which are found far away from the adjacent gene start position compared to nrACS thereby enabling an accessible environment for ORC-proteins. Our attempt is novel in considering the contextual view of ACS and its flanking region along with nucleosome positioning in the S. cerevisiae genome and may be useful for any computational prediction scheme.

  14. [Effect of damage integrity rat brain synaptic membranes on the functional activity GABA(A)-receptor/Cl(-)-ionophore complex in the CNC].

    PubMed

    Rebrov, I G; Kalinina, M V

    2013-01-01

    Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.

  15. The ac propulsion system for an electric vehicle, phase 1

    NASA Astrophysics Data System (ADS)

    Geppert, S.

    1981-08-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  16. Targeting Epigenetics Therapy for Estrogen Receptor-Negative Breast Cancers

    DTIC Science & Technology

    2015-10-01

    confounding these results , Luka and coworkers recently solved a structure of KDM1A in complex with Page 5 of 44 ACS Paragon Plus Environment...stored at −20°C in gel filtration buffer with a final concentration of 40% glycerol. Page 9 of 44 ACS Paragon Plus Environment Biochemistry 1 2 3 4...inhibitors (eq 5) resulting in a Ki app of 59.1 ± 5.95 nM (Figure 3A). Data were additionally analyzed Page 18 of 44 ACS Paragon Plus Environment

  17. The ac propulsion system for an electric vehicle, phase 1

    NASA Technical Reports Server (NTRS)

    Geppert, S.

    1981-01-01

    A functional prototype of an electric vehicle ac propulsion system was built consisting of a 18.65 kW rated ac induction traction motor, pulse width modulated (PWM) transistorized inverter, two speed mechanically shifted automatic transmission, and an overall drive/vehicle controller. Design developmental steps, and test results of individual components and the complex system on an instrumented test frame are described. Computer models were developed for the inverter, motor and a representative vehicle. A preliminary reliability model and failure modes effects analysis are given.

  18. Effective High-Frequency Permeability of Compacted Metal Powders

    NASA Astrophysics Data System (ADS)

    Volkovskaya, I. I.; Semenov, V. E.; Rybakov, K. I.

    2018-03-01

    We propose a model for determination of the effective complex permeability of compacted metal-powder media. It is based on the equality of the magnetic moment in a given volume of the media with the desired effective permeability to the total magnetic moment of metal particles in the external high-frequency magnetic field, which arises due to excitation of electric eddy currents in the particles. Calculations within the framework of the proposed model allow us to refine the values of the real and imaginary components of the permeability of metal powder compacts in the microwave band. The conditions of applicability of the proposed model are formulated, and their fulfillment is verified for metal powder compacts in the microwave and millimeter wavelength bands.

  19. Permeability of C2C12 myotube membranes is influenced by stretch velocity.

    PubMed

    Burkholder, Thomas J

    2003-05-30

    Mechanical signals are critical to the growth and maintenance of skeletal muscle, but the mechanism by which these signals are transduced by the cell remains unknown. This work examined the hypothesis that stretch conditions influence membrane permeability consistent with a role for membrane permeability in mechanotransduction. C2C12 myotubes were grown in conditions that encourage uniform alignment and subjected to uniform mechanical deformation in the presence of fluorescein labeled dextran to evaluate membrane permeability as a function of stretch amplitude and velocity. Within a physiologically relevant range of conditions, a complex interaction between the two aspects of stretch was observed, with velocity contributing most strongly at large stretch amplitudes. This suggests that membrane viscosity could contribute to mechanotransduction.

  20. Effect of Lactobacilli on Paracellular Permeability in the Gut

    PubMed Central

    Ahrne, Siv; Hagslatt, Marie-Louise Johansson

    2011-01-01

    Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells. PMID:22254077

  1. Percolation behaviour in the magnetic permeability and electrical conductivity in conducting magnetic - Insulating non magnetic binary composites

    NASA Astrophysics Data System (ADS)

    McLachlan, David S.; Doyle, Terence B.; Sauti, Godfrey

    2018-07-01

    Experimental results of the complex magnetic permeability (μ) and the electrical conductivity (σ) of a granular paramagnetic Gadolinium Gallium Garnet (GGG: 0.3-26 vol%) and Teflon (PTFE) system are presented and discussed in relation to previously published (conductivity) and unpublished (permeability) studies on granular Fe3O4 - talc and Ni - talc wax systems. In these systems plots of the real conductivity (σm‧) against the volume fraction (φ) lie on characteristic sigmoid curves that when fitted to the Two Exponent Phenomenological Percolation Equation (TEPPE) confirm the existence of "percolation microstructures" with critical volume fractions (φc). The plots of the real and imaginary permeability (μm‧) and (μm″) satisfactorily fit to the TEPPE using the φc obtained in each case from the "conductivity" measurements. In all three cases the conductivity results gave the exponent t > 2, and the permeability results gave t < 1.

  2. Carbohydrate-Based Host-Guest Complexation of Hydrophobic Antibiotics for the Enhancement of Antibacterial Activity.

    PubMed

    Jeong, Daham; Joo, Sang-Woo; Shinde, Vijay Vilas; Cho, Eunae; Jung, Seunho

    2017-08-08

    Host-guest complexation with various hydrophobic drugs has been used to enhance the solubility, permeability, and stability of guest drugs. Physical changes in hydrophobic drugs by complexation have been related to corresponding increases in the bioavailability of these drugs. Carbohydrates, including various derivatives of cyclodextrins, cyclosophoraoses, and some linear oligosaccharides, are generally used as host complexation agents in drug delivery systems. Many antibiotics with low bioavailability have some limitations to their clinical use due to their intrinsically poor aqueous solubility. Bioavailability enhancement is therefore an important step to achieve the desired concentration of antibiotics in the treatment of bacterial infections. Antibiotics encapsulated in a complexation-based drug delivery system will display improved antibacterial activity making it possible to reduce dosages and overcome the serious global problem of antibiotic resistance. Here, we review the present research trends in carbohydrate-based host-guest complexation of various hydrophobic antibiotics as an efficient delivery system to improve solubility, permeability, stability, and controlled release.

  3. Pore pressure evolution and induced seismicity within the Permian Basin, Southeast New Mexico USA

    NASA Astrophysics Data System (ADS)

    Person, M. A.; Zhang, Y.; Mozley, P.; Broadhead, R.; Bilek, S.; Edel, S.

    2015-12-01

    We used three-dimensional hydrologic modeling to assess the potential linkages between crystalline basement seismicity (up to M3.2) beneath the Dagger Draw oil field in response to saline water reinjection. Production began in 2004 and preceded an increase in seismicity by about 5 years. Reinjection of produced brines occurred within the basal Ellenberger Group carbonate reservoir (yellow square). Published core permeability measurements for the Ellenberger vary between about 10-15 to 10-12 m2. Evidence for seismicity being triggered by injection include observations that the largest injection rates (> 106 barrels/month) occurred within wells closest to the induced seismicity (red circle about 15 km to the west of the injection well in A-C). Arguing against triggered seismicity is the apparent lack of temporal correlation between peak injection and felt seismicity as well as the extreme depth of the earthquakes (about 10-12 km below land surface). We conducted a numerical sensitivity study in which we varied the permeability of the basal reservoir as well as the crystalline basement rocks over several orders of magnitude. Assuming a crystalline basement permeability of 10-16 m2 and a basal reservoir permeability of 10-13 m2 produced about 50 m of excess heads in the seismogenic crust about 1900 days (D) after injection started. Prior studies suggest that excess heads of only a few meters could induce failure along critically stressed faults. The lag between injection and seismicity can be explained by the time required for the pressure envelope to propagate laterally 15 km and downward into the crystalline basement 11 km. Peak injection occurred 1900 days before recent increases in seismicity were observed. Future work will include assessing the potential role of relatively permeable Proterozoic faults in transmitting high fluid pressures into the crystalline basement.

  4. Demonstration, testing, & evaluation of in situ heating of soil. Draft final report, Volume II: Appendices A to E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dev, H.; Enk, J.; Jones, D.

    This document is a draft final report for US DOE contract entitled, {open_quotes}Demonstration Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. This report is presented in two volumes. Volume I contains the technical report This document is Volume II, containing appendices with background information and data. In this project approximately 300 cu. yd. of clayey soil containing a low concentration plume of volatile organic chemicals was heated in situ by the application of electrical energy. It was shown that as a result of heating the effective permeability of soil to air flow wasmore » increased such that in situ soil vapor extraction could be performed. The initial permeability of soil was so low that the soil gas flow rate was immeasurably small even at high vacuum levels. When scaled up, this process can be used for the environmental clean up and restoration of DOE sites contaminated with VOCs and other organic chemicals boiling up to 120{degrees}to 130{degrees}C in the vadose zone. Although it may applied to many types of soil formations, it is particularly attractive for low permeability clayey soil where conventional in situ venting techniques are limited by low air flow.« less

  5. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alves, Vinicius M.; Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599; Muratov, Eugene

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, wemore » found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R{sup 2} = 0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q{sup 2}{sub ext} = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. - Highlights: • It was compiled the largest publicly-available skin permeability dataset. • Predictive QSAR models were developed for skin permeability. • No concordance between skin sensitization and skin permeability has been found. • Structural rules for optimizing sensitization and penetration were established.« less

  6. Modeling Coupled Processes for Multiphase Fluid Flow in Mechanically Deforming Faults

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Pike, D. Q.

    2011-12-01

    Modeling of coupled hydrological-mechanical processes in fault zones is critical for understanding the long-term behavior of fluids within the shallow crust. Here we utilize a previously developed cellular-automata (CA) model to define the evolution of permeability within a 2-D fault zone under compressive stress. At each time step, the CA model calculates the increase in fluid pressure within the fault at every grid cell. Pressure surpassing a critical threshold (e.g., lithostatic stress) causes a rupture in that cell, and pressure is then redistributed across the neighboring cells. The rupture can cascade through the spatial domain and continue across multiple time steps. Stress continues to increase and the size and location of rupture events are recorded until a percolating backbone of ruptured cells exists across the fault. Previous applications of this model consider uncorrelated random fields for the compressibility of the fault material. The prior focus on uncorrelated property fields is consistent with development of a number of statistical physics models including percolation processes and fracture propagation. However, geologic materials typically express spatial correlation and this can have a significant impact on the results of the pressure and permeability distributions. We model correlation of the fault material compressibility as a multiGaussian random field with a correlation length defined as the full-width at half maximum (FWHM) of the kernel used to create the field. The FWHM is varied from < 0.001 to approximately 0.47 of the domain size. The addition of spatial correlation to the compressibility significantly alters the model results including: 1) Accumulation of larger amounts of strain prior to the first rupture event; 2) Initiation of the percolating backbone at lower amounts of cumulative strain; 3) Changes in the event size distribution to a combined power-law and exponential distribution with a smaller power; and 4) Evolution of the spatial-temporal distribution of rupture event locations from a purely Poisson process to a complex pattern of clustered events with periodic patterns indicative of emergent phenomena. Switching the stress field from compressive to quiescent, or extensional, during the CA simulation results in a fault zone with a complex permeability pattern and disconnected zones of over-pressured fluid that serves as the initial conditions for simulation of capillary invasion of a separate fluid phase. We use Modified Invasion Percolation to simulate the invasion of a less dense fluid into the fault zone. Results show that the variability in fluid displacement measures caused by the heterogeneous permeability field and initial pressure conditions are significant. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  7. Determinants for membrane association and permeabilization of the coxsackievirus 2B protein and the identification of the Golgi complex as the target organelle.

    PubMed

    de Jong, Arjan S; Wessels, Els; Dijkman, Henri B P M; Galama, Jochem M D; Melchers, Willem J G; Willems, Peter H G M; van Kuppeveld, Frank J M

    2003-01-10

    The 2B protein of enterovirus is responsible for the alterations in the permeability of secretory membranes and the plasma membrane in infected cells. The structural requirements for the membrane association and the subcellular localization of this essential virus protein, however, have not been defined. Here, we provide evidence that the 2B protein is an integral membrane protein in vivo that is predominantly localized at the Golgi complex upon individual expression. Addition of organelle-specific targeting signals to the 2B protein revealed that the Golgi localization is an absolute prerequisite for the ability of the protein to modify plasma membrane permeability. Expression of deletion mutants and heterologous proteins containing specific domains of the 2B protein demonstrated that each of the two hydrophobic regions could mediate membrane binding individually. However, the presence of both hydrophobic regions was required for the correct membrane association, efficient Golgi targeting, and the membrane-permeabilizing activity of the 2B protein, suggesting that the two hydrophobic regions are cooperatively involved in the formation of a membrane-integral complex. The formation of membrane-integral pores by the 2B protein in the Golgi complex and the possible mechanism by which a Golgi-localized virus protein modifies plasma membrane permeability are discussed.

  8. Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization

    PubMed Central

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Skin permeability is widely considered to be mechanistically implicated in chemically-induced skin sensitization. Although many chemicals have been identified as skin sensitizers, there have been very few reports analyzing the relationships between molecular structure and skin permeability of sensitizers and non-sensitizers. The goals of this study were to: (i) compile, curate, and integrate the largest publicly available dataset of chemicals studied for their skin permeability; (ii) develop and rigorously validate QSAR models to predict skin permeability; and (iii) explore the complex relationships between skin sensitization and skin permeability. Based on the largest publicly available dataset compiled in this study, we found no overall correlation between skin permeability and skin sensitization. In addition, cross-species correlation coefficient between human and rodent permeability data was found to be as low as R2=0.44. Human skin permeability models based on the random forest method have been developed and validated using OECD-compliant QSAR modeling workflow. Their external accuracy was high (Q2ext = 0.73 for 63% of external compounds inside the applicability domain). The extended analysis using both experimentally-measured and QSAR-imputed data still confirmed the absence of any overall concordance between skin permeability and skin sensitization. This observation suggests that chemical modifications that affect skin permeability should not be presumed a priori to modulate the sensitization potential of chemicals. The models reported herein as well as those developed in the companion paper on skin sensitization suggest that it may be possible to rationally design compounds with the desired high skin permeability but low sensitization potential. PMID:25560673

  9. Baculovirus AC102 Is a Nucleocapsid Protein That Is Crucial for Nuclear Actin Polymerization and Nucleocapsid Morphogenesis.

    PubMed

    Hepp, Susan E; Borgo, Gina M; Ticau, Simina; Ohkawa, Taro; Welch, Matthew D

    2018-06-01

    The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type species of alphabaculoviruses, is an enveloped DNA virus that infects lepidopteran insects and is commonly known as a vector for protein expression and cell transduction. AcMNPV belongs to a diverse group of viral and bacterial pathogens that target the host cell actin cytoskeleton during infection. AcMNPV is unusual, however, in that it absolutely requires actin translocation into the nucleus early in infection and actin polymerization within the nucleus late in infection coincident with viral replication. Of the six viral factors that are sufficient, when coexpressed, to induce the nuclear localization of actin, only AC102 is essential for viral replication and the nuclear accumulation of actin. We therefore sought to better understand the role of AC102 in actin mobilization in the nucleus early and late in infection. Although AC102 was proposed to function early in infection, we found that AC102 is predominantly expressed as a late protein. In addition, we observed that AC102 is required for F-actin assembly in the nucleus during late infection, as well as for proper formation of viral replication structures and nucleocapsid morphogenesis. Finally, we found that AC102 is a nucleocapsid protein and a newly recognized member of a complex consisting of the viral proteins EC27, C42, and the actin polymerization protein P78/83. Taken together, our findings suggest that AC102 is necessary for nucleocapsid morphogenesis and actin assembly during late infection through its role as a component of the P78/83-C42-EC27-AC102 protein complex. IMPORTANCE The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an important biotechnological tool for protein expression and cell transduction, and related nucleopolyhedroviruses are also used as environmentally benign insecticides. One impact of our work is to better understand the fundamental mechanisms through which AcMNPV exploits the cellular machinery of the host for replication, which may aid in the development of improved baculovirus-based research and industrial tools. Moreover, AcMNPV's ability to mobilize the host actin cytoskeleton within the cell's nucleus during infection makes it a powerful cell biological tool. It is becoming increasingly clear that actin plays important roles in the cell's nucleus, and yet the regulation and function of nuclear actin is poorly understood. Our work to better understand how AcMNPV relocalizes and polymerizes actin within the nucleus may reveal fundamental mechanisms that govern nuclear actin regulation and function, even in the absence of viral infection. Copyright © 2018 American Society for Microbiology.

  10. Conformational studies of immunodominant myelin basic protein 1-11 analogues using NMR and molecular modeling

    NASA Astrophysics Data System (ADS)

    Laimou, Despina; Lazoura, Eliada; Troganis, Anastassios N.; Matsoukas, Minos-Timotheos; Deraos, Spyros N.; Katsara, Maria; Matsoukas, John; Apostolopoulos, Vasso; Tselios, Theodore V.

    2011-11-01

    Τwo dimensional nuclear magnetic resonance studies complimented by molecular dynamics simulations were conducted to investigate the conformation of the immunodominant epitope of acetylated myelin basic protein residues 1-11 (Ac-MBP1-11) and its altered peptide ligands, mutated at position 4 to an alanine (Ac-MBP1-11[4A]) or a tyrosine residue (Ac-MBP1-11[4Y]). Conformational analysis of the three analogues indicated that they adopt an extended conformation in DMSO solution as no long distance NOE connectivities were observed and seem to have a similar conformation when bound to the active site of the major histocompatibility complex (MHC II). The interaction of each peptide with MHC class II I-Au was further investigated in order to explore the molecular mechanism of experimental autoimmune encephalomyelitis induction/inhibition in mice. The present findings indicate that the Gln3 residue, which serves as a T-cell receptor (TCR) contact site in the TCR/peptide/I-Au complex, has a different orientation in the mutated analogues especially in the Ac-MBP1-11[4A] peptide. In particular the side chain of Gln3 is not solvent exposed as for the native Ac-MBP1-11 and it is not available for interaction with the TCR.

  11. Determination of Noncovalent Binding Using a Continuous Stirred Tank Reactor as a Flow Injection Device Coupled to Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Santos, Inês C.; Waybright, Veronica B.; Fan, Hui; Ramirez, Sabra; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Fryčák, Petr; Schug, Kevin A.

    2015-07-01

    Described is a new method based on the concept of controlled band dispersion, achieved by hyphenating flow injection analysis with ESI-MS for noncovalent binding determinations. A continuous stirred tank reactor (CSTR) was used as a FIA device for exponential dilution of an equimolar host-guest solution over time. The data obtained was treated for the noncovalent binding determination using an equimolar binding model. Dissociation constants between vancomycin and Ac-Lys(Ac)-Ala-Ala-OH peptide stereoisomers were determined using both the positive and negative ionization modes. The results obtained for Ac- L-Lys(Ac)- D-Ala- D-Ala (a model for a Gram-positive bacterial cell wall) binding were in reasonable agreement with literature values made by other mass spectrometry binding determination techniques. Also, the developed method allowed the determination of dissociation constants for vancomycin with Ac- L-Lys(Ac)- D-Ala- L-Ala, Ac- L-Lys(Ac)- L-Ala- D-Ala, and Ac- L-Lys(Ac)- L-Ala- L-Ala. Although some differences in measured binding affinities were noted using different ionization modes, the results of each determination were generally consistent. Differences are likely attributable to the influence of a pseudo-physiological ammonium acetate buffer solution on the formation of positively- and negatively-charged ionic complexes.

  12. An H2A Histone Isotype, H2ac, Associates with Telomere and Maintains Telomere Integrity

    PubMed Central

    Tzeng, Tsai-Yu; Lin, I-Hsuan; Hsu, Ming-Ta

    2016-01-01

    Telomeres are capped at the ends of eukaryotic chromosomes and are composed of TTAGGG repeats bound to the shelterin complex. Here we report that a replication-dependent histone H2A isotype, H2ac, was associated with telomeres in human cells and co-immunoprecipitates with telomere repeat factor 2 (TRF2) and protection of telomeres protein 1 (POT1), whereas other histone H2A isotypes and mutations of H2ac did not bind to telomeres or these two proteins. The amino terminal basic domain of TRF2 was necessary for the association with H2ac and for the recruitment of H2ac to telomeres. Depletion of H2ac led to loss of telomeric repeat sequences, the appearance of dysfunctional telomeres, and chromosomal instability, including chromosomal breaks and anaphase bridges, as well as accumulation of telomere-associated DNA damage factors in H2ac depleted cells. Additionally, knockdown of H2ac elicits an ATM-dependent DNA damage response at telomeres and depletion of XPF protects telomeres against H2ac-deficiency-induced G-strand overhangs loss and DNA damage response, and prevents chromosomal instability. These findings suggest that the H2A isotype, H2ac, plays an essential role in maintaining telomere functional integrity. PMID:27228173

  13. Seventeen-Coordinate Actinide Helium Complexes.

    PubMed

    Kaltsoyannis, Nikolas

    2017-06-12

    The geometries and electronic structures of molecular ions featuring He atoms complexed to actinide cations are explored computationally using density functional and coupled cluster theories. A new record coordination number is established, as AcHe 17 3+ , ThHe 17 4+ , and PaHe 17 4+ are all found to be true geometric minima, with the He atoms clearly located in the first shell around the actinide. Analysis of AcHe n 3+ (n=1-17) using the quantum theory of atoms in molecules (QTAIM) confirms these systems as having closed shell, charge-induced dipole bonding. Excellent correlations (R 2 >0.95) are found between QTAIM metrics (bond critical point electron densities and delocalization indices) and the average Ac-He distances, and also with the incremental He binding energies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Iron-tannin-framework complex modified PES ultrafiltration membranes with enhanced filtration performance and fouling resistance.

    PubMed

    Fang, Xiaofeng; Li, Jiansheng; Li, Xin; Pan, Shunlong; Sun, Xiuyun; Shen, Jinyou; Han, Weiqing; Wang, Lianjun; Van der Bruggen, Bart

    2017-11-01

    In this work, an iron-tannin-framework (ITF) complex was introduced to a poly (ether sulfone) (PES) casting solution as a hydrophilic additive to fabricate ITF/PES ultrafiltration (UF) membranes via non-solvent-induced phase separation (NIPS). The structure and performance of the PES membranes with ITF concentrations ranging from 0 to 0.9wt.% were systematically investigated by scanning electron microscopy, water contact angle, permeability, protein rejection and fouling resistance measurements. The results indicate that the pore structure and surface properties of PES UF membranes can be regulated by incorporating the ITF complex. Compared with classical PES membranes, ITF/PES membranes were found to have an increased hydrophilicity and porosity and reduced surface pore size. Importantly, a simultaneous enhancement of permeability and separation performance was observed for the blend membranes, which indicates that the introduction of the ITF complex can break through the trade-off between permeability and selectivity of UF membranes.When the ITF content was 0.3wt.%, the permeability reached a maximum of 319.4(L/m 2 h) at 0.1MPa, which is 1.6 times higher than that of the classical PES membrane. Furthermore, the BSA rejection increased from 25.9% for the PES membrane to 95.9% for the enhanced membrane. In addition, the same membrane showed an improved fouling resistance (higher flux recovery and lower adhesion force) and stable hydrophilicity (unchanged after incubation in deionized water for 30days). The simple, green and cost-effective preparation process and the outstanding filtration performance highlight the potential of ITF/PES membranes for practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. A Magnesium-Activated Carbon Hybrid Capacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, HD; Shterenberg, I; Gofer, Y

    2013-12-11

    Prototype cells of hybrid capacitor were developed, comprising activated carbon (AC) cloth and magnesium (Mg) foil as the positive and negative electrodes, respectively. The electrolyte solution included ether solvent (TBF) and a magnesium organo-halo-aluminate complex 0.25 M Mg2Cl3+-Ph2AlCl2-. In this solution Mg can be deposited/dissolved reversibly for thousands of cycles with high reversibility (100% cycling efficiency). The main barrier for integrating porous AC electrodes with this electrolyte solution was the saturation of the pores with the large ions in the AC prior to reaching the potential limit. This is due to the existence of bulky Mg and Al based ionicmore » complexes consisting Cl, alkyl or aryl (R), and THF ligands. This problem was resolved by adding 0.5 M of lithium chloride (LiCl), thus introducing smaller ionic species to the solution. This Mg hybrid capacitor system demonstrated a stable cycle performance for many thousands of cycles with a specific capacitance of 90 Fg(-1) for the AC positive electrodes along a potential range of 2.4 V. (C) 2014 The Electrochemical Society. All rights reserved.« less

  16. Comparative analyses of the neuron numbers and volumes of the amygdaloid complex in old and new world primates.

    PubMed

    Carlo, C N; Stefanacci, L; Semendeferi, K; Stevens, C F

    2010-04-15

    The amygdaloid complex (AC), a key component of the limbic system, is a brain region critical for the detection and interpretation of emotionally salient information. Therefore, changes in its structure and function are likely to provide correlates of mood and emotion disorders, diseases that afflict a large portion of the human population. Previous gross comparisons of the AC in control and diseased individuals have, however, mainly failed to discover these expected correlations with diseases. We have characterized AC nuclei in different nonhuman primate species to establish a baseline for more refined comparisons between the normal and the diseased amygdala. AC nuclei volume and neuron number in 19 subdivisions are reported from 13 Old and New World primate brains, spanning five primate species, and compared with corresponding data from humans. Analysis of the four largest AC nuclei revealed that volume and neuron number of one component, the central nucleus, has a negative allometric relationship with total amygdala volume and neuron number, which is in contrast with the isometric relationship found in the other AC nuclei (for both neuron number and volume). Neuron density decreases across all four nuclei according to a single power law with an exponent of about minus one-half. Because we have included quantitative comparisons with great apes and humans, our conclusions apply to human brains, and our scaling laws can potentially be used to study the anatomical correlates of the amygdala in disorders involving pathological emotion processing. (c) 2009 Wiley-Liss, Inc.

  17. Structure and binding analysis of Polyporus squamosus lectin in complex with the Neu5Acα2-6Galβ1-4GlcNAc human-type influenza receptor

    PubMed Central

    Kadirvelraj, Renuka; Grant, Oliver C; Goldstein, Irwin J; Winter, Harry C; Tateno, Hiroaki; Fadda, Elisa; Woods, Robert J

    2011-01-01

    Glycan chains that terminate in sialic acid (Neu5Ac) are frequently the receptors targeted by pathogens for initial adhesion. Carbohydrate-binding proteins (lectins) with specificity for Neu5Ac are particularly useful in the detection and isolation of sialylated glycoconjugates, such as those associated with pathogen adhesion as well as those characteristic of several diseases including cancer. Structural studies of lectins are essential in order to understand the origin of their specificity, which is particularly important when employing such reagents as diagnostic tools. Here, we report a crystallographic and molecular dynamics (MD) analysis of a lectin from Polyporus squamosus (PSL) that is specific for glycans terminating with the sequence Neu5Acα2-6Galβ. Because of its importance as a histological reagent, the PSL structure was solved (to 1.7 Å) in complex with a trisaccharide, whose sequence (Neu5Acα2-6Galβ1-4GlcNAc) is exploited by influenza A hemagglutinin for viral adhesion to human tissue. The structural data illuminate the origin of the high specificity of PSL for the Neu5Acα2-6Gal sequence. Theoretical binding free energies derived from the MD data confirm the key interactions identified crystallographically and provide additional insight into the relative contributions from each amino acid, as well as estimates of the importance of entropic and enthalpic contributions to binding. PMID:21436237

  18. Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutaoka, Takanori, E-mail: tsutaok@hiroshima-u.ac.jp; Fukuyama, Koki; Kinoshita, Hideaki

    2013-12-23

    The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.

  19. IQGAP1 Interacts with Components of the Slit Diaphragm Complex in Podocytes and Is Involved in Podocyte Migration and Permeability In Vitro

    PubMed Central

    Rigothier, Claire; Auguste, Patrick; Welsh, Gavin I.; Lepreux, Sébastien; Deminière, Colette; Mathieson, Peter W.; Saleem, Moin A.; Ripoche, Jean; Combe, Christian

    2012-01-01

    IQGAP1 is a scaffold protein that interacts with proteins of the cytoskeleton and the intercellular adhesion complex. In podocytes, IQGAP1 is associated with nephrin in the glomerular slit diaphragm (SD) complex, but its role remains ill-defined. In this work, we investigated the interaction of IQGAP1 with the cytoskeleton and SD proteins in podocytes in culture, and its role in podocyte migration and permeability. Expression, localization, and interactions between IQGAP1 and SD or cytoskeletal proteins were determined in cultured human podocytes by Western blot (WB), immunocytolocalization (IC), immunoprecipitation (IP), and In situ Proximity Ligation assay (IsPL). Involvement of IQGAP1 in migration and permeability was also assessed. IQGAP1 expression in normal kidney biopsies was studied by immunohistochemistry. IQGAP1 expression by podocytes increased during their in vitro differentiation. IC, IP, and IsPL experiments showed colocalizations and/or interactions between IQGAP1 and SD proteins (nephrin, MAGI-1, CD2AP, NCK 1/2, podocin), podocalyxin, and cytoskeletal proteins (α-actinin-4). IQGAP1 silencing decreased podocyte migration and increased the permeability of a podocyte layer. Immunohistochemistry on normal human kidney confirmed IQGAP1 expression in podocytes and distal tubular epithelial cells and also showed an expression in glomerular parietal epithelial cells. In summary, our results suggest that IQGAP1, through its interaction with components of SD and cytoskeletal proteins, is involved in podocyte barrier properties. PMID:22662192

  20. Analysis and application of classification methods of complex carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  1. Encapsulation of TCNQ and the acridinium ion within a bisporphyrin cavity: synthesis, structure, and photophysical and HOMO-LUMO-gap-mediated electron-transfer properties.

    PubMed

    Chaudhary, Arvind; Rath, Sankar Prasad

    2012-06-11

    The encapsulation of tetracyanoquinodimethane (TCNQ) and fluorescent probe acridinium ions (AcH(+)) by diethylpyrrole-bridged bisporphyrin (H(4)DEP) was used to investigate the structural and spectroscopic changes within the bisporphyrin cavity upon substrate binding. X-ray diffraction studies of the bisporphyrin host (H(4)DEP) and the encapsulated host-guest complexes (H(4)DEP⋅TCNQ and [H(4)DEP⋅AcH]ClO(4)) are reported. Negative and positive shifts of the reduction and oxidation potentials, respectively, indicated that it was difficult to reduce/oxidize the encapsulated complexes. The emission intensities of bisporphyrin, upon excitation at 560 nm, were quenched by about 65 % and 95 % in H(4)DEP⋅TCNQ and [H(4)DEP⋅AcH]ClO(4), respectively, owing to photoinduced electron transfer from the excited state of the bisporphyrin to TCNQ/AcH(+); this result was also supported by DFT calculations. Moreover, the fluorescence intensity of encapsulated AcH(+) (excited at 340 nm) was also remarkably quenched compared to the free ions, owing to photoinduced singlet-to-singlet energy transfer from AcH(+) to bisporphyrin. Thus, AcH(+) acted as both an acceptor and a donor, depending on which part of the chromophore was excited in the host-guest complex. The electrochemically evaluated HOMO-LUMO gap was 0.71 and 1.42 eV in H(4)DEP⋅TCNQ and [H(4)DEP⋅AcH]ClO(4), respectively, whilst the gap was 2.12 eV in H(4)DEP. The extremely low HOMO-LUMO gap in H(4)DEP⋅TCNQ led to facile electron transfer from the host to the guest, which was manifested in the lowering of the CN stretching frequency (in the solid state) in the IR spectra, a strong radical signal in the EPR spectra at 77 K, and also the presence of low-energy bands in the UV/Vis spectra (in the solution phase). Such an efficient transfer was only possible when the donor and acceptor moieties were in close proximity to one another. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fracture-permeability behavior of shale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carey, J. William; Lei, Zhou; Rougier, Esteban

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  3. Fracture-permeability behavior of shale

    DOE PAGES

    Carey, J. William; Lei, Zhou; Rougier, Esteban; ...

    2015-05-08

    The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less

  4. There and back again: The life and death of magma permeability in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Wadsworth, F. B.; Vasseur, J.; Llewellin, E. W.; Lavallée, Y.; Kendrick, J. E.; Dobson, K. J.; Heap, M. J.; Kushnir, A. R.; Dingwell, D. B.

    2017-12-01

    Permeability of magma to gas is one of the key controls on the propoensity for explosive volcanism on the terrestrial planets. The magma filling upper-crustal volcanic conduits must become permeable in order for gas overpressure in pore spaces to dissipate. Once permeable, magma may densify and the pore network may re-seal itself. Permeability may be developed in one or more of 3 end-member pore-space geometries: (1) bubble-dominated, (2) crack-dominated, or (3) particle dominated. We take each geometry in turn and explore how we can scale the evolution of permeability with porosity. To do this we use 3 different data types. First, we compile the large body of published measurements of natural, synthetic and analogue volcanic rocks covering a range of pore space complexity. Second, we compile and conduct in situ measurements of permeability evolution for densifying granular systems or crack-formation in deforming magmas. Third, we conduct stochastic simulations in which we systematically build random heterogeneous porous media from overlapping spheres and use lattice-Boltzmann simulations of fluid flow to find the permeability. These data permit us to isolate individual controls on the permeability in each geometry in turn. Permeability can be readily formed by bubble coalescence, fracturing or fragmentation, and by forced gas percolation. Similarly, permeability can be reduced by bubble shrinking and pinch off, fracture healing, and volcanic welding. We broadly consider the kinetics of these processes and provide useful tools for predicting the longevity of different permeable network types. We summarize these findings by considering the potential of silicic volcanoes to outgas prior to significant overpressure buildup, possibly controlling the liklihood of large explosive behaviour.

  5. Histone Core Phosphorylation Regulates DNA Accessibility*

    PubMed Central

    Brehove, Matthew; Wang, Tao; North, Justin; Luo, Yi; Dreher, Sarah J.; Shimko, John C.; Ottesen, Jennifer J.; Luger, Karolin; Poirier, Michael G.

    2015-01-01

    Nucleosome unwrapping dynamics provide transient access to the complexes involved in DNA transcription, repair, and replication, whereas regulation of nucleosome unwrapping modulates occupancy of these complexes. Histone H3 is phosphorylated at tyrosine 41 (H3Y41ph) and threonine 45 (H3T45ph). H3Y41ph is implicated in regulating transcription, whereas H3T45ph is involved in DNA replication and apoptosis. These modifications are located in the DNA-histone interface near where the DNA exits the nucleosome, and are thus poised to disrupt DNA-histone interactions. However, the impact of histone phosphorylation on nucleosome unwrapping and accessibility is unknown. We find that the phosphorylation mimics H3Y41E and H3T45E, and the chemically correct modification, H3Y41ph, significantly increase nucleosome unwrapping. This enhances DNA accessibility to protein binding by 3-fold. H3K56 acetylation (H3K56ac) is also located in the same DNA-histone interface and increases DNA unwrapping. H3K56ac is implicated in transcription regulation, suggesting that H3Y41ph and H3K56ac could function together. We find that the combination of H3Y41ph with H3K56ac increases DNA accessibility by over an order of magnitude. These results suggest that phosphorylation within the nucleosome DNA entry-exit region increases access to DNA binding complexes and that the combination of phosphorylation with acetylation has the potential to significantly influence DNA accessibility to transcription regulatory complexes. PMID:26175159

  6. Expression of Cry1Ac toxin-binding region in Plutella xyllostella cadherin-like receptor and studying their interaction mode by molecular docking and site-directed mutagenesis.

    PubMed

    Hu, Xiaodan; Zhang, Xiao; Zhong, Jianfeng; Liu, Yuan; Zhang, Cunzheng; Xie, Yajing; Lin, Manman; Xu, Chongxin; Lu, Lina; Zhu, Qing; Liu, Xianjin

    2018-05-01

    Cadherin-like protein has been identified as the primary Bacillus thuringiensis (Bt) Cry toxin receptor in Lepidoptera pests and plays a key role in Cry toxin insecticidal. In this study, we successfully expressed the putative Cry1Ac toxin-binding region (CR7-CR11) of Plutella xylostella cadherin-like in Escherichia coli BL21 (DE3). The expressed CR7-CR11 fragment showed binding ability to Cry1Ac toxin under denaturing (Ligand blot) and non-denaturing (ELISA) conditions. The three-dimensional structure of CR7-CR11 was constructed by homology modeling. Molecular docking results of CR7-CR11 and Cry1Ac showed that domain II and domain III of Cry1Ac were taking part in binding to CR7-CR11, while CR7-CR8 was the region of CR7-CR11 in interacting with Cry1Ac. The interaction of toxin-receptor complex was found to arise from hydrogen bond and hydrophobic interaction. Through the computer-aided alanine mutation scanning, amino acid residues of Cry1Ac (Met341, Asn442 and Ser486) and CR7-CR11 (Asp32, Arg101 and Arg127) were predicted as the hot spot residues involved in the interaction of the toxin-receptor complex. At last, we verified the importance role of these key amino acid residues by binding assay. These results will lay a foundation for further elucidating the insecticidal mechanism of Cry toxin and enhancing Cry toxin insecticidal activity by molecular modification. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Using PEGylated iron oxide nanoparticles with ultrahigh relaxivity for MR imaging of an orthotopic model of human hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhi; Hu, Yong; Yang, Yuchan; Xu, Wei; Yao, Mingrong; Gao, Dongmei; Zhao, Yan; Zhan, Songhua; Shi, Xiangyang; Wang, Xiaolin

    2017-02-01

    Hepatocellular carcinoma (HCC) is the most common type of liver malignant tumor, which is often diagnosed in advanced stages, resulting in low survival rate. The sensitive diagnosis of early HCC presents a great interest. Herein, a novel superparamagnetic contrast agent composed of iron oxide nanoparticles is reported. Firstly, polyethyleneimine-coated iron oxide (Fe3O4@PEI) nanoparticles (NPs) were synthesized via a mild reduction route, followed by their modification of polyethylene glycol monomethyl ether ( mPEG-COOH) via 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride coupling chemistry. After acetylation of the remaining PEI amines, the PEGylated Fe3O4 (Fe3O4@PEI.Ac- mPEG-COOH) NPs were successively characterized via different techniques. The Fe3O4@PEI.Ac- mPEG-COOH probes with an Fe3O4 NP size of 9 nm are water dispersible and cytocompatible within the given concentration range. The percentages of PEI and m-PEG-COOH on the particles surface are calculated to be 15.5 and 7.2%, respectively. Prior to the administration of Fe3O4@PEI.Ac- mPEG-COOH NPs of ultrahigh r 2 relaxivity (461.29 mM-1 s-1) via tail intravenous injection for MR imaging of HCC, the orthotopic model of HCC was established in the nude mice by surgical transplantation with HCCLM3 cells. The analysis of MR signal intensity (SI) in the orthotopic tumor model demonstrated that the developed Fe3O4@PEI.Ac- mPEG-COOH NPs were able to infiltrate into the tumor area through the enhanced permeability and retention (EPR) effect reaching the bottom at 2 h postinjection. The developed Fe3O4@PEI.Ac- mPEG-COOH NPs may be further applied for theranostics of different diseases through combing various therapeutic agents.

  8. Conformation-Specific Spectroscopy of a Prototypical γ-PEPTIDE-WATER Complex: Ac-γ2-hPhe-NHMe-(H2O)1

    NASA Astrophysics Data System (ADS)

    Buchanan, Evan G.; James, William H., III; Zwier, Timothy S.; Guo, Li; Gellman, Samuel H.

    2010-06-01

    The prototypical γ-peptide, Ac-γ2-hPhe-NHMe, has been previously studied in a supersonic jet expansion, with three different conformers observed. Two of the monomers form nine atom, intramolecular hydrogen bonded rings, which differ by the position of the aromatic chromophore relative to the backbone. The third monomer conformer has no intramolecular H-bonds, but forms instead an intramolecular, amide-amide stacked structure unique to the γ-peptide backbone. This talk focuses attention on the conformation-specific IR spectra of the Ac-γ2-hPhe-NHMe-(H2O)1 complex, which is observed to form six unique conformational isomers, all of which preserve the two distinct monomer structural motifs. Three conformers are assigned to the nine atom intramolecular hydrogen bond family with the water hydrogen bonded to it as donor in different locations. The other three belong to the amide-amide stacking family with the water forming a bridge between the two amide planes. Infrared photodissocation of the water molecule from the complex to form γ-peptide monomer conformations will also be discussed.

  9. Polaron conductivity mechanism in oxalic acid dihydrate: ac conductivity experiment

    NASA Astrophysics Data System (ADS)

    Levstik, Adrijan; Filipič, Cene; Bobnar, Vid; Levstik, Iva; Hadži, Dušan

    2006-10-01

    The ac electrical conductivity of the oxalic acid dihydrate ( α -POX) was investigated as a function of the frequency and temperature. The real part of the complex ac electrical conductivity was found to follow the universal dielectric response σ'∝νs , indicating that hopping or tunneling of localized charge carriers governs the electrical transport. A detailed analysis of the temperature dependence of the exponent s revealed that in a broad temperature range 50-200K the tunneling of polarons is the dominating charge transport mechanism.

  10. A laboratory study to estimate pore geometric parameters of sandstones using complex conductivity and nuclear magnetic resonance for permeability prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterman, Gordon; Keating, Kristina; Binley, Andrew

    Here, we estimate parameters from the Katz and Thompson permeability model using laboratory complex electrical conductivity (CC) and nuclear magnetic resonance (NMR) data to build permeability models parameterized with geophysical measurements. We use the Katz and Thompson model based on the characteristic hydraulic length scale, determined from mercury injection capillary pressure estimates of pore throat size, and the intrinsic formation factor, determined from multisalinity conductivity measurements, for this purpose. Two new permeability models are tested, one based on CC data and another that incorporates CC and NMR data. From measurements made on forty-five sandstone cores collected from fifteen different formations,more » we evaluate how well the CC relaxation time and the NMR transverse relaxation times compare to the characteristic hydraulic length scale and how well the formation factor estimated from CC parameters compares to the intrinsic formation factor. We find: (1) the NMR transverse relaxation time models the characteristic hydraulic length scale more accurately than the CC relaxation time (R 2 of 0.69 and 0.33 and normalized root mean square errors (NRMSE) of 0.16 and 0.21, respectively); (2) the CC estimated formation factor is well correlated with the intrinsic formation factor (NRMSE50.23). We demonstrate that that permeability estimates from the joint-NMR-CC model (NRMSE50.13) compare favorably to estimates from the Katz and Thompson model (NRMSE50.074). Lastly, this model advances the capability of the Katz and Thompson model by employing parameters measureable in the field giving it the potential to more accurately estimate permeability using geophysical measurements than are currently possible.« less

  11. A laboratory study to estimate pore geometric parameters of sandstones using complex conductivity and nuclear magnetic resonance for permeability prediction

    DOE PAGES

    Osterman, Gordon; Keating, Kristina; Binley, Andrew; ...

    2016-03-18

    Here, we estimate parameters from the Katz and Thompson permeability model using laboratory complex electrical conductivity (CC) and nuclear magnetic resonance (NMR) data to build permeability models parameterized with geophysical measurements. We use the Katz and Thompson model based on the characteristic hydraulic length scale, determined from mercury injection capillary pressure estimates of pore throat size, and the intrinsic formation factor, determined from multisalinity conductivity measurements, for this purpose. Two new permeability models are tested, one based on CC data and another that incorporates CC and NMR data. From measurements made on forty-five sandstone cores collected from fifteen different formations,more » we evaluate how well the CC relaxation time and the NMR transverse relaxation times compare to the characteristic hydraulic length scale and how well the formation factor estimated from CC parameters compares to the intrinsic formation factor. We find: (1) the NMR transverse relaxation time models the characteristic hydraulic length scale more accurately than the CC relaxation time (R 2 of 0.69 and 0.33 and normalized root mean square errors (NRMSE) of 0.16 and 0.21, respectively); (2) the CC estimated formation factor is well correlated with the intrinsic formation factor (NRMSE50.23). We demonstrate that that permeability estimates from the joint-NMR-CC model (NRMSE50.13) compare favorably to estimates from the Katz and Thompson model (NRMSE50.074). Lastly, this model advances the capability of the Katz and Thompson model by employing parameters measureable in the field giving it the potential to more accurately estimate permeability using geophysical measurements than are currently possible.« less

  12. Electromagnetic properties of Fe-Co granular composite materials containing acicular nanoparticles

    NASA Astrophysics Data System (ADS)

    Kasagi, Teruhiro; Massango, Herieta; Tsutaoka, Takanori; Yamamoto, Shinichiro; Hatakeyama, Kenichi

    2018-03-01

    Electromagnetic properties of acicular (needle-like) Fe76Co24 nanoparticle composite materials have been studied in microwave frequency range up to 20 GHz. The Fe76Co24 particles are commercially available acicular Fe76Co24 nanoparticles with an approximate length and diameter of 100 and 25 nm, respectively. The Fe76Co24 nanocomposites were prepared by embedding the Fe76Co24 nanoparticle in an appropriate resin. Since the metallic Fe76Co24 nanoparticles have an oxidized surface, even high particle content composites at 78 vol.%, which is in the percolated state, does not show metallic conduction; a low frequency plasmonic state with the negative permittivity spectrum was not observed. Meanwhile, the negative permeability spectrum caused by the magnetic resonance in Fe76Co24 alloy was obtained in the high particle content composites. From the measurement of the complex permeability spectra under the external dc magnetic field, it was clarified that the gyromagnetic spin rotation mainly contributes to the permeability spectrum of nanocomposites due to extremely small quantity of domain walls in the acicular nanoparticles. This result suggests that the negative permeability spectrum was caused by the gyromagnetic spin resonance. By the comparison of the complex permeability spectrum between the acicular Fe76Co24 nanocomposite and the spherical Fe50Co50 microcomposite, the gyromagnetic spin resonance frequency of the acicular nanocomposite tends to locate higher than that of the spherical microcomposite owing to the demagnetizing field effect. Therefore, it can be concluded that the negative permeability frequency band of the acicular nanocomposite is higher than that of the spherical microcomposite at the same particle content.

  13. Construction of a simple biocatalyst using psychrophilic bacterial cells and its application for efficient 3-hydroxypropionaldehyde production from glycerol.

    PubMed

    Tajima, Takahisa; Fuki, Koji; Kataoka, Naoya; Kudou, Daizou; Nakashimada, Yutaka; Kato, Junichi

    2013-12-05

    Most whole cell biocatalysts have some problems with yields and productivities because of various metabolites produced as byproducts and limitations of substrate uptake. We propose a psychrophile-based simple biocatalyst for efficient bio-production using mesophilic enzymes expressed in psychrophilic Shewanella livingstonensis Ac10 cells whose basic metabolism was inactivated by heat treatment. The 45°C heat-treated cells expressing lacZ showed maximum beta-galactosidase activity as well as chloroform/SDS-treated cells to increase membrane permeability. The fluorescent dye 5-cyano-2,3-ditolyl-tetrazolium chloride staining indicated that most basic metabolism of Ac10 was lost by heat treatment at 45˚C for 10 min. The simple biocatalyst was applied for 3-HPA production by using Klebsiella pneumoniae dhaB genes. 3-HPA was stoichiometrically produced with the complete consumption of glycerol at a high production rate of 8.85 mmol 3-HPA/g dry cell/h. The amount of 3-HPA production increased by increasing the concentrations of biocatalyst and glycerol. Furthermore, it could convert biodiesel-derived crude glycerol to 3-HPA.

  14. Bioturbation and dissolved organic matter enhance contaminant fluxes from sediment treated with powdered and granular activated carbon.

    PubMed

    Kupryianchyk, D; Noori, A; Rakowska, M I; Grotenhuis, J T C; Koelmans, A A

    2013-05-21

    Sediment amendment with activated carbon (AC) is a promising technique for in situ sediment remediation. To date it is not clear whether this technique sufficiently reduces sediment-to-water fluxes of sediment-bound hydrophobic organic chemicals (HOCs) in the presence of bioturbators. Here, we report polychlorobiphenyl (PCB) pore water concentrations, fluxes, mass transfer coefficients, and survival data of two benthic species, for four treatments: no AC addition (control), powdered AC addition, granular AC addition and addition and subsequent removal of GAC (sediment stripping). AC addition decreased mass fluxes but increased apparent mass transfer coefficients because of dissolved organic carbon (DOC) facilitated transport across the benthic boundary layer (BBL). In turn, DOC concentrations depended on bioturbator activity which was high for the PAC tolerant species Asellus aquaticus and low for AC sensitive species Lumbriculus variegatus. A dual BBL resistance model combining AC effects on gradients, DOC facilitated transport and biodiffusion was evaluated against the data and showed how the type of resistance differs with treatment and chemical hydrophobicity. Data and simulations illustrate the complex interplay between AC and contaminant toxicity to benthic organisms and how differences in species tolerance affect mass fluxes from sediment to the water column.

  15. The role of lysine(100) in the binding of acetylcoenzyme A to human arylamine N-acetyltransferase 1: implications for other acetyltransferases.

    PubMed

    Minchin, Rodney F; Butcher, Neville J

    2015-04-01

    The arylamine N-acetyltransferases (NATs) catalyze the acetylation of aromatic and heterocyclic amines as well as hydrazines. All proteins in this family of enzymes utilize acetyl coenzyme A (AcCoA) as an acetyl donor, which initially binds to the enzyme and transfers an acetyl group to an active site cysteine. Here, we have investigated the role of a highly conserved amino acid (Lys(100)) in the enzymatic activity of human NAT1. Mutation of Lys(100) to either a glutamine or a leucine significantly increased the Ka for AcCoA without changing the Kb for the acetyl acceptor p-aminobenzoic acid. In addition, substrate inhibition was more marked with the mutant enzymes. Steady state kinetic analyzes suggested that mutation of Lys(100) to either leucine or glutamine resulted in a less stable enzyme-cofactor complex, which was not seen with a positively charged arginine at this position. When p-nitrophenylacetate was used as acetyl donor, no differences were seen between the wild-type and mutant enzymes because p-nitrophenylacetate is too small to interact with Lys(100) when bound to the active site. Using 3'-dephospho-AcCoA as the acetyl donor, kinetic data confirmed that Ly(100) interacts with the 3'-phosphoanion to stabilize the enzyme-cofactor complex. Mutation of Lys(100) decreases the affinity of AcCoA for the protein and increases the rate of CoA release. Crystal structures of several other unrelated acetyltransferases show a lysine or arginine residue within 3Å of the 3'-phosphoanion of AcCoA, suggesting that this mechanism for stabilizing the complex by the formation of a salt bridge may be widely applicable in nature. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Structure and magnetic properties of an unprecedented syn-anti μ-nitrito-1κO:2κO' bridged Mn(III)-salen complex and its isoelectronic and isostructural formate analogue.

    PubMed

    Kar, Paramita; Biswas, Rituparna; Drew, Michael G B; Ida, Yumi; Ishida, Takayuki; Ghosh, Ashutosh

    2011-04-07

    The preparation, crystal structures and magnetic properties of two new isoelectronic and isomorphous formate- and nitrite-bridged 1D chains of Mn(III)-salen complexes, [Mn(salen)(HCOO)](n) (1) and [Mn(salen)(NO(2))](n) (2), where salen is the dianion of N,N'-bis(salicylidene)-1,2-diaminoethane, are presented. The structures show that the salen ligand coordinates to the four equatorial sites of the metal ion and the formate or nitrite ions coordinate to the axial positions to bridge the Mn(III)-salen units through a syn-antiμ-1κO:2κO' coordination mode. Such a bridging mode is unprecedented in Mn(III) for formate and in any transition metal ion for nitrite. Variable-temperature magnetic susceptibility measurements of complexes 1 and 2 indicate the presence of ferromagnetic exchange interactions with J values of 0.0607 cm(-1) (for 1) and 0.0883 cm(-1) (for 2). The ac measurements indicate negligible frequency dependence for 1 whereas compound 2 exhibits a decrease of χ(ac)' and a concomitant increase of χ(ac)'' on elevating frequency around 2 K. This finding is an indication of slow magnetization reversal characteristic of single-chain magnets or spin-glasses. The μ-nitrito-1κO:2κO' bridge seems to be a potentially superior magnetic coupler to the formate bridge for the construction of single-molecule/-chain magnets as its coupling constant is greater and the χ(ac)' and χ(ac)'' show frequency dependence. © The Royal Society of Chemistry 2011

  17. Intracellular Ca2+ release mediates cationic but not anionic poly(amidoamine) (PAMAM) dendrimer-induced tight junction modulation.

    PubMed

    Avaritt, Brittany R; Swaan, Peter W

    2014-09-01

    Poly(amidoamine) (PAMAM) dendrimers show great promise for utilization as oral drug delivery vehicles. These polymers are capable of traversing epithelial barriers, and have been shown to translocate by both transcellular and paracellular routes. While many proof-of-concept studies have shown that PAMAM dendrimers improve intestinal transport, little information exists on the mechanisms of paracellular transport, specifically dendrimer-induced tight junction modulation. Using anionic G3.5 and cationic G4 PAMAM dendrimers with known absorption enhancers, we investigated tight junction modulation in Caco-2 monolayers by visualization and mannitol permeability and compared dendrimer-mediated tight junction modulation to that of established permeation enhancers. [(14)C]-Mannitol permeability in the presence and absence of phospholipase C-dependent signaling pathway inhibitors was also examined and indicated that this pathway may mediate dendrimer-induced changes in permeability. Differences between G3.5 and G4 in tight junction protein staining and permeability with inhibitors were evident, suggesting divergent mechanisms were responsible for tight junction modulation. These dissimilarities are further intimated by the intracellular calcium release caused by G4 but not G3.5. Based on our results, it is apparent that the underlying mechanisms of dendrimer permeability are complex, and the complexities are likely a result of the density and sign of the surface charges of PAMAM dendrimers. The results of this study will have implications on the future use of PAMAM dendrimers for oral drug delivery.

  18. Zinc-mediated attenuation of hippocampal mossy fiber long-term potentiation induced by forskolin.

    PubMed

    Ando, Masaki; Oku, Naoto; Takeda, Atsushi

    2010-11-01

    The rise in presynaptic calcium induced by high-frequency stimulation activates the calcium-calmodulin-sensitive adenylyl cyclase (AC) 1 followed by the induction of long-term potentiation (LTP) at the hippocampal mossy fiber-CA3 synapse. Zinc is released with glutamate from mossy fiber terminals. However, the role of the zinc in mossy fiber LTP is controversial. In the present study, the mechanism of zinc-mediated attenuation of mossy fiber LTP was examined in that induced by forskolin, an AC activator. Mossy fiber LTP induced by tetanic stimulation (100 Hz for 1 s) was attenuated in the presence of 5 microM ZnCl(2), whereas that induced by forskolin under test stimulation (0.1 Hz) was not attenuated. Forskolin-induced mossy fiber LTP was attenuated by perfusion with 100 microM ZnCl(2) prior to the induction. However, the zinc (100 microM) pre-perfusion did not attenuate mossy fiber LTP induced by Sp-cAMPS, an activator of protein kinase A, under test stimulation. Zinc is necessary to be taken up into mossy fiber boutons for effectively inhibiting AC activity. In hippocampal slices labeled with ZnAF-2 DA, a membrane-permeable zinc indicator, intracellular ZnAF-2 signal was increased during tetanic stimulation in the presence of 5 microM ZnCl(2), but not under test stimulation. Intracellular ZnAF-2 signal was increased under test stimulation in the presence of 100 microM ZnCl(2). These results suggest that zinc taken up into mossy fibers attenuates forskolin-induced mossy fiber LTP via inhibition of AC activity. The significance of endogenous zinc uptake by mossy fibers is discussed focused on tetanus-induced mossy fiber LTP. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids

    PubMed Central

    Palade, PT; Barchi, RL

    1977-01-01

    25 aromatic carboxylic acids which are analogs of benzoic acid were tested in the rat diaphragm preparation for effects on chloride conductance (G(Cl)). Of the 25, 19 were shown to reduce membrane G(Cl) with little effect on other membrane parameters, although their apparent K(i) varied widely. This inhibition was reversible if exposure times were not prolonged. The most effective analog studied was anthracene-9-COOH (9-AC; K(i) = 1.1 x 10(-5) M). Active analogs produced concentration-dependent inhibition of a type consistent with interaction at a single site or group of sites having similar binding affinities, although a correlation could also be shown between lipophilicity and K(i). Structure-activity analysis indicated that hydrophobic ring substitution usually increased inhibitory activity while para polar substitutions reduced effectiveness. These compounds do not appear to inhibit G(Cl) by altering membrane surface charge and the inhibition produced is not voltage dependent. Qualitative characteristics of the I-V relationship for Cl(-) current are not altered. Conductance to all anions is not uniformly altered by these acids as would be expected from steric occlusion of a common channel. Concentrations of 9-AC reducing G(Cl) by more than 90 percent resulted in slight augmentation of G(I). The complete conductance sequence obtained at high levels of 9-AC was the reverse of that obtained under control conditions. Permeability sequences underwent progressive changes with increasing 9-AC concentration and ultimately inverted at high levels of the analog. Aromatic carboxylic acids appear to inhibit G(Cl) by binding to a specific intramembrane site and altering the selectivity sequence of the membrane anion channel. PMID:894246

  20. I-BIEM calculations of the frequency dispersion and ac current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  1. I-BIEM calculations of the frequency dispersion and AC current distribution at disk and ring-disk electrodes

    NASA Technical Reports Server (NTRS)

    Cahan, Boris D.

    1991-01-01

    The Iterative Boundary Integral Equation Method (I-BIEM) has been applied to the problem of frequency dispersion at a disk electrode in a finite geometry. The I-BIEM permits the direct evaluation of the AC potential (a complex variable) using complex boundary conditions. The point spacing was made highly nonuniform, to give extremely high resolution in those regions where the variables change most rapidly, i.e., in the vicinity of the edge of the disk. Results are analyzed with respect to IR correction, equipotential surfaces, and reference electrode placement. The current distribution is also examined for a ring-disk configuration, with the ring and the disk at the same AC potential. It is shown that the apparent impedance of the disk is inductive at higher frequencies. The results are compared to analytic calculations from the literature, and usually agree to better than 0.001 percent.

  2. Monitoring CO2 penetration and storage in the brine-saturated low permeable sandstone by the geophysical exploration technologies

    NASA Astrophysics Data System (ADS)

    Honda, H.; Mitani, Y.; Kitamura, K.; Ikemi, H.; Imasato, M.

    2017-12-01

    Carbon dioxide (CO2) capture and storage (CCS) plays a vital role in reducing greenhouse gas emissions. In the northern part of Kyushu region of Japan, complex geological structure (Coalfield) is existed near the CO2 emission source and has 1.06 Gt of CO2 storage capacity. The geological survey shows that these layers are formed by low permeable sandstone. It is necessary to monitor the CO2 behavior and clear the mechanisms of CO2 penetration and storage in the low permeable sandstone. In this study, measurements of complex electrical impedance (Z) and elastic wave velocity (P-wave velocity: Vp) were conducted during the supercritical CO2 injection experiment into the brine-saturated low permeable sandstone. The experiment conditions were as follows; Confining pressure: 20 MPa, Initial pore pressure: 10 MPa, 40 °, CO2 injection rate: 0.01 to 0.5 mL/min. Z was measured in the center of the specimen and Vp were measured at three different heights of the specimen at constant intervals. In addition, we measured the longitudinal and lateral strain at the center of the specimen, the pore pressure and CO2 injection volume (CO2 saturation). During the CO2 injection, the change of Z and Vp were confirmed. In the drainage terms, Vp decreased drastically once CO2 reached the measurement cross section.Vp showed the little change even if the flow rate increased (CO2 saturation increased). On the other hand, before the CO2 front reached, Z decreased with CO2-dissolved brine. After that, Z showed continuously increased as the CO2 saturation increased. From the multi-parameter (Hydraulic and Rock-physics parameters), we revealed the detail CO2 behavior in the specimen. In the brine-saturated low permeable sandstone, the slow penetration of CO2 was observed. However, once CO2 has passed, the penetration of CO2 became easy in even for brine-remainded low permeable sandstone. We conclude low permeable sandstone has not only structural storage capacity but also residual tapping (Capillary trapping) capacity. There is a positive possibility to conduct CCS in the low-quality reservoir (low permeable sandstone).

  3. Fate and distribution of pharmaceutically active compounds in mesocosm constructed wetlands.

    PubMed

    He, Yujie; Sutton, Nora B; Lei, Yu; Rijnaarts, Huub H M; Langenhoff, Alette A M

    2018-05-22

    Removal of pharmaceutically active compounds (PhACs) in constructed wetlands (CWs) is a complex interplay of different processes. We studied fate and distribution of seven PhACs (caffeine, CAF; naproxen, NAP; metoprolol, MET; propranolol, PRO; ibuprofen, IBP; carbamazepine, CBZ; diclofenac, DFC) in mesocosm CWs and effects of irradiation via pre-photocatalysis, substrate composition (mainly sediment) through addition of litter (dead plant biomass), and plants. CWs showed high removal of CAF, NAP, MET, PRO, and IBP (79-99%). All seven PhACs were detected in substrate and plant tissues as well as IBP intermediates. Estimated PhAC mass balance showed that sorption dominated PRO removal in CWs while other PhACs were mainly removed by biodegradation and/or phytodegradation. Pre-photocatalysis significantly increased removal of PhACs except for CAF and IBP, and decreased accumulation of PhACs in substrate and plant tissues of the following wetland compartment. Litter addition in CW significantly enhanced removal of PRO and CBZ via biodegradation and/or phytodegradation. Plants played an essential and positive role in removing PhACs, resulting from direct phytoremediation and indirectly enhancing sorption and biodegradation. Our study provides knowledge to understand removal mechanisms of PhACs in CWs and to potentially enhance PhAC removal by developing pre-photocatalysis, adding dead plant biomass, and optimizing vegetation. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Theoretical and experimental evaluation of effective stress-induced sorption capacity change and its influence on coal permeability

    NASA Astrophysics Data System (ADS)

    Li, Chengwu; Dong, Lihui; Xu, Xiaomeng; Hu, Po; Tian, Jianwei; Zhang, Yihuai; Yang, Leilei

    2017-06-01

    The gas sorption effect is an important factor affecting the gas permeability of a coal seam, which has been proved in many previous experimental measurements and analytical permeability studies. However, the sorption capacity of coal is usually not static due to the complexity of external stress variation and internal gas media features. The stress-induced sorption capacity variation and its effect on the coal permeability change have not been fully identified yet. Thus, in this paper we present a preliminary evaluation of the stress-induced sorption capacity change by introducing the adsorption capacity modified term, and an experiment is carried out to verify the influence of the altered effective stress on coal permeability. Langmuir-like adsorption deformation constant parameters were combined into the modified coal permeability model and were given values to fully estimate the influence on permeability caused by the modification term. We found that different change modes of effective stress would yield different change effects on the permeability, that is, with the same effective stress change amount, the altered external stress-induced change had less influence than the altered-pore pressure-induced change; however, both modes demonstrated that the model taking sorption capacity change into consideration is more consistent with the experimental data. The effect of sorption capacity change on coal permeability variation was also found to be tightly connected with the physical and mechanical properties of the coal itself. It is proved that considering stress-induced sorption ability change has a critical role in characterizing the permeability variation of coal.

  5. Gradual changes in permeability of inner mitochondrial membrane precede the mitochondrial permeability transition.

    PubMed

    Balakirev, M Y; Zimmer, G

    1998-08-01

    Some compounds are known to induce solute-nonselective permeability of the inner mitochondrial membrane (IMM) in Ca2+-loaded mitochondria. Existing data suggest that this process, following the opening of a mitochondrial permeability transition pore, is preceded by different solute-selective permeable states of IMM. At pH 7, for instance, the K0.5 for Ca2+-induced pore opening is 16 microM, a value 80-fold above a therapeutically relevant shift of intracellular Ca2+ during ischemia in vivo. The present work shows that in the absence of Ca2+, phenylarsine oxide and tetraalkyl thiuram disulfides (TDs) are able to induce a complex sequence of IMM permeability changes. At first, these agents activated an electrogenic K+ influx into the mitochondria. This K+-specific pathway had K0.5 = 35 mM for K+ and was inhibited by bromsulfalein with Ki = 2.5 microM. The inhibitors of mitochondrial KATP channel, ATP and glibenclamide, did not inhibit K+ transport via this pathway. Moreover, 50 microM glibenclamide induced by itself K+ influx into the mitochondria. After the increase in K+ permeability of IMM, mitochondria become increasingly permeable to protons. Mechanisms of H+ leak and nonselective permeability increase could also be different depending on the type of mitochondrial permeability transition (MPT) inducer. Thus, permeabilization of mitochondria induced by phenylarsine oxide was fully prevented by ADP and/or cyclosporin A, whereas TD-induced membrane alterations were insensitive toward these inhibitors. It is suggested that MPT in vivo leading to irreversible apoptosis is irrelevant in reversible ischemia/reperfusion injury. Copyright 1998 Academic Press.

  6. Mucoadhesion vs mucus permeability of thiolated chitosan polymers and their resulting nanoparticles using a quartz crystal microbalance with dissipation (QCM-D).

    PubMed

    Oh, Sejin; Borrós, Salvador

    2016-11-01

    The aim of this present study was to evaluate the combination properties between mucoadhesion/mucus permeability of thiolated chitosans (TC) and their resulting nanoparticles using a quartz crystal microbalance with dissipation (QCM-D). The QCM-D experiments were conducted at pH 4 or 6.8 to assess the interaction between thiolated polymers, with low (TCL), medium (TCM) and high (TCH) contents of free thiol groups, and native porcine gastric mucin (NPGM). TCL was chosen for further carriers as it showed higher permeability into the NPGM layer compared to TCM and TCH. In this study, we describe a formulation of a novel carrier comprised by positively charged TCL, negatively charged DNA and degradable oligopeptide-modified poly(β-amino ester)s (PBAEs), which were employed in order to approach for tuning particle size and surface charge of complexes. TCL/PBAE complexes with or without DNA were characterized using dynamic light scattering. Mechanism of adsorption or permeation of the TCL/PBAE/DNA complexes into the NPGM barrier was investigated with QCM-D, which is a highly sensitive technique for studying nanomechanical (viscoelastic) changes of the substrates. This work might provide that the QCM-D technique would be a promising method to monitor the dynamic behaviour between complexes and NPGM. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. An improved method for permeability estimation of the bioclastic limestone reservoir based on NMR data

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Liu, Jianyu; Zhang, Li; Han, Yujiao; Xing, Donghui

    2017-10-01

    Permeability is an important parameter in formation evaluation since it controls the fluid transportation of porous rocks. However, it is challengeable to compute the permeability of bioclastic limestone reservoirs by conventional methods linking petrophysical and geophysical data, due to the complex pore distributions. A new method is presented to estimate the permeability based on laboratory and downhole nuclear magnetic resonance (NMR) measurements. We divide the pore space into four intervals by the inflection points between the pore radius and the transversal relaxation time. Relationships between permeability and percentages of different pore intervals are investigated to investigate influential factors on the fluid transportation. Furthermore, an empirical model, which takes into account of the pore size distributions, is presented to compute the permeability. 212 core samples in our case show that the accuracy of permeability calculation is improved from 0.542 (SDR model), 0.507 (TIM model), 0.455 (conventional porosity-permeability regressions) to 0.803. To enhance the precision of downhole application of the new model, we developed a fluid correction algorithm to construct the water spectrum of in-situ NMR data, aiming to eliminate the influence of oil on the magnetization. The result reveals that permeability is positively correlated with percentages of mega-pores and macro-pores, but negatively correlated with the percentage of micro-pores. Poor correlation is observed between permeability and the percentage of meso-pores. NMR magnetizations and T2 spectrums after the fluid correction agree well with laboratory results for samples saturated with water. Field application indicates that the improved method provides better performance than conventional models such as Schlumberger-Doll Research equation, Timur-Coates equation, and porosity-permeability regressions.

  8. Identification and Characterization of Non-Cellulose-Producing Mutants of Gluconacetobacter hansenii Generated by Tn5 Transposon Mutagenesis

    PubMed Central

    Deng, Ying; Nagachar, Nivedita; Xiao, Chaowen; Tien, Ming

    2013-01-01

    The acs operon of Gluconacetobacter is thought to encode AcsA, AcsB, AcsC, and AcsD proteins that constitute the cellulose synthase complex, required for the synthesis and secretion of crystalline cellulose microfibrils. A few other genes have been shown to be involved in this process, but their precise role is unclear. We report here the use of Tn5 transposon insertion mutagenesis to identify and characterize six non-cellulose-producing (Cel−) mutants of Gluconacetobacter hansenii ATCC 23769. The genes disrupted were acsA, acsC, ccpAx (encoding cellulose-complementing protein [the subscript “Ax” indicates genes from organisms formerly classified as Acetobacter xylinum]), dgc1 (encoding guanylate dicyclase), and crp-fnr (encoding a cyclic AMP receptor protein/fumarate nitrate reductase transcriptional regulator). Protein blot analysis revealed that (i) AcsB and AcsC were absent in the acsA mutant, (ii) the levels of AcsB and AcsC were significantly reduced in the ccpAx mutant, and (iii) the level of AcsD was not affected in any of the Cel− mutants. Promoter analysis showed that the acs operon does not include acsD, unlike the organization of the acs operon of several strains of closely related Gluconacetobacter xylinus. Complementation experiments confirmed that the gene disrupted in each Cel− mutant was responsible for the phenotype. Quantitative real-time PCR and protein blotting results suggest that the transcription of bglAx (encoding β-glucosidase and located immediately downstream from acsD) was strongly dependent on Crp/Fnr. A bglAx knockout mutant, generated via homologous recombination, produced only ∼16% of the wild-type cellulose level. Since the crp-fnr mutant did not produce any cellulose, Crp/Fnr may regulate the expression of other gene(s) involved in cellulose biosynthesis. PMID:24013627

  9. Exfoliated BN shell-based high-frequency magnetic core-shell materials.

    PubMed

    Zhang, Wei; Patel, Ketan; Ren, Shenqiang

    2017-09-14

    The miniaturization of electric machines demands high frequency magnetic materials with large magnetic-flux density and low energy loss to achieve a decreased dimension of high rotational speed motors. Herein, we report a solution-processed high frequency magnetic composite (containing a nanometal FeCo core and a boron nitride (BN) shell) that simultaneously exhibits high electrical resistivity and magnetic permeability. The frequency dependent complex initial permeability and the mechanical robustness of nanocomposites are intensely dependent on the content of BN insulating phase. The results shown here suggest that insulating magnetic nanocomposites have potential for application in next-generation high-frequency electric machines with large electrical resistivity and permeability.

  10. Helicobacter pylori and Complex Gangliosides

    PubMed Central

    Roche, Niamh; Ångström, Jonas; Hurtig, Marina; Larsson, Thomas; Borén, Thomas; Teneberg, Susann

    2004-01-01

    Recognition of sialic acid-containing glycoconjugates by the human gastric pathogen Helicobacter pylori has been repeatedly demonstrated. To investigate the structural requirements for H. pylori binding to complex gangliosides, a large number of gangliosides were isolated and characterized by mass spectrometry and proton nuclear magnetic resonance. Ganglioside binding of sialic acid-recognizing H. pylori strains (strains J99 and CCUG 17874) and knockout mutant strains with the sialic acid binding adhesin SabA or the NeuAcα3Galβ4GlcNAcβ3Galβ4GlcNAcβ-binding neutrophil-activating protein HPNAP deleted was investigated using the thin-layer chromatogram binding assay. The wild-type bacteria bound to N-acetyllactosamine-based gangliosides with terminal α3-linked NeuAc, while gangliosides with terminal NeuGcα3, NeuAcα6, or NeuAcα8NeuAcα3 were not recognized. The factors affecting binding affinity were identified as (i) the length of the N-acetyllactosamine carbohydrate chain, (ii) the branches of the carbohydrate chain, and (iii) fucose substitution of the N-acetyllactosamine core chain. While the J99/NAP− mutant strain displayed a ganglioside binding pattern identical to that of the parent J99 wild-type strain, no ganglioside binding was obtained with the J99/SabA− mutant strain, demonstrating that the SabA adhesin is the sole factor responsible for the binding of H. pylori bacterial cells to gangliosides. PMID:14977958

  11. Impedance Spectroscopy and AC Conductivity Studies of Bulk 3-Amino-7-(dimethylamino)-2-methyl-hydrochloride

    NASA Astrophysics Data System (ADS)

    El-Shabaan, M. M.

    2018-02-01

    Impedance spectroscopy and alternating-current (AC) conductivity (σ AC) studies of bulk 3-amino-7-(dimethylamino)-2-methyl-hydrochloride (neutral red, NR) have been carried out over the temperature (T) range from 303 K to 383 K and frequency (f) range from 0.5 kHz to 5 MHz. Dielectric data were analyzed using the complex impedance (Z *) and complex electric modulus (M *) for bulk NR at various temperatures. The impedance loss peaks were found to shift towards high frequencies, indicating an increase in the relaxation time (τ 0) and loss in the material, with increasing temperature. For each temperature, a single depressed semicircle was observed at high frequencies, originating from the bulk transport, and a spike in the low-frequency region, resulting from the electrode effect. Fitting of these curves yielded an equivalent circuit containing a parallel combination of a resistance R and constant-phase element (CPE) Q. The carrier transport in bulk NR is governed by the correlated barrier hopping (CBH) mechanism, some parameters of which, such as the maximum barrier height (W M), charge density (N), and hopping distance (r), were determined as functions of both temperature and frequency. The frequency dependence of σ AC at different temperatures indicated that the conduction in bulk NR is a thermally activated process. The σ AC value at different frequencies increased linearly with temperature.

  12. AC conductivity and dielectric properties of bulk tungsten trioxide (WO3)

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; Saadeldin, M.; Zaghllol, M.

    2012-11-01

    AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε‧) and dielectric loss (ε″) were measured. The Cole-Cole diagram determined complex impedance for different temperatures.

  13. Magnetic field tunable ac electrical transport of LaFeO3-wax nanocomposites

    NASA Astrophysics Data System (ADS)

    Roy, Supratim; Mandal, S. K.; Debnath, Rajesh; Nath, Debajyoti; Dey, P.

    2018-04-01

    Single phase perovskite LaFeO3 nanoparticles have been prepared through chemical pyrophoric reaction process. It is further grinded with paraffin wax of quantity 0.5 wt% of total composition to obtain an organic composite 99.5%LaFeO3-0.5%Wax. Studies of ac electrical properties viz. complex impedance, dielectric response, loss coefficient have been done in presence of external dc magnetic field, which reveals a good magnetoimpedance (˜221%) and a negative magnetodielectric (˜ 64%). The value of impedance, its real and imaginary part is observed to increase with dc field. The composite exhibits high dielectric constant (˜4760). The ac conductivity is found to decrease with applied field and increase with ac frequency.

  14. The Function of UreB in Klebsiella aerogenes Urease†

    PubMed Central

    Carter, Eric L.; Boer, Jodi L.; Farrugia, Mark A.; Flugga, Nicholas; Towns, Christopher L.; Hausinger, Robert P.

    2011-01-01

    Urease from Klebsiella aerogenes is composed of three subunits (UreA, UreB, and UreC) which assemble into a (UreABC)3 quaternary structure. UreC harbors the dinuclear nickel active site, whereas the functions of UreA and UreB remain unknown. UreD and UreF accessory proteins previously were suggested to reposition UreB and increase exposure of the nascent urease active site, thus facilitating metallocenter assembly. In this study, cells were engineered to separately produce (UreAC)3 or UreB, and the purified proteins were characterized. Monomeric UreB spontaneously binds to the trimeric heterodimer of UreA plus UreC to form (UreABC*)3 apoprotein, as shown by gel filtration chromatography, integration of electrophoretic gel band intensities, and mass spectrometry. Similar to authentic urease apoprotein, active enzyme is produced by incubation of (UreABC*)3 with Ni2+ and bicarbonate. Conversely, UreBΔ1-19, lacking the 19 residue potential hinge and tether to UreC, does not form a complex with (UreAC)3 and yields negligible levels of active enzyme when incubated under activation conditions with (UreAC)3. Comparison of activities and nickel contents for (UreAC)3, (UreABC*)3, and (UreABC)3 samples treated with Ni2+ and bicarbonate and then desalted indicates that UreB facilitates efficient incorporation of the metal into the active site and protects the bound metal from chelation. Amylose resin pull-down studies reveal that MBP-UreD (a fusion of maltose binding protein with UreD) forms complexes with (UreABC)3, (UreAC)3, and UreB in vivo, but not in vitro. By contrast, MBP-UreD does not form an in vivo complex with UreBΔ1-19. The soluble MBP-UreD:UreF:UreG complex binds in vitro to (UreABC)3, but not to (UreAC)3 or UreB. Together these data demonstrate that UreB facilitates the interaction of urease with accessory proteins during metallocenter assembly, with the N-terminal hinge and tether region being specifically required for this process. In addition to its role in urease activation, UreB enhances the stability of UreC against proteolytic cleavage. PMID:21939280

  15. Dielectric and impedance spectral characteristics of bulk ZnIn2Se4

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2014-02-01

    The frequency and temperature dependence of ac conductivity, dielectric constant and dielectric loss of ZnIn2Se4 in a pellet form were investigated in the frequency range of 102-106 Hz and temperature range of 293-356 K. The behavior of ac conductivity was interpreted by the correlated barrier hopping (CBH) model. Temperature dependence of ac conductivity indicates that ac conduction is a thermally activated process. The density of localized states N(EF) and ac activation energy were estimated for various frequencies. Dielectric constant and dielectric loss showed a decrease with increasing frequency and an increase with increasing in temperature. The frequency dependence of real and imaginary parts of the complex impedance was investigated. The relaxation time decreases with the increase in temperature. The impedance spectrum exhibits the appearance of the single semicircular arc. The radius of semicircular arcs decreases with increasing temperature which suggests a mechanism of temperature-dependent on relaxation.

  16. Thermal and ac electrical properties of N-methylanthranilic acid below room temperature

    NASA Astrophysics Data System (ADS)

    Abdel-Kader, M. M.; Basha, M. A. F.; Ramzy, G. H.; Aboud, A. I.

    2018-06-01

    In this study, we investigated the thermal and alternating current (ac) electrical properties of N-methylanthranilic acid. Based on data obtained by differential scanning calorimetry, we detected two endothermic transitions at ≈ 213 K and ≈265.41 K. The weakening of hydrogen bonds as the temperature increased appeared to be the main cause of these phase transitions. We also recorded the melting point at about 475.5 K. Both the ac conductivity (σac) and complex dielectric constant (ε∗ = ε ' - jε ' ') were studied as functions of temperature over the frequency range from 1 kHz to 100 kHz. We observed significant variations in the thermal and electrical properties before and after the transition temperature at 265.41 K. The conduction mechanism responsible for the ac electrical properties before this transition was due to overlapping large polarons. These novel results are expected to have impacts on the application of organic semiconductors and dielectrics.

  17. Fluoroquinolone-Gyrase-DNA Complexes

    PubMed Central

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M.; Hiasa, Hiroshi; Marks, Kevin R.; Kerns, Robert J.; Berger, James M.; Drlica, Karl

    2014-01-01

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys466 gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly81 and GyrB-Glu466 residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases. PMID:24497635

  18. Roles of URLs in Probing Controls on Induced Seismicity and Permeability Evolution

    NASA Astrophysics Data System (ADS)

    Elsworth, D.

    2014-12-01

    The generation and extension of new fractures and the development of controlled slip and opening are an implicit component in both forming and in enhancing flow pathways to unlock hydrocarbons and geothermal energy in otherwise very low permeability formations. The opposite is true for containment structures and caprocks. The complex stress state coupled with pre-existing fracture networks means that new flow pathways may develop in complex ways including varied modes of dilatation and slip, deformation that may be seismic or aseismic and permeability that may net increase of decrease. Where this deformation relies on either the reactivation, extension or development of fractures, this evolution is intrinsically scale dependent requiring that an improved understanding of this dynamic response must interrogate its evolution at representative scales - scales of decimeters to a few meters. We explore the controls on instability through frictional slip and instability including changes related to environmental conditions and physical properties. The former relate to changes in effective stress driven by fluid pressures, thermal and chemical stresses and the latter to changes in strength and stability conditioned on initial or evolving mineralogy. We identify important contemporary questions that are intrinsically scale dependent and may be effectively probed by field experimentation linking deformation and permeability.

  19. Development and validation of a low-frequency modeling code for high-moment transmitter rod antennas

    NASA Astrophysics Data System (ADS)

    Jordan, Jared Williams; Sternberg, Ben K.; Dvorak, Steven L.

    2009-12-01

    The goal of this research is to develop and validate a low-frequency modeling code for high-moment transmitter rod antennas to aid in the design of future low-frequency TX antennas with high magnetic moments. To accomplish this goal, a quasi-static modeling algorithm was developed to simulate finite-length, permeable-core, rod antennas. This quasi-static analysis is applicable for low frequencies where eddy currents are negligible, and it can handle solid or hollow cores with winding insulation thickness between the antenna's windings and its core. The theory was programmed in Matlab, and the modeling code has the ability to predict the TX antenna's gain, maximum magnetic moment, saturation current, series inductance, and core series loss resistance, provided the user enters the corresponding complex permeability for the desired core magnetic flux density. In order to utilize the linear modeling code to model the effects of nonlinear core materials, it is necessary to use the correct complex permeability for a specific core magnetic flux density. In order to test the modeling code, we demonstrated that it can accurately predict changes in the electrical parameters associated with variations in the rod length and the core thickness for antennas made out of low carbon steel wire. These tests demonstrate that the modeling code was successful in predicting the changes in the rod antenna characteristics under high-current nonlinear conditions due to changes in the physical dimensions of the rod provided that the flux density in the core was held constant in order to keep the complex permeability from changing.

  20. Transformable ferroelectric control of dynamic magnetic permeability

    NASA Astrophysics Data System (ADS)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  1. Anatomic ligament consolidation of the superior acromioclavicular ligament and the coracoclavicular ligament complex after acute arthroscopically assisted double coracoclavicular bundle stabilization.

    PubMed

    Jobmann, S; Buckup, J; Colcuc, C; Roessler, P P; Zimmermann, E; Schüttler, K F; Hoffmann, R; Welsch, F; Stein, T

    2017-09-18

    The consolidation of the acromioclavicular (AC) and coracoclavicular (CC) ligament complex after arthroscopically assisted stabilization of acute acromioclavicular joint (ACJ) separation is still under consideration. Fifty-five consecutive patients after arthroscopically assisted double-CC-bundle stabilization within 14 days after acute high-grade ACJ separation were studied prospectively. All patients were clinically analysed preoperatively (FU0) and post-operatively (FU1 = 6 months; FU2 = 12 months). The structural MRI assessments were performed at FU0 (injured ACJ) and at FU2 bilateral (radiologic control group) and assessed separately the ligament thickness and length at defined regions for the conoid, trapezoid and the superior AC ligament. Thirty-seven patients were assessed after 6.5 months and after 16.0 months. The 16-month MRI analysis revealed for all patients continuous ligament healing for the CC-complex and the superior AC ligament with in the average hypertrophic consolidation compared to the control side. Separate conoid and trapezoid strands (double-strand configuration) were detected in 27 of 37 (73%) patients, and a single-strand configuration was detected in 10 of 37 (27%) patients; both configurations showed similar CCD data. The ligament healing was not influenced by the point of surgery, age at surgery and heterotopic ossification. The clinical outcome was increased (FU0-FU2): Rowe, 47.7-97.0 pts.; TAFT, 3.9-10.6 pts.; NAS pain , 8.9-1.4 pts. (all P < 0.05). The arthroscopically assisted double-CC-bundle stabilization within 14 days after acute high-grade ACJ separation showed 16 months after surgery sufficient consolidations of the AC and double-CC ligament complex in 73%. III, Case series.

  2. Spin-orbit-torque driven magnetoimpedance in Pt-layer/magnetic-ribbon heterostructures

    NASA Astrophysics Data System (ADS)

    Hajiali, M. R.; Mohseni, S. Morteza; Jamilpanah, L.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. Majid

    2017-11-01

    When a flow of electrons passes through a paramagnetic layer with strong spin-orbit-coupling such as platinum (Pt), a net spin current is produced via the spin Hall effect (SHE). This spin current can exert a torque on the magnetization of an adjacent ferromagnetic layer which can be probed via magnetization dynamic responses, e.g., spin-torque ferromagnetic resonance. Nevertheless, that effect in the lower frequency magnetization dynamic regime where the skin effect occurs in high permeability ferromagnetic conductors, namely, the magneto-impedance (MI) effect, can be fundamentally important, and has not been studied so far. Here, by utilizing the MI effect in the magnetic-ribbon/Pt heterostructure with high transvers magnetic permeability that allows the ac current effectively confined at the skin depth of ˜100 nm thickness, the effect of spin-orbit-torque (SOT) induced by the SHE probed via the MI measurement is investigated. We observed a systematic MI frequency shift that increases by increasing the applied current amplitude and thickness of the Pt layer (varying from 0 nm to 20 nm). In addition, the role of the Pt layer in the ribbon/Pt heterostructure is evaluated with the ferromagnetic resonance effect representing a standard Gilbert damping increase as a result of the presence of the SHE. Our results unveil the role of SOT in dynamic control of the transverse magnetic permeability probed by impedance spectroscopy as a useful and valuable technique for detection of future SHE devices.

  3. Dielectric and electrical studies of PVC-PPy blends in dilute solution of THF

    NASA Astrophysics Data System (ADS)

    Sharma, Deepika; Tripathi, Deepti

    2018-05-01

    An influence of adding Polypyrrole (PPy) which is an intrinsically conducting polymer (ICP), on the dielectric dispersion behavior of Polyvinyl chloride (PVC) in dilute solution of Tetrahydrofuran (THF) at low frequency is reported. The blends of PVC with PPy forms colloidal suspension in THF. The dielectric dispersion study of PVC-PPy blends in THF has been carried out in the frequency range of 20 Hz to 2 MHz at temperature of 303K. The effect of increasing PPy concentration on dielectric and electrical parameters such as complex dielectric function [ɛ*(ω)], loss tangent [tan δ], complex electric modulus [M*(ω)], ac conductivity [σac], and complex impedance [Z*(ω)] of PVC - PPy blends in THF solution were studied. The electrode polarization and ionic conduction appears to have dominant influence on the complex dielectric constant in the low frequency region. The relaxation time values corresponding to these two phenomena are also reported.

  4. The importance of surface functional groups in the adsorption of copper onto walnut shell derived activated carbon.

    PubMed

    Xie, Ruzhen; Jin, Yan; Chen, Yao; Jiang, Wenju

    2017-12-01

    In this study, activated carbon (AC) was prepared from walnut shell using chemical activation. The surface chemistry of the prepared AC was modified by introducing or blocking certain functional groups, and the role of the different functional groups involved in the copper uptake was investigated. The structural and chemical heterogeneity of the produced carbons are characterized by Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, Boehm titration method and N 2 /77 K adsorption isotherm analysis. The equilibrium and the kinetics of copper adsorption onto AC were studied. The results demonstrated that the functional groups on AC played an important role in copper uptake. Among various surface functional groups, the oxygen-containing group was found to play a critical role in the copper uptake, and oxidation is the most effective way to improve Cu (II) adsorption onto AC. Ion-exchange was identified to be the dominant mechanism in the copper uptake by AC. Some other types of interactions, like complexation, were also proven to be involved in the adsorption process, while physical force was found to play a small role in the copper uptake. The regeneration of copper-loaded AC and the recovery of copper were also studied to evaluate the reusability of the oxidized AC.

  5. PROXiMATE: a database of mutant protein-protein complex thermodynamics and kinetics.

    PubMed

    Jemimah, Sherlyn; Yugandhar, K; Michael Gromiha, M

    2017-09-01

    We have developed PROXiMATE, a database of thermodynamic data for more than 6000 missense mutations in 174 heterodimeric protein-protein complexes, supplemented with interaction network data from STRING database, solvent accessibility, sequence, structural and functional information, experimental conditions and literature information. Additional features include complex structure visualization, search and display options, download options and a provision for users to upload their data. The database is freely available at http://www.iitm.ac.in/bioinfo/PROXiMATE/ . The website is implemented in Python, and supports recent versions of major browsers such as IE10, Firefox, Chrome and Opera. gromiha@iitm.ac.in. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Single- and two-phase flow in microfluidic porous media analogs based on Voronoi tessellation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Mengjie; Xiao, Feng; Johnson-Paben, Rebecca

    2012-01-01

    The objective of this study was to create a microfluidic model of complex porous media for studying single and multiphase flows. Most experimental porous media models consist of periodic geometries that lend themselves to comparison with well-developed theoretical predictions. However, most real porous media such as geological formations and biological tissues contain a degree of randomness and complexity that is not adequately represented in periodic geometries. To design an experimental tool to study these complex geometries, we created microfluidic models of random homogeneous and heterogeneous networks based on Voronoi tessellations. These networks consisted of approximately 600 grains separated by amore » highly connected network of channels with an overall porosity of 0.11 0.20. We found that introducing heterogeneities in the form of large cavities within the network changed the permeability in a way that cannot be predicted by the classical porosity-permeability relationship known as the Kozeny equation. The values of permeability found in experiments were in excellent agreement with those calculated from three-dimensional lattice Boltzmann simulations. In two-phase flow experiments of oil displacement with water we found that the surface energy of channel walls determined the pattern of water invasion, while the network topology determined the residual oil saturation. These results suggest that complex network topologies lead to fluid flow behavior that is difficult to predict based solely on porosity. The microfluidic models developed in this study using a novel geometry generation algorithm based on Voronoi tessellation are a new experimental tool for studying fluid and solute transport problems within complex porous media.« less

  7. Oral Delivery of Lipophilic Drugs: The Tradeoff between Solubility Increase and Permeability Decrease When Using Cyclodextrin-Based Formulations

    PubMed Central

    Beig, Avital; Agbaria, Riad; Dahan, Arik

    2013-01-01

    The purpose of this study was to investigate the impact of oral cyclodextrin-based formulation on both the apparent solubility and intestinal permeability of lipophilic drugs. The apparent solubility of the lipophilic drug dexamethasone was measured in the presence of various HPβCD levels. The drug’s permeability was measured in the absence vs. presence of HPβCD in the rat intestinal perfusion model, and across Caco-2 cell monolayers. The role of the unstirred water layer (UWL) in dexamethasone’s absorption was studied, and a simplified mass-transport analysis was developed to describe the solubility-permeability interplay. The PAMPA permeability of dexamethasone was measured in the presence of various HPβCD levels, and the correlation with the theoretical predictions was evaluated. While the solubility of dexamethasone was greatly enhanced by the presence of HPβCD (K1∶1 = 2311 M−1), all experimental models showed that the drug’s permeability was significantly reduced following the cyclodextrin complexation. The UWL was found to have no impact on the absorption of dexamethasone. A mass transport analysis was employed to describe the solubility-permeability interplay. The model enabled excellent quantitative prediction of dexamethasone’s permeability as a function of the HPβCD level. This work demonstrates that when using cyclodextrins in solubility-enabling formulations, a tradeoff exists between solubility increase and permeability decrease that must not be overlooked. This tradeoff was found to be independent of the unstirred water layer. The transport model presented here can aid in striking the appropriate solubility-permeability balance in order to achieve optimal overall absorption. PMID:23874557

  8. Fractal Theory for Permeability Prediction, Venezuelan and USA Wells

    NASA Astrophysics Data System (ADS)

    Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana

    2014-05-01

    Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.

  9. Transport properties of proton-exchange membranes: Effect of supercritical-fluid processing and chemical functionality

    NASA Astrophysics Data System (ADS)

    Pulido Ayazo

    NafionRTM membranes commonly used in direct methanol fuel cells (DMFC), are tipically limited by high methanol permeability (also known as the cross-over limitation). These membranes have phase segregated sulfonated ionic domains in a perfluorinated backbone, which makes processing challenging and limited by phase equilibria considerations. This study used supercritical fluids (SCFs) as a processing alternative, since the gas-like mass transport properties of SCFs allow a better penetration into the membranes and the use of polar co-solvents influenced their morphology, fine-tuning the physical and transport properties in the membrane. Measurements of methanol permeability and proton conductivity were performed to the NafionRTM membranes processed with SCFs at 40ºC and 200 bar and the co-solvents as: acetone, tetrahydrofuran (THF), isopropyl alcohol, HPLC-grade water, acetic acid, cyclohexanone. The results obtained for the permeability data were of the order of 10 -8-10-9 cm2/s, two orders of magnitude lower than unprocessed Nafion. Proton conductivity results obtained using AC impedance electrochemical spectroscopy was between 0.02 and 0.09 S/cm, very similar to the unprocessed Nafion. SCF processing with ethanol as co-solvent reduced the methanol permeability by two orders of magnitude, while the proton conductivity was only reduced by 4%. XRD analysis made to the treated samples exhibited a decreasing pattern in the crystallinity, which affects the transport properties of the membrane. Also, SAXS profiles of the Nafion membranes processed were obtained with the goal of determining changes produced by the SCF processing in the hydrophilic domains of the polymer. With the goal of searching for new alternatives in proton exchange membranes (PEMs) triblock copolymer of poly(styrene-isobutylene-styrene) (SIBS) and poly(styrene-isobutylene-styrene) SEBS were studied. These sulfonated tri-block copolymers had lower methanol permeabilities, but also lower proton conductivity, even with blends of these and blends with Nafion membranes. Other alternative studied was the functionalization of the membranes SIBS with metallic cations, which decreased the methanol permeability in the membranes containing the cations Mg2+, Zn2+ and Al 3+, while the proton conductivity was maintained more or less constant. The permeation of methanol vapor was investigated and the behavior through the membranes studied followed a pattern of Fick's Law, while the pattern shown by the permeation in liquid phase was non-Fickian.

  10. Digital Rock Physics Aplications: Visualisation Complex Pore and Porosity-Permeability Estimations of the Porous Sandstone Reservoir

    NASA Astrophysics Data System (ADS)

    Handoyo; Fatkhan; Del, Fourier

    2018-03-01

    Reservoir rock containing oil and gas generally has high porosity and permeability. High porosity is expected to accommodate hydrocarbon fluid in large quantities and high permeability is associated with the rock’s ability to let hydrocarbon fluid flow optimally. Porosity and permeability measurement of a rock sample is usually performed in the laboratory. We estimate the porosity and permeability of sandstones digitally by using digital images from μCT-Scan. Advantages of the method are non-destructive and can be applied for small rock pieces also easily to construct the model. The porosity values are calculated by comparing the digital image of the pore volume to the total volume of the sandstones; while the permeability values are calculated using the Lattice Boltzmann calculations utilizing the nature of the law of conservation of mass and conservation of momentum of a particle. To determine variations of the porosity and permeability, the main sandstone samples with a dimension of 300 × 300 × 300 pixels are made into eight sub-cubes with a size of 150 × 150 × 150 pixels. Results of digital image modeling fluid flow velocity are visualized as normal velocity (streamline). Variations in value sandstone porosity vary between 0.30 to 0.38 and permeability variations in the range of 4000 mD to 6200 mD. The results of calculations show that the sandstone sample in this research is highly porous and permeable. The method combined with rock physics can be powerful tools for determining rock properties from small rock fragments.

  11. Novel nano-semiconductor film layer supported nano-Pd Complex Nanostructured Catalyst Pd/Ⓕ-MeOx/AC for High Efficient Selective Hydrogenation of Phenol to Cyclohexanone.

    PubMed

    Si, Jiaqi; Ouyang, Wenbing; Zhang, Yanji; Xu, Wentao; Zhou, Jicheng

    2017-04-28

    Supported metal as a type of heterogeneous catalysts are the most widely used in industrial processes. High dispersion of the metal particles of supported catalyst is a key factor in determining the performance of such catalysts. Here we report a novel catalyst Pd/Ⓕ-MeO x /AC with complex nanostructured, Pd nanoparticles supported on the platelike nano-semiconductor film/activated carbon, prepared by the photocatalytic reduction method, which exhibited high efficient catalytic performance for selective hydrogenation of phenol to cyclohexanone. Conversion of phenol achieved up to more than 99% with a lower mole ratio (0.5%) of active components Pd and phenol within 2 h at 70 °C. The synergistic effect of metal nanoparticles and nano-semiconductors support layer and the greatly increasing of contact interface of nano-metal-semiconductors may be responsible for the high efficiency. This work provides a clear demonstration that complex nanostructured catalysts with nano-metal and nano-semiconductor film layer supported on high specific surface AC can yield enhanced catalytic activity and can afford promising approach for developing new supported catalyst.

  12. The stability of DOTA-chelated radiopharmaceuticals within 225Ac decay pathway studied with density functional theory.

    NASA Astrophysics Data System (ADS)

    Karolak, Aleksandra; Khabibullin, Artem; Budzevich, Mikalai; Martinez, M.; Doliganski, Michael; McLaughlin, Mark; Woods, Lilia; Morse, David

    Ligand structures encapsulating metal ions play a central role as contrast agents in Magnetic Resonance Imaging (MRI) or as agents delivering toxic cargo directly to tumor cells in targeted cancer therapy. The structural stability and interaction with solutions of such complexes are the key elements in understanding the foundation of delivery process. We present a comparative study for the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelated to radioactive isotopes of 225Ac, 221Fr, 217At, 213Bi and a control 68Gd. Using density functional theory methods we investigate the structural stability of complexes for cancer therapy including binding energies, charge transfer, electron densities. The van der Waals interactions are included in the simulations to take into account weak dispersion forces present in such structures. Our results reveal that Ac-DOTA, Bi-DOTA and Gd-DOTA are the most stable complexes in the group. We also show that the water environment is a key ingredient for the structural coordination of the DOTA structures. Support from the US Department of Energy under Grant No. DE-FG02-06ER46297 is acknowledged.

  13. Jwalk and MNXL Web Server: Model Validation using Restraints from Crosslinking Mass Spectrometry.

    PubMed

    Bullock, J M A; Thalassinos, K; Topf, M

    2018-05-07

    Crosslinking Mass Spectrometry generates restraints that can be used to model proteins and protein complexes. Previously, we have developed two methods, to help users achieve better modelling performance from their crosslinking restraints: Jwalk, to estimate solvent accessible distances between crosslinked residues and MNXL, to assess the quality of the models based on these distances. Here we present the Jwalk and MNXL webservers, which streamline the process of validating monomeric protein models using restraints from crosslinks. We demonstrate this by using the MNXL server to filter models made of varying quality, selecting the most native-like. The webserver and source code are freely available from jwalk.ismb.lon.ac.uk and mnxl.ismb.lon.ac.uk. m.topf@cryst.bbk.ac.uk, j.bullock@cryst.bbk.ac.uk.

  14. Validation of the Canada Acute Coronary Syndrome Risk Score for Hospital Mortality in the Gulf Registry of Acute Coronary Events-2.

    PubMed

    AlFaleh, Hussam F; Alsheikh-Ali, Alawi A; Ullah, Anhar; AlHabib, Khalid F; Hersi, Ahmad; Suwaidi, Jassim Al; Sulaiman, Kadhim; Saif, Shukri Al; Almahmeed, Wael; Asaad, Nidal; Amin, Haitham; Al-Motarreb, Ahmed; Kashour, Tarek

    2015-09-01

    Several risk scores have been developed for acute coronary syndrome (ACS) patients, but their use is limited by their complexity. The new Canada Acute Coronary Syndrome (C-ACS) risk score is a simple risk-assessment tool for ACS patients. This study assessed the performance of the C-ACS risk score in predicting hospital mortality in a contemporary Middle Eastern ACS cohort. The C-ACS score accurately predicts hospital mortality in ACS patients. The baseline risk of 7929 patients from 6 Arab countries who were enrolled in the Gulf RACE-2 registry was assessed using the C-ACS risk score. The score ranged from 0 to 4, with 1 point assigned for the presence of each of the following variables: age ≥75 years, Killip class >1, systolic blood pressure <100 mm Hg, and heart rate >100 bpm. The discriminative ability and calibration of the score were assessed using C statistics and goodness-of-fit tests, respectively. The C-ACS score demonstrated good predictive values for hospital mortality in all ACS patients with a C statistic of 0.77 (95% confidence interval [CI]: 0.74-0.80) and in ST-segment elevation myocardial infarction and non-ST-segment elevation acute coronary syndrome patients (C statistic: 0.76, 95% CI: 0.73-0.79; and C statistic: 0.80, 95% CI: 0.75-0.84, respectively). The discriminative ability of the score was moderate regardless of age category, nationality, and diabetic status. Overall, calibration was optimal in all subgroups. The new C-ACS score performed well in predicting hospital mortality in a contemporary ACS population outside North America. © 2015 Wiley Periodicals, Inc.

  15. An intelligent detecting system for permeability prediction of MBR.

    PubMed

    Han, Honggui; Zhang, Shuo; Qiao, Junfei; Wang, Xiaoshuang

    2018-01-01

    The membrane bioreactor (MBR) has been widely used to purify wastewater in wastewater treatment plants. However, a critical difficulty of the MBR is membrane fouling. To reduce membrane fouling, in this work, an intelligent detecting system is developed to evaluate the performance of MBR by predicting the membrane permeability. This intelligent detecting system consists of two main parts. First, a soft computing method, based on the partial least squares method and the recurrent fuzzy neural network, is designed to find the nonlinear relations between the membrane permeability and the other variables. Second, a complete new platform connecting the sensors and the software is built, in order to enable the intelligent detecting system to handle complex algorithms. Finally, the simulation and experimental results demonstrate the reliability and effectiveness of the proposed intelligent detecting system, underlying the potential of this system for the online membrane permeability for detecting membrane fouling of MBR.

  16. Mapping Kainate Activation of Inner Neurons in the Rat Retina

    PubMed Central

    Nivison-Smith, Lisa; Sun, Daniel; Fletcher, Erica L.; Marc, Robert E.; Kalloniatis, Michael

    2014-01-01

    Kainate receptors mediate fast, excitatory synaptic transmission for a range of inner neurons in the mammalian retina. However, allocation of functional kainate receptors to known cell types and their sensitivity remains unresolved. Using the cation channel probe 1-amino-4-guanidobutane agmatine (AGB), we investigated kainate sensitivity of neurochemically identified cell populations within the structurally intact rat retina. Most inner retinal neuron populations responded to kainate in a concentration-dependent manner. OFF cone bipolar cells demonstrated the highest sensitivity of all inner neurons to kainate. Immunocytochemical localization of AGB and macromolecular markers confirmed that type 2 bipolar cells were part of this kainate-sensitive population. The majority of amacrine (ACs) and ganglion cells (GCs) showed kainate responses with different sensitivities between major neurochemical classes (γ-aminobutyric acid [GABA]/glycine ACs > glycine ACs > GABA ACs; glutamate [Glu]/weakly GABA GCs > Glu GCs). Conventional and displaced cholinergic ACs were highly responsive to kainate, whereas dopaminergic ACs do not appear to express functional kainate receptors. These findings further contribute to our understanding of neuronal networks in complex multicellular tissues. PMID:23348566

  17. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode.

    PubMed

    Pronin, A V; Goncharov, Yu G; Fischer, T; Wosnitza, J

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r = absolute value(r) x exp(i phi(R)) of a solid at frequencies of 1-50 cm(-1) (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  18. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode

    NASA Astrophysics Data System (ADS)

    Pronin, A. V.; Goncharov, Yu. G.; Fischer, T.; Wosnitza, J.

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r̂=|r̂|ṡexp(iφR) of a solid at frequencies of 1-50 cm-1 (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  19. A radical pathway in catecholase activity with nickel(II) complexes of phenol based "end-off" compartmental ligands.

    PubMed

    Ghosh, Totan; Adhikary, Jaydeep; Chakraborty, Prateeti; Sukul, Pradip K; Jana, Mahendra Sekhar; Mondal, Tapan Kumar; Zangrando, Ennio; Das, Debasis

    2014-01-14

    Seven dinuclear and one dinuclear based dicyanamide bridged polymeric Ni(II) complexes of phenol based compartmental ligands (HL(1)-HL(4)) have been synthesized with the aim to investigate their catecholase-like activity and to evaluate the most probable mechanistic pathway involved in this process. The complexes have been characterized by routine physicochemical studies as well as by X-ray single crystal structure analyses namely [Ni2(L(2))(SCN)3(H2O)(CH3OH)] (), [Ni2(L(4))(SCN)3(CH3OH)2] (), [Ni2(L(2))(SCN)2(AcO)(H2O)] (), [Ni2(L(4))(SCN)(AcO)2] (), [Ni2(L(2))(N3)3(H2O)2] (), [Ni2(L(4))(N3)3(H2O)2] (), [Ni2(L(1))(AcO)2(N(CN)2)]n () and [Ni2(L(3))(AcO)2(N(CN)2)] (), [SCN = isothiocyanate, AcO = acetate, N3 = azide, and N(CN)2 = dicyanamide anion; L(1-4) = 2,6-bis(R2-iminomethyl)-4-R1-phenolato, where R1 = methyl and tert-butyl, R2 = N,N-dimethyl ethylene for L(1-2) and R1 = methyl and tert-butyl, R2 = 2-(N-ethyl) pyridine for L(3-4)]. A UV-vis spectrophotometric study using 3,5-di-tert butylcatechol (3,5-DTBC) reveals that all the complexes are highly active in catalyzing the aerobic oxidation of (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ) in methanol medium with the formation of hydrogen peroxide. An EPR study confirms the generation of radicals during the catalysis. Cyclic voltammetric studies of the complexes in the presence and absence of 3,5-DTBC have been performed. Reduction of Ni(II) to Ni(I) and that of the imine bond of the ligand system have been detected at ∼-1.0 V and ∼-1.5 V, respectively. Coulometric separation of the species at -1.5 V followed by the EPR study at 77 K confirms the species as an organic radical and thus most probably reduced imine species. Spectroelectrochemical analysis at -1.5 V clearly indicates the oxidation of 3,5-DTBC and thus suggests that the radical pathway is supposed to be responsible for the catecholase-like activity exhibited by the nickel complexes. The ligand centred radical generation has further been verified by density functional theory calculation.

  20. Quantitative structure-activity relationship for the oxidation of aromatic organic contaminants in water by TAML/H2O2.

    PubMed

    Su, Hanrui; Yu, Chunyang; Zhou, Yongfeng; Gong, Lidong; Li, Qilin; Alvarez, Pedro J J; Long, Mingce

    2018-05-02

    Tetra-amido macrocyclic ligand (TAML) activator is a functional analog of peroxidase enzymes, which activates hydrogen peroxide (H 2 O 2 ) to form high valence iron-oxo complexes that selectively degrade persistent aromatic organic contaminants (ACs) in water. Here, we develop quantitative structure-activity relationship (QSAR) models based on measured pseudo first-order kinetic rate coefficients (k obs ) of 29 ACs (e.g., phenols and pharmaceuticals) oxidized by TAML/H 2 O 2 at neutral and basic pH values to gain mechanistic insight on the selectivity and pH dependence of TAML/H 2 O 2 systems. These QSAR models infer that electron donating ability (E HOMO ) is the most important AC characteristic for TAML/H 2 O 2 oxidation, pointing to a rate-limiting single-electron transfer (SET) mechanism. Oxidation rates at pH 7 also depend on AC reactive indices such as f min - and qH + , which respectively represent propensity for electrophilic attack and the most positive net atomic charge on hydrogen atoms. At pH 10, TAML/H 2 O 2 is more reactive towards ACs with a lower hydrogen to carbon atoms ratio (#H:C), suggesting the significance of hydrogen atom abstraction. In addition, lnk obs of 14 monosubstituted phenols is negatively correlated with Hammett constants (σ) and exhibits similar sensitivity to substituent effects as horseradish peroxidase. Although accurately predicting degradation rates of specific ACs in complex wastewater matrices could be difficult, these QSAR models are statistically robust and help predict both relative degradability and reaction mechanism for TAML/H 2 O 2 -based treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Coupled Biological-Geomechanical-Geochemical Effects of the Disturbed Rock Zone on the Performance of the Waste Isolation Pilot Plant

    NASA Astrophysics Data System (ADS)

    Dunagan, S. C.; Herrick, C. G.; Lee, M. Y.

    2008-12-01

    The Waste Isolation Pilot Plant (WIPP) is located at a depth of 655 m in bedded salt in southeastern New Mexico and is operated by the U.S. Department of Energy as a deep underground disposal facility for transuranic (TRU) waste. The WIPP must comply with the EPA's environmental regulations that require a probabilistic risk analysis of releases of radionuclides due to inadvertent human intrusion into the repository at some time during the 10,000-year regulatory period. Sandia National Laboratories conducts performance assessments (PAs) of the WIPP using a system of computer codes representing the evolution of underground repository and emplaced TRU waste in order to demonstrate compliance. One of the important features modeled in a PA is the disturbed rock zone (DRZ) surrounding the emplacement rooms in the repository. The extent and permeability of DRZ play a significant role in the potential radionuclide release scenarios. We evaluated the phenomena occurring in the repository that affect the DRZ and their potential effects on the extent and permeability of the DRZ. Furthermore, we examined the DRZ's role in determining the performance of the repository. Pressure in the completely sealed repository will be increased by creep closure of the salt and degradation of TRU waste contents by microbial activity in the repository. An increased pressure in the repository will reduce the extent and permeability of the DRZ. The reduced DRZ extent and permeability will decrease the amount of brine that is available to interact with the waste. Furthermore, the potential for radionuclide release from the repository is dependent on the amount of brine that enters the repository. As a result of these coupled biological-geomechanical-geochemical phenomena, the extent and permeability of the DRZ has a significant impact on the potential radionuclide releases from the repository and, in turn, the repository performance. Sandia is a multi program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000. This research is funded by WIPP programs administered by the Office of Environmental Management (EM) of the U.S. Department of Energy.

  2. Compaction and Permeability Reduction of Castlegate Sandstone under Pore Pressure Cycling

    NASA Astrophysics Data System (ADS)

    Bauer, S. J.

    2014-12-01

    We investigate time-dependent compaction and permeability changes by cycling pore pressure with application to compressed air energy storage (CAES) in a reservoir. Preliminary experiments capture the impacts of hydrostatic stress, pore water pressure, pore pressure cycling, chemical, and time-dependent considerations near a borehole in a CAES reservoir analog. CAES involves creating an air bubble in a reservoir. The high pressure bubble serves as a mechanical battery to store potential energy. When there is excess grid energy, bubble pressure is increased by air compression, and when there is energy needed on the grid, stored air pressure is released through turbines to generate electricity. The analog conditions considered are depth ~1 km, overburden stress ~20 MPa and a pore pressure ~10MPa. Pore pressure is cycled daily or more frequently between ~10 MPa and 6 MPa, consistent with operations of a CAES facility at this depth and may continue for operational lifetime (25 years). The rock can vary from initially fully-to-partially saturated. Pore pressure cycling changes the effective stress.Jacketed, room temperature tap water-saturated samples of Castlegate Sandstone are hydrostatically confined (20 MPa) and subjected to a pore pressure resulting in an effective pressure of ~10 MPa. Pore pressure is cycled between 6 to 10 MPa. Sample displacement measurements yielded determinations of volumetric strain and from water flow measurements permeability was determined. Experiments ran for two to four weeks, with 2 to 3 pore pressure cycles per day. The Castlegate is a fluvial high porosity (>20%) primarily quartz sandstone, loosely calcite cemented, containing a small amount of clay.Pore pressure cycling induces compaction (~.1%) and permeability decreases (~20%). The results imply that time-dependent compactive processes are operative. The load path, of increasing and decreasing pore pressure, may facilitate local loosening and grain readjustments that results in the compaction and permeability decreases observed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.SAND2014-16586A

  3. Mathematical modelling of the transport of hydroxypropyl-β-cyclodextrin inclusion complexes of ranitidine hydrochloride and furosemide loaded chitosan nanoparticles across a Caco-2 cell monolayer.

    PubMed

    Sadighi, Armin; Ostad, S N; Rezayat, S M; Foroutan, M; Faramarzi, M A; Dorkoosh, F A

    2012-01-17

    Chitosan nanoparticles (CS-NPs) have been used to enhance the permeability of furosemide and ranitidine hydrochloride (ranitidine HCl) which were selected as candidates for two different biopharmaceutical drug classes having low permeability across Caco-2 cell monolayers. Drugs loaded CS-NPs were prepared by ionic gelation of CS and pentasodium tripolyphosphate (TPP) which added to the drugs inclusion complexes with hydroxypropyl-β-cyclodextrin (HP-βCD). The stability constants for furosemide/HP-βCD and ranitidine HCl/HP-βCD were calculated as 335 M(-1) and 410 M(-1), whereas the association efficiencies (AE%) of the drugs/HP-βCD inclusion complexes with CS-NPs were determined to be 23.0 and 19.5%, respectively. Zetasizer and scanning electron microscopy (SEM) were used to characterise drugs/HP-βCD-NPs size and morphology. Transport of both nano and non-nano formulations of drugs/HP-βCD complexes across a Caco-2 cell monolayer was assessed and fitted to mathematical models. Furosemide/HP-βCD-NPs demonstrated transport kinetics best suited for the Higuchi model, whereas other drug formulations demonstrated power law transportation behaviour. Permeability experiments revealed that furosemide/HP-βCD and ranitidine HCl/HP-βCD nano formulations greatly induce the opening of tight junctions and enhance drug transition through Caco-2 monolayers. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations.

    PubMed

    Jain, Vaibhav; Maiti, Prabal K; Bharatam, Prasad V

    2016-09-28

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH 2 ) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH 2 ) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH 2 ) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an important role in the stabilization of complex. Interestingly, it was observed from the equilibrated structures of dendrimer-drug complexes at low pH that encapsulated drug molecules in the G4 PAMAM(NH 2 ) formed cluster, while in the case of nontoxic G4 PAMAM(Ac) they were uniformly distributed inside the dendritic cavities. Thus, the latter dendrimer is suggested to be suitable nanovehicle for the delivery of Ntg. This computational analysis highlighted the importance of realistic molecular models of dendrimer-drug complexes (1:n) in order to obtain reliable results.

  5. Atomic level insights into realistic molecular models of dendrimer-drug complexes through MD simulations

    NASA Astrophysics Data System (ADS)

    Jain, Vaibhav; Maiti, Prabal K.; Bharatam, Prasad V.

    2016-09-01

    Computational studies performed on dendrimer-drug complexes usually consider 1:1 stoichiometry, which is far from reality, since in experiments more number of drug molecules get encapsulated inside a dendrimer. In the present study, molecular dynamic (MD) simulations were implemented to characterize the more realistic molecular models of dendrimer-drug complexes (1:n stoichiometry) in order to understand the effect of high drug loading on the structural properties and also to unveil the atomistic level details. For this purpose, possible inclusion complexes of model drug Nateglinide (Ntg) (antidiabetic, belongs to Biopharmaceutics Classification System class II) with amine- and acetyl-terminated G4 poly(amidoamine) (G4 PAMAM(NH2) and G4 PAMAM(Ac)) dendrimers at neutral and low pH conditions are explored in this work. MD simulation analysis on dendrimer-drug complexes revealed that the drug encapsulation efficiency of G4 PAMAM(NH2) and G4 PAMAM(Ac) dendrimers at neutral pH was 6 and 5, respectively, while at low pH it was 12 and 13, respectively. Center-of-mass distance analysis showed that most of the drug molecules are located in the interior hydrophobic pockets of G4 PAMAM(NH2) at both the pH; while in the case of G4 PAMAM(Ac), most of them are distributed near to the surface at neutral pH and in the interior hydrophobic pockets at low pH. Structural properties such as radius of gyration, shape, radial density distribution, and solvent accessible surface area of dendrimer-drug complexes were also assessed and compared with that of the drug unloaded dendrimers. Further, binding energy calculations using molecular mechanics Poisson-Boltzmann surface area approach revealed that the location of drug molecules in the dendrimer is not the decisive factor for the higher and lower binding affinity of the complex, but the charged state of dendrimer and drug, intermolecular interactions, pH-induced conformational changes, and surface groups of dendrimer do play an important role in the stabilization of complex. Interestingly, it was observed from the equilibrated structures of dendrimer-drug complexes at low pH that encapsulated drug molecules in the G4 PAMAM(NH2) formed cluster, while in the case of nontoxic G4 PAMAM(Ac) they were uniformly distributed inside the dendritic cavities. Thus, the latter dendrimer is suggested to be suitable nanovehicle for the delivery of Ntg. This computational analysis highlighted the importance of realistic molecular models of dendrimer-drug complexes (1:n) in order to obtain reliable results.

  6. Single molecule magnet behaviour in robust dysprosium-biradical complexes.

    PubMed

    Bernot, Kevin; Pointillart, Fabrice; Rosa, Patrick; Etienne, Mael; Sessoli, Roberta; Gatteschi, Dante

    2010-09-21

    A Dy-biradical complex was synthesized and characterized down to very low temperature. ac magnetic measurements reveal single molecule magnet behaviour visible without any application of dc field. The transition to the quantum tunneling regime is evidenced. Photophysical and EPR measurements provide evidence of the excellent stability of these complexes in solution.

  7. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Taneja, Ankur; Higdon, Jonathan

    2018-01-01

    A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.

  8. Large-scale model of flow in heterogeneous and hierarchical porous media

    NASA Astrophysics Data System (ADS)

    Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît

    2017-11-01

    Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.

  9. Characterizing flow in oil reservoir rock using SPH: absolute permeability

    NASA Astrophysics Data System (ADS)

    Holmes, David W.; Williams, John R.; Tilke, Peter; Leonardi, Christopher R.

    2016-04-01

    In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical `real world' means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.

  10. Design Considerations for High Temperature Power Inductors

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2005-01-01

    A uniform B-field approximation model is used to develop design formulas for single-layer wound, toroidal core, ac power inductors that must handle a specified current. Such a geometry is well suited for high temperature, high frequency inductors, where removal of heat from the core becomes critical. Explicit expressions are derived for core radii, core and winding volumes, winding turns and core permeability as functions of a dimensional scaling ratio (S). A limit on the maximum allowed core B-field leads to the result that the minimum core volume is proportional to the permeability, which has a lower bound. Plots versus S are provided for a specific case, to show that good designs can be picked in the overlap regions around the minima in mass and overall size, where the mass and size are relatively flat. Data to 250 C are presented for an MPP core based inductor to show that a quasi-linear, high temperature inductor can be constructed with available materials. A similar development is applied to a toroidal air-core geometry, showing that for the same ratings, such an inductor is considerably bigger and more massive, at least in the single-layer version.

  11. Effect of low frequency, low amplitude magnetic fields on the permeability of cationic liposomes entrapping carbonic anhydrase: I. Evidence for charged lipid involvement.

    PubMed

    Ramundo-Orlando, A; Morbiducci, U; Mossa, G; D'Inzeo, G

    2000-10-01

    The influence of low frequency (4-16 Hz), low amplitude (25-75 mu T) magnetic fields on the diffusion processes in enzyme-loaded unilamellar liposomes as bioreactors was studied. Cationic liposomes containing dipalmitoylphosphatidylcholine, cholesterol, and charged lipid stearylamine (SA) at different molar ratios (6:3:1 or 5:3:2) were used. Previous kinetic experiments showed a very low self-diffusion rate of the substrate p-nitrophenyl acetate (p-NPA) across intact liposome bilayer. After 60 min of exposure to 7 Hz sinusoidal (50 mu T peak) and parallel static (50 mu T) magnetic fields the enzyme activity, as a function of increased diffusion rate of p-NPA, rose from 17 +/- 3% to 80 +/- 9% (P < .0005, n = 15) in the 5:3:2 liposomes. This effect was dependent on the SA concentration in the liposomes. Only the presence of combined sinusoidal (AC) and static (DC) magnetic fields affected the p-NPA diffusion rates. No enzyme leakage was observed. Such studies suggest a plausible link between the action of extremely low frequency magnetic field on charged lipids and a change of membrane permeability. Copyright 2000 Wiley-Liss, Inc.

  12. Localized Versus Distributed Deformation as a Control on the Evolution of Permeability in Anhydrite Rocks

    NASA Astrophysics Data System (ADS)

    Collettini, C.; de Paola, N.; Faulkner, D.

    2007-12-01

    We have taken an experimental approach to understand and quantify the deformation processes and fluid flow within anhydrite-bearing fault damage zones during the seismic cycle. Triaxial loading tests have been performed on borehole samples of anhydrites at room temperature, 100 MPa confining pressure (Pc), and range of pore fluid pressures (Pf). Permeability and porosity development was continuously measured throughout the deformation experiments. The tests were conducted on samples with different grain sizes (10 microns to 1 mm) that were cored in different directions relative to the macroscopic foliation. Static permeability measurements have been carried out to determine the permeability anisotropy and sensitivity of the permeability on the effective pressure (Pc - Pf). Our results show that the brittle-ductile transition occurs for effective pressures (Pe) between 20 to 40 MPa and is almost independent of fabric orientation and grain size. Brittle failure is localized along discrete fractures and is always associated with a sudden stress drop. Conversely, ductile failure occurs by distributed deformation along cataclastic bands. In this case no stress drop is observed. Static permeability measurements show increasing values of permeability for decreasing values of Pe, (k = 10E-20 - 10E-22 m2). During single cycle loading tests, the evolution of the permeability is controlled by the failure mode: permeability begins to increase significantly at 40% and 80% of the max load for samples displaying brittle and ductile behaviour, respectively. The permeability values, immediately prior to failure, are about three orders of magnitude higher than the initial values. Multiple cycling tests, within the ductile field, show that permeability starts increasing at only 40% and 30% of the max load during the second and third loading cycle, respectively. Our results show that the history of deformation and the mode of deformation can control the evolution of the permeability, and that they are more significant than other factors such as fabric and grain size. In natural environments, fluid pressure fluctuations, such as might be experienced during the seismic cycle, can promote a switch from localized (brittle behaviour) to more distributed (ductile behaviour) deformation, leading to complex permeability patterns.

  13. Coupled Fracture and Flow in Shale in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Mori, H.; Viswanathan, H.

    2014-12-01

    Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (< 1 mD), possibly because of limited fracture connectivity through the anvils. In pure share experiments, shale with bedding planes perpendicular to shear loading developed complex fracture networks with narrow apertures and peak permeability of 30 mD. Shale with bedding planes parallel to shear loading developed simple fractures with large apertures and a peak permeability as high as 1 D. Fracture systems held at static conditions for periods of several hours showed little change in effective permeability at hydrostatic conditions as high as 140 bars. However, permeability of fractured systems was a function of hydrostatic pressure, declining in a pseudo-linear, exponential fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.

  14. Connexin Channel Permeability to Cytoplasmic Molecules

    PubMed Central

    Harris, Andrew L.

    2007-01-01

    Connexin channels are known to be permeable to a variety of cytoplasmic molecules. The first observation of second messenger junctional permeability, made ∼30 years ago, sparked broad interest in gap junction channels as mediators of intercellular molecular signaling. Since then, much has been learned about the diversity of connexin channels with regard to isoform diversity, tissue and developmental distribution, modes of channel regulation, assembly and expression, biochemical modification and permeability, all of which appear to be dynamically regulated. This information has expanded the potential roles of connexin channels in development, physiology and disease, and made their elucidation much more complex - 30 years ago such an orchestra of junctional dynamics was unanticipated. Only recently, however, have investigators been able to directly address, in this more complex framework, the key issue: What specific biological molecules, second messengers and others, are able to permeate the various types of connexin channels, and how well? An important related issue, given the ever-growing list of connexin-related pathologies, is how these permeabilities are altered by disease-causing connexin mutations. Together, many studies show that a variety of cytoplasmic molecules can permeate the different types of connexin channels. A few studies reveal differences in permeation by different molecules through a particular type of connexin channel, and differences in permeation by a particular molecule through different types of connexin channels. This article describes and evaluates the various methods used to obtain these data, presents an annotated compilation of the results, and discusses the findings in the context of what can be inferred about mechanism of selectivity and potential relevance to signaling. The data strongly suggest that highly specific interactions take place between connexin pores and specific biological molecular permeants, and that those interactions determine which cytoplasmic molecules can permeate and how well. At this time, the nature of those interactions is unclear. One hopes that with more detailed permeability and structural information, the specific molecular mechanisms of the selectivity can be elucidated. PMID:17470375

  15. Experimental techniques and computational methods toward the estimation of the effective two-phase flow coefficients and multi-scale heterogeneities of soils

    NASA Astrophysics Data System (ADS)

    Tsakiroglou, C. D.; Aggelopoulos, C. A.; Sygouni, V.

    2009-04-01

    A hierarchical, network-type, dynamic simulator of the immiscible displacement of water by oil in heterogeneous porous media is developed to simulate the rate-controlled displacement of two fluids at the soil column scale. A cubic network is constructed, where each node is assigned a permeability which is chosen randomly from a distribution function. The intensity of heterogeneities is quantified by the width of the permeability distribution function. The capillary pressure at each node is calculated by combining a generalized Leverett J-function with a Corey type model. Information about the heterogeneity of soils at the pore network scale is obtained by combining mercury intrusion porosimetry (MIP) data with back-scattered scanning electron microscope (BSEM) images [1]. In order to estimate the two-phase flow properties of nodes (relative permeability and capillary pressure functions, permeability distribution function) immiscible and miscible displacement experiments are performed on undisturbed soil columns. The transient responses of measured variables (pressure drop, fluid saturation averaged over five successive segments, solute concentration averaged over three cross-sections) are fitted with models accounting for the preferential flow paths at the micro- (multi-region model) and macro-scale (multi flowpath model) because of multi-scale heterogeneities [2,3]. Simulating the immiscible displacement of water by oil (drainage) in a large netork, at each time step, the fluid saturation and pressure of each node are calculated formulating mass balances at each node, accounting for capillary, viscous and gravity forces, and solving the system of coupled equations. At each iteration of the algorithm, the pressure drop is so selected that the total flow rate of the injected fluid is kept constant. The dynamic large-scale network simulator is used (1) to examine the sensitivity of the transient responses of the axial distribution of fluid saturation and total pressure drop across the network to the permeability distribution function, spatial correlations of permeability, and capillary number, and (2) to estimate the effective (up-scaled) relative permeability functions at the soil column scale. In an attempt to clarify potential effects of the permeability distribution and spatial permeability correlations on the transient responses of the pressure drop across a soil column, signal analysis with wavelets is performed [4] on experimental and simulated results. The transient variation of signal energy and frequency of pressure drop fluctuations at the wavelet domain are correlated with macroscopic properties such as the effective water and oil relative permeabilities of the porous medium, and microscopic properties such as the variation of the permeability distribution of oil-occupied nodes. Toward the solution of the inverse problem, a general procedure is suggested to identify macro-heterogeneities from the fast analysis of pressure drop signals. References 1. Tsakiroglou, C.D. and M.A. Ioannidis, "Dual porosity modeling of the pore structure and transport properties of a contaminated soil", Eur. J. Soil Sci., 59, 744-761 (2008). 2. Aggelopoulos, C.A., and C.D. Tsakiroglou, "Quantifying the Soil Heterogeneity from Solute Dispersion Experiments", Geoderma, 146, 412-424 (2008). 3. Aggelopoulos, C.A., and C.D. Tsakiroglou, "A multi-flow path approach to model immiscible displacement in undisturbed heterogeneous soil columns", J. Contam. Hydrol., in press (2009). 4. Sygouni, V., C.D. Tsakiroglou, and A.C. Payatakes, "Using wavelets to characterize the wettability of porous materials", Phys. Rev. E, 76, 056304 (2007).

  16. 2D and 3D graphical representation of the propagation of electromagnetic waves at the interface with a material with general effective complex permittivity and permeability

    NASA Astrophysics Data System (ADS)

    Diaz, A.; Ramos, J. G.; Friedman, J. S.

    2017-09-01

    We developed a web-based instructional and research tool that demonstrates the behavior of electromagnetic waves as they propagate through a homogenous medium and through an interface where the second medium can be characterized by an effective complex permittivity and permeability. Either p- or s-polarization wave components can be chosen and the graphical interface includes 2D wave and 3D component representations. The program enables the study of continuity of electromagnetic components, critical angle, Brewster angle, absorption and amplification, behavior of light in sub-unity and negative-index materials, Poynting vector and phase velocity behavior, and positive and negative Goos- Hänchen shifts.

  17. Dynamic magnetic hysteresis and nonlinear susceptibility of antiferromagnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalmykov, Yuri P.; Ouari, Bachir; Titov, Serguey V.

    2016-08-01

    The nonlinear ac stationary response of antiferromagnetic nanoparticles subjected to both external ac and dc fields of arbitrary strength and orientation is investigated using Brown's continuous diffusion model. The nonlinear complex susceptibility and dynamic magnetic hysteresis (DMH) loops of an individual antiferromagnetic nanoparticle are evaluated and compared with the linear regime for extensive ranges of the anisotropy, the ac and dc magnetic fields, damping, and the specific antiferromagnetic parameter. It is shown that the shape and area of the DMH loops of antiferromagnetic particles are substantially altered by applying a dc field that permits tuning of the specific magnetic power loss in the nanoparticles.

  18. Frequent statistics of link-layer bit stream data based on AC-IM algorithm

    NASA Astrophysics Data System (ADS)

    Cao, Chenghong; Lei, Yingke; Xu, Yiming

    2017-08-01

    At present, there are many relevant researches on data processing using classical pattern matching and its improved algorithm, but few researches on statistical data of link-layer bit stream. This paper adopts a frequent statistical method of link-layer bit stream data based on AC-IM algorithm for classical multi-pattern matching algorithms such as AC algorithm has high computational complexity, low efficiency and it cannot be applied to binary bit stream data. The method's maximum jump distance of the mode tree is length of the shortest mode string plus 3 in case of no missing? In this paper, theoretical analysis is made on the principle of algorithm construction firstly, and then the experimental results show that the algorithm can adapt to the binary bit stream data environment and extract the frequent sequence more accurately, the effect is obvious. Meanwhile, comparing with the classical AC algorithm and other improved algorithms, AC-IM algorithm has a greater maximum jump distance and less time-consuming.

  19. Evaluation of accessory cell heterogeneity. I. Differential accessory cell requirement for T helper cell activation and for T-B cooperation.

    PubMed

    Ramila, G; Studer, S; Kennedy, M; Sklenar, I; Erb, P

    1985-01-01

    Several Ia+ tumor cell lines and peritoneal exudate macrophages were tested as accessory cells (AC) for the activation of antigen-specific T cells and for T-B cooperation. The macrophages and all the Ia+ tumor lines tested induced the release of lymphokines from T cells in a major histocompatibility complex (MHC)-restricted fashion and reconstituted the antibody responses of AC-depleted spleen cells or of purified T and B cells. However, only the normal macrophages but none of the tumor lines induced carrier-specific T helper (Th) cells which help B cells for specific antihapten antibody responses by linked recognition. For T-B cooperation accessory cells were also required, but in contrast to Th cell activation any type of Ia+ AC (e.g. macrophage or tumor line) was effective. Strong MHC-restriction between the lymphocytes and the AC was seen if antigen-pulsed AC were added into the AC-depleted T-B cooperation cultures. If the AC and antigen were concomitantly added to the AC-depleted T-B cultures, MHC-restriction was less obvious. Concanavalin A supernatant reconstituted the response of AC-depleted T-B cultures provided antigen-specific Th cells and the hapten-carrier conjugate were present. If, however, tumor line-activated T cells were added instead of macrophage-induced Th cells, no cooperation with B cells took place even in the presence of Con A supernatant. The results obtained demonstrate a differential AC requirement for the induction of Th cells depending on the differentiation stage of the Th cells.

  20. Sociodemographic and Environmental Correlates of Active Commuting in Rural America

    PubMed Central

    Fan, Jessie X.; Wen, Ming; Kowaleski-Jones, Lori

    2014-01-01

    Purpose This research investigated participation rates in 3 modes of active commuting (AC) and their sociodemographic and physical environmental correlates in rural America. Methods The 2000 Census supplemented with other datasets were used to analyze AC rates in percentage of workers walking, biking, and taking public transportations to work in 14,209 nonmetropolitan rural tracts identified by RUCA codes, including 4,067 small rural and 10,142 town-micropolitan rural tracts. Sociodemographic and physical environmental variables were correlated with 3 AC modes simultaneously using Seemingly Unrelated Regression for nonmetro rural, and for small rural and town-micropolitan rural separately. Findings The average AC rates in rural tracts were 3.63%, 0.26%, and 0.56% for walking, biking, and public transportation to work, respectively, with small rural tracts having a higher rate of walking but lower rates of biking and public transportation to work than town-micropolitan tracts. In general, better economic well-being was negatively associated with AC but percentage of college-educated was a positive correlate. Population density was positively associated with AC but greenness and proximity to parks were negative correlates. However, significant differences existed for different AC modes, and between small rural and town-micropolitan rural tracts. Conclusions Sociodemographic factors explained more variance in AC than physical environmental factors but the detailed relationships were complex, varying by AC mode and by degree of rurality. Any strategy to promote AC in rural America needs to be sensitive to the population size of the area and assessed in a comprehensive manner to avoid a “one size fits all” approach. PMID:25066252

  1. Sociodemographic and environmental correlates of active commuting in rural America.

    PubMed

    Fan, Jessie X; Wen, Ming; Kowaleski-Jones, Lori

    2015-01-01

    This research investigated participation rates in 3 modes of active commuting (AC) and their sociodemographic and physical environmental correlates in rural America. The 2000 Census supplemented with other data sets were used to analyze AC rates in percentage of workers walking, biking, and taking public transportation to work in 14,209 nonmetropolitan rural tracts identified by RUCA codes, including 4,067 small rural and 10,142 town-micropolitan rural tracts. Sociodemographic and physical environmental variables were correlated with 3 AC modes simultaneously using Seemingly Unrelated Regression for nonmetro rural, and for small rural and town-micropolitan rural separately. The average AC rates in rural tracts were 3.63%, 0.26%, and 0.56% for walking, biking, and public transportation to work, respectively, with small rural tracts having a higher rate of walking but lower rates of biking and public transportation to work than town-micropolitan tracts. In general, better economic well-being was negatively associated with AC but percentage of college-educated was a positive correlate. Population density was positively associated with AC but greenness and proximity to parks were negative correlates. However, significant differences existed for different AC modes, and between small rural and town-micropolitan rural tracts. Sociodemographic factors explained more variance in AC than physical environmental factors but the detailed relationships were complex, varying by AC mode and by degree of rurality. Any strategy to promote AC in rural America needs to be sensitive to the population size of the area and assessed in a comprehensive manner to avoid a "one size fits all" approach. © 2014 National Rural Health Association.

  2. Control of the permeability of fractures in geothermal rocks

    NASA Astrophysics Data System (ADS)

    Faoro, Igor

    This thesis comprises three journal articles that will be submitted for publication (Journal of Geophysical Research-Solid Earth). Their respective titles are: "Undrained through Drained Evolution of Permeability in Dual Permeability Media" by Igor Faoro, Derek Elsworth and Chris Marone, "Evolution of Stiffness and Permeability in Fractures Subject to Thermally-and Mechanically-Activated Dissolution" by Igor Faoro, Derek Elsworth Chris Marone; "Linking permeability and mechanical damage for basalt from Mt. Etna volcano (Italy)" by Igor Faoro, Sergio Vinciguerra, Chris Marone and Derek Elsworth. Undrained through Drained Evolution of Permeability in Dual Permeability Media: temporary permeability changes of fractured aquifers subject to earthquakes have been observed and recorded worldwide, but their comprehension still remains a complex issue. In this study we report on flow-through fracture experiments on cracked westerly cores that reproduce, at laboratory scale, those (steps like) permeability changes that have been recorded when earthquakes occur. In particular our experiments show that under specific test boundary conditions, rapid increments of pore pressure induce transient variations of flow rate of the fracture whose peak magnitudes decrease as the variations of the effective stresses increase. We identify that the observed hydraulic behavior of the fracture is due to two principal mechanisms of origin; respectively mechanical (shortening of core) and poro-elastic (radial diffusion of the pore fluid into the matrix of the sample) whose interaction cause respectively an instantaneous opening and then a progressive closure of the fracture. Evolution of Stiffness and Permeability in Fractures Subject to Thermally-and Mechanically-Activated Dissolution: we report the results of radial flow-through experiments conducted on heated samples of Westerly granite. These experiments are performed to examine the influence of thermally and mechanically activated dissolution on the mechanical (stiffness) and transport (stress-permeability) characteristics of fractures. The sample is thermally stressed to 80 °C and measurements of the constrained axial stress acting on the sample and of the flow rate of the fracture are recorded with time. Net efflux of dissolved mineral mass is also measured periodically to provide a record of rates of net mass removal. During the experiment the fracture permeability shows high sensitivity to the changing conditions of stress and temperature but no significant permanent variation of permeability have been recorded once the thermal cycle ends. Linking permeability and mechanical damage for basalt from Mt. Etna volcano (Italy): volcanic edifices, such as Mt. Etna volcano (Italy), are affected from repeated episodes of pressurization due to magma emplacement from deep reservoirs to shallow depths. This mechanism pressurizes the large aquifers within the edifice and increases the level of crack damage within the rocks of the edifice over extended periods of times. In order to improve our understanding of the complex coupling between circulating fluids and the development of crack damage we performed flow-through tests using cylindrical cores of Etna Basalt (Etna, Italy) cyclically loaded either by constant increments of the principal stress: sigma1 (deviatoric condition), or by increments of the effective confining pressure: sigma1 = sigma 2 = sigma3 (isostatic conditions). Under hydrostatic stresses, the permeability values of the intact sample decrease linearly with the increments of pressure and range between 5.2*10-17 m2 and 1.5*10-17m2. At deviatoric stresses (up to 60 MPa) the permeability from the initial value of 5*10-17 m2 slightly decays to the minimum value of 2*10 -17 m2 observed when the axial deviatoric stresses range between 40 MPa and 60 MPa. For higher deviatoric stresses, increases to 10-16 m2 are then observed up to the peak stress at 92 MPa. After failure the permeability persisted steady at the value of 8*10-16 m2 for the whole duration of the test, independently from the applied stress. We interpreted the decrease observed as due to the progressive closure of the voids space, as the axial load is incremented.

  3. Electrospray mass spectrometry of NeuAc oligomers associated with the C fragment of the tetanus toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prieto, M C; Whittal, R M; Baldwin, M A

    2005-04-03

    The Clostridial neurotoxins, botulinum and tetanus, gain entry into neuronal cells by protein recognition involving cell specific binding sites. The sialic or N-acetylneuraminic acid (NeuAc) residues of gangliosides attached to the surface of motor neurons are the suspected recognition and interaction points with Clostridial neurotoxins, although not necessarily the only ones. We have used electrospray ionization mass spectrometry (ESIMS) to examine formation of complexes between the tetanus toxin C fragment, or targeting domain, and carbohydrates containing NeuAc groups to determine how NeuAc residues contribute to ganglioside binding. ESI-MS was used to rapidly and efficiently measure dissociation constants for a numbermore » of related NeuAc-containing carbohydrates and NeuAc oligomers, information that has helped identify the structural features of gangliosides that determine their binding to tetanus toxin. The strength of the interactions between the C fragment and (NeuAc){sub n}, are consistent with the topography of the targeting domain of tetanus toxin and the nature of its carbohydrate binding sites. The results suggest that the targeting domain of tetanus toxin contains two binding sites that can accommodate NeuAc (or a dimer). This study also shows that NeuAc must play an important role in ganglioside binding and molecular recognition, a process critical for normal cell function and one frequently exploited by toxins, bacteria and viruses to facilitate their entrance into cells.« less

  4. Cry1Ac production is costly for native plants attacked by non-Cry1Ac-targeted herbivores in the field.

    PubMed

    McGale, Erica; Diezel, Celia; Schuman, Meredith C; Baldwin, Ian T

    2018-05-13

    Plants are the primary producers in most terrestrial ecosystems and have complex defense systems to protect their produce. Defense-deficient, high-yielding agricultural monocultures attract abundant nonhuman consumers, but are alternatively defended through pesticide application and genetic engineering to produce insecticidal proteins such as Cry1Ac (Bacillus thuringiensis). These approaches alter the balance between yield protection and maximization but have been poorly contextualized to known yield-defense trade-offs in wild plants. The native plant Nicotiana attenuata was used to compare yield benefits of plants transformed to be defenseless to those with a full suite of naturally evolved defenses, or additionally transformed to ectopically produce Cry1Ac. An insecticide treatment allowed us to examine yield under different herbivore loads in N. attenuata's native habitat. Cry1Ac, herbivore damage, and growth parameters were monitored throughout the season. Biomass and reproductive correlates were measured at season end. Non-Cry1Ac-targeted herbivores dominated on noninsecticide-treated plants, and increased the yield drag of Cry1Ac-producing plants in comparison with endogenously defended or undefended plants. Insecticide-sprayed Cry1Ac-producing plants lagged less in stalk height, shoot biomass, and flower production. In direct comparison with the endogenous defenses of a native plant, Cry1Ac production did not provide yield benefits for plants under observed herbivore loads in a field study. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  5. Substituted Phthalimide AC94377 Is a Selective Agonist of the Gibberellin Receptor GID11[OPEN

    PubMed Central

    Otani, Masato; Shimotakahara, Hiroaki; Yoon, Jung-Min; Park, Seung-Hyun; Miyaji, Tomoko; Nakano, Takeshi; Nakamura, Hidemitsu; Nakajima, Masatoshi

    2017-01-01

    Gibberellin (GA) is a major plant hormone that regulates plant growth and development and is widely used as a plant growth regulator in agricultural production. There is an increasing demand for function-limited GA mimics due to the limitations on the agronomical application of GA to crops, including GA’s high cost of producing and its leading to the crops’ lodging. AC94377, a substituted phthalimide, is a chemical that mimics the growth-regulating activity of GAs in various plants, despite its structural difference. Although AC94377 is widely studied in many weeds and crops, its mode of action as a GA mimic is largely unknown. In this study, we confirmed that AC94377 displays GA-like activities in Arabidopsis (Arabidopsis thaliana) and demonstrated that AC94377 binds to the Arabidopsis GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptor (AtGID1), forms the AtGID1-AC94377-DELLA complex, and induces the degradation of DELLA protein. Our results also indicated that AC94377 is selective for a specific subtype among three AtGID1s and that the selectivity of AC94377 is attributable to a single residue at the entrance to the hydrophobic pocket of GID1. We conclude that AC94377 is a GID1 agonist with selectivity for a specific subtype of GID1, which could be further developed and used as a function-limited regulator of plant growth in both basic study and agriculture. PMID:27899534

  6. The scavenger receptor SR-A I/II (CD204) signals via the receptor tyrosine kinase Mertk during apoptotic cell uptake by murine macrophages

    PubMed Central

    Todt, Jill C.; Hu, Bin; Curtis, Jeffrey L.

    2008-01-01

    Apoptotic cells (AC) must be cleared by macrophages (Mø) to resolve inflammation effectively. Mertk and scavenger receptor A (SR-A) are two of many receptors involved in AC clearance. As SR-A lacks enzymatic activity or evident intracellular signaling motifs, yet seems to signal in some cell types, we hypothesized that SR-A signals via Mer receptor tyrosine kinase (Mertk), which contains a multisubstrate docking site. We induced apoptosis in murine thymocytes by dexamethasone and used Western blotting and immunoprecipitation to analyze the interaction of Mertk and SR-A in the J774A.1 (J774) murine Mø cell line and in peritoneal Mø of wild-type mice and SR-A−/− mice. Phagocytosis (but not adhesion) of AC by J774 was inhibited by anti-SR-A or function-blocking SR-A ligands. In resting J774, SR-A was associated minimally with unphosphorylated (monomeric) Mertk; exposure to AC induced a time-dependent increase in association of SR-A with Mertk in a direct or indirect manner. Anti-SR-A inhibited AC-induced phosphorylation of Mertk and of phospholipase Cγ2, essential steps in AC ingestion. Relative to tissue Mø of wild-type mice, AC-induced Mertk phosphorylation was reduced and delayed in tissue Mø of SR-A−/− mice, as was in vitro AC ingestion at early time-points. Thus, during AC uptake by murine Mø, SR-A is essential for optimal phosphorylation of Mertk and subsequent signaling required for AC ingestion. These data support the Mertk/SR-A complex as a potential target to manipulate AC clearance and hence, resolution of inflammation and infections. PMID:18511575

  7. Porphyrin amino acids-amide coupling, redox and photophysical properties of bis(porphyrin) amides.

    PubMed

    Melomedov, Jascha; Wünsche von Leupoldt, Anica; Meister, Michael; Laquai, Frédéric; Heinze, Katja

    2013-07-14

    New trans-AB2C meso-substituted porphyrin amino acid esters with meso-substituents of tunable electron withdrawing power (B = mesityl, 4-C6H4F, 4-C6H4CF3, C6F5) were prepared as free amines 3a-3d, as N-acetylated derivatives Ac-3a-Ac-3d and corresponding zinc(II) complexes Zn-Ac-3a-Zn-Ac-3d. Several amide-linked bis(porphyrins) with a tunable electron density at each porphyrin site were obtained from the amino porphyrin precursors by condensation reactions (4a-4d) and mono- and bis(zinc(II)) complexes Zn(2)-4d and Zn(1)Zn(2)-4d were prepared. The electronic interaction between individual porphyrin units in bis(porphyrins) 4 is probed by electrochemical experiments (CV, EPR), electronic absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy in combination with DFT/PCM calculations on diamagnetic neutral bis(porphyrins) 4 and on respective charged mixed-valent radicals 4(+/-). The interaction via the -C6H4-NHCO-C6H4- bridge, the site of oxidation and reduction and the lowest excited singlet state S1, is tuned by the substituents on the individual porphyrins and the metalation state.

  8. Adsorptive Desulfurization of Model Gasoline by Using Different Zn Sources Exchanged NaY Zeolites.

    PubMed

    Rui, Jingwei; Liu, Fei; Wang, Rijie; Lu, Yanfei; Yang, Xiaoxia

    2017-02-17

    A series of Zn-modified NaY zeolites were prepared by the liquid-phase ion-exchange method with different Zn sources, including Zn(NO₃)₂, Zn(Ac)₂ and ZnSO₄. The samples were tested as adsorbents for removing an organic sulfur compound from a model gasoline fuel containing 1000 ppmw sulfur. Zn(Ac)₂-Y exhibited the best performance for the desulfurization of gasoline at ambient conditions. Combined with the adsorbents' characterization results, the higher adsorption capacity of Zn(Ac)₂-Y is associated with a higher ion-exchange degree. Further, the results demonstrated that the addition of 5 wt % toluene or 1-hexene to the diluted thiophene (TP) solution in cyclohexane caused a large decrease in the removal of TP from the model gasoline fuel. This provides evidence about the competition through the π-complexation between TP and toluene for adsorption on the active sites. The acid-catalyzed alkylation by 1-hexene of TP and the generated complex mixture of bulky alkylthiophenes would adsorb on the surface active sites of the adsorbent and block the pores. The regenerated Zn(Ac)₂-Y adsorbent afforded 84.42% and 66.10% of the initial adsorption capacity after the first two regeneration cycles.

  9. A novel matrix dispersion based on phospholipid complex for improving oral bioavailability of baicalein: preparation, in vitro and in vivo evaluations.

    PubMed

    Zhou, Yang; Dong, Wujun; Ye, Jun; Hao, Huazhen; Zhou, Junzhuo; Wang, Renyun; Liu, Yuling

    2017-11-01

    Phospholipid complex is one of the most successful approaches for enhancing oral bioavailability of poorly absorbed plant constituents. But the sticky property of phospholipids results in an unsatisfactory dissolution of drugs. In this study, a matrix dispersion of baicalein based on phospholipid complex (BaPC-MD) was first prepared by a discontinuous solvent evaporation method, in which polyvinylpyrrolidone-K30 (PVP-K30) was employed for improving the dispersibility of baicalein phospholipid complex (BaPC) and increasing dissolution of baicalein. The combination ratio of baicalein and phospholipids in BaPC-MD was 99.39% and baicalein was still in a complete complex state with phospholipid in BaPC-MD. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier Transform Infrared (FTIR) analyzes demonstrated that baicalein was fully transformed to an amorphous state in BaPC-MD and phospholipid complex formed. The water-solubility and n-octanol solubility of baicalein in BaPC-MD significantly increased compared with those of pure baicalein. Compared with baicalein and BaPC, the cumulative dissolution of BaPC-MD at 120 min increased 2.77- and 1.23-fold, respectively. In vitro permeability study in Caco-2 cells indicated that the permeability of BaPC-MD was remarkably higher than those of baicalein and BaPC. Pharmacokinetic study showed that the average C max of BaPC-MD was significantly increased compared to baicalein and BaPC. AUC 0-14 h of BaPC-MD was 5.01- and 1.91-fold of baicalein and BaPC, respectively. The novel BaPC-MD significantly enhanced the oral bioavailability of baicalein by improving the dissolution and permeability of baicalein without destroying the complexation state of baicalein and phospholipids. The current drug delivery system provided an optimal strategy to significantly enhance oral bioavailability for poorly water-soluble drugs.

  10. Clay and Shale Permeability at Lab to Regional Scale

    NASA Astrophysics Data System (ADS)

    Neuzil, C.

    2017-12-01

    Because clays, shales, and other clay-rich media tend to be only poorly permeable, and are laterally extensive and voluminous, they play key roles in problems as diverse as groundwater supply, waste confinement, exploitation of conventional and unconventional oil and gas, and deformation and failure in the crust. Clay and shale permeability is a crucial but often highly uncertain analysis parameter; direct measurements are challenging, error-prone, and - perhaps most importantly - provide information only at quite small scales. Fortunately, there has been a dramatic increase in clay and shale permeability data from sources that include scientific ocean drilling, nuclear waste repository research, groundwater resource studies, liquid waste and CO2 sequestration, and oil and gas research. The effect of lithology as well as porosity on matrix permeability can now be examined and permeability - scale relations are becoming discernable. A significant number of large-scale permeability estimates have been obtained by inverse methods that essentially treat large-scale flow systems as natural experiments. They suggest surprisingly little scale-dependence in clay and shale permeabilities in subsiding basins and accretionary complexes. Stable continental settings present a different picture; as depths increase beyond 1 km, scale dependence mostly disappears even over the largest areas. At depths less than 1 km, secondary permeability is not always present over areas of 1 - 10 km2, but always evident for areas in excess of about 103 km2. Transmissive fractures have been observed in very low porosity (< 0.03) shales in these settings, but the cause of scale dependence in other cases is unclear; it may reflect time-dependent, or "dynamic" conditions, including irreversible and ongoing changes imposed on subsurface flow systems by human activities.

  11. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent.

    PubMed

    Feng, X-Y; Zhang, D-N; Wang, Y-A; Fan, R-F; Hong, F; Zhang, Y; Li, Y; Zhu, J-X

    2017-05-01

    The intestinal barrier is made up of epithelial cells and intercellular junctional complexes to regulate epithelial ion transport and permeability. Dopamine (DA) is able to promote duodenal epithelial ion transport through D1-like receptors, which includes subtypes of D 1 (D 1 R) and D 5 (D 5 R), but whether D1-like receptors influence the duodenal permeability is unclear. FITC-dextran permeability, short-circuit current (I SC ), Western blot, immunohistochemistry and ELISA were used in human D 5 R transgenic mice and hyperendogenous enteric DA (HEnD) rats in this study. Dopamine induced a downward deflection in I SC and an increase in FITC-dextran permeability of control rat duodenum, which were inhibited by the D1-like receptor antagonist, SCH-23390. However, DA decreased duodenal transepithelial resistance (TER), an effect also reversed by SCH-23390. A strong immunofluorescence signal for D 5 R, but not D 1 R, was observed in the duodenum of control rat. In human D 5 R knock-in transgenic mice, duodenal mucosa displayed an increased basal I SC with high FITC-dextran permeability and decreased TER with a lowered expression of tight junction proteins, suggesting attenuated duodenal barrier function in these transgenic mice. D 5 R knock-down transgenic mice manifested a decreased basal I SC with lowered FITC-dextran permeability. Moreover, an increased FITC-dextran permeability combined with decreased TER and tight junction protein expression in duodenal mucosa were also observed in HEnD rats. This study demonstrates, for the first time, that DA enhances duodenal permeability of control rat via D 5 R, which provides new experimental and theoretical evidence for the influence of DA on duodenal epithelial barrier function. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  12. Impact of Three-Phase Relative Permeability and Hysteresis Models on Forecasts of Storage Associated With CO2-EOR

    NASA Astrophysics Data System (ADS)

    Jia, Wei; McPherson, Brian; Pan, Feng; Dai, Zhenxue; Moodie, Nathan; Xiao, Ting

    2018-02-01

    Geological CO2 sequestration in conjunction with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 storage in deep saline aquifers. Two of the most important factors affecting multiphase flow in CO2-EOR are three-phase relative permeability and associated hysteresis, both of which are difficult to measure and are usually represented by numerical interpolation models. The purpose of this study is to improve understanding of (1) the relative impacts of different three-phase relative permeability models and hysteresis models on CO2 trapping mechanisms, and (2) uncertainty associated with these two factors. Four different three-phase relative permeability models and three hysteresis models were applied to simulations of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters, we utilized a sequential Gaussian simulation technique to generate 50 realizations to describe heterogeneity of porosity and permeability, based on data obtained from well logs and seismic survey. Simulation results of forecasted CO2 storage suggested that (1) the choice of three-phase relative permeability model and hysteresis model led to noticeable impacts on forecasted CO2 sequestration capacity; (2) impacts of three-phase relative permeability models and hysteresis models on CO2 trapping are small during the CO2-EOR injection period, and increase during the post-EOR CO2 injection period; (3) the specific choice of hysteresis model is more important relative to the choice of three-phase relative permeability model; and (4) using the recommended three-phase WAG (Water-Alternating-Gas) hysteresis model may increase the impact of three-phase relative permeability models and uncertainty due to heterogeneity.

  13. Pincer phosphine complexes of ruthenium: formation of Ru(P-O-P)(PPh3)HCl (P-O-P = xantphos, DPEphos, (Ph2PCH2CH2)2O) and Ru(dppf)(PPh3)HCl and characterization of cationic dioxygen, dihydrogen, dinitrogen, and arene coordinated phosphine products.

    PubMed

    Ledger, Araminta E W; Moreno, Aitor; Ellul, Charles E; Mahon, Mary F; Pregosin, Paul S; Whittlesey, Michael K; Williams, Jonathan M J

    2010-08-16

    Treatment of Ru(PPh(3))(3)HCl with the pincer phosphines 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (xantphos), bis(2-diphenylphosphinophenyl)ether (DPEphos), or (Ph(2)PCH(2)CH(2))(2)O affords Ru(P-O-P)(PPh(3))HCl (xantphos, 1a; DPEphos, 1b; (Ph(2)PCH(2)CH(2))(2)O, 1c). The X-ray crystal structures of 1a-c show that all three P-O-P ligands coordinate in a tridentate manner through phosphorus and oxygen. Abstraction of the chloride ligand from 1a-c by NaBAr(4)(F) (BAr(4)(F) = B(3,5-C(6)H(3)(CF(3))(2))(4)) gives the cationic aqua complexes [Ru(P-O-P)(PPh(3))(H(2)O)H]BAr(4)(F) (3a-c). Removal of chloride from 1a by AgOTf yields Ru(xantphos)(PPh(3))H(OTf) (2a), which reacts with water to form [Ru(xantphos)(PPh(3))(H(2)O)H](OTf). The aqua complexes 3a-b react with O(2) to generate [Ru(xantphos)(PPh(3))(eta(2)-O(2))H]BAr(4)(F) (5a) and [Ru(DPEphos)(PPh(3))(eta(2)-O(2))H]BAr(4)(F) (5b). Addition of H(2) or N(2) to 3a-c yields the thermally unstable dihydrogen and dinitrogen species [Ru(P-O-P)(PPh(3))(eta(2)-H(2))H]BAr(4)(F) (6a-c) and [Ru(P-O-P)(PPh(3))(N(2))H]BAr(4)(F) (7a-c), which have been characterized by multinuclear NMR spectroscopy at low temperature. Ru(PPh(3))(3)HCl reacts with 1,1'-bis(diphenylphosphino)ferrocene (dppf) to give the 16-electron complex Ru(dppf)(PPh(3))HCl (1d), which upon treatment with NaBAr(4)(F), affords [Ru(dppf){(eta(6)-C(6)H(5))PPh(2)}H]BAr(4)(F) (8), in which the PPh(3) ligand binds eta(6) through one of the PPh(3) phenyl rings. Reaction of 8 with CO or PMe(3) at elevated temperatures yields the 18-electron products [Ru(dppf)(PPh(3))(CO)(2)H]BAr(F)(4) (9) and [Ru(PMe(3))(5)H]BAr(4)(F) (10).

  14. Increased permeability to polyethylene glycol 4000 in rabbits with experimental colitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seidman, E.G.; Hanson, D.G.; Walker, W.A.

    1986-01-01

    Little information is available regarding colonic permeability to macromolecules in health or disease states. In vivo permeability of rabbit colon to (/sup 14/C)polyethylene glycol 4000 (/sup 14/C-PEG) was examined in the presence of immune complex-mediated experimental colitis and compared with that of partially treated (control) and normal rabbits. Permeability was assessed by urinary /sup 14/C-PEG excretion after intrarectal administration of 0.1 mM solution of /sup 14/C-PEG (1 ml/kg, 7.5 X 10(6) cpm/ml). Experimental colitis greatly increased colonic permeability (p less than 0.001 in two-way analysis of variance) compared with control and normal groups (2.06% +/- 0.19%, 0.14% +/- 0.04%, andmore » 0.01% +/- 0.004%, respectively, of rectally administered counts). Gel diffusion chromatography showed that absorbed /sup 14/C-PEG was excreted into urine unchanged, demonstrating its applicability as an inert, nonmetabolizable macromolecular probe. Urinary clearance after mesenteric vein administration of /sup 14/C-PEG was similar in normal animals and animals with colitis, implicating colonic absorption as the source of the group differences. Postmortem histology confirmed the acute colitis lesions in the experimental group. These findings support the hypothesis that nonspecific colonic inflammation is associated with significant alterations of mucosal permeability.« less

  15. Multiparameter Analysis of Gas Transport Phenomena in Shale Gas Reservoirs: Apparent Permeability Characterization.

    PubMed

    Shen, Yinghao; Pang, Yu; Shen, Ziqi; Tian, Yuanyuan; Ge, Hongkui

    2018-02-08

    The large amount of nanoscale pores in shale results in the inability to apply Darcy's law. Moreover, the gas adsorption of shale increases the complexity of pore size characterization and thus decreases the accuracy of flow regime estimation. In this study, an apparent permeability model, which describes the adsorptive gas flow behavior in shale by considering the effects of gas adsorption, stress dependence, and non-Darcy flow, is proposed. The pore size distribution, methane adsorption capacity, pore compressibility, and matrix permeability of the Barnett and Eagle Ford shales are measured in the laboratory to determine the critical parameters of gas transport phenomena. The slip coefficients, tortuosity, and surface diffusivity are predicted via the regression analysis of the permeability data. The results indicate that the apparent permeability model, which considers second-order gas slippage, Knudsen diffusion, and surface diffusion, could describe the gas flow behavior in the transition flow regime for nanoporous shale. Second-order gas slippage and surface diffusion play key roles in the gas flow in nanopores for Knudsen numbers ranging from 0.18 to 0.5. Therefore, the gas adsorption and non-Darcy flow effects, which involve gas slippage, Knudsen diffusion, and surface diffusion, are indispensable parameters of the permeability model for shale.

  16. Influence of sialic acids on the galactose-recognizing receptor of rat peritoneal macrophages.

    PubMed

    Lee, H Y; Kelm, S; Michalski, J C; Schauer, R

    1990-04-01

    The interaction of the galactose-recognizing receptor from rat peritoneal macrophages with ligands containing terminal galactose residues, such as asialoorosomucoid, desialylated erythrocytes or lymphocytes, can be inhibited by free N-acetylneuraminic acid (Neu5Ac) and oligosaccharides or glycoproteins containing this sugar in terminal position. This effect of Neu5Ac on the receptor is specific. The other naturally occurring or most of synthetic neuraminic acid derivatives tested do not exhibit an equivalent inhibitory potency as Neu5Ac. Although free Neu5Ac inhibits 5-fold stronger (K50 = 0.2mM) than free galactose, clustering of Neu5Ac in oligosaccharides and glycoproteins does not lead to stronger inhibition, which is in contrast to galactose-containing ligands. A more branched (triantennary) sialooligosaccharide inhibits less than biantennary and unbranched sialooligosaccharides. This may be the reason, why complex sialic acid-containing ligands like native orosomucoid or blood cells are not bound and internalized by the macrophages. The dissociation of asialoorosomucoid from the receptor is slow under the influence of Neu5Ac and requires relatively high concentrations of this sugar, whereas the dissociation mediated by galactose is rapid and requires lower concentrations. An allosteric influence of Neu5Ac on the binding of galactose by the receptor is discussed.

  17. Preservation of samples for dissolved mercury

    USGS Publications Warehouse

    Hamlin, S.N.

    1989-01-01

    Water samples for dissolved mercury requires special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a large variety of concentrations and dissolved forms. Because this acid-oxidant preservative acts as a sink for airborne mercury and plastic containers are permeable to mercury vapor, glass bottles are preferred for sample collection. To maintain a healthy work environment and minimize the potential for contamination of water samples, mercury and its compounds are isolated from the atmosphere while in storage. Concurrently, a program to monitor environmental levels of mercury vapor in areas of potential contamination is needed to define the extent of mercury contamination and to assess the effectiveness of mercury clean-up procedures.Water samples for dissolved mercury require special treatment because of the high chemical mobility and volatility of this element. Widespread use of mercury and its compounds has provided many avenues for contamination of water. Two laboratory tests were done to determine the relative permeabilities of glass and plastic sample bottles to mercury vapor. Plastic containers were confirmed to be quite permeable to airborne mercury, glass containers were virtually impermeable. Methods of preservation include the use of various combinations of acids, oxidants, and complexing agents. The combination of nitric acid and potassium dichromate successfully preserved mercury in a large variety of concentrations and dissolved forms.

  18. Injury patterns of the acromioclavicular ligament complex in acute acromioclavicular joint dislocations: a cross-sectional, fundamental study.

    PubMed

    Maier, Dirk; Jaeger, Martin; Reising, Kilian; Feucht, Matthias J; Südkamp, Norbert P; Izadpanah, Kaywan

    2016-09-06

    Horizontal instability impairs clinical outcome following acute acromioclavicular joint (ACJ) reconstruction and may be caused by insufficient healing of the superior acromioclavicular ligament complex (ACLC). However, characteristics of acute ACLC injuries are poorly understood so far. Purposes of this study were to identify different ACLC tear types, assess type-specific prevalence and determine influencing cofactors. This prospective, cross-sectional study comprised 65 patients with acute-traumatic Rockwood-5 (n = 57) and Rockwood-4 (n = 8) injuries treated operatively by means of mini-open ACJ reduction and hook plate stabilization. Mean age at surgery was 38.2 years (range, 19-57 years). Standardized pre- and intraoperative evaluation included assessment of ACLC tear patterns and cofactors related to the articular disc, the deltoid-trapezoidal (DT) fascia and bony ACJ morphology. Articular disc size was quantified as 0 = absent, 1 = remnant, 2 = meniscoid and 3 = complete. All patients showed complete ruptures of the superior ACLC, which could be assigned to four different tear patterns. Clavicular-sided (AC-1) tears were observed in 46/65 (70.8 %), oblique (AC-2) tears in 12/65 (18.5 %), midportion (AC-3) tears in 3/65 (4.6 %) and acromial-sided (AC-4) tears in 4/65 (6.1 %) of cases. Articular disc size manifestation was significantly (P < .001) more pronounced in patients with AC-1 tears (1.89 ± 0.57) compared to patients with AC-2 tears (0.67 ± 0.89). Other cofactors did not influence ACLC tear patterns. ACLC dislocation with incarceration caused mechanical impediment to anatomical ACJ reduction in 14/65 (21.5 %) of cases including all Rockwood-4 dislocations. Avulsion "in continuity" was a consistent mode of failure of the DT fascia. Type-specific operative strategies enabled anatomical ACLC repair of all observed tear types. Acute ACLC injuries follow distinct tear patterns. There exist clavicular-sided (AC-1), oblique (AC-2), midportion (AC-3) and acromial-sided (AC-4) tears. Articular disc size was a determinant factor of ACLC tear morphology. Mini-open surgery was required in Rockwood-4 and a relevant proportion of Rockwood-5 dislocations to achieve both anatomical ACLC and ACJ reduction. Type-specific operative repair of acute ACLC tears might promote biological healing and lower rates of horizontal ACJ instability following acute ACJ reconstruction.

  19. The interaction of nifedipine with selected cyclodextrins and the subsequent solubility-permeability trade-off.

    PubMed

    Beig, Avital; Miller, Jonathan M; Dahan, Arik

    2013-11-01

    The purpose of this study was to investigate the interaction of 2-hydroxypropyl-β-cyclodextrin (HPβCD) and 2,6-dimethyl-β-cyclodextrin (DMβCD) with the lipophilic drug nifedipine and to investigate the subsequent solubility-permeability interplay. Solubility curves of nifedipine with HPβCD and DMβCD in MES buffer were evaluated using phase solubility methods. Then, the apparent permeability of nifedipine was investigated as a function of increasing HPβCD/DMβCD concentration in the hexadecane-based PAMPA model. The interaction with nifedipine was CD dependent; significantly higher stability constant was obtained for DMβCD in comparison with HPβCD. Moreover, nifedipine displays different type of interaction with these CDs; a 1:1 stoichiometric inclusion complex was apparent with HPβCD, while 1:2 stoichiometry was apparent for DMβCD. In all cases, decreased apparent intestinal permeability of nifedipine as a function of increasing CD level and nifedipine apparent solubility was obtained. A quasi-equilibrium mass transport analysis was developed to explain this solubility-permeability interplay; the model enabled excellent quantitative prediction of nifedipine's permeability as a function of CD concentrations. This work demonstrates that when using CDs in solubility-enabling formulations, a trade-off exists between solubility increase and permeability decrease that must not be overlooked. This trade-off was found to be independent of the type of CD-drug interaction. The transport model presented here can aid in striking the appropriate solubility-permeability balance in order to achieve optimal overall absorption. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The relation between intensity and complexity of coronary artery lesion and oxidative stress in patients with acute coronary syndrome.

    PubMed

    Turan, Turhan; Menteşe, Ümit; Ağaç, Mustafa Tarık; Akyüz, Ali Rıza; Kul, Selim; Aykan, Ahmet Çağrı; Bektaş, Hüseyin; Korkmaz, Levent; Öztaş Menteşe, Seda; Dursun, İhsan; Çelik, Şükrü

    2015-10-01

    Oxidative stress plays a major role in the development of atherosclerosis. However, the relationship between oxidative stress and complexity and intensity of coronary artery disease is less clear. The aim of this study is to assess the relationship between oxidative stress markers and the complexity and intensity of coronary artery disease in patients with acute coronary syndrome (ACS). Sixty-seven consecutive patients with an early phase of ACS (<3 h) were included in this single-centre, cross-sectional, prospective study. Syntax and Gensini scores were calculated based on angiographic findings. Patients were divided into two CAD complexity groups according to their Syntax scores: low SYNTAX score (<22) and moderate to high SYNTAX score (>=22). Likewise patients were divided into two CAD severity groups according to the median Gensini score of 64: less intensive CAD with Gensini score (<64) and intensive CAD with Gensini score >=64. Blood samples were taken in 1 hour within administration in order to measure total oxidative status (TOS) and total antioxidant capacity (TAC) levels determined by Erel method. Oxidative stress index (OSI) was calculated by TOS /TAC. There was no significant difference between the two SYNTAX groups for oxidative stress markers. Median TOS and OSI values were significantly high in the intensive CAD group (p=0.005, p=0.04, respectively). The Gensini score was positively correlated with TOS and OSI (p=0.003, p=0.02, respectively). Oxidative stress markers may be considered supportive laboratory parameters related to CAD intensity but not complexity in ACS patients.

  1. Pore Structure and Diagenetic Controls on Relative Permeability: Implications for Enhanced Oil Recovery and CO2 Storage

    NASA Astrophysics Data System (ADS)

    Feldman, J.; Dewers, T. A.; Heath, J. E.; Cather, M.; Mozley, P.

    2016-12-01

    Multiphase flow in clay-bearing sandstones of the Morrow Sandstone governs the efficiency of CO2 storage and enhanced oil recovery at the Farnsworth Unit, Texas. This formation is the target for enhanced oil recovery and injection of one million metric ton of anthropogenically-sourced CO2. The sandstone hosts eight major flow units that exhibit distinct microstructural characteristics due to diagenesis, including: "clean" macro-porosity; quartz overgrowths constricting some pores; ghost grains; intergranular porosity filled by microporous authigenic clay; and feldspar dissolution. We examine the microstructural controls on macroscale (core scale) relative permeability and capillary pressure behavior through: X-ray computed tomography, Robomet.3d, and focused ion beam-scanning electron microscopy imaging of the pore structure of the major flow units of the Morrow Sandstone; relative permeability and capillary pressure in the laboratory using CO2, brine, and oil at reservoir pressure and effective stress conditions. The combined data sets inform links between patterns of diagenesis and multiphase flow. These data support multiphase reservoir simulation and performance assessment by the Southwest Regional Partnership on Carbon Sequestration (SWP). Funding for this project is provided by the U.S. Department of Energy's National Energy Technology Laboratory through the SWP under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Definition and validation of operating equations for poly(vinyl alcohol)-poly(lactide-co-glycolide) microfiltration membrane-scaffold bioreactors.

    PubMed

    Shipley, R J; Waters, S L; Ellis, M J

    2010-10-01

    The aim of this work is to provide operating data for biodegradable hollow fiber membrane bioreactors. The physicochemical cell culture environment can be controlled with the permeate flowrate, so this aim necessitates the provision of operating equations that enable end-users to set the pressures and feed flowrates to obtain their desired culture environment. In this paper, theoretical expressions for the pure water retentate and permeate flowrates, derived using lubrication theory, are compared against experimental data for a single fiber poly(vinyl alcohol)-poly(lactide-co-glycolide) crossflow module to give values for the membrane permeability and slip. Analysis of the width of the boundary layer region where slip effects are important, together with the sensitivity of the retentate and permeate equations to the slip parameter, show that slip is insignificant for these membranes, which have a mean pore diameter of 1.1 microm. The experimental data is used to determine a membrane permeability, of k = 1.86 x 10(-16) m(2), and to validate the model. It was concluded that the operating equation that relates the permeate to feed ratio, c, lumen inlet flowrate, Q (l,in), lumen outlet pressure, P (1), and ECS outlet pressure, P (0), is P(1) - P(0) = Q(l),in (Ac + B) where A and B are constants that depend on the membrane permeability and geometry (and are given explicitly). Finally, two worked examples are presented to demonstrate how a tissue engineer can use Equation (1) to specify operating conditions for their bioreactor.

  3. Usefulness of layer-specific strain for identifying complex CAD and predicting the severity of coronary lesions in patients with non-ST-segment elevation acute coronary syndrome: Compared with Syntax score.

    PubMed

    Zhang, Li; Wu, Wei-Chun; Ma, Hong; Wang, Hao

    2016-11-15

    Layer-specific strain allows the assessment of the function of every layer of myocardium. To evaluate the changes of non-ST-segment elevation acute coronary syndrome(NSTE-ACS) patients with and without complex coronary artery disease(CAD) by layer-specific strain and determine if myocardial strain can identify complex CAD and assess the severity of coronary lesions as defined by Syntax score (SS). A total of 139 patients undergoing coronary angiography due to suspected NSTE-ACS were prospectively enrolled. Echocardiography was performed 1h before angiography. Global longitudinal strain (GLS), territorial longitudinal strain (TLS), global circumferential strain (GCS) and territorial circumferential strain (TCS) of the three layers of LV wall were assessed by two-dimensional (2D) speckle tracking echocardiography (STE) with layer-specific myocardial deformation quantitative analysis based on the perfusion territories of the three major coronary arteries in an 18-segment model of LV. SS was used for predicting the severity of coronary lesions in patients with complex CAD. 78 had complex CAD, 32 had 1- or 2-vessel disease and 29 had no significant coronary stenosis confirmed by coronary angiography. According to SS value, 78 complex CAD subjects were subdivided into three groups, 24 in group SS 1 (SS≤22), 26 in group SS 2 (SS 23-32) and 28 in group SS 3 (SS≥33). Compared to the other two groups without complex CAD, patients with NSTE-ACS due to complex CAD had worse function in all 3 myocardial layers assessed by GLS, TLS, GCS and TCS. Endocardial GLS and TLS (all, P<0.01) were most affected. The absolute differences between endocardial and epicardial GLS and TLS were lower in magnitude in patients with complex CAD than in those without (all, P<0.001), and the more complex of coronary lesion, the lower magnitude of the parameters(all, P<0.001). Endocardial GLS and TLS were closely correlated with SS value(r=-0.751 and r=-0.753, respectively; P<0.001). By receiver-operating characteristic curve analysis, endocardial GLS and TLS demonstrated the highest area under curve, showing better diagnostic accuracy (endocardial GLS: value<-21.35% had 72% sensitivity, 84% specificity and area under the curve ¼0.846; endocardial TLS: value<-20.15% had 72% sensitivity, 88% specificity and area under the curve ¼0.852) than GCS, TCS, mid-myocardial and epicardial GLS, and TLS(all, P<0.05). Strains, particularly endocardial GLS and TLS measurement by 2DSTE might enable a non-invasive method to identify complex CAD and predict the severity of coronary lesions in patients with NSTE-ACS. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Advanced complex trait analysis.

    PubMed

    Gray, A; Stewart, I; Tenesa, A

    2012-12-01

    The Genome-wide Complex Trait Analysis (GCTA) software package can quantify the contribution of genetic variation to phenotypic variation for complex traits. However, as those datasets of interest continue to increase in size, GCTA becomes increasingly computationally prohibitive. We present an adapted version, Advanced Complex Trait Analysis (ACTA), demonstrating dramatically improved performance. We restructure the genetic relationship matrix (GRM) estimation phase of the code and introduce the highly optimized parallel Basic Linear Algebra Subprograms (BLAS) library combined with manual parallelization and optimization. We introduce the Linear Algebra PACKage (LAPACK) library into the restricted maximum likelihood (REML) analysis stage. For a test case with 8999 individuals and 279,435 single nucleotide polymorphisms (SNPs), we reduce the total runtime, using a compute node with two multi-core Intel Nehalem CPUs, from ∼17 h to ∼11 min. The source code is fully available under the GNU Public License, along with Linux binaries. For more information see http://www.epcc.ed.ac.uk/software-products/acta. a.gray@ed.ac.uk Supplementary data are available at Bioinformatics online.

  5. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.

    PubMed

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M; Hiasa, Hiroshi; Marks, Kevin R; Kerns, Robert J; Berger, James M; Drlica, Karl

    2014-05-02

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.

  6. Using artificial intelligence to predict permeability from petrographic data

    NASA Astrophysics Data System (ADS)

    Ali, Maqsood; Chawathé, Adwait

    2000-10-01

    Petrographic data collected during thin section analysis can be invaluable for understanding the factors that control permeability distribution. Reliable prediction of permeability is important for reservoir characterization. The petrographic elements (mineralogy, porosity types, cements and clays, and pore morphology) interact with each other uniquely to generate a specific permeability distribution. It is difficult to quantify accurately this interaction and its consequent effect on permeability, emphasizing the non-linear nature of the process. To capture these non-linear interactions, neural networks were used to predict permeability from petrographic data. The neural net was used as a multivariate correlative tool because of its ability to learn the non-linear relationships between multiple input and output variables. The study was conducted on the upper Queen formation called the Shattuck Member (Permian age). The Shattuck Member is composed of very fine-grained arkosic sandstone. The core samples were available from the Sulimar Queen and South Lucky Lake fields located in Chaves County, New Mexico. Nineteen petrographic elements were collected for each permeability value using a combined minipermeameter-petrographic technique. In order to reduce noise and overfitting the permeability model, these petrographic elements were screened, and their control (ranking) with respect to permeability was determined using fuzzy logic. Since the fuzzy logic algorithm provides unbiased ranking, it was used to reduce the dimensionality of the input variables. Based on the fuzzy logic ranking, only the most influential petrographic elements were selected as inputs for permeability prediction. The neural net was trained and tested using data from Well 1-16 in the Sulimar Queen field. Relying on the ranking obtained from the fuzzy logic analysis, the net was trained using the most influential three, five, and ten petrographic elements. A fast algorithm (the scaled conjugate gradient method) was used to optimize the network weight matrix. The net was then successfully used to predict the permeability in the nearby South Lucky Lake field, also in the Shattuck Member. This study underscored various important aspects of using neural networks as non-linear estimators. The neural network learnt the complex relationships between petrographic control and permeability. By predicting permeability in a remotely-located, yet geologically similar field, the generalizing capability of the neural network was also demonstrated. In old fields, where conventional petrographic analysis was routine, this technique may be used to supplement core permeability estimates.

  7. Rapid one-step whole blood C-reactive protein magnetic permeability immunoassay with monoclonal antibody conjugated nanoparticles as superparamagnetic labels and enhanced sedimentation.

    PubMed

    Ibraimi, Filiz; Kriz, Dario; Lu, Min; Hansson, Lars-Olof; Kriz, Kirstin

    2006-02-01

    A rapid (5.5 min) one-step whole blood C-reactive protein (CRP) magnetic permeability immunoassay utilizing monoclonal antibody conjugated dextran iron oxide nanoparticles (70 nm) as superparamagnetic labels and mixed fractions (1:1 ratio of 15-40 and 60 microm) of polyclonal anti-CRP conjugated silica microparticles for enhanced sedimentation is described. In this one-step assay procedure, a whole blood sample (4 microl) is applied to an assay glass vial, containing both antibody conjugates, and mixed for 30 s. The target analyte, CRP, forms a sandwich complex between the conjugated nanoparticles and microparticles, and, subsequently, the complex sediments under normal gravitation within 5 min to the bottom of the vial. The magnetic permeability increase of the sediment due to the presence of the complexed superparamagnetic nanoparticles is determined using an inductance-based transducer. Assayed patient whole blood samples were compared with the Abbott Diagnostics Architect reference method. A strong linear correlation was observed for the CRP concentration range 0-260 mg/l in whole blood (y=1.001x+0.42, R2=0.982, n=50). The CRP assay presented showed a limit of detection of 3 mg/l and a total imprecision (coefficient of variation) of 10.5%. On the basis of our observations, we propose a rapid, one-step, CRP assay for near-patient testing.

  8. Hydroxynonenal-stimulated activity of the uncoupling protein in Acanthamoeba castellanii mitochondria under phosphorylating conditions.

    PubMed

    Woyda-Ploszczyca, Andrzej; Jarmuszkiewicz, Wieslawa

    2013-05-01

    The influence of 4-hydroxy-2-nonenal (HNE), a lipid peroxidation end product, on the activity of the amoeba Acanthamoeba castellanii uncoupling protein (AcUCP) in isolated phosphorylating mitochondria was studied. Under phosphorylating conditions, exogenously added HNE induced GTP-sensitive AcUCP-mediated mitochondrial uncoupling. The HNE-induced proton leak decreased the yield of oxidative phosphorylation in an HNE concentration-dependent manner. The present study describes how the contributions of ATP synthase and HNE-induced AcUCP in phosphorylating respiration vary when the rate of succinate oxidation is decreased by limiting succinate uptake or inhibiting complex III activity within the range of a constant membrane potential. In phosphorylating mitochondria, at a given HNE concentration (100 μM), the efficiency of AcUCP in mitochondrial uncoupling increased as the respiratory rate decreased because the AcUCP contribution remained constant while the ATP synthase contribution decreased with the respiratory rate. HNE-induced uncoupling can be inhibited by GTP only when ubiquinone is sufficiently oxidized, indicating that in phosphorylating A. castellanii mitochondria, the sensitivity of AcUCP activity to GTP depends on the redox state of the membranous ubiquinone.

  9. Self-assembled pH-sensitive cholesteryl pullulan nanogel as a protein delivery vehicle.

    PubMed

    Morimoto, Nobuyuki; Hirano, Sayaka; Takahashi, Haruko; Loethen, Scott; Thompson, David H; Akiyoshi, Kazunari

    2013-01-14

    A self-assembled nanogel, derived from an acid-labile cholesteryl-modified pullulan (acL-CHP), was prepared by grafting vinyl ether-cholesterol substituents onto a 100 kD pullulan main chain polymer backbone. Stable nanogels are formed by acL-CHP self-assemblies at neutral pH. The hydrodynamic radius of the nanogels, observed to be 26.5 ± 5.1 nm at pH 7.0, increased by ~135% upon acidification of the solution to pH 4.0. SEC analysis of the acL-CHP nanogel at pH 4.0 showed that the grafts were nearly 80% degraded after 24 h, whereas little or no degradation was observed over the same time period for a pH stable analog (acS-CHP) at pH 4.0 or the acL-CHP at pH 7.0. Complexation of BSA with the acL-CHP nanogel was observed at pH 7.0 with subsequent release of the protein upon acidification. These findings suggest that stimuli-responsive, self-assembled nanogels can release protein cargo in a manner that is controlled by the degradation rate of the cholesterol-pullulan grafting moiety.

  10. Structural insight into the TFIIE–TFIIH interaction: TFIIE and p53 share the binding region on TFIIH

    PubMed Central

    Okuda, Masahiko; Tanaka, Aki; Satoh, Manami; Mizuta, Shoko; Takazawa, Manabu; Ohkuma, Yoshiaki; Nishimura, Yoshifumi

    2008-01-01

    RNA polymerase II and general transcription factors (GTFs) assemble on a promoter to form a transcription preinitiation complex (PIC). Among the GTFs, TFIIE recruits TFIIH to complete the PIC formation and regulates enzymatic activities of TFIIH. However, the mode of binding between TFIIE and TFIIH is poorly understood. Here, we demonstrate the specific binding of the C-terminal acidic domain (AC-D) of the human TFIIEα subunit to the pleckstrin homology domain (PH-D) of the human TFIIH p62 subunit and describe the solution structures of the free and PH-D-bound forms of AC-D. Although the flexible N-terminal acidic tail from AC-D wraps around PH-D, the core domain of AC-D also interacts with PH-D. AC-D employs an entirely novel binding mode, which differs from the amphipathic helix method used by many transcriptional activators. So the binding surface between PH-D and AC-D is much broader than the specific binding surface between PH-D and the p53 acidic fragments. From our in vitro studies, we demonstrate that this interaction could be a switch to replace p53 with TFIIE on TFIIH in transcription. PMID:18354501

  11. Steer by ear: Myoelectric auricular control of powered wheelchairs for individuals with spinal cord injury.

    PubMed

    Schmalfuß, L; Rupp, R; Tuga, M R; Kogut, A; Hewitt, M; Meincke, J; Klinker, F; Duttenhoefer, W; Eck, U; Mikut, R; Reischl, M; Liebetanz, D

    2015-01-01

    Providing mobility solutions for individuals with tetraplegia remains challenging. Existing control devices have shortcomings such as varying or poor signal quality or interference with communication. To overcome these limitations, we present a novel myoelectric auricular control system (ACS) based on bilateral activation of the posterior auricular muscles (PAMs). Ten able-bodied subjects and two individuals with tetraplegia practiced PAM activation over 4 days using visual feedback and software-based training for 1 h/day. Initially, half of these subjects were not able to voluntarily activate their PAMs. This ability was tested with regard to 8 parameters such as contraction rate, lateralized activation, wheelchair speed and path length in a virtual obstacle course. In session 5, all subjects steered an electric wheelchair with the ACS. Performance of all subjects in controlling their PAMs improved steadily over the training period. By day 5, all subjects successfully generated basic steering commands using the ACS in a powered wheelchair, and subjects with tetraplegia completed a complex real-world obstacle course. This study demonstrates that the ability to activate PAM on both sides together or unilaterally can be learned and used intuitively to steer a wheelchair. With the ACS we can exploit the untapped potential of the PAMs by assigning them a new, complex function. The inherent advantages of the ACS, such as not interfering with oral communication, robustness, stability over time and proportional and continuous signal generation, meet the specific needs of wheelchair users and render it a realistic alternative to currently available assistive technologies.

  12. Leakage of active crater lake brine through the north flank at Rincon de la Vieja volcano, northwest Costa Rica, and implications for crater collapse

    USGS Publications Warehouse

    Kempter, K.A.; Rowe, G.L.

    2000-01-01

    The Active Crater at Rincon de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincon de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams. Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincon de la Vieja volcano: acid chloride-sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH ~ 0) chloride-sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2-1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincon de la Vieja. The distribution of thermal water types at Rincon de la Vieja strongly indicates that formation of the north-flank ACS waters is not due to mixing of shallow, steam-heated AS water with deep-seated NC water. More likely, hyper-acidic brines formed in the Active Crater area are migrating through permeable zones in the volcanic strata that make up the Active Crater's north flank. Dissolution and shallow subsurface alteration of north-flank volcanoclastic material by interaction with acidic lake brine, particularly in the more permeable tephra units, could weaken the already oversteepened north flank of the Active Crater. Sector collapse of the Active Crater, with or without a volcanic eruption, represents a potential threat to human lives, property, and ecosystems at Rincon de la Vieja volcano.

  13. Impact Of Three-Phase Relative Permeability and Hysteresis Models On Forecasts of Storage Associated with CO2-EOR

    NASA Astrophysics Data System (ADS)

    Jia, W.; Pan, F.; McPherson, B. J. O. L.

    2015-12-01

    Due to the presence of multiple phases in a given system, CO2 sequestration with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 sequestration in deep saline aquifers (no hydrocarbons). Two of the most important factors are three-phase relative permeability and hysteresis effects, both of which are difficult to measure and are usually represented by numerical interpolation models. The purposes of this study included quantification of impacts of different three-phase relative permeability models and hysteresis models on CO2 sequestration simulation results, and associated quantitative estimation of uncertainty. Four three-phase relative permeability models and three hysteresis models were applied to a model of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters on the evaluation, a sequential Gaussian simulation technique was utilized to generate 50 realizations to describe heterogeneity of porosity and permeability, initially obtained from well logs and seismic survey data. Simulation results of forecasted pressure distributions and CO2 storage suggest that (1) the choice of three-phase relative permeability model and hysteresis model have noticeable impacts on CO2 sequestration simulation results; (2) influences of both factors are observed in all 50 realizations; and (3) the specific choice of hysteresis model appears to be somewhat more important relative to the choice of three-phase relative permeability model in terms of model uncertainty.

  14. Resin Film Infusion (RFI) Process Modeling for Large Transport Aircraft Wing Structures

    NASA Technical Reports Server (NTRS)

    Knott, Tamara W.; Loos, Alfred C.

    2000-01-01

    Resin film infusion (RFI) is a cost-effective method for fabricating stiffened aircraft wing structures. The RFI process lends itself to the use of near net shape textile preforms manufactured through a variety of automated textile processes such as knitting and braiding. Often, these advanced fiber architecture preforms have through-the-thickness stitching for improved damage tolerance and delamination resistance. The challenge presently facing RFI is to refine the process to ensure complete infiltration and cure of a geometrically complex shape preform with the high fiber volume fraction needed for structural applications. An accurate measurement of preform permeability is critical for successful modeling of the RFI resin infiltration process. Small changes in the permeability can result in very different infiltration behavior and times. Therefore, it is important to accurately measure the permeabilities of the textile preforms used in the RFI process. The objective of this investigation was to develop test methods that can be used to measure the compaction behavior and permeabilities of high fiber volume fraction, advanced fiber architecture textile preforms. These preforms are often highly compacted due to through-the-thickness stitching used to improve damage tolerance. Test fixtures were designed and fabricated and used to measure both transverse and in-plane permeabilities. The fixtures were used to measure the permeabilities of multiaxial warp knit and triaxial braided preforms at fiber volume fractions from 55% to 65%. In addition, the effects of stitching characteristics, thickness, and batch variability on permeability and compaction behavior were investigated.

  15. Molecular design of boronic acid-functionalized squarylium cyanine dyes for multiple discriminant analysis of sialic acid in biological samples: selectivity toward monosaccharides controlled by different alkyl side chain lengths.

    PubMed

    Ouchi, Kazuki; Colyer, Christa L; Sebaiy, Mahmoud; Zhou, Jin; Maeda, Takeshi; Nakazumi, Hiroyuki; Shibukawa, Masami; Saito, Shingo

    2015-02-03

    We designed a new series of boronic acid-functionalized squarylium cyanine dyes (SQ-BA) with different lengths of alkyl chain residues, suitable for multiple discriminant analysis (MDA) of sialic acid (Neu5Ac) in biological samples. The SQ-BA dyes form aggregates based on hydrophobic interactions, which result in quenched fluorescence in aqueous solutions. When the boronic acid binds with saccharides, the fluorescence intensity increases as a result of dissociation to the emissive monomeric complex. We inferred that different dye aggregate structures (H-aggregates and J-aggregates) were induced depending on the alkyl chain length, so that monosaccharides would be recognized in different ways (especially, multipoint interaction with J-aggregates). A distinctive emission enhancement of SQ-BA dyes with shorter-alkyl-chains in the presence of Neu5Ac was observed (2.4-fold fluorescence enhancement; with formation constant 10(1.7) M(-1)), with no such enhancement for SQ-BA dyes with longer-alkyl-chain. In addition, various enhancement factors for other monosaccharides were observed depending on the alkyl chain length. Detailed thermodynamic and NMR studies of the SQ-BA complexes revealed the unique recognition mechanism: the dye aggregate with a shorter-alkyl-chain causes the slipped parallel structure and forms a stable 2:1 complex with Neu5Ac, as distinct from longer-alkyl-chain dyes, which form a 1:1 monomeric complex. MDA using the four SQ-BA dyes was performed for human urine samples, resulting in the successful discrimination between normal and abnormal Neu5Ac levels characteristic of disease. Thus, we successfully controlled various responses to similar monosaccharides with a novel approach that chemically modified not the boronic acid moiety itself but the length of the alkyl chain residue attached to the dye in order to generate specificity.

  16. Acute care surgery: now that we have built it, will they come?

    PubMed

    Coleman, Jamie J; Esposito, Thomas J; Rozycki, Grace S; Feliciano, David V

    2013-02-01

    Concern over lack of resident interest caused by the nonoperative nature and compromised lifestyle associated with a career as a "trauma surgeon" has led to the emergence of a new acute care surgery (ACS) specialty. This study examined the opinions of current general surgical residents about training and careers in this new field. A 36-item online anonymous survey regarding ACS was sent to the program directors of 55 randomly selected general surgery (GS) training programs for distribution to their categorical residents. The national sample consisted of 1,515 PGY 1 to 5 trainees. Response rate was 45%. More than 90% of residents had an appropriate understanding of the components of ACS as generally described (trauma, surgical critical care, and emergency GS). Nearly half (46%) of all respondents have considered ACS as a career. Overall, ACS ranked as the second most appealing career ahead of surgical critical care and trauma but behind GS. Most residents believed that ACS offers better or equivalent case complexity (88%), scope of practice (84%), case volume (75%), and level of reimbursement (69%) compared with GS alone. Respondents who answered ACS had a better scope of practice (61% vs. 36%), lifestyle as an attending surgeon (77% vs. 34%), or level of reimbursement (83% vs. 38%) compared with GS were twice as likely (p < 0.0001) to have considered ACS as a career. Overall, 40% of the residents believed that ACS offers a worse lifestyle in comparison with GS. These results suggest that there is notable interest in the emerging specialty of ACS. The level of resident interest in ACS as a fellowship and career may be increased by marketing those aspects of practice, which are viewed positively and addressing negative perceptions related to lifestyle. It may be appealing to add an elective GS component to certain ACS practice options.

  17. Bending effects on magnetic properties of nearly zeromagnetostrictive Co-rich amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Buttino, G.; Cecchetti, A.; Poppi, M.; Zini, G.

    1991-06-01

    In as received nearly zeromagnetostriction Co-based Metglas, magnetic properties in low magnetic field are anomalously affected by bending stresses. The behavior of Co-based alloys, in particular 2714A Metglas, is here compared with that of Fe-rich Metglas for which λ s ranges between 10 × 10 -6 and 35 × 10 -6. The specimens here analyzed are in the form of flat ribbons and tape-wound toroids with different radii. In 2714A Metglas, the bending effects on the ac initial permeability are unexpectedly large and depend on the way of winding the ribbons. These results emphasize a significant and different role of the two ribbon sides in determining the magnetomechanical properties of Co-based alloys.

  18. Electron paramagnetic resonance spectral study of [Mn(acs){sub 2}(2–pic){sub 2}(H{sub 2}O){sub 2}] single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr; Tapramaz, Recep, E-mail: recept@omu.edu.tr

    Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn{sup +2} ion complex with mixed ligand, [Mn(acs){sub 2}(2-pic){sub 2}(H{sub 2}O){sub 2}], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that themore » complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.« less

  19. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline: mechanisms of renal protection in mouse model of systemic lupus erythematosus

    PubMed Central

    Liao, Tang-Dong; Nakagawa, Pablo; Janic, Branislava; D'Ambrosio, Martin; Worou, Morel E.; Peterson, Edward L.; Rhaleb, Nour-Eddine; Yang, Xiao-Ping

    2015-01-01

    Systemic lupus erythematosus is an autoimmune disease characterized by the development of auto antibodies against a variety of self-antigens and deposition of immune complexes that lead to inflammation, fibrosis, and end-organ damage. Up to 60% of lupus patients develop nephritis and renal dysfunction leading to kidney failure. N-acetyl-seryl-aspartyl-lysyl-proline, i.e., Ac-SDKP, is a natural tetrapeptide that in hypertension prevents inflammation and fibrosis in heart, kidney, and vasculature. In experimental autoimmune myocarditis, Ac-SDKP prevents cardiac dysfunction by decreasing innate and adaptive immunity. It has also been reported that Ac-SDKP ameliorates lupus nephritis in mice. We hypothesize that Ac-SDKP prevents lupus nephritis in mice by decreasing complement C5-9, proinflammatory cytokines, and immune cell infiltration. Lupus mice treated with Ac-SDKP for 20 wk had significantly lower renal levels of macrophage and T cell infiltration and proinflammatory chemokine/cytokines. In addition, our data demonstrate for the first time that in lupus mouse Ac-SDKP prevented the increase in complement C5-9, RANTES, MCP-5, and ICAM-1 kidney expression and it prevented the decline of glomerular filtration rate. Ac-SDKP-treated lupus mice had a significant improvement in renal function and lower levels of glomerular damage. Ac-SDKP had no effect on the production of autoantibodies. The protective Ac-SDKP effect is most likely achieved by targeting the expression of proinflammatory chemokines/cytokines, ICAM-1, and immune cell infiltration in the kidney, either directly or via C5-9 proinflammatory arm of complement system. PMID:25740596

  20. Solubilization of adenylyl cyclase from human myometrium in a alphas-coupled form.

    PubMed

    Bajo, Ana M; Prieto, Juan C; Valenzuela, Pedro; Martinez, Pilar; Guijarro, Luis G

    2003-08-01

    Adenylyl cyclase (AC) was extracted from human myometrium with either non-ionic (Lubrol-PX or Triton X-100) or zwitterionic (3-[3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, CHAPS) detergents. The soluble enzyme was stimulated by forskolin, a hydrophobic activator, in the presence of Mg2+ indicating that the catalytic subunit had not been damaged after solubilization. The enzyme was also activated by 5'-guanylyl imidodiphosphate (Gpp(NH)p) showing that the catalytic unit was not separated from stimulatory guanine nucleotide binding protein (Gs) during the extraction. Both activators showed different effects on the stimulatory efficacy and potency of AC activity solobulized with detergents. Gel filtration of Lubrol-PX and CHAPS extracts over a Sepharose CL-2B column partially resolved AC and its complexes. The chromatographic profile for Lubrol-solubilized AC presented a main peak of about 200 kDa whereas CHAPS-solubilized AC showed a dominant peak of about 1100 kDa. The heterodisperse peaks obtained revealed that the catalytic AC subunit was not separated from Gs proteins after gel filtration, and that AC could be associated with other cellular proteins. When Lubrol extract was submitted to anionic-exchange chromatography, the enzyme was purified about 7.5 fold (enzymatic activity of 48.1 pmol/min/mg of protein). The catalytic subunit was co-eluted with both AC-activating proteins Galphas large (52.2 kDa) and Galphas small (48.7 kDa). This is the first demonstration of the stable physical association of AC with both alphas subunits of G proteins in human myometrium.

  1. Electrorotation of novel electroactive polymer composites in uniform DC and AC electric fields

    NASA Astrophysics Data System (ADS)

    Zrinyi, Miklós; Nakano, Masami; Tsujita, Teppei

    2012-06-01

    Novel electroactive polymer composites have been developed that could spin in uniform DC and AC electric fields. The angular displacement as well as rotation of polymer disks around an axis that is perpendicular to the direction of the applied electric field was studied. It was found that the dynamics of the polymer rotor is very complex. Depending on the strength of the static DC field, three regimes have been observed: no rotation occurs below a critical threshold field intensity, oscillatory motion takes place just above this value and continuous rotation can be observed above the critical threshold field intensity. It was also found that low frequency AC fields could also induce angular deformation.

  2. Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks – Implications for nuclear pore permeability

    PubMed Central

    Eisele, Nico B.; Labokha, Aksana A.; Frey, Steffen; Görlich, Dirk; Richter, Ralf P.

    2013-01-01

    Nuclear pore complexes control the exchange of macromolecules between the cytoplasm and the nucleus. A selective permeability barrier that arises from a supramolecular assembly of intrinsically unfolded nucleoporin domains rich in phenylalanine-glycine dipeptides (FG domains) fills the nuclear pore. There is increasing evidence that selective transport requires cohesive FG domain interactions. To understand the functional roles of cohesive interactions, we studied monolayers of end-grafted FG domains as a bottom-up nanoscale model system of the permeability barrier. Based on detailed physicochemical analysis of the model films and comparison of the data with polymer theory, we propose that cohesiveness is tuned to promote rapid assembly of the permeability barrier and to generate a stable and compact pore-filling meshwork with a small mesh size. Our results highlight the functional importance of weak interactions, typically a few kBT per chain, and contribute important information to understand the mechanism of size-selective transport. PMID:24138862

  3. Experimental and theoretical NMR studies of interaction between phenylalanine derivative and egg yolk lecithin.

    PubMed

    Wałęsa, Roksana; Ptak, Tomasz; Siodłak, Dawid; Kupka, Teobald; Broda, Małgorzata A

    2014-06-01

    The interaction of phenylalanine diamide (Ac-Phe-NHMe) with egg yolk lecithin (EYL) in chloroform was studied by (1)H and (13)C NMR. Six complexes EYL-Ac-Phe-NHMe, stabilized by N-H···O or/and C-H···O hydrogen bonds, were optimized at M06-2X/6-31G(d,p) level. The assignment of EYL and Ac-Phe-NHMe NMR signals was supported using GIAO (gauge including atomic orbital) NMR calculations at VSXC and B3LYP level of theory combined with STO-3Gmag basis set. Results of our study indicate that the interaction of peptides with lecithin occurs mainly in the polar 'head' of the lecithin. Additionally, the most probable lecithin site of H-bond interaction with Ac-Phe-NHMe is the negatively charged oxygen in phosphate group that acts as proton acceptor. Copyright © 2014 John Wiley & Sons, Ltd.

  4. Spectrophotometric and electrical properties of imperatorin: an organic molecule

    NASA Astrophysics Data System (ADS)

    Mir, Feroz A.

    2015-09-01

    Imperatorin (molecular formula = C16H14O4, molecular mass = 270) an organic molecule was isolated from ethyl acetate extract of the root parts of the plant Prangos pabularia. The optical study was carried out by ultraviolet-visible spectroscopy, and this compound showed an indirect allowed transition. The optical band gap ( E g ) was found around 3.75 eV. Photoluminescence shows various good emission bands. The frequency-dependent real part of the complex ac conductivity was found to follow the universal dielectric response: σ ac ( ω) α ω s [where σ ac ( ω) is the frequency-dependent total conductivity, ω is the frequency, and s is the frequency exponent]. From ac conductivity data analysis, correlated barrier hopping charge-transport mechanism is the dominant electrical transport process shown by this compound. The good emission, less absorption, wide band gap and good electrical properties shown by this compound project them as a bright choice for organic electronic devices.

  5. Immobilization and Stabilization of Acylase on Carboxylated Polyaniline Nanofibers for Highly Effective Antifouling Application via Quorum Quenching.

    PubMed

    Lee, Jeongjoon; Lee, Inseon; Nam, Jahyun; Hwang, Dong Soo; Yeon, Kyung-Min; Kim, Jungbae

    2017-05-10

    Acylase (AC) was immobilized and stabilized on carboxylated polyaniline nanofibers (cPANFs) for the development of antifouling nanobiocatalysts with high enzyme loading and stability. AC was immobilized via three different approaches: covalent attachment (CA), enzyme coating (EC), and magnetically separable enzyme precipitate coating (Mag-EPC). The enzyme activity per unit weight of cPANFs with Mag-EPC was 75 and 300 times higher than that of those with CA and EC, respectively, representing improved enzyme loading in the form of Mag-EPC. After incubation under shaking at 200 rpm for 20 days, Mag-EPC maintained 55% of its initial activity, whereas CA and EC showed 3 and 16% of their initial activities, respectively. The antifouling of highly loaded and stable Mag-EPC against the biofouling/biofilm formation of Pseudomonas aeruginosa was tested under static- and continuous-flow conditions. Biofilm formation in the presence of 40 μg/mL Mag-EPC under static condition was 5 times lower than that under control condition with no addition of Mag-EPC. Under continuous membrane filtration, Mag-EPC delayed the increase of transmembrane pressure (TMP) more effectively as the concentration of added Mag-EPC increased. When separating Mag-EPC and membranes in two different vessels under internal circulation of the culture solution, Mag-EPC maintained a higher permeability than the control with no Mag-EPC addition. It was also confirmed that the addition of Mag-EPC reduced the generation of N-acyl homoserine lactone (AHL) autoinducers. This result reveals that the inhibition of biofilm formation and biofouling in the presence of Mag-EPC is due to the hydrolysis of AHL autoinducers, catalyzed by the immobilized and stabilized AC in the form of Mag-EPC. Mag-EPC of AC with high enzyme loadings and improved stability has demonstrated its great potential as an antifouling agent by reducing biofilm formation and membrane biofouling based on "enzymatic quorum quenching" of autoinducers.

  6. Unified pipe network method for simulation of water flow in fractured porous rock

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  7. PHO-ERK1/2 interaction with mitochondria regulates the permeability transition pore in cardioprotective signaling.

    PubMed

    Hernández-Reséndiz, Sauri; Zazueta, Cecilia

    2014-07-11

    The molecular mechanism(s) by which extracellular signal-regulated kinase 1/2 (ERK1/2) and other kinases communicate with downstream targets have not been fully determined. Multiprotein signaling complexes undergoing spatiotemporal redistribution may enhance their interaction with effector proteins promoting cardioprotective response. Particularly, it has been proposed that some active kinases in association with caveolae may converge into mitochondria. Therefore, in this study we investigate if PHO-ERK1/2 interaction with mitochondria may provide a mechanistic link in the regulation of these organelles in cardioprotective signaling. Using a model of dilated cardiomyopathy followed by ischemia-reperfusion injury, we determined ERK1/2 signaling at the level of mitochondria and evaluated its effect on the permeability transition pore. The most important finding of the present study is that, under cardioprotective conditions, a subpopulation of activated ERK1/2 was directed to the mitochondrial membranes through vesicular trafficking, concurring with increased phosphorylation of mitochondrial proteins and inhibition of the mitochondrial permeability transition pore opening. In addition, our results suggest that vesicles enriched with caveolin-3 could form structures that may drive ERK1/2, GSK3β and Akt to mitochondria. Signaling complexes including PHO-ERK, PHO-Akt, PHO-eNOS and caveolin-3 contribute to cardioprotection by directly targeting the mitochondrial proteome and regulating the opening of the permeability transition pore in this model. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches.

    PubMed

    Hirte, Max; Meese, Nicolas; Mertz, Michael; Fuchs, Monika; Brück, Thomas B

    2018-01-01

    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of the enzyme's active site and that the geranylgeranyl diphosphate derived pyrophosphate moiety remains in the ACS active site thereby directing the cyclization process. Our cumulative data confirm that amino acids constituting the G-loop of diterpene synthases are involved in the open to the closed, catalytically active enzyme conformation. This study demonstrates that a simple and rapid biomolecular modeling procedure can predict catalytically relevant amino acids. The approach reduces computational and experimental screening efforts for diterpene synthase structure-function analyses.

  9. Insights into the bifunctional Aphidicolan-16-ß-ol synthase through rapid biomolecular modelling approaches

    NASA Astrophysics Data System (ADS)

    Hirte, Max; Meese, Nicolas; Mertz, Michael; Fuchs, Monika; Brück, Thomas B.

    2018-04-01

    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modelling techniques offer an alternative route to study the enzyme’s reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modelling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modelling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789 and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modelling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of the enzyme’s active site and that the geranylgeranyl diphosphate derived pyrophosphate moiety remains in the ACS active site thereby directing the cyclization process. Our cumulative data confirm that amino acids constituting the G-loop of diterpene synthases are involved in the open to the closed, catalytically active enzyme conformation. This study demonstrates that a simple and rapid biomolecular modelling procedure can predict catalytically relevant amino acids. The approach reduces computational and experimental screening efforts for diterpene synthase structure-function analyses.

  10. The low/high BCS permeability class boundary: physicochemical comparison of metoprolol and labetalol.

    PubMed

    Zur, Moran; Gasparini, Marisa; Wolk, Omri; Amidon, Gordon L; Dahan, Arik

    2014-05-05

    Although recognized as overly conservative, metoprolol is currently the common low/high BCS permeability class boundary reference compound, while labetalol was suggested as a potential alternative. The purpose of this study was to identify the various characteristics that the optimal marker should exhibit, and to investigate the suitability of labetalol as the permeability class reference drug. Labetalol's BCS solubility class was determined, and its physicochemical properties and intestinal permeability were thoroughly investigated, both in vitro and in vivo in rats, considering the complexity of the whole of the small intestine. Labetalol was found to be unequivocally a high-solubility compound. In the pH range throughout the small intestine (6.5-7.5), labetalol exhibited pH-dependent permeability, with higher permeability at higher pH values. While in vitro octanol-buffer partitioning (Log D) values of labetalol were significantly higher than those of metoprolol, the opposite was evident in the in vitro PAMPA permeability assay. The results of the in vivo perfusion studies in rats lay between the two contradictory in vitro studies; metoprolol was shown to have moderately higher rat intestinal permeability than labetalol. Theoretical distribution of the ionic species of the drugs was in corroboration with the experimental in vitro and the in vivo data. We propose three characteristics that the optimal permeability class reference drug should exhibit: (1) fraction dose absorbed in the range of 90%; (2) the optimal marker drug should be absorbed largely via passive transcellular permeability, with no/negligible carrier-mediated active intestinal transport (influx or efflux); and (3) the optimal marker drug should preferably be nonionizable. The data presented in this paper demonstrate that neither metoprolol nor labetalol can be regarded as optimal low/high-permeability class boundary standard. While metoprolol is too conservative due to its complete absorption, labetalol has been shown to be a substrate for P-gp-mediated efflux transport, and both drugs exhibit significant segmental-dependent permeability along the gastrointestinal tract. Nevertheless, the use of metoprolol as the marker compound does not carry a risk of bioinequivalence: Peff value similar to or higher than metoprolol safely indicates high-permeability classification. On the other hand, a more careful data analysis is needed if labetalol is used as the reference compound.

  11. Effect of cyclodextrin complexation on the aqueous solubility and solubility/dose ratio of praziquantel.

    PubMed

    Maragos, Stratos; Archontaki, Helen; Macheras, Panos; Valsami, Georgia

    2009-01-01

    Praziquantel (PZQ), the primary drug of choice in the treatment of schistosomiasis, is a highly lipophilic drug that possesses high permeability and low aqueous solubility and is, therefore, classified as a Class II drug according to the Biopharmaceutics Classification System (BCS). In this work, beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD) were used in order to determine whether increasing the aqueous solubility of a drug by complexation with CDs, a BCS-Class II compound like PZQ could behave as BCS-Class I (highly soluble/highly permeable) drug. Phase solubility and the kneading and lyophilization techniques were used for inclusion complex preparation; solubility was determined by UV spectroscopy. The ability of the water soluble polymer polyvinylpyrolidone (PVP) to increase the complexation and solubilization efficiency of beta-CD and HP-beta-CD for PZQ was examined. Results showed significant improvement of PZQ solubility in the presence of both cyclodextrins but no additional effect in the presence of PVP. The solubility/dose ratios values of PZQ-cyclodextrin complexes calculated considering the low (150 mg) and the high dose (600 mg) of PZQ, used in practice, indicate that PZQ complexation with CDs may result in drug dosage forms that would behave as a BCS-Class I depending on the administered dose.

  12. Coronal holes, large-scale magnetic field, and activity complexes in solar cycle 23

    NASA Astrophysics Data System (ADS)

    Tavastsherna, K. S.; Polyakow, E. V.

    2014-12-01

    A correlation among coronal holes (CH), a large-scale magnetic field (LMF), and activity complexes (AC) is studied in this work for 1997-2007 with the use of a coronal hole series obtained from observations at the Kitt Peak Observatory in the HeI 10830 Å line in 1975-2003 and SOHO/EIT-195 Å in 1996-2012 (Tlatov et al., 2014), synoptic Hα charts from Kislovodsk Mountain Astonomical Station, and the catalog of AC cores (Yazev, 2012). From the imposition of CH boundaries on Hα charts, which characterize the positions of neutral lines of the radial components of a large-scale solar magnetic field, it turns out that 70% of CH are located in unipolar regions of their sign during the above period, 10% are in the region of an opposite sign, and 20% are mainly very large CH, which are often crossed by the neutral lines of several unipolar regions. Data on mutual arrangement of CH and AC cores were obtained. It was shown that only some activity comples cores have genetic relationships with CH.

  13. Centralized vs decentralized lunar power system study

    NASA Astrophysics Data System (ADS)

    Metcalf, Kenneth; Harty, Richard B.; Perronne, Gerald E.

    1991-09-01

    Three power-system options are considered with respect to utilization on a lunar base: the fully centralized option, the fully decentralized option, and a hybrid comprising features of the first two options. Power source, power conditioning, and power transmission are considered separately, and each architecture option is examined with ac and dc distribution, high and low voltage transmission, and buried and suspended cables. Assessments are made on the basis of mass, technological complexity, cost, reliability, and installation complexity, however, a preferred power-system architecture is not proposed. Preferred options include transmission based on ac, transmission voltages of 2000-7000 V with buried high-voltage lines and suspended low-voltage lines. Assessments of the total cost associated with the installations are required to determine the most suitable power system.

  14. Modeling relative permeability of water in soil: Application of effective-medium approximation and percolation theory

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Sahimi, Muhammad; Daigle, Hugh

    2016-07-01

    Accurate prediction of the relative permeability to water under partially saturated condition has broad applications and has been studied intensively since the 1940s by petroleum, chemical, and civil engineers, as well as hydrologists and soil scientists. Many models have been developed for this purpose, ranging from those that represent the pore space as a bundle of capillary tubes, to those that utilize complex networks of interconnected pore bodies and pore throats with various cross-section shapes. In this paper, we propose an approach based on the effective-medium approximation (EMA) and percolation theory in order to predict the water relative permeability. The approach is general and applicable to any type of porous media. We use the method to compute the water relative permeability in porous media whose pore-size distribution follows a power law. The EMA is invoked to predict the relative permeability from the fully saturated pore space to some intermediate water saturation that represents a crossover from the EMA to what we refer to as the "critical region." In the critical region below the crossover water saturation Swx, but still above the critical water saturation Swc (the residual saturation or the percolation threshold of the water phase), the universal power law predicted by percolation theory is used to compute the relative permeability. To evaluate the accuracy of the approach, data for 21 sets of undisturbed laboratory samples were selected from the UNSODA database. For 14 cases, the predicted relative permeabilities are in good agreement with the data. For the remaining seven samples, however, the theory underestimates the relative permeabilities. Some plausible sources of the discrepancy are discussed.

  15. Increased platelet factor 4 and aberrant permeability of follicular fluid in PCOS.

    PubMed

    Huang, Chu-Chun; Chou, Chia-Hung; Chen, Shee-Uan; Ho, Hong-Nerng; Yang, Yu-Shih; Chen, Mei-Jou

    2018-05-17

    Abnormal folliculogenesis is one of the cardinal presentations of polycystic ovarian syndrome (PCOS) and permeability of follicular wall has been proposed to be involved in the normal follicular growth. However, whether or not there is a change in intrafollicular permeability underlies PCOS is unknown. This was a tertiary center-based case-control study. From 2014 to 2015, thirteen patients with PCOS who underwent in vitro fertilization-embryo transfer (IVF-ET) were enrolled. Eleven normo-ovulatory patients who underwent IVF-ET due to male factor and/or tubal factor infertility were enrolled as the control group. The influence of ovarian follicular fluid (FF) on endothelial cell permeability was evaluated using a human umbilical vein endothelial cell monolayer permeability assay. The intrafollicular expression profiles of angiogenesis-related proteins were analyzed using a Human Angiogenesis Protein Array Kit. The FF from PCOS patients caused significantly poorer endothelial cell permeability comparing with the effect of FF from the control group (46% ± 12% vs. 58% ± 9%, P = 0.023). Among the 55 angiogenesis-related proteins tested, there was a significantly higher level of intrafollicular platelet factor 4 (PF4) and PF4/IL-8 complex in the PCOS group (p = 0.004). The anti-permeability effect of PF4 was related to the decrease in the intercellular gaps and antagonistic binding with IL-8. Our study provides the first evidence of the pathophysiologic contribution of the well-known angiostatic protein, PF4, on human reproductive biology. The increase of the intrafollicular PF4 and its anti-permeability effect might affect the formation of FF and folliculogenesis in PCOS. Copyright © 2018. Published by Elsevier B.V.

  16. Characterization of un-plasticized and propylene carbonate plasticized carboxymethyl cellulose doped ammonium chloride solid biopolymer electrolytes.

    PubMed

    Ahmad, N H; Isa, M I N

    2016-02-10

    Two solid biopolymer electrolytes (SBEs) systems of carboxymethyl cellulose doped ammonium chloride (CMC-AC) and propylene carbonate plasticized (CMC-AC-PC) were prepared via solution casting technique. The ionic conductivity of SBEs were analyzed using electrical impedance spectroscopy (EIS) in the frequency range of 50 Hz-1 MHz at ambient temperature (303K). The highest ionic conductivity of CMC-AC SBE is 1.43 × 10(-3)S/cm for 16 wt.% of AC while the highest conductivity of plasticized SBE system is 1.01 × 10(-2)S/cm when added with 8 wt.% of PC. TGA/DSC showed that the addition of PC had increased the decomposition temperature compared of CMC-AC SBE. Fourier transform infrared (FTIR) spectra showed the occurrence of complexation between the SBE components and it is proved successfully executed by Gaussian software. X-ray diffraction (XRD) indicated that amorphous nature of SBEs. It is believed that the PC is one of the most promising plasticizer to enhance the ionic conductivity and performance for SBE system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Combining a Toggle Switch and a Repressilator within the AC-DC Circuit Generates Distinct Dynamical Behaviors.

    PubMed

    Perez-Carrasco, Ruben; Barnes, Chris P; Schaerli, Yolanda; Isalan, Mark; Briscoe, James; Page, Karen M

    2018-04-25

    Although the structure of a genetically encoded regulatory circuit is an important determinant of its function, the relationship between circuit topology and the dynamical behaviors it can exhibit is not well understood. Here, we explore the range of behaviors available to the AC-DC circuit. This circuit consists of three genes connected as a combination of a toggle switch and a repressilator. Using dynamical systems theory, we show that the AC-DC circuit exhibits both oscillations and bistability within the same region of parameter space; this generates emergent behaviors not available to either the toggle switch or the repressilator alone. The AC-DC circuit can switch on oscillations via two distinct mechanisms, one of which induces coherence into ensembles of oscillators. In addition, we show that in the presence of noise, the AC-DC circuit can behave as an excitable system capable of spatial signal propagation or coherence resonance. Together, these results demonstrate how combinations of simple motifs can exhibit multiple complex behaviors. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. Solution Structure of a Phytocystatin from Ananas comosus and Its Molecular Interaction with Papain

    PubMed Central

    Irene, Deli; Chung, Tse-Yu; Chen, Bo-Jiun; Liu, Ting-Hang; Li, Feng-Yin; Tzen, Jason T. C.; Wang, Cheng-I; Chyan, Chia-Lin

    2012-01-01

    The structure of a recombinant pineapple cystatin (AcCYS) was determined by NMR with the RMSD of backbone and heavy atoms of twenty lowest energy structures of 0.56 and 1.11 Å, respectively. It reveals an unstructured N-terminal extension and a compact inhibitory domain comprising a four-stranded antiparallel β-sheet wrapped around a central α-helix. The three structural motifs (G45, Q89XVXG, and W120) putatively responsible for the interaction with papain-like proteases are located in one side of AcCYS. Significant chemical shift perturbations in two loop regions, residues 45 to 48 (GIYD) and residues 89 to 91 (QVV), of AcCYS strongly suggest their involvement in the binding to papain, consistent with studies on other members of the cystatin family. However, the highly conserved W120 appears not to be involved in the binding with papain as no chemical shift perturbation was observed. Chemical shift index analysis further indicates that the length of the α-helix is shortened upon association with papain. Collectively, our data suggest that AcCYS undergoes local secondary structural rearrangements when papain is brought into close contact. A molecular model of AcCYS/papain complex is proposed to illustrate the interaction between AcCYS and papain, indicating a complete blockade of the catalytic triad by AcCYS. PMID:23139757

  19. Arthroscopically Assisted Reconstruction of Acute Acromioclavicular Joint Dislocations: Anatomic AC Ligament Reconstruction With Protective Internal Bracing—The “AC-RecoBridge” Technique

    PubMed Central

    Izadpanah, Kaywan; Jaeger, Martin; Ogon, Peter; Südkamp, Norbert P.; Maier, Dirk

    2015-01-01

    An arthroscopically assisted technique for the treatment of acute acromioclavicular joint dislocations is presented. This pathology-based procedure aims to achieve anatomic healing of both the acromioclavicular ligament complex (ACLC) and the coracoclavicular ligaments. First, the acromioclavicular joint is reduced anatomically under macroscopic and radiologic control and temporarily transfixed with a K-wire. A single-channel technique using 2 suture tapes provides secure coracoclavicular stabilization. The key step of the procedure consists of the anatomic repair of the ACLC (“AC-Reco”). Basically, we have observed 4 patterns of injury: clavicular-sided, acromial-sided, oblique, and midportion tears. Direct and/or transosseous ACLC repair is performed accordingly. Then, an X-configured acromioclavicular suture tape cerclage (“AC-Bridge”) is applied under arthroscopic assistance to limit horizontal clavicular translation to a physiological extent. The AC-Bridge follows the principle of internal bracing and protects healing of the ACLC repair. The AC-Bridge is tightened on top of the repair, creating an additional suture-bridge effect and promoting anatomic ACLC healing. We refer to this combined technique of anatomic ACLC repair and protective internal bracing as the “AC-RecoBridge.” A detailed stepwise description of the surgical technique, including indications, technical pearls and pitfalls, and potential complications, is given. PMID:26052493

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Stephen J.; Flint, Gregory Mark

    Accurate knowledge of thermophysical properties of concrete is considered extremely important for meaningful models to be developed of scenarios wherein the concrete is rapidly heated. Test of solid propellant burns on samples of concrete from Launch Complex 17 of the Cape Canaveral show spallation and fragmentation. In response to the need for accurate modeling scenarios of these observations, an experimental program to determine the permeability and thermal properties of the concrete was developed. Room temperature gas permeability measurements of Launch Complex 17 of the Cape Canaveral concrete dried at 50°C yield permeability estimates of 0.07mD (mean), and thermal properties (thermalmore » conductivity, diffusivity, and specific heat) were found to vary with temperatures from room temperature to 300°C. Thermal conductivity ranges from 1.7-1.9 W/mK at 50°C to 1.0-1.15 W/mK at 300°C, thermal diffusivity ranges from 0.75-0.96 mm 2/s at 50°C to 0.44-0.58 mm 2/s at 300°C, and specific heat ranges from 1.76-2.32 /m 3K to 2.00-2.50 /m 3K at 300°C.« less

  1. Regulation of intestinal permeability: The role of proteases

    PubMed Central

    Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y

    2017-01-01

    The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases. PMID:28405139

  2. Brittle structures and their role in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifer system in the Colorado Rocky Mountain front range

    USGS Publications Warehouse

    Caine, Jonathan S.; Tomusiak, S.R.A.

    2003-01-01

    Expansion of the Denver metropolitan area has resulted in substantial residential development in the foothills of the Rocky Mountain Front Range. This type of sub-urban growth, characteristic of much of the semiarid intermountain west, often relies on groundwater from individual domestic wells and is exemplified in the Turkey Creek watershed. The watershed is underlain by complexly deformed and fractured crystalline bedrock in which groundwater resources are poorly understood, and concerns regarding groundwater mining and degradation have arisen. As part of a pilot project to establish quantitative bounds on the groundwater resource, an outcrop-based geologic characterization and numerical modeling study of the brittle structures and their controls on the flow system was initiated. Existing data suggest that ground-water storage, flow, and contaminant transport are primarily controlled by a heterogeneous array of fracture networks. Inspections of well-permit data and field observations led to a conceptual model in which three dominant lithologic groups underlying sparse surface deposits form the aquifer system-metamorphic rocks, a complex array of granitic intrusive rocks, and major brittle fault zones. Pervasive but variable jointing of each lithologic group forms the "background" permeability structure and is an important component of the bulk storage capacity. This "background" is cut by brittle fault zones of varying structural styles and by pegmatite dikes, both with much higher fracture intensities relative to "background" that likely make them spatially complex conduits. Probabilistic, discrete-fracture-network and finite-element modeling was used to estimate porosity and permeability at the outcrop scale using fracture network data collected in the field. The models were conditioned to limited aquifer test and borehole geophysical data and give insight into the relative hydraulic properties between locations and geologic controls on storage and flow. Results from this study reveal a complex aquifer system in which the upper limits on estimated hydraulic properties suggest limited storage capacity and permeability as compared with many sedimentary-rock and surficial-deposit aquifers.

  3. Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda

    2017-01-01

    As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification & Validation (IV&V) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASAs Office of Safety and Mission Assurance (OSMA) defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domain/component, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IV&V enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.

  4. Risk-Significant Adverse Condition Awareness Strengthens Assurance of Fault Management Systems

    NASA Technical Reports Server (NTRS)

    Fitz, Rhonda

    2017-01-01

    As spaceflight systems increase in complexity, Fault Management (FM) systems are ranked high in risk-based assessment of software criticality, emphasizing the importance of establishing highly competent domain expertise to provide assurance. Adverse conditions (ACs) and specific vulnerabilities encountered by safety- and mission-critical software systems have been identified through efforts to reduce the risk posture of software-intensive NASA missions. Acknowledgement of potential off-nominal conditions and analysis to determine software system resiliency are important aspects of hazard analysis and FM. A key component of assuring FM is an assessment of how well software addresses susceptibility to failure through consideration of ACs. Focus on significant risk predicted through experienced analysis conducted at the NASA Independent Verification Validation (IVV) Program enables the scoping of effective assurance strategies with regard to overall asset protection of complex spaceflight as well as ground systems. Research efforts sponsored by NASA's Office of Safety and Mission Assurance defined terminology, categorized data fields, and designed a baseline repository that centralizes and compiles a comprehensive listing of ACs and correlated data relevant across many NASA missions. This prototype tool helps projects improve analysis by tracking ACs and allowing queries based on project, mission type, domaincomponent, causal fault, and other key characteristics. Vulnerability in off-nominal situations, architectural design weaknesses, and unexpected or undesirable system behaviors in reaction to faults are curtailed with the awareness of ACs and risk-significant scenarios modeled for analysts through this database. Integration within the Enterprise Architecture at NASA IVV enables interfacing with other tools and datasets, technical support, and accessibility across the Agency. This paper discusses the development of an improved workflow process utilizing this database for adaptive, risk-informed FM assurance that critical software systems will safely and securely protect against faults and respond to ACs in order to achieve successful missions.

  5. ARC-1967-AC-38286-3

    NASA Image and Video Library

    1967-02-06

    Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.

  6. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    PubMed

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  7. Frequency-Dependence of Relative Permeability in Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowler, N.

    2006-03-06

    A study to characterize metal plates by means of a model-based, broadband, four-point potential drop measurement technique has shown that the relative permeability of alloy 1018 low-carbon steel is complex and a function of frequency. A magnetic relaxation is observed at approximately 5 kHz. The relaxation can be described in terms of a parametric (Cole-Cole) model. Factors which influence the frequency, amplitude and breadth of the relaxation, such as applied current amplitude, sample geometry and disorder (e.g. percent carbon content and surface condition), are considered.

  8. The algorithmic details of polynomials application in the problems of heat and mass transfer control on the hypersonic aircraft permeable surfaces

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2018-03-01

    The hypersonic aircraft permeable surfaces heat and mass transfer effective control mathematical modeling problems are considered. The analysis of the control (the blowing) constructive and gasdynamical restrictions is carried out for the porous and perforated surfaces. The functions classes allowing realize the controls taking into account the arising types of restrictions are suggested. Estimates of the computational complexity of the W. G. Horner scheme application in the case of using the C. Hermite interpolation polynomial are given.

  9. On the role of low-permeability beds in the acquisition of F and SO4 concentrations in a multi-layer aquifer, South-West France.

    PubMed

    Malcuit, E; Atteia, O; Larroque, F; Franceschi, M; Pryet, A

    2014-11-15

    Fluoride (F(-)) commonly threatens groundwater quality. This is the case around the city of Bordeaux (France), where numerous wells tapping the thick and complex Eocene aquifer are contaminated by fluoride, which presents an issue for drinking water supply. The joint analysis of the spatial distribution of fluoride with other species like sulfate suggests that concentrations are mainly related to the occurrence of low-permeability layers containing evaporites or fluorite deposits. In order to identify the origin of the observed concentrations, a radial flow and transport model is implemented at the borehole scale. The hydraulic conductivity of the low-permeability layers and the vertical dispersivity of the aquifer were optimized to match the observed values of sulfate and fluoride concentrations. Interestingly, each of these parameters influences differently the simulated concentrations. This model has been successfully implemented to a neighboring well with the same parameter values, which tests the approach. The major conclusions drawn are: (i) the contamination in fluoride originates from the low-permeability layers, (ii) every low-permeability layer intercepted by the well releases fluoride (iii) Contamination not only originates from pore water of low-permeability layers, but may persist with long-term pumping due to mineral dissolution. As a consequence, fluoride contamination is likely to persist for a long time and the only solution to reduce fluoride concentration in abstracted water is to seal well screens facing low-permeability layers. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Serum neutrophil gelatinase-associated lipocalin levels are correlated with the complexity and the severity of atherosclerosis in acute coronary syndrome

    PubMed Central

    Soylu, Korhan; Aksan, Gökhan; Nar, Gökay; Özdemir, Metin; Gülel, Okan; İnci, Sinan; Aksakal, Aytekin; İdil Soylu, Ayşegül; Yılmaz, Özcan

    2015-01-01

    Objective: Neutrophil gelatinase-associated lipocalin (NGAL) is a novel inflammatory marker that is released from neutrophils. In this study, we evaluated the correlation between serum NGAL level and clinical and angiographic risk scores in patients diagnosed with non-ST elevation acute coronary syndrome (NSTE-ACS). Methods: Forty-seven random NSTE-ACS patients and 45 patients with normal coronary arteries (NCA) who underwent coronary angiography were enrolled in the study. GRACE risk score and SYNTAX and Gensini risk scores were used, respectively, for the purpose of clinical risk assessment and angiographic risk scoring. Serum NGAL level was measured via ELISA in peripheral blood samples obtained from the patients at the time of admission. Results: Serum NGAL level was significantly higher in the NSTE-ACS group compared to the control group (112.3±49.6 ng/mL vs. 58.1±24.3 ng/mL, p<0.001). There was a significant positive correlation between serum NGAL levels and the GRACE (r=0.533 and p<0.001), SYNTAX (r=0.395 and p=0.006), and Gensini risk scores (r=0.575 and p<0.001). The intermediate-high SYNTAX (>22) group had statistically significantly higher serum NGAL levels compared to the low SYNTAX (≤22) group (143±29.5 ng/mL vs. 98.7±43.2 ng/mL, p=0.001). Conclusion: NGAL level was positively correlated with lesion complexity and severity of coronary artery disease in patients with NSTE-ACS. Serum NGAL levels on admission are associated with increased burden of atherosclerosis in patients with NSTE-ACS. PMID:25430410

  11. Transcranial Alternating Current Stimulation (tACS) Enhances Mental Rotation Performance during and after Stimulation

    PubMed Central

    Kasten, Florian H.; Herrmann, Christoph S.

    2017-01-01

    Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to modulate endogenous brain oscillations in a frequency specific manner. Thus, it is a promising tool to uncover causal relationships between brain oscillations and behavior or perception. While tACS has been shown to elicit a physiological aftereffect for up to 70 min, it remains unclear whether the effect can still be elicited if subjects perform a complex task interacting with the stimulated frequency band. In addition, it has not yet been investigated whether the aftereffect is behaviorally relevant. In the current experiment, participants performed a Shepard-like mental rotation task for 80 min. After 10 min of baseline measurement, participants received either 20 min of tACS at their individual alpha frequency (IAF) or sham stimulation (30 s tACS in the beginning of the stimulation period). Afterwards another 50 min of post-stimulation EEG were recorded. Task performance and EEG were acquired during the whole experiment. While there were no effects of tACS on reaction times or event-related-potentials (ERPs), results revealed an increase in mental rotation performance in the stimulation group as compared to sham both during and after stimulation. This was accompanied by increased ongoing alpha power and coherence as well as event-related-desynchronization (ERD) in the alpha band in the stimulation group. The current study demonstrates a behavioral and physiological aftereffect of tACS in parallel. This indicates that it is possible to elicit aftereffects of tACS during tasks interacting with the alpha band. Therefore, the tACS aftereffect is suitable to achieve an experimental manipulation. PMID:28197084

  12. Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspensions of basil (Ocimum basilicum).

    PubMed

    Strazzer, Pamela; Guzzo, Flavia; Levi, Marisa

    2011-02-15

    A red basil cell line (T2b) rich in rosmarinic acid (RA) was selected for the stable production of anthocyanins (ACs) in the dark. Cell suspension cultures were subjected to mechanical stress through increased agitation (switch from 90 to 150 rpm) to determine the relationship between AC and RA accumulation. Cell extracts were analyzed by HPLC and LC-MS, and the resulting data were processed with multivariate statistical analysis. MS and MS/MS spectra facilitated the putative annotation of several complex cyanidin-based ACs, which were esterified with coumaric acid and, in some cases, also with malonic acid. It was also possible to identify various RA-related molecules, some caffeic and coumaric acid derivatives and some flavanones. Mechanical stress increased the total AC and RA contents, but reduced biomass accumulation. Many metabolites were induced by mechanical stress, including RA and some of its derivatives, most ACs, hydroxycinnamic acids and flavonoids, whereas the abundance of some RA dimers was reduced. Although AC and RA share a common early biosynthetic pathway (from phenylalanine to 4-coumaroyl-CoA) and could have similar or overlapping functions providing antioxidant activity against stress-generated reactive oxygen species, there appeared to be no competition between their individual pathways. Copyright © 2010 Elsevier GmbH. All rights reserved.

  13. ac electroosmotic pumping induced by noncontact external electrodes.

    PubMed

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-09-21

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1x1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mmsec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 mulsec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps.

  14. Microarray Analysis Gene Expression Profiles in Laryngeal Muscle After Recurrent Laryngeal Nerve Injury.

    PubMed

    Bijangi-Vishehsaraei, Khadijeh; Blum, Kevin; Zhang, Hongji; Safa, Ahmad R; Halum, Stacey L

    2016-03-01

    The pathophysiology of recurrent laryngeal nerve (RLN) transection injury is rare in that it is characteristically followed by a high degree of spontaneous reinnervation, with reinnervation of the laryngeal adductor complex (AC) preceding that of the abducting posterior cricoarytenoid (PCA) muscle. Here, we aim to elucidate the differentially expressed myogenic factors following RLN injury that may be at least partially responsible for the spontaneous reinnervation. F344 male rats underwent RLN injury (n = 12) or sham surgery (n = 12). One week after RLN injury, larynges were harvested following euthanasia. The mRNA was extracted from PCA and AC muscles bilaterally, and microarray analysis was performed using a full rat genome array. Microarray analysis of denervated AC and PCA muscles demonstrated dramatic differences in gene expression profiles, with 205 individual probes that were differentially expressed between the denervated AC and PCA muscles and only 14 genes with similar expression patterns. The differential expression patterns of the AC and PCA suggest different mechanisms of reinnervation. The PCA showed the gene patterns of Wallerian degeneration, while the AC expressed the gene patterns of reinnervation by adjacent axonal sprouting. This finding may reveal important therapeutic targets applicable to RLN and other peripheral nerve injuries. © The Author(s) 2015.

  15. Probable Mechanisms of Needling Therapies for Myofascial Pain Control

    PubMed Central

    Chou, Li-Wei; Kao, Mu-Jung; Lin, Jaung-Geng

    2012-01-01

    Myofascial pain syndrome (MPS) has been defined as a regional pain syndrome characterized by muscle pain caused by myofascial trigger points (MTrPs) clinically. MTrP is defined as the hyperirritable spot in a palpable taut band of skeletal muscle fibers. Appropriate treatment to MTrPs can effectively relieve the clinical pain of MPS. Needling therapies, such as MTrP injection, dry needling, or acupuncture (AcP) can effectively eliminate pain immediately. AcP is probably the first reported technique in treating MPS patients with dry needling based on the Traditional Chinese Medicine (TCM) theory. The possible mechanism of AcP analgesia were studied and published in recent decades. The analgesic effect of AcP is hypothesized to be related to immune, hormonal, and nervous systems. Compared to slow-acting hormonal system, nervous system acts in a faster manner. Given these complexities, AcP analgesia cannot be explained by any single mechanism. There are several principles for selection of acupoints based on the TCM principles: “Ah-Shi” point, proximal or remote acupoints on the meridian, and extra-meridian acupoints. Correlations between acupoints and MTrPs are discussed. Some clinical and animal studies of remote AcP for MTrPs and the possible mechanisms of remote effectiveness are reviewed and discussed. PMID:23346211

  16. Unraveling the Decomposition Process of Lead(II) Acetate: Anhydrous Polymorphs, Hydrates, and Byproducts and Room Temperature Phosphorescence.

    PubMed

    Martínez-Casado, Francisco J; Ramos-Riesco, Miguel; Rodríguez-Cheda, José A; Cucinotta, Fabio; Matesanz, Emilio; Miletto, Ivana; Gianotti, Enrica; Marchese, Leonardo; Matěj, Zdeněk

    2016-09-06

    Lead(II) acetate [Pb(Ac)2, where Ac = acetate group (CH3-COO(-))2] is a very common salt with many and varied uses throughout history. However, only lead(II) acetate trihydrate [Pb(Ac)2·3H2O] has been characterized to date. In this paper, two enantiotropic polymorphs of the anhydrous salt, a novel hydrate [lead(II) acetate hemihydrate: Pb(Ac)2·(1)/2H2O], and two decomposition products [corresponding to two different basic lead(II) acetates: Pb4O(Ac)6 and Pb2O(Ac)2] are reported, with their structures being solved for the first time. The compounds present a variety of molecular arrangements, being 2D or 1D coordination polymers. A thorough thermal analysis, by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), was also carried out to study the behavior and thermal data of the salt and its decomposition process, in inert and oxygenated atmospheres, identifying the phases and byproducts that appear. The complex thermal behavior of lead(II) acetate is now solved, finding the existence of another hydrate, two anhydrous enantiotropic polymorphs, and some byproducts. Moreover, some of them are phosphorescent at room temperature. The compounds were studied by TGA, DSC, X-ray diffraction, and UV-vis spectroscopy.

  17. The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Zheng, Dianfeng

    2016-11-01

    Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)

  18. Efficient Bayesian parameter estimation with implicit sampling and surrogate modeling for a vadose zone hydrological problem

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Pau, G. S. H.; Finsterle, S.

    2015-12-01

    Parameter inversion involves inferring the model parameter values based on sparse observations of some observables. To infer the posterior probability distributions of the parameters, Markov chain Monte Carlo (MCMC) methods are typically used. However, the large number of forward simulations needed and limited computational resources limit the complexity of the hydrological model we can use in these methods. In view of this, we studied the implicit sampling (IS) method, an efficient importance sampling technique that generates samples in the high-probability region of the posterior distribution and thus reduces the number of forward simulations that we need to run. For a pilot-point inversion of a heterogeneous permeability field based on a synthetic ponded infiltration experiment simu­lated with TOUGH2 (a subsurface modeling code), we showed that IS with linear map provides an accurate Bayesian description of the parameterized permeability field at the pilot points with just approximately 500 forward simulations. We further studied the use of surrogate models to improve the computational efficiency of parameter inversion. We implemented two reduced-order models (ROMs) for the TOUGH2 forward model. One is based on polynomial chaos expansion (PCE), of which the coefficients are obtained using the sparse Bayesian learning technique to mitigate the "curse of dimensionality" of the PCE terms. The other model is Gaussian process regression (GPR) for which different covariance, likelihood and inference models are considered. Preliminary results indicate that ROMs constructed based on the prior parameter space perform poorly. It is thus impractical to replace this hydrological model by a ROM directly in a MCMC method. However, the IS method can work with a ROM constructed for parameters in the close vicinity of the maximum a posteriori probability (MAP) estimate. We will discuss the accuracy and computational efficiency of using ROMs in the implicit sampling procedure for the hydrological problem considered. This work was supported, in part, by the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231

  19. External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Geng, Steven M.

    2013-01-01

    Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

  20. Ossicular fusion and cholesteatoma in auriculo-condylar syndrome: in vivo evidence of arrest of embryogenesis.

    PubMed

    Propst, Evan J; Ngan, Bo Y; Mount, Richard J; Martin-Munoz, Daniel; Blaser, Susan; Harrison, Robert V; Cushing, Sharon L; Papsin, Blake C

    2013-02-01

    Auriculo-condylar syndrome (ACS) is a rare condition affecting first branchial arch structures. The types of hearing loss and temporal bone findings in ACS have not been reported. We describe a 14-year-old male with constricted pinnae, mandibular dysostosis, glossoptosis, a high-arched palate, hearing loss, and cholesteatoma. Computed tomography imaging demonstrated malleoincudal joint ankylosis. The fused malleoincudal complex was removed during mastoidectomy for cholesteatoma. Electron microscopy and histopathology of the joint suggested the fusion was congenital. This is the first report of ossicular fusion and cholesteatoma in ACS and the most detailed in vivo evidence of disruption of embryogenesis during malleoincudal joint formation. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  1. Emplacement and dewatering of the world's largest exposed sand injectite complex

    NASA Astrophysics Data System (ADS)

    Sherry, Timothy J.; Rowe, Christie D.; Kirkpatrick, James D.; Brodsky, Emily E.

    2012-08-01

    Sandstone injectites form by up or down-section flow of a mobilized sand slurry through fractures in overlying rock. They act as reservoirs and high-permeability conduits through lower permeability rock in hydrocarbon systems. The Yellow Bank Creek Complex, Santa Cruz County, California is the largest known exposure of a sandstone injectite in the world. The complex contains granular textures that record processes of sand slurry flow, multiple pore fluids, and dewatering after emplacement. The injection was initially mobilized from a source containing both water and hydrocarbons. The water-sand slurry reached emplacement depth first, due to lower fluid viscosity. As the sand slurry emplaced, the transition from slurry flow to pore water percolation occurred. This transition resulted in preferred flow channels ˜6 mm wide in which sand grains were weakly aligned (laminae). The hydrocarbon-sand slurry intruded the dewatering sands and locally deformed the laminae. Compaction of the injectite deposit and pore fluid escape caused spaced compaction bands and dewatering pipes which created convolutions of the laminae. The hydrocarbon-rich sand slurry is preserved today as dolomite-cemented sand with oil inclusions. The laminae in this injectite are easily detected due to preferential iron oxide-cementation of the well-aligned sand laminae, and lack of cement in the alternating laminae. Subtle textures like these may develop during sand flow and be present but difficult to detect in other settings. They may explain permeability anisotropy in other sand deposits.

  2. Understanding pH Effects on Trichloroethylene and Perchloroethylene Adsorption to Iron in Permeable Reactive Barriers for Groundwater Remediation.

    PubMed

    Luo, Jing; Farrell, James

    2013-01-01

    Metallic iron filings are becoming increasing used in permeable reactive barriers for remediating groundwater contaminated by chlorinated solvents. Understanding solution pH effects on rates of reductive dechlorination in permeable reactive barriers is essential for designing remediation systems that can meet treatment objectives under conditions of varying groundwater properties. The objective of this research was to investigate how the solution pH value affects adsorption of trichloroethylene (TCE) and perchloroethylene (PCE) on metallic iron surfaces. Because adsorption is first required before reductive dechlorination can occur, pH effects on halocarbon adsorption energies may explain pH effects on dechlorination rates. Adsorption energies for TCE and PCE were calculated via molecular mechanics simulations using the Universal force field and a self-consistent reaction field charge equilibration scheme. A range in solution pH values was simulated by varying the amount of atomic hydrogen adsorbed on the iron. The potential energies associated TCE and PCE complexes were dominated by electrostatic interactions, and complex formation with the surface was found to result in significant electron transfer from the iron to the adsorbed halocarbons. Adsorbed atomic hydrogen was found to lower the energies of TCE complexes more than those for PCE. Attractions between atomic hydrogen and iron atoms were more favorable when TCE versus PCE was adsorbed to the iron surface. These two findings are consistent with the experimental observation that changes in solution pH affect TCE reaction rates more than those for PCE.

  3. Video imaging analysis of the plasma membrane permeabilizing effects of Bacillus thuringiensis insecticidal toxins in Sf9 cells.

    PubMed

    Villalon, M; Vachon, V; Brousseau, R; Schwartz, J L; Laprade, R

    1998-01-05

    The size and ionic selectivity of the pores formed by the insecticidal crystal protein Cry1C from Bacillus thuringiensis in the plasma membrane of Sf9 cells, an established cell line derived from the fall armyworm Spodoptera frugiperda, were analyzed with a video imaging technique. Changes in the permeability of the membrane were estimated from the rate of osmotic swelling of the cells. In the presence of Cry1C, which is toxic to Sf9 cells, the permeability of the cell membrane to KCl and glucose increased in a dose-dependent manner. In contrast, Cry1Aa, Cry1Ab and Cry1Ac, toxins to which Sf9 cells are not susceptible, had no detectable effect. Pores formed by Cry1C allowed the diffusion of sucrose, but were impermeable to the trisaccharide raffinose. On the basis of the hydrodynamic radii of these substances, the diameter of the pores was estimated to be 1.0-1.2 nm. In the presence of salts, the rate of swelling of cells exposed to Cry1C was about equally influenced by the size of the anion as by that of the cation, indicating that the ionic selectivity of the pores is low.

  4. The mechanism of plasma-assisted penetration of NO2- in model tissues

    NASA Astrophysics Data System (ADS)

    He, Tongtong; Liu, Dingxin; Liu, Zhijie; Liu, Zhichao; Li, Qiaosong; Rong, Mingzhe; Kong, Michael G.

    2017-11-01

    Cold atmospheric plasmas are reportedly capable of enhancing the percutaneous absorption of drugs, which is a development direction of plasma medicine. This motivated us to study how the enhancement effect was realized. In this letter, gelatin gel films were used as surrogates of human tissues, NaNO2 was used as a representative of small-molecule drugs, and cross-field and linear-field plasma jets were used for the purpose of enhancing the penetration of NaNO2 through the gelatin gel films. The permeability of gelatin gel films was quantified by measuring the NO2- concentration in water which was covered by those films. It was found that the gas flow and electric field of cold plasmas played a crucial role in the permeability enhancement of the model tissues, but the effect of gas flow was mainly confined in the surface layer, while the effect of the electric field was holistic. Those effects might be attributed to the localized squeezing of particles by gas flow and the weakening of the ion-dipole interaction by the AC electric field. The enhancement effect decreases with the increasing mass fraction of gelatin because the macromolecules of gelatin could significantly hinder the penetration of small molecules in the model tissues.

  5. Discrimination of brief speech sounds is impaired in rats with auditory cortex lesions

    PubMed Central

    Porter, Benjamin A.; Rosenthal, Tara R.; Ranasinghe, Kamalini G.; Kilgard, Michael P.

    2011-01-01

    Auditory cortex (AC) lesions impair complex sound discrimination. However, a recent study demonstrated spared performance on an acoustic startle response test of speech discrimination following AC lesions (Floody et al., 2010). The current study reports the effects of AC lesions on two operant speech discrimination tasks. AC lesions caused a modest and quickly recovered impairment in the ability of rats to discriminate consonant-vowel-consonant speech sounds. This result seems to suggest that AC does not play a role in speech discrimination. However, the speech sounds used in both studies differed in many acoustic dimensions and an adaptive change in discrimination strategy could allow the rats to use an acoustic difference that does not require an intact AC to discriminate. Based on our earlier observation that the first 40 ms of the spatiotemporal activity patterns elicited by speech sounds best correlate with behavioral discriminations of these sounds (Engineer et al., 2008), we predicted that eliminating additional cues by truncating speech sounds to the first 40 ms would render the stimuli indistinguishable to a rat with AC lesions. Although the initial discrimination of truncated sounds took longer to learn, the final performance paralleled rats using full-length consonant-vowel-consonant sounds. After 20 days of testing, half of the rats using speech onsets received bilateral AC lesions. Lesions severely impaired speech onset discrimination for at least one-month post lesion. These results support the hypothesis that auditory cortex is required to accurately discriminate the subtle differences between similar consonant and vowel sounds. PMID:21167211

  6. Equilibrium and kinetics of adsorption of phosphate onto iron-doped activated carbon.

    PubMed

    Wang, Zhengfang; Nie, Er; Li, Jihua; Yang, Mo; Zhao, Yongjun; Luo, Xingzhang; Zheng, Zheng

    2011-08-01

    Two series of activated carbons modified by Fe (II) and Fe (III) (denoted as AC/N-Fe(II) and AC/N-Fe(III)), respectively, were used as adsorbents for the removal of phosphate in aqueous solutions. The synthesized adsorbent materials were investigated by different experimental analysis means. The adsorption of phosphate on activated carbons has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature, and solution pH as major influential factors. Maximum removals of phosphate are obtained in the pH range of 3.78-6.84 for both adsorbents. Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Kinetic studies revealed that the adsorption process followed a pseudo-second order kinetic model. Results suggest that the main phase formed in AC/N-Fe(II) and AC/N-Fe(III) is goethite and akaganeite, respectively; the presence of iron oxides significantly affected the surface area and the pore structure of the activated carbon. Studies revealed that iron-doped activated carbons were effective in removing phosphate. AC/N-Fe(II) has a higher phosphate removal capacity than AC/N-Fe(III), which could be attributed to its better intra-particle diffusion and higher binding energy. The activation energy for adsorption was calculated to be 22.23 and 10.89 kJ mol(-1) for AC/N-Fe(II) and AC/N-Fe(III), respectively. The adsorption process was complex; both surface adsorption and intra-particle diffusion were simultaneously occurring during the process and contribute to the adsorption mechanism.

  7. Geomechanical Response of Jointed Caprock During CO2 Geological Sequestration

    NASA Astrophysics Data System (ADS)

    Newell, P.; Martinez, M. J.; Bishop, J. E.

    2014-12-01

    Geological sequestration of CO2 refers to the injection of supercritical CO2 into deep reservoirs trapped beneath a low-permeability caprock formation. Maintaining caprock integrity during the injection process is the most important factor for a successful injection. In this work we evaluate the potential for jointed caprock during injection scenarios using coupled three-dimensional multiphase flow and geomechanics modeling. Evaluation of jointed/fractured caprock systems is of particular concern to CO2 sequestration because creation or reactivation of joints (mechanical damage) can lead to enhanced pathways for leakage. In this work, we use an equivalent continuum approach to account for the joints within the caprock. Joint's aperture and non-linear stiffness of the caprock will be updated dynamically based on the effective normal stress. Effective permeability field will be updated based on the joints' aperture creating an anisotropic permeability field throughout the caprock. This feature would add another coupling between the solid and fluid in addition to basic Terzaghi's effective stress concept. In this study, we evaluate the impact of the joint's orientation and geometry of caprock and reservoir layers on geomechanical response of the CO2 geological systems. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Searching and Extracting Data from the EMBL-EBI Complex Portal.

    PubMed

    Meldal, Birgit H M; Orchard, Sandra

    2018-01-01

    The Complex Portal ( www.ebi.ac.uk/complexportal ) is an encyclopedia of macromolecular complexes. Complexes are assigned unique, stable IDs, are species specific, and list all participating members with links to an appropriate reference database (UniProtKB, ChEBI, RNAcentral). Each complex is annotated extensively with its functions, properties, structure, stoichiometry, tissue expression profile, and subcellular location. Links to domain-specific databases allow the user to access additional information and enable data searching and filtering. Complexes can be saved and downloaded in PSI-MI XML, MI-JSON, and tab-delimited formats.

  9. Using mitogenomic and nuclear ribosomal sequence data to investigate the phylogeny of the Xiphinema americanum species complex

    USDA-ARS?s Scientific Manuscript database

    Nematodes within the Xiphinema americanum species complex are economically important because they vector nepoviruses which cause considerable damage to a variety of agricultural crops. The taxonomy of X. americanum is controversial, with the number of putative species being the subject of debate. Ac...

  10. Synthesis, characterisation and computational studies on a novel one-dimensional arrangement of Schiff-base Mn3 single-molecule magnet.

    PubMed

    Lin, Po-Heng; Gorelsky, Serge; Savard, Didier; Burchell, Tara J; Wernsdorfer, Wolfgang; Clérac, Rodolphe; Murugesu, Muralee

    2010-09-07

    The syntheses, structures and magnetic properties are reported for three new manganese complexes containing the Schiff-base ((2-hydroxy-3-methoxyphenyl)methylene)isonicotinohydrazine (H(2)hmi) ligand. Complex [Mn(II)(H(2)hmi)(2)(MeOH)(2)Cl(2)] (1) was obtained from the reaction of H(2)hmi with MnCl(2) in a MeOH-MeCN mixture. Addition of triethylamine to the previous reaction mixture followed by diethyl ether diffusion yielded a dinuclear manganese [Mn(III)(2)(hmi)(2)(OMe)(2)](infinity).2MeCN.2OEt(2) (2) compound. Upon increasing the MnCl(2)/H(2)hmi ratio, the mixed valence complex [Mn(III)(2)Mn(II)(hmi)(2)(OMe)(2)Cl(2)](infinity).MeOH (3) was obtained. Dc and ac magnetic measurements were carried out on all three samples. The ac susceptibility and field dependence of the magnetisation measurements confirmed that complex 3 exhibits a single-molecule magnet behaviour with an effective energy barrier of 8.1 K and an Arrhenius pre-exponential factor of 3 x 10(-9) s.

  11. "Structure and dynamics in complex chemical systems: Gaining new insights through recent advances in time-resolved spectroscopies.” ACS Division of Physical Chemistry Symposium presented at the Fall National ACS Meeting in Boston, MA, August 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Daniel

    8-Session Symposium on STRUCTURE AND DYNAMICS IN COMPLEX CHEMICAL SYSTEMS: GAINING NEW INSIGHTS THROUGH RECENT ADVANCES IN TIME-RESOLVED SPECTROSCOPIES. The intricacy of most chemical, biochemical, and material processes and their applications are underscored by the complex nature of the environments in which they occur. Substantial challenges for building a global understanding of a heterogeneous system include (1) identifying unique signatures associated with specific structural motifs within the heterogeneous distribution, and (2) resolving the significance of each of multiple time scales involved in both small- and large-scale nuclear reorganization. This symposium focuses on the progress in our understanding of dynamics inmore » complex systems driven by recent innovations in time-resolved spectroscopies and theoretical developments. Such advancement is critical for driving discovery at the molecular level facilitating new applications. Broad areas of interest include: Structural relaxation and the impact of structure on dynamics in liquids, interfaces, biochemical systems, materials, and other heterogeneous environments.« less

  12. A kinetico-mechanistic study on the C-H bond activation of primary benzylamines; cooperative and solid-state cyclopalladation on dimeric complexes.

    PubMed

    Font, Helena; Font-Bardia, Mercè; Gómez, Kerman; González, Gabriel; Granell, Jaume; Macho, Israel; Martínez, Manuel

    2014-09-28

    The cyclometallation reactions of dinuclear μ-acetato complexes of the type [Pd(AcO)(μ-AcO)L]2 (L = 4-RC6H4CH2NH2, R = H, Cl, F, CF3), a process found to occur readily even in the solid state, have been studied from a kinetico-mechanistic perspective. Data indicate that the dinuclear acetato bridged derivatives are excellent starting materials to activate carbon-hydrogen bonds in a facile way. In all cases the established concerted ambiphilic proton abstraction by a coordinated acetato ligand has been proved. The metallation has also been found to occur in a cooperative manner, with the metallation of the first palladium unit of the dimeric complex being rate determining; no intermediate mono-metallated compounds are observed in any of the processes. The kinetically favoured bis-cyclopalladated compound obtained after complete C-H bond activation does not correspond to the final isolated XRD-characterized complexes. This species, bearing the classical open-book dimeric form, has a much more complex structure than the final isolated compound, with different types of acetato ligands.

  13. An excited-state intramolecular photon transfer fluorescence probe for localizable live cell imaging of cysteine

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Chen, Wen; Liu, Si-Jia; Jiang, Jian-Hui

    2017-03-01

    Small molecule probes suitable for selective and specific fluorescence imaging of some important but low-concentration intracellular reactive sulfur species such as cysteine (Cys) pose a challenge in chemical biology. We present a readily available, fast-response fluorescence probe CHCQ-Ac, with 2-(5‧-chloro-2-hydroxyl-phenyl)-6-chloro-4(3 H)-quinazolinone (CHCQ) as the fluorophore and acrylate group as the functional moiety, that enables high-selectivity and high-sensitivity for detecting Cys in both solution and biological system. After specifically reacted with Cys, the probe undergoes a seven-membered intramolecular cyclization and released the fluorophore CHCQ with excited-state intramolecular photon transfer effect. A highly fluorescent, insoluble aggregate was then formed to facilitate high-sensitivity and high-resolution imaging. The results showed that probe CHCQ-Ac affords a remarkably large Stokes shift and can detect Cys under physiological pH condition with no interference from other analytes. Moreover, this probe was proved to have excellent chemical stability, low cytotoxicity and good cell permeability. Our design of this probe provides a novel potential tool to visualize and localize cysteine in bioimaging of live cells that would greatly help to explore various Cys-related physiological and pathological cellular processes in cell biology and diagnostics.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colantonio, Patrizia; Leboffe, Loris; Bolli, Alessandro

    Caspase-3 is responsible for the cleavage of several proteins including the nuclear enzyme poly(ADP-ribose) polymerase (PARP). Designed on the cleavage site of PARP, Ac-Asp-Glu-Val-Asp-H has been reported as a highly specific inhibitor. To overcome the susceptibility to proteolysis, the intrinsic instability, and the scarce membrane permeability of tetra-peptidyl aldehydes, di- and tri-peptidyl caspase-3 inhibitors have been synthesized. Here, the synthesis and the inhibition properties of peptidyl aldehydes Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H are reported. Z-tLeu-Asp-H, Z-tLeu-Val-Asp-H, and Z-Val-tLeu-Asp-H inhibit competitively human caspase-3 activity in vitro with K{sub i}{sup 0} = 3.6 nM, 18.2 nM, and 109 nM, respectively (pH 7.4 andmore » 25 deg. C). Moreover, Z-tLeu-Asp-H impairs apoptosis in human DLD-1 colon adenocarcinoma cells without affecting caspase-8. Therefore, Ac-Asp-Glu-Val-Asp-H can be truncated to Z-tLeu-Asp-H retaining nanomolar inhibitory activity in vitro and displaying action in whole cells, these properties reflect the unprecedented introduction of the bulky and lipophilic tLeu residue at the P{sub 2} position.« less

  15. Dielectric properties of Ti4+ substituted BaFe12O19 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ghoneim, A. I.; Amer, M. A.; Meaz, T. M.; Attalah, S. S.

    2017-02-01

    Series of nanocrystalline BaTixFe12-(4/3)xO19 hexagonal ferrites, 0≤x≤1, was prepared using the chemical co-precipitation method. As-prepared samples were heated at 1200 °C for 20 h and slowly cooled to room temperature (RT). XRD studies proved that the samples have single phase M-type hexagonal nanostructure, where their grain size lies in the range of 42.4 - 61.3 nm. Their dielectric properties were studied against temperature (T) and frequency (F). DC conductivity showed increase against T, whereas AC conductivity showed increase with increasing both T and F. This proved the semiconducting behavior of the samples. Activation energies were found to lie in the range of 0.054-0.169 eV for temperature range of RT 373 K and of 0.114-0.274 eV for higher temperatures up to 473 K. Variation of the dielectric constant and AC conductivity against F revealed dispersion in all these hexagonal nanostructures, which was assigned to Maxwell-Wagner type of interfacial polarization. Variation of the dielectric loss tangent against F showed a relaxation spectrum for all samples, whereas the dielectric constant and loss tangent showed an increasing trend against T. The relative magnetic permeability μr showed an increasing trend with temperature.

  16. Biguanides inhibit complex I, II and IV of rat liver mitochondria and modify their functional properties.

    PubMed

    Drahota, Z; Palenickova, E; Endlicher, R; Milerova, M; Brejchova, J; Vosahlikova, M; Svoboda, P; Kazdova, L; Kalous, M; Cervinkova, Z; Cahova, M

    2014-01-01

    In this study, we focused on an analysis of biguanides effects on mitochondrial enzyme activities, mitochondrial membrane potential and membrane permeability transition pore function. We used phenformin, which is more efficient than metformin, and evaluated its effect on rat liver mitochondria and isolated hepatocytes. In contrast to previously published data, we found that phenformin, after a 5 min pre-incubation, dose-dependently inhibits not only mitochondrial complex I but also complex II and IV activity in isolated mitochondria. The enzymes complexes inhibition is paralleled by the decreased respiratory control index and mitochondrial membrane potential. Direct measurements of mitochondrial swelling revealed that phenformin increases the resistance of the permeability transition pore to Ca(2+) ions. Our data might be in agreement with the hypothesis of Schäfer (1976) that binding of biguanides to membrane phospholipids alters membrane properties in a non-specific manner and, subsequently, different enzyme activities are modified via lipid phase. However, our measurements of anisotropy of fluorescence of hydrophobic membrane probe diphenylhexatriene have not shown a measurable effect of membrane fluidity with the 1 mM concentration of phenformin that strongly inhibited complex I activity. Our data therefore suggest that biguanides could be considered as agents with high efficacy but low specifity.

  17. The ring-shaped thermal field of Stefanos crater, Nisyros Island: a conceptual model

    NASA Astrophysics Data System (ADS)

    Pantaleo, M.; Walter, T. R.

    2014-04-01

    Fumarole fields related to hydrothermal processes release the heat of the underground through permeable pathways. Thermal changes, therefore, are likely to depend also on the size and permeability variation of these pathways. There may be different explanations for the observed permeability changes, such as fault control, lithology, weathering/alteration, heterogeneous sediment accumulation/erosion and physical changes of the fluids (e.g., temperature and viscosity). A common difficulty, however, in surface temperature field studies at active volcanoes is that the parameters controlling the ascending routes of fluids are poorly constrained in general. Here we analyze the crater of Stefanos, Nisyros (Greece), and highlight complexities in the spatial pattern of the fumarole field related to permeability conditions. We combine high-resolution infrared mosaics and grain-size analysis of soils, aiming to elaborate parameters controlling the appearance of the fumarole field. We find a ring-shaped thermal field located within the explosion crater, which we interpret to reflect near-surface contrasts of the soil granulometry and volcanotectonic history at depth. We develop a conceptual model of how the ring-shaped thermal field formed at the Stefanos crater and similarly at other volcanic edifices, highlighting the importance of local permeability contrast that may increase or decrease the thermal fluid flux.

  18. Morphologic and Aerodynamic Considerations Regarding the Plumed Seeds of Tragopogon pratensis and Their Implications for Seed Dispersal.

    PubMed

    Casseau, Vincent; De Croon, Guido; Izzo, Dario; Pandolfi, Camilla

    2015-01-01

    Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an "optimal" state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates.

  19. Critical Dynamics of Gravito-Convective Mixing in Geological Carbon Sequestration

    PubMed Central

    Soltanian, Mohamad Reza; Amooie, Mohammad Amin; Dai, Zhenxue; Cole, David; Moortgat, Joachim

    2016-01-01

    When CO2 is injected in saline aquifers, dissolution causes a local increase in brine density that can cause Rayleigh-Taylor-type gravitational instabilities. Depending on the Rayleigh number, density-driven flow may mix dissolved CO2 throughout the aquifer at fast advective time-scales through convective mixing. Heterogeneity can impact density-driven flow to different degrees. Zones with low effective vertical permeability may suppress fingering and reduce vertical spreading, while potentially increasing transverse mixing. In more complex heterogeneity, arising from the spatial organization of sedimentary facies, finger propagation is reduced in low permeability facies, but may be enhanced through more permeable facies. The connectivity of facies is critical in determining the large-scale transport of CO2-rich brine. We perform high-resolution finite element simulations of advection-diffusion transport of CO2 with a focus on facies-based bimodal heterogeneity. Permeability fields are generated by a Markov Chain approach, which represent facies architecture by commonly observed characteristics such as volume fractions. CO2 dissolution and phase behavior are modeled with the cubic-plus-association equation-of-state. Our results show that the organization of high-permeability facies and their connectivity control the dynamics of gravitationally unstable flow. We discover new flow regimes in both homogeneous and heterogeneous media and present quantitative scaling relations for their temporal evolution. PMID:27808178

  20. Effect of preparation conditions on properties and permeability of chitosan-sodium hexametaphosphate capsules.

    PubMed

    Angelova, N; Hunkeler, D

    2001-01-01

    Capsules were obtained by interpolymer complexation between chitosan (polycation) and sodium hexametaphosphate (SMP, oligoanion). The effect of the preparation conditions on the capsule characteristics was evaluated. Specifically, the influence of variables such as pH, ionic strength, reagent concentration, and additives on the capsule permeability properties was investigated using dextran as a model permeant. The capsule membrane permeability was found to increase by decreasing the chitosan/SMP ratio as well as adding mannitol to the oligoanion recipient bath. Increasing the ionic strength or the pH of the initial chitosan solution was also found to enhance the membrane permeability, moving the membrane exclusion limit to higher values. Generally, the capsules prepared tinder all tested conditions had a relatively low permeability which rarely exceeded a molecular cut-off of 40 kD based on dextran standards. Furthermore, the diffusion rate showed a strong temporal dependence, indicating that the capsules prepared under various conditions exhibit different apparent pore size densities on the surface. The results indicated that, in order to obtain the desired capsule mass-transfer properties, the preparation conditions should be carefully considered and adjusted. Adding a polyol as well as low salt amount (less than 0.15%) is preferable as a means of modulating the diffusion characteristics, without disturbing the capsule mechanical stability.

  1. Morphologic and Aerodynamic Considerations Regarding the Plumed Seeds of Tragopogon pratensis and Their Implications for Seed Dispersal

    PubMed Central

    2015-01-01

    Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of the seeds to operate in the most convenient fluid dynamic regime. To achieve final permeability, the primary and secondary fibres of the pappus have evolved with complex weaving; this maximises the drag force (i.e., the drag coefficient), and the pappus operates in an “optimal” state. We used computational fluid dynamics (CFD) simulations to compute the seed drag coefficient and compare it with data obtained from drop experiments. The permeability of the parachute was estimated from microscope images. Our simulations reveal three flow regimes in which the parachute can operate according to its permeability. These flow regimes impact the stability of the parachute and its drag coefficient. From the permeability measurements and drop experiments, we show how the seeds operate very close to the optimal case. The porosity of the textile appears to be an appropriate solution to achieve a lightweight structure that allows a low terminal velocity, a stable flight and a very efficient parachute for the velocity at which it operates. PMID:25938765

  2. Exploring the Details of Intermolecular Interactions via a Systematic Characterization of the Structures of the Bimolecular Heterodimers Formed Between Protic Acids and Haloethylenes

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.

    2017-06-01

    In the early 2000's, the work of Cole and Legon, combined with that done earlier by Kisiel, Fowler, and Legon, demonstrated that comparisons among the complexes of HF, HCl, and HCCH each with vinyl fluoride could provide information concerning the strength of intermolecular interactions. Specifically, that the length of the hydrogen bond and its deviation from linearity as a result of a secondary interaction with the nucleophilic portion of the protic acid could be correlated with the hydrogen bond strength. Building on this foundation, we undertook a systematic characterization of the molecular structures of complexes formed between these three acids and the remaining polar fluoroethylenes, seeking to unravel the nature of their intermolecular interactions. What started out as a simple confirmation of chemical intuition regarding relative interaction strengths developed into a fuller appreciation of the competition between electrostatic and steric forces in determining the lowest energy configuration for the heterodimer. Additional surprises were in store for us as we expanded the study to chlorofluoroethylenes. Although the first few examples again served to confirm earlier conclusions, subsequent complexes provided unexpected results that signaled an increasing importance of the dispersion interaction in determining the geometry of the complex as well as the fundamental differences in the electron distributions surrounding the halogens in a C-F versus C-Cl bond. Our work with these species has not only allowed us to investigate fundamental questions regarding intermolecular interactions, but obtaining and analyzing the spectra of these complexes along with those of the various haloethylene monomers and their complexes with the argon atom have provided an introduction to molecular spectroscopy and structure determination for many undergraduate students. G.C. Cole and A.C. Legon, Chem. Phys. Lett. 369, 31-40 (2003). G.C. Cole and A.C. Legon, Chem. Phys. Lett. 400, 414-424 (2004). Z. Kisiel, P.W. Fowler, and A.C. Legon, J. Chem. Phys. 93, 3054-3062 (1990).

  3. Generation mechanism of negative permittivity and Kramers-Kronig relations in BaTiO3/Y3Fe5O12 multiferroic composites

    NASA Astrophysics Data System (ADS)

    Wang, Zhongyang; Sun, Kai; Xie, Peitao; Liu, Yao; Fan, Runhua

    2017-09-01

    Recently, negative parameters such as negative permittivity and negative permeability have been attracting extensive attention for their unique electromagnetic properties. Usually, negative permittivity is well achieved by plasma oscillation of free electrons in conductor-insulator composites or metamaterials, while some attention has been paid to attaining negative permittivity in ceramics to reduce dielectric loss. In this paper, negative permittivity in barium titanate and yttrium iron garnet composites are reported which was well fitted by the Lorentz model. Further, negative permittivity behavior was verified via Kramers-Kronig relations, and it revealed that the causal principle still valid for negative permittivity resulted from dielectric resonance. The interrelationships among negative permittivity, capacitive-inductive transition and ac conductivity are discussed.

  4. Magnetomechanical properties of composites and fibers made from thermoplastic elastomers (TPE) and carbonyl iron powder (CIP)

    NASA Astrophysics Data System (ADS)

    Schrödner, Mario; Pflug, Günther

    2018-05-01

    Magnetoactive elastomers (MAE) made from composites of five thermoplastic elastomers (TPE) of different stiffness with carbonyl iron powder (CIP) as magnetic component were investigated. The composites were produced by melt blending of the magnetic particles with the TPEs in a twin-screw extruder. The resulting materials were characterized by ac permeability testing, stress-strain measurements with and without external magnetic field and magnetically controlled bending of long cylindrical rods in a homogenous magnetic field. The magnetic field necessary for deflection of the rods decreases with decreasing modulus and increasing iron particle content. This effect can be used e.g. for magnetically controlled actuation. Some highly filled MAE show a magnetic field induced increase of Young's modulus. Filaments could be spun from some of the composites.

  5. Effects of acute amphetamine (AMPH) treatment on rat striatal dopamine (DA) receptor activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roseboom, P.H.; Iwaniec, L.M.; Ackerman, J.M.

    1986-03-05

    Upon administration of AMPH rats display a complex series of dose and time dependent behaviors and changes in dopaminergic activity. They found a decrease in D1 DA receptor-stimulated adenylate cyclase (DA-AC) activity in rat striatal membranes after acute in vivo AMPH at a dose and time of intense stereotyped behavior. The Ka for D1-AC activity increased and the Vmax decreased in striatal membranes from rats given 7.5 mg/kg AMPH i.p. and killed 1 hr later as compared to saline (SAL) controls. They examined whether the decrease of DA-AC was due to a change in receptor number or activation of GTP-bindingmore » protein, Ns. Female Holtzman rats were injected with SAL or 7.5 mg/kg AMPH and killed 1 hr later. A 27,000 x g striatal particulate fraction was prepared for AC assay or (/sup 3/H)DA binding with 10 nM spiroperidol. They found no difference in stimulation of AC by NaF, GTP or GppNHp at any dose tested in membranes from SAL- and AMPH-treated rats. Calmodulin-stimulated AC was also unchanged after AMPH. Specific binding at a saturating concentration of (/sup 3/H)DA was 191 +/- 31 and 117 +/- 14 fmol/mg prot in membranes from SAL- and AMPH-treated rats, respectively. This suggests an alteration is occurring at the level of the D1 receptor rather than at coupling of Ns with the AC catalytic subunit.« less

  6. Inhibition of cellular fatty acid synthase impairs replication of budded virions of Autographa californica multiple nucleopolyhedrovirus in Spodoptera frugiperda cells.

    PubMed

    Li, Jingfeng; Sun, Yu; Li, Yuying; Liu, Ximeng; Yue, Qi; Li, Zhaofei

    2018-05-07

    Fatty acid synthase (FASN) catalyzes the synthesis of palmitate, which is required for formation of complex fatty acids and phospholipids that are involved in energy production, membrane remodeling and modification of host and viral proteins. Presently, the roles of cellular fatty acid synthesis pathway in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infection is not clear. In this study, we found that the transcripts level of fasn was significantly up-regulated at the early stage of AcMNPV infection. Treatment of AcMNPV-infected Spodoptera frugiperda Sf9 cells with C75, a specific inhibitor of FASN, did not affect the internalization of budded virions into cells, but dramatically reduced the infectious AcMNPV production. Further analysis revealed that the presence of C75 significantly decreased the expression level for two reporter genes, beta-galactosidase and beta-glucuronidase, that were separately directed by the early and late promoter of AcMNPV. Similarly, Western blot analysis showed that, in C75-treated cells, the expression of viral gp64 was delayed and decreased. Additionally, treatment with C75 also resulted in a significant reduction in the accumulation of viral genomic DNA. Together, these results demonstrate that the fatty acid synthesis pathway is required for efficient replication of AcMNPV, but it might not be necessary for AcMNPV entry into insect cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Direct numerical simulation of supercritical gas flow in complex nanoporous media: Elucidating the relationship between permeability and pore space geometry

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2015-12-01

    Mudrocks and shales are currently a significant source of natural gas and understanding the basic transport properties of these formations is critical to predicting long-term production, however, the nanoporous nature of mudrocks presents a unique challenge. Mudrock pores are predominantly in the range of 1-100 nm, and within this size range the flow of gas at reservoir conditions will fall within the slip-flow and early transition-flow regime (0.001 < Kn < 1.0). Therefore, flow-rates will significantly deviate from Navier-Stokes predictions. Currently, the study of slip-flows is mostly limited to simple tube and channel geometries, but the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Here we present a local effective viscosity lattice Boltzmann model (LEV-LBM) constructed for flow simulation in the slip- and early-transition flow regimes, adapted here for complex geometries. At the macroscopic scale the LEV-LBM is parameterized with local effective viscosities at each node to capture the variance of the mean free path of gas molecules in a bounded system. The LEV-LBM is first validated in simple tube geometries, where excellent agreement with linearized Boltzmann solutions is found for Knudsen numbers up to 1.0. The LEV-LBM is then employed to quantify the length effect on the apparent permeability of tubes, which suggests pore network modeling of flow in the slip and early-transition regime will result in overestimation unless the length effect is considered. Furthermore, the LEV-LBM is used to evaluate the predictive value of commonly measured pore geometry characteristics such as porosity, pore size distribution, and specific solid surface area for the calculation of permeability. We show that bundle of tubes models grossly overestimate apparent permeability, as well as underestimate the increase in apparent permeability with decreasing pressure as a result of excluding topology and pore shape from calculations.

  8. Bioinspired nanovalves with selective permeability and pH sensitivity

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Huang, X.; Schenderlein, M.; Moehwald, H.; Xu, G.-K.; Shchukin, D. G.

    2015-01-01

    Biological systems with controlled permeability and release functionality, which are among the successful examples of living beings to survive in evolution, have attracted intensive investigation and have been mimicked due to their broad spectrum of applications. We present in this work, for the first time, an example of nuclear pore complexes (NPCs)-inspired controlled release system that exhibits on-demand release of angstrom-sized molecules. We do so in a cost-effective way by stabilizing porous cobalt basic carbonates as nanovalves and realizing pH-sensitive release of entrapped subnano cargo. The proof-of-concept work also consists of the establishment of two mathematical models to explain the selective permeability of the nanovalves. Finally, gram-sized (or larger) quantities of the bio-inspired controlled release system can be synthesized through a scaling-up strategy, which opens up opportunities for controlled release of functional molecules in wider practical applications.Biological systems with controlled permeability and release functionality, which are among the successful examples of living beings to survive in evolution, have attracted intensive investigation and have been mimicked due to their broad spectrum of applications. We present in this work, for the first time, an example of nuclear pore complexes (NPCs)-inspired controlled release system that exhibits on-demand release of angstrom-sized molecules. We do so in a cost-effective way by stabilizing porous cobalt basic carbonates as nanovalves and realizing pH-sensitive release of entrapped subnano cargo. The proof-of-concept work also consists of the establishment of two mathematical models to explain the selective permeability of the nanovalves. Finally, gram-sized (or larger) quantities of the bio-inspired controlled release system can be synthesized through a scaling-up strategy, which opens up opportunities for controlled release of functional molecules in wider practical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06378c

  9. The anti-tumor effect and mechanisms of action of penta-acetyl geniposide.

    PubMed

    Peng, C H; Huang, C N; Wang, C J

    2005-06-01

    Gardenia, the fruit of Gardenia jasminoides Ellis, has been widely used to treat liver and gall bladder disorders in Chinese medicine. It has been shown recently that geniposide, the main ingredient of Gardenia Fructus, exhibits the anti-tumor effect. In this review, we discuss the anti-tumor effect and possible mechanisms of a derivative from Gardenia Fructus, penta-acetyl geniposide ((Ac)5GP). It has been demonstrated that (Ac)5GP plays more potent roles than geniposide in chemoprevention. (Ac)5GP decreased DNA damage and hepatocarcinogenesis induced by aflatoxin B1 (AFB1) by activating the phase II enzymes glutathione S-transferase (GST) and GSH peroxidase (GSH-Px). It reduced the growth and development of inoculated C6 glioma cells especially in pre-treated rats. In addition to the preventive effect, (Ac)5GP exerts its actions on apoptosis and growth arrest. Treatment of (Ac)5GP caused DNA fragmentation of glioma cells. (Ac)5GP induced sub- G1 peak through the activation of apoptotic cascades PKCdelta/JNK/Fas/caspase8 and caspase 3. Besides, p53/Bax signaling was suggested to be involved in (Ac)5GP-induced apoptosis, though its downstream cascades needs further clarified. (Ac)5GP has also been shown to inhibit DNA synthesis of tumor cells. It arrested cell cycle at G0/ G1 by inducing the expression of p21, thus suppressing the cyclin D1/cdk4 complex formation and the phosphorylation of E2F. The phosphorylation status of p53 on serine 392 correlated with the process of growth arrest. Evidences from the in vivo experiments showed that (Ac)5GP is not harmful to liver, heart and kidney. In conclusion, (Ac)5GP is highly suggested to be an anti-tumor agent for development in the future.

  10. Biomechanical Comparison of an Intramedullary and Extramedullary Free-Tissue Graft Reconstruction of the Acromioclavicular Joint Complex

    PubMed Central

    Garg, Rishi; Javidan, Pooya; Lee, Thay Q.

    2013-01-01

    Background Several different surgical techniques have been described to address the coracoclavicular (CC) ligaments in acromioclavicular (AC) joint injuries. However, very few techniques focus on reconstructing the AC ligaments, despite its importance in providing stability. The purpose of our study was to compare the biomechanical properties of two free-tissue graft techniques that reconstruct both the AC and CC ligaments in cadaveric shoulders, one with an extramedullary AC reconstruction and the other with an intramedullary AC reconstruction. We hypothesized intramedullary AC reconstruction will provide greater anteroposterior translational stability and improved load to failure characteristics than an extramedullary technique. Methods Six matched cadaveric shoulders underwent translational testing at 10 N and 15 N in the anteroposterior and superoinferior directions, under AC joint compression loads of 10 N, 20 N, and 30 N. After the AC and CC ligaments were transected, one of the specimens was randomly assigned the intramedullary free-tissue graft reconstruction while its matched pair received the extramedullary graft reconstruction. Both reconstructed specimens then underwent repeat translational testing, followed by load to failure testing, via superior clavicle distraction, at a rate of 50 mm/min. Results Intramedullary reconstruction provided significantly greater translational stability in the anteroposterior direction than the extramedullary technique for four of six loading conditions (p < 0.05). There were no significant differences in translational stability in the superoinferior direction for any loading condition. The intramedullary reconstructed specimens demonstrated improved load to failure characteristics with the intramedullary reconstruction having a lower deformation at yield and a higher ultimate load than the extramedullary reconstruction (p < 0.05). Conclusions Intramedullary reconstruction of the AC joint provides greater stability in the anteroposterior direction and improved load to failure characteristics than an extramedullary technique. Reconstruction of the injured AC joint with an intramedullary free tissue graft may provide greater strength and stability than other currently used techniques, allowing patients to have improved clinical outcomes. PMID:24340150

  11. Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage

    NASA Astrophysics Data System (ADS)

    María Gómez Castro, Berta; Fernández López, Sheila; Carrera, Jesús; de Simone, Silvia; Martínez, Lurdes; Roetting, Tobias; Soler, Joaquim; Ortiz, Gema; de Dios, Carlos; Huber, Christophe

    2014-05-01

    Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage Berta Gómez, Sheila Fernández, Tobias Roetting, Lurdes Martínez, Silvia de Simone, Joaquim Soler, Jesus Carrera, Gema Ortiz, Christophe Huber, Carlos de Dios Proper design of CO2 geological storage facilities requires knowledge of the reservoir hydraulic parameters. Specifically, permeability controls the flux of CO2, the rate at which it dissolves, local and regional pressure buildup and the likelihood of induced seismicity. Permeability is obtained from hydraulic tests, which may yield local permeability, which controls injectivity, and large scale permeability, which controls pressure buildup at the large scale. If pressure response measurements are obtained at different elevations, hydraulic tests may also yield vertical permeability, which controls the rate at which CO2 dissolves. The objective of this work is to discuss the interpretation of hydraulic tests at deep reservoirs and the conditions under which these permeabilities can be obtained. To achieve this objective, we have built a radially symmetric model, including a skin and radial as well as vertical heterogeneity. We use this model to simulate hydraulic tests with increasing degrees of complexity about the medium response. We start by assuming Darcy flow, then add coupled mechanical effects (fractures opening) and, finally, we add thermal effects. We discuss how these affect the conventional interpretation of the tests and how to identify their presence. We apply these findings to the interpretation of hydraulic tests at Hontomin.

  12. Ancillary care in public health intervention research in low-resource settings: researchers' practices and decision-making.

    PubMed

    Taylor, Holly A; Merritt, Maria W; Mullany, Luke C

    2011-09-01

    Little is known about researchers' practices regarding the provision of ancillary care (AC) in public health intervention studies they have conducted and the factors that influence their decisions about whether to provide ancillary care in low-resource settings. We conducted 52 in-person in-depth interviews with public health researchers. Data analysis was iterative and led to the identification of themes and patterns among themes. We found that researchers who conduct their research in the community setting are more likely to identify and plan for the AC needs of potential research subjects before a study begins, whereas those affiliated with a permanent facility are more likely to deliver AC to research subjects on an ad hoc basis. Our findings suggest that on the whole, at least for public health intervention research in low-resource settings, researchers conducting research in the community setting confront more complex ethical and operational challenges in their decision-making about AC than do researchers conducting facility-based studies.

  13. Electrical modulus and dielectric behavior of Cr3+ substituted Mg-Zn nanoferrites

    NASA Astrophysics Data System (ADS)

    Mansour, S. F.; Abdo, M. A.

    2017-04-01

    The dielectric parameters and ac electrical conductivity of Mg0.8Zn0.2CrxFe2-xO4; (0≤x≤0.025) nanoferrites synthesized citrate-nitrate auto-combustion method were studied using the complex impedance technique in the frequency and temperature ranges 4 Hz-5 MHz and 303-873 K respectively. Hopping of charge carriers plus interfacial polarization could interpret the behaviors of dielectric constant (ε‧), dielectric loss tangent (tanδ) and ac electrical conductivity (σac) with frequency, temperatures and composition. The up-normal behavior observed in tanδ trend with temperatures confirms the presence of relaxation loss (dipoles losses). Correlated barrier hopping (CBH) of electron is the conduction mechanism of the investigated nanoferrites. Cole-Cole plots at different temperatures emphasize the main role of grain and grain boundaries in the properties of the investigated nanoferrites. Cr3+ substitution can control the dielectric parameters and ac electrical conductivity of Mg-Zn nanoferrites making it candidates for versatile applications.

  14. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitorymore » hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.« less

  15. Electrical conductivity and dielectric relaxation of 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile

    NASA Astrophysics Data System (ADS)

    El-Menyawy, E. M.; Zedan, I. T.; Nawar, H. H.

    2014-03-01

    The electrical and dielectric properties of the synthesized 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile (AHNA) have been studied. The direct and alternating current (DC and AC) conductivities and complex dielectric constant were investigated in temperature range 303-403 K. The AC conductivity and dielectric properties of AHNA were investigated over frequency range 100 Hz-5 MHz. From DC and AC measurements, electrical conduction is found to be a thermally activated process. The frequency-dependent AC conductivity obeys Jonscher's universal power law in which the frequency exponent decreases with increasing temperature. The correlated barrier hopping (CBH) is the predominant model for describing the charge carrier transport in which the electrical parameters are evaluated. The activation energy is found to decrease with increasing frequency. The behaviors of dielectric and dielectric loss are discussed in terms of a polarization mechanism. The dielectric loss shows frequency power law from which the maximum barrier height is determined as 0.19 eV in terms of the Guintini model.

  16. Selective production of chemicals from biomass pyrolysis over metal chlorides supported on zeolite.

    PubMed

    Leng, Shuai; Wang, Xinde; Cai, Qiuxia; Ma, Fengyun; Liu, Yue'e; Wang, Jianguo

    2013-12-01

    Direct biomass conversion into chemicals remains a great challenge because of the complexity of the compounds; hence, this process has attracted less attention than conversion into fuel. In this study, we propose a simple one-step method for converting bagasse into furfural (FF) and acetic acid (AC). In this method, bagasse pyrolysis over ZnCl2/HZSM-5 achieved a high FF and AC yield (58.10%) and a 1.01 FF/AC ratio, but a very low yield of medium-boiling point components. However, bagasse pyrolysis using HZSM-5 alone or ZnCl2 alone still remained large amounts of medium-boiling point components or high-boiling point components. The synergistic effect of HZSM-5 and ZnCl2, which combines pyrolysis, zeolite cracking, and Lewis acid-selective catalysis results in highly efficient bagasse conversion into FF and AC. Therefore, our study provides a novel, simple method for directly converting biomass into high-yield useful chemical. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Aerosolized Antimicrobial Agents Based on Degradable Dextran Nanoparticles Loaded with Silver Carbene Complexes

    PubMed Central

    Ornelas-Megiatto, Cátia; Shah, Parth N.; Wich, Peter R.; Cohen, Jessica L.; Tagaev, Jasur A.; Smolen, Justin A.; Wright, Brian D.; Panzner, Matthew J.; Youngs, Wiley J.; Fréchet, Jean M. J.; Cannon, Carolyn L.

    2012-01-01

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH2Cl2 (organic): PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery. PMID:23025592

  18. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes.

    PubMed

    Ornelas-Megiatto, Cátia; Shah, Parth N; Wich, Peter R; Cohen, Jessica L; Tagaev, Jasur A; Smolen, Justin A; Wright, Brian D; Panzner, Matthew J; Youngs, Wiley J; Fréchet, Jean M J; Cannon, Carolyn L

    2012-11-05

    Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH(2)Cl(2) (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery.

  19. Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

    USGS Publications Warehouse

    Jarvie, D.M.; Hill, R.J.; Ruble, T.E.; Pollastro, R.M.

    2007-01-01

    Shale-gas resource plays can be distinguished by gas type and system characteristics. The Newark East gas field, located in the Fort Worth Basin, Texas, is defined by thermogenic gas production from low-porosity and low-permeability Barnett Shale. The Barnett Shale gas system, a self-contained source-reservoir system, has generated large amounts of gas in the key productive areas because of various characteristics and processes, including (1) excellent original organic richness and generation potential; (2) primary and secondary cracking of kerogen and retained oil, respectively; (3) retention of oil for cracking to gas by adsorption; (4) porosity resulting from organic matter decomposition; and (5) brittle mineralogical composition. The calculated total gas in place (GIP) based on estimated ultimate recovery that is based on production profiles and operator estimates is about 204 bcf/section (5.78 ?? 109 m3/1.73 ?? 104 m3). We estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/ac-ft (84.0 m3/m3). Assuming a thickness of 350 ft (107 m) and only sufficient hydrogen for partial cracking of retained oil to gas, a total generation potential of 820 bcf/section is estimated. Of this potential, approximately 60% was expelled, and the balance was retained for secondary cracking of oil to gas, if sufficient thermal maturity was reached. Gas storage capacity of the Barnett Shale at typical reservoir pressure, volume, and temperature conditions and 6% porosity shows a maximum storage capacity of 540 mcf/ac-ft or 159 scf/ton. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.

  20. A conceptual study on the formulation of a permeable reactive pavement with activated carbon additives for controlling the fate of non-point source environmental organic contaminants.

    PubMed

    Huang, Shengyi; Liang, Chenju

    2018-02-01

    To take advantage of the road pavement network where non-point source (NPS) pollution such as benzene, toluene, ethyl-benzene, and xylene (BTEX) from vehicle traffic exhaust via wet and dry atmospheric deposition occurs, the asphalt pavement may be used as a media to control the NPS pollution. An experiment to prepare an adsorptive porous reactive pavement (PRP) was initiated to explore the potential to reduce environmental NPS vehicle pollution. The PRP was prepared and studied as follows: various activated carbons (AC) were initially screened to determine if they were suitable as an additive in the porous asphalt mixture; various mixtures of a selected AC were incorporated with the design of porous asphalt concrete (PAC) to produce PRP, and the PRP formulations were tested to ensure that they comply with the required specifications; qualified specimens were subsequently tested to determine their adsorption capacity for BTEX in aqueous solution, as compared to conventional PAC. The PRP08 and PRP16 samples, named for the design formulations of 0.8% and 1.6% of AC (by wt. in the formulation), exhibited low asphalt drain-down and low abrasion loss and also met all regulated specifications. The BTEX adsorption capacity measurements of PRP08 and PRP16 were 33-46%, 36-51%, 20-22%, and 6-8% respectively, higher than those obtained from PACs. Based on the test results, PRPs showed good physical performance and adsorption and may be considered as a potential method for controlling the transport of NPS vehicle pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells.

    PubMed

    Brown, Dennis; Bouley, Richard; Păunescu, Teodor G; Breton, Sylvie; Lu, Hua A J

    2012-05-15

    Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these "professional" proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes.

  2. New insights into the dynamic regulation of water and acid-base balance by renal epithelial cells

    PubMed Central

    Bouley, Richard; Pǎunescu, Teodor G.; Breton, Sylvie; Lu, Hua A. J.

    2012-01-01

    Maintaining tight control over body fluid and acid-base homeostasis is essential for human health and is a major function of the kidney. The collecting duct is a mosaic of two cell populations that are highly specialized to perform these two distinct processes. The antidiuretic hormone vasopressin (VP) and its receptor, the V2R, play a central role in regulating the urinary concentrating mechanism by stimulating accumulation of the aquaporin 2 (AQP2) water channel in the apical membrane of collecting duct principal cells. This increases epithelial water permeability and allows osmotic water reabsorption to occur. An understanding of the basic cell biology/physiology of AQP2 regulation and trafficking has informed the development of new potential treatments for diseases such as nephrogenic diabetes insipidus, in which the VP/V2R/AQP2 signaling axis is defective. Tubule acidification due to the activation of intercalated cells is also critical to organ function, and defects lead to several pathological conditions in humans. Therefore, it is important to understand how these “professional” proton-secreting cells respond to environmental and cellular cues. Using epididymal proton-secreting cells as a model system, we identified the soluble adenylate cyclase (sAC) as a sensor that detects luminal bicarbonate and activates the vacuolar proton-pumping ATPase (V-ATPase) via cAMP to regulate tubular pH. Renal intercalated cells also express sAC and respond to cAMP by increasing proton secretion, supporting the hypothesis that sAC could function as a luminal sensor in renal tubules to regulate acid-base balance. This review summarizes recent advances in our understanding of these fundamental processes. PMID:22460710

  3. Slow magnetic relaxation at zero field in the tetrahedral complex [Co(SPh)4]2-.

    PubMed

    Zadrozny, Joseph M; Long, Jeffrey R

    2011-12-28

    The Ph(4)P(+) salt of the tetrahedral complex [Co(SPh)(4)](2-), possessing an S = (3)/(2) ground state with an axial zero-field splitting of D = -70 cm(-1), displays single-molecule magnet behavior in the absence of an applied magnetic field. At very low temperatures, ac magnetic susceptibility data show the magnetic relaxation time, τ, to be temperature-independent, while above 2.5 K thermally activated Arrhenius behavior is apparent with U(eff) = 21(1) cm(-1) and τ(0) = 1.0(3) × 10(-7) s. Under an applied field of 1 kOe, τ more closely approximates Arrhenius behavior over the entire temperature range. Upon dilution of the complex within a matrix of the isomorphous compound (Ph(4)P)(2)[Zn(SPh)(4)], ac susceptibility data reveal the molecular nature of the slow magnetic relaxation and indicate that the quantum tunneling pathway observed at low temperatures is likely mediated by intermolecular dipolar interactions. © 2011 American Chemical Society

  4. On the AC-conductivity mechanism in nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10) alloys

    NASA Astrophysics Data System (ADS)

    Anjali; Patial, Balbir Singh; Bhardwaj, Suresh; Awasthi, A. M.; Thakur, Nagesh

    2017-10-01

    In-depth analysis of complex AC-conductivity for nano-crystalline Se79-xTe15In6Pbx (x = 0, 1, 2, 4, 6, 8 and 10 at wt%) alloys is made in the temperature range 308-423 K and over the frequency range 10-1-107 Hz, to understand the conduction mechanism. The investigated nano-crystalline alloys were prepared by melt-quench technique. Sharp structural peaks in X-ray diffraction pattern indicate the nano-crystalline nature, which is also confirmed by FESEM. The AC conductivity shows universal characteristics and at higher frequency a transition from dc to dispersive behavior occurs. Moreover, it is confirmed that ac conductivity (σac) obeys the Jonscher power law as ωs (s< 1). The obtained results are analyzed in the light of various theoretical models. The correlated barrier hopping (CBH) model associated with non-intimate valence alternation pairs (NVAP's) is found most appropriate to describe the conduction mechanisms in these alloys. In addition, the CBH model description reveals that the bipolaron (single polaron) transport dominates at lower (higher) temperature. The density of localized states has also been deduced.

  5. Development of Overpressures at Nankai Accretionary Prism, Ocean Drilling Program Sites 1173 and 1174

    NASA Astrophysics Data System (ADS)

    Gamage, K.; Screaton, E.

    2003-12-01

    In this study, we used a one-dimensional model of sedimentation, initial prism loading, and fluid flow to examine the development of overpressures at the toe of the Nankai accretionary complex. A permeability-porosity relationship was established for hemipelagic sediments from laboratory measured permeabilities as an input to the model. Vertical permeabilities were measured for 10 core samples from the Ocean Drilling Program (ODP) Leg 190, Sites 1173 and 1174, from the upper and lower Shikoku Basin facies. Both sites were drilled along the Muroto Transect through the dècollement zone or its equivalent. Site 1173 is located 11 km seaward of the deformation front and it represents the undeformed incoming sediments, where as Site 1174 represents sediments within the proto-thrust zone. Although turbidite-rich sediments dominate the Nankai accretionary prism, the dècollement and underthrust sediments are primarily composed of hemipelagic muds. Using the permeability-porosity relationship, our modeling results indicate excess pore pressures that are greater than 30% of lithostatic pressure at the toe of the prism at a convergence rate of 4cm/yr. These values are slightly lower than previously inferred excess pore pressures estimated from porosity data. Additional runs were conducted to simulate a 10-m thick low permeability barrier at the dècollement where vertical fluid flow is restricted. The low permeability barrier required a permeability less than 1 x 10-19 m2 to generate excess pore pressures greater than 50% of lithostatic pressure. Modeling was further extended to test the significance of variable prism loading rates due to uncertainties in the convergence rate and affects of lateral stress above the dècollement.

  6. Reanalysis of in situ permeability measurements in the Barbados décollement

    USGS Publications Warehouse

    Bekins, B.A.; Matmon, D.; Screaton, E.J.; Brown, K.M.

    2011-01-01

    A cased and sealed borehole in the Northern Barbados accretionary complex was the site of the first attempts to measure permeability in situ along a plate boundary décollement. Three separate efforts at Hole 949C yielded permeability estimates for the décollement spanning four orders of magnitude. An analysis of problems encountered during installation of the casing and seals provides insights into how the borehole conditions may have led to the wide range of results. During the installation, sediments from the surrounding formation repeatedly intruded into the borehole and casing. Stress analysis shows that the weak sediments were deforming plastically and the radial and tangential stresses around the borehole were significantly lower than lithostatic. This perturbed stress state may explain why the test pressure records showed indications of hydrofracture at pressures below lithostatic, and permeabilities rose rapidly as the estimated effective stress dropped below 0.8 MPa. Even after the borehole was sealed, the plastic deformation of the formation and relatively large gap of the wire wrapped screen allowed sediment to flow into the casing. Force equilibrium calculations predict sediment would have filled the borehole to 10 cm above the top of the screen by the time slug tests were conducted 1.5 years after the borehole was sealed. Reanalysis of the slug test results with these conditions yields several orders of magnitude higher permeability estimates than the original analysis which assumed an open casing. Overall the results based on only the tests with no sign of hydrofracture yield a permeability range of 10−14–10−15 m2 and a rate of increase in permeability with decreasing effective stress consistent with laboratory tests on samples from the décollement zone.

  7. Identification of small-scale low and high permeability layers using single well forced-gradient tracer tests: fluorescent dye imaging and modelling at the laboratory-scale.

    PubMed

    Barns, Gareth L; Thornton, Steven F; Wilson, Ryan D

    2015-01-01

    Heterogeneity in aquifer permeability, which creates paths of varying mass flux and spatially complex contaminant plumes, can complicate the interpretation of contaminant fate and transport in groundwater. Identifying the location of high mass flux paths is critical for the reliable estimation of solute transport parameters and design of groundwater remediation schemes. Dipole flow tracer tests (DFTTs) and push-pull tests (PPTs) are single well forced-gradient tests which have been used at field-scale to estimate aquifer hydraulic and transport properties. In this study, the potential for PPTs and DFTTs to resolve the location of layered high- and low-permeability layers in granular porous media was investigated with a pseudo 2-D bench-scale aquifer model. Finite element fate and transport modelling was also undertaken to identify appropriate set-ups for in situ tests to determine the type, magnitude, location and extent of such layered permeability contrasts at the field-scale. The characteristics of flow patterns created during experiments were evaluated using fluorescent dye imaging and compared with the breakthrough behaviour of an inorganic conservative tracer. The experimental results show that tracer breakthrough during PPTs is not sensitive to minor permeability contrasts for conditions where there is no hydraulic gradient. In contrast, DFTTs are sensitive to the type and location of permeability contrasts in the host media and could potentially be used to establish the presence and location of high or low mass flux paths. Numerical modelling shows that the tracer peak breakthrough time and concentration in a DFTT is sensitive to the magnitude of the permeability contrast (defined as the permeability of the layer over the permeability of the bulk media) between values of 0.01-20. DFTTs are shown to be more sensitive to deducing variations in the contrast, location and size of aquifer layered permeability contrasts when a shorter central packer is used. However, larger packer sizes are more likely to be practical for field-scale applications, with fewer tests required to characterise a given aquifer section. The sensitivity of DFTTs to identify layered permeability contrasts was not affected by test flow rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Stable Rotation of Microparticles using a Combination of Dielectrophoresis and Electroosmosis

    NASA Astrophysics Data System (ADS)

    Dutta, Prashanta; Rezanoor, Walid

    2016-11-01

    Electric field induced microparticle rotation has become a powerful technique to evaluate cell membrane dielectric properties and cell morphology. In this study, stable rotations of microparticles are demonstrated in a stationary AC electric field created from a set of coplanar interdigitated microelectrodes. The medium, particle size, and material are carefully chosen so that particle can be controlled by dielectrophoretic force, while a sufficiently high AC electroosmotic flow is produced for continuous particle rotation. Stable rotation up to 218 rpm is observed at 30 Vp-p applied sinusoidal potential in the frequency range of 80 - 1000 Hz. The particle spin rate observed from the experimental study is then validated with a numerical model. The model is formulated around complex charge conservation equation to determine the electric potential distribution in the domain. Stokes equation is employed to solve for AC electroosmotic fluid flow in the domain. Complexity arising from nonlinear potential drop across the electric double layer due to the application of a very large electric potential is also addressed by introducing modified capacitance equation which considers steric effect. This work was supported in part by the U.S. National Science Foundation under Grant No. DMS 1317671.

  9. Principal network analysis: identification of subnetworks representing major dynamics using gene expression data

    PubMed Central

    Kim, Yongsoo; Kim, Taek-Kyun; Kim, Yungu; Yoo, Jiho; You, Sungyong; Lee, Inyoul; Carlson, George; Hood, Leroy; Choi, Seungjin; Hwang, Daehee

    2011-01-01

    Motivation: Systems biology attempts to describe complex systems behaviors in terms of dynamic operations of biological networks. However, there is lack of tools that can effectively decode complex network dynamics over multiple conditions. Results: We present principal network analysis (PNA) that can automatically capture major dynamic activation patterns over multiple conditions and then generate protein and metabolic subnetworks for the captured patterns. We first demonstrated the utility of this method by applying it to a synthetic dataset. The results showed that PNA correctly captured the subnetworks representing dynamics in the data. We further applied PNA to two time-course gene expression profiles collected from (i) MCF7 cells after treatments of HRG at multiple doses and (ii) brain samples of four strains of mice infected with two prion strains. The resulting subnetworks and their interactions revealed network dynamics associated with HRG dose-dependent regulation of cell proliferation and differentiation and early PrPSc accumulation during prion infection. Availability: The web-based software is available at: http://sbm.postech.ac.kr/pna. Contact: dhhwang@postech.ac.kr; seungjin@postech.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21193522

  10. Micromechanical response of articular cartilage to tensile load measured using nonlinear microscopy.

    PubMed

    Bell, J S; Christmas, J; Mansfield, J C; Everson, R M; Winlove, C P

    2014-06-01

    Articular cartilage (AC) is a highly anisotropic biomaterial, and its complex mechanical properties have been a topic of intense investigation for over 60 years. Recent advances in the field of nonlinear optics allow the individual constituents of AC to be imaged in living tissue without the need for exogenous contrast agents. Combining mechanical testing with nonlinear microscopy provides a wealth of information about microscopic responses to load. This work investigates the inhomogeneous distribution of strain in loaded AC by tracking the movement and morphological changes of individual chondrocytes using point pattern matching and Bayesian modeling. This information can be used to inform models of mechanotransduction and pathogenesis, and is readily extendable to various other connective tissues. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Direct effect of Taxol on free radical formation and mitochondrial permeability transition.

    PubMed

    Varbiro, G; Veres, B; Gallyas, F; Sumegi, B

    2001-08-15

    To elucidate the potential role of mitochondria in Taxol-induced cytotoxicity, we studied its direct mitochondrial effects. In Percoll-gradient purified liver mitochondria, Taxol induced large amplitude swelling in a concentration-dependent manner in the microM range. Opening of the permeability pore was also confirmed by the access of mitochondrial matrix enzymes for membrane impermeable substrates in Taxol-treated mitochondria. Taxol induced the dissipation of mitochondrial membrane potential (DeltaPsi) determined by Rhodamine123 release and induced the release of cytochrome c from the intermembrane space. All these effects were inhibited by 2.5 microM cyclosporine A. Taxol significantly increased the formation of reactive oxygen species (ROS) in both the aqueous and the lipid phase as determined by dihydrorhodamine123 and resorufin derivative. Cytochrome oxidase inhibitor CN(-), azide, and NO abrogated the Taxol-induced mitochondrial ROS formation while inhibitors of the other respiratory complexes and cyclosporine A had no effect. We confirmed that the Taxol-induced collapse of DeltaPsi and the induction of ROS production occurs in BRL-3A cells. In conclusion, Taxol-induced adenine nucleotide translocase-cyclophilin complex mediated permeability transition, and cytochrome oxidase mediated ROS production. Because both cytochrome c release and mitochondrial ROS production can induce suicide pathways, the direct mitochondrial effects of Taxol may contribute to its cytotoxicity.

  12. Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties

    PubMed Central

    2015-01-01

    New organometallic gold(III) and platinum(II) complexes containing iminophosphorane ligands are described. Most of them are more cytotoxic to a number of human cancer cell lines than cisplatin. Cationic Pt(II) derivatives 4 and 5, which differ only in the anion, Hg2Cl62– or PF6– respectively, display almost identical IC50 values in the sub-micromolar range (25–335-fold more active than cisplatin on these cell lines). The gold compounds induced mainly caspase-independent cell death, as previously reported for related cycloaurated compounds containing IM ligands. Cycloplatinated compounds 3, 4, and 5 can also activate alternative caspase-independent mechanisms of death. However, at short incubation times cell death seems to be mainly caspase dependent, suggesting that the main mechanism of cell death for these compounds is apoptosis. Mercury-free compound 5 does not interact with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high permeability profile for this compound (comparable to that of metoprolol or caffeine) and an estimated oral fraction absorbed of 100%, which potentially makes it a good candidate for oral administration. PMID:26147404

  13. Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

    PubMed Central

    Rao, Shasha; Song, Yunmei; Peddie, Frank; Evans, Allan M

    2011-01-01

    Poorly water-soluble drugs, such as phenylephrine, offer challenging problems for buccal drug delivery. In order to overcome these problems, particle size reduction (to the nanometer range) and cyclodextrin complexation were investigated for permeability enhancement. The apparent solubility in water and the buccal permeation of the original phenylephrine coarse powder, a phenylephrine–cyclodextrin complex and phenylephrine nanosuspensions were characterized. The particle size and particle surface properties of phenylephrine nanosuspensions were used to optimize the size reduction process. The optimized phenylephrine nanosuspension was then freeze dried and incorporated into a multi-layered buccal patch, consisting of a small tablet adhered to a mucoadhesive film, yielding a phenylephrine buccal product with good dosage accuracy and improved mucosal permeability. The design of the buccal patch allows for drug incorporation without the need to change the mucoadhesive component, and is potentially suited to a range of poorly water-soluble compounds. PMID:21753876

  14. Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs.

    PubMed

    Rao, Shasha; Song, Yunmei; Peddie, Frank; Evans, Allan M

    2011-01-01

    Poorly water-soluble drugs, such as phenylephrine, offer challenging problems for buccal drug delivery. In order to overcome these problems, particle size reduction (to the nanometer range) and cyclodextrin complexation were investigated for permeability enhancement. The apparent solubility in water and the buccal permeation of the original phenylephrine coarse powder, a phenylephrine-cyclodextrin complex and phenylephrine nanosuspensions were characterized. The particle size and particle surface properties of phenylephrine nanosuspensions were used to optimize the size reduction process. The optimized phenylephrine nanosuspension was then freeze dried and incorporated into a multi-layered buccal patch, consisting of a small tablet adhered to a mucoadhesive film, yielding a phenylephrine buccal product with good dosage accuracy and improved mucosal permeability. The design of the buccal patch allows for drug incorporation without the need to change the mucoadhesive component, and is potentially suited to a range of poorly water-soluble compounds.

  15. Microwave absorption properties of flake-shaped Co particles composites at elevated temperature (293-673 K) in X band

    NASA Astrophysics Data System (ADS)

    Wang, Guowu; Li, Xiling; Wang, Peng; Zhang, Junming; Wang, Dian; Qiao, Liang; Wang, Tao; Li, Fashen

    2018-06-01

    The complex permeability and permittivity of the easy-plane anisotropic Co/polyimide composite at high temperature (293-673 K) in X band were measured. The results show that both the complex permeability and permittivity increase with the increase of temperature in the measured temperature range. The calculated absorption properties display that the intensity of the reflection loss (RL) peak first increases and then decreases with the increase of temperature, and reaches the maximum (-52 dB) at 523 K. At each temperature, the composite can achieve the RL exceeding -10 dB in the whole X band. The composite can even work stably for more than 20 min with the excellent absorption performance under 673 K. In addition, the RL performance of the composite at high temperature is better than that at room temperature.

  16. Strain-dependent permeability of volcanic rocks.

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie; Heap, Michael; Baud, Patrick

    2016-04-01

    We explore permeability evolution during deformation of volcanic materials using a suite of rocks with varying compositions and physical properties (such as porosity ϕ). 40 mm × 20 mm cylindrical samples were made from a range of extrusive rocks, including andesites from Colima, Mexico (ϕ˜0.08; 0.18; 0.21), Kumamoto, Japan (ϕ˜0.13), and Ruapehu, New Zealand (ϕ˜0.15), and basalt from Mt Etna, Italy (ϕ˜0.04). Gas permeability of each sample was measured before and after triaxial deformation using a steady-state benchtop permeameter. To study the strain-dependence of permeability in volcanic rocks, we deformed samples to 2, 3, 4, 6, and 12 % axial strain at a constant strain rate of 10-5 s-1. Further, the influence of failure mode - dilatant or compactant - on permeability was assessed by repeating experiments at different confining pressures. During triaxial deformation, porosity change of the samples was monitored by a servo-controlled pore fluid pump. Below an initial porosity of ˜0.18, and at low confining pressures (≤ 20 MPa), we observe a dilatant failure mode (shear fracture formation). With increasing axial strain, stress is accommodated by fault sliding and the generation of ash-sized gouge between the fracture planes. In higher-porosity samples, or at relatively higher confining pressures (≥ 60 MPa), we observe compactant deformation characterised by a monotonous decrease in porosity with increasing axial strain. The relative permeability k' is given by the change in permeability divided by the initial reference state. When behaviour is dilatant, k' tends to be positive: permeability increases with progressive deformation. However, results suggest that after a threshold amount of strain, k' can decrease. k' always is negative (permeability decreases during deformation) when compaction is the dominant behaviour. Our results show that - in the absence of a sealing or healing process - the efficiency of a fault to transmit fluids is correlated to the degree of strain to which is subjected. Volcanic processes such as dome extrusion, which involve progressive strain on complex fault systems, have been seen to cause fault sliding and the prolific generation of fault gouge. Our results indicate that the permeability of these faults will tend to remain constant or increase during continued extrusion, allowing magmatic gases to readily outgas through permeable fault architectures despite the generation and accumulation of gouge. On the other hand, deeper regions of the edifice that will typically be compacting due to the relatively higher confining pressures, will exhibit a continuous decrease in permeability. The interplay between permeability-increasing and permeability-decreasing processes within the edifice is likely to influence outgassing and eruptive cycles at active volcanoes.

  17. A transmission line method for the measurement of microwave permittivity and permeability

    NASA Astrophysics Data System (ADS)

    Lederer, P. G.

    1990-12-01

    A method for determining complex permittivity and permeability at microwave frequencies from two port S parameter measurements of lossy solids in coaxial or waveguide transmission lines is described. The use of the TRL (Through Reflect Line) calibration scheme allows the measuring system to be calibrated right up to the specimen faces thereby eliminating most of the sample cell from the measurement and allowing suitable materials to be molded directly into the specimen cell in order to eliminate air gaps between specimen and transmission line walls. Some illustrative measurements for dielectric and magnetic materials are presented.

  18. Shapiro steps for skyrmion motion on a washboard potential with longitudinal and transverse ac drives

    DOE PAGES

    Reichhardt, Charles; Reichhardt, Cynthia Jane

    2015-12-28

    In this work, we numerically study the behavior of two-dimensional skyrmions in the presence of a quasi-one-dimensional sinusoidal substrate under the influence of externally applied dc and ac drives. In the overdamped limit, when both dc and ac drives are aligned in the longitudinal direction parallel to the direction of the substrate modulation, the velocity-force curves exhibit classic Shapiro step features when the frequency of the ac drive matches the washboard frequency that is dynamically generated by the motion of the skyrmions over the substrate, similar to previous observations in superconducting vortex systems. In the case of skyrmions, the additionalmore » contribution to the skyrmion motion from a nondissipative Magnus force shifts the location of the locking steps to higher dc drives, and we find that the skyrmions move at an angle with respect to the direction of the dc drive. For a longitudinal dc drive and a perpendicular or transverse ac drive, the overdamped system exhibits no Shapiro steps; however, when a finite Magnus force is present, we find pronounced transverse Shapiro steps along with complex two-dimensional periodic orbits of the skyrmions in the phase-locked regimes. Both the longitudinal and transverse ac drives produce locking steps whose widths oscillate with increasing ac drive amplitude. We examine the role of collective skyrmion interactions and find that additional fractional locking steps occur for both longitudinal and transverse ac drives. Finally, at higher skyrmion densities, the system undergoes a series of dynamical order-disorder transitions, with the skyrmions forming a moving solid on the phase locking steps and a fluctuating dynamical liquid in regimes between the steps.« less

  19. Extracellular matrix fragmentation in young, healthy cartilaginous tissues.

    PubMed

    Craddock, R J; Hodson, N W; Ozols, M; Shearer, T; Hoyland, J A; Sherratt, M J

    2018-02-09

    Although the composition and structure of cartilaginous tissues is complex, collagen II fibrils and aggrecan are the most abundant assemblies in both articular cartilage (AC) and the nucleus pulposus (NP) of the intervertebral disc (IVD). Whilst structural heterogeneity of intact aggrecan ( containing three globular domains) is well characterised, the extent of aggrecan fragmentation in healthy tissues is poorly defined. Using young, yet skeletally mature (18-30 months), bovine AC and NP tissues, it was shown that, whilst the ultrastructure of intact aggrecan was tissue-dependent, most molecules (AC: 95 %; NP: 99.5 %) were fragmented (lacking one or more globular domains). Fragments were significantly smaller and more structurally heterogeneous in the NP compared with the AC (molecular area; AC: 8543 nm2; NP: 4625 nm2; p < 0.0001). In contrast, fibrillar collagen appeared structurally intact and tissue-invariant. Molecular fragmentation is considered indicative of a pathology; however, these young, skeletally mature tissues were histologically and mechanically (reduced modulus: AC: ≈ 500 kPa; NP: ≈ 80 kPa) comparable to healthy tissues and devoid of notable gelatinase activity (compared with rat dermis). As aggrecan fragmentation was prevalent in neonatal bovine AC (99.5 % fragmented, molecular area: 5137 nm2) as compared with mature AC (95.0 % fragmented, molecular area: 8667 nm2), it was hypothesised that targeted proteolysis might be an adaptive process that modified aggrecan packing (as simulated computationally) and, hence, tissue charge density, mechanical properties and porosity. These observations provided a baseline against which pathological and/or age-related fragmentation of aggrecan could be assessed and suggested that new strategies might be required to engineer constructs that mimic the mechanical properties of native cartilaginous tissues.

  20. ac electroosmotic pumping induced by noncontact external electrodes

    PubMed Central

    Wang, Shau-Chun; Chen, Hsiao-Ping; Chang, Hsueh-Chia

    2007-01-01

    Electroosmotic (EO) pumps based on dc electroosmosis is plagued by bubble generation and other electrochemical reactions at the electrodes at voltages beyond 1 V for electrolytes. These disadvantages limit their throughput and offset their portability advantage over mechanical syringe or pneumatic pumps. ac electroosmotic pumps at high frequency (>100 kHz) circumvent the bubble problem by inducing polarization and slip velocity on embedded electrodes,1 but they require complex electrode designs to produce a net flow. We report a new high-throughput ac EO pump design based on induced-polarization on the entire channel surface instead of just on the electrodes. Like dc EO pumps, our pump electrodes are outside of the load section and form a cm-long pump unit consisting of three circular reservoirs (3 mm in diameter) connected by a 1×1 mm channel. The field-induced polarization can produce an effective Zeta potential exceeding 1 V and an ac slip velocity estimated as 1 mm∕sec or higher, both one order of magnitude higher than earlier dc and ac pumps, giving rise to a maximum throughput of 1 μl∕sec. Polarization over the entire channel surface, quadratic scaling with respect to the field and high voltage at high frequency without electrode bubble generation are the reasons why the current pump is superior to earlier dc and ac EO pumps. PMID:19693362

  1. Hydrogen peroxide stimulation of CFTR reveals an Epac-mediated, soluble AC-dependent cAMP amplification pathway common to GPCR signalling

    PubMed Central

    Ivonnet, P; Salathe, M; Conner, G E

    2015-01-01

    BACKGROUND AND PURPOSE H2O2 is widely understood to regulate intracellular signalling. In airway epithelia, H2O2 stimulates anion secretion primarily by activating an autocrine PGE2 signalling pathway via EP4 and EP1 receptors to initiate cytic fibrosis transmembrane regulator (CFTR)-mediated Cl− secretion. This study investigated signalling downstream of the receptors activated by H2O2. EXPERIMENTAL APPROACH Anion secretion by differentiated bronchial epithelial cells was measured in Ussing chambers during stimulation with H2O2, an EP4 receptor agonist or β2-adrenoceptor agonist in the presence and absence of inhibitors of ACs and downstream effectors. Intracellular calcium ([Ca2+]I) changes were followed by microscopy using fura–2-loaded cells and PKA activation followed by FRET microscopy. KEY RESULTS Transmembrane adenylyl cyclase (tmAC) and soluble AC (sAC) were both necessary for H2O2 and EP4 receptor-mediated CFTR activation in bronchial epithelia. H2O2 and EP4 receptor agonist stimulated tmAC to increase exchange protein activated by cAMP (Epac) activity that drives PLC activation to raise [Ca2+]i via Ca2+ store release (and not entry). Increased [Ca2+]i led to sAC activation and further increases in CFTR activity. Stimulation of sAC did not depend on changes in [HCO3−]. Ca2+-activated apical KCa1.1 channels and cAMP-activated basolateral KV7.1 channels contributed to H2O2-stimulated anion currents. A similar Epac-mediated pathway was seen following β2-adrenoceptor or forskolin stimulation. CONCLUSIONS AND IMPLICATIONS H2O2 initiated a complex signalling cascade that used direct stimulation of tmACs by Gαs followed by Epac-mediated Ca2+ crosstalk to activate sAC. The Epac-mediated Ca2+ signal constituted a positive feedback loop that amplified CFTR anion secretion following stimulation of tmAC by a variety of stimuli. PMID:25220136

  2. High-Permeability Magnetic Polymer Additives for Lightweight Electromagnetic Shielding

    DTIC Science & Technology

    2015-08-01

    organometallic complexes containing Fe2+ cations. [Cp] = cyclopentadiene; [Py] = pyrrole ; [Imid] = imidazole. ΔEmag values calculated with DFT using the...27 Table A-6 Energy difference between high- and low-spin magnetic states in transition metal ion- pyrrole (Py) complexes...2-],52 pyrrole (C4NH5),53 and other heterocyclic ligands.36,54 The cyclopentadienyl ligand, in particular, is ubiquitous in organometallic chemistry

  3. Operation of passive membrane systems for drinking water treatment.

    PubMed

    Oka, P A; Khadem, N; Bérubé, P R

    2017-05-15

    The widespread adoption of submerged hollow fibre ultrafiltration (UF) for drinking water treatment is currently hindered by the complexity and cost of these membrane systems, especially in small/remote communities. Most of the complexity is associated with auxiliary fouling control measures, which include backwashing, air sparging and chemical cleaning. Recent studies have demonstrated that sustained operation without fouling control measures is possible, but little is known regarding the conditions under which extended operation can be sustained with minimal to no fouling control measures. The present study investigated the contribution of different auxiliary fouling control measures to the permeability that can be sustained, with the intent of minimizing the mechanical and operational complexity of submerged hollow fiber UF membrane systems while maximizing their throughput capacity. Sustained conditions could be achieved without backwashing, air sparging or chemical cleaning (i.e. passive operation), indicating that these fouling control measures can be eliminated, substantially simplifying the mechanical and operational complexity of submerged hollow fiber UF systems. The adoption of hydrostatic pressure (i.e. gravity) to provide the driving force for permeation further reduced the system complexity. Approximately 50% of the organic material in the raw water was removed during treatment. The sustained passive operation and effective removal of organic material was likely due to the microbial community that established itself on the membrane surface. The permeability that could be sustained was however only approximately 20% of that which can be maintained with fouling control measures. Retaining a small amount of air sparging (i.e. a few minutes daily) and incorporating a daily 1-h relaxation (i.e. permeate flux interruption) period prior to sparging more than doubled the permeability that could be sustained. Neither the approach used to interrupt the permeate flux nor that developed to draw air into the system for sparging using gravity add substantial mechanical or operational complexity to the system. The high throughput capacity that can be sustained by eliminating all but a couple of simple fouling control measures make passive membrane systems ideally suited to provide high quality water especially where access to financial resources, technical expertise and/or electrical power is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Co2+Ti4+ substituted Z-type barium ferrite with enhanced imaginary permeability and resonance frequency

    NASA Astrophysics Data System (ADS)

    Li, Z. W.; Guoqing, Lin; Chen, Linfeng; Yuping, Wu; Ong, C. K.

    2006-03-01

    Co2+Ti4+ substitution for Fe3+ in Co2Z (Ba3Co2Fe24O41) has been prepared. The crystal structure and static and high-frequency magnetic properties have been studied for Ba3Co2+xTixFe24-2xO41 and the corresponding ferrite/polymer composites. As compared to the general Co2Z ferrite/polymer composite, the CoTi substituted ferrite/polymer composite with x=1.0 has a high natural resonance frequency (4.5 GHz), due to its large out-of-plane anisotropy fields Hθ. Furthermore, the maximum imaginary permeability μmax'' is increased by about 50%. The increase is attributed to a decreased damping coefficient, based on the curve-fitted results to the complex permeability spectra. The composites are good electromagnetic attenuation materials with low reflectivity and broad bandwidth at microwave frequencies.

  5. Magnetic viscosity phenomena in exchange coupled CoFe /MnIr bilayers

    NASA Astrophysics Data System (ADS)

    Kim, Dong Young; Kim, C. O.; Tsunoda, M.; Yamaguchi, M.; Yabugami, S.; Takahashi, M.

    2007-05-01

    The complex permeability spectra were measured in the low (10Hz-1MHz) and microwave (100MHz-9GHz) frequency ranges in CoFe /MnIr bilayers. The low frequency permeability spectra showed the magnetic viscosity effect below the critical antiferromagnet thickness (tcAF), but not at tAFtcAF. The discrepancies between dynamic and quasistatic measurements of the Jc only begin to appear in the vicinity of the tcAF and dominate at tAF

  6. Technique for Performing Dielectric Property Measurements at Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Jackson, Henry W. (Inventor)

    2014-01-01

    A method, system, apparatus, and computer readable medium has been provided with the ability to obtain a complex permittivity dielectric or a complex permeability micron of a sample in a cavity. One or more complex-valued resonance frequencies f(sub m) of the cavity, wherein each f(sub m) is a measurement, are obtained. Maxwell's equations are solved exactly for dielectric, and/or micron, using the f(sub m) as known quantities, thereby obtaining the dielectric and/or micron of the sample.

  7. Epilepsy Surgery for Individuals with TSC

    MedlinePlus

    ... AC, van der Grond J (2003) Diffusion-weighted magnetic resonance imaging and identification of the epileptogenic tuber ... tuberous sclerosis complex. Epilepsy Behav 20:561-565 Shields WD (2004) Surgical Treatment of Refractory Epilepsy. Curr ...

  8. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4.

    PubMed

    Herz, Hans-Martin; Mohan, Man; Garruss, Alexander S; Liang, Kaiwei; Takahashi, Yoh-Hei; Mickey, Kristen; Voets, Olaf; Verrijzer, C Peter; Shilatifard, Ali

    2012-12-01

    Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.

  9. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4

    PubMed Central

    Herz, Hans-Martin; Mohan, Man; Garruss, Alexander S.; Liang, Kaiwei; Takahashi, Yoh-hei; Mickey, Kristen; Voets, Olaf; Verrijzer, C. Peter; Shilatifard, Ali

    2012-01-01

    Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers. PMID:23166019

  10. How new concepts become universal scientific approaches: insights from citation network analysis of agent-based complex systems science.

    PubMed

    Vincenot, Christian E

    2018-03-14

    Progress in understanding and managing complex systems comprised of decision-making agents, such as cells, organisms, ecosystems or societies, is-like many scientific endeavours-limited by disciplinary boundaries. These boundaries, however, are moving and can actively be made porous or even disappear. To study this process, I advanced an original bibliometric approach based on network analysis to track and understand the development of the model-based science of agent-based complex systems (ACS). I analysed research citations between the two communities devoted to ACS research, namely agent-based (ABM) and individual-based modelling (IBM). Both terms refer to the same approach, yet the former is preferred in engineering and social sciences, while the latter prevails in natural sciences. This situation provided a unique case study for grasping how a new concept evolves distinctly across scientific domains and how to foster convergence into a universal scientific approach. The present analysis based on novel hetero-citation metrics revealed the historical development of ABM and IBM, confirmed their past disjointedness, and detected their progressive merger. The separation between these synonymous disciplines had silently opposed the free flow of knowledge among ACS practitioners and thereby hindered the transfer of methodological advances and the emergence of general systems theories. A surprisingly small number of key publications sparked the ongoing fusion between ABM and IBM research. Beside reviews raising awareness of broad-spectrum issues, generic protocols for model formulation and boundary-transcending inference strategies were critical means of science integration. Accessible broad-spectrum software similarly contributed to this change. From the modelling viewpoint, the discovery of the unification of ABM and IBM demonstrates that a wide variety of systems substantiate the premise of ACS research that microscale behaviours of agents and system-level dynamics are inseparably bound. © 2018 The Author(s).

  11. PVC Membrane Sensors for Potentiometric Determination of Acebutolol

    PubMed Central

    Mostafa, Gamal Abdel-Hafiz; Hefnawy, Mohamed Mahmoud; Al-Majed, Abdulrahman

    2007-01-01

    The construction and general performance characteristics of two novel potentiometric membrane sensors responsive to the acebutolol are described. The sensors are based on the use of ion-association complexes of acebutolol (AC) with tetraphenylborate(TPB) (I) and phosphomolybdate(PM) (II) as exchange sites in a PVC matrix. The sensors show a fast, stable and near- Nernstian for the mono charge cation of AC over the concentration range 1×10-3 - ∼10-6 M at 25 °C over the pH range 2.0 - 6.0 with cationic slope of 51.5 ± 0.5 and 53.0 ± 0.5 per concentration decade for AC-I and AC-II sensors respectively. The lower detection limit is 6×10-6 M and 4×0-6 M with the response time 20-30 s in the same order of both sensors. Selectivity coefficients of AC related to a number of interfering cation and some organic compounds were investigated. There are negligible interferences are caused by most of the investigated species. The direct determination of 3 - 370 μg/ml of AC shows an average recovery of 99.4 and 99.5% and a mean relative standard deviation of 1.5% at 100.0 μg/ml for sensor I and II respectively. The results obtained by determination of AC in tablets using the proposed sensors which comparable favorably with those obtained by the British pharmacopoeia method. In the present investigation the electrodes have been utilized as end point indicator for some precipitation titration reactions. PMID:28903293

  12. Delivery of Large Heterologous Polypeptides across the Cytoplasmic Membrane of Antigen-Presenting Cells by the Bordetella RTX Hemolysin Moiety Lacking the Adenylyl Cyclase Domain

    PubMed Central

    Holubova, Jana; Jelinek, Jiri; Tomala, Jakub; Masin, Jiri; Kosova, Martina; Stanek, Ondrej; Bumba, Ladislav; Michalek, Jaroslav; Kovar, Marek; Sebo, Peter

    2012-01-01

    The Bordetella adenylate cyclase toxin-hemolysin (CyaA; also called ACT or AC-Hly) targets CD11b-expressing phagocytes and translocates into their cytosol an adenylyl cyclase (AC) that hijacks cellular signaling by conversion of ATP to cyclic AMP (cAMP). Intriguingly, insertion of large passenger peptides removes the enzymatic activity but not the cell-invasive capacity of the AC domain. This has repeatedly been exploited for delivery of heterologous antigens into the cytosolic pathway of CD11b-expressing dendritic cells by CyaA/AC− toxoids, thus enabling their processing and presentation on major histocompatibility complex (MHC) class I molecules to cytotoxic CD8+ T lymphocytes (CTLs). We produced a set of toxoids with overlapping deletions within the first 371 residues of CyaA and showed that the structure of the AC enzyme does not contain any sequences indispensable for its translocation across target cell membrane. Moreover, replacement of the AC domain (residues 1 to 371) with heterologous polypeptides of 40, 146, or 203 residues yielded CyaAΔAC constructs that delivered passenger CTL epitopes into antigen-presenting cells (APCs) and induced strong antigen-specific CD8+ CTL responses in vivo in mice and ex vivo in human peripheral blood mononuclear cell cultures. This shows that the RTX (repeats in toxin) hemolysin moiety, consisting of residues 374 to 1706 of CyaA, harbors all structural information involved in translocation of the N-terminal AC domain across target cell membranes. These results decipher the extraordinary capacity of the AC domain of CyaA to transport large heterologous cargo polypeptides into the cytosol of CD11b+ target cells and pave the way for the construction of CyaAΔAC-based polyvalent immunotherapeutic T cell vaccines. PMID:22215742

  13. Microseismicity cloud can be substantially larger than the associated stimulated fracture volume: the case of the Paralana Enhanced Geothermal System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riffault, Jeremy; Dempsey, David; Karra, Satish

    The goal of hydraulic stimulation is to increase formation permeability in the near vicinity of a well. However, there remain technical challenges around measuring the outcome of this operation. During two Enhanced Geothermal System (EGS) stimulations in South Australia, Paralana in 2011 and Habanero in 2003, extensive catalogs of microseismicity were recovered. It is often assumed that shear failure of existing fractures is the main mechanism behind both the induced earthquakes and any permeability enhancement. This underpins a common notion, that the seismically active volume is also the stimulated reservoir. In this paper, we compute the density of earthquake hypocentersmore » and provide evidence that, under certain conditions, this spatiotemporal quantity is a reasonable proxy for pore pressure increase. We then apply an inverse modeling approach that uses the earthquake observations and a modified reservoir simulator to estimate the parameters of a permeability evolution relation. The regime implied by the data indicates that most permeability enhancement occurred very near to the wellbore and was not coincident with the bulk of the seismicity, whose volume was about two orders of magnitude larger. Thus, we conclude that, in some cases, it is possible for permeability enhancement and induced seismicity to be decoupled, in which case the seismically active volume is a poor indicator of the stimulated reservoir. Our results raise serious questions about the effectiveness of hydroshearing as a stimulation mechanism in EGS. Finally, this study extends our understanding of the complex processes linking earthquakes, fluid pressure, and permeability in both natural and engineered settings.« less

  14. Permeability changes induced by microfissure closure and opening in tectonized materials. Effect on slope pore pressure regime.

    NASA Astrophysics Data System (ADS)

    De la Fuente, Maria; Vaunat, Jean; Pedone, Giuseppe; Cotecchia, Federica; Sollecito, Francesca; Casini, Francesca

    2015-04-01

    Tectonized clays are complex materials characterized by several levels of structures that may evolve during load and wetting/drying processes. Some microstructural patterns, as microfissures, have a particular influence on the value of permeability which is one of the main factors controlling pore pressure regime in slopes. In this work, the pore pressure regime measured in a real slope of tectonized clay in Southern Italy is analyzed by a numerical model that considers changes in permeability induced by microfissure closure and opening during the wetting and drying processes resulting from climatic actions. Permeability model accounts for the changes in Pore Size Distribution observed by Microscopy Intrusion Porosimetry. MIP tests are performed on representative samples of ground in initial conditions ("in situ" conditions) and final conditions (deformed sample after applying a wetting path that aims to reproduce the saturation of the soil under heavy rains). The resulting measurements allow for the characterization at microstructural level of the soil, identifying the distribution of dominant families pores in the sample and its evolution under external actions. Moreover, comparison of pore size density functions allows defining a microstructural parameter that depends on void ratio and degree of saturation and controls the variation of permeability. Model has been implemented in a thermo-hydro-mechanical code provided with a special boundary condition for climatic actions. Tool is used to analyze pore pressure measurements obtained in the tectonized clay slope. Results are analyzed at the light of the effect that permeability changes during wetting and drying have on the pore pressure regime.

  15. Eddy currents in the measurement of magnetic susceptibility of rocks

    NASA Astrophysics Data System (ADS)

    Ježek, Josef; Hrouda, František

    2018-01-01

    The in-phase and out-of-phase susceptibility of rocks is determined by the magnetic permeability of minerals, their viscous relaxation, and by eddy currents in electrically conductive minerals induced by the applied field. The last effect has been modelled by analytical solution of Maxwell equations for a conductive sphere immersed in a homogeneous, non-conductive medium with given permeability, in presence of an alternating field. The solution is a complex function of parameters describing the sphere (its size, conductivity and permeability), surrounding medium (permeability) and applied field (frequency). Without numerical evaluations, it is difficult to distinguish in-phase and out-of-phase (OPS) susceptibility. In this paper, approximate equations are derived for both susceptibility components, which depend only on the permeability contrast between the sphere and the surrounding medium, and the skin ratio, defined as the ratio between sphere radius and skin depth of the induced currents. These equations are used to obtain a systematic assessment of the role of electrical conductivity in determining the susceptibility of rock samples. The contribution of eddy currents to the susceptibility of diluted (<5%) magnetite particle dispersions is negligible at 1 kHz, but not at higher frequencies. Common rock-forming paramagnetic and diamagnetic minerals with weak electrical conductivity and magnetic permeability are characterized by negligible OPS at 1 kHz. Theoretically, measurable OPS and high phase angles can be produced by paramagnetic conductive minerals in certain combinations with a diamagnetic matrix. This can be excluded from practical point of view for paramagnetic minerals with susceptibilities >0.003 and conductivities not exceeding 5000 S/m.

  16. Permeability Sensitivity Functions and Rapid Simulation of Hydraulic-Testing Measurements Using Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Escobar Gómez, J. D.; Torres-Verdín, C.

    2018-03-01

    Single-well pressure-diffusion simulators enable improved quantitative understanding of hydraulic-testing measurements in the presence of arbitrary spatial variations of rock properties. Simulators of this type implement robust numerical algorithms which are often computationally expensive, thereby making the solution of the forward modeling problem onerous and inefficient. We introduce a time-domain perturbation theory for anisotropic permeable media to efficiently and accurately approximate the transient pressure response of spatially complex aquifers. Although theoretically valid for any spatially dependent rock/fluid property, our single-phase flow study emphasizes arbitrary spatial variations of permeability and anisotropy, which constitute key objectives of hydraulic-testing operations. Contrary to time-honored techniques, the perturbation method invokes pressure-flow deconvolution to compute the background medium's permeability sensitivity function (PSF) with a single numerical simulation run. Subsequently, the first-order term of the perturbed solution is obtained by solving an integral equation that weighs the spatial variations of permeability with the spatial-dependent and time-dependent PSF. Finally, discrete convolution transforms the constant-flow approximation to arbitrary multirate conditions. Multidimensional numerical simulation studies for a wide range of single-well field conditions indicate that perturbed solutions can be computed in less than a few CPU seconds with relative errors in pressure of <5%, corresponding to perturbations in background permeability of up to two orders of magnitude. Our work confirms that the proposed joint perturbation-convolution (JPC) method is an efficient alternative to analytical and numerical solutions for accurate modeling of pressure-diffusion phenomena induced by Neumann or Dirichlet boundary conditions.

  17. Microseismicity cloud can be substantially larger than the associated stimulated fracture volume: the case of the Paralana Enhanced Geothermal System

    DOE PAGES

    Riffault, Jeremy; Dempsey, David; Karra, Satish; ...

    2018-06-21

    The goal of hydraulic stimulation is to increase formation permeability in the near vicinity of a well. However, there remain technical challenges around measuring the outcome of this operation. During two Enhanced Geothermal System (EGS) stimulations in South Australia, Paralana in 2011 and Habanero in 2003, extensive catalogs of microseismicity were recovered. It is often assumed that shear failure of existing fractures is the main mechanism behind both the induced earthquakes and any permeability enhancement. This underpins a common notion, that the seismically active volume is also the stimulated reservoir. In this paper, we compute the density of earthquake hypocentersmore » and provide evidence that, under certain conditions, this spatiotemporal quantity is a reasonable proxy for pore pressure increase. We then apply an inverse modeling approach that uses the earthquake observations and a modified reservoir simulator to estimate the parameters of a permeability evolution relation. The regime implied by the data indicates that most permeability enhancement occurred very near to the wellbore and was not coincident with the bulk of the seismicity, whose volume was about two orders of magnitude larger. Thus, we conclude that, in some cases, it is possible for permeability enhancement and induced seismicity to be decoupled, in which case the seismically active volume is a poor indicator of the stimulated reservoir. Our results raise serious questions about the effectiveness of hydroshearing as a stimulation mechanism in EGS. Finally, this study extends our understanding of the complex processes linking earthquakes, fluid pressure, and permeability in both natural and engineered settings.« less

  18. Increased apical Na+ permeability in cystic fibrosis is supported by a quantitative model of epithelial ion transport

    PubMed Central

    O’Donoghue, Donal L; Dua, Vivek; Moss, Guy W J; Vergani, Paola

    2013-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes an anion channel. In the human lung CFTR loss causes abnormal ion transport across airway epithelial cells. As a result CF individuals produce thick mucus, suffer persistent bacterial infections and have a much reduced life expectancy. Trans-epithelial potential difference (Vt) measurements are routinely carried out on nasal epithelia of CF patients in the clinic. CF epithelia exhibit a hyperpolarised basal Vt and a larger Vt change in response to amiloride (a blocker of the epithelial Na+ channel, ENaC). Are these altered bioelectric properties solely a result of electrical coupling between the ENaC and CFTR currents, or are they due to an increased ENaC permeability associated with CFTR loss? To examine these issues we have developed a quantitative mathematical model of human nasal epithelial ion transport. We find that while the loss of CFTR permeability hyperpolarises Vt and also increases amiloride-sensitive Vt, these effects are too small to account for the magnitude of change observed in CF epithelia. Instead, a parallel increase in ENaC permeability is required to adequately fit observed experimental data. Our study provides quantitative predictions for the complex relationships between ionic permeabilities and nasal Vt, giving insights into the physiology of CF disease that have important implications for CF therapy. PMID:23732645

  19. Controls on Permeability Evolution in Fractured-Sorbing Media

    NASA Astrophysics Data System (ADS)

    Elsworth, D.

    2017-12-01

    A critical component in the desire to recover energy and fuels from the subsurface, or to sequester energy-related and other wastes, is the ability to control properties that influence the transport and storage of mass, fluids and energy. In fractured media, permeabilities are strongly dependent on effective stresses. In turn, effective stresses (M) are mediated by changes in fluid pressures (H), compositions of the permeating fluids and permeated rocks (C) and changes in temperature (T) - and sometimes influenced by biological (B) processes. First we explore the role of specific complex THMC(B) interactions in mediating changes in permeability in response to a change in spherical stress. These include the roles of differential strains, induced within shales by changes in pressure (H), gas concentration (C) or temperature (T), in driving changes in permeability, in particular where the effects of sorption are pronounced. We show that the influence of such pressure-, sorption- and thermally-induced changes in damage and porosity are countered, by the first order resetting effects of creep that influence the crack distribution within the fractured aggregate. Second, we explore linkages where friction and instability control the response to changes in differential stress. Changes in permeability are controlled by styles of deformation - brittle versus ductile - with modes of deformation in turn mediated by mineralogy of both native and altered mineral constituents, the evolving scale of deformation and in the progress of deformation through the dynamic loading cycle.

  20. Critical dynamics of gravito-convective mixing in geological carbon sequestration

    DOE PAGES

    Soltanian, Mohamad Reza; Amooie, Mohammad Amin; Dai, Zhenxue; ...

    2016-11-03

    When CO 2 is injected in saline aquifers, dissolution causes a local increase in brine density that can cause Rayleigh-Taylor-type gravitational instabilities. Depending on the Rayleigh number, density-driven flow may mix dissolved CO 2 throughout the aquifer at fast advective time-scales through convective mixing. Heterogeneity can impact density-driven flow to different degrees. Zones with low effective vertical permeability may suppress fingering and reduce vertical spreading, while potentially increasing transverse mixing. In more complex heterogeneity, arising from the spatial organization of sedimentary facies, finger propagation is reduced in low permeability facies, but may be enhanced through more permeable facies. The connectivitymore » of facies is critical in determining the large-scale transport of CO 2-rich brine. We perform high-resolution finite element simulations of advection-diffusion transport of CO 2 with a focus on facies-based bimodal heterogeneity. Permeability fields are generated by a Markov Chain approach, which represent facies architecture by commonly observed characteristics such as volume fractions. CO 2 dissolution and phase behavior are modeled with the cubic-plus-association equation-of-state. Our results show that the organization of high-permeability facies and their connectivity control the dynamics of gravitationally unstable flow. Lastly, we discover new flow regimes in both homogeneous and heterogeneous media and present quantitative scaling relations for their temporal evolution.« less

  1. Capturing poromechanical coupling effects of the reactive fracturing process in porous rock via a DEM-network model

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing

    2016-04-01

    Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I., Jamtveit, B., and Malthe-Sørenssen, A., "Reaction-driven fracturing of porous rock", J. Geophys. Res. Solid Earth 119, 2014b, doi:10.1002/2014JB011102. [3] Ulven, O. I., and Sun, W.C., "A locally mass-conserving dual-graph lattice model for fluid-driven fracture", in prep.

  2. Hydrothermal activity and subsoil complexity: implication for degassing processes at Solfatara crater, Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Montanaro, Cristian; Mayer, Klaus; Isaia, Roberto; Gresse, Marceau; Scheu, Bettina; Yilmaz, Tim I.; Vandemeulebrouck, Jean; Ricci, Tullio; Dingwell, Donald B.

    2017-12-01

    The Solfatara area and its fumaroles are the main surface expression of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. At depth, a range of volcanic and structural processes dictate the actual state of the hydrothermal system below the crater. The presence of a large variety of volcanic products at shallow depth (including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias, and lavas), and the existence of a maar-related fault system appears to exert major controls on the degassing and alteration behavior. Adding further to the complexity of this environment, variations in permeability and porosity, due to subsoil lithology and alteration effects, may further influence fluid flow towards the surface. Here, we report results from a field campaign conducted in July 2015 that was designed to characterize the in situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties of the Solfatara crater subsoil. The survey also included a mapping of the surficial hydrothermal features and their distributions. Finally, laboratory measurements (porosity, granulometry) of selected samples were performed. Our results enable the discrimination of four main subsoils around the crater: (1) the Fangaia domain located in a topographic low in the southwestern sector, (2) the silica flat domain on the western altered side, (3) the new crust domain in the central area, and (4) the crusted hummocks domain that dominates the north, east, and south parts. These domains are surrounded by encrusted areas, reworked material, and vegetated soil. The distribution of these heterogeneous subsoils suggests that their formation is mostly related to (i) the presence of the Fangaia domain within the crater and (ii) a system of ring faults bordering it. The subsoils show an alternation between very high and very low permeabilities, a fact which seems to affect both the temperature distribution and surficial degassing. A large range of surface temperatures (from 25 up to 95 °C) has been measured across these surfaces, with the hottest spot corresponding to the mud pools, the area of new crust formation, and the crusted hummocks. In the subsoil, the distribution of temperature is more complex and controlled by the presence of coarser, and more permeable, sandy/pebbly levels. These act as preferential pathways for hot hydrothermal fluid circulation. In contrast, low permeability, fine-grained levels act as thermal insulators that remain relatively cold and hinder fluid escape to the surface. Hot gases reach the surface predominantly along (vertical) fractures. When this occurs, mound-like structures can be formed by a cracking and healing process associated with significant degassing. It is anticipated that the results presented here may contribute to an improved understanding of the hazard potential associated with the ongoing hydrothermal activity within the Solfatara crater. At this site the permeability of the near-surface environment and its changes in space and time can affect the spatial and temporal distribution of gas and heat emission. Particularly, in areas where reduction in permeability occurs, it can produce pore pressure augmentation that may result in explosive events.

  3. Cyclodextrin Enhances Corneal Tolerability and Reduces Ocular Toxicity Caused by Diclofenac

    PubMed Central

    Abdelkader, Hamdy; Fathalla, Zeinab; Moharram, Hossam; Ali, Taha F. S.

    2018-01-01

    With advances in refractive surgery and demand for cataract removal and lens replacement, the ocular use of nonsteroidal anti-inflammatory drugs (NSAIDs) has increased. One of the most commonly used NSAIDs is diclofenac (Diclo). In this study, cyclodextrins (CDs), α-, β-, γ-, and HP-β-CDs, were investigated with in vitro irritation and in vivo ulceration models in rabbits to reduce Diclo toxicity. Diclo-, α-, β-, γ-, and HP-β-CD inclusion complexes were prepared and characterized and Diclo-CD complexes were evaluated for corneal permeation, red blood cell (RBCs) haemolysis, corneal opacity/permeability, and toxicity. Guest- (Diclo-) host (CD) solid inclusion complexes were formed only with β-, γ-, and HP-β-CDs. Amphipathic properties for Diclo were recorded and this surfactant-like functionality might contribute to the unwanted effects of Diclo on the surface of the eye. Contact angle and spreading coefficients were used to assess Diclo-CDs in solution. Reduction of ocular toxicity 3-fold to16-fold and comparable corneal permeability to free Diclo were recorded only with Diclo-γ-CD and Diclo-HP-β-CD complexes. These two complexes showed faster healing rates without scar formation compared with exposure to the Diclo solution and to untreated groups. This study also highlighted that Diclo-γ-CD and Diclo-HP-β-CD demonstrated fast healing without scar formation. PMID:29636847

  4. Anti-inflammatory activity of the essential oil obtained from Ocimum basilicum complexed with β-cyclodextrin (β-CD) in mice.

    PubMed

    Rodrigues, Lindaiane Bezerra; Martins, Anita Oliveira Brito Pereira Bezerra; Ribeiro-Filho, Jaime; Cesário, Francisco Rafael Alves Santana; E Castro, Fyama Ferreira; de Albuquerque, Thaís Rodrigues; Fernandes, Maria Neyze Martins; da Silva, Bruno Anderson Fernandes; Quintans Júnior, Lucindo José; Araújo, Adriano Antunes de Sousa; Menezes, Paula Dos Passos; Nunes, Paula Santos; Matos, Isabella Gonçalves; Coutinho, Henrique Douglas Melo; Goncalves Wanderley, Almir; de Menezes, Irwin Rose Alencar

    2017-11-01

    Cyclodextrins (CDs) are cyclic oligosaccharides can enhance the bioavailability of drugs. Ocimum basilicum is an aromatic plant found in Brazil used in culinary. The essential oil of this plant presents anti-edematogenic and anti-inflammatory activities in acute and chronic inflammation. The aim of this study was to investigate the anti-inflammatory effects of the essential oil obtained from O. basilicum complexed with β - cyclodextrin (OBEO/β-CD) in mice. The complexation with β-cyclodextrin (β-CD) was performed by different methods and analyzed by differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy (SEM). The anti-inflammatory activity was evaluated using mice models of paw edema induced by carrageenan, dextran, histamine and arachidonic acid (AA); vascular permeability and peritonitis induced by carrageenan and granuloma induced by cotton block introduction. The DSC, TG and SEM analysis indicated that the OBEO was successfully complexed with β-CD. The oral administration of OEOB/β-CD prevented paw edema formation by decreasing vascular permeability in vivo, inhibited leukocyte recruitment to the peritoneal cavity, and inhibited granuloma formation in mice. Our results indicate that conjugation with β-CD improves the anti-inflammatory effects of OBEO in mice models of acute and chronic inflammation, indicating that this complex can be used in anti-inflammatory drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Aegean/Cycladic and the Basin and Range Extensional Provinces - A Tectonic and Geochronologic Perspective

    NASA Astrophysics Data System (ADS)

    Stockli, D. F.

    2017-12-01

    The Aegean/Cycladic region (AC) and the Basin and Range Province (B&R) are two of the most famous Cenozoic extensional provinces and have greatly influenced our thinking about syn-convergent back-arc extension, core complex formation, syn-extensional magmatism, and kinematic transitions. They share numerous tectonic and structural similarities, such as a syn-convergent setting, previous contractional deformation, and core complex formation, but fundamental geological ambiguities remain, mainly centering around timing. The B&R affected a previously contractional belt (Sevier) and voluminous continental magmatic arc that created a pre-extensional orogenic highland. Extension was long-lived and complex, driven by both gravitational collapse and temporally distinct kinematic boundary condition changes. The B&R was also affected by massive, largely pre-extensional regional magmatic flare-ups that modified both the thermal and crustal composition. As the B&R occupies an elevated interior plateau, syn-extensional basin deposits are exclusively continental in character. In contrast, the AC is a classic marine back-arc extensional province that affected an active subduction margin with numerous accreted oceanic and continental ribbons, exhuming an early Cenozoic HP-LT subduction complex. Exhumation of the HP-LT complex, however, was accommodated both by vertical extrusion and crustal extension. Late Cenozoic extensional faulting was contemporaneous with S-ward sweeping arc magmatism and affected by little to no kinematic changes. As both the AC and B&R experienced contractional deformation during K-Cz subduction and J-K shortening, respectively, it is critical to differentiate between contractional and extensional structures and fabrics. The lack of temporal constraints hampers the reconstructions of pre-extensional structural anatomies and extensional strain magnitudes or even the attribution of structures to specific geodynamic settings. Novel methodologies in petrochronology, detrital geochronology, and high- and low-T thermochronometry allow us to elucidate pre-extensional crustal geometries, differentiate contractional from extensional fabrics, and understand the thermal and rheological evolution of these extensional provinces in a more holistic fashion.

  6. Microfracture development and foam collapse during lava dome growth

    NASA Astrophysics Data System (ADS)

    Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; Cole, J. W.; Dingwell, D. B.

    2012-12-01

    The ability of a volcano to degas effectively is regulated by the collapse of the foam during lava dome growth. As a lava dome extrudes and cools, it will begin to collapse under its own weight, leading to the closure of bubbles and the eventual blockage of the permeable foam network. A reduction in the lavas permeability hinders gas movement and increases internal bubble pressure, which may eventually lead to failure of the bubble walls, and ultimately to explosive fragmentation of the dome. However, the behaviour of lava dome material under compression is poorly understood. Here we present the results of low-load, uniaxial, high temperature (850oC) compression experiments on glassy, rhyolitic dome material from Ngongotaha (~200ka, following collapse of Rotorua Caldera) and Tarawera (1314AD, from dome collapse generated block and ash flow) domes in New Zealand. The development of textures and microstructures was tracked using neutron computed tomography at incremental stages of strain. Porosity and permeability measurements, using pycnometry and gas permeability, before and after each experiment quantified the evolution of the permeable bubble network. Our results show that uniaxial compression of vesicular lava leads to a systematic reduction of porosity on a timescale comparable to volcanic eruptions (hours - days). The closure of bubbles naturally decreases permeability parallel and perpendicular to the applied load, and at high strains fractures begin to initiate in phenocrysts and propagate vertically into the glass. These microfractures result in localised increases in permeability. Crystallinity and initial vesicularity of each sample affects the rate of bubble collapse and the evolution of permeability. The most highly compressed samples (60%) show textures similar to samples collected from the centre of Tarawera Dome, thought to have suffered from collapse shortly after dome emplacement. However, structures and porosities in the deformed Ngongotaha samples differ from the natural collapsed dome material. The interior of Ngongotaha Dome shows complex deformed flow banding, indicating that shearing during emplacement was a major component during collapse of the permeable foam. Understanding the development of the porous permeable network during lava dome growth is key to predicting the behaviour of an erupting volcano, and the assessing the likelihood of pressure build-up leading to a catastrophic explosive eruption.

  7. AC electrical conductivity and dielectric relaxation studies on n-type organic thin films of N, N‧-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC)

    NASA Astrophysics Data System (ADS)

    Qashou, Saleem I.; Darwish, A. A. A.; Rashad, M.; Khattari, Z.

    2017-11-01

    Both Alternating current (AC) conductivity and dielectric behavior of n-type organic thin films of N, N‧-Dimethyl-3,4,9,10-perylenedicarboximide (DMPDC) have been investigated. Fourier transformation infrared (FTIR) spectroscopy is used for identifying both powder and film bonds which confirm that there are no observed changes in the bonds between the DMPDC powder and evaporated films. The dependence of AC conductivity on the temperature for DMPDC evaporated films was explained by the correlated barrier hopping (CBH) model. The calculated barrier height using CBH model shows a decreasing behavior with increasing temperature. The mechanism of dielectric relaxation was interpreted on the basis of the modulus of the complex dielectric. The calculated activation energy of the relaxation process was found to be 0.055 eV.

  8. Design of air-gapped magnetic-core inductors for superimposed direct and alternating currents

    NASA Technical Reports Server (NTRS)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1976-01-01

    Using data on standard magnetic-material properties and standard core sizes for air-gap-type cores, an algorithm designed for a computer solution is developed which optimally determines the air-gap length and locates the quiescent point on the normal magnetization curve so as to yield an inductor design with the minimum number of turns for a given ac voltage and frequency and with a given dc bias current superimposed in the same winding. Magnetic-material data used in the design are the normal magnetization curve and a family of incremental permeability curves. A second procedure, which requires a simpler set of calculations, starts from an assigned quiescent point on the normal magnetization curve and first screens candidate core sizes for suitability, then determines the required turns and air-gap length.

  9. Microstructure, soft magnetic properties and applications of amorphous Fe-Co-Si-B-Mo-P alloy

    NASA Astrophysics Data System (ADS)

    Hasiak, Mariusz; Miglierini, Marcel; Łukiewski, Mirosław; Łaszcz, Amadeusz; Bujdoš, Marek

    2018-05-01

    DC thermomagnetic properties of Fe51Co12Si16B8Mo5P8 amorphous alloy in the as-quenched and after annealing below crystallization temperature are investigated. They are related to deviations in the microstructure as revealed by Mössbauer spectrometry. Study of AC magnetic properties, i.e. hysteresis loops, relative permeability and core losses versus maximum induction was aimed at obtaining optimal initial parameters for simulation process of a resonant transformer for a rail power supply converter. The results obtained from numerical analyses including core losses, winding losses, core mass, and dimensions were compared with the same parameters calculated for Fe-Si alloy and ferrite. Moreover, Steinmetz coefficients were also calculated for the as-quenched Fe51Co12Si16B8Mo5P8 amorphous alloy.

  10. Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Jun; Zhang, Bin; Wu, Qilei; Su, Xiaogang

    2017-12-01

    The multiscale approach has been adapted to enhance the electromagnetic interference shielding properties of carbon fiber (CF) veil epoxy-based composites. The Fe3O4 nanoparticles (NPs) were homogeneously dispersed in the epoxy matrix after surface modification by using silane coupling agent. The CF veil/Fe3O4 NPs/epoxy multiscale composites were manufactured by impregnating the CF veils with Fe3O4 NPs/epoxy mixture to prepare prepreg followed by vacuum bagging process. The electromagnetic interference shielding properties combined with the complex permittivity and complex permeability of the composites were investigated in the X-band (8.2-12.4 GHz) range. The total shielding effectiveness (SET) increases with increasing Fe3O4 NPs loadings and the maximum SET is 51.5 dB at low thickness of 1 mm. The incorporation of Fe3O4 NPs into the composites enhances the complex permittivity and complex permeability thus enhancing the electromagnetic wave absorption capability. The increased SET dominated by absorption loss SEA is attributed to the enhanced magnetic loss and dielectric loss generated by Fe3O4 NPs and multilayer construction of the composites. The microwave conductivity increases and the skin depth decreases with increasing Fe3O4 NPs loadings.

  11. Parasite killing in malaria non-vector mosquito Anopheles culicifacies species B: implication of nitric oxide synthase upregulation.

    PubMed

    Vijay, Sonam; Rawat, Manmeet; Adak, Tridibes; Dixit, Rajnikant; Nanda, Nutan; Srivastava, Harish; Sharma, Joginder K; Prasad, Godavarthi B K S; Sharma, Arun

    2011-04-04

    Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS) physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. We conducted a study on phylogenetically related susceptible (species A) and refractory (species B) sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against the parasite and could be utilized to understand the molecular basis of refractoriness in planning effective vector control strategies.

  12. Parasite Killing in Malaria Non-Vector Mosquito Anopheles culicifacies Species B: Implication of Nitric Oxide Synthase Upregulation

    PubMed Central

    Vijay, Sonam; Rawat, Manmeet; Adak, Tridibes; Dixit, Rajnikant; Nanda, Nutan; Srivastava, Harish; Sharma, Joginder K.; Prasad, Godavarthi B. K. S.; Sharma, Arun

    2011-01-01

    Background Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS) physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. Methodology/Principal Findings We conducted a study on phylogenetically related susceptible (species A) and refractory (species B) sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. Conclusions/Significance We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against the parasite and could be utilized to understand the molecular basis of refractoriness in planning effective vector control strategies. PMID:21483693

  13. Poromechanical response of naturally fractured sorbing media

    NASA Astrophysics Data System (ADS)

    Kumar, Hemant

    The injection of CO2 in coal seams has been utilized for enhanced gas recovery and potential CO2 sequestration in unmineable coal seams. It is advantageous because as it enhances the production and significant volumes of CO2 may be stored simultaneously. The key issues for enhanced gas recovery and geologic sequestration of CO2 include (1) Injectivity prediction: The chemical and physical processes initiated by the injection of CO2 in the coal seam leads to permeability/porosity changes (2) Up scaling: Development of full scale coupled reservoir model which may predict the enhanced production, associated permeability changes and quantity of sequestered CO2. (3) Reservoir Stimulation: The coalbeds are often fractured and proppants are placed into the fractures to prevent the permeability reduction but the permeability evolution in such cases is poorly understood. These issues are largely governed by dynamic coupling of adsorption, fluid exchange, transport, water content, stress regime, fracture geometry and physiomechanical changes in coals which are triggered by CO 2 injection. The understanding of complex interactions in coal has been investigated through laboratory experiments and full reservoir scale models are developed to answer key issues. (Abstract shortened by ProQuest.).

  14. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  15. Development of Topical Treatment for Pseudomonas aeruginosa Wound Infections by Quorum-Sensing Inhibitors Mediated by Poly(amidoamine) (PAMAM) Dendrimers

    DTIC Science & Technology

    2013-01-01

    baicalein, baicalin ) and PAMAM dendrimers (G5-NH2, G4-NH2, G3- NH2, G5-COOH, G5-OH) from commercial sources. To synthesize QSI-PAMAM complexes by...of QSI and PAMAM in the complex was listed in Table 1. 4 Conjugation of baicalin was carried according the proposed synthesis scheme. In this...performance period, we synthesized baicalin complex with G5-Ac50 by conjugation. To generate covalently conjugated QSI-PAMAM complexes, the PAMAM

  16. ACS from development to operations

    NASA Astrophysics Data System (ADS)

    Caproni, Alessandro; Colomer, Pau; Jeram, Bogdan; Sommer, Heiko; Chiozzi, Gianluca; Mañas, Miguel M.

    2016-08-01

    The ALMA Common Software (ACS), provides the infrastructure of the distributed software system of ALMA and other projects. ACS, built on top of CORBA and Data Distribution Service (DDS) middleware, is based on a Component- Container paradigm and hides the complexity of the middleware allowing the developer to focus on domain specific issues. The transition of the ALMA observatory from construction to operations brings with it that ACS effort focuses primarily on scalability, stability and robustness rather than on new features. The transition came together with a shorter release cycle and a more extensive testing. For scalability, the most problematic area has been the CORBA notification service, used to implement the publisher subscriber pattern because of the asynchronous nature of the paradigm: a lot of effort has been spent to improve its stability and recovery from run time errors. The original bulk data mechanism, implemented using the CORBA Audio/Video Streaming Service, showed its limitations and has been replaced with a more performant and scalable DDS implementation. Operational needs showed soon the difference between releases cycles for Online software (i.e. used during observations) and Offline software, which requires much more frequent releases. This paper attempts to describe the impact the transition from construction to operations had on ACS, the solution adopted so far and a look into future evolution.

  17. General surgery 2.0: the emergence of acute care surgery in Canada

    PubMed Central

    Hameed, S. Morad; Brenneman, Frederick D.; Ball, Chad G.; Pagliarello, Joe; Razek, Tarek; Parry, Neil; Widder, Sandy; Minor, Sam; Buczkowski, Andrzej; MacPherson, Cailan; Johner, Amanda; Jenkin, Dan; Wood, Leanne; McLoughlin, Karen; Anderson, Ian; Davey, Doug; Zabolotny, Brent; Saadia, Roger; Bracken, John; Nathens, Avery; Ahmed, Najma; Panton, Ormond; Warnock, Garth L.

    2010-01-01

    Over the past 5 years, there has been a groundswell of support in Canada for the development of organized, focused and multidisciplinary approaches to caring for acutely ill general surgical patients. Newly forged acute care surgery (ACS) services are beginning to provide prompt, evidence-based and goal-directed care to acutely ill general surgical patients who often present with a diverse range of complex pathologies and little or no pre- or postoperative planning. Through a team-based structure with attention to processes of care and information sharing, ACS services are well positioned to improve outcomes, while finding and developing efficiencies and reducing costs of surgical and emergency health care delivery. The ACS model also offers enhanced opportunities for surgical education for students, residents and practicing surgeons, and it will provide avenues to strengthen clinical and academic bonds between the community and academic surgical centres. In the near future, cooperation of ACS services from community and academic hospitals across the country will lead to the formation of systems of acute surgical care whose development will be informed by rigorous data collection and research and evidence-based quality-improvement initiatives. In an era of increasing subspecialization, ACS is a strong unifying force in general surgery and a platform for collective advocacy for an important patient population. PMID:20334738

  18. Exploring the mechanism how AF9 recognizes and binds H3K9ac by molecular dynamics simulations and free energy calculations.

    PubMed

    Wang, Quan; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-11-01

    Histone acetylation is a very important regulatory mechanism in gene expression in the chromatin context. A new protein family-YEATS domains have been found as a novel histone acetylation reader, which could specific recognize the histone lysine acetylation. AF9 is an important one in the YEATS family. Focused on the AF9-H3K9ac (K9 acetylation) complex (ALY) (PDB code: 4TMP) and a serials of mutants, MUT (the acetyllsine of H3K9ac was mutated to lysine), F59A, G77A, and D103A, we applied molecular dynamics simulation and molecular mechanics Poisson-Boltzmann (MM-PBSA) free energy calculations to examine the role of AF9 protein in recognition interaction. The simulation results and analysis indicate that some residues of the protein have significant influence on recognition and binding to H3K9ac peptides and hydrophobic surface show the hydrophobic interactions play an important role in the binding. Our work can give important information to understand how the protein AF9 recognizes the peptides H3K9ac. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 779-786, 2016. © 2016 Wiley Periodicals, Inc.

  19. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Lin, Che-Tseng; Huang, Ching-An

    The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO 2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO 2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO 2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO 2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO 2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH 3OH, 2 M C 2H 5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm -2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO 2 composite polymer membrane with the permeability values in the order of 10 -7 to 10 -8 cm 2 s -1 is a potential candidate for use on alkaline DAFCs.

  20. Spatio-Temporal Self-Organization in Mudstones (Invited)

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000

  1. Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements

    NASA Astrophysics Data System (ADS)

    Cliffe, K. A.; Graham, I. G.; Scheichl, R.; Stals, L.

    2000-11-01

    In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the solution of the linear first-order velocity-pressure system comprising Darcy's law coupled with an incompressibility constraint. The chief difficulty is that the permeability may be highly variable, especially when the statistical model has a large variance and a small correlation length. For reasonable accuracy, the discretisation has to be extremely fine. We solve these problems by first reducing the saddle-point formulation to a symmetric positive definite (SPD) problem using a suitable basis for the space of divergence-free velocities. The reduced problem is solved using parallel conjugate gradients preconditioned with an algebraically determined additive Schwarz domain decomposition preconditioner. The result is a solver which exhibits a good degree of robustness with respect to the mesh size as well as to the variance and to physically relevant values of the correlation length of the underlying permeability field. Numerical experiments exhibit almost optimal levels of parallel efficiency. The domain decomposition solver (DOUG, http://www.maths.bath.ac.uk/~parsoft) used here not only is applicable to this problem but can be used to solve general unstructured finite element systems on a wide range of parallel architectures.

  2. A generalised porous medium approach to study thermo-fluid dynamics in human eyes.

    PubMed

    Mauro, Alessandro; Massarotti, Nicola; Salahudeen, Mohamed; Romano, Mario R; Romano, Vito; Nithiarasu, Perumal

    2018-03-22

    The present work describes the application of the generalised porous medium model to study heat and fluid flow in healthy and glaucomatous eyes of different subject specimens, considering the presence of ocular cavities and porous tissues. The 2D computational model, implemented into the open-source software OpenFOAM, has been verified against benchmark data for mixed convection in domains partially filled with a porous medium. The verified model has been employed to simulate the thermo-fluid dynamic phenomena occurring in the anterior section of four patient-specific human eyes, considering the presence of anterior chamber (AC), trabecular meshwork (TM), Schlemm's canal (SC), and collector channels (CC). The computational domains of the eye are extracted from tomographic images. The dependence of TM porosity and permeability on intraocular pressure (IOP) has been analysed in detail, and the differences between healthy and glaucomatous eye conditions have been highlighted, proving that the different physiological conditions of patients have a significant influence on the thermo-fluid dynamic phenomena. The influence of different eye positions (supine and standing) on thermo-fluid dynamic variables has been also investigated: results are presented in terms of velocity, pressure, temperature, friction coefficient and local Nusselt number. The results clearly indicate that porosity and permeability of TM are two important parameters that affect eye pressure distribution. Graphical abstract Velocity contours and vectors for healthy eyes (top) and glaucomatous eyes (bottom) for standing position.

  3. Effects of Different Modes of Hypobaric Hypoxia on the Content of Epigenetic Factors in the Rat in Neurons of Rat Neocortex.

    PubMed

    Samoilov, M O; Churilova, A V; Glushchenko, T S; Rybnikova, E A

    2017-04-01

    We studied the effects of different modes of hypobaric hypoxia on the content of epigenetic factors acH3K24, meH3K9, and meDNA modulating conformational characteristics of chromatin and gene expression in neurons of associative complex of rat parietal neocortex. Severe destructive hypoxia dramatically reduced the level of acH3K24 in 3 h after the end of exposure and increased meH3K9 and meDNA content. By contrast, 3-fold (but not single) adaptive exposure to moderate hypobaric hypoxia that produced a neuroprotective effect enhanced neuronal acH3K24 expression and decreased both meH3K9 and meDNA levels. Elevated acH3K24 content facilitates, while increased content of meH3K9 hampers binding of transcription factors to the target genes. At the same time, increased expression of meDNA suppresses transcription. The role of modification of epigenetic mechanisms in the regulation of proadaptive genes under the effects of hypoxic exposure according to various protocols is discussed.

  4. The High Field Ultra Low Aspect Ratio Tokamak (HF-ULART)

    NASA Astrophysics Data System (ADS)

    Ribeiro, Celso

    2017-10-01

    Recently, a medium-size HF-ULART has been proposed. The major objective is to explore the high beta and pressure under the high toroidal field, using present day technology. This might be one of pathway scenarios for a potential ultra-compact pulsed neutron source (UCP-NS) based on the spherical tokamak (ST) concept, which may lead to more steady-state NS or even to a fusion reactor, via realistic design scaling. The HF-ULART pulsed mode operation is created by quasi-simultaneous adiabatic compression (AC) in both minor and major radius of a very high beta plasma, possibly with further help of passive-wall stabilization, as envisaged in the RULART concept. This may help the revival of the studies of the AC technique in tokamaks, alongside the less compact and more complex ST-40 device, currently under construction. In addition, by similarities, studies in HF-ULART as a UCP-NS may also help to test the feasibility of the compact NS via the spheromak concept, which also uses the AC technique. Simulations of AC in HF-ULART plasmas will be presented.

  5. Regulation of C. elegans fat uptake and storage by acyl-CoA synthase-3 is dependent on NR5A family nuclear hormone receptor nhr-25

    PubMed Central

    Mullaney, Brendan; Ashrafi, Kaveh

    2010-01-01

    Summary Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3, a long-chain acyl-CoA synthase, causes enhanced intestinal lipid uptake, de novo fat synthesis, and accumulation of enlarged, neutral lipid rich intestinal depots. Here, we show that ACS-3 functions in seam cells, epidermal cells anatomically distinct from sites of fat uptake and storage, and that acs-3 mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3 derived long chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans. PMID:20889131

  6. Dielectric behavior and AC conductivity of Cr doped α-Mn2O3

    NASA Astrophysics Data System (ADS)

    Chandra, Mohit; Yadav, Satish; Singh, K.

    2018-05-01

    The complex dielectric behavior of polycrystalline α-Mn2-xCrxO3 (x = 0.10) has been investigated isothermally at wide frequency range (4Hz-1 MHz) at different temperatures (300-390K). The dielectric spectroscopy results have been discussed in different formulism like dielectric constant, impedance and ac conductivity. The frequency dependent dielectric loss (tanδ) exhibit a clear relaxation behavior in the studied temperature range. The relaxation frequency increases with increasing temperature. These results are fitted using Arrhenius equation which suggest thermally activated process and the activation energy is 0.173±0.0024 eV. The normalized tanδ curves at different temperatures merge as a single master curve which indicate that the relaxation process follow the similar relaxation dynamics in the studied temperature range. Further, the dielectric relaxation follows non-Debye behavior. The impedance results inference that the grain boundary contribution dominate at lower frequency whereas grain contribution appeared at higher frequencies and exhibit strong temperature dependence. The ac conductivity data shows that the ac conductivity increases with increasing temperature which corroborate the semiconducting nature of the studied sample.

  7. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes

    PubMed Central

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D.

    2010-01-01

    The relationship between ethanol induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. When hepatocytes were exposed to ethanol (50 mM, 24 hr) in the presence of N-acetyl cystein (ROS reducer) or dietary antioxidants (quercetin, resveratrol), or NADPH oxidase inhibitor apocynin, ethanol induced increases in ROS and H3AcK9, both were significantly reduced. On the other hand, l-buthionine-sulfoximine (ROS inducer) and inhibitor of mitochondrial complex I (rotenone) and III (antimycin) increased ethanol induced H3AcK9 (p<0.01). Oxidative stress also affected ethanol induced alcohol dehydrogenase 1 (ADH1) mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol induced histone H3 acetylation in hepatocytes. PMID:20705415

  8. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes.

    PubMed

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D

    2010-09-01

    The relationship between ethanol-induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol, and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. Pretreatment of hepatocytes with N-acetyl cystein (ROS reducer), or dietary antioxidants (quercetin, reserveratrol), or NADPH (reduced nicotinamide adenine dinucleotide phosphate) oxidase inhibitor apocynin, significantly reduced ethanol (50 mM, 24 h) induced increases in ROS and H3AcK9. In contrast, l-buthionine sulfoximine (ROS inducer) and inhibitor of mitochondrial complexes I (rotenone) and III (antimycin) increased ethanol-induced H3AcK9 (P<.01). Oxidative stress also affected ethanol-induced alcohol dehydrogenase 1 mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol-induced histone H3 acetylation in hepatocytes. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Performance of an X-ray single pixel TES microcalorimeter under DC and AC biasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottardi, L.; Kuur, J. van der; Korte, P. A. J. de

    2009-12-16

    We are developing Frequency Domain Multiplexing (FDM) for the read-out of TES imaging microcalorimeter arrays for future X-ray missions like IXO. In the FDM configuration the TES is AC voltage biased at a well defined frequencies (between 0.3 to 10 MHz) and acts as an AM modulating element. In this paper we will present a full comparison of the performance of a TES microcalorimeter under DC bias and AC bias at a frequency of 370 kHz. In both cases we measured the current-to-voltage characteristics, the complex impedance, the noise, the X-ray responsivity, and energy resolution. The behaviour is very similarmore » in both cases, but deviations in performances are observed for detector working points low in the superconducting transition (R/R{sub N}<0.5). The measured energy resolution at 5.89 keV is 2.7 eV for DC bias and 3.7 eV for AC bias, while the baseline resolution is 2.8 eV and 3.3 eV, respectively.« less

  10. Cost Effectiveness of Antiplatelet and Antithrombotic Therapy in The Setting of Acute Coronary Syndrome: Current Perspective and Literature Review

    PubMed Central

    Fanari, Zaher; Weiss, Sandra; Weintraub, William S

    2015-01-01

    Acute Coronary Syndromes are associated with high rates of morbidity and mortality. The advances of antiplatelet and anticoagulation therapy over several years time have result in in improved in cardiac outcomes, but with increased health care costs. Multiple cost effectiveness studies have been performed to evaluate the use of available antiplatelet agents and anticoagulation in the setting of both ST Elevation myocardial infarction (STEMI) and Non–ST Elevation Acute Coronary Syndrome (NSTE-ACS). Early on the use of GPI prove to be economically attractive in the management of ACS, however the introduction of P2Y12 receptor antagonist limited their use to a bail out agents in complex interventions. Generic clopidogrel is probably still an economically attractive P2Y12 receptor antagonist choice especially in low risk ACS, while both ticagrelor and prasugrel present an economically attractive alternative option especially in high risk ACS and patients at risk for stent thrombosis. While enoxaparin presents an economically dominant alternative to heparin in NSTE-ACS, its role in STEMI in the contemporary era is unclear. During PCI, bivalirudin monotherapy was shown to be an economically dominant alternative to the combination of heparin and GPI in ACS. However, new studies may suggest that using heparin monotherapy may offer an attractive alternative. The comparative and cost effectiveness of different combinations of antiplatelet and antithrombotic therapy will be the focus of future expected clinical and economic assessments. PMID:26068886

  11. In situ surface transfer process of Cry1Ac protein on SiO2: The effect of biosurfactants for desorption.

    PubMed

    Miao, Shuzhou; Yuan, Xingzhong; Liang, Yunshan; Wang, Hou; Leng, Lijian; Wu, Zhibin; Jiang, Longbo; Li, Yifu; Mo, Dan; Zeng, Guangming

    2018-01-05

    Genetically modified Bacillus thuringiensis (Bt) crops, which have been widely used in agricultural transgenic plants, express insecticidal Cry proteins and release the toxin into soils. Taking into consideration the environmental risk of Cry proteins, biosurfactant-rhamnolipids were applied to desorb Cry proteins from soil environment, which has not been elucidated before. Quartz crystal microbalance with dissipation (QCM-D) was used in this article to investigate the adsorption and desorption behaviors of Cry1Ac on SiO 2 surface (model soil). Results showed that patch-controlled electrostatic attraction (PCEA) governed Cry1Ac adsorption to SiO 2, and the solution pH or ionic strength can affect PCEA. The adsorption kinetics could be fitted by the pseudo-second-order model, and the adsorption isotherm was fitted to Langmuir model with correlation coefficients higher than 0.999. The desorption characteristics of Cry1Ac from SiO 2 were assessed in the presence of mono-rhamnolipid, di-rhamnolipid or complex-rhamnolipid. Mono-rhamnolipid exhibited the most significant positive effect on desorption performance. With a complete removal of Cry1Ac reached when mono-rhamnolipid concentration was up to 50mgL -1 . Additionally, the desorption was enhanced at alkaline pH range, and Cry1Ac can be completely and rapidly desorbed by rhamnolipids from SiO 2 at ionic strength of 5×10 -2 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Frequency, field, and temperature dependence of the AC penetration depth of a GdBa 2Cu 3O 7-δ film in the mixed state

    NASA Astrophysics Data System (ADS)

    Zeisberger, M.; Klupsch, Th.; Michalke, W.

    1995-02-01

    We report on a systematic mutual induction measurement of the complex AC penetration depth λ of a sputtered high-quality GdBa 2Cu 3O 7-δ film in the mixed state by a very small coil system arranged near the sample surface. The complex penetration depth λ( B, T, ω) for DC inductions B ⩽ 0.65 T (perpendicular to the film), for temperatures 36 K ⩽ T ⩽ 81 K, and for frequencies 1 kHz ⩽ ω/2 π ⩽ 500 kHz was determined from the measured signal by a novel inversion scheme. The results are consistent with theoretical predictions based upon single vortex pinning. The Labusch parameter α, the flux creep relaxation time τ, as well as the effective activation energy U are simulateneously determined.

  13. A new compound arithmetic crossover-based genetic algorithm for constrained optimisation in enterprise systems

    NASA Astrophysics Data System (ADS)

    Jin, Chenxia; Li, Fachao; Tsang, Eric C. C.; Bulysheva, Larissa; Kataev, Mikhail Yu

    2017-01-01

    In many real industrial applications, the integration of raw data with a methodology can support economically sound decision-making. Furthermore, most of these tasks involve complex optimisation problems. Seeking better solutions is critical. As an intelligent search optimisation algorithm, genetic algorithm (GA) is an important technique for complex system optimisation, but it has internal drawbacks such as low computation efficiency and prematurity. Improving the performance of GA is a vital topic in academic and applications research. In this paper, a new real-coded crossover operator, called compound arithmetic crossover operator (CAC), is proposed. CAC is used in conjunction with a uniform mutation operator to define a new genetic algorithm CAC10-GA. This GA is compared with an existing genetic algorithm (AC10-GA) that comprises an arithmetic crossover operator and a uniform mutation operator. To judge the performance of CAC10-GA, two kinds of analysis are performed. First the analysis of the convergence of CAC10-GA is performed by the Markov chain theory; second, a pair-wise comparison is carried out between CAC10-GA and AC10-GA through two test problems available in the global optimisation literature. The overall comparative study shows that the CAC performs quite well and the CAC10-GA defined outperforms the AC10-GA.

  14. Radiationless Transitions and Excited-State Absorption of Low-Field Chromium Complexes in Solids

    DTIC Science & Technology

    1989-07-20

    host-lattice modes and, in the case of the scandium compound with 5 % chromium concentration, of the a and tIg 2g localized modes. The local-mode...Radiationless transitions and excited-state Final report I/I/86-5/31/89 absorption of low-field chromium complexes 6. PERFORMING ORG. REPORT NUMBER ( 1 in...complexes, chromium ; tunable lasers, high pressure,-photoluminescence 4. 26, AMTVrAC? (Cbm e @CAP N Igemem’ a IdoMit’ by block nambew) The continuation of a

  15. Charge Transfer Between Quantum Dots and Peptide-Coupled Redox Complexes

    DTIC Science & Technology

    2009-01-01

    labeled with reactive metal complexes includ- ing a ruthenium chelate (Ru), a bis-bipyridine ruthe- nium chelate (ruthenium-bpy), and a ferrocene metal...of unconjugated QDs and the metal complex–labeled peptides immobilized on indium tin oxide (ITO) electrodes. The ruthenium and ferrocene peptide...Ag/AgCI E v s. N H E E v s. v ac uu m (e V ) Ruthenium Ferrocene Ruthenium-bpy DHLA QDs DHLA-PEG QDs Quantum dot Metal complex CB VB E0X of QDs Fe

  16. The impact of model peptides on structural and dynamic properties of egg yolk lecithin liposomes - experimental and DFT studies.

    PubMed

    Wałęsa, Roksana; Man, Dariusz; Engel, Grzegorz; Siodłak, Dawid; Kupka, Teobald; Ptak, Tomasz; Broda, Małgorzata A

    2015-07-01

    Electron spin resonance (ESR), (1) H-NMR, voltage and resistance experiments were performed to explore structural and dynamic changes of Egg Yolk Lecithin (EYL) bilayer upon addition of model peptides. Two of them are phenylalanine (Phe) derivatives, Ac-Phe-NHMe (1) and Ac-Phe-NMe2 (2), and the third one, Ac-(Z)-ΔPhe-NMe2 (3), is a derivative of (Z)-α,β-dehydrophenylalanine. The ESR results revealed that all compounds reduced the fluidity of liposome's membrane, and the highest activity was observed for compound 2 with N-methylated C-terminal amide bond (Ac-Phe-NMe2 ). This compound, being the most hydrophobic, penetrates easily through biological membranes. This was also observed in voltage and resistance studies. (1) H-NMR studies provided a sound evidence on H-bond interactions between the studied diamides and lecithin polar head. The most significant changes in H-atom chemical shifts and spin-lattice relaxation times T1 were observed for compound 1. Our experimental studies were supported by theoretical calculations. Complexes EYLAc-Phe-NMe2 and EYLAc-(Z)-ΔPhe-NMe2 , stabilized by NH⋅⋅⋅O or/and CH⋅⋅⋅O H-bonds were created and optimized at M06-2X/6-31G(d) level of theory in vacuo and in H2 O environment. According to our molecular-modeling studies, the most probable lecithin site of H-bond interaction with studied diamides is the negatively charged O-atom in phosphate group which acts as H-atom acceptor. Moreover, the highest binding energy to hydrocarbon chains were observed in the case of Ac-Phe-NMe2 (2). Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Identification and Characterization of an Alternatively Spliced Isoform of the Human Protein Phosphatase 2Aα Catalytic Subunit*

    PubMed Central

    Migueleti, Deivid L. S.; Smetana, Juliana H. C.; Nunes, Hugo F.; Kobarg, Jörg; Zanchin, Nilson I. T.

    2012-01-01

    PP2A is the main serine/threonine-specific phosphatase in animal cells. The active phosphatase has been described as a holoenzyme consisting of a catalytic, a scaffolding, and a variable regulatory subunit, all encoded by multiple genes, allowing for the assembly of more than 70 different holoenzymes. The catalytic subunit can also interact with α4, TIPRL (TIP41, TOR signaling pathway regulator-like), the methyl-transferase LCMT-1, and the methyl-esterase PME-1. Here, we report that the gene encoding the catalytic subunit PP2Acα can generate two mRNA types, the standard mRNA and a shorter isoform, lacking exon 5, which we termed PP2Acα2. Higher levels of the PP2Acα2 mRNA, equivalent to the level of the longer PP2Acα mRNA, were detected in peripheral blood mononuclear cells that were left to rest for 24 h. After this time, the peripheral blood mononuclear cells are still viable and the PP2Acα2 mRNA decreases soon after they are transferred to culture medium, showing that generation of the shorter isoform depends on the incubation conditions. FLAG-tagged PP2Acα2 expressed in HEK293 is catalytically inactive. It displays a specific interaction profile with enhanced binding to the α4 regulatory subunit, but no binding to the scaffolding subunit and PME-1. Consistently, α4 out-competes PME-1 and LCMT-1 for binding to both PP2Acα isoforms in pulldown assays. Together with molecular modeling studies, this suggests that all three regulators share a common binding surface on the catalytic subunit. Our findings add important new insights into the complex mechanisms of PP2A regulation. PMID:22167190

  18. Prevalence and pattern of glenohumeral injuries among acute high-grade acromioclavicular joint instabilities.

    PubMed

    Pauly, Stephan; Kraus, Natascha; Greiner, Stefan; Scheibel, Markus

    2013-06-01

    With increasing numbers of arthroscopically assisted acromioclavicular (AC) joint stabilization procedures has come an increase in reports of concomitant glenohumeral injuries among AC joint separations. The aim of the present study was to evaluate the prevalence, pattern, and cause of glenohumeral pathologies among a large patient population with acute high-grade AC joint instability. A total of 125 patients (13 women, 112 men) with high-grade AC joint dislocation (6 Rockwood II; 119 Rockwood V) underwent diagnostic glenohumeral arthroscopy before AC joint repair. Pathologic lesions were evaluated for acute or degenerative origin and, if considered relevant, treated all-arthroscopically. Concomitant glenohumeral pathologies were found in 38 of 125 patients (30.4%). Analysis of pathogenesis distinguished different patterns of accompanying injuries: acute intra-articular lesions, related to the recent shoulder trauma, were found in 9 patients (7.2%), degenerative lesions, considered to be unrelated to the recent trauma, were found in 18 (14.4%), and 11 (8.8%) had an unclear traumatic correlation (intermediate group). Within the acute and the degenerative group, affected structures were predominantly partial, articular-sided tears of the anterosuperior rotator cuff, including instabilities of the pulley complex, followed by pathologies of the long head of the biceps and superior labrum anteroposterior lesions. The intermediate group presented mainly with articular-sided partial tears of the subscapularis tendon. This prospective study showed a high prevalence (30%) of concomitant glenohumeral pathologies, of which some indicate additional surgical therapy and could be missed by an isolated open AC repair. Hence, the arthroscopic approach for AC joint stabilization allows for the diagnosis and treatment of associated intra-articular pathologies. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  19. Preliminary Therapy Evaluation of 225Ac-DOTA-c(RGDyK) Demonstrates that Cerenkov Radiation Derived from 225Ac Daughter Decay Can Be Detected by Optical Imaging for In Vivo Tumor Visualization

    PubMed Central

    Pandya, Darpan N.; Hantgan, Roy; Budzevich, Mikalai M.; Kock, Nancy D.; Morse, David L.; Batista, Izadora; Mintz, Akiva; Li, King C.; Wadas, Thaddeus J.

    2016-01-01

    The theranostic potential of 225Ac-based radiopharmaceuticals continues to increase as researchers seek innovative ways to harness the nuclear decay of this radioisotope for therapeutic and imaging applications. This communication describes the evaluation of 225Ac-DOTA-c(RGDyK) in both biodistribution and Cerenkov luminescence imaging (CLI) studies. Initially, La-DOTA-c(RGDyK) was prepared as a non-radioactive surrogate to evaluate methodologies that would contribute to an optimized radiochemical synthetic strategy and estimate the radioactive conjugate's affinity for αvβ3, using surface plasmon resonance spectroscopy. Surface plasmon resonance spectroscopy studies revealed the IC50 and Ki of La-DOTA-c(RGDyK) to be 33 ± 13 nM and 26 ± 11 nM, respectively, and suggest that the complexation of the La3+ ion to the conjugate did not significantly alter integrin binding. Furthermore, use of this surrogate allowed optimization of radiochemical synthesis strategies to prepare 225Ac-DOTA-c(RGDyK) with high radiochemical purity and specific activity similar to other 225Ac-based radiopharmaceuticals. This radiopharmaceutical was highly stable in vitro. In vivo biodistribution studies confirmed the radiotracer's ability to target αvβ3 integrin with specificity; specificity was detected in tumor-bearing animals using Cerenkov luminescence imaging. Furthermore, tumor growth control was achieved using non-toxic doses of the radiopharmaceutical in U87mg tumor-bearing nude mice. To our knowledge, this is the first report to describe the CLI of αvβ3+ tumors in live animals using the daughter products derived from 225Ac decay in situ. This concept holds promise to further enhance development of targeted alpha particle therapy. PMID:27022417

  20. Preliminary Therapy Evaluation of (225)Ac-DOTA-c(RGDyK) Demonstrates that Cerenkov Radiation Derived from (225)Ac Daughter Decay Can Be Detected by Optical Imaging for In Vivo Tumor Visualization.

    PubMed

    Pandya, Darpan N; Hantgan, Roy; Budzevich, Mikalai M; Kock, Nancy D; Morse, David L; Batista, Izadora; Mintz, Akiva; Li, King C; Wadas, Thaddeus J

    2016-01-01

    The theranostic potential of (225)Ac-based radiopharmaceuticals continues to increase as researchers seek innovative ways to harness the nuclear decay of this radioisotope for therapeutic and imaging applications. This communication describes the evaluation of (225)Ac-DOTA-c(RGDyK) in both biodistribution and Cerenkov luminescence imaging (CLI) studies. Initially, La-DOTA-c(RGDyK) was prepared as a non-radioactive surrogate to evaluate methodologies that would contribute to an optimized radiochemical synthetic strategy and estimate the radioactive conjugate's affinity for αvβ3, using surface plasmon resonance spectroscopy. Surface plasmon resonance spectroscopy studies revealed the IC50 and Ki of La-DOTA-c(RGDyK) to be 33 ± 13 nM and 26 ± 11 nM, respectively, and suggest that the complexation of the La(3+) ion to the conjugate did not significantly alter integrin binding. Furthermore, use of this surrogate allowed optimization of radiochemical synthesis strategies to prepare (225)Ac-DOTA-c(RGDyK) with high radiochemical purity and specific activity similar to other (225)Ac-based radiopharmaceuticals. This radiopharmaceutical was highly stable in vitro. In vivo biodistribution studies confirmed the radiotracer's ability to target αvβ3 integrin with specificity; specificity was detected in tumor-bearing animals using Cerenkov luminescence imaging. Furthermore, tumor growth control was achieved using non-toxic doses of the radiopharmaceutical in U87mg tumor-bearing nude mice. To our knowledge, this is the first report to describe the CLI of αvβ3 (+) tumors in live animals using the daughter products derived from (225)Ac decay in situ. This concept holds promise to further enhance development of targeted alpha particle therapy.

  1. Charge effects in the selection of NPF motifs by the EH domain of EHD1.

    PubMed

    Henry, Gillian D; Corrigan, Daniel J; Dineen, Joseph V; Baleja, James D

    2010-04-27

    The Eps15 homology (EH) domain is found in proteins associated with endocytosis and vesicle trafficking. EH domains bind to their target proteins through an asparagine-proline-phenylalanine (NPF) motif. We have measured the interaction energetics of the EH domain from EHD1 with peptides derived from two of its binding partners: Rabenosyn-5 (Ac-GPSLNPFDEED-NH(2)) and Rab11-Fip2 (Ac-YESTNPFTAK-NH(2)). Heteronuclear single quantum coherence (HSQC) spectroscopy shows that both peptides bind in the canonical binding pocket of EHD1 EH and induce identical structural changes, yet the affinity of the negatively charged Ac-GPSLNPFDEED-NH(2) (K(a) = 8 x 10(5) M(-1)) is tighter by 2 orders of magnitude. The thermodynamic profiles (DeltaG, DeltaH, DeltaS) were measured for both peptides as a function of temperature. The enthalpies of binding are essentially identical, and the difference in affinity is a consequence of the difference in entropic cost. Ac-GPSLNPFDEED-NH(2) binding is salt-dependent, demonstrating an electrostatic component to the interaction, whereas Ac-YESTNPFTAK-NH(2) binding is independent of salt. Successive replacement of acidic residues in Ac-GPSLNPFDEED-NH(2) with neutral residues showed that all are important. Lysine side chains in EHD1 EH create a region of strong positive surface potential near the NPF binding pocket. Contributions by lysine epsilon-amino groups to complex formation with Ac-GPSLNPFDEED-NH(2) was shown using direct-observe (15)N NMR spectroscopy. These experiments have enabled us to define a new extended interaction motif for EHD proteins, N-P-F-[DE]-[DE]-[DE], which we have used to predict new interaction partners and hence broaden the range of cellular activities involving the EHD proteins.

  2. P-glycoprotein regulates blood–testis barrier dynamics via its effects on the occludin/zonula occludens 1 (ZO-1) protein complex mediated by focal adhesion kinase (FAK)

    PubMed Central

    Su, Linlin; Mruk, Dolores D.; Lui, Wing-Yee; Lee, Will M.; Cheng, C. Yan

    2011-01-01

    The blood–testis barrier (BTB), one of the tightest blood–tissue barriers in the mammalian body, creates an immune-privileged site for postmeiotic spermatid development to avoid the production of antibodies against spermatid-specific antigens, many of which express transiently during spermiogenesis and spermiation. However, the BTB undergoes extensive restructuring at stage VIII of the epithelial cycle to facilitate the transit of preleptotene spermatocytes and to prepare for meiosis. This action thus prompted us to investigate whether this stage can be a physiological window for the delivery of therapeutic and/or contraceptive drugs across the BTB to exert their effects at the immune-privileged site. Herein, we report findings that P-glycoprotein, an ATP-dependent efflux drug transporter and an integrated component of the occludin/zonula occludens 1 (ZO-1) adhesion complex at the BTB, structurally interacted with focal adhesion kinase (FAK), creating the occludin/ZO-1/FAK/P-glycoprotein regulatory complex. Interestingly, a knockdown of P-glycoprotein by RNAi was found to impede Sertoli cell BTB function, making the tight junction (TJ) barrier “leaky.” This effect was mediated by changes in the protein phosphorylation status of occludin via the action of FAK, thereby affecting the endocytic vesicle-mediated protein trafficking events that destabilized the TJ barrier. However, the silencing of P-glycoprotein, although capable of impeding drug transport across the BTB and TJ permeability barrier function, was not able to induce the BTB to be “freely” permeable to adjudin. These findings indicate that P-glycoprotein is involved in BTB restructuring during spermatogenesis but that P-glycoprotein–mediated restructuring does not “open up” the BTB to make it freely permeable to drugs. PMID:22106313

  3. RTM simulations and experiments for fiber-reinforced turbine blades forming

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuan Linh; Marchand, Christophe

    2018-05-01

    The one-shot (full part) forming of tidal turbine blades by RTM (Resin Transfer Molding) process is a complex process due to the complexity of reinforcements and geometry of blades. In this work, beside the experimental tests which have been realized using IRT JV high capacity machines, the RTM simulations using Moldex3D RTM software have been carried out. First of all, simulations have been done on a 1/7th scale part in order to determine the best injection strategy. Different tested strategies vary by the disposition of injection points (Inlet)/vacuum points (Outlet). Then, the chosen strategy has been applied on the full scale part (˜ 7m length) of high thickness with more complex reinforcement draping. In both cases, the stage of meshing is important to take into account the draping plan with different fiber orientation and fiber types. Attention should be paid on the neck of the blade as the structure of reinforcement changes. A sensitivity study of different parameters (permeability, pressure, temperature) has been then done to understand their influence on the injection time. The permeability which lies to the choice of reinforcement type and fiber volume fraction plays an important role. As the thickness of the part is high, an experimental campaign for measuring the 3D permeability is required. Among the process controllable parameters, the pressure seems the fastest way to reduce the injection time. However, increasing the injection pressure (or the vacuum) could deform the reinforcement. Moreover, the maximal pressure depends on the machine capacity. The influence of temperature shows the thermo-dependence of resin viscosity, the injection time thus decreases as the temperature increases. Nevertheless, the gel time is more limited for injection stage if the resin is heated too much.

  4. Interest of cyclodextrins in spray-dried microparticles formulation for sustained pulmonary delivery of budesonide.

    PubMed

    Dufour, Gilles; Bigazzi, William; Wong, Nelson; Boschini, Frederic; de Tullio, Pascal; Piel, Geraldine; Cataldo, Didier; Evrard, Brigitte

    2015-11-30

    To achieve an efficient lung delivery and efficacy, both active ingredient aerosolisation properties and permeability through the lung need to be optimized. To overcome these challenges, the present studies aim to develop cyclodextrin-based spray-dried microparticles containing a therapeutic corticosteroid (budesonide) that could be used to control airway inflammation associated with asthma. The complexation between budesonide and hydroxypropyl-β-cyclodextrin (HPBCD) has been investigated. Production of inhalation powders was carried out using a bi-fluid nozzle spray dryer and was optimized based on a design of experiments. Spray-dried microparticles display a specific "deflated-ball like shape" associated with an appropriate size for inhalation. Aerodynamic assessment show that the fine particle fraction was increased compared to a classical lactose-based budesonide formulation (44.05 vs 26.24%). Moreover, the budesonide permeability out of the lung was shown to be reduced in the presence of cyclodextrin complexes. The interest of this sustained budesonide release was evaluated in a mouse model of asthma. The anti-inflammatory effect was compared to a non-complexed budesonide formulation at the same concentration and attests the higher anti-inflammatory activity reach with the cyclodextrin-based formulation. This strategy could therefore be of particular interest for improving lung targeting while decreasing systemic side effects associated with high doses of corticosteroids. In conclusion, this works reports that cyclodextrins could be used in powder for inhalation, both for their abilities to improve active ingredient aerosolisation properties and further to their dissolution in lung fluid, to decrease permeability out of the lungs leading to an optimized activity profile. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs

    DOE Data Explorer

    Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.

    2011-01-01

    Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in the formations to be stimulated and it is therefore critical to understand the interactions between existing fractures and newly created fractures before optimal stimulation strategies can be developed. Our study aims to improve the understanding of EGS stimulation-response relationships by developing and applying computer-based models that can effectively reflect the key mechanisms governing interactions between complex existing fracture networks and newly created hydraulic fractures. In this paper, we first briefly describe the key modules of our methodology, namely a geomechanics solver, a discrete fracture flow solver, a rock joint response model, an adaptive remeshing module, and most importantly their effective coupling. After verifying the numerical model against classical closed-form solutions, we investigate responses of reservoirs with different preexisting natural fractures to a variety of stimulation strategies. The factors investigated include: the in situ stress states (orientation of the principal stresses and the degree of stress anisotropy), pumping pressure, and stimulation sequences of multiple wells.

  6. Molecular inclusion complex of curcumin-β-cyclodextrin nanoparticle to enhance curcumin skin permeability from hydrophilic matrix gel.

    PubMed

    Rachmawati, Heni; Edityaningrum, Citra Ariani; Mauludin, Rachmat

    2013-12-01

    Curcumin (CUR) has various pharmacological effects, but its extensive first-pass metabolism and short elimination half-life limit its bioavailability. Therefore, transdermal application has become a potential alternative to delivery CUR. To increase CUR solubility for the development of a transparent homogenous gel and also enhance the permeation rate of CUR into the skin, β-cyclodextrin-curcumin nanoparticle complex (BCD-CUR-N) was developed. CUR encapsulation efficiency was increased by raising the percentage of CUR to BCD up to 20%. The mean particle size of the best CUR loading formula was 156 nm. All evaluation data using infrared spectroscopy, Raman spectroscopy, powder X-ray diffractometry, differential thermal analysis and scanning electron microscopy confirmed the successful formation of the inclusion complex. BCD-CUR-N increased the CUR dissolution rate of 10-fold (p < 0.01). In addition, the improvement of CUR permeability acrossed skin model tissue was observed in gel containing the BCD-CUR-N and was about 1.8-fold when compared with the free CUR gel (p < 0.01). Overall, CUR in the form of the BCD-CUR-N improved the solubility further on the penetration of CUR.

  7. Characterization of reactive flow-induced evolution of carbonate rocks using digital core analysis - part 2: Calculation of the evolution of percolation and transport properties.

    PubMed

    Qajar, Jafar; Arns, Christoph H

    2017-09-01

    Percolation of reactive fluids in carbonate rocks affects the rock microstructure and hence changes the rock macroscopic properties. In Part 1 paper, we examined the voxel-wise evolution of microstructure of the rock in terms of mineral dissolution/detachment, mineral deposition, and unchanged regions. In the present work, we investigate the relationships between changes in two characteristic transport properties, i.e. permeability and electrical conductivity and two critical parameters of the pore phase, i.e. the fraction of the pore space connecting the inlet and outlet faces of the core sample and the critical pore-throat diameter. We calculate the aforementioned properties on the images of the sample, wherein a homogeneous modification of pore structure occurred in order to ensure the representativeness of the calculated transport properties at the core scale. From images, the evolution of pore connectivity and the potential role of micropores on the connectivity are quantified. It is found that the changing permeability and electrical conductivity distributions along the core length are generally in good agreement with the longitudinal evolution of macro-connected macroporosity and the critical pore-throat diameter. We incorporate microporosity into critical length and permeability calculations and show how microporosity locally plays a role in permeability. It is shown that the Katz-Thompson model reasonably predicts the post-alteration permeability in terms of pre-alteration simulated parameters. This suggests that the evolution of permeability and electrical conductivity of the studied complex carbonate core are controlled by the changes in the macro-connected macroporosity as well as the smallest pore-throats between the connected macropores. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Solubility, Stability, Physicochemical Characteristics and In Vitro Ocular Tissue Permeability of Hesperidin: a Natural Bioflavonoid

    PubMed Central

    Majumdar, Soumyajit; Srirangam, Ramesh

    2008-01-01

    Purpose Hesperidin holds potential in treating age-related macular degeneration, cataract and diabetic retinopathy. The aim of this study, constituting the first step towards efficient ocular delivery of hesperidin, was to determine its physicochemical properties and in vitro ocular tissue permeability. Methods pH dependent aqueous solubility and stability were investigated following standard protocols. Permeability of hesperidin across excised rabbit cornea, sclera, and sclera plus retinal pigmented epithelium (RPE) was determined using a side-bi-side diffusion apparatus. Results Hesperidin demonstrated poor, pH independent, aqueous solubility. Solubility improved dramatically in the presence of 2-hydroxypropyl-beta-cyclodextrin (HP-β-CD) and the results supported 1:1 complex formation. Solutions were stable in the pH and temperature (25, 40°C) conditions tested, except for samples stored at pH 9. Transcorneal permeability in the apical-basal and basal-apical directions was 1.11±0.86×10−6 and 1.16±0.05×10−6 cm/s, respectively. The scleral tissue was more permeable (10.2±2.1×10−6cm/s). However, permeability across sclera/choroid/RPE in the sclera to retina and retina to sclera direction was 0.82±0.69×10−6, 1.52±0.78×10−6 cm/s, respectively, demonstrating the barrier properties of the RPE. Conclusion Our results suggest that stable ophthalmic solutions of hesperidin can be prepared and that hesperidin can efficiently permeate across the corneal tissue. Further investigation into its penetration into the back-of-the eye ocular tissues is warranted. PMID:18810327

  9. Intracellular localization of a group II chaperonin indicates a membrane-related function

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D.; Kagawa, Hiromi K.; Paavola, Chad D.; McMillan, R. Andrew; Howard, Jeanie; Jahnke, Linda; Lavin, Colleen; Embaye, Tsegereda; Henze, Christopher E.

    2003-01-01

    Chaperonins are protein complexes that are believed to function as part of a protein folding system in the cytoplasm of the cell. We observed, however, that the group II chaperonins known as rosettasomes in the hyperthermophilic archaeon Sulfolobus shibatae, are not cytoplasmic but membrane associated. This association was observed in cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C by using immunofluorescence microscopy and in thick sections of rapidly frozen cells grown at 76 degrees C by using immunogold electron microscopy. We observed that increased abundance of rosettasomes after heat shock correlated with decreased membrane permeability at lethal temperature (92 degrees C). This change in permeability was not seen in cells heat-shocked in the presence of the amino acid analogue azetidine 2-carboxylic acid, indicating functional protein synthesis influences permeability. Azetidine experiments also indicated that observed heat-induced changes in lipid composition in S. shibatae could not account for changes in membrane permeability. Rosettasomes purified from cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C bind to liposomes made from either the bipolar tetraether lipids of Sulfolobus or a variety of artificial lipid mixtures. The presence of rosettasomes did not significantly change the transition temperature of liposomes, as indicated by differential scanning calorimetry, or the proton permeability of liposomes, as indicated by pyranine fluorescence. We propose that these group II chaperonins function as a structural element in the natural membrane based on their intracellular location, the correlation between their functional abundance and membrane permeability, and their potential distribution on the membrane surface.

  10. Changes in sapwood permeability and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans.

    PubMed

    England, Jacqueline R; Attiwill, Peter M

    2007-08-01

    Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans F. Muell. Sapwood was sampled at breast height from trees ranging from 8 to 240 years old, and at three height positions on the main stem of 8-year-old trees. Variation in k was not significant among sampling height positions in young trees. However, k at breast height increased with tree age. This was related to increases in both vessel frequency and vessel diameter, resulting in a greater proportion of sapwood being occupied by vessel lumina. Sapwood hydraulic conductivity (the product of k and sapwood area) also increased with increasing tree age. However, at the stand level, there was a decrease in forest sapwood hydraulic conductivity with increasing stand age, because of a decrease in the number of trees per hectare. Across all ages, there were significant relationships between k and anatomy, with individual anatomical characteristics explaining 33-62% of the variation in k. There was also strong agreement between measured k and permeability predicted by the Hagen-Poiseuille equation. The results support the hypothesis of an increase in sapwood permeability at breast height with age. Further measurements are required to confirm this result at other height positions in older trees. The significance of tree-level changes in sapwood permeability for stand-level water relations is discussed.

  11. The effect of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells

    NASA Astrophysics Data System (ADS)

    Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto

    2017-04-01

    We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.

  12. Specificity and Versatility of Substrate Binding Sites in Four Catalytic Domains of Human N-Terminal Acetyltransferases

    PubMed Central

    Grauffel, Cédric; Abboud, Angèle; Liszczak, Glen; Marmorstein, Ronen; Arnesen, Thomas; Reuter, Nathalie

    2012-01-01

    Nt-acetylation is among the most common protein modifications in eukaryotes. Although thought for a long time to protect proteins from degradation, the role of Nt-acetylation is still debated. It is catalyzed by enzymes called N-terminal acetyltransferases (NATs). In eukaryotes, several NATs, composed of at least one catalytic domain, target different substrates based on their N-terminal sequences. In order to better understand the substrate specificity of human NATs, we investigated in silico the enzyme-substrate interactions in four catalytic subunits of human NATs (Naa10p, Naa20p, Naa30p and Naa50p). To date hNaa50p is the only human subunit for which X-ray structures are available. We used the structure of the ternary hNaa50p/AcCoA/MLG complex and a structural model of hNaa10p as a starting point for multiple molecular dynamics simulations of hNaa50p/AcCoA/substrate (substrate = MLG, EEE, MKG), hNaa10p/AcCoA/substrate (substrate = MLG, EEE). Nine alanine point-mutants of the hNaa50p/AcCoA/MLG complex were also simulated. Homology models of hNaa20p and hNaa30p were built and compared to hNaa50p and hNaa10p. The simulations of hNaa50p/AcCoA/MLG reproduce the interactions revealed by the X-ray data. We observed strong hydrogen bonds between MLG and tyrosines 31, 138 and 139. Yet the tyrosines interacting with the substrate’s backbone suggest that their role in specificity is limited. This is confirmed by the simulations of hNaa50p/AcCoA/EEE and hNaa10p/AcCoA/MLG, where these hydrogen bonds are still observed. Moreover these tyrosines are all conserved in hNaa20p and hNaa30p. Other amino acids tune the specificity of the S1’ sites that is different for hNaa10p (acidic), hNaa20p (hydrophobic/basic), hNaa30p (basic) and hNaa50p (hydrophobic). We also observe dynamic correlation between the ligand binding site and helix that tightens under substrate binding. Finally, by comparing the four structures we propose maps of the peptide-enzyme interactions that should help rationalizing substrate-specificity and lay the ground for inhibitor design. PMID:23285125

  13. S4AC Case Study: Enhancing Underserved Seniors' Access to Health Promotion Programs.

    PubMed

    Koehn, Sharon; Habib, Sanzida; Bukhari, Syeda

    2016-03-01

    The Seniors Support Services for South Asian Community (S4AC) project was developed in response to the underutilization of available recreation and seniors' facilities by South Asian seniors who were especially numerous in a suburban neighbourhood in British Columbia. Addressing the problem required the collaboration of the municipality and a registered non-profit agency offering a wide range of services and programs to immigrant and refugee communities. Through creative outreach and accommodation, the project has engaged more than 100 Punjabi-speaking seniors annually in diverse exercise activities. Case study research methods with staff and current and former senior participants of S4AC include participant observation, individual interviews, and focus groups. Viewed through the critical interpretive lens of the "candidacy framework", findings reveal the myriad ways in which access to health promotion and physical activity for immigrant older adults is a complex iterative process of negotiation at multiple levels.

  14. Direct imaging of macrophage activation during PDT treatment

    NASA Astrophysics Data System (ADS)

    Song, Sheng; Zhou, Feifan; Chen, Wei R.; Xing, Da

    2012-03-01

    Mounting evidence describes a more complex progress of macrophage activation during photodynamic therapy (PDT), which performing distinct immunological functions and different physiologies on surrounding cells and tissues. Macrophage-targeted PDT has been applied in the selective killing of cells involved in inflammation and tumor. We have previously shown that PDT-mediated tumor cells apoptosis can induce a higher level immune response than necrosis, and enhance the macrophage activation. However, the molecular mechanism of macrophage activation during PDT-induced apoptotic cells (AC) still unclear. Here, we use confocal microscopy to image the phagocytosis of tumor cells by macrophages. We also observed that PDT-treated AC can activate Toll-like receptors (TLRs) which are present on macrophages surface. Besides, the increase in nitric oxide (NO) formation in macrophages was detected in real time by a laser scanning microscopy. This study provided more details for understanding the molecular mechanism of the immune response induced by PDT-treated AC.

  15. The permeaiblity of fault-zones:the role of stylolites as incipit of dissolution

    NASA Astrophysics Data System (ADS)

    Magni, Silvana

    2017-04-01

    Fault zones and fractures play an important role in fluid circulation and then in dissolution, acting as barriers or conductors depending on the distribution of other features associated with them and on the specific conditions (lithological and structural, as well). The fault zone have a high permeability only in the early stages of the movement but shortly after recrystallization and reprecipitation processes greatly reduce the permeability within them. Indeed the dissolution is a complex phenomenon which involves both several factors that lead to the formation of caves and karst systems often complex. Traditionally, in the field of karst , the dissolution is associated with extensional structures such as faults and joints believing that they are more favorable to the water circulation. In this context compressional tectonic structures, as like the stylolites, are never considered. In fact the stylolites play an important role in the fluid circulation (Rawling, 2001) and in particular in the incipit of dissolution and then of the karst. We have so focused our research on the study of permeability of four fault zones in a karst area of Alte Murge (South Italy). Through a detailed structural analysis in the field and using the method of Caine (Caine, 1996), we reconstructed the permeability of the four previous fault zones. Our attention was focused on faults, joints and on stylolites. Contrary to the literature the dissolution and therefore the karst was mainly found along the stylolites and only secondarily along faults. No sign of dissolution was found along the joints. In the context of karst studies, the stylolites, which are structures due to pressure solution has never been taken into account, thinking that in compressional structures is not possible any circulation of water and that therefore there is no fluid-rock interaction. No consideration has been given to the enormous role that the pressure and the microfluidic that are created have in this context. The styololites, the focus of our research open important questions about their exact role as incipit of the dissolution. Through petrophysical analysis and microstructural we are characterizing the porosity and permeability near the stylolites. Recently, fluid-rock interactions and their impact on carbonate rocks is becoming very important because of an increasing interest it the carbonate reservoirs as a consequence of a progressive deterioration of the quantity and quality of the groundwater due to increasing pollution phenomena. In fact the aquifers represent about 40% of the drinking water resources and their importance will increase in coming years. REFERENCESE Caine, J.S.,Evans, J.P., Forster,C.B. (1996). Fault zone architecture and permeability structure. Geology 24, 1025-1032 Rawling,G.C., Goodwin,L.B., Wilson,J.L. (2001). Internal architecture permeability structure and hydrogeologic significance of contrasting fault-zone types. Geology 29, 43-46

  16. Poroelastic references

    DOE Data Explorer

    Morency, Christina

    2014-12-12

    This file contains a list of relevant references on the Biot theory (forward and inverse approaches), the double-porosity and dual-permeability theory, and seismic wave propagation in fracture porous media, in RIS format, to approach seismic monitoring in a complex fractured porous medium such as Brady?s Geothermal Field.

  17. SU-F-T-449: Dosimetric Comparison of Acuros XB, Adaptive Convolve in Intensity Modulated Radiotherapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, R; Tachibana, H

    Purpose: There have been several publications focusing on dose calculation in lung for a new dose calculation algorithm of Acuros XB (AXB). AXB could contribute to dose calculation for high-density media for bone and dental prosthesis rather than in lung. We compared the dosimetric performance of AXB, Adaptive Convolve (AC) in head and neck IMRT plans. Methods: In a phantom study, the difference in depth profile between AXB and AC was evaluated using Kodak EDR2 film sandwiched with tough water phantoms. 6 MV x-ray using the TrueBeam was irradiated. In a patient study, 20 head and neck IMRT plans hadmore » been clinically approved in Pinnacle3 and were transferred to Eclipse. Dose distribution was recalculated using AXB in Eclipse while maintaining AC-calculated monitor units and MLC sequence planned in Pinnacle. Subsequently, both the dose-volumetric data obtained using the two different calculation algorithms were compared. Results: The results in the phantom evaluation for the shallow area ahead of the build-up region shows over-dose for AXB and under-dose for AC, respectively. In the patient plans, AXB shows more hot spots especially around the high-density media than AC in terms of PTV (Max difference: 4.0%) and OAR (Max. difference: 1.9%). Compared to AC, there were larger dose deviations in steep dose gradient region and higher skin-dose. Conclusion: In head and neck IMRT plans, AXB and AC show different dosimetric performance for the regions inside the target volume around high-density media, steep dose gradient regions and skin-surface. There are limitations in skin-dose and complex anatomic condition using even inhomogeneous anthropomorphic phantom Thus, there is the potential for an increase of hot-spot in AXB, and an underestimation of dose in substance boundaries and skin regions in AC.« less

  18. Effect of amoxicillin/clavulanate on gastrointestinal motility in children.

    PubMed

    Gomez, Roberto; Fernandez, Sergio; Aspirot, Ann; Punati, Jaya; Skaggs, Beth; Mousa, Hayat; Di Lorenzo, Carlo

    2012-06-01

    The aim of the present study was to evaluate the effect of amoxicillin/clavulanate (A/C) on gastrointestinal motility. Twenty consecutive pediatric patients referred for antroduodenal manometry received 20 mg/kg of A/C into the small bowel lumen. In 10 patients (group A), A/C was given 1 hour after and in 10 (group B), 1 hour before ingestion of a meal. Characteristics of the migrating motor complex, including presence, frequency, amplitude, and propagation of duodenal phase III and phase I duration and phase II motility index (MI), were evaluated 30 minutes before and after A/C administration. There were no statistically significant differences in age and sex between the 2 groups. Manometry studies were considered normal in 8 patients in each group. In group A, 2 patients developed duodenal phase III after receiving A/C, and no significant difference was found in the MI before and after the drug administration. In group B, 9 patients developed duodenal phase III (P <0.05 vs group A). All phase III occurred within a few minutes from the medication administration. Most duodenal phase III contractions were preceded by an antral component during fasting but never after the medication was administered in either of the 2 groups (P<0.001 vs fasting). In group B, the duration of duodenal phase I was shorter after drug administration (P<0.05). There was no significant difference in duodenal phase II MI before and after A/C administration for the 2 study groups. In children, administration of A/C directly into the small bowel before a meal induces phase III-type contractions in the duodenum, with characteristics similar to those present in the fasting state. These data suggest the possible use of A/C as a prokinetic agent. Further studies are needed to clarify its specific mechanism of action and the group of patients most likely to benefit from its use.

  19. Proteomics-based identification of midgut proteins correlated with Cry1Ac resistance in Plutella xylostella (L.).

    PubMed

    Xia, Jixing; Guo, Zhaojiang; Yang, Zezhong; Zhu, Xun; Kang, Shi; Yang, Xin; Yang, Fengshan; Wu, Qingjun; Wang, Shaoli; Xie, Wen; Xu, Weijun; Zhang, Youjun

    2016-09-01

    The diamondback moth, Plutella xylostella (L.), is a worldwide pest of cruciferous crops and can rapidly develop resistance to many chemical insecticides. Although insecticidal crystal proteins (i.e., Cry and Cyt toxins) derived from Bacillus thuringiensis (Bt) have been useful alternatives to chemical insecticides for the control of P. xylostella, resistance to Bt in field populations of P. xylostella has already been reported. A better understanding of the resistance mechanisms to Bt should be valuable in delaying resistance development. In this study, the mechanisms underlying P. xylostella resistance to Bt Cry1Ac toxin were investigated using two-dimensional differential in-gel electrophoresis (2D-DIGE) and ligand blotting for the first time. Comparative analyses of the constitutive expression of midgut proteins in Cry1Ac-susceptible and -resistant P. xylostella larvae revealed 31 differentially expressed proteins, 21 of which were identified by mass spectrometry. Of these identified proteins, the following fell into diverse eukaryotic orthologous group (KOG) subcategories may be involved in Cry1Ac resistance in P. xylostella: ATP-binding cassette (ABC) transporter subfamily G member 4 (ABCG4), trypsin, heat shock protein 70 (HSP70), vacuolar H(+)-ATPase, actin, glycosylphosphatidylinositol anchor attachment 1 protein (GAA1) and solute carrier family 30 member 1 (SLC30A1). Additionally, ligand blotting identified the following midgut proteins as Cry1Ac-binding proteins in Cry1Ac-susceptible P. xylostella larvae: ABC transporter subfamily C member 1 (ABCC1), solute carrier family 36 member 1 (SLC36A1), NADH dehydrogenase iron-sulfur protein 3 (NDUFS3), prohibitin and Rap1 GTPase-activating protein 1. Collectively, these proteomic results increase our understanding of the molecular resistance mechanisms to Bt Cry1Ac toxin in P. xylostella and also demonstrate that resistance to Bt Cry1Ac toxin is complex and multifaceted. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Lipid raft components cholesterol and sphingomyelin increase H+/OH− permeability of phosphatidylcholine membranes

    PubMed Central

    Gensure, Rebekah H.; Zeidel, Mark L.; Hill, Warren G.

    2006-01-01

    H+/OH− permeation through lipid bilayers occurs at anomalously high rates and the determinants of proton flux through membranes are poorly understood. Since all life depends on proton gradients, it is important to develop a greater understanding of proton leak phenomena. We have used stopped-flow fluorimetry to probe the influence of two lipid raft components, chol (cholesterol) and SM (sphingomyelin), on H+/OH− and water permeability. Increasing the concentrations of both lipids in POPC (palmitoyl-2-oleoyl phosphatidylcholine) liposomes decreased water permeability in a concentration-dependent manner, an effect that correlated with increased lipid order. Surprisingly, proton flux was increased by increasing the concentration of chol and SM. The chol effect was complex with molar concentrations of 17.9, 33 and 45.7% giving 2.8-fold (P<0.01), 2.2-fold (P<0.001) and 5.1-fold (P<0.001) increases in H+/OH− permeability from a baseline of 2.4×10−2 cm/s. SM at 10 mole% effected a 2.8-fold increase (P<0.01), whereas 20 and 30 mole% enhanced permeability by 3.6-fold (P<0.05) and 4.1-fold respectively (P<0.05). Supplementing membranes containing chol with SM did not enhance H+/OH− permeability. Of interest was the finding that chol addition to soya-bean lipids decreased H+/OH− permeability, consistent with an earlier report [Ira and Krishnamoorthy (2001) J. Phys. Chem. B 105, 1484–1488]. We speculate that the presence of proton carriers in crude lipid extracts might contribute to this result. We conclude that (i) chol and SM specifically and independently increase rates of proton permeation in POPC bilayers, (ii) domains enriched in these lipids or domain interfaces may represent regions with high H+/OH− conductivity, (iii) H+/OH− fluxes are not governed by lipid order and (iv) chol can inhibit or promote H+/OH− permeability depending on the total lipid environment. Theories of proton permeation are discussed in the light of these results. PMID:16706750

Top